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Abstrakt: V této práci se zaměřujeme na využit́ı robustńıch vlastnost́ı mediánu.
Pro algoritmy, které jsou v práci navržené, zkoumáme jejich breakdown point, ale
i daľśı vlastnosti jako konsistenci (silnou nebo slabou), ekvivarianci a výpočetńı
složitost. Z praktických d̊uvod̊u hledáme předevš́ım metody, které se snaž́ı naj́ıt
rovnováhu mezi výpočetńı složitost́ı a dobrými robustńımi vlastnostmi, protože
tyto vlastnosti obvykle stoj́ı proti sobě. Disertace je rozdělena do dvou část́ı.

V prvńı části navrhujeme robustńı metody na bázi exponenciálńıho vyrovnáváńı.
Nejprve zobecňujeme dř́ıvěǰśı výsledky pro exponenciálńı vyrovnáváńı v absolutńı
normě s využit́ım. regresńıch kvantẙu. Dále navrhujeme metodu založenou na
znaménkovém testu, která se snaž́ı vypořádat nejen s odlehlými pozorováńımi,
ale i detekovat čas změny modelu.

V druhé části navrhujeme nové odhady parametru polohy. Konstruujeme je tak,
ze nejprve najdeme množinu robustńıch bod̊u okolo geometrického mediánu, tuto
množiinu dále rozšǐrujeme a z bod̊u této množiny poč́ıtáme iterativně vážený
pr̊uměrr. Dı́ky tomu źıskáme robustńı odhad ve smyslu breakdown pointu, který
využ́ıvá v́ıce informace z pozorovaných hodnot než běžné robustńı odhady. Tento
př́ıstup se uplatńı při konstrukci boxplotu a bagplotu. Odhady konstruujeme na
obecném normovaném vektorovém prostoru s t́ım, že d́ıky využit́ı multifunkćı
mohou být tyto odhady definovány jako množiny.
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1. Introduction

Classical statistical methods were developed in the period when the most crucial
property of the method was its simplicity. This was mainly because of the lack
of modern computational tools. Without them the usage of more complicated
techniques could tend toward a higher probability of errors. There are also other
advantages of the classical methods over the more complicated ones (or in our
case robust) such as easier understanding, more developed theoretical framework
or more general applicability (simpler methods are applicable in more situations
than highly specialized ones). On the other side these methods are the most
suitable only under very restrictive assumptions. Robust statistical methods try
to weaken them. E.g., in many statistical models it is assumed that residuals are
independent and identically distributed. Moreover, the assumption of normality
of residuals is often added and the Euclidean norm is usually employed. The
normality of observations can be also justified by theoretical arguments, namely
central limit theorem. But for real data these assumptions are often violated.

This naturally leads to the robust statistic which concerns cases when the
assumptions of the classical methods are not fulfilled. Its development is enabled
by progress in computer science, as the robust methods are usually much more
complicated and computationally demanding than the classical methods. As a
standard example of the robust technique can serve replacing the l2 norm by l1
norm or the removal of observations which does not seem to follow the general
pattern (e.g., the observations too far from the rest of the observations etc.).

Literature dealing with the robust statistic is already quite vast. We mention
several monographs concerning the field (Maronna et al., 2006), (Jurečková and
Picek, 2005) or (Huber and Ronchetti, 2009), where we can find many robust
methods suitable in different situations.

From the comparison of different methods it is only clear that none of them
is superior to another and that we have to understand the differences between
them to utilize the most appropriate one for the problem under investigation.
The understanding of the methods is also essential in frequent cases, when they
give different results.

We demonstrate now the difference between classical and robust methods on
a simple example. Let X stand for the matrix of known regressors, y stand for a
vector of regressands, ε stand for a vector of unobserved random variables which
elements are i.i.d. (independent identically distributed), normally distributed,
with expected value 0, variance σ2 (i.e., εt ∼ N(0, σ2)) and β is a vector of
parameters. We consider the model in the form

y = Xβ + ε. (1.1)

According to Gauss-Markov theorem, the best linear unbiased estimator is
the ordinary least square estimator which has the form (X>X)−1X>y. Here
”the best” stands for the fact that the ordinary least square estimator has the
lowest variance among the all unbiased linear estimators. To derive that we
do not need all the above mentioned assumptions. Namely we do not need to
utilize normality and instead of independent and identically distributed residuals
it suffices for matrix εt to be uncorrelated with each other, to have an expected
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value equal to zero, to be homoscedastic with finite variance and for X to have a
full rank, see (Seber and Lee, 2003). The simple mean is also an example of the
least square estimator.

In real data problems it quite often appears that an assumed normality de-
scribes the majority of observations; nevertheless, some of the observations can
violate this assumption and behave in a different way to the rest. They can follow
a different pattern, no pattern at all, they can have infinite variance etc. These
observations can be sometimes identified such; that they lie outside the cloud of
the rest of the data. Such a behavior is typical across the broad spectrum of
datasets. The observations which do not fulfill the assumptions (”behavior”) of
the rest of the data are called outliers. The outliers may have a large distort-
ing effect on classical statistical estimators. The value of the classical estimate
influenced by outliers can be misleading.

A different view on data considers its distribution function. We suppose con-
tinuous distribution of observations in a random sample and denote f(x) their
density function. For the sake of simplicity we further consider f(x) to be sym-
metric. If for |x| → ∞ the f(x) converges to 0 more slowly than normal density
function, we say that the distribution of the random sample is heavy tailed. Also
in this case the classical models based on the least squares are usually inappro-
priate.

We return to our example. We have shown that mean is the best linear
unbiased estimator. We demonstrate now its inability to deal with outliers. To
show this, it suffices to take any random sample from the normal distribution.
We choose one observation from the sample and alter its value. If the value of the
observation is far enough from the expected value of the rest of the observations
then the mean of the random sample is also shifted. It can even happen that the
mean is outside the cloud of not perturbed observations. The most common way
to deal with this problem is to replace the mean by median (there are also other
possible estimators).

Our sample contains n observations. The computational complexity of its
mean is then n and of the median is n log(n).

The situation for regression does not differ too much. We have a random
sample of n observations which follow the model (1.1). As before we choose one
observation i. Let the observation follow a different model yi = x>i γ + εi, where
xi is a vector of regressors and γ 6= β. Let further xi lie far outside the rest of
regressors i.e., maxk,l∈1,...,i−1,i+1,...,n ‖xk−xl‖ � minl∈1,...,i−1,i+1,...,n ‖xi−xl‖. If we

employ the least squares then a final estimate β̂ of β can be shifted significantly
from β. In this more general case, we mention three robust methods dealing with
regression but there are plenty of others.

• The least weighted squares: in this method the weighted sum of squared
residuals is minimized with respect to β. We order the statistics of square
residuals and put the higher weight to the observations with the lower value
of the square residuals. The idea of implicit weighting residuals was pro-
posed by (Vı́̌sek, 2000). This method leads to a very robust estimator and
has satisfactory properties, see (Maš́ıček, 2004). Nevertheless, its computa-
tion is intensive and an approximative algorithm must be used already for
moderate sample sizes, see (Kalina, 2009).
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• Regression quantiles: the method generalizes the procedure of minimization
of residuals in the absolute norm. We mention it also in Chapter 2. It was
introduced in (Koenker and Bassett, 1978). The regression quantiles can
be computed with the help of the simplex algorithm (Jurečková and Picek,
2005).

• Theil-Sen algorithm: The idea for two dimensional case is to choose the
median of slopes of the lines which connect two points from the sample.
It was introduced in (Theil, 1950) and extended in (Sen, 1968). Its prop-
erties are still studied (Hanxiang et al., 2008). Several different methods
are known for computing the Theil–Sen estimator exactly in n log n time
see (Brönnimann and Chazelle, 1998). We utilize especially the variation
proposed by (Siegel, 1982), which is also known as repeated median.

The question arises: How to compare estimators with respect to their robust-
ness? There is no generally accepted definition of robustness. There are plenty
of different measures trying to deal with that. We mention two of them.

• Influence function measures the dependence of the estimator on the value
of one of the points from the sample (see (v. Mises, 1947)). I.e., we replace
the i-th observation of the sample by an arbitrary value and look how the
output of the estimator changes. There are some desirable properties of the
estimator with respect to its influence function.

1. Finite rejection point - this means that there is a threshold. If the
value of the threshold is exceeded by the replaced observation then
the value of the influence function is equal to zero.

2. Gross error sensitivity should be small. The gross error sensitivity
is the supreme absolute value of influence function over all possible
values of the replaced observation.

3. Local shift sensitivity should be small. The local shift sensitivity rep-
resents the effect of a small shift, of the replaced observation, from its
initial position.

We present two examples: mean has its gross error sensitivity equal to
infinity, local shift sensitivity equal to 1 and infinite rejection point. We
compare it with the median, which has a gross error sensitivity equal to√

π
2
, local shift sensitivity equal to infinity and finite rejection point (see

(Jurečková and Picek, 2005)).

• One of the most important concepts in robust statistics is a breakdown
point which was introduced for the first time in (Hampel, 1971) and then
was studied in (Donoho and Huber, 1983). Loosely speaking, it expresses a
fraction of data which can be ”arbitrarily increased” without affecting the
finiteness of an estimator. Thus, the high breakdown point is the valuable
property of the estimator. However, computational complexity is usually
higher for estimators with a high value of the breakdown point and further
increases with a dimension of the observations. For the mean the break
down point equals to zero and for the median one half constituting the
best value for ”reasonable” estimators. As an example of the improper
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estimator let us take one which is always equal to zero. The estimator
cannot be violated by any perturbed observation thus its break down point
is equal to one.

In our work we focus our attention on this measure of robustness.

Throughout the work we utilize a median as a basic estimator in our methods.
We have mentioned that the median can serve as a more robust estimator than
the mean and therefore it is natural to replace the mean by the median whenever
we wish to gain a more robust method. As it has also been mentioned, the median
is employed in repeated median algorithm for linear regression.

The idea of the median is quite old. The concept of it appeared in the Talmud,
the book from the 13th century. Pierre Simon Laplace in 1774 suggested the
minimization in the absolute norm leading to the median instead of a quadratic
norm. The quadratic norm leads to the mean and was suggested by Carl Friedrich
Gauss and Adrien Maria Legendre (see (Stigler, 1973)). Francis Galton used
the term median in the year 1881 in his work Report of the Anthropometric
Committee.

So far we have discussed especially the median appropriate for a one dimen-
sional case, but we want to deal also with general normed vector space and
regression. For any normed vector space we utilize, as a natural generalization of
median, the concept of geometric median. In the case of the regression we employ
the repeated median estimator.

As it has been already mentioned, on the one hand the robust methods handle
better violations from the assumptions, on the other hand their computational
complexity is in comparison to the classical methods rather poor. In our work
we focus not only on robustness but our aim is also to find as simple statistical
methods as possible. The methods should also be easy to implement and have
low computational complexity. For this purpose the simple idea hidden behind
the median serves as a really good starting point.

In our work we present different simulation studies. They are all based on
the principle that the normal distribution with predefined parameter of location
is perturbed by some other heavy tailed distribution in a selected proportion.
We believe that this technique approximates well the real data. After that we
compare different estimators with respect to the average absolute deviation from
the parameter of location of the not perturbed normal distribution.

In Chapter 2 we focus on recursive adaptive methods which deal with smooth-
ing and forecasting. At first we describe the exponential smoothing. The liter-
ature dealing with its robustification (proposing similar method which is not so
prone to outliers) remains rather lacking. The first attempt to fulfill this gap was
made in (Cipra, 1992) (this method is described later in our work). Other authors
have tried to apply robust versions of the Kalman filter to the state-space model
associated with exponential smoothing. They generally employ M-estimation.
This method is described in (Cipra and Romera, 1992), (Romera and Cipra,
1995), (Gelper et al., 2010) and (Hanzák and Cipra, 2011).

We generalize previous results from (Cipra, 1992) for exponential smoothing in
the absolute norm by using the regression quantiles (Koenker and Bassett, 1978).
We examine the breakdown point of the method. We also mention possible ex-
tensions for more parameters. A method based on a classical sign test algorithm
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is introduced. It deals not only with outliers but also with level shifts, including
a detection of change points. This method is also extended to the more dimen-
sional case. The break down point, complexity, convergence and equivariance is
evaluated by the studied algorithms. The ability of estimating is investigated for
various approaches by means of a simulation study. We consider not only the
ability of the investigated methods to smooth the series but also to forecast. We
illustrate the methods on real data example.

We propose new robust estimators for parameter of location in Chapter 3 .
A location family of a distribution is a class of probability distributions where
the distribution depends on a location parameter a which determines the shift of
the distribution. Having a random variable with density f(x), the density of all
other distribution in the location family can be expressed as fa(x) = f(x − a).
The classical example of a distribution which depends on the location parameter
is the normal distribution.

We follow the same goal of finding an easily computable robust estimator with
the high breakdown point in the chapter. For this purpose we employ not only
the idea of the median but also the trimmed mean.

Let us describe now the procedure from Chapter 3. At first we try to find the
unperturbed observations in our sample. These observations are utilized in the
construction of robust estimators. To gain them, we need initially some compu-
tationally simple estimator with the high breakdown point. Since the geometric
median satisfies these requirements, we employ it as the initial estimator. The ge-
ometric median is a direct generalization of the median. It was firstly mentioned
in (Weber, 1909) and rediscovered by (Haldane, 1948) and its properties were
studied in details by (Kemperman, 1987). It is well defined even if the random
variable does not have a finite first moment and it is considered robust because
its breakdown point is equal to 1

2
. Even though it is not affine invariant, it is still

translation equivariant and scale invariant. In a functional context, consistent es-
timators of the geometric median were proposed by (Kemperman, 1987), (Cadre,
2001) and (Gervini, 2008). Another advantage of the geometric median is its low
computational complexity, which can be easily seen when the absolute norm is
employed, as the computation of the geometric median reduces to computation
of componentwise median. A vast number of algorithms were proposed for its
computation, see (Cardot et al., 2013).

Methods generalizing median were also proposed for time series analysis but
only in special case of AR(1) (Zielinski, 1999) and (Luger, 2006). However, the
further research in this area would be possible.

Further, we find some set L from a sample of observations which are robust
in the sense of breakdown point around the geometric median. Then we utilize
these observations to construct further estimators, for example by enlarging L
and computing the (iterative) weighted mean of observations from the enlarged
set. Since the geometric median has the breakdown point of 1

2
, our estimators

will be able to keep this property as well.
We try to keep the chapter as general as possible. For this reason, we deal

with normed spaces meaning that our estimators are not restricted only on Rd

(where d is a dimension of the space), but we can for instance engage with spaces
of integrable functions such as Lq. This opens a natural way to handle time series
by our approach. It is also possible to employ our approach in regression, where
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we could once more utilize the Siegel algorithm instead of the geometric median.
Our estimators enjoy the following desirable properties:

• Instead of considering the Rd space, we work with a general normed vector
space X. This opens a natural way to tackle time series by our approach.

• Our estimators have the high breakdown point and are simple to compute.

• We partially consider the covariance structure.

• We are able to work with set-valued estimators instead of single-valued
estimators.

• Their computational complexity is low.

Note that estimators usually only satisfy several of the above properties, for
example either they have the high breakdown point or they do not take into
account the covariance structure at all.

We deal with the consistency of our estimators in a special case of Rd.
We also study how our method can be visualized by implementing it into

boxplot and bagplot in the chapter .

1.1 Basic definitions

We introduce some of the basic definitions and notation utilized throughout our
work in this part. Since the first part of it deals with time series and the second
with parameters of location, our notation slightly differs between these parts. We
always highlight the differences.

In this work we employ a general probability space (Ω,A,P).
Our notation is basically standard: by (X, ‖ · ‖) we understand a normed

vector space. For a set A ⊂ X, we define

‖A‖ := sup
x∈A
‖x‖.

For A,B ⊂ X and c ∈ R we define the Minkowski sum, Minkowski difference and
multiplication by a scalar as

A+B := {a+ b| a ∈ A, b ∈ B},
A−B := {a− b| a ∈ A, b ∈ B},

cA := {ca| a ∈ A},

respectively.
We often use the bold notation for x = (x1, . . . , xn) ∈ Xn and by lower

index we understand a component of a vector. In Chapter 2 we employ the bold
notation whenever x ∈ Rd for d ∈ N and d > 1.

A multifunction R : X ⇒ Y is a generalization of a function, where the image
does not have to be one point but may be a subset of Y .

We also need some basic functions. Let x ∈ R and x ≥ 0 then dxe is the
ceiling function. I.e., dxe = min{n ∈ N|n ≥ x} .

We define the floor function as bxc = max{n ∈ N|n ≤ x}.
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We define the signum function for x ∈ R as

sgn(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0.

We put [x]+ = max(0, x) and [x]− = −min(0, x) for x ∈ R . This denotes the
positive (respectively the negative) part of any real number.

Let f denote one of the previously mentioned functions (ceiling, floor, signum
function and positive resp. negative parts) and x ∈ Rd, x = (x1, . . . , xd)

>. We
put f(x) = (f(x1), . . . , f(xd))

>.
Binomial coefficients

(
n
k

)
for n, k = 0, 1, 2, . . . are defined in a usual way. If

n = 0 then
(
n
k

)
= 0.

Definition 1.1.1. Consider an estimator Tn : Xn ⇒ X. We say that Tn is

• shift equivariant if for all x1, . . . , xn ∈ X and y ∈ X we have

Tn(x1 + y, . . . , xn + y) = Tn(x1, . . . , xn) + y.

• shift invariant if for all x1, . . . , xn ∈ X and y ∈ X we have

Tn(x1 + y, . . . , xn + y) = Tn(x1, . . . , xn).

• scale equivariant if for all x1, . . . , xn ∈ X and c ∈ R

Tn(cx1, . . . , cxn) = cTn(x1, . . . , xn).

Definition 1.1.2. We say that random variable Y has the distribution F which
is contaminated by distribution G with probability p if P(Y ∼ F ) = 1 − p and
P(Y ∼ G) = p.

Similarly, we consider the observations with distribution G as outliers.
We deal with the consistency of estimators and convergence in our work,

therefore we have a reminder of some basic definitions.

Definition 1.1.3. Let X1, . . . , Xn be a sequence of i.i.d. random variables drawn
from a distribution with parameter θ and Tn(X1, . . . , Xn) an estimator of θ. We
say that Tn(X1, . . . , Xn) is a consistent estimator of θ if for any ε > 0

lim
n→∞

P (|Tn(X1, . . . , Xn)− θ| > ε) = 0.

We are sometimes able to show an even stronger kind of convergence.

Definition 1.1.4. Let X1, . . . , Xn be a sequence of i.i.d. random variables drawn
from a distribution with parameter θ and Tn(X1, . . . , Xn) an estimator of θ. We
say that Tn(X1, . . . , Xn) is a strongly consistent estimator of θ or that
Tn(X1, . . . , Xn) converges almost surely to θ if for any ε > 0

P
(

lim inf
n→∞

(ω ∈ Ω : |Tn(X1(ω), . . . , Xn(ω))− θ| < ε)
)

= 1.
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From the almost sure convergence follows the convergence in probability.
The Fisher consistence is also mentioned in our work.

Definition 1.1.5. Let X,X1, . . . , Xn be a sequence of i.i.d. random variables
drawn from a distribution with parameter θ, Tn(X1, . . . , Xn) an estimator of θ, F
cumulative distribution function of X and Fn empirical distribution function from
the sample X1, . . . , Xn. If an estimator of θ based on the sample can be represent-
ed as a functional of the empirical distribution function, i.e., Tn(X1, . . . , Xn) =
T (Fn) then we say that estimator is Fisher consistent if T (F ) = θ.

This definition does not have to describe asymptotic properties of the esti-
mator. E.g., we want to estimate expected value µ of some distribution. We
utilize X1 as an estimate of µ regardless of n. This estimator is Fisher consistent;
nevertheless, it is not consistent.

A breakdown point is nowadays one of the standard measures of robustness
and expresses the minimal proportion of the data which can be corrupted (made
arbitrarily distant) before the estimator becomes unbounded. Our definition dif-
fers from the one in (Donoho and Huber, 1983), but maintains original properties.

Definition 1.1.6. Consider a normed vector space X and an estimator
Tn : Xn ⇒ X of some functional T . For x = (x1, . . . , xn) ∈ Xn and m = 1, . . . , n
we define

Am,n(x) := {x̃ ∈ Xn | x̃ and x have at most m different coordinates} ,

m∗n(Tn,x) := max
m∈{1,...,n}

{
m

∣∣∣∣∣ sup
x̃∈Am,n(x), z̃∈Tn(x̃), z∈Tn(x)

‖z̃ − z‖ <∞

}
.

Then we say that Tn has the breakdown point

ε∗n(Tn,x) :=
1

n
m∗n(Tn,x).

Finally, for family of estimators {Tn : Xn ⇒ X} we define the asymptotic break-
down point as

ε∗ := lim inf
n→∞,x∈Xn

ε∗n(Tn,x).

We denote the observations from x̃ as perturbed if they differ from observa-
tions from x.

The different approach to the break down point, which also takes into account
time series, was studied in (Genton and Lucas, 2003). We deal with time series
in Chapter 2, but we consider there recursive adaptive algorithms, for which the
method from (Genton and Lucas, 2003) is not suitable.

When working with a time series, it is often crucial to smooth it. To do so,
one often considers only neighboring measurements and smooth on their basis.
However, if we apply Definition 1.1.6 to the smoothing operator, the resulting
breakdown point would be extremely small and would depend on the length of
the series. For this reason we propose a modification.

Let Tn : Rn → Rn be an estimator of observations in a time series and
y = (y1, . . . , yn)> is the time series. For simplicity we denote for t = 1, . . . , n by
Tn,t : Rm(t,y) → R the smoothed values (estimates) of yt. Here, m(t,y) denotes the
size of the neighborhood zt ⊂ y on the base of which the estimate is computed.

9



We neglect the fact that Tn is usually a map between Rn and Rn−W for some
W ∈ N,W < n and not Rn → Rn.

Definition 1.1.7. Let Tn : Rn → Rn be an estimator of time series, y =
(y1, . . . , yn)> ∈ Rn and τ ≤ n. Then we denote breakdown point of Tn by

ετ,n(Tn,y) := min
t=τ,...,n

ε∗m(t,y)(Tn,t, zt),

where we utilize Definition 1.1.6 on the right side of the equation.
Consider that we have infinite number of observations y = (y1, y2, . . . )

> and
that Tn → T̄ for n→∞ then the breakdown point for infinite series is defined as

ε(T̄ ,y) := lim inf
t→∞,zt∈Rm(t,y)

ε∗m(t,y)(T̄t, zt),

where T̄t : Rm(t,y) → R is an estimator of the tth observation.

In some situations is m(t,y) a random variable. In this case we consider the
worst possible alternative for computing breakdown point.

Definition 1.1.8. Let Tn : Rn → Rn be an estimator of time series, y =
(y1, . . . , yn)> ∈ Rn, τ ≤ n, S(t,y) denotes a set containing all possible z ⊆ y
from which can be final estimate Tn,t computed, m(t, z) denotes the number of
observations in z. Then we denote breakdown point of Tn by

ετ,n(Tn,y) := min
t=τ,...,n;z∈S(t,y)

ε∗m(t,z)(Tn,t, z),

where we utilize Definition 1.1.6 on the right side of the equation.
Consider that we have an infinite number of observations y = (y1, y2, . . . )

>

and that Tn → T̄ for n→∞ then the breakdown point for infinite series is defined
as

ε(T̄ ,y) := lim inf
t→∞,z∈S(t,y)

ε∗m(t,z)(T̄t, z),

where we utilize Definition 1.1.6 on the right side of the equation.

We employ Definition 1.1.8 in Part 2.2.1.

Example 1.1.9. Let us have time series y = (y1, . . . , yn)> which follows the
model

yt = at + εt for t = 1, . . . , n,

where εt is a white noise process. As a norm we employ the Euclidian norm ‖·‖2.
Let W ∈ N and W ≥ 2. We denote the weighted median from observations

yt, . . . , yt−W+1 by M(yt, . . . , yt−W+1) where the observation yt has a weight 2
W+1

and yi has a weight 1
W+1

for i = t−1, . . . , t−W +1. Our algorithm has the form.

Algorithm 1.1.1 Smoothing with a weighted median

Input: observations (y1, . . . , yn), W ≥ 2 and W ≤ n
1: compute M(yW , . . . , y1)
2: put ŷW ←M(yW , . . . , y1)
3: put t← W + 1
4: while t ≤ n do
5: ŷt ←M(yt, . . . , yt−W+1)
6: t← t+ 1
7: end while

10



We employ Algorithm 1.1.1 as a functional Tn from Definition 1.1.7 . We
put τ = W . In our case m(t,y) = W and zt = (yt−W+1, . . . , yt)

>. Due to the
properties of the weighted median we get ε∗W

(
Tn,t, (yt−W+1, . . . , yt)

>) = 1
W

⌊
W−2

2

⌋
.

From that we get ετ,n(Tn,y) = 1
W

⌊
W−2

2

⌋
and therefore also ε(T̄ ,y) = 1

W

⌊
W−2

2

⌋
for n → ∞. If we utilize a simple median, we will get ετ,n(Tn,y) = 1

W

⌊
W−1

2

⌋
instead. 4

We should note that Definition 1.1.6 of the asymptotic breakdown point differs
from the breakdown point for the infinite series from 1.1.7, because m(t,y) does
not generally converge to infinity in the case of 1.1.7 when n→∞.

We can consider a different definition of the breakdown point for time series
as a stricter alternative . Namely, we put y instead of zt and n instead of m(t,y)
in Definition 1.1.7. Then, if we perturb observations zt and not the rest of the
observations, we could get a really low break down point. This complies with the
direct application of Definition 1.1.6.

In the case of time series we normally do not employ all observations to smooth
the time series in the time t. The position of contaminated observations is very
important in this case. E.g., if the perturbed observations lie in the beginning of
the sample then the smoothed values of the series in the time t which is also in
the beginning can also be wrong.

Let us suppose that we know the probability p that the observation yt is
perturbed. We are interested in the probability that the smoothed value of the
time series in the time t is not perturbed.

Definition 1.1.10. Let us have y = (y1, . . . , yn)> ∈ Rn and Tn : Rn → Rn an
estimator of time series. Further, p = P(ȳt = y∗t ) and 1 − p = P(ȳt = yt) for
t = 1, . . . , n, where y∗t is any number from R, p ∈ [0, 1] and ȳ = (ȳ1, . . . , ȳn)>.
Let further the indicators I(ȳ1 = y∗1), . . . , I(ȳn = y∗n) be independent. We define
the probability πt(Tn) of unviolated solution as

πt(Tn) = P

(
sup

(y∗1 ,...,y
∗
n)∈Rn

‖Tn,t(y)− Tn,t(ȳ)‖ <∞

)
.

Proposition 1.1.11. Let us have y = (y1, . . . , yn)> ∈ Rn and Tn : Rn → Rn

an estimator of time series. The observation yt for t = 1, . . . , n can be perturbed
with probability p ∈ [0, 1] in the sense of Definition 1.1.10. Further, we employ
τ ∈ N such that τ ≤ n. Then for t ≥ τ

πt(Tn(ȳ)) ≥
bετ,n(Tn,ȳ)m(t,ȳ)c∑

i=0

pi(1− p)m(t,ȳ)−i
(
m(t, ȳ)

i

)
. (1.2)

Proof. If the number of perturbed observations exceed bετ,n(Tn, ȳ)m(t, ȳ)c then
we get from Definition 1.1.7 that ŷt(zt) can be influenced by the observations
from (y∗1, . . . , y

∗
n)>. For the indicators I(ȳ1 = y∗1), . . . , I(ȳn = y∗n) are independent

we utilize binomial distribution with parameters m(t, ȳ) and p.

The inequality in (1.2) stands for the fact that ετ,n(Tn, ȳ) ≤ ε∗m(t,y)(Tn,t, zt) for

any t = τ, · · · , n and that the observations from zt can influence ŷt(zt) differently.
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Example 1.1.12. The assumptions in this example are the same as in Example
1.1.9. We utilize the simple exponential smoothing in the following form to smooth
the series y.

Algorithm 1.1.2 Simple exponential smoothing

Input: observations (y1, . . . , yn), W ∈ N, W < n and 0 < λ < 1
1: compute mean µW from (y1, . . . , yW )>

2: put ŷW ← µW
3: put t← W + 1
4: while t ≤ n do
5: ŷt ← λyt + (1− λ)ŷt−1

6: t← t+ 1
7: end while

We employ Algorithm 1.1.2 as a functional Tn from Definition 1.1.7. We
put τ = W . In this case m(t,y) = t. For some i ∈ N satisfying i ≤ n and
t ∈ N such that n ≥ t ≥ i we denote ȳi,t = (y1, . . . , yi−1, y

∗
i , yi+1, . . . , yt)

>.

If y∗i → ∞ then from Steps 2 and 5 follows Tn,t
(
ȳi,t
)
→ ∞, which yields

‖Tn,t(ȳi,n)−Tn,t(y)‖2 →∞. Since ȳi,t ⊂ A1,t(y1, . . . , yt) (see Definition 1.1.6), we

get ε∗t
(
Tn,t, (y1, . . . , yt)

>) = 0, which yields ετ,n(Tn,y) = 0 and finally ε(T̄ ,y) = 0
for n→∞.

We fix t ≥ W and compute πt(Tn(ȳ)). From ε∗t
(
Tn,t, (y1, . . . , yt)

>) = 0 for
t = 1, . . . , n we get πt(Tn(ȳ)) = (1− p)t. 4

Example 1.1.9. We continue with Example 1.1.9.
We compute πt(Tn(ȳ)) for fixed t ≥ W . We get

πt(Tn(ȳ)) ≥
bW−2

2 c∑
i=0

pi(1− p)W−i
(
W

i

)
from Proposition 1.1.11.

Nevertheless, πt(Tn(ȳ)) is higher, for there is a mismatch in weights of
yt, . . . , yt−W+1. We have to consider separately the cases when yt is contaminated
and when it is not. We get

πt(Tn(ȳ)) = p

bW−2
2 c−1∑
i=0

pi(1− p)W−1−i
(
W − 1

i

)
+

+ (1− p)
bW2 c∑
i=0

pi(1− p)W−1−i
(
W − 1

i

)
.

4

We will also deal with a time complexity of our algorithms. We employ the
basic definitions from (Sipser, 2012). We omit a precise definition of Turing
machine. It can be found in (Sipser, 2012, p. 167). The following description can
serve as a vague idea of it. An infinite tape serves as unlimited memory of the
Turing machine model. It has a tape head that can read and write symbols and

12



move around on the tape. Initially the tape contains only an input string and is
blank everywhere else. If the machine needs to store information, it may write it
on the tape. To read it the machine can move its head back over it. The machine
computes until it decides to produce an output.

We adopt the following definitions from (Sipser, 2012, p. 276, 277).

Definition 1.1.13. Let M be a deterministic Turing machine that halts on all
inputs. The running time or time complexity of M is the function f : N → N,
where f(n) is the maximum number of steps that M uses on any input of length
n.

The exact running time is usually quite a complex expression. Therefore, we
consider only the highest order term of the expression for the running time of
the algorithm, disregarding both the coefficient of that term and any lower order
terms, because the highest order term dominates the other terms on large inputs.

These reasons we lead us to the following notation. We write f(n) = O(g(n))
for functions f, g : N→ R+ if for some c ∈ R, exists n0 such that for all n ≥ n0,
f(n) ≤ cg(n).

Example 1.1.12. To compute the running time of Algorithm 1.1.2 we only need
to sum two numbers for each t. Therefore, the time complexity is equal to O(n).

Example 1.1.9. We discuss the time complexity of Algorithm 1.1.1. We have
to compute the weighted median from W observations during the algorithm . The
most demanding part of it is to order the observations. To do so, we utilize
a heapsort algorithm. Its time complexity is O(W logW ) according to (Cormen,
2009)[151]. However, we have to order the observations just once. In other words,
we can exploit the ordering for t from t− 1 and therefore, we have for each t the
time complexity only O(W ). It yields the time complexity O(Wn), but W can
be considered as a constant with respect to n and therefore the final complexity is
just O(n).

4
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2. Recursive adaptive methods

We deal especially with methods very similar to exponential smoothing in the
beginning of this chapter. I.e., the methods which employ exponential weights.
Further, we suppose an alternative approach, which is based on the idea of the
sign test.

The simplicity and recursive computing scheme predetermine the exponential
smoothing to be widely used for time series. It is employed for smoothing and
forecasting. It is an ad hoc procedure, but there are connections to ARIMA
models, see (Brown, 1962).

It is shown in (Papageorgiou et al., 2005) that the method is still effective in
practical problems.

However, the exponential smoothing, as many other statistical methods, is
very sensitive to outliers. We have mentioned in the introduction that some
authors attempt to deal with this problem by introducing the robust version of
the Kalman filter. The approach based on it supposes that there can be a change
in level in each step, even if the change is rather small. On the other hand we
suppose, that level shifts appear in our data only rarely, but the corresponding
changes can be really significant then.

We attempt to employ L-estimators here, see (Jurečková and Picek, 2005),
and we test for level shifts.

The general exponential smoothing supposes the model of the form

yt = z>t at + εt, (2.1)

where {yt}nt=1 is a given time series, at vector of parameters, zt vector of fitting
functions (both of these vectors are of dimension d), and εt a white noise. The
white noise is usually supposed to be i.i.d. with normal distribution. We loosen
these assumptions and suppose εt to be i.i.d. with the median equal to zero. We
usually employ normally distributed εt contaminated by distributions with heavy
tails but with a probability density symmetric around the origin. Compare with
Definition 1.1.2.

The classical approach of exponential smoothing operates in the l2 norm (see,
e.g., (Hyndman et al., 2008)). One looks for adaptive estimates ât((y1, . . . , yt), β)
by minimizing

t∑
i=1

βt−i(yi − z>i at)
2 (2.2)

at time t, where β ∈ (0, 1) is a discount coefficient. The solution is unique except
for degenerated cases.

Two robust approaches replacing general exponential smoothing are consid-
ered in this chapter:

1. the exponential smoothing using regression quantiles and implemented by
means of a special algorithm in l1 norm,

2. the approach combining some ideas of the exponential smoothing with the
classical sign test. This method can also be applied to time series with level
shifts.
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2.1 Exponential smoothing based on regression

quantiles

The objective function (2.2) to be minimized can, using the methodology of the
regression quantiles with a robustifying effect (see (Koenker and Bassett, 1978)),
be transformed to the form

t∑
i=1

βt−i%α(yi − z>i at), (2.3)

where α ∈ (0, 1) and

%α(x) = |x|{αI[x ≥ 0] + (1− α)I[x < 0]}, x ∈ R.

For a given α, we denote one of the solutions of (2.3), by aαt ((y1, . . . , yt), β).
Then the corresponding smoothed value of α−quantile of yt is defined as yαt =
(zt)

>aαt ((y1, . . . , yt), β). It generalizes the l1 approach (Cipra, 1992). Indeed, in
the case of the median, i.e., with α = 0.5, instead of (2.3) we solve the minimiza-
tion problem

t∑
i=1

βt−i|yi − z>i at| (2.4)

(see, e.g., (Cipra, 1992), (Cipra and Romera, 1992) and (Romera and Cipra,
1995)). The approach based on the regression quantiles can follow certain ideas
used in the previous works with α = 0.5.

We approximate (2.3) by

t∑
i=t−W+1

βt−i%α(yi − z>i at) (2.5)

to solve it, where W should be large enough that the observations
yt−W , yt−W−1, . . . , y1 with weights βW , βW+1, . . . , βt−1 can be neglected.

The minimization of function (2.5) is discussed in the following Section.

2.1.1 Regression quantiles: Algorithm for the generalized
l1 approach

We introduce an algorithm for solving (2.5) generalizing the l1 approach to the
exponential smoothing here. We describe the case d = 1 first. We deal with the
general multi-dimensional case then.

2.1.2 Case d = 1

We employ a simple algorithm for the case of d = 1 . This algorithm has been
introduced by (Cipra, 1992) for α = 0.5, and we refer to it as C-algorithm.

We look for

ãαt ((y1, . . . , yn),W, β) ∈ argmin
a∈R

{
t∑

i=t−W+1

βt−i%α(yi − zia)

}
, (2.6)
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where zi are known scalars. We omit ((y1, . . . , yn),W, β), to avoid burdensome
notation, when we write ãαt ((y1, . . . , yn),W, β). An equality is not expressed in
Formula (2.6), because its solution is not generally unique. We can assume with-
out loss of generality that z1, . . . , zt 6= 0. In particular, it includes the case of the
classical constant trend for time series for zi ≡ 1 and α = 0.5 and one obtains a
robust version of simple exponential smoothing. The algorithm has the following
form for general zi :

Algorithm 2.1.1 Exponential smoothing in l1 norm case d = 1

Input: (y1, . . . , yn)>, (z1, . . . , zn)>, W ∈ N, β, α ∈ (0, 1)
1: t← W
2: while t ≤ n do
3: order the ratios yt−W+1

zt−W+1
, . . . , yt

zt

4: denote the ordered values by v(1) ≤ v(2) ≤ · · · ≤ v(W )

5: for j = t−W + 1, . . . , t do
6: find i such that v(i) =

yj
zj

7: if zj > 0 then
8: c−i ← αβt−j|zj| and c+

i ← (1− α)βt−j|zj|
9: else

10: c−i ← (1− α)βt−j|zj| and c+
i ← αβt−j|zj|

11: end if
12: end for
13: find the index r (r = {1, . . . ,W}) which fulfills

r−1∑
j=1

c+
j −

W∑
j=r

c−j < 0

r∑
j=1

c+
j −

W∑
j=r+1

c−j ≥ 0

(2.7)

14: put ãαt ← v(r)

15: end while

We construct the quantile estimate in this way .
The idea behind Algorithm 2.1.1 is as follows: The minimum of the objective

function (2.6) can be a point or an interval; nevertheless, there are no other
local minima. I.e., the function descends from minus infinity then it attains the
minimum, whether it is a point or an interval, and then it ascends into infinity.
The algorithm looks for one of the points, where the derivative of the objective
function changes its sign. The derivative is not defined in the points v(1), . . . , v(W ).

The procedure can be performed recursively if one exploits the ordering of
v(1), . . . , v(W ) from the previous step. We have to put current ratio yt

zt
into the

proper place and get rid of yt−W
zt−W

. We can order v(1), . . . , v(W ) by the heapsort or

another sorting algorithm with a low computational complexity in the beginning.

Lemma 2.1.1. Let Tn : Rn → Rn be an estimator defined by Algorithm 2.1.1
with inputs y = (y1, . . . , yn)>, zt = 1 for t = 1, . . . , n, then ãαt is for t = W, . . . , n
a shift equivariant estimate. If further α = 0.5 then ãαt is for t = W, . . . , n also
scale equivariant.
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Proof. Let all observations be shifted by s ∈ R. Then for t = W, . . . , n

t∑
i=t−W+1

βt−i%α(yi + s− at) =
t∑

i=t−W+1

βt−i%α(yi − (at − s)). (2.8)

I.e., if the solution of (2.6) is ãαt ((y1, . . . , yn),W, β) then for the minimum ãαt ((y1+
s, . . . , yn + s),W, β) of (2.8) holds

ãαt ((y1 + s, . . . , yn + s),W, β)− s = ãαt ((y1, . . . , yn),W, β).

If α = 0.5 and c, x ∈ R then %0.5(cx) = c%0.5(x). This yields for t = W, . . . , n
and c 6= 0

t∑
i=t−W+1

βt−i%0.5(cyi − at) = c

t∑
i=t−W+1

βt−i%0.5(yi −
1

c
at). (2.9)

From (2.9) we get

1

c
ã0.5
t ((cy1, . . . , cyn),W, β) = ã0.5

t ((y1, . . . , yn),W, β).

The case c = 0 is simple.

Example 2.1.2. We show simple examples, when the Algorithm 2.1.1 is not shift
and scale equivariant. Let W = 2, y1 = −2, y2 = 1, z1 = 1, z2 = 2, β = 1 and
α = 0.5. The solution of (2.6) is 1

2
. If we plug into (2.6) y1 + s and y2 + s, where

s = 2, we get the solution 3
2
.

Let now α = 0.9, z2 = 1 and the rest of the values stay the same. Then the
solution of (2.6) is 1. If we plug into (2.6) cy1 and cy2, where c = −1, we get
the solution 2. 4

If we employ the series −y1, . . . ,−yn instead of y1, . . . , yn in Algorithm 2.1.1
with c < 0 and α 6= 0.5 we should get ãαt ((−y1, . . . ,−yn),W, β) =
−ã1−α

t ((y1, . . . , yn),W, β). Therefore, the fact that the algorithm is not scale
equivariant for α 6= 0.5 is reasonable.

Further, we deal with the convergence of C-algorithm. It cannot converge in
the case that we employ any window W . We simplify our task for a while such
that we are looking for a in a model

yt = a+ εt, (2.10)

where we suppose εt to be i.i.d. non-degenerated random variables with the
median equal to 0. The constant a does not change over time. We are looking
for a by minimizing

t∑
i=1

βt−i|yi − a|, (2.11)

for each t = 1, 2, . . . . If β = 1 then the almost sure convergence to the median is
proved e.g., in (Pollard, 2012). In the case that 0 < β < 1 we show that because
of its exponential weights there appears the same problem as for exponential
smoothing, namely that the weights of more recent observations are too high.
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Proposition 2.1.3. Let us have a time series following the model (2.10) and
estimates ât gained as the solution of (2.11). Then ât does not converge to a
almost surely neither in probability.

Proof. We fix some t ∈ N. We want to compute the least number k of the
most recent observations yt, yt−1, . . . , yt−k+1 of which the sum of weights is always
greater than one half of the sum of all weights. The sum of all possible weights is

∞∑
i=0

βi =
1

1− β
.

The sum of weights of the most recent k observations is

k−1∑
i=0

βi =
1− βk

1− β
.

We are looking for the least k for which

1

2(1− β)
≤ 1− βk

1− β
.

This yields
1

2
≤ 1− βk.

There is such a number k because 0 < β < 1 and therefore limk→∞ 1− βk = 1.
Since εt is non-degenerated it holds P(εt > c > 0) = δ > 0 or P(εt < c <

0) = δ > 0. We suppose without loss of generality that P(εt > c > 0) = δ > 0.
It yields that there is nonzero probability that k consecutive yt are greater than
a. If we split the series {yt}∞t=1 into the distinct parts of the length k such that
t1 = 1, t2 = k+1, . . . and denote by Etj the event that ytj > a+c, . . . , ytj+k > a+c
then we get

∑∞
j=1 P(Etj) =∞. The events Etj are independent, therefore we can

employ Borell-Cantelli lemma. It yields that Etj occurs for infinitely many j
almost surely. We can split the series {yt}∞t=1 in any way i.e., that for any t ∈ N
the event that yt > a, . . . , yt+k > a can occur and these events arise for infinitely
many t.

If Et+1 occurs then, because of the choice of k, the sum of weights corre-
sponding to observations yt+1, . . . , yt+k is greater than the sum of the rest of the
weights. It yields that P(ãt+k > a + c i.o.) = 1. It also shows that ãt cannot
converge in probability.

We show a result relating to the robustness of the C-algorithm now. We
employ Definition 1.1.7 of the breakdown point in the following lemma.

Lemma 2.1.4. Let Tn : Rn → Rn be an estimator defined by Algorithm 2.1.1
with inputs y = (y1, . . . , yn)>, zt = 1 for t = 1, . . . , n, α = 0.5, β ∈ (0, 1) and
W ∈ N, W ≤ n. Further, define

j = max
i=1,...,T

{
i

∣∣∣∣ 1− βi−1

1− βT−1
<

1

2

}
, (2.12)

then the breakdown point of Tn for W, . . . , n is given by the ratio j
W

.
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Proof. We utilize Definition 1.1.7 in this proof. m(t,y) = W for any t ∈
{W, . . . , n}. We are therefore investigating the breakdown point of
Tn,t,W (yt−W+1, . . . , yt) according to Definition 1.1.6. We want to find an estimate
Tn,t,W (yt−W+1, . . . , yt) for which the minimum of the sum

t∑
i=t−W+1

βt−i|yi − at| (2.13)

is attained. It gives us a weighted median, but the weights βt−i are not normal-
ized. To normalize them we have to sum all weights from (2.13), which gives
1−βW
1−β . The weights of the nearest observations to the t are the highest. There-

fore, they influence Tn,t,W (yt−W+1, . . . , yt) the most. Let us find j such that the
sum of the normalized weights of observations yt−j+1, . . . , yt is greater than 1

2
.

It follows from the fact, that we deal with a weighted median, that by mov-
ing the yt−j+1, . . . , yt observations far enough we can also move arbitrarily with
Tn,t,W (yt−W+1, . . . , yt). We can see On the other side that if the sum of normalized
weights of yt−j+1, . . . , yt is less than 1

2
then the movement of these observations

does not influence the estimate.
I.e., to compute the breakdown point we have to find maximal j for which the

sum of normalized weights of the observations yt−j+1, . . . , yt is less than 1
2
. But

this is given by (2.12).

To evaluate the robustness in the sense of Definition 1.1.10 we can simply
employ Proposition 1.1.11. The equality does not hold, for the observations have
different weights in (1.2).

The weights of observations yt−W+1, . . . , yt are βW−1(1−β)
1−βW , . . . , 1−β

1−βW for the
step t of Algorithm 2.1.1. We denote the weight of observation yi in the step t as
w(t, yi). It holds w(t, yi) = 0 for i ≤ t −W . By Π(t,W, β) we denote the set of
combinations from the indices t, . . . , t−W + 1 such that

Π(t,W, β) =

{
κ

∣∣∣∣∣∑
i∈κ

w(t, yi) <
1

2

}
.

Let κ ∈ Π(t,W, β), Tn : Rn → Rn be an estimator defined by Algorithm 2.1.1
with proper inputs and we denote the number of indices in κ by #κ. We get

πt(Tn(ȳ)) =
∑

κ∈Π(t,W,β)

p#κ(1− p)W−#κ.

We want to discuss a time complexity (see Definition 1.1.13) of Algorithm
2.1.1 now. It resembles Example 1.1.9. We have to recompute for each t median
from W observations, but we can exploit the ordering from the previous step.
Therefore, we have complexity O(Wn) or more roughly O(n).

2.1.3 General case

The idea behind the algorithm in the general case i.e., with d > 1 is the same as
before. I.e., to find a point around which the signs of all directional derivatives
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of the function (2.5) change (in the case that the minimum of the function (2.5)
is uniquely defined).

The algorithm described in this section is not implemented and we also do not
deal with its theoretical properties for its computational complexity and difficult
implementation, which is given by a more complex principle of ordering in higher
dimensions. We can also find in literature some suitable alternatives. Neverthe-
less, to preserve the generality of our work we will also discuss this topic. We
only mention some heuristics connecting to this topic and the ideas behind them
from these reasons.

We put

gt(x) =
t∑

i=t−W+1

βt−i%α(yi − z>i x),

where we for simplicity neglect variables W,α, β, (y1, . . . , yn)>, (z1, . . . ,zn)> on
which gt(x) also depends to emphasize our interest in t and x.

We want to minimize the objective function gt(x), which is convex, because
its components are convex. Therefore, we are seeking the point ât satisfying for
any v ∈ Rd and h > 0 one of the following

sgn(gt(ât + hv)− gt(ât)) = − sgn(gt(ât − hv)− gt(ât)) or

gt(ât + hv)− gt(ât) = 0 or

gt(ât − hv)− gt(ât) = 0.

(2.14)

We are not employing directional derivatives now, because they are not defined
for all x ∈ Rd.

We suppose in the following text.

• We employ only W of the most recent observations as in the case d = 1.

• We suppose that there is always at least one point lying on the intersection
of d different hyperplanes.

• We suppose that W ≥ d.

Let zi ∈ Rd be a known vector for some i = t − W + 1, . . . , t. The least
value of |yi − z>i x| is attained for x for which yi − z>i x = 0. We know that
the gradient of gt(x) changes around points x for which yi − z>i x = 0 from the
properties of absolute value. Therefore, we restrict to x satisfying yi − z>i x = 0
when seeking the minimum of gt(x). The equation yi − z>i x = 0 represents a
hyperplane in Rd with respect to x. We can conjecture that the minimum is
attained in the intersection of these hyperplanes, because in these intersections
more members of gt(x) are minimized. Hence, we have to look for the minimum
of gt(x) in the intersection of the hyperplanes, i.e., usually at a point which is
given by d different nonparallel hyperplanes. To denote hyperplanes we employ
the same index as the index of relevant member of gt(x). I.e., the corresponding
hyperplane has an index equal to i and we denote it as Hi for the summand
%α(yi − z>i x) of gt(x).

We summarize these findings into two steps.

1. Find all points given by an intersection of d hyperplanes from the set
Ht−W+1, . . . , Ht. Denote the set Πt.
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2. A point from Πt fulfilling (2.14) minimizes gt(x).

This minimization problem can be solved with the help of a special table,
where any row represents a line given by the intersection of appropriate d − 1
hyperplanes. Let us denote the table Bt. There are points given by an intersection
of the line and another hyperplane in each column. This table is updated for each
t. We can employ a similar algorithm as in the one-dimensional case after the
construction of the table to find the minimum.

We deal with a construction of the table and evaluation of conditions (2.14)
in the following text.

Structure of the table Bt

We describe how the previously mentioned table Bt should be constructed in this
part.

Each row expresses an intersection of d − 1 different hyperplanes. Because
we always take a different combination of the hyperplanes, the row is uniquely
defined by the hyperlanes. Therefore, the combination identifies the row. The
intersection of the hyperplanes represents a line in Rd. Such a table has

(
W
d−1

)
rows.

The labels change for each time and the table has to be recomputed.
An example of the identifiers of the rows for time t is shown in Table 2.1.

Each row is identified by specific indices of the hyperplanes.

Table 2.1. There is shown the ordering of rows in the tableBt.

t−W + d− 1, t−W + d− 2, . . . . . .
t−W + d− 3, . . . , t−W + 1
t−W + d, t−W + d− 2, . . . . . .

t−W + d− 3, . . . , t−W + 1
t−W + d, t−W + d− 1, . . . . . .

t−W + d− 3, . . . , t−W + 1
...

t−W + d, t−W + d− 1, . . . . . .
t−W + d− 2, . . . , t−W + 2

...
t, t−W + d− 2, . . . . . .

t−W + d− 3, . . . , t−W + 1
...

t, t− 1, t− 2, . . . , t−W + 1 · · · · · ·
...

t, t− 1, t− 2, . . . , t− d+ 2 · · · · · ·

Consider It the set of indices of all hyperplanes {t−W + 1, . . . , t}. We denote
the set of indices given in the rth row of the table Bt by Ir,t, where r = 1, . . . ,

(
W
d−1

)
e.g., I1,t = {t−W + d− 1, t−W + d− 2, t−W + d− 3, . . . , t−W + 1}.
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Information in fields of the table Bt

We have dealt only with the first column of Bt in the previous part. We want to
show now what we store in its fields.

Each row of the table Bt expresses a line in Rd. Consider r = 1, . . . ,
(
W
d−1

)
then a field of the row r contain information about a point given by intersection
of hyperplanes with indices Ir,t and a hyperplane with index from It \ Ir,t. There
are W − d+ 1 such fields in each row.

We store information about the coordinates of the corresponding point in each
field.

Remark 2.1.5. Since each point is given by d equations we can for the calculation
of coordinates employ Gaussian elimination. However, for higher dimensions
than two we can simplify the whole procedure. E.g., we adjust the equations given
by hyperplanes with indices Ir,t by Gaussian elimination for the rth row of Bt.
Then we add an equation given by the hyperplane with index j ∈ It \ Ir,t, which
relates to the considered field.

Since each row expresses a line in Rd and its field the point on that line, we
order the fields of the row according to its coordinates. It is possible to order
the points in each line according to only one coordinate. Therefore, it is usually
possible to order the points according to the first coordinate. If this is not the
case, then we employ the second, the third, or the d−th coordinate.

Let us consider now any field of the table Bt in the rth row containing a point
x ∈ Πt. We know that the point is given by the intersection of hyperplanes with
indices Ir,t and one more hyperplane with index j1 ∈ It \ Ir,t. We want to gather
information about the indices of hyperplanes on which x is lying. We denote the
set of these indices Pt(x). We get Ir,t ∪ j1 ⊆ Pt(x). However, we can find other
hyperplanes with indeces j2, . . . , jl during the ordering such that they also lie on
the intersection of hyperplanes with indices Ir,t ∪ jk, where k = 2, . . . , l. It yields
Pt(x) = Ir,t ∪ j1 ∪ j2 ∪ · · · ∪ jl.

We want to store information helping us to evaluate the conditions (2.14).
Since the gradient of gt(x) is not defined at x and we need information about
change of slope in x, we apply the following procedure. We define

ft(x) =
t∑

i=t−W+1

βt−i%α(yi − z>i x)−
∑

i∈Pt(x)

βt−i%α(yi − z>i x).

We store the vector bt(x) =
[
∂ft(a)
∂a1

, . . . , ∂ft(a)
∂ad

]a=x

in each field of Bt, where

a ∈ Rd.
We introduce vectors

ci+,t = βt−iαzi, ci−,t = βt−i(1− α)zi. (2.15)

Let P+,t(x) ⊂ It be a set of indices such that for all i ∈ P+,t(x) holds yi−z>i x > 0.
Similarly, we define P−,t(x) ⊂ It such that for all i ∈ P−,t(x) holds yi− z>i x < 0.
We can write, employing the notation, bt(x) =

∑
i∈P+,t(x) ci+,t −

∑
i∈P−,t(x) ci−,t.

We have to deal also with the hyperplanes of which indices belong to Pt(x)
to observe the change of gradient of gt(x) around x. Therefore, we store the
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following vectors

b+,t(x) =
∑

i∈Pt(x)

[ci+,t]
+ +

∑
i∈Pt(x)

[ci−,t]
+,

b−,t(x) =
∑

i∈Pt(x)

[ci+,t]
− +

∑
i∈Pt(x)

[ci−,t]
−.

(2.16)

Conditions for global minimum

We show the conditions of x being the global minimum of g(x) in this part. They
replace conditions (2.14).

Let x ∈ Rd and x is one of the points from the table Bt. If it satisfies

sgn(bt(x) + b+,t(x)) = − sgn(bt(x)− b−,t(x)), (2.17)

and every component of vectors bt(x) + b+,t(x) and bt(x) − b−,t(x) is different
from zero then the point x is a sharp global minimum of the function g(x). In the
case that one component of the vector bt(x) + b+,t(x) or bt(x)− b−,t(x) is equal
to zero, then there is a global minimum but not necessarily sharp. We denote
such a vector x as ãαt i.e., the solution of our problem.

The intuition behind (2.17) comes from the fact that absolute value function
changes its sign in the minimum.

We split the description of the algorithm into two parts. We deal with the
initiation of the table BW in the first part and with a general step t in the second
part.

Construction of Bt

Consider some row r of Bt and some index j ∈ It \ Ir,t. If the hyperplanes with
indices Ir,t ∪ j do not generate Rd then according to the Frobenius theorem there
is no point on the intersection of these hyperplanes.

Therefore, we cannot place any information to the appropriate field of Bt.
It may also happen that the hyperplanes given by indices Ir,t do not generate

Rd−1. In this case it does not make sense to compute any point in such a row.
However, we should place information about it.

The worst case takes place if none from the d-tuples of hyperplanes gives a
point. We can consider this case for W high enough really rare. The problem can
be fixed by adding some new hyperplanes. Such hyperplane with index i does not
have to influence the computation of gradient; therefore, we put ci+,t = ci−,t = 0.

We neglect these degenerated cases in a description of the rest of the algorithm.
We stress that if we talk about lines, we mean only lines which are given by

the intersection of hyperplanes with indices Ir,t, where r is an index of the row of
the table Bt. Similarly, by talking about a point we mean the point x ∈ Πt.

We mean by preparing the table Bt construction of the first column depicted
in Table 2.1.

• We mean the whole construction of the table for t = d.

• We mean the addition of appropriate rows containing index t in the first
column for d < t ≤ W . The indices started always from 1 and Bt contains(

t
d−1

)
rows.
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• We mean the elimination of rows containing index t −W and addition of
rows with index t in the first column for t > W .

Point x(P ) denotes the point given by the intersection of hyperplanes with
indices from appropriate index set P .

We define mr,t as a number of fields in the row r at time t.
Let x be in Bt in rth line on the oth place after ordering. We define O(o, r, t) =

Pt(x).

Algorithm 2.1.2 Exponential smoothing in l1 norm case d > 1

Input: (y1, . . . , yn)>, (z1, . . . ,zn)>, W ∈ N, β, α ∈ (0, 1)
1: t← d
2: prepare Bt

3: compute x({I1,t ∪ t}) . there is only one point for all rows
4: Pt(x({I1,t ∪ t}))← {I1,tt}
5: b(x({I1,t ∪ t}))← 0
6: for r = 1, . . . , d do
7: compute cr+,t and cr−,t according to (2.15)
8: end for
9: compute b+,t(x({I1,t ∪ t})) and b−,t(x({I1,t ∪ t})) according to (2.16)

10: put the information about x({I1,t ∪ t}) into rows according to 2.1.6
11: for t = d+ 1, . . . ,W do
12: add to Bt the rows containing index t according to 2.1
13: for r = 1, . . . ,

(
t−1
d−1

)
do

14: compute x({Ir,t ∪ t})
15: put x({Ir,t ∪ t}) on the proper place in the row r
16: find Pt(x({Ir,t ∪ t}))
17: compute ct+,t and ct−,t according to (2.15) . comment see below
18: compute b+,t(x({Ir,t ∪ t})) and b−,t(x({Ir,t ∪ t})) according to (2.16)
19: for o = 1, . . . ,mr,t do
20: if yt − z>t x(O(o, r, t)) > 0 then
21: b+,t(x(O(o, r, t)))← βb+,t−1(x(O(o, r, t)))
22: b−,t(x(O(o, r, t)))← βb−,t−1(x(O(o, r, t)))
23: b(x(O(o, r, t)))← βb(x(O(o, r, t))) + ct+,t
24: end if
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25: if yt − z>t x(O(o, r, t)) < 0 then
26: b+,t(x(O(o, r, t)))← βb+,t−1(x(O(o, r, t)))
27: b−,t(x(O(o, r, t)))← βb−,t−1(x(O(o, r, t)))
28: b(x(O(o, r, t)))← βb(x(O(o, r, t)))− ct−,t
29: end if
30: if yt − z>t x(O(o, r, t)) = 0 then
31: continue with 2.1.3
32: put the information x({Ir,t ∪ t}) into rows according to 2.1.6
33: end if
34: end for
35: end for
36: end for
37: return estimate x̂← zk

We introduce auxiliary index sets I+ and I− in the following procedure. We
neglect all the variables and parameters on which they depend to simplify the
notation.

Algorithm 2.1.3 Procedure for the case yt − z>t x(O(o, r, t)) = 0

1: if Pt(x(O(o, r, t))) \ {Ir,t ∪ t} = ∅ then
2: if o < mr,t then
3: I+ = {i|i ∈ Pt(x(O(o+ 1, r, t))) \ {Ir,t, yi − z>i x(O(o, r, t)) > 0}
4: I− = {i|i ∈ Pt(x(O(o+ 1, r, t))) \ {Ir,t, yi − z>i x(O(o, r, t)) < 0}
5: b(x(O(o, r, t)))← βb(x(O(o+ 1, r, t))) +

∑
i∈I+ ci+,t −

∑
i∈I− ci−,t

6: else
7: I+ = {i|i ∈ Pt(x(O(o− 1, r, t))) \ {Ir,t, yi − z>i x(O(o, r, t)) > 0}
8: I− = {i|i ∈ Pt(x(O(o− 1, r, t))) \ {Ir,t, yi − z>i x(O(o, r, t)) < 0}
9: if yt − z>t x(O(o, r, t)) > 0 then

10: b(x(O(o, r, t)))← b(x(O(o− 1, r, t))) +
∑

i∈I+ ci+,t−
∑

i∈I− ci−,t−
ct+,t

11: else
12: b(x(O(o, r, t)))← b(x(O(o− 1, r, t))) +

∑
i∈I+ ci+,t−

∑
i∈I− ci−,t +

ct−,t
13: end if
14: end if
15: else
16: b(x(O(o, r, t)))← βb(x(O(o, r, t)))
17: end if

We want to find the index set Pt(x({Ir,t ∪ t})) in Step 16 of Algorithm 2.1.2.
Let us suppose that there was a point x = x({Ir,t ∪ t}) in the rth row and step
t− 1, then Pt(x({Ir,t ∪ t})) = Pt−1(x) ∪ t.

We recompute ci+,t and ci−,t for all 1 ≤ i < t by multiplying ci+,t−1 and
ci+,t−1 by β in Step 17 of Algorithm 2.1.2.

We recommend for ordering new hyperplanes to employ heapsort see e.g.,
(Cormen, 2009)[151].

If we add a new index t to Table 2.1 then we first consider the old lines (without
index t). Compare to Algorithm 2.1.2 Step 13. However, all points lying on Ht

25



are already given by the intersection of these old lines and hyperplane Ht. I.e.,
information about the points contained in the new lines (with index t) was already
derived for the old lines.

The following lemma describes how to find a number of row r according to its
indices Ir,t.

Lemma 2.1.6. Let t ≤ W , Pt(x) = {i1, . . . , il} and i1 < · · · < il, where x is a
point given by the intersection of Hi1 , . . . , Hil and ij are the indices of hyperplanes
for j = 1, . . . , l. Then we find the point x in table Bt on row r with indices
Ir,t = {i1, . . . , id−1} for the first time.

There are
(
l
d

)
rows in which x lies.

The row with indices {i1, i2, . . . id−1} is situated in our table on a position
r =

(
id−1−1
d−1

)
+
(
id−2−1
d−2

)
+
(
id−2−1
d−3

)
+ · · ·+ i1. We can specify any number of row r

according to its indices Ir,t in the same way.

Proof. An index id−1 appears in Table 2.1 after all lower indices for the first time.
I.e., the first row with index id−1 appears after all rows given by combinations
of lower indices than id−1. There are

(
id−1−1
d−1

)
such rows. Due to id−1 > · · · > i1

the row with indices {i1, i2, . . . id−1} lies among rows with the highest index id−1.
However, these rows are not split in Table 2.1. If we leave the index id−1 from the
description of these rows, it constitutes a subtable fulfilling the same assumptions
as the original table only containing d− 2 indices in the first column. Therefore,
we can proceed in a similar way as before and prove that there are

(
id−2−1
d−2

)
rows

in the subtable before the first row containing id−2.
Mathematical induction gives us that there are r =

(
id−1−1
d−1

)
+
(
id−2−1
d−2

)
+(

id−2−1
d−3

)
+ · · ·+ i1−1 rows before the first row containing all indices {id−1, . . . , i1}.

As it is visible so far Algorithm 2.1.2 is already quite complicated, which is,
as was mentioned in the beginning, in contradiction to the principles of our work.
It does not also bring, except for generality, big advantages. Therefore, we skip
the description for t > W , which is similar to the 2.1.2. However, we have to
also delete rows with index t−W and also adjust appropriately the vector b(x),
where x ∈ Πt.

2.1.4 α−Winsorized estimator

It might be suitable not to smooth the entire series but only observations lying
far from the rest. In this case we utilize an algorithm similar to α−Winsorized
estimator. It is the procedure when we replace given parts of a sample at the
high and low end with the most extreme remaining values. The result of our
algorithm is smoothed series ỹt. We employ similar notation to Algorithm 2.1.1
with the exception of considering the multidimensional case.

26



Algorithm 2.1.4 α−Winsorized algorithm

Input: (y1, . . . , yn)>, (z1, . . . , zn)>, W ∈ N, β, α ∈ (0, 1)
1: for t = 1, . . . ,W do
2: ỹt ← yt
3: end for
4: for t = W, . . . , n do
5: compute ãαt and ã1−α

t

6: if z>t ã
α
t > yt then

7: ỹt ← z>t ã
α
t

8: else if z>t ã
1−α
t < yt then

9: ỹt ← z>t ã
1−α
t

10: else
11: ỹt ← yt
12: end if
13: end for

Remark 2.1.7. We indicate at the end of this part how the problem of mini-
mization in (2.5) is very often dealt with. We want to solve the minimization
problem

min
ut−W+1,...,ut,at

∑t
i=t−W+1 β

t−iui,t

s.t. ui,t ≥ %α(yi − z>i at) for i = t−W + 1, . . . , t,
ui,t ≤ %α(yi − z>i at) for i = t−W + 1, . . . , t.

(2.18)

Problem (2.18) can be solved by any linear programming technique. The compu-
tational speed and comparison with the least squared error minimization can be
found in (Portnoy and Koenker, 1997).

2.2 Sign test

An alternative approach to the robustification of the exponential smoothing de-
scribed in this Section can provide even better results. It combines some ideas
also employed for exponential smoothing with the classical sign test, see, e.g.,
(Moore and Wallis, 1943) and (Wolfowitz, 1944). It seems to be applicable also
to data with level shifts, including detection of change points. Since the obser-
vations are not exponentially weighted, we cannot say that the method from this
Section belongs among exponential smoothing methods; in fact, it is a recursive
adaptive method.

The sign test was firstly used in 1710 by John Arbuthnot according to (Sprent
and Smeeton, 2001, p. 14). He observed that in each year from 1629 to 1710
the number of males christened in London exceeded the number of females. He
considered the result as a strong evidence that the probability of male birth is
higher than one half.

A rough idea for a recursive estimate of the parameters at from (2.1) can be
described as follows:

1. Find a robust estimate of at based on the median from a segment of ob-
servations from the beginning. In the case that at is a vector we have
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to construct an auxiliary series for each component of at and utilize the
median of the auxiliary series as the robust estimate of the component of
at.

2. If too many consequent observations lie under or above the estimate then
there could be a level shift. The detected change point for the level shift
occurs at the point where this pattern begins.

3. Estimate at up to this point and start this procedure again from the iden-
tified change point.

The algorithms described in this Section are referred to as sign test algorithms.
In particular, we distinguish the constant sign test algorithm 2.2.1 and the linear
sign test algorithm 2.2.3.

2.2.1 Sign test: constant trend

Let us assume the simplest version of the model (2.1)

yt = at + εt, (2.19)

where level shifts can occur. We remind our assumption that εt are i.i.d. with
its theoretical median equal to 0.

We employ the following notation. The length of the time series {yt} is n.
We denote the time in which the jth level shift was found as tj. Consider the
time t ≥ tj and that there is no time ti such that tj < ti ≤ t and ti is the
time of another level shift. Moreover, consider a median Mt(tj, (y1, . . . , yt)) form
observations ytj , . . . , yt. We simplify the notation and write only Mt(tj) instead
of Mt(tj, (y1, . . . , yt)) in this section. We always consider the median from the
last found change point tj in the following text. The symbol ât denotes the
estimate of at at time t and simultaneously the smoothed value of yt due to the
model (2.19). The smoothed values ât between two neighboring change points
are chosen as equal; they are given by the last estimated value Mtj+1−1(tj) before
the next change point.

The number of observations for the initial computation of the median in the
beginning and after each change point is a fixed number W ∈ N. The choice of
W is discussed in 2.3.1.

The idea of the sign test can be exploited in our recursive algorithm to deal
with level shifts.

For r ∈ R we define

It(r) =


1 if yt > r,
1
2

if yt = r,
0 if yt < r.

Moreover, we consider

St+kt (r) =
t+k∑
i=t

Ii(r) for k ∈ N and t > tj. (2.20)
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In the following considerations about determination of level shift we neglect
the possibility that the observation is exactly identical to the median. It approx-
imately holds

P(yt > Mt(tj)) =
1

2
.

If we assume that there is no level shift between observations yt and yt+k, and
P(yi = Mtj+i(tj)) = 0 for i = 0, . . . , k then St+kt (Mt+k(tj)) has approximately
binomial distribution with parameters k + 1 and 1

2
.

In the case that St+kt (Mt+k(tj)) is too large or too low, one can claim a con-
jecture that there is a change point because too many observations lie above or
below the median.

Similar to a sign test algorithm, we define for r ∈ R the statistics

At+kt (r) =
2St+kt (r)− k − 1√

k + 1
. (2.21)

We want to identify the potential level shifts in the series {yt}nt=1 with the
help of statistics At+kt (Mt+k(tj)). Therefore, we employ a symmetrical interval
(−b, b), where b is determined empirically (see 2.3.1). If there is any t > tj such
that At+kt (Mt+k(tj)) lies outside the interval (−b, b) then we indicate the first such
t as a level shift, put tj+1 = t and employ tj+1 as the new starting point. We also
put ât = Mtj+1−1(tj) for each t = tj, . . . , tj+1 − 1.

Remark 2.2.1. The computation of Mt+1(tj) from Mt(tj) is quite straightfor-
ward. We hold a vector of ordered observations ytj , . . . , yt from the step t. We
plug the observation yt+1 into this vector and find Mt+1(tj). We are sparing the
computational time with the help of this recursive technique.

We suppose to have Mt(tj) for computation of Att−i(Mt(tj)) for all i = 0, . . . , t−
tj − 1. We put Stt(Mt(tj)) = It(Mt(tj)). We get Stt−i(Mt(tj)) = Stt−i+1(Mt(tj)) +
It−i(Mt(tj)) according to (2.20). We gain all Stt−i(Mt(tj)) for i = 0, . . . , t− tj− 1
in this manner. We derive Att−i(Mt(tj)) for all i = 0, . . . , t− tj − 1 with (2.21).

Lemma 2.2.2. Consider the case with a real change point at time τ ∈ N, τ > tj
and the constant at from (2.19) changing from the value ao to an. In the case
that yτ−1 > Mt(tj) and Atτ (Mt(tj)) > b for some t ∈ N and t > τ then also
Atτ−1(Mt(tj)) > b. This arises especially in the case an > ao.

In the opposite case when yτ−1 < Mt(tj) and Atτ (Mt(tj)) < −b then
Atτ−1(Mt(tj)) < −b. This arises especially in the case an < ao.

Proof. We show, without loss of generality, only the first case.
It holds for yτ−1 > Mt(tj) S

τ−1+k
τ−1 (Mt(tj)) = Sτ−1+k

τ (Mt(tj)) + 1 and therefore
also At−τ+1

τ−1 (Mt(tj)) > At−τ+1
τ (Mt(tj)) > b.

The previous lemma shows that we can misspecify the time of the level shift.
We suppose to deal with this problem, we have found level shift at time τ − 1
and for the absolute errors from (2.19) holds E |ετ−1| � |ao − an|. If an > ao,
yτ−1 > ao and |ao − yτ−1| < |an − yτ−1|, we conjecture that there is no change
point at time τ − 1. We employ the same procedure to examine whether it is at
time τ . We utilize Mτ−1(tj) and Mτ−1+W (τ − 1) as estimates of ao and an.
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This modification is useful if the errors of the time series do not exceed the
difference between ao and an. It is implemented in our algorithm 2.2.1 in Steps
11 - 15.

We summarize our algorithm as follows:

Algorithm 2.2.1 Algorithm for a constant trend based on the sign test

Input: observations (y1, . . . , yn)>, W ∈ N, b > 0
1: put t← 1, j ← 1, t1 ← 1
2: while t ≤ n do . this has to be checked throughout the While loop
3: t← tj +W − 1
4: repeat
5: t← t+ 1
6: compute Mt(tj)
7: compute Attj+k(Mt(tj)) for k = t− tj, . . . , 1
8: until Attj+k(Mt(tj)) ∈ (−b, b) for k = t− tj, . . . , 1
9: j ← j + 1

10: tj ← tj−1 + min

{
k

∣∣∣∣ ∣∣∣Attj−1+k(Mt(tj−1))
∣∣∣ > b; k = t− tj−1, . . . , 1

}
11: compute Mtj+W (tj)
12: while |Mtj+W (tj)− yt| > |Mtj−1(tj−1)− yt| and tj < t do
13: tj ← tj + 1
14: compute Mtj+W (tj)
15: end while
16: âtj−1

, . . . , âtj−1 ←Mtj−1(tj−1)
17: end while

We can examine the distribution of At+kt (Mt+k(tj)). We can approximate it
by normal distribution for large values of k, but it is generally not appropriate,
for k does not have to be sufficiently large. We can exploit the binomial nature
of St+kt (Mt+k(tj)). Nevertheless, this solution would be more computationally
demanding, therefore we are satisfied with the empirical choice of b, which is but
quite crude. Another disadvantage of employing normal quantiles for b arises
from the dependence among the statistics At+kt (Mt+k(tj)) for different k.

A different approach was studied e.g. in (Koubková, 2004) where the statistics
based on residuals defined as a difference between the observation and median
were suggested.

We can employ CUSUM tests (Page, 1954) instead of statistics At+kt (r). It
is a sequential analysis technique which serves in our case for detecting a change
in the data. The CUSUM test for median, therefore suitable in our situation,
was described in (Yang et al., 2010). The problem of this approach is higher
computational complexity and more problematic determination of the observation
where the trend has changed.

We can also employ some other nonparametric tests instead of the sign test,
e.g., the Wilcoxon signed-rank test (see (Wilcoxon, 1945)). Then we proceed as
follows. We compute Mt(tj). The test investigates whether the location parame-
ter of observations yt−k, . . . , yt is equal to Mt(tj) for some k ∈ N and k ≤ t− tj.
Put Yi = yi − Mt(tj) for i = t − k, . . . , t. Order |Ytj |, . . . , |Yt| and let Ri be
the order of |Yi|. Put S+ =

∑
Yi≥0,i=t−k,...,tRi and S− =

∑
Yi<0,i=t−k,...,tRi. If
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min(S+, S−) is too small within the framework of the Wilcoxon test, we have
found a change point. This test has to be performed for all k = 1, . . . , t − tj.
Obviously, the observations have to be ordered in each test of this type, which is
more time-consuming than our procedure.

Generally, the literature dealing with change point or change detection is quite
vast see e.g., (Polunchenko and Tartakovsky, 2012). In this sense, there is a po-
tential to replace sign test algorithm with another method and consider whether
the replacement leads to an improvement. We need the tests concerning sequen-
tial change point detection. We can employ procedures based on M-estimation
e.g., (Hušková, 2014) or (Koubková, 2006). We can also employ rank statistics
see (Hušková and Sen, 1989). We choose the sign test algorithm because of its
simplicity, robust properties and sequential setup and it is the first option con-
cerning the topic of sequential change point detection in our case. However, there
is a space for utilizing other methods.

Lemma 2.2.3. Let us have observations (y1, . . . , yn)>, W ∈ N and b > 0. We
define ât according to Algorithm 2.2.1, then ât for t = 1, . . . , n is shift and scale
equivariant.

Proof. Median is shift and scale equivariant. Let t, tj ∈ {1, . . . , n} and tj < t.
If yt < Mt(tj, (y1, . . . , yt)) then also for c > 0 cyt < Mt(tj, (cy1, . . . , cyt)). The
same is true for other kinds of inequalities. We get cyt > Mt(tj, (cy1, . . . , cyt)) for
c < 0. I.e., the absolute value of statistics Attj+k(Mt(tj)) for k = t − tj, . . . , 1 is
independent of whether we use the sample y1, . . . , yn or cy1 + s, . . . , cyn + s for
c, s ∈ R and c 6= 0. The inequality in Step 12 does not depend on the shift or
scale of the sample under these conditions. The case c = 0 is simple.

We use the statistics At+kt (Mt+k(tj)) because of their simplicity and the possi-
bility of recursive calculations, see Remark 2.2.1. The computation of all relevant
Akt for each t in our algorithm has a computational complexity at worst n.

We know that sample median converges to its theoretical counterpart for i.i.d.
random variables, see e.g., (Pollard, 2012). I.e., if we do not compute the statistics
At1+k(Mt(1)) for k = t − 1, . . . , 1, do not look for the change point in Step 8 of

Algorithm 2.2.1 and there are no real change points in the data, then ât
a.s.−−→ a,

since εt has its median equal to 0. From there follows also the consistency.

Proposition 2.2.4. Consider an infinite series y1, y2, . . . without level shifts fol-
lowing Model (2.19) i.e.,

yt = a+ εt

and suppose further that εt are non-degenerate random variables. Then Algorithm
2.2.1 identifies infinitely many points as level shifts almost surely.

Proof. Due to the assumption that εt has the theoretical median equal to 0 and
that it is not degenerated random variable, there are δ > 0 and c1 > 0 such that
P(yt > a + δ) > c1 or P(yt < a− δ) > c1. We suppose without loss of generality
that the P(yt > a+ δ) > c1. If only the case P(yt < a− δ) > c1 is valid then the
proof proceeds in the same fashion with some small exceptions.

Divide the infinite series y1, y2, . . . to parts of a length k ∈ N such that the
statistics A

(i+1)k
ik+1 (a + δ) for i = 0, 1, . . . are greater than b in the case that all

31



Iik+j(a+δ) = 1 for i = 0, 1, . . . and j = 1, . . . , k. We consider these subsequences
as distinct.

Compute statistics A
(i+1)k
ik+1 (a+ δ) for i = 0, 1, . . . These statistics are indepen-

dent, because the observations do not overlap among the subsequences. Further-
more, the number of these statistics is infinite. There exists c2 ∈ (0, 1) such that
for any i ∈ N holds

P
(
A

(i+1)k
ik+1 (a+ δ) > b

)
> c2 > 0.

This with the help of the Borel-Cantelli lemma implies that there are infinitely
many i for which

A
(i+1)k
ik+1 (a+ δ) > b.

We know that Mt(1)
a.s.−−→ a which yields that there is k0 ∈ N such that for

all k ∈ N, k ≥ k0 and i ∈ N holds M(i+1)k(1) ≤ a + δ almost surely. From that

follows that if A
(i+1)k
ik+1 (a+ δ) > b then A

(i+1)k
ik+1 (M(i+1)k(1)) > b for k ≥ k0.

It means that infinitely many potential level shifts appear but only for the
split time series.

We proceed by a mathematical induction in the rest of the proof. We know
from the previous that for a time series which fulfills our assumptions we always
find some level shift no later than at time ik+1 for which A

(i+1)k
ik+1 (M(i+1)k(1)) > b

is fulfilled. Let t1 denote the time, where the first level shift appears (it holds
t1 ≤ ik + 1). Let us suppose now, that we have found the level shift in tj and
show that there is one in tj+1. But the time series ytj+1, ytj+2, . . . fulfills also our
assumptions, which means that there is a level shift in tj+1.

Remark 2.2.5. Algorithm 2.2.1 converges only if b = ∞ according to Proposi-
tion 2.2.4, i.e., we do not check the statistics At1+k(Mt(1)) for k = t − 1, . . . , 1.
Intuitively, it is clear that our algorithm converges “better” for higher b. On the
other hand higher b means lower sensitivity to level shifts.

Further, we want to study the robustness of Algorithm 2.2.1 in the sense of
Definition 1.1.7. The number of observationsm(t,y) from which the final estimate
ât is computed may vary. Due to the properties of median and employing Def-

inition 1.1.6 we get ε∗tj−tj−1
(Mtj−1(tj−1), (ytj−1

, . . . , ytj−1)>) = 1
tj−tj−1

⌊
tj−tj−1−1

2

⌋
.

We employ the notation Mt(1, (y1, . . . , yt)) instead of the usual Mt(1) to stress
the role of the observations yt. We define

kb,W = min
k=t,...,1;t≥W ;t,W∈N

{
k

∣∣∣∣ ∣∣Atk(Mt(1, (y1, . . . , yt)))
∣∣ > b; y1, . . . , yt ∈ Rt

}
− 1,

(2.22)
where only one observation can always attain the value of median. I.e., there is
maximally one i among y1, . . . , yt and t ∈ N for which yi = Mt(1, (y1, . . . , yt)).
The last condition prevents observations from attaining median values and so
reduce kb,W . This is handy in Proposition 2.2.7 for continuous random variables.
kb,W expresses, under these conditions, the least possible number of observations
from which final estimates ât are computed. This follows from Step 10 of Algo-
rithm 2.2.1.

Example 2.2.6. We focus our attention on kb,W in this example. We consider
without loss of generality the case when Atk(Mt(1)) exceeds b, because too many
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observations are higher than median Mt(1). We also suppose for simplicity that
no observation is equal to Mt(1) (i.e., t is even). Let us fix t ∈ N. We know that
t
2

of observations has to be above Mt(1) and t
2

below Mt(1). We look for the least
number of observations sτ (we simplify the notation by neglecting t, b, (y1, . . . , yt)
on which sτ also depends) which has to be above the median Mt(1) in order to
fulfill Att−τ+1(Mt(1)) ≥ b for τ ≤ t and τ ∈ N. We get from (2.21)

Att−τ+1(Mt(1)) =
2Stt−τ+1(Mt(1))− τ√

τ
≥ b.

It yields

Stt−τ+1(Mt(1)) ≥ b
√
τ + τ

2
. (2.23)

According to (2.20), Stt−τ+1(Mt(1)) is the number of observations which are above

Mt(1). This gives sτ = b
√
τ+τ
2

. If we need a number from N, we have to take⌈
b
√
τ+τ
2

⌉
. We define

k̄b,t = min
k=t,...,1

{
k

∣∣∣∣ ∣∣Atk(Mt(1))
∣∣ > b

}
− 1.

We know from the previous considerations that (yk̄b,t+1, . . . , yt)
> has to contain at

least st−k̄b,t+1 observations, which are above median Mt(1). It means that among
y1, . . . , yk̄b,t there has to be at least

t

2
− (t− k̄b,t + 1− st−k̄b,t+1) =

k̄b,t − 1 + b
√
t− k̄b,t + 1

2
(2.24)

observations which are below Mt(1) to gain t
2

of observations below Mt(1). From
there and from the fact that the total number of observations among y1, . . . , yk̄b,t
has to be higher than the number of observations below Mt(1), we get k̄b,t ≥
k̄b,t−1+b

√
t−k̄b,t+1

2
. This gives

k̄2
b,t + k̄b,t(2 + b2)− b2(t+ 1) + 1 ≥ 0. (2.25)

The roots of (2.25) are −(2+b2)±b
√
b2+4t+8

2
. For k̄b,t > 0, we know

k̄b,t ≥
−(2 + b2) + b

√
b2 + 4t+ 8

2
. (2.26)

The second solution is always negative.

To be precise, we should employ in (2.24)
⌈
st−k̄b,t+1

⌉
to get

k̄b,t ≥
t

2
−
(
t− k̄b,t + 1−

⌈
st−k̄b,t+1

⌉)
,

for it expresses the minimal naturel number of observations which have to be

higher than Mt(1). It has to be also fulfilled that −(2+b2)+b
√
b2+4t+8

2
≤ t, for k̄b,t

has to be less or equal to t, otherwise there is no solution. Nevertheless, (2.26)
yields that the least possible value for k̄b,t grows with growing t. Therefore, it
seems reasonable to choose t as low as possible to gain the possible lowest kb,t,
namely t = W . 4
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Proposition 2.2.7. Consider an infinite series y1, y2, . . . without level shifts fol-
lowing Model (2.19) i.e.,

yt = a+ εt

and suppose further that εt are non-degenerated continuous random variables.
Let Tn : Rn → Rn be an estimator defined by Algorithm 2.2.1 with inputs y =
(y1, . . . , yn)>, W ∈ N, W ≤ n, b > 0 and Tn → T̄ for n→∞. Then

ε(T̄ ,y) =
1

kb,W

⌊
kb,W − 1

2

⌋
, (2.27)

where ε(T̄ ,y) is defined in Definition 1.1.7, kb,W by 2.22 and b·c is the floor
function.

Proof. We know that ε∗m(t,y)(T̄t, zt) = 1
m(t,y)

⌊
m(t,y)−1

2

⌋
, where m(t,y) ≥ kb,W . For

1
m

⌊
m−1

2

⌋
is a nondecreasing sequence with respect to m, we have proved that

ε(T̄ ,y) ≥ 1
kb,W

⌊
kb,W−1

2

⌋
. We show to prove the equality in (2.27) that kb,W is the

minimal m(t,y) almost surely. We have shown in Proposition 2.2.4 that there
are infinitely many change points found. Consider two change points one in time
ti and the second in time tj such that ti 6= tj. The observations in sequences
ytj , . . . , ytj+1−1 and yti , . . . , yti+1−1 are independent. We note that ti and tj are
not independent; nevertheless, tj+1 − tj and ti+1 − ti are. We denote the length
between two change points ki = ti+1−ti. For the assumption that yτ is continuous
for any τ ∈ N maximally one i = 1, . . . , t can fulfill yi = Mt(1). Therefore,
the assumptions of (2.22) are satisfied. It yields there is nonzero probability
P (the first change point is in kb,W ) = c > 0. We know ki for i = 1, 2, . . . are
independent and

∑∞
i=1 P(ki = kb,W ) =

∑∞
i=1 c = ∞. We can conclude P(ki =

kb,W i.o.) = 1 with the help of the Borel-Cantelli lemma. Thus, we have proved
that there are infinitely many t for which m(t,y) = kb,W almost surely.

The proposition cannot be proved for any random variable εt for the possibility
of attaining median more times than once by some observations. If we loosen the
assumption for kb,W (2.22) about attaining the value of median then we can prove

in Proposition 2.2.7 only the inequality ε(T̄ ,y) ≥ 1
kb,W

⌊
kb,W−1

2

⌋
and the value of

kb,W would be lower.
We can want to omit the condition about attaining median in 2.22 and define.

k̄b,W = min
k=t,...,1;t≥W ;t,W∈N

{
k

∣∣∣∣ ∣∣Atk(Mt(1, (y1, . . . , yt)))
∣∣ > b; y1, . . . , yt ∈ Rt

}
− 1.

(2.28)
We employ Definition 1.1.8 in the following proposition and therefore we do not
have to make any assumptions connecting to the distribution of εt (we still sup-
pose that median of εt is equal to zero).

Proposition 2.2.8. Consider an infinite series y1, y2, . . . without level shifts fol-
lowing Model (2.19) i.e.,

yt = a+ εt.

Let Tn : Rn → Rn be an estimator defined by Algorithm 2.2.1 with inputs y =
(y1, . . . , yn)>, W ∈ N, W ≤ n, b > 0 and Tn → T̄ for n→∞. Then

ε(T̄ ,y) =
1

k̄b,W

⌊
k̄b,W − 1

2

⌋
, (2.29)
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where ε(T̄ ,y) is defined in Definition 1.1.8, kb,W by 2.22 and b·c is the floor
function.

Proof. The first inequality can be proved in a similar way as in Proposition 2.2.7.
I.e., it came from Equation (2.28) and the fact that the function 1

m

⌊
m−1

2

⌋
is a

nondecreasing sequence with respect to m.
The second inequality came from the fact that the algorithm itself enables

m(t,y) to be equal to k̄b,W and therefore there is z ∈ S(t,y) (see Definition
1.1.8) such that the number of observations in z is equal to k̄b,W .

We compute now πt(Tn) from Definition 1.1.10, where Tn is defined according
to Algorithm 2.2.1 and the rest according to the definition. We get

πt(Tn(ȳ)) =

bm(t,y)−1
2 c∑
i=0

pi(1− p)m(t,ȳ)−i.

I.e., we are looking for the probability that less than
⌊
m(t,y)−1

2

⌋
observations are

violated, where
⌊
m(t,y)−1

2

⌋
+1 expresses the number of contaminated observations

because of which ât can reach infinity.
We want to discuss a time complexity, see Definition 1.1.13, of Algorithm

2.2.1 now. We consider the worst case meaning that no level shifts are found.
I.e., we have to compute the median from all observations up to the time t in each
step. We can exploit the information about ordering from the previous step and
therefore we get the time complexity O(t) in each step. In the last step n = t;
therefore, we replace t by n and get the time complexity of the algorithm O(n2).

The time complexity depends on b in reality (also on the number of real level
shifts in the series); if b is small then we have to order only a few observations
and so the complexity is close to O(n).

2.2.2 Sign test: General case

We return to the general model (2.1) and sketch a rough idea of an algorithm
which can be employed in such a general case. Then, we focus only on a special
case of the linear trend.

We mean by the series of pre-estimates an auxiliary series of preliminary
estimates of parameters obtained in each time t. I.e., it includes a vector of d
components in each time t. These are not the final estimates of parameters but
they enable us to construct such final estimates.

Consider r = (r0, . . . , rd−1)> ∈ Rd, we introduce a notation
r·i = (r0, . . . , ri−1, ri+1, . . . , rd−1)> for i = 0, . . . , d − 1. Let us suppose that we
have robust parameter estimates ât−1((y1, . . . , yn),Θt−1) from the previous step,
where Θt−1 is a vector of parameters on which the estimate depends. We neglect
((y1, . . . , yn),Θt) in the following text and simply write ât for the robust param-
eter estimate at the time t. We further denote by āt(yt, zt, ât−1) the vector of
pre-estimates at the time t. The i-th component āi,t(yt, z, ât−1) of āt(yt, zt, ât−1)
for i = 0, . . . , d− 1 is a solution of the equation

yt = zi,tāi,t(yt, zt, ât−1) + z>·i,tâ·i,t−1. (2.30)
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We gain all components of the vector of the pre-estimates at time t in this way.
Let the last found change point is at time tj. Then âi,t = Mt(tj, (āi,tj , . . . , āi,t))

for i = 0, . . . , d − 1, where we neglect (yt, zt, ât−1) by āi,t(yt, zt, ât−1). I.e., we
gain ât as the multidimensional median from the pre-estimates ātj , . . . , āt.

We proceed in the same fashion as in 2.2.1 to find the next change point. I.e.,
we put ŷτ,t(ât, zt) = z>t ât for τ = tj, . . . , t. If too many consecutive estimates ŷτ,t
for τ = 1, . . . , t lie above or under yτ , we proclaim the first point τ , where such
behavior appears, to be a new change point.

The details of the algorithm are described for a special case of the linear trend.

2.2.3 Sign test: Linear trend

Consider the model with the linear trend

yt = a0,t + a1,tt+ εt, for t = 1, . . . , n. (2.31)

We extend the notation and assumptions from part 2.2.1. Let ctj , . . . , ct be a
series of vectors ci ∈ R2 for i = tj, . . . , t. We denote by M t(tj, (ctj , . . . , ct)) the
componentwise median from ctj , . . . , ct.

We utilize a fixed W ∈ N denoting the number of observations employed after
each change point to compute the initial estimates as in the case of constant
trend 2.2.1. We also employ a constant b > 0 relevant for the test statistics.
The interval (−b, b) and W are found by the simulation experiments presented in
2.3.2.

Consider ât((y1, . . . , yt), b,W ) an estimate of at = (a0,t, a1,t)
> valid at time t

found by means of our recursive Algorithm 2.2.2. We usually simplify the notation
and write only ât = (â0,t, â1,t)

>.
We need initial estimates of a0,t and a1,t from (2.31) in the beginning and

after each found change point. We denote them ãi,tj(ytj , . . . , ytj+k) for i = 0, 1
and k ∈ N. If k = W we employ simpler notation ãi,tj = ãi,tj(ytj , . . . , ytj+W )
for i = 0, 1 or for vectors ãtj = (ã0,tj , ã1,tj)

>. These estimates are not obtained
recursively, like the estimates â0,t and â1,t, but from the first W observations after
a change point. To find ãtj we employ

ãtj ∈ argmin
c∈R2

tj+W∑
t=tj

|yt − c0 − c1t|. (2.32)

We want to stress by the symbol ∈ that ãtj belongs among the solutions of the
expression on the right side of (2.32).

We deal only with two parameters; so the pre-estimates form two series. The
members of these series of pre-estimates for at are denoted by āt(c), where c =
(c0, c1)> for some c0, c1 ∈ R. We denote by ā0,t(c) the solution of

yt = ā0,t(c) + c1t (2.33)

and as ā1,t(c) the solution of

yt = c0 + ā1,t(c)t. (2.34)
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We define statistics St+kt (c0 + c1t) and At+kt (c0 + c1t) for suitable k ∈ N in a
similar way as (2.20) and (2.21), respectively:

St+kt (c0 + c1τ) =
t+k∑
τ=t

Iτ (c0 + c1τ)

and

At+kt (c0 + c1τ) =
2St+kt (c0 + c1τ)− k − 1√

k + 1
. (2.35)
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Figure 2.1. (linear trend): Possibly wrongly identified change point in steps 1 -
14 of Algorithm 2.2.2.

We consider now the real change point to appear at time τ . Let us deal with
a situation when the found change point tj from Steps 1 - 14 of Algorithm 2.2.2
is misspecified. The situation is more problematic than in Lemma 2.2.2, for the
case shown in Figure 2.1.

Example 2.2.9. We describe the situation depicted in Figure 2.1 in this example.
We suppose that εt = 0 for t = 1, . . . , n. yt follows the model

yt = ao0 + ao1t, for t = 1, . . . , τ − 1

up to the time τ − 1.
It follows

yt = an0 + an1 t, for t = τ, . . . , n

after the time τ − 1.
Let

an0 + an1r = ao0 + ao1r,

for some r ∈ R and r > τ . Let further

b >
∣∣Adreτ (ao0 + ao1θ)

∣∣ ,
where d·e denotes the ceiling function.

Steps 1-14 identify the change point tj such that r ∈ [tj − 1, tj). 4
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Nevertheless, the situation from Lemma 2.2.2 can also appear. We skip the
simple proof.

Lemma 2.2.10. Consider the case with a real change point at time τ ∈ N, τ > tj
and the Model (2.19) changing from

yt = ao0 + ao1t, for t = 1, . . . , τ − 1

to
yt = an0 + an1 t, for t = τ, . . . , n.

In the case that yτ−1 > â0,t+ â1,t(τ−1) and Atτ (â0,t+ â1,ti) > b for some t ∈ N
and t > τ then also Atτ−1(â0,t + â1,ti) > b. This arises especially in the case of
an0 + an1τ > ao0 + ao1τ .

In the opposite case, when yτ−1 < â0,t+â1,t(τ−1) and Atτ (â0,t+â1,ti) < −b then
Atτ−1(â0,t + â1,ti) < −b. This arises especially in the case of an0 + an1τ < ao0 + ao1τ .

We plug Steps 17-24 into Algorithm 2.2.2 to deal with these obstacles de-
scribed in Example 2.2.9 and Lemma 2.2.10.

Algorithm 2.2.2 Algorithm for a linear trend based on the sign test

Input: observations (y1, . . . , yn)>, W ∈ N, b > 0
1: put t← 1, j ← 1, t1 ← 1
2: while t ≤ n do . this has to be checked throughout the While loop
3: compute ãtj
4: for τ = tj, . . . , tj +W do
5: âτ ← ãtj
6: compute āτ (âτ )
7: end for
8: t← tj +W − 1
9: repeat

10: t← t+ 1
11: compute āt(ât−1)
12: ât ←M t

(
tj,
(
ātj(âtj), ātj+1(âtj), . . . , āt−1(ât−2), āt(ât−1)

))
13: compute Attj+k(â0,t + â1,tt) for k = t− tj, . . . , 1
14: until Attj+k(â0,t + â1,tτ) ∈ (−b, b) for k = t− tj, . . . , 1
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15: j ← j + 1

16: tj ← tj−1 + min

{
k

∣∣∣∣ ∣∣∣Attj−1+k(â0,t + â1,tτ)
∣∣∣ > b; k = t− tj−1, . . . , 1

}
17: compute ãtj
18: while |ã0,tj + ã1,tj(tj − 1)− ytj−1| < |â0,tj−1 + â1,tj−1(tj − 1)− ytj−1| and

tj > tj−1 do
19: tj ← tj − 1
20: end while
21: while |ã0,tj + ã1,tj(tj + 1) − ytj+1| > |â0,tj−1 + â1,tj−1(tj + 1) − ytj+1| and

tj < t do
22: tj ← tj + 1
23: compute ãtj
24: end while
25: if tj − tj−1 < W then
26: compute ãtj−1

(ytj−1
, . . . , ytj−1)

27: for t = tj−1, . . . , tj − 1 do
28: ŷt ← ã0,tj−1

(ytj−1
, . . . , ytj−1) + ã1,tj−1

(ytj−1
, . . . , ytj−1)t

29: end for
30: else
31: yt ← â0,tj−1 + â1,tj−1t for t = tj−1, . . . , tj − 1
32: end if
33: end while

The following text describes possible adjustments of Algorithm 2.2.2. We can
replace by some other robust estimate of location the componentwise median
serving as an estimate of at, e.g., by M-estimators (Huber, 1964), τ -estimators
(Lopuhaä, 1991) or spatial median (Kemperman, 1987). Componentwise median
is a special case of spatial median in l1 norm. These methods are studied in
Chapter 3. We choose componentwise median especially because of its simplicity
and robust properties (breakdown point equal to 1

2
).

We need a robust regression estimator to compute ãtj . It can be performed in
many different ways. The alternatives to the method mentioned in the beginning
of this section were already discussed in Chapter 1, e.g., the weighted least squares
(Vı́̌sek, 2000) or Theil-Sen algorithm (Theil, 1950). Although our method for
choosing ãtj is really simple, it does not achieve the highest possible breakdown
point. We should utilize the variation of the Theil-Sen algorithm described in
(Siegel, 1982) to reach it.

We consider two options how to deal with the statistics At+kt where t, k ∈ N.

(a) We can apply statistics (2.21) on the series of pre-estimates ā0,t(ât−1) and
ā1,t(ât−1). But it is clear from Equation (2.36) and (2.37) and Example
2.2.11 that the series of pre-estimates can be biased. Moreover, the median
computed from them can also be biased. I.e., we would not be able to reveal
the wrong estimation of parameters at after employing these statistics.

(b) The second option is to employ statistics (2.35). It has the disadvantage
in comparison to Option a that is described in Example 2.2.9. I.e., it does
not have to show the proper time of the change point. It also does not
reveal which component of a has changed, which can be useful. However,
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we compare our estimated values â0,t + â1,tt directly to observations yt and;
therefore, we reveal any bias much faster. So, we prefer this option.

It is possible not to recompute the values of â0,tj and â1,tj in Steps 21 and 18 if
we keep the values for τ > tj−1 in the memory. It is also possible to employ instead
the estimates of â0,t and â1,t for such t for which these values were computed the
last time, but such a simplistic approach could give worse results.

There is another option for Steps 18 - 20. We can, instead of comparing the
values |ã0,tj +ã1,tj(tj−1)−yt| and |â0,tj +â1,tj(tj−1)−yt|, recompute the statistics
2.35 in the following way. We define for n = (n0, n1)> ∈ R2, o = (o0, o1)> ∈ R2

and o ∈ R

It,n(o) =


1 if (yt > o and n0 + n1t > o) or (yt < o and n0 + n1t < o),
1
2

if yt = o,
0 if (yt > o and n0 + n1t ≤ o) or (yt < o and n0 + n1t ≥ o).

Further, similarly to 2.35

St+kt,n (o0 + o1τ) =
t+k∑
τ=t

Iτ,n(o0 + o1τ)

and

At+kt,n (o0 + o1τ) =
2St+kt,n (o0 + o1τ)− k − 1

√
k + 1

.

Algorithm 2.2.3 Alternative to Steps 18 - 20 of Algorithm 2.2.2

18: compute Attj−1+k,ãtj
(â0,t + â1,tt) for k = t− tj−1, . . . , 1

19: Att,ãtj ← b+ 1

20: tj ← tj−1 + min
{
k|Attj−1+k,ãtj

(â0,t + â1,tτ) > b; k = t− tj−1, . . . , 1
}

This alternative was implemented in the code for Simulation study 2.3.
We deal with the convergence of Algorithm 2.2.2 and its other properties in the

following part. A similar idea to the implementation of the series of pre-estimates
was presented in (Holt, 2004). They simply put ā1,t = yt − yt−1 in that paper.
Such an approach has the disadvantage that it is not robust in the sense that an
outlier influences two members of the series of pre-estimates. This can be solved
by replacing yt−1 by its robust estimate ŷt−1 = â0,t−1 + â1,t−1(t − 1) (compare
(Gelper et al., 2010)). However, it is also inappropriate to put ā1,t(ât−1) =
yt − â0,t−1 − â1,t−1(t − 1), since the residuals are summed up in this case while
they are divided by t in Algorithm 2.2.2. Denote δ0,t−1 = â0,t−1 − a0,t−1 and
δ1,t−1 = â1,t−1 − a1,t−1. Suppose further that there is no change point for several
observations around the time t so that the parameters are constant. Then

yt − â0,t−1 − â1,t−1(t− 1) = a1,t + (a0,t − â0,t−1) + (a1,t − â1,t−1)(t− 1) + εt

= a1,t + δ0,t−1 + δ1,t−1(t− 1) + εt
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in comparison to

ā1,t(ât−1) =
yt − â0,t−1

t
=
δ0,t−1 + a1,tt+ εt

t
= a1,t +

δ0,t−1 + εt
t

. (2.36)

Nevertheless, there still remains a pitfall

ā0,t(ât−1) = yt − â1,t−1t = a0,t + εt + δ1,t−1t. (2.37)

Equation (2.37) shows that errors from previous steps do not have to shrink. This
presents a big disadvantage of Algorithm 2.2.2, for it does not have to converge
as it is demonstrated in Example 2.2.11.

We know the sample median of i.i.d. random variables converges almost surely
to its theoretical counterpart, see e.g., (Pollard, 2012). The case is studied when
the random sample median converges to its counterpart and the random variables
are not identically distributed in (Sen, 1970); however, they stay independent.
The convergence in probability was studied in (Mizera and Wellner, 1998), where
necessary and sufficient conditions for the convergence of the sample median were
discovered. As it is clear from (2.36) and (2.37) the assumption of independence
is not fulfilled in our case.

Example 2.2.11. Let us consider the time series yt = a0,t + a1,tt + εt for t =
101, . . . , n where a0,t = 0, a1,t = 1, εt has a normal distribution N(0, 1) for all
t = 101, . . . , n. We further suppose that our initial estimates ã101 are misleading
namely ã0,101 = 100 and ã1,101 = −100. We do not check the statistics in Step 14
of Algorithm 2.2.2 i.e., we proceed the loop until t = n, put ŷt = â0,t + â1,tt for
t = 101, . . . , n and W = 3. Under these conditions we get the following results
for a simulated series.

Table 2.2. Results of Algorithm 2.2.2 without evaluation of At101+k for k = t −
101, . . . , 1 applied on a time series where a0,t = 0, a1,t = 1, ã0,101 = 100, ã1,101 =
−100 and εt has distribution N(0, 1).

t ā0,t ā1,t â0,t â1,t a0,t + a1,tt− ŷt
t = 104 100 -98 10251 0.01 -10148
t = 110 5297 -46 5225 -46 47
t = 200 7680 -31 6537 -37 1126
t = 500 12833 -18 9768 -24 3053
t = 1000 18504 -12 13510 -17 4984

We present also a table, where ã101 is reasonable.
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Table 2.3. Results of Algorithm 2.2.2 without evaluation of At101+k for k = t −
101, . . . , 1 applied on a time series where a0,t = 0, a1,t = 1, ã0,101 = 1.1 and
ã1,101 = 0.2 and εt has distribution N(0, 1).

t ā0,t ā1,t â0,t â1,t a0,t + a1,tt− ŷt
t = 104 1,711 1,11 -10,53 0,99 11,07
t = 110 -5,44 1,04 -5,34 1,04 0,62
t = 200 -8,37 1,03 -6,19 1,04 -1,16
t = 500 -9,89 1,02 -9,19 1,02 -3,01
t = 1000 -17,09 1,01 -12,92 1,02 -4,25

We can make a conjecture with respect to these results that it is sufficient to
compute ãtj and not to perform Steps 11 and 12 of Algorithm 2.2.2. We can still
see the advantage of our method, because the estimate of a1 is improving with a
number of observations.

4

It is visible from Example 2.2.11 that Algorithm 2.2.2, under the conditions of
the example, generally does not converge and that it is highly dependent on the
initial estimate ãtj . On the other hand if ãtj is misspecified then |â0,t + â1,tt− yt|
starts to grow and the difference â0,t + â1,tt − yt does not switch the sign for t
high enough. This is visible from (2.36) and (2.37), because δ0,t and δ1,t have the
same sign if |δi,t| � |εt|. The growth of |â0,t + â1,tt− yt| leads to fulfillment of the
condition in Step 14 of Algorithm 2.2.2. I.e., if the initial estimate is misspecified
then we find very early a change point and if the next initial estimate ãtj+1

is
already correctly specified then not too many observations are wrongly estimated.

Lemma 2.2.12. Let us have observations (y1, . . . , yn)>, W ∈ N, b > 0, ã0,t

is shift and scale equivariant, ã1,t is shift invariant and scale equivariant for
t = 1, . . . , n. We define ŷt according to Algorithm 2.2.2, then ŷt for t = 1, . . . , n
is shift and scale equivariant.

Proof. We proceed by the mathematical induction. Let us have a change point
in time tj ∈ {1, . . . , n}. We know from assumptions that ã0,t is shift and scale
equivariant and that ã1,t is shift invariant and scale equivariant. It yields that
â0,tj+W is also shift and scale equivariant and â1,tj+W is shift invariant and scale
equivariant. We get from equations 2.33 and 2.34 for τ = tj + 1, . . . , tj +W that
ā0,τ (âτ−1) is shift and scale equivariant and ā1,τ (âτ−1) is shift invariant and scale
equivariant. This is also valid for ā0,tj(âtj) and ā1,tj(âtj).

We suppose for n ≥ t > tj + W that no change point is found between tj
and t and that â0,t−1 is shift and scale equivariant and â1,t−1 is shift invariant
and scale equivariant. We further suppose that ā0,t−1(ât−2) is shift and scale
equivariant and ā1,t−1(ât−2) is shift invariant and scale equivariant. We want
to show that â0,t is shift and scale equivariant and â1,t is shift invariant and
scale equivariant. We employ once more equations 2.33 and 2.34 to get that
ā0,t(ât−1) is shift and scale equivariant and ā1,t(ât−1) is shift invariant and scale
equivariant. For median is shift and scale equivariant and ât is computed as a
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median from ātj(âtj), ātj+1(âtj), . . . , āt−1(ât−2), āt(ât−1) we get that â0,t is shift
and scale equivariant and â1,t is shift invariant and scale equivariant.

Let ȳt = cyt + s for t = 1, . . . , n and c, s ∈ R. We get

ˆ̄yt = â0,t((ȳ1, . . . , ȳn), b,W ) + â1,t((ȳ1, . . . , ȳn), b,W )t

= câ0,t((y1, . . . , yn), b,W ) + s+ câ1,t((y1, . . . , yn), b,W )t

= cŷt + s.

We can follow the proof of Lemma 2.2.3 for the rest of the proof.

We leave the problematic of breakdown point to Section 2.2.4, because the
initial algorithm of this section based on absolute values is not robust in the sense
of breakdown point. If we utilize another algorithm such as the least weighted
squares then we would get similar results as in the following section.

We want to discuss now a time complexity see Definition 1.1.13 of Algorithm
2.2.2. We consider the worst case as in the case of constant trend, meaning
that no level shifts are found. I.e., we have to compute for each t the median
M t (1, (ā1(â1), ā2(â1), . . . , āt−1(ât−2), āt(ât−1))). We can once more exploit the
information about ordering from the previous step and therefore we get in each
step the time complexity O(2t). We multiply by 2 due to computing two medians.
It holds in the last step n = t, therefore we replace t by n and get the time
complexity of the algorithm O(2n2). The constant can be neglected so the time
complexity is O(n2).

We should note that in the general case of higher dimension d it would be
necessary to compute more medians for each t, and therefore the complexity
would grow to O(dn2), which is still only O(n2).

The time complexity depends on b in reality. If b is small then we have to
order only a few observations and so the complexity is close to O(n).

2.2.4 Sign test: Linear trend - modification

We deal with a modification of Algorithm 2.2.2 in this part such that there is
higher potential of better properties in the sense of convergence than Algorithm
2.2.2. For the discussion about convergence of Algorithm 2.2.2 see Example
2.2.11. I.e., we try to propose an algorithm for which the addition of a new
observation can improve the final estimate and for which the final estimate is
not so dependent on the initial estimates. The modification is based on the idea
described in (Siegel, 1982) known as repeated median algorithm.

The notation in this part is the same as in 2.2.3. Some differences are described
below. We define for some t, τ ∈ N and τ < t ≤ n.

ǎ1,t(τ) =
yt − yτ
t− τ

. (2.38)

We denote a median from observations ctj , . . . , ct as M(ctj , . . . , ct).
We describe in the following algorithm how to gain an initial estimate ãt. We

employ a similar procedure as in the case of the final estimate ât (compare 2.2.5)
with the difference that we do not compute the statistics Attj+k(â0,t + â1,tt) for
k = t− tj, . . . , 1. We also gain āτ for τ = t+1, . . . , t+W during the computation
of ãt which are later utilized in Algorithm 2.2.5.
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Algorithm 2.2.4 Computation of ãt

Input: time t, W ∈ N, observations (yt, . . . , yt+W )>

1: ā0,t ← yt
2: for τ = t+ 1, . . . , t+W do
3: compute ǎ1,τ (i) for i = t, . . . , τ − 1
4: ā1,τ ←M(ǎ1,τ (t), . . . , ǎ1,τ (τ − 1))
5: â1,τ ←M(ā1,t+1, . . . , ā1,τ )
6: ā0,τ ← yτ − ã1,τ (τ − t)
7: â0,τ ←M(ā0,t+1, . . . , ā0,τ )
8: end for
9: ã0,t ←M(ā0,t, . . . , ā0,t+W )

10: ã1,t ← â1,t+W

We present the main part of the algorithm based on repeated median estima-
tor.

Algorithm 2.2.5 Algorithm for a linear trend based on the sign test and repeated
median estimator

Input: observations (y1, . . . , yn)>, W ∈ N, b > 0
1: put t← 1, j ← 1, t1 ← 1
2: while t ≤ n do . this has to be checked throughout the While loop
3: if W ≥ 2 then
4: compute ãtj according to 2.2.4 with W = W − 1
5: end if
6: t← tj +W − 1
7: repeat
8: t← t+ 1
9: compute ǎ1,t(τ) for τ = tj, . . . , t− 1

10: ā1,t ←M(ǎ1,t(tj), . . . , ǎ1,t(t− 1))
11: â1,t ←M(ā1,tj+1, . . . , ā1,t)
12: ā0,t ← yt − â1,t(t− tj)
13: â0,t ←M(ā0,tj , . . . , ā0,t)
14: compute Attj+k(â0,t + â1,tt) for k = t− tj, . . . , 1
15: until Attj+k(â0,t + â1,tτ) ∈ (−b, b) for k = t− tj, . . . , 1
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16: j ← j + 1

17: tj ← tj−1 + min

{
k

∣∣∣∣ ∣∣∣Attj+k(â0,t + â1,tτ)
∣∣∣ > b; k = tj − t, . . . , 1

}
18: compute ãtj according to 2.2.4
19: m← −1
20: while |ã0,tj + ã1,tjm − ytj−1| < |â0,tj + â1,tj(tj − 1 − tj−1) − ytj−1| and

tj > tj−1 do
21: tj ← tj − 1
22: m← m− 1
23: end while
24: while |ã0,tj + ã1,tj − ytj+1| > |â0,tj + â1,tj(tj + 1− tj−1)− ytj+1| and tj < t

do
25: tj ← tj + 1
26: compute ãtj according to 2.2.4
27: end while
28: if tj − tj−1 < W then
29: ŷtj−1

, . . . , ŷtj−1 ← ã0,tj−1
(ytj−1

, . . . , ytj−1) + ã1,tj−1
(ytj−1

, . . . , ytj−1)t
30: else
31: ŷtj−1

, . . . , ŷtj−1 ← â0,tj + â1,tj t
32: end if
33: end while

We put ā0,tj = ytj in Algorithm 2.2.5 Step 12 and Procedure 2.2.4 Step 6. I.e.,
we consider each change point as a new beginning of time. It has the advantage
that we can employ one more observation in the computation of â0,t which is
independent from â1,t. This is not necessary in the case of Algorithm 2.2.2,
because we use a different initial estimate.

If we want to utilize more information from our data, we can apply the whole
procedure of the repeated median algorithm in each step. It means we have to
adjust Steps 9 and 10 of Algorithm 2.2.5 in the following way.

Algorithm 2.2.6 Possible replacement of Steps 9 and 10 of Algorithm 2.2.5

7: compute ǎ1,τ (t) for τ = tj, . . . , t− 1
8: compute ǎ1,t(τ) for τ = tj, . . . , t− 1
9: for τ = tj, . . . , t do

10: ā1,τ ←M(ǎ1,τ (tj), . . . , ǎ1,τ (τ − 1), ǎ1,τ (τ + 1), . . . , ǎ1,τ (t))
11: end for

It is also necessary to adjust initial Procedure 2.2.4. This modification de-
mands more computational effort.

Lemma 2.2.13. Let us have observations (y1, . . . , yn)>, W ∈ N and b > 0. We
define ŷt according to Algorithm 2.2.5, then ŷt for t = 1, . . . , n is shift and scale
equivariant.

Proof. We can follow the proof of Lemma 2.2.12. It suffices to show, in the case
of this lemma, shift invariance and scale equivariance of ǎ1,t(τ), shift invariance
and scale equivariance of ā1,t and shift and scale equivariance of ā0,t for t, τ =
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1, . . . , n and τ < t. It follows from (2.38) that ǎ1,t(τ) is shift invariant and scale
equivariant. The shift invariance and scale equivariance of ā1,t follows from the
fact that it is a median from ǎ1,t(τ) for appropriate values of t and value τ . It
follows already from that the shift invariance and scale equivariance of â1,t. Since
ā0,t = yt − â1,t(t− τ), we get that ā0,t is shift and scale equivariant.

We should note that the choice of the repeated median algorithm was not too
fortunate, because its asymptotic properties do not represent a big improvement
with respect to the previous section. According to (Siegel, 1982), it is Fisher
consistent 1.1.5 and unbiased. Its convergence was also studied in (Hossjer et al.,
1994). Nevertheless, its asymptotic properties are not convincing. Therefore, we
should not await great improvement. On the other hand this algorithm can serve
as a good starting point for further modifications. One of the possible approaches
could be to employ a robust version of Kalman filter see e.g., (Hanzák and Cipra,
2011).

We can prove a similar assertion to 2.2.4. I.e., we have to consider once more
the advantages and disadvantages of a size of b. However, we cannot say that
for high values of b we get converging estimators and therefore closer to the real
value.

If we want to study breakdown point we have to employ Modification 2.2.6
to gain exactly the same algorithm which was described in (Siegel, 1982). Let Tn
denote the estimator of the time series given by Algorithm 2.2.5 with modification
2.2.6. We employ the notation from Definition 1.1.7. From (Siegel, 1982) we know

that ε∗m(t,y)(Tn,t, zt) = 1
m(t,y)

m(t,y)−2
2

.

Example 2.2.14. We show in this example, why the Algorithm 2.2.5 without
modification 2.2.6 is not as robust as with the modification. Consider observations
y1 = 1, y2 = 2, y3 = 0, y4 = 0, y5 = 0, y6 = 0 then ā1,2 = 1, ā1,3 = −1.25, ā1,4 =
−1

3
, ā1,5 = −1

8
, ā1,6 = 0. Therefore, we spoiled four ā1,t for t = 2, . . . , 6 by con-

taminating the first two observations. It is easy to see that this holds generally. If
we contaminate the observations in the beginning we get twice as many contami-
nated observations ā1,t. We need to have more observations ā1,t uncontaminated
to get an unviolated final estimate. It yields approximately the breakdown point
of Algorithm 2.2.5 to be one fourth. 4

Remark 2.2.15. We have to take into account Steps 20-23 of Algorithm 2.2.5 to
study similar number as kb,t from (2.22). These steps can shrink possible minimal
number of observations between two change points. Therefore, there is no need
to proof similar proposition as 2.2.7. As the second counterargument serves the
fact that we cannot exploit the assumption that half of observations lie below the
estimated values and half of observations lie above.

We get according to Definition 1.1.10 with respect to
ε∗m(t,y)(Tn,t, zt) = 1

m(t,y)
m(t,y)−2

2
that

πt(Tn(ȳ)) =

bm(t,y)−2
2 c∑
i=0

pi(1− p)m(t,ȳ)−i.
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We will discuss the time complexity of Algorithm 2.2.5. We have to compute
median M(ǎ1,t(tj), . . . , ǎ1,t(t − 1)) for each t in comparison to Algorithm 2.2.2
and cannot employ the ordering from the previous step. Therefore, we get the
complexity O(n2 log n) based on the fact that the complexity of the ordering is
at least O(n log n) see (Cormen, 2009)[151].

We can replace Steps 20 23 of Algorithm 2.2.5 in a similar way as in the case
of modification 2.2.3 of Algorithm 2.2.2. However, the modification does not lead
to an improvement in this case and it slows down the algorithm. Therefore, we
does not employ it in the simulation study.

2.3 Simulation study

In this Section, simulations for models with constant and linear trends are present-
ed with the aim to find the optimal arrangement of the corresponding procedures.
We also compare different methods.

2.3.1 Simulation study: Constant trend

We have generated, in Matlab and C, time series of length n = 100 with a constant
trend yt = a + εt. The errors are i.i.d. N(0, 1) but they are, with probability p,
contaminated by other distributions specified in Tables 2.4, 2.5 and 2.6 (e.g.,
N(0, 100) with probabilities p = 5% or p = 10%). Compare with Definition
1.1.2. We have always generated N = 1000 series of the same type for particular
situations.

Let at denote the actual value of a at time t and let ŷt be the estimate of at
(i.e., the smoothed value) based on one of the compared algorithms. If we also
want to stress the series number i, we add the index i to the relevant symbol,
e.g., yt,i.

Moreover, the level shift occurs at time t = 50. In particular, for each time
series the values at for t = 1, . . . , 49 are constant, generated by the uniform
distribution on the interval (-10,10) for each trajectory and the same rule holds
for t = 50, . . . , 100 (all samples are independent).

There is a criterion MAE (Mean Absolute Error) to be minimized with respect
to the technical coefficients b and W from Algorithm 2.2.1

MAE =
1

Nn

N∑
i=1

n∑
t=1

|at,i − ŷt,i|.

We also try to employ the technical coefficients in order to minimize MAE for
other algorithms in this simulation. The MAE criterion’s value differ for the case
of forecasting (see later).

We look for b and W such that they minimize the criterion MAE in Table
2.4. If the criterion or a coefficient is indexed by min, then its value has been
obtained within minimization of MAE.

We compare the values of MAEmin with the values obtained under the condi-
tion that the technical coefficients b and W are fixed (then the objective function
is not indexed and the values of coefficients are given in the legend of the corre-
sponding table).
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With respect to the first column and other computations it turns out that the
results do not depend too much on the technical coefficient W . More precisely,
for a wide range of values of W , the results are almost the same. Therefore,
for the sign test algorithm with the constant trend, one can recommend the
choice of this value between 35 and 50. But we should also take into account
the approximate length between two consecutive change points. I.e., the optimal
W can depend on the distance between change points. The boundary b can be
recommended around 3 (on the other hand, the results are not too dependent
on this value and we can choose any value between 2.5 and 3.5). The values for
b are appropriate, especially for smoothing. We should recommend lower values
(between 1.5 and 2) for forecasting, because we could forecast incorrectly after a
level shift. A recommendation for routine application of the sign test algorithm
with constant trend follows: b equal to 3 and W higher than 20 or equal to the
average conjectural length between two change points.

Table 2.4. (constant trend by the sign test algorithm) There are values of MAE
for fixed b = 2 and W = 50 in the first column. There are the minimal values
of MAE in the second column. There are also values of technical coefficients
bmin and Wmin minimizing MAE for the specified series in the third and fourth
columns.

Distribution MAE MAEmin bmin Wmin

p = 0% 0.164 0.157 2.760 49
p = 5%

N(0, 100) 0.198 0.168 3.159 50
Cauchy 0.173 0.155 2.904 50

U(−10, 10) 0.190 0.173 2.866 50
p = 10%
N(0, 100) 0.217 0.191 2.935 50
Cauchy 0.181 0.164 3.007 49

U(−10, 10) 0.215 0.187 3.135 45
p = 40%

U(−20, 20) 2.779 0.380 0.453 55

Let us compare now the sign test algorithm with other algorithms. It is also
interesting to see the average size of residuals, because it can help us to decide
whether the estimate given by a specific algorithm really smoothes the values
of the series yt in the direction of at. In other words, whether the estimate is
closer to at than the original series yt. For this purpose we employ the average of
absolute errors

1

Nn

N∑
i=1

n∑
j=1

|at,i − yt,i|.

We employ the following indices:

(i) average of absolute errors (Err);

(ii) simple exponential smoothing (index Exp);
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(iii) C-algorithm (index C);

(iv) sign test algorithm (index S);

(v) M-estimation of simple exponential smoothing (index M).

E.g., MAEExp means that we substitute the estimates from the exponential
smoothing algorithm to the MAE criterion. The same technical coefficients
(βExp, βC , b,W ) are applied to each kind of outliers so their choice is rough.

The M-estimation method is adopted from (Hanzák and Cipra, 2011). Under
the assumption, that the level shifts appear quite rarely, the method (Hanzák
and Cipra, 2011) gives moderate results. On the other hand, when we generate
the data according to the article, then their robust method gives better results
than the method described here. Obviously, it depends on the nature of the data:

1. If we suppose a small change in each step then M-estimation should be
preferred.

2. In the case of significant rare jumps one should employ the method from
our work.

Table 2.5 shows that according to the MAE criterion, the sign test algorithm
works best by a significant margin.

Table 2.5. (constant trend smoothing: comparison of algorithms) (i) the average
of absolute errors of simulated time series; the values of MAE for (ii) the simple
exponential smoothing with βExp = 0.6; (iii) the C-algorithm with βC = 0.6; (iv)
the sign test with b = 2 and W = 50; (v) M-estimation of simple exponential
smoothing with αM = 0.8 and νM = 0.5.

Distribution Err MAEExp MAEC MAES MAEM

p = 0% 0.797 0.487 0.603 0.164 0.583
p = 5%

N(0, 100) 1.144 0.752 0.654 0.198 0.600
Cauchy 1.020 0.685 0.613 0.173 0.579

U(−10, 10) 1.007 0.635 0.648 0.190 0.609
p = 10%
N(0, 100) 1.513 1.017 0.730 0.217 0.637
Cauchy 1.468 1.108 0.632 0.181 0.586

U(−10, 10) 1.217 0.771 0.708 0.215 0.639
p = 40%

U(−20, 20) 4.434 2.790 2.112 0.390 1.462

The sign test method smoothes a value of the series based on its current, past
and future values. However, the exponential smoothing based methods, employed
for comparison in our simulation study, use just current and past values of the
series. Thus, in the case of smoothing, the comparison is not ”fair”.

Let us turn our attention to forecasting. If we want to forecast, then the crucial
thing is to detect the level shift faster than in the case of smoothing, because after
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the level shift it may happen that we predict too many observations incorrectly
(according to old observations). We employed the parameter b equal to 2 and
not higher also in the case of smoothing, to keep comparable conditions for all
algorithms.

In the case of forecasting, we employ the following function

MAEf =
1

N(n− 10)

N∑
i=1

n−1∑
t=10

|at+1,i − ŷt+1,i|t|,

where ŷt+1,i|t stands for an estimate of at+1,i, if we know the observations y1, . . . , yt.
We see from Table 2.6 that our algorithm is still the best, but it is much closer

to the others. The values of MAEf are generally worse. This is given by the fact
that for prediction it is harder to switch to another level after a level shift, and
the prediction is always delayed.

Table 2.6. (constant trend forecasting: comparison of algorithms) (i) the average
of absolute errors of simulated time series; the values of MAEf for (ii) the simple
exponential smoothing with βExp = 0.6; (iii) the C-algorithm with βC = 0.6; (iv)
the sign test with b = 2 and W = 50; (v) M-estimation of simple exponential
smoothing with αM = 0.8 and νM = 0.5.

Distribution Err MAEf,Exp MAEf,C MAEf,S MAEf,M

p = 0% 0.797 0.564 0.675 0.560 0.672
p = 5%

N(0, 100) 1.150 0.835 0.724 0.575 0.699
Cauchy 1.136 0.894 0.681 0.552 0.673

U(−10, 10) 1.010 0.710 0.716 0.575 0.701
p = 10%
N(0, 100) 1.514 1.094 0.794 0.596 0.738
Cauchy 1.268 0.958 0.699 0.562 0.686

U(−10, 10) 1.226 0.848 0.771 0.581 0.723
p = 40%

U(−20, 20) 4.434 2.840 2.121 0.924 1.542

We present a time series with large residuals and also a level shift in Figure
2.2. We can visually compare in this picture how the algorithms are able to
deal with these obstacles. For instance, the M-algorithm deals quite well with
high residuals but is unable to react fast enough to a quite large level shift. The
C-algorithm and the exponential smoothing algorithm behave in a similar way;
nevertheless the exponential smoothing is more sensitive to violations in data.
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Figure 2.2. (constant trend): Comparison of different estimates of time series
(α = 0.5, βC = 0.6, βExp = 0.6,W = 50, b = 2, αM = 0.8 and νM = 0.5).

2.3.2 Simulation study: Linear trend

The situation differs from the case of the constant trend in the linear case, since
we also have to deal with a slope. It is possible to generate the series by many
methods. We choose only one here. The notation is the same as above (e.g.,

MAE = 1
Nn

N∑
i=1

∑n
t=1 |β0,i + β1,it− ŷt,i|).

Similar to the previous case, we generate the time series of length n = 100,
and N = 100 series for each distribution. The number N differs from the case
of the constant trend, because the computation in the linear case can already
be quite time-consuming if N = 1000, especially when we want to minimize and
look for the most suitable technical coefficients.

The constant term is initialized by the uniform distribution on the interval
〈−10; 10〉 and the linear term similarly on the interval 〈−5; 5〉. The constant and
slope coefficients are changed at time t = 50 for each time series. The new linear
term also follows the uniform distribution on the interval 〈−5; 5〉. To avoid too
large a gap between observations 49 and 50, we put the constant term β0 for
the new line such that a50 = a49 + u, where u has the uniform distribution on
the interval 〈−10; 10〉. The residuals are constructed in the same way as for a
constant trend. We have to also deal with the technical coefficients W and b. We
employ the same methods as in the case of a constant trend.

We employ the version of the sign test algorithm following option b (see para-
graph 2.2.3), because the algorithm following Remark (a) does not work properly
in some cases.

Let us look now at Table 2.7, where we display the optimal technical coef-
ficients. One can recommend a choice of the window W in a length equal to
the probable length between two neighboring level shifts for the linear trend by
the sign test algorithm. The coefficient b should be chosen between 2.2 and 2.5.
Once more, the choice of technical coefficients is not too important, because we
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get very similar results for quite a wide range of values (see Table 2.7).

Table 2.7. (linear trend by the sign test algorithm) This Table employs Algorithm
2.2.2 including the Steps 17-24. There are values of MAE for fixed b = 2 and
W = 50 in the first column. There are the minimal values of MAE in the
second column. There are also the values of technical coefficients bmin and Wmin

minimizing MAE in the third and fourth columns.

Distribution MAE MAEmin bmin Wmin

p = 0% 0.231 0.219 2.293 53
p = 5%

N(0, 100) 0.289 0.250 2.520 52
Cauchy 0.271 0.221 2.286 53

U(−10, 10) 0.244 0.226 2.222 52
p = 10%
N(0, 100) 0.299 0.291 2.218 50
Cauchy 0.343 0.212 2.437 51

U(−10, 10) 0.265 0.241 2.220 53
p = 40%

U(−20, 20) 0.640 0.594 1.894 50

We employ the following indices from now:

(i) average of absolute errors (Err);

(ii) double exponential smoothing (index Exp);

(iii) linear sign test algorithms without looking for change points in Steps 17 -
24 of Algorithm 2.2.2 (index SLb);

(iv) linear sign test algorithm (index SLTb);

(v) modified linear sign test Algorithm 2.2.5 (index STS);

(vi) double exponential smoothing employing M-estimation (index M).

We can compare the sign test algorithm with the double exponential smooth-
ing. The coefficient was chosen to be optimal according to MAE and with re-
spect to (Brown, 1962), where its author recommends an interval for values of
the coefficient for the double exponential smoothing method. Our algorithms give
significantly better results in the contaminated cases.

We also employ M-estimation of double exponential smoothing and compare
it with other algorithms in Table 2.8. The detailed description of this method can
be found in (Hanzák and Cipra, 2011). The results for M-estimation are better
for a higher contamination in (relative) comparison to other methods (similarly
as for the constant trend): this approach should be used in the case of small
jumps occurring quite often since the M-estimation algorithm has been originally
suggested for such a type of data. Otherwise, we should employ our algorithm.
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We can also see from the table that modified Algorithm 2.2.5 does not lead
to the improvement. It is generally worse than original sign test Algorithm 2.2.2.
This could be caused by the slow convergence of the repeated median algorithm,
because for an initiation of the original sign test algorithm we utilize the absolute
regression, which is faster. This is more obvious in our situation when W = 50.
However, as was already mentioned further research in this way is necessary.

Table 2.8. (linear trend smoothing: comparison of algorithms) (i) the errors
i.e., Err = 1

Nn

∑N
i=1

∑n
j=1 |at,i − yt,i|; (ii) the double exponential smoothing with

β = 0.84 (Exp); (iii) the linear sign test algorithms without the improvement,
connected with looking for change points from Steps 17-24 of Algorithm 2.2.2
(W = 10, b = 2); (iv) the linear sign test algorithm (W = 50, b = 2), considering
now the improvement; (v) the modified linear sign test Algorithm 2.2.5 (W = 50,
b = 3); (vi) the double exponential smoothing employing M-estimation with
parameters αM = 0.8 and νM = 0.7.

Distribution Err MAEExp MAESLb MAESLTb MAESTS MAEM

p = 0% 0.797 0.722 0.513 0.224 0.337 2.808
p = 5%

N(0, 100) 1.168 1.076 0.546 0.271 0.361 2.761
Cauchy 0.975 0.906 0.516 0.239 0.334 2.743

U(−10, 10) 1.011 0.917 0.549 0.248 0.354 2.455
p = 10%
N(0, 100) 1.512 1.397 0.597 0.323 0.401 2.770
Cauchy 1.299 1.251 0.526 0.260 0.348 3.193

U(−10, 10) 1.216 1.097 0.578 0.263 0.376 2.867
p = 40%

U(−20, 20) 4.469 3.969 1.325 0.640 0.753 4.734

We study the ability of algorithms to forecast similar to the case of a constant
trend. We see from Table 2.9 that our algorithm is the best in almost all cases
except for the non-contaminated case, but we have to employ the improved al-
gorithm. It is more suitable to use lower b around 1.5 in the case of forecasting.
We get even better results then. We omitted the modified sign test algorithm for
forecasting.
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Table 2.9. (linear trend forecasting: (i) the errors i.e., Err = 1
Nn

∑N
i=1

∑n
j=1 |at,i−

yt,i|; (ii) the double exponential smoothing with β = 0.84 (Exp); (iii) the linear
sign test algorithms without the improvement, connected with looking for change
points from Steps 17-24 of Algorithm 2.2.2 (W = 10, b = 2); (iv) the linear sign
test algorithm (W = 50, b = 2), considering now the improvement; (vi) the double
exponential smoothing employing M-estimation with parameters αM = 0.8 and
νM = 0.7.

Distribution Err MAEf,Exp MAEf,SLb MAEf,SLTb MAEf,M

p = 0% 0.796 0.979 1.589 1.036 3.058
p = 5%

N(0, 100) 1.133 1.302 1.582 1.042 3.178
Cauchy 0.939 1.155 1.559 1.038 4.119

U(−10, 10) 1.008 1.105 1.522 0.991 3.420
p = 10%
N(0, 100) 1.484 1.661 1.770 1.170 2.962
Cauchy 2.291 3.108 1.590 1.076 2.700

U(−10, 10) 1.196 1.292 1.632 1.072 3.908
p = 40%

U(−20, 20) 4.469 4.070 2.832 1.888 6.160

2.4 Example: GDP of China

The example deals with the annual values of Chinese GDP in the period 1952
- 2014 from National Bureau of Statistics of China (see Table 2.10). Since the
GDP of China has a characteristic exponential growth, we apply a logarithmic
transformation to the data. We employ Algorithm 2.2.2 for a linear trend. We
choose the technical coefficients b = 2.2 and W = 10 since we suppose that the
change points can appear in periods of approximately ten years.

The points detected by the algorithm as change points (namely 1961, 1982,
1994 and 2002) should correspond to the significant economic changes (see also
Figure 2.3). In 1958, Mao Tse-tung announced the Great Leap Forward. Our
model indicates this event in 1961. The constant term of our model decreases
and the slope does not change so much in this year. It is interesting that we get
absolutely identical results for a wide range of values b. Until 1978, our model
shows a low but stable growth. After 1978, when the crucial reforms of the
Chinese economy began, the growth of GDP speeds up. However, these reforms
were realized only in several economic zones along the coast. A more rapid growth
started in the early 1980s when the reforms were introduced in further areas. The
growth was still quite fast in the 1990s, but it was accompanied by a high rate of
inflation. In the period 2003-2006, other reforms (e.g., the protection of private
property) were approved. In 2006, the 11th Five-Year Economic Program was
accepted which aimed at education, medical care, etc. These changes of the
Chinese economy are visible in GDP and the algorithm reflects them too.
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Table 2.10. (GDP of China) Natural logarithm of Chinese GDP in 100 billions
of Chinese yuan estimated by the improved linear sign test algorithm (b = 2.2,
W = 10).

Year 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
ln(GDP) 11.13 11.32 11.36 11.42 11.54 11.58 11.78 11.88 11.89 11.71
Estimate 11.13 11.23 11.33 11.44 11.54 11.65 11.75 11.85 11.96 11.66

Year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
ln(GDP) 11.65 11.73 11.89 12.05 12.14 12.09 12.06 12.18 12.33 12.40
Estimate 11.73 11.80 11.87 11.94 12.00 12.07 12.14 12.20 12.27 12.34

Year 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
ln(GDP) 12.44 12.52 12.54 12.62 12.60 12.68 12.81 12.92 13.03 13.10
Estimate 12.41 12.47 12.54 12.61 12.67 12.74 12.81 12.88 12.94 13.01

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
ln(GDP) 13.19 13.30 13.49 13.71 13.85 14.01 14.23 14.35 14.45 14.60
Estimate 13.18 13.35 13.51 13.67 13.84 14.00 14.16 14.33 14.49 14.65

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
ln(GDP) 14.81 15.08 15.39 15.63 15.78 15.89 15.95 16.01 16.12 16.22
Estimate 14.82 14.98 15.53 15.63 15.72 15.82 15.92 16.02 16.12 16.22

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
ln(GDP) 16.31 16.43 16.59 16.74 16.90 17.10 17.27 17.36 17.53 17.70
Estimate 16.27 16.42 16.58 16.73 16.89 17.04 17.20 17.36 17.51 17.67

Year 2012 2013 2014
Estimate 17.79 17.89 17.97
ln(GDP) 17.82 17.98 18.13
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Figure 2.3. Natural logarithm of Chinese GDP in billions of Chinese yuan esti-
mated by the improved linear sign test algorithm (b = 2.2, W = 10).
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3. Generalization of trimmed
mean based on geometric median

We propose new estimators of location in this chapter w. These estimators select
a robust set around the geometric median also known as spatial median, enlarge
it and compute the (iterative) weighted mean from it. By doing so, we obtain a
robust estimator in the sense of the breakdown point which uses more observations
than standard estimators. We apply our approach on the concepts of boxplot
and bagplot. We work in a general normed vector space and allow multi-valued
estimators.

The investigation of estimators from this chapter is also motivated by potential
improvements of estimators from the previous chapter. We can employ e.g., in
Algorithm 2.2.1 the estimators from this chapter instead of the simple median.
However, this issue is also opened for future research.

We are interested in robust estimators for the parameter of location in this
part. One of the first attempts to deal with such estimators are M-estimators, see
(Huber, 1964) or (Maronna, 1976). They are computationally simple but suffer
from low breakdown point, see (Hampel, 1971) or (Donoho and Huber, 1983). Its
value is at most 1

d+1
, see (Maronna et al., 2006). Later, multiple estimators got

proposed, among others we mention:

• minimum volume ellipsoid estimators (MVE, (Rousseeuw, 1985)) whose
name stems from the fact that among all ”proper” ellipsoids containing
at least half of observations, the one given by MVE has minimal volume.
However, their efficiency is rather poor.

• S-estimators ((Serfling, 1987)) have been suggested to overcome the low
efficiency of MVE. They combine approaches of MVE and M-estimators.

• τ -estimators ((Lopuhaä, 1991)) also employ the idea of M-estimators but
they do not require a preliminary scale estimator.

• Stahel-Donoho estimator ((Stahel, 1981) and (Donoho, 1982)) is based on
the idea that any outlier in the multivariate case should be an outlier in
some univariate projection.

The advantage of these estimators is their high breakdown point; the highest
which a shift equivariant estimator can attain. However, their computation usu-
ally requires heavy effort. Therefore, (Maronna and Zamarb, 2002) suggested a
way of reducing the computational complexity while sustaining the high break-
down point. As a price to pay, one is no longer able to estimate the covariance
structure.

The early history of development and alternative approaches to spatial median
are described in (Small, 1990). The work on spatial medians (generalisations of
median) started on the Twelfth Census of the United States conducted in 1900.
Statisticians of the time expressed an interest in studying the flow of population
in the United States through the movement over time of a geographical center
of the population. Maybe the earliest reference to the geometric median is to be
found in (Hayford, 1902), where the vector of medians of orthogonal coordinates
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was suggested. However, the difficulty was recognized. This higher dimensional
analog of the median is dependent on the choice of orthogonal coordinates used.
(Scates, 1931) reexamined the problem of finding the geographical center of the
United States, and found it (with the new concept of spatial median) to be ’15
miles northwest of Dayton, Ohio’. Also other papers concerning this topic were
published. However, they did not receive widespread attention. Therefore, it was
rediscovered e.g., in (Haldane, 1948).

Many statistical estimators evolve from the method, where all observations
are considered with the same weight, over the method where some of the observa-
tions are neglected, to the method where weights of the observations may differ.
The evolution from the least squares over the least trimmed squares to the least
weighted squares can serve as an example. See (Vı́̌sek, 2000) or (Vı́̌sek, 2011).

We will proceed in a similar fashion. We deal with the geometric median in
the beginning, we employ further binary weights equal to 0 or 1 and in the end
the weights from interval [0, 1].

This chapter is organized as follows: we define the basic concept of geomet-
ric median in the first part of Section 3.1. Even though geometric median may
be a set and not a point in general, most authors do not handle this fact. Be-
cause of this, we have decided to work with estimators which are multifunctions
(also known as set-valued maps). The second part of Section 3.1 contains new
results. We propose new estimators, discuss their breakdown point and provide
a comparison between our algorithms and M-estimators.

We employ a slightly different notation in this chapter: often we will use the
bold notation for x = (x1, . . . , xn) ∈ Xn. We understand a component of a vector
by the lower index while by the upper index, we mean an iteration number. A
multifunction R : X ⇒ Y is a generalization of a function, where R(x) does not
have to be one point but may be a subset of Y . We say that R is bounded on
bounded sets if ∪x∈AR(x) is a bounded set for all bounded sets A ⊂ X. Since we
consider multi-valued estimators, some of the definitions are slightly generalized.

3.1 New estimators based on a generalization of

trimmed mean

We first recall the geometric median in this section and on its basis derive other
estimators. The basic idea is to find first the geometric median, then restrict
ourselves to a set of neighboring observations and construct an estimator based
only on this restricted set. If this set is chosen in a proper way, the estimator will
have a breakdown point of 1

2
.

We continue with the definition of geometric median.

Definition 3.1.1. We define the geometric median as a multifunction T̂n : Xn ⇒
X satisfying

T̂n(x1, . . . , xn) = argmin
a∈X

n∑
j=1

‖a− xj‖. (3.1)

We present now two examples. The first one shows that the choice of the norm
can change the geometric median in a significant way and that the geometric
median may indeed be multi-valued. The second one depicts a simple situation
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where we are able to compute the geometric median. Moreover, it will be used
later in some proofs.

Example 3.1.2. Consider X = R2 and points x1 = (1, 0), x2 = (−1, 0) and
x3 = x4 = (0, 1). Then it is not difficult to verify that for the following norms we
have

(R2, ‖ · ‖1) =⇒ T̂4(x1, . . . , x4) = conv{(0, 0), (0, 1)},
(R2, ‖ · ‖2) =⇒ T̂4(x1, . . . , x4) = {(0, 1)},

(R2, ‖ · ‖∞) =⇒ T̂4(x1, . . . , x4) = {(0, 1)},
where conv stands for the convex hull. We see that for ‖ · ‖2 and ‖ · ‖∞ the
geometric median is determined in a unique way. This does not hold any more
for ‖ · ‖1. 4

Example 3.1.3. Consider x̄ ∈ X and x = (x1, . . . , xn), where x1 = · · · = xm = x̄
for some m ≥ n

2
. Fix any y ∈ X. Then we have

n∑
i=1

‖x̄− xi‖ =
n∑

i=m+1

‖x̄− xi‖ ≤
n∑

i=m+1

‖x̄− y‖+
n∑

i=m+1

‖y − xi‖

=
n∑

i=m+1

‖x̄− y‖+
n∑

i=m+1

‖y − xi‖+
m∑
i=1

‖y − xi‖ −
m∑
i=1

‖y − x̄‖

=
n∑
i=1

‖y − xi‖+ (n− 2m)‖y − x̄‖ ≤
n∑
i=1

‖y − xi‖

due to the m ≥ n
2
. But this means that x̄ ∈ T̂n(x). 4

In the next remark, we will mention connections between geometric median
and other classical finite-dimensional concepts.

Remark 3.1.4. The geometric median is a natural generalization of the median.
Indeed, for X = R the geometric median is either a point or an interval. If it is
a point, then it is the median. If it is an interval, then its midpoint equals to the
median.

For X = Rp, there is also a close connection with the so-called depth, which
measures ”outlyingness” of a given multivariate sample, see (Liu, 1990). The
type of depth was studied in (Zuo and Serfling, 2000), which can be expressed in
the form

DΣ(x;F ) =
1

1 + 1
n

∑n
i=1 ‖x− xi‖Σ−1

,

where Σ is an covariance matrix of a distribution F and ‖x‖Σ−1 :=
√
x>Σ−1x is a

seminorm. It is clear that looking for a point maximizing DΣ(·, F ) is equivalent to
searching for geometric median with respect to the corresponding seminorm. 4

Recall that a shift equivariant estimator Tn satisfies Tn(x1 + y, . . . , xn + y) =
Tn(x1, . . . , xn)+y for all x1, . . . , xn ∈ X and y ∈ X. For single-valued estimators,
it has been shown in (Maronna et al., 2006), formula (3.25) that a shift equivariant
estimator satisfies

ε∗n(Tn,x) ≤ 1

n

⌊
n− 1

2

⌋
. (3.2)
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Since the geometric median possesses this property, it is not surprising, that we
obtain formula (3.2) as well. Moreover, we obtain even equality in this estimate.

Lemma 3.1.5. For any x = (x1, . . . , xn) ∈ Xn, we have for the geometric median

ε∗n(T̂n,x) =
1

n

⌊
n− 1

2

⌋
,

and thus for the asymptotic breakdown point we have ε∗ = 1
2
.

Proof. The second statement is an immediate consequence of the first one. Note
that the first statement is equivalent to m∗n(T̂n,x) = n0 with n0 :=

⌊
n−1

2

⌋
. We

see from Example 3.1.3 that m∗n(T̂n,x) < n
2
, which further implies m∗n(T̂n,x) ≤

n
2
− 1 ≤ n0. To finish the proof, it is sufficient to show that m∗n(T̂n,x) ≥ n0.

Consider thus any x̃ ∈ An0,n(x) and denote by I the index set of coordinates
where x and x̃ differ and by J its complement. Denote by n1 the cardinality
of I and observe that n1 ≤ n0. Denoting further R := maxi=1,...,n ‖xi‖, we have
‖x̃j‖ = ‖xj‖ ≤ R for all j ∈ J . Taking any j ∈ J and y ∈ X, we obtain the
following estimate

n∑
l=1

‖x̃j − x̃l‖ ≤
∑
l∈I

‖x̃j − x̃l‖+ 2(n− n1)R ≤
∑
l∈I

‖x̃j − y‖+
∑
l∈I

‖y − x̃l‖+

+ 2(n− n1)R

=
n∑
l=1

‖y − x̃l‖ −
∑
l∈J

‖y − x̃l‖+ n1‖x̃j − y‖+ 2(n− n1)R

≤
n∑
l=1

‖y − x̃l‖ −
∑
l∈J

‖y − x̃j‖+
∑
l∈J

‖x̃j − x̃l‖+ n1‖x̃j − y‖+

+ 2(n− n1)R

≤
n∑
l=1

‖y − x̃l‖+ (2n1 − n)‖y − x̃j‖+ 4(n− n1)R

Since 2n1 − n ≤ 2n0 − n < 0, we obtain that there is R̃I > 0 such that for all
‖y‖ ≥ R̃I we have

n∑
l=1

‖x̃j − x̃l‖ <
n∑
l=1

‖y − x̃l‖

But this means that the geometric median lies in a ball with radius R̃I . Since
there is only a finite number of possible subsets I, we have finished the proof.

The next lemma allows us to compute the breakdown point of an estimator.

Lemma 3.1.6. Consider multifunctions Φ1 : Xn ⇒ Xm and Φ2 : Xn×Xm ⇒ X.
Assume that the following assumptions are satisfied:

1. All components of Φ1 have breakdown point at least p.

2. There exists Φ3 : Xm ⇒ X which is bounded on bounded sets such that
‖Φ2(x,y)‖ ≤ ‖Φ3(y)‖ for all x ∈ Xn and y ∈ Xm.
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Then estimator Tn defined as

Tn(x) :=
⋃

y∈Φ1(x)

Φ2(x,y)

has a breakdown point of at least p.

Proof. Due to the first assumption, there exists someR > 0 such that form := np,
all x̃ ∈ Am,n(x) and for all y ∈ Φ1(x̃) we have ‖y‖ ≤ R. But then we have
‖Φ2(x̃,y)‖ ≤ ‖Φ3(y)‖, which is uniformly bounded due to the second assumption.
Thus, the statement has been proved.

We come now to new estimators. For a set S ⊂ X and a point x =
(x1, . . . , xn) ∈ Xn we define

L(S,x) :=⋃
y∈S

{
xI ∈ Xb

n−1
2 c
∣∣∣∣ ∃ I ⊂ {1, . . . , n} : max

i∈I
‖xi − y‖ ≤ min

i∈{1,...,n}\I
‖xi − y‖

}
,

where xI denotes the restriction of x to components I. The interpretation of this
set goes as follows: we select some y ∈ S and choose xI to be the

⌊
n−1

2

⌋
observa-

tions closest to y. Then L(S,x) is the union of all such subsets with respect to
all choices of y ∈ S. Since every such xI contains less than n

2
components of x,

this set is stable with respect to perturbations of x whenever less than one half
of the observations are contaminated.

We will use L(S,x) to define further estimators. The next theorem says that if
we start with the geometric median S = T̂n(x) and a multifunction R with certain
boundedness properties, we obtain an estimator with the same breakdown point
as the geometric median.

Theorem 3.1.7. Consider any multifunction R : Xb
n−1
2 c ⇒ X which is bounded

on bounded sets and for which there exists zk such that ‖R(zk, . . . , zk)‖ → ∞.
Then for estimator Tn : Xn ⇒ X defined as

T 1
n(x) :=

⋃
y∈L(T̂n(x),x)

R(y) (3.3)

and for every x = (x1, . . . , xn) ∈ Xn we have the following relation

ε∗n(T 1
n ,x) = ε∗n(T̂n,x) =

1

n

⌊
n− 1

2

⌋
.

Proof. We obtain

ε∗n(T 1
n ,x) ≥ ε∗n(T̂n,x) =

1

n

⌊
n− 1

2

⌋
from Lemma 3.1.6 with m =

⌊
n−1

2

⌋
, Φ1(x) = L(T̂n(x),x) and Φ2(x,y) = R(y)

and Lemma 3.1.5. To show the opposite inequality, realize that the statement
is equivalent to m∗n(T 1

n ,x) ≤
⌊
n−1

2

⌋
. Assume for contradiction that m∗n(T 1

n ,x) ≥⌊
n−1

2

⌋
+ 1 ≥

⌊
n
2

⌋
. We change the first

⌊
n
2

⌋
coordinates of x to zk and denote

the perturbed point by x̃k. Then Example 3.1.3 tells us that zk ∈ T̂n(x̃k). Due
to the definition of L, we see that (zk, . . . , zk) ∈ L(T̂n(x̃k), x̃k) and the imposed
assumption of R implies a contradiction.
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If both R and L(T̂n(x),x) are single-valued functions, expression (3.3) reduces
to

T 1
n(x) = R(L(T̂n(x),x)).

Moreover, in such a case L(T̂n(x),x) denotes one half of observations which are
closest to the geometric median. There are several natural choices for R: for
example mean, weighted mean or geometric median.

One of the possible drawbacks of estimator (3.3) is that it utilizes only half
of the original data. We want to make use of as many observations as possible
while maintaining the high breakdown point. To this aim, we first consider a
general set S ⊂ Xm for some m ∈ N, for example we may consider mean of x

as a subset of X or L(T̂n(x),x) as a subset of Xb
n−1
2 c. Then we consider some

b : X ×Xn → [0,∞) and enlarge S by defining

Eb(S,x) :=
⋃
y∈S

{
xI | I = {i| xi ∈ ∪mj=1B(yj, b(yj,x))}

}
. (3.4)

Here, B(yj, b(yj,x)) stands for a ball around yj with radius b(yj,x). The in-
terpretation goes as follows: from S we select y, make balls around all of its
components and select all components of x which lie in the union of these balls.

Example 3.1.8. Consider the case of X = R, n = 5 and x = (−3,−2, 0, 2, 4).
Then the geometric median equals to T̂n(x) = 0 and since n0 =

⌊
n−1

2

⌋
= 2, we

also have
L(T̂n(x),x) = {(−2, 0), (0, 2)} ⊂ R2.

If we consider b ≡ 1, then

Eb(L(T̂n(x),x),x) = {(−3,−2, 0), (0, 2)}.

Note that both elements of Eb(L(T̂n(x),x),x) are of a different dimension. 4

We obtain the following variant of Theorem 3.1.7, for which we omit its iden-
tical proof.

Theorem 3.1.9. Consider b : X × Xn → [0,∞) bounded on bounded sets in
the first variable, uniformly in the second one, any family of multifunctions Rs :
Xs ⇒ X for s = 1, . . . , n which are all bounded on bounded sets and for which
there exists zk such that ‖Rs(z

k, . . . , zk)‖ → ∞. Then for estimators T 2
n : Xn ⇒

X and T 3
n : Xn ⇒ X defined as

T 2
n(x) :=

⋃
y∈Eb(T̂n(x),x)

Rdimy(y), (3.5a)

T 3
n(x) :=

⋃
y∈Eb(L(T̂n(x),x),x)

Rdimy(y) (3.5b)

and for every x = (x1, . . . , xn) ∈ Xn, we have the following relation for breakdown
points

ε∗n(T 2
n ,x) = ε∗n(T 3

n ,x) = ε∗n(T̂n,x) =
1

n

⌊
n− 1

2

⌋
.
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Function b should neither have too large values (which corresponds to a vast
enlargement of the set in question) because outliers may be close to the non-
contaminated data, nor too small values because some information could be
missed. We suggest a possible choice in the Appendix.

The crucial question lies in the choice of R. There are several natural pos-
sibilities, we can use mean, weighted mean with given weights w or geometric
median. This leads to the following estimators:

T 1
n(x) :=

⋃
y∈Eb(L(T̂n(x),x),x)

{
1

n0

n0∑
i=1

yi

}
, (3.6a)

T 2
n(x) :=

⋃
y∈Eb(L(T̂n(x),x),x)

{
n0∑
i=1

wiyi

}
, (3.6b)

T 3
n(x) :=

⋃
y∈Eb(L(T̂n(x),x),x)

T̂n0(y). (3.6c)

Similarly to the geometric median, we obtain from Theorem 3.1.9 that all the
estimates in (3.6) have the breakdown point of 1

n

⌊
n−1

2

⌋
and the limiting breakdown

point of 1
2
.

To improve the behavior of the estimators, we implement an iterative pro-
cedure. We start with geometric median z0 = T̂n(x) and in every iteration k
compute a new estimate zk. To do so, we employ (3.5b) with R being the weight-
ed mean, where the (non-normalized) weights satisfy

wi(z
k−1, yi) =

1 if yi ∈ L({zk−1},x),

max
yj∈L({zk−1},x)

(
1− ‖yi−yj‖

bk(yj ,x)

)
otherwise

(3.7)

for some bk based on L({zk−1},x). This choice of weights makes use of the
possibly division of components of y ∈ Eb(L({zk−1},x),x) into two parts: those
who belong to L({zk−1},x) and those who were added by enlarging this set. We
choose the (non-normalized) weight equal to one for the first part, the weight
for observations from the second part decreases with the increasing distance to
L({zk−1},x). We summarize this approach in Algorithm 3.1.1. Considering the
termination criterion, any standard criterion may be used, for example if the
(relative) change in zk is small.

Finally, we would like to point out that every update step in Algorithm 3.1.1
keeps the stability result which we already mentioned several times in the previous
text. For k = 1, we may write

zk =
⋃

y∈Φ1(x)

Φ2(x,y),

where y = y1, Φ1(x) := Eb(L({z0},x),x) and Φ2(x,y) :=
∑dimy1

i=1 wi(x,y
1)y1

i .
Then Φ1 has breakdown point 1

n

⌊
n−1

2

⌋
and since ‖Φ2(x,y)‖ ≤ nmaxyi∈y ‖yi‖

holds true, thanks to Lemma 3.1.6 we obtain that z1 has the same breakdown
point. By applying the same procedure to subsequent iterations, we obtain the
same result for all zk.
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Algorithm 3.1.1 An estimator based on iterative weighting

Input: observations x = (x1, . . . , xn)
1: k ← 0, z0 ← T̂n(x)
2: while not terminate do
3: k ← k + 1
4: determine bk based on L({zk−1},x)
5: pick any yk ∈ Ebk(L({zk−1},x),x)
6: compute wk according to formula (3.7) and renorm them such that their

sum equals to 1
7: zk ←

∑dimy
i=1 wki y

k
i

8: end while
9: return estimate x̂← zk

In the previous text we highlighted some benefits of our estimators. Note that
naturally there are also situations where it is better to use standard estimators.
Consider for example the one-dimensional double exponential distribution with
density 1

2
exp(−|x − µ|). Then the (geometric) median coincides with the maxi-

mum likelihood estimator of µ, see Section 6.3 in (Lehmann and Casella, 2006),
and therefore the median is the most efficient estimator. Thus, by employing
additional observations apart from the median we only worsen the quality of an
estimator. However, to benefit from such situation, we would have to know the
true distribution and know that there is no contamination. We illustrate this
in Table 3.4, where it is visible that for some heavy tailed distributions median
outperforms other estimates.

We deal with equivariance of our estimators in the following lemma.

Lemma 3.1.10. Suppose that the assumptions of Theorem 3.1.7 are satisfied and
that R is shift and scale equivariant function, then T 1

n(x) defined in (3.3) is shift
and scale equivariant estimator.

Proof. Geometric median is shift and scale equivariant, therefore the set L(T̂n(x),x)
changes in accordance. It suffices now to consider equivariance of the function
R.

For its simplicity, we omit the proof of the following lemma.

Lemma 3.1.11. Suppose that the assumptions of Theorem 3.1.9 are satisfied and
that R is shift and scale equivariant function, then T 2

n(x) and T 2
n(x) defined in

(3.5) are shift and scale equivariant estimators.

Remark 3.1.12. There is some connection between our estimators with M-
estimators. We summarize the algorithm from (Maronna et al., 2006) in Al-
gorithm 3.1.2, Section 2.7.3.

Both approaches (iteratively) compute a weighted mean of observations. While
M-estimators are based on the maximum likelihood estimate, ours are based on
geometric intuition and trimmed mean. If X = R and if W1 in Algorithm 3.1.2
has finite support, we can say that our estimators belong to the very wide class
of M-estimators. This changes for Rd though. Under the standard assumption
that W1 is symmetric around zero and non-increasing on rays emanating from
zero, the weight of an observation depends only on the distance from zk−1. Thus,
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Algorithm 3.1.2 M-estimator from (Maronna et al., 2006), Section 2.7.3

Input: observations x = (x1, . . . , xn), weighting functions W1 and W2

1: k ← 0, z0 ← T̂n(x), dispersion estimate σ0

2: while not terminate do
3: k ← k + 1
4: rki ← xi−zk−1

σk−1

5: wk1,i ← W1(rki ), w
k
2,i ← W2(rki ) and norm the weights to sum to one

6: zk ←
∑n

i=1 w
k
1,ixi, σ

k ← 1
n

∑n
i=1w

k
2,i(xi − zk−1)2

7: end while
8: return estimate x̂← zk

two observations have the same weight if and only if their distance to zk−1 is
identical. On the other hand, in our approach all points in L({zk−1},x) have the
same weight and this set is enlarged farther for distant observations. Thus, even
though none of the algorithms estimates the covariance structure, our algorithm
makes at least an attempt to consider it.

Of course, there are M-estimators which along with the location also properly
estimate the covariance structure. But this raises the computational complexity
and reduces the breakdown point to 1

d+1
. To summarize: we can say that our

algorithms try to pick the best properties of M-estimators, on the one hand they
have high breakdown point and are simple to compute; on the other hand, they at
least partially consider the covariance structure.

Another advantage of our estimator over M-estimators is a simpler theoretical
analysis. To show that our estimator has the limiting breakdown point 1

2
, it is

sufficient to apply Lemma 3.1.6, which itself directly follows from the definition
of the breakdown point. To the best of our knowledge, such direct application of
the definition is not possible for M-estimators, for example one has to take care
of properties of weighting function due to the division by dispersion. 4

3.2 Consistency

We want to study the consistency of our estimators in this part. See Definition
1.1.3. We suppose that the observations x = (x1, . . . , xn) ∈ Rn are i.i.d. with the
same distribution as a random variable Z. The theoretical properties of geometric
median were studied in (Kemperman, 1987). The theoretical counterpart was
employed there in the form

T̂ (Z) = argmin
a∈X

E ‖a− Z‖ − ‖Z‖, (3.8)

where Z is a random variable. The definition of theoretical geometric median from
(3.8) has the advantage that we do not need a finiteness of the first moment.

The theoretical properties of geometric median were studied in (Kemperman,
1987) for the case of X to be separable Hilbert space. The uniqueness of T̂ (Z)
under the condition that the random variable Z is not concentrated on a straight
line was shown there.
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We can write

argmin
a∈X

n∑
j=1

‖a− xj‖ = argmin
a∈X

1

n

n∑
j=1

‖a− xj‖.

From that follows

argmin
a∈X

n∑
j=1

‖a− xj‖
a.s.−−→ argmin

a∈X
E ‖Z − a‖,

where
a.s.−−→ denotes almost sure convergence. However, we have to suppose E ‖Z−

a‖ <∞. If it holds then

argmin
a∈X

E ‖Z − a‖ = argmin
a∈X

E ‖Z − a‖ − ‖Z‖.

Therefore, the definition from (Kemperman, 1987) is more suitable also in our
case.

Lemma 3.2.1. Let z = (z1, z2 . . . ) be i.i.d. observations of the variable
Z : (Ω,A,P)→ X.

1. Let Tn(z) be a consistent estimator of the parameter T (Z) on the parameter
space Υ,

2. Sn(T (Z), z) be a consistent estimator of S(T (Z), Z) from parameter space
Θ for any T (Z) ∈ Υ

3. and for any ε > 0, δ > 0 and U ∈ Υ there is ζ > 0 such that for all n and
A in ζ neighborhood of U P(‖Sn(U,z)− Sn(A, z)‖ > ε) < δ,

then Sn(Tn(z), z) is a consistent estimator of S(T (Z), Z). For the sake of this
lemma, we will not distinguish by notation between norms of Θ and Υ and we
denote them as ‖ · ‖.

Proof. We want to show that for any ε > 0 and δ > 0 there is n0 ∈ N such that
for all n ∈ N, n ≥ n0 holds P(‖Sn(Tn(z), z)− S(T (Z), Z)‖ > ε) < δ

P(‖Sn(Tn(z), z)− S(T (Z), Z)‖ > ε) ≤
P(‖Sn(Tn(z), z)− Sn(T (Z), z)‖+ ‖Sn(T (Z), z)− S(T (Z), Z)‖ > ε), (3.9)

where we have employed triangle inequality. (3.9)
We define

E1 =
{
ω
∣∣∣‖Sn(Tn(z), z)− Sn(T (Z), z)‖ > ε

2

}
,

E2 =
{
ω
∣∣∣‖Sn(T (Z), z)− S(T (Z), Z)‖ > ε

2

}
.

The expression in (3.9) is lees than

P(E1 ∪ E2) ≤ P(E1) + P(E2).
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We exploit now Assumption 3 of our lemma to find ζ > 0 such that for all n
and A from ζ neighborhood of T (Z) we have P(‖Sn(A, z)−Sn(T (Z), z)‖ > ε

2
) <

δ
3
.

We find n0 such that for all n ≥ n0 we get P(‖Tn(z)− T (Z)‖ > ζ) < δ
3
. This

can be done according to Assumption 1.
For n ≥ n0

P(E1) ≤ P(‖Tn(z)− T (Z)‖ > ζ) +

+ P(‖Sn(Tn(z), z)− Sn(T (Z), z)‖ > ε

2
, ‖Tn(z)− T (Z)‖ ≤ ζ) ≤ 2δ

3
.

The term P(E2) is smaller than δ
3

thanks to 2.

We deal now with theoretical counterpart of L. The following proposition
asserts that we can define theoretical counterpart of y ∈ L as{

Z(ω)
∣∣∣‖Z(ω)− T̂ (Z)‖ ≤ a

}
for some appropriately chosen constant a.

Proposition 3.2.2. Consider continuous random variable Z : (Ω,A,P) → Rd.
We denote its geometric median as T̂ (Z). We have random sample z = (z1, z2, . . . )
of observations from Z. d = maxy∈y ‖y− T̂n(z)‖ is then for any y ∈ L(T̂n(z), z)
a consistent estimator of

a = min
b>0

(
P(‖Z − T̂ (Z)‖ ≤ b) =

1

2

)
. (3.10)

Proof. Since Z is the continuous random variable, ‖Z− T̂ (Z)‖ is also the contin-

uous random variable, therefore minb>0

(
P(‖Z(ω)− T̂ (Z)‖ ≤ b) = 1

2

)
exists and

a is well defined.
We will prove three assumptions from Lemma 3.2.1.
The consistence of geometric median was discussed before.
We will prove now Assumption 2 of the lemma. Consider any ε > 0. Define

φ = P(‖zi − T̂ (Z)‖ > a + ε) and Vn as the number of ‖zi − T̂ (Z)‖ which are
greater than a+ ε (i = 1, . . . , n). From the definition of a follows that φ < 1

2
and

that Vn has binomial distribution with parameters φ and n. Let us consider n
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odd.

P(max
zi∈y
‖zi − T̂ (Z)‖ ≥ a+ ε) = P(Vn ≥

n+ 1

2
)

= P(Vn − nφ ≥
n+ 1

2
− nφ)

= P(Vn − nφ ≥ n(
1

2
− φ) +

1

2
)

≤ P(Vn − nφ ≥ n(
1

2
− φ))

≤ P(|Vn − nφ| ≥ n(
1

2
− φ))

= P((Vn − nφ)2 ≥ n2(
1

2
− φ)2)

≤ E(Vn − nφ)2

n2(1
2
− φ)2

=
nφ(1− φ)

n2(1
2
− φ)2

.

We employ Markov’s inequality in the last inequality.
Since φ < 1

2
, we see that the last term on the right hand side converges to

zero as n→∞. The case when n is even can be proved in a similar way.
We have to deal also with the case P(minzi /∈y ‖zi− T̂ (Z)‖ ≤ a− ε). We define

similarly as before Fn as the number of observations zi for which ‖zi − T̂ (Z)‖ ≤
a − ε and i = 1, . . . , n. Further, we define ϕ = P(‖zi − T̂ (Z)‖ ≤ a − ε). We get
ϕ < 1

2
from the definition of a. Fn has the binomial distribution with parameters

n and ϕ. We can put

P(min
zi /∈y
‖zi − T̂ (Z)‖ ≤ a− ε) = P(Fn ≥

n+ 1

2
)

and continue in the same way as in the previous case.
We have to deal with Assumption 3 of the lemma now. But we get for U,A ∈

Rp

max
y∈y
‖y − U‖ ≤ max

y∈y
(‖y − A‖+ ‖A− U‖) = max

y∈y
(‖y − A‖) + ‖A− U‖.

It yields |maxy∈y ‖y − U‖ − maxy∈y ‖y − A‖| ≤ ‖A − U‖. Thus, we can find ζ
(by the choice of U and A) such that |maxy∈y ‖y − U‖ −maxy∈y ‖y −A‖| is less
than ζ for all n.

We replace the assumption about continuity of Z for general Z : (Ω,A,P)→
(X, ‖ · ‖) by the assumption that P(‖Z‖ ≤ b) is continuous with respect to b.
However, this still does not take into account discrete functions etc.

The previous proposition says that y ∈ y ‖y − T̂n(z)‖ ≤ a holds for large n
and y ∈ L(T̂n(z), z).

Remark 3.2.3. Let us consider Eb(S,x) as in Equation (3.4) and Z continu-
ous. We denote f(x) as the density function of Z, where x ∈ X. Eb(S,x) ⊂⋃

y∈S
{
x| x ∈ X, f(x) > 0, x ∈ ∪mj=1B(yj, b(yj,x))

}
for large n . Because the set⋃

y∈S
{
x| x ∈ X, f(x) > 0, x ∈ ∪mj=1B(yj, b(yj,x))

}
can be uncountable, the equal-

ity does not have to be fulfilled by Eb(S,x).
Similar consideration can be done for L.
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3.3 Numerical results

We first show the numerical performance of our estimators in this section and
then how they comply with the well-known concepts of boxplot and bagplot.

3.3.1 The numerical performance

We consider X = Rd with d ∈ {1, 15} and compare our algorithms with known
estimators; for reader’s convenience we summarize the used algorithms in Table
3.1.

Table 3.1. Summary of algorithms. The horizontal line divides known algorithms
from our own.

Mean mean
Med median or geometric median
Trun α-truncated mean with α = 0.2
Winsor α-winsorized mean with α = 0.2
M1 Huber M-estimator, see (Huber, 1981)
M2 Algorithm 3.1.2 from (Maronna et al., 2006)
SD Stahel-Donoho estimator, see (Stahel, 1981) and (Donoho, 1982)
GM1 formula (3.3), where R is the mean
GM2 formula (3.5a), where R is the mean
GM3 Algorithm 3.1.1

To generate the samples, we first generate zi from N(0, 1), then contaminate
them by some distribution with probability p and finally modify them via a
covariance structure. This modification is performed in the following way: we
randomly generate a correlation matrix C and diagonal matrix Σ2 with diagonal
elements having distribution U[0.5, 10]. Then we compute the covariance matrix
V = ΣCΣ, its Cholesky decomposition V = S>S and finally set yi = Szi + µ,
where µ := (0, . . . , d−1). We consider N = 10000 samples together with n = 100
observations. The loss function equals to

1

N

N∑
i=1

d∑
j=1

|x̂i,j − µj|, (3.11)

where x̂i,j denotes an estimate for sample i and coordinate j = 1, . . . , d.
We present the results in Table 3.2 for X = R and in Table 3.3 for X = R15.

The values show the loss function (3.11) for contaminating distribution (first
column) with given probability (second column). The bold numbers are the
best values among all estimators and the numbers in italic are those within 5%
of the best loss function value. For X = R, the results between M-estimators
and our estimators are comparable with M-estimators in a slight lead, which
is not surprising due to Remark 3.1.12. For X = R15, the performance of both
estimators turn around and our estimators perform now better than the examined
M-estimators. This is again expected as our estimators try to take into account
the covariance structure as explained in Remark 3.1.12. For the second case, our
estimators manage to beat the Stahel-Donoho estimators almost in all cases.
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Table 3.2. Value of loss function (3.11) for contaminations of N(0, 1) by some
other distribution with probability p for X = R.

Distribution Mean Med Trun Winsor M1 M2
p = 0% 0.080 0.099 0.085 0.083 0.081 0.081
p = 5%

N(0, 100) 0.190 0.103 0.089 0.089 0.084 0.088
Cauchy 0.657 0.099 0.086 0.084 0.082 0.083

U(−10, 10) 0.129 0.103 0.090 0.089 0.084 0.088
p = 10%
N(0, 100) 0.259 0.110 0.096 0.097 0.089 0.098
Cauchy 0.642 0.101 0.088 0.087 0.084 0.086

U(−10, 10) 0.162 0.108 0.095 0.096 0.090 0.096
p = 40%

U(−20, 20) 0.572 0.163 0.212 0.407 0.182 0.236

GM1 GM2 GM3
p = 0% 0.116 0.085 0.083
p = 5%

N(0, 100) 0.119 0.087 0.086
Cauchy 0.116 0.086 0.084

U(−10, 10) 0.120 0.087 0.086
p = 10%
N(0, 100) 0.125 0.090 0.089
Cauchy 0.116 0.088 0.086

U(−10, 10) 0.123 0.090 0.090
p = 40%

U(−20, 20) 0.150 0.149 0.147

Table 3.3. Value of loss function (3.11) for contaminations of N(0, I) by some
other distribution with probability p for X = R15.

Distribution Mean Med M1 SD GM1 GM2 GM3
p = 0% 0.151 0.154 0.151 0.159 0.213 0.151 0.152
p = 5%

N(0, 100) 0.360 0.162 0.155 0.160 0.215 0.155 0.156
Cauchy 2.424 0.160 0.160 0.160 0.214 0.155 0.158

U(−10, 10) 0.241 0.161 0.160 0.160 0.215 0.155 0.157
p = 10%
N(0, 100) 0.491 0.169 0.160 0.161 0.217 0.159 0.160
Cauchy 2.095 0.167 0.171 0.162 0.216 0.160 0.165

U(−10, 10) 0.308 0.168 0.171 0.162 0.217 0.159 0.162
p = 40%

U(−20, 20) 1.468 0.330 0.292 0.261 0.303 0.278 0.280

We depict again the loss function (3.11) for a distribution without any con-
tamination in Table 3.4. Note that all distributions are symmetric with respect
to zero. It is visible, that for distributions with heavy tails the more robust
estimators perform better. We omitted the M-estimators.
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Table 3.4. We depict the value of loss function (3.11) corresponding to various
distributions with no contamination in this table. We have N = 1000 samples
with n = 100 observations.

Distribution Mean Med Trun Winsor M1 M2
N(0, 1) 0.080 0.099 0.085 0.083 0.081 0.081
Cauchy 6.150 0.126 0.136 0.166 0.140 0.154
t5 0.102 0.104 0.094 0.094 0.093 0.093
t10 0.088 0.103 0.089 0.088 0.087 0.087

U(−10, 10) 0.461 0.780 0.610 0.551 0.491 0.467
Laplace 0.112 0.086 0.093 0.101 0.099 0.097

GM1 GM2 GM3
N(0, 1) 0.116 0.085 0.083
Cauchy 0.128 0.139 0.130
t5 0.118 0.095 0.093
t10 0.120 0.092 0.089

U(−10, 10) 0.983 0.461 0.521
Laplace 0.092 0.099 0.095

3.3.2 Relation to boxplot

Boxplot was proposed for the first time in (Tukey, 1977). It takes the median, then
computes the interquartile range (IQR), which is later widened. The observations
which are not present in this widening (known as whiskers) are considered as
outliers. We compare boxplot with our method, where instead of considering IQR,
we take y ∈ L(T̂n(x),x). Thus, we do not need to take 25% of the observations
with a lower value than the median and 25% of the observations with higher value
than the median, but we take 50% of the observations closest to the median.
Whiskers are based on Eb({y},x).
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Figure 3.1. Comparison of the classical boxplot (left-hand side of each figure) and
our modification (right-hand side of each figure). In both cases we contaminate
N(0, 1) with a probability p by the distribution described under the figures.
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We depict this comparison in Figure 3.1. We contaminate the standard normal
distribution by some other distribution. In each (sub)figure, the left-hand side is
the boxplot and the right-hand side is our modification. Since both approaches
differ in the way in which they treat non-symmetry, both graphs in the left figure
are identical. However, if we assume non-symmetric distributions (right figure),
then our modification is able to detect outliers in a better way than the standard
boxplot.

3.3.3 Relation to bagplot

We consider generalization of boxplot into more dimensions in this subsection.
This is known as bagplot for two dimensions and was studied for the first time
in (Rousseeuw et al., 1999). For generalization to functional data, see, e.g., (Sun
and Genton, 2011).

To construct bagplot, a real number called depth is assigned to every obser-
vation, see (Zuo and Serfling, 2000). Then the observation with the highest value
of depth is called the depth median and the convex hull of approximately 50%
of the observations with the highest depth is called the bag (this corresponds to
IQR for boxplot). Then the boundary of the bag is enlarged to the polygon called
fence (which corresponds to whiskers for boxplot). The area between the fence
and the bag is called the loop. The observations not in the fence are considered
as outliers.

We present now our modification of the bagplot, illustrated by pictures.

1. Having a sample x from two different distributions, we compute first its ge-
ometric median T̂n(x). For simplicity, we assume that it is defined uniquely.
Here, the geometric median corresponds to the depth median.

◦ Observation, Mean, T̂n(x).

x

y

◦
◦ ◦
◦

◦
◦◦

◦
◦

◦
◦◦
◦◦

◦◦
◦

◦
◦◦

◦ ◦◦◦

◦

◦

2. Then we choose an arbitrary y ∈ Xb
n−1
2 c from L(T̂n(x),x), construct a

convex hull containing all coordinates of y and call this set the bag. We
denote, as in the previous section, a mean of observations from y by GM1.

Convex hull of points in y, GM1.
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3. In the last step, we enlarge the bag by the following procedure: fix a con-
stant a = 3, denote by V the set of all coordinates of y and define the fence
as

conv
v∈V
{T̂n(x) + a(v − T̂n(x))},

where conv stands for the convex hull. Then we denote the mean of all
observation in the fence by GM2.

Boundary of the set E,♠ GM2, x Outlier.

x

y

◦◦◦
◦

3

3
3
3

3

3

3
3

3
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x xxx

x

x
♠

4. The last picture depicts the original solution described in (Rousseeuw et al.,
1999). We do not compute the values, instead of it we utilize the procedure
bagplot() from the package aplpack of the software R. We see in the picture
that the loop and also the bag covers the observations from both subsets of
observations given by different distributions.

Depth median, Boundary of the bag, Fence.
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We will comment briefly on the last step of the algorithm. Constant a was
chosen in the same way which was recommended in (Rousseeuw et al., 1999).
Even though the construction of the fence is similar to Eb(L(T̂n(x),x),x), the
inflating is performed in a slightly different way.

Moreover, since the construction of GM2 is based on objects which have the
limiting breakdown point of 1

2
, estimate GM2 will have the same property. On the

other hand, since bagplot is a generalization of boxplot, which has the breakdown
point of 1

4
, we cannot expect the bagplot to have higher breakdown point than

this. Thus, our version of bagplot deals better with outliers than the original
method.

3.3.4 Outlying shortfall

Risk measures are essential for banks as a tool for measuring the risk embedded in
its portfolios. The most pronounced concept is known as coherent risk measures.
It was proposed in (Artzner et al., 1999). In order to introduce the concept, we
have to give a formal definition of risk measure. Let us have some time horizon
T . Let L(Ω,A,P) denote the set of all almost surely finite random variables
on (Ω,A). Further, we employ M ⊂ L(Ω,A,P) the set of random variables
interpreted as a potential loss of an investigated portfolio over the horizon T . We
assume M to be convex cone, i.e., that L1, L2 ∈ M implies that L1 + L2 ∈ M
and λL1M for every λ > 0. Risk measure is the function ρ : M → R. The
coherent risk measure has to fulfill the following properties.

1. (translation invariance) For all L ∈ M and every l ∈ R holds ρ(L + l) =
ρ(L) + l.

2. (subadditivity) For all L1, L2 ∈M we have ρ(L1 + L2) ≤ ρ(L1) + ρ(L2).

3. (positive homogeneity) For all L ∈M and λ > 0 we have ρ(λL) = λρ(L).

4. (monotonicity) For L1, L2 such that L1 ≤ L2 almost surely it holds ρ(L1) ≤
ρ(L2).

One of the most famous risk measures are value at risk (VaR) and excpected
shortfall (ES) also known as conditional value at risk.

Definition 3.3.1. Let α ∈ (0, 1) and L ∈M

VaRα(L) = inf {l ∈ R|P(L > l) ≥ 1− α} .
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We define expected shortfall with the help of VaR.

Definition 3.3.2. Let α ∈ (0, 1) and L ∈M

ESα(L) =
1

1− α

∫ 1

α

VaRu(L)du.

Expected shortfall is coherent measure as is demonstrated in (Embrechts et al.,
2005). However, value at risk is not, because it does not fulfill the subadditivity
axiom.

We can construct a similar statistic to expected shortfall.

Definition 3.3.3. Let α ∈ (0, 1), L ∈M, FL be a distribution function of L and

a(L) = inf
b>0

(
P(‖L− T̂ (L)‖ ≤ b) ≥ 1

2

)
.

Compare the definition of a(L) with (3.10). We define

OSα(L) =
1

1− β(L)

∫ 1

β

VaRu(L)du, (3.12)

where β(L) = 1 − FL
(
qN(0,1)(1− α) a(L)

qN(0,1)(0.75)−qN(0,1)(0.25)
+ T̂ (L)

)
and qN(µ,σ)(α)

is an α quantile of N(µ, σ).

Equation (3.12) can be rewritten in the following way

OSα(L) =
1

1− β(L)

∫ ∞
b(L)

udFL(u),

where b(L) = qN(0,1)(1− α) a(L)
qN(0,1)(0.75)−qN(0,1)(0.25)

+ T̂ (L).

This can be interpreted as an average of observations which are greater than
α−quantile of the normal distribution N(µ̂, σ̂2), where µ̂ andσ̂ are robust estima-
tors of expected value and standard deviation of L.

Example 3.3.4. We want to deal with the coherence of outlying shortfall in this
example. We show that the properties of subadditivity and monotonicity are not
fulfilled.

Consider two correlated variables L1 and L2.

[L1, L2] =


[qN(0,1)(0.25), qN(0,1)(0.25)] with probability 2

5
,

[qN(0,1)(0.75), qN(0,1)(0.75)] with probability 2
5
,

[qN(0,1)(1− α)− 1, qN(0,1)(1− α) + 2] with probability 1
5
.

It is clear that for a(L1) = a(L2) = qN(0,1)(0.75)− qN(0,1)(0.25). It also follows
OSα(L1) = 0 from the definition but OSα(L2) = 1

5
qN(0,1)(1− α) + 2. We also get

a(L1 + L2) = 2(qN(0,1)(0.75) − qN(0,1)(0.25)). I.e., we have to consider all values
greater than 2qN(0,1)(1 − α) with appropriate probabilities. This gives OSα(L1 +
L2) = 2qN(0,1)(1 − α) + 1 > qN(0,1)(1 − α) + 2 = OSα(L1) + OSα(L2). Therefore,
the axiom of subadditivity does not hold.

74



We focus now our attention on monotonicity. Once more we consider two
correlated random variables

[L1, L2] =


[qN(0,1)(0.25) + 2, qN(0,1)(0.25)] with probability 2

5
,

[qN(0,1)(0.75) + 2, qN(0,1)(0.75)] with probability 2
5
,

[qN(0,1)(1− α) + 1, qN(0,1)(1− α) + 1] with probability 1
5
.

From this follows that L1 ≥ L2 almost surely; however, OSα(L1) = 0 and
OSα(L2) = qN(0,1)(1−α)+1. Therefore, the axiom of monotonicity is not fulfilled.

Let us deal with positive homogeneity. FλL(x) = P(λL ≤ x) = FL(x
λ
). We

have

a(λL) = inf
b>0

(
P(‖λL− T̂ (λL)‖ ≤ b) ≥ 1

2

)
= inf

b>0

(
P(‖L− T̂ (L)‖ ≤ b

λ
) ≥ 1

2

)
,

where we utilize the scale equivariance of the median. It yields a(λL) = λa(L)
which gives b(λL) = λb(L). It holds FλL(x) = P(λL ≤ x) = FL(x

λ
). This gives

β(λL) = 1− FL
(
b(λL)
λ

)
= 1− FL(b(L)) = β(L). At the end we compute

OSα(λL) =
1

1− β(λL)

∫ ∞
b(λL)

udFλL(u) =
1

1− β(L)

∫ ∞
λb(L)

udFL

(u
λ

)
=

λ

1− β(L)

∫ ∞
b(L)

udFL(u) = λOSα(L),

where we employ substitution.
The axiom of translation invariance can be proved in a similar way. 4
We have shown in Example 3.3.4 that the theoretical properties of the new

risk measure are not satisfactory. Nevertheless, it can still serve as a measure of
unexpected losses. This measure is also slightly more complicated and therefore
its interpretation can be more difficult.

The normal quantiles can be replaced by some other distribution in the case
that we suppose that the random variable L has this distribution potentially
contaminated by some other distribution.

We employ EUR/USD hourly rates from 1. 8. 2012 to 3. 11. 2012 as a small
illustration of this approach.

Let rt be a logarithmic return in time t. We denote the realization of the loss
L in time t as Lt = −rt. We suppose that rt are independent and have a normal
distribution contaminated by some other distribution. We are interested in the
value of potential loss due to contamination.

Results:

• 95 % VaR is 0.00140406.

• 95 % expected shortfall is 0.00219346.

• Outlying shortfall (with a constant of widening with α = 0.01) is 0.002376221.

• 99 % VaR is 0.002517572.

• 99 % expected shortfall is 0.003608807.

We can also determine how often we suffer a loss because of outlying obser-
vations. In our case it is β(L) = 3.91%.
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3.3.5 Multidimensional value at risk

We have introduced outlying shortfall in the previous section. We look now at
one possible way how to generalise VaR. Modern approaches to multidimensional
value at risk can be found e.g., in (Prékopa, 2012). We just want to hint at a
different way, based on an idea from (Koenker and Bassett, 1978), to compute
multidimensional quantiles. We combine the approaches of Chapters 2 and 3 in
this way.

As the first step, we describe the data we want to deal with. They are gained
by simulation study, of which details are described later. Let us assume that
we have two series of daily returns ri,t of some stocks Si, where i = 1, 2 and
t = 1, . . . , T . We suppose that the returns are independent for each time (they
are not necessarily independent in one day between each other). We are interested
in daily (for simplicity) value at risk (VaRα(Li)) at a confidence level α = 5%.
The random variable Li expresses the loss from the stock Si. Therefore, Li,t =
−ri,t. Let us assume that we have three years of history which means T = 800
observations.

We consider a linear dependence between the two returns. The dependence
is measured by Pearson covariance matrix Σ̂. Cholesky decomposition Σ̂ = CC>

is applied on the matrix Σ̂, in the case of Σ̂ regular. Let rt = (r1,t, r2,t)
>. We

compute y>t = r>t C
−1 and put Y = (y1,y2, . . . ,yT )> as a 2 × T matrix. We

apply the following formula

r̂Mα = C argmin
y∈Rd

T∑
t=1

ρMα (yt − y), (3.13)

where

ρMα (x) = ‖(|y1|{αI[y1≥0] + (1− α)I[y1<0]}, . . . , |yd|{αI[yd≥0] + (1− α)I[yd<0]})‖.

Regarding our example d = 2. We put VaRα(L1, L2) = −r̂Mα .
We multiply the vector resulting from minimization by C in Equation (3.13)

to get the same dependence structure as in the data.
If we omit the usage of C and compute

r̂Mα = argmin
r∈Rd

T∑
t=1

ρMα (rt − r), (3.14)

instead of (3.13) then the solution would not take into consideration the depen-
dence structure and so, in the case of positive correlation, the VaRα(L1, L2) would
be too low and, in the case of negative correlation, too high.

We describe now the details of the simulation. We simulate r1,t from standard
normal distribution N(0, 1) contaminated by t4 distribution with a probability of
5 %. The series r2,t has a standard normal distribution N(0, 1) contaminated by
t6 distribution with a probability of 10 %. Further, we consider the first series
with twice higher weight i.e., we multiply the first series of the returns by two.
This is motivated by the different representations of stocks in a usual portfolio.

Since we have only two series, we consider the correlation coefficient between
them as ρ.
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Figure 3.2. The depicted figures are time series simulated with different correlation ρ. We
have 800 observations. We estimate 5 % quantile by our method (see (3.13)) and componentwise
(see (3.14)).

The first part of Picture 3.2 depicts the situation when correlation is positive.
We get for the second component a very low value. I.e., when we have lost in the
first component we should await a loss in the second as well. The next part of the
picture demonstrates an opposite situation. We see that in the case of negative
correlation the result is very low for the first component and for the second is
almost positive. I.e., according to our method: when a bad scenario takes place
and we lose in the first component, the loss in the second component would not
be so bad. We can also compare the situations when we employ the Equation
(3.13) (black box) or (3.14) (black circle).

3.4 Choice of b

In this short section we derive an estimate for b for algorithms GM2 and GM3
described in Table 3.1. Note that due to the construction of the algorithm, it
is sufficient to define bi := b(xi,x) for all observations in L(T̂n(x),x). Since
we want to keep GM2 as simple as possible, we consider constant b and relax
this assumption for GM3. Moreover, we derive a different value for one- and
more-dimensional cases. We start with a technical lemma.

Lemma 3.4.1. Let Y be a random variable with a finite second moment, distri-
bution function G, mean µ, standard deviation σ and let qµ,σ denote its quantile
function. Then for a fixed α ∈ [0, 1], the following ratio does not depend on the
values of µ and σ

KG,α =
qµ,σ(1− α/2)− qµ,σ(α/2)

qµ,σ(0.75)− qµ,σ(0.25)
.

Proof. This follows from the fact σq0,1(α) + µ = qµ,σ(α).

For the case of one dimension, consider a random sample x from N(µ, σ2) and

denote its median by T̂n(x). Assume for simplicity that L(T̂n(x),x) ⊂ Rb
n−1
2 c is
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a singleton. Then we may estimate qµ,σ(0.75)− qµ,σ(0.25) by

maxL(T̂n(x),x)−minL(T̂n(x),x),

Then we define b as

b := KN(0,1),α
maxL(T̂n(x),x)−minL(T̂n(x),x)

2
� qµ,σ(1− α/2)− qµ,σ(α/2)

2
.

This value thus estimates the distance between chosen quantiles divided by two.
If we take all observations of which the distance from median is b, then we get,
under the assumption of uncontaminated normality, approximately 1− α of our
observations.

For the multidimensional case Rd, we assume that x follows the N(µ, σ2I)
distribution. We use maxy∈L(T̂n(x),x) ‖y − T̂n(x)‖ as an approximation of σχ2

0.5,d,

where χ2
0.5,d is the quantile function of χ2 distribution with d degrees of freedom

evaluated at probability 0.5. To include approximately fraction α ∈ (0, 1) of all
observations, we set

b := max
y∈L(T̂n(x),x)

‖y − T̂n(x)‖
χ2
α,d

χ2
0.5,d

.

For GM3, we consider directly Rd. Assume again that our sample x has
distribution N(µ, σ2I), then for xi from the boundary of L(T̂n(x),x) we have

‖xi − T̂n(x)‖
σ

∼
√
χ2

0.5,d,

Now, fixing given probability level α ∈ (0, 1) and weight w ∈ (0, 1), we want to
have all xe with

‖xe − T̂n(x)‖
σ

∼
√
χ2
α,d

to have weight (3.7) at least w. But plugging this in the definition of weight
results in

bi ≥
‖xi − xe‖

1− w
≥ ‖xe − T̂n(x)‖

1− w
− ‖xi − T̂n(x)‖

1− w
∼ σ

1− w
(
√
χ2
α,d −

√
χ2

0.5,d)

=
σ

1− w
‖xi − T̂n(x)‖
‖xi − T̂n(x)‖

(
√
χ2
α,d −

√
χ2

0.5,d).

Approximating again the distribution and taking minimum value of bi, we set

bi :=

√
χ2
α,d −

√
χ2

0.5,d

(1− w)
√
χ2

0.5,d

‖xi − T̂n(x)‖.

In the numerical experiments, we have chosen α = 0.99.
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4. Conclusions: reached results
and possible future work

We want to summarize our results and compare suggested methods in this section.
We will also mention potential improvements and suggest the direction of future
research. It consist of deeper investigation of theoretical properties and also
improvements in performance of our algorithms.

We offered new robust algorithms based on the approach connected to median
in this dissertation thesis. We studied these methods with respect to breakdown
point, consistency and computationally complexity.

Chapter 1 was split into two parts. In the first part we introduced the back-
ground of the studied problems simultaneously with relevant literature.

In the second part we introduced the notation, definitions and basic concepts
utilised throughout our work. We discussed possible adjustments for definition of
breakdown point especially for recursive adaptive algorithms. We also considered
the computation of probability that the smoothed value of the series is influenced
by outliers. These new concepts were accompanied by examples.

The recursive adaptive algorithms were dealt in Chapter 2. We proposed
robust alternatives to exponential smoothing by the description of two different
concepts.

• The first approach exploits the properties of absolute norm and exponen-
tial weighting. It is basically very similar to exponential smoothing and it
was already studied. Nevertheless, we generalised it for quantiles i.e., we
extended the algorithm for a broader class of objective functions. We also
attempted to generalize the method to the more dimensional case, but our
suggested method is too complicated.

• The other approach exploits sign test. With its help we test whether there
is a change point in a series. The method was generalised to the more
dimensional case. Unfortunately, it does not have satisfactory convergence
properties. However, possible improvements were proposed.

These concepts cannot be easily generalized for ARMA processes.
The chapter is finished by simulation study and the example on real data.

We have studied the methods from the perspective of breakdown point, compu-
tational complexity and consistence.

Chapter 3 deals with new estimators of location based on geometric median,
which can be also interpreted as generalisation of weighted trimmed mean. In the
main part of the chapter general vector space is considered and the estimators are
regarded as sets. We also briefly mention a relation to the concept of depth. The
method is compared by simulation study and is utilized in construction of boxplot
and bagplot. We also proposed new measures of risk. However, they can serve
only as an illustration of our approach, because the substantial improvements
concerning their properties are necessary.

The further work can contain better determination of critical values in the
case of the sign test algorithms. They can also be generalized to look for quan-
tiles. Another possible generalization includes seasonality. We could also em-
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ploy different estimator of location than median or employ another test. As we
have mentioned the field of robust sequential change detection tests is quite vast.
Therefore, nice work can be done if we compare them with respect to our as-
sumptions and utilisation. Also a research concerning the speed of convergence
would be feasible.

Potential for future research is also offered in time series analysis. In this area
were published articles e.g., (Zielinski, 1999) and (Luger, 2006). However, they
consider only the case AR(1).

We have mentioned that this dissertation is focused on simple algorithms
based on median with respect to its robust properties. This theme is incorporated
throughout our work. However, there are many different results without direct
connection to each other. Especially the connection between Chapters 2 and 3 is
not obvious. We have mentioned in the beginning of Chapter 3 that the results
of the chapter can be utilized in Chapter 2. Nevertheless, it would demand an
addition of another chapter connecting the previous ones and this is left for future
research.

Potential improvements are also possible concerning the weighting function
of Algorithm 3.1.1. Its convergence properties should be studied. However, the
consistence of the other proposed methods is studied, but also here a deeper
analysis can still be applied.

Table 4.1. In this table we summarise our results. It serves only for rough idea.

Method Equivariance Convergence Robustness Complexity

C-algorithm
Shift, scale
(α = 0.5)

No
j
W

1 ≤ j ≤ W
O(n)

Sign test alg.:
Constant trend

Shift, scale
The more
obs. the
better

1
2

of m(t,y) O(n2)

Sign test alg.:
Linear trend

Shift, scale No 1
2

of m(t,y) O(n2)

Sign test alg.:
Linear trend,
modification

Shift, scale
Fisher
consistent

1
2

of m(t,y) O(n2 log n)

Trimmed mean Shift, scale Weak 1
2

O(n log n)

Table 4.1 serves as a rough summary of our results. We employ there the
notation, where n is the number of observations, W ∈ N denotes the number of
observations employed for initial estimate and m(t,y) the number of observations
on which base is computed a smooth value for observation yt.
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Hušková, M. (2014): Robust change point analysis, in C. Becker, R. Fried and
S. Kuhnt, eds, ‘Robustness and Complex Data Structures: Festschrift in Hon-
our of Ursula Gather’, Springer Science & Business Media, chapter 11, pp. 171–
190.
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Maš́ıček, L. (2004): ‘Optimality of least weighted squares estimator’, Kybernetika
40(6), 715–734.

Mizera, I. and Wellner, J. A. (1998): ‘Necessary and sufficient conditions for
weak consistency of the median of independent but not identically distributed
random variables’, The Annals of Statistics 26(2), 672–691.

Moore, G. H. and Wallis, W. A. (1943): ‘Time series significance tests based
on signs of differences’, Journal of the American Statistical Association
38(222), 153–164.

Page, E. S. (1954): ‘Continuous inspection schemes’, Biometrika 41(1/2), 100–
115.

Papageorgiou, M., Kotsialos, A. and Poulimenos, A. (2005): ‘Long-term sales
forecasting using Holt-Winters and neural network methods’, Journal of fore-
casting 24(5), 353–368.

Pollard, D. (2012): Convergence of Stochastics Processes, Springer Science &
Business Media.

Polunchenko, A. S. and Tartakovsky, A. G. (2012): ‘State-of-the-art in sequen-
tial change-point detection’, Methodology and computing in applied probability
14(3), 649–684.

Portnoy, S. and Koenker, R. (1997): ‘The gaussian hare and the laplacian tor-
toise: computability of squared-error versus absolute-error estimators’, Statis-
tical Science 12(4), 279–300.
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