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Abstract

In this thesis, we examine the prediction accuracy and the betting performance 
of four machine learning algorithms applied to men tennis matches - penalized 
logistic regression, random forest, boosted trees, and artificial neural networks. 
To do so, we employ 40 310 ATP matches played during 1/2001-10/2016 and 
342 input features. As for the prediction accuracy, our models outperform 
current state-of-art models for both non-grand-slam (69%) and grand slam 
matches (79%). Concerning the overall accuracy rate, all model specifications 
beat backing a better-ranked player, while the majority also surpasses backing 
a bookmaker’s favourite. As far as the betting performance is concerned, we 
develop six profitable betting strategies for betting on favourites applied to 
non-grand-slam with ROI ranging from 0.8% to 6.5%. Also, we identify ten 
profitable betting strategies for betting on favourites applied to grand slam 
matches with ROI fluctuating between 0.7% and 9.3%. We beat both bench
mark rules - backing a better-ranked player as well as backing a bookmaker’s 
favourite. Neural networks and random forest are the most optimal models 
regarding the total profitability, while boosted trees yield the highest ROI. Be
sides, we show that bet size based on the half-sized Kelly criterion outstrips 
constant bet size for betting on favourites.
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Abstrakt

V tejto diplomovej práci skúmame predikčnú přesnost’ a výkon pri stávkovaní 
u štyroch strojovo učiacich sa algoritmov - penalizovaná logistická regresia, 
náhodný les, posilněné stromy a neuronové siete. Pri práci využíváme 40 310 
ATP zápasov hraných počas obdobia 1/2001-10/2016. Co sa týká predikčnej 
přesnosti, naše modely prekonávajú najlepšie modely súčasnosti pre prediko- 
vanie negrandslamových (69%) ako aj modely pre predikovanie grandslamových 
zápasov (79%). Všetky špecihkácie modelov sú presnejšie ako predikovanie na 
základe rebríčkového postavenia hráčov, zatiaí čo váčšina specifikách je přes
nějších ako predikovanie na základe vypísaných kurzov stávkových kancelárií. 
Co sa týká návratnosti pri stávkovaní, vytvořili sme šest’ prohtabilných stratégií 
pre stávkovanie na favoritov pre negrandslamové zápasy (návranosť investície 
v rozmedzí 0.8-6.5%). Taktiež sme identifkovali desať prohtabilných stratégií 
pre stávkovanie na favoritov pre grandslamové zápasy (návranosť investície v 
rozmedzí 0.7-9.3%). Naše modely prinášajú vyššiu návratnost’ ako stávkovanie 
na rebríčkového či kurzového favorita. Neuronové siete a náhodné stromy 
prinášajú najvyšší celkový zisk, zatiaí čo posilněné stromy vykazujú najvyššiu 
percentuálnu návratnost’. Výsledky ďalej ukazujú, že velkost’ stávky závislá 
na Kellyho kritériu je optimálnejšia ako konštantná stávka pre stávkovanie na 
favoritov.

K lasifikace  JE L  C01,C38, C45, C51, C52, C53, C55
K líčo v á  slova neuronové siete, logistická regresia,
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Motivation Undoubtedly, tennis is among the world’s most popular sports. The 
popularity growth of the sport, paired with the expansion of the online sports betting 
market, has led to a large increase in tennis betting volume in recent years (e.g. 
Murray-Djokovic Wimbledon final in 2013 saw £48 million traded on Betfair). The 
potential profit, as well as academic interest, has fueled the search for accurate tennis 
match prediction algorithms. Considering the availability of an immense amount of 
diverse historical tennis data, an alternative approach to tennis prediction could be 
based on machine learning algorithms. The goal of this master thesis is to investigate 
the applicability of machine learning methods to the prediction of professional tennis 
matches. Moreover, by employing larger dataset with greater range of features along 
with the analysis of betting odds of various betting companies as an additional input, 
we aim to outperform current-state-of-art strategies.

Hypotheses

Hypothesis #1: The application of supervised machine learning algorithms 
(support vector machines, random trees, and artificial neural networks) is more 
appropriate approach to modeling of tennis match outcome than simple logistic 
regression.

Hypothesis #2: The prediction that uses larger set of features (e.g. head-to- 
head record, current form of players, age etc.) outperforms simple decision 
rule based only on the current ranking of the players.

Hypothesis #3: The profitable strategy for betting, taking into account the 
model prediction and betting odds, can be formulated (profit of 4% of total 
stake is set as a benchmark).
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Hypothesis #4: The predictive ability of the model for women’s tennis matches 
is inferior to men’s tennis matches due to higher presence of unavailable or 
difficult to measure features.

Methodology The analysis using comprehensive dataset from tennisabstract.com 
with more than 50 000 observations covering time span 4998-2046. Subsequently, 
the data are split into training, validation, and test set. In addition, new matches 
(10/2016 - 4/2017) with the analysis of betting odds across several betting companies 
(Bet365, Bwin, Pinnacle, and Betfair) are used to further evaluate the profitability of 
suggested strategy. The critical part of the thesis is related to the features construc
tion. As we deal with symmetric match feature representation, we experiment with 
two different constructions of features. Firstly, we take difference between the values 
of both match participants. As a second option, we use values for both players as two 
independent features. This approach preserve more information, allowing for more 
accurate prediction, although deals with some potential complications such as the 
prediction depending on the labelling of the players. We also consider historical av
eraging based on various time spans (e.g. percentage of first serve in last 15 matches, 
during the last year ... ). Last but not least, we employ common-opponent approach 
proposed by Knottenbelt that uses only features calculated using the same set of 
opponent allowing for the fair comparison of the players. Also, time discounting is 
considered (more recent matches are of the higher importance). Moreover, feature 
scaling and regularization are applied. In order to test hypothesis 1 and 4 various 
evaluation metrics are taken into account (Fl-score, ROC curve, learning curve (bias- 
variance trade-off, and confidence interval of accuracy). To evaluate hypothesis 2, 
we use lift chart to compare predictive accuracy of the model with baseline model 
(simple decision rule based on the current ranking of the players). Finally, in order 
to assess hypothesis 3, return on investment is calculated as total profit divided by 
total stake.

Expected Contribution Most current state-of-the-art approaches to tennis pre
diction take advantage of the hierarchical structure of the tennis match (match being 
composed of sets, which in turn are composed of games, which are composed of in
dividual points) to define hierarchical expressions for the probability of a player 
winning the match. Although, several authors in the recent past (Sipko & Knotten
belt) employed logistic regression along with artificial machine learning algorithm to 
forecast the outcome of tennis matches, we aim to exploit much larger dataset (tens 
of thousands compared to few thousands) that in turns allows us to extend the range 
of features (hundreds compared to dozens). Furthermore, alternative approaches of 
ML are also considered (random trees and support vector machines). As an ad-
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ditional input, betting odds of several betting companies (Pinnacle, Bwin, Bet365, 
and Betfair) are analyzed and bet is placed using the most optimal alternative. As 
a consequence, we believe that our model can outperforms others and profitable and 
sustainable strategy can be formulated. Also, separate model for women’s tennis 
matches is formed and results of both versions of models are compared.

Outline
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2. Literature Review

3. Data Description

4. Methodology

5. Empirical Results

6. Conclusion

7. Suggestions for Further Research
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Chapter 1

Introduction

Undeniably, tennis is among the world’s most popular sports. Every year, 
The Association of Tennis Professionals (hereafter ATP) organizes about 60 
tournaments worldwide, with more than 2600 matches played. Nevertheless, 
this portion is still just a tiny fraction - tens of thousands more are played on 
both challenger and International Tennis Federation (hereafter ITF) circuit. 
The popularity growth of the sport, paired with the expansion of the online 
sports betting market has led to a substantial increase in tennis betting volume 
in recent years (e.g., Murray-Djokovic Wimbledon final in 2013 saw £48 million 
traded on Betfair). The potential profit, as well as academic interest, has fueled 
the search for accurate tennis match prediction algorithms.

Although tennis can be played either against a single opponent or between 
two teams of two players, this thesis explores tennis singles exclusively. Pro
fessional singles tennis matches are an attractive proposition to model math
ematically due to the three main reasons. Firstly, each match is played only 
between two players, as opposed to the multitude of participants involved in 
a team-based sport such as ice-hockey or football. Therefore, the complexity 
of predicting the outcome is greatly simplified. Secondly, a plethora of match 
statistics is publicly available leading to virtually unlimited modeling options. 
Thirdly, there are only two possible match outcomes.

Albeit an effective forecasting model may have various applications such as 
the analysis of the psychology of betting markets (Dixon & Pope, 2004; Graham 
& Scott, 2008), construction of ranking systems (Macmillan & Smith, 2007),
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estimating the probability that a player with a particular ranking advances to a 
specific round (Kupper et ah, 2014), or as an aid in the design of tournaments, 
in this thesis we examine how and if the effective prediction model can be 
applied to obtain positive ROI on online tennis betting market.

Tennis represents an attractive option from betting perspective. An advan
tage of tennis compared to team sports is that team sports have a large number 
of supporters with permanent allegiance. This sentiment distorts bookmaker 
odds offered in betting markets. Also, with only two possible outcomes, the 
overall margin of betting agencies is lower compared to multiple outcome sports 
such as horse racing. Last but not least, the level of transaction costs is low 
and comparable to other types of financial markets (Forrest & McHale, 2005).

With the introduction of live online betting, financial markets related to 
tennis have proliferated allowing traders to speculate on numerous outcomes, 
e.g., the likely winner of a match, the score of different sets, length of the match, 
or the expected number of aces. Nonetheless, taking the insufficient historical 
availability of the betting odds for various subtle match characteristics, this 
thesis examines only betting on the winner of the match. Bets can be placed 
both before the match and in-game. Various authors discuss in-game betting 
for tennis (Barnett et ah, 2002; Klaassen & Magnus, 2003; Barnett & Clarke, 
2005; Easton & Uylangco, 2010; Huang et ah, 2011). However, due to the 
computational intensity of presented machine learning algorithms along with 
insufficient data on a point-by-point basis for the examined period, this thesis 
focuses solely on pre-match betting.

This thesis aims to explore the applicability of machine learning methods 
- regularized logistic regression, random forests, boosted trees, and artificial 
neural networks (hereafter NN) models) for the prediction of ATP men’s tennis 
matches. Our models utilize a large dataset consisting of 40 310 ATP tennis 
matches played during 2001-2016. Moreover, we employ a broad set of input 
features that includes all relevant features found across literature related to 
the tennis modeling and extend them with new features. By searching through 
different betting strategies, we not only aim to formulate a profitable betting 
strategy, but we aim to show that machine learning algorithms presented here 
will outperform both simple decision rules based on the ranking of the players 
or betting odds and the models used for tennis betting so far.
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Contribution

Thus, the contributions of this work are fourfold. First, we aim to investigate 
the applicability of previously untapped machine learning methods concerning 
tennis forecasting - random forests and boosted trees. Secondly, while the 
majority of tennis models employ only a limited set of explanatory variables 
(i.e., usually well below ten), we not only re-employ all significant features found 
in all papers written on the topic, but we also introduce a set of new features. 
Thirdly, following the notion ’here is a need to test the relative performance 
of heuristics, experts, and complex forecasting methods more systematically 
over the years rather than in a few arbitrary championships’ (Goldstein & 
Gigerenzer, 2009), this thesis covers whole ATP seasons during the period 
2001 — 2016, as opposed to only a few seasons or few specific tournaments 
majority of other papers use. As a result, presented results are more robust. 
Finally, our thesis examines whether a constant bet size or a variable bet size 
based on the half-sized Kelly criterion is preferred for tennis betting.

Hypotheses

In this thesis, we aim to examine the following four hypotheses. Firstly, we pre
dict that presented machine learning techniques combined with selected betting 
strategies can generate a positive return on investment if applied to online pre
match tennis betting market. Secondly, we assume that more complex machine 
learning algorithms such as random forest, boosted trees and NN will provide 
an improvement in predictive power to logistic regression and naive decision 
rules such as predicting the winner of the match based on ranking or book
marker odds. Thirdly, we presume that determining bet size for each match 
depending on Kelly betting criterion presented by Kelly (1956) and refined by 
Dixon & Coles (1997) will lead to higher betting return compared to placing 
the constant bet size. Finally, we expect our models to perform better for grand 
slam tournaments, both regarding predictive power and betting return.
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Structure

This thesis has the following structure. Chapter 2 Literature Review presents 
the brief overview of the approaches applied for tennis modeling along with 
their predictive power and betting performance. This section also discusses 
features that have been used so far to predict the outcome of the tennis match. 
Chapter 3 Methodology presents machine learning techniques we employ for 
modeling in this thesis, namely logistic regression, random forests, boosted 
trees, and NN. Furthermore, it introduces evaluation metrics along with bet
ting strategies. Chapter 4 Data Description and Manipulation discusses data 
sources and data manipulation, presents feature engineering and feature in
troduction, summarize feature pre-processing operations, and discusses model 
tuning procedure. Chapter 5 Results and Discussion presents and discusses 
the empirical results. It also compares the prediction accuracy and betting 
return across all models and betting strategies investigated in this thesis as 
well as with other papers previously dealing with tennis forecasting and pre
match betting. Chapter 6 Conclusion summarizes key findings and assesses our 
hypotheses. Chapter 7 Further Extensions discusses limitations of this work 
and proposes extensions for further research. Finally, Chapter 8 Bibliography 
outlines the bibliography.



Chapter 2

Literature Review

Concerning tennis modeling and forecasting, various researchers have used a 
myriad of models and approaches with a different set of features. Two main 
issues are incessantly at the forefront - what model is the most optimal for 
tennis prediction and what features are most relevant in formulating such a 
prediction. Recently, various researchers have also investigated the efficiency 
of online pre-match tennis betting market and tested whether they can achieve 
sustainable monetary gains in this market.

2.1 Models for Tennis Forecasting

Concerning tennis modeling and forecasting, several different approaches have 
been proposed: h ierarch ica l M ark o v  m odels (Barnett & Clarke, 2002; New
ton & Keller, 2005; Barnett & Clarke, 2005; Knottenbel et ah, 2012; Spanias 
& Knottenbelt, 2012; Madurska, 2012), logistic regression  (Clarke & Dyte, 
2000; Klaassen & Magnus, 2003; Koning, 2011; McHale & Morton, 2011; Ma 
et ah, 2013; Sipko & Knottenbelt, 2015; Konaka, 2017; Lisi & Zanella, 2017), 
p ro b it regression  (Boulier & Stekler, 1999; Gilsdorf & Sukhatme, 2008; 
Del Coral & Prieto-Rodriguez, 2010), artificia l n eu ral netw ork s (Somboon- 
phokkaphan et ah, 2009; Sipko & Knottenbelt, 2015), and alternative models 
such as p aired  co m p ariso n -b ased  m odels (McHale & Morton, 2011) or 
reco g n itio n  h eu ristics  m odels (Serwe & Frings, 2006; Scheibehenne et ah, 
2007).
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2.1.1 Hierarchical Markov Models

Hierarchical Markov models exploit hierarchical structure of a tennis match - 
match consists of sets, which in turn contain games, which comprise individual 
points. Under this algorithm1, the probability of winning a match in tennis 
is derived hierarchically starting from the probability of each player winning a 
point on his serve. Basic models apply only the probability of winning a point 
on serve for both players without taking opponent’s ability on return into ac
count (Barnett & Clarke, 2002; Newton & Keller, 2005). Previous matches 
of both players and average serve winning probabilities across all players par
ticipating on ATP circuit are employed to obtain estimates of serve winning 
probability for both players. Barnett & Clarke (2005) extend the model by 
adjusting the probability of winning a point on serve by opponent’s return 
ability. Low-level point model introduced by Spanias & Knottenbelt (2012) 
further refines the model by combining more granular metrics to estimate the 
serve winning probabilities for both players such as server’s historical ability to 
hit aces with receiver’s historical vulnerability to aces.

As players historically face different opponents, Knottenbelt et al. (2012) 
argue that averaging across all opponents results in bias. Therefore, their 
Common-Opponent model further enhances existing hierarchical Markov mod
els and considers only matches played against common opponents for averaging.

All models above rely on assumption of individual points during tennis 
match being independently and identically distributed (hereafter i.i.d) and thus 
ignore point-by-point and set-by-set dynamics of tennis match. Several authors 
have investigated the plausibility of i.i.d assumption. By examining almost 90 
000 points played at Wimbledon 1992-1995, with a dynamic binary panel data 
model employed, Klaasen & Magnus (2001) found a robust evidence against 
the assumption of points in tennis match being independently and identically 
distributed, with the stronger violation for weaker players. According to their 
research, winning a previous point has a positive impact on winning the next 
point. In line with these findings, Jackson & Mosurski (1997) conclude that 
there is a psychological momentum in tennis. Also, Malueg & Yates (2010) 
confirm that the winner of the first set exerts higher effort in the second set

1 Mathematical derivation for hierarchical Markov models with specific reference to tennis 
is widely discussed (Riddle, 1988; Barnett et ah, 2006; O ’Malley, 2008; Walker et ah, 2011).
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compared to the player who lost the first set.

In an attempt to build a more realistic model, Set-by-Set model presented 
by Madurska (2012) relaxes the assumption of invariant point-winning prob
abilities on the set-by-set level. Allowing for set-by-set dynamics results in 
dramatic improvement of predictive performance (see Table 2.1).

Nevertheless, despite its simplicity and applicability for in-game betting, 
hierarchical Markov models have their limitations. Sipko (2015) argues that 
the representation of the quality of players by only single value (percentage of 
points won on serve) fails to capture more subtle factors, such as the location 
of the tournament, weather, accumulated fatigue over the tournament and 
tennis season, or player’s ability to react to various playing. Also, as the tennis 
rules have often been changing recently (e.g., ten-point tiebreak instead of the 
third set or shift to non-advantage games for some matches), the refinement of 
mathematical formulas is usually needed. Hence, more complex methods such 
as logistic/probit regression or artificial neural networks are gaining increasing 
popularity.

2.1.2 Logistic Regression

Logistic regression represents a traditional approach to binary classification 
problem and has been a popular candidate for tennis modeling. Majority of 
models based on logistic regression have employed a sole explanatory variable 
- either ATP official rankings or ATP points (Clarke & Dyte, 2000; Klaasen & 
Magnus, 2003; McHale & Morton, 2011; Konaka, 2017). Other authors extend 
the set of explanatory variables - ranging from six to 21 (Koning, 2011; Ma 
et ah, 2014; Sipko & Knottenbelt, 2015; Lisi & Zanella, 2017). In those more 
complex models, in addition to some transformations of either ATP rankings or 
ATP points, player’s physical characteristics (age and height), previous matches 
statistics (first and second serve, return, break points, total points won), match 
characteristics (surface, tournament level, tournament round), and the dummy 
indicating home advantage are included.
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2.1.3 Probit Regression

Probit regression is a commonly used alternative to logistic regression for binary 
classification challenges. Similar to logistic regression, some authors employ 
only a sole explanatory variable - ATP rankings (Boulier & Stekler, 1999), 
while others opt for more comprehensive models, with 20 to 27 explanatory 
variables (Gilsdorf & Sukhatme, 2008; Del Coral & Prieto-Rodriguez, 2010). 
Besides additional variables mentioned for logistic regression models above, 
these models also introduce head-to-head balance, handedness, or prize money.

The main limitation of both logistic and probit regression is the fact that all 
features have to pre-specified. Due to complex nature of tennis, one is unlikely 
to capture all essential interaction terms and non-linearities in the data.

2.1.4 Artificial Neural Networks

Artificial neural networks do not require a precise specification of all input fea
tures, as opposed to both logistic and probit regression. Somboonphokkaplian 
et al. (2009) apply Multi-Layer Perceptron with back-propagation learning 
algorithm with three layers - input layer, hidden layer, and the output layer. 
Authors formulate three different models with three, 15, and 27 input nodes. 
Features include both previous matches match statistics (first and second serve, 
return, break points, and total points won) and dummies indicating match sur
face. As opposed to the majority of papers that employ differences, separate 
input features for both players are used. Sipko & Knottenbelt (2015) employ 
single layer NN with tanh activation function for hidden layer and logistic acti
vation function for the output layer. Instead of separate input features for both 
players, authors use differences of statistics between match participants. Re
searchers claim that this approach reduces the variance of the model, prevents 
overfitting as well as it avoids the problem with the labeling of the players2. 
As opposed to all models above, neither ATP rankings nor ATP points are 
used in the model. Similar to Somboonphokkaplian et al. (2009), previous 
matches statistics are employed, with authors presenting new ones such as 
overall serve advantage or completeness. Also, head-to-head balance, fatigue,

2 The model should predict the same probability of winning a match for a specific player, 
regardless of he is labeled as Player 1 or Player 2. This is not necessarily the case if separate 
features for both players are included in the model.
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and the dummy indicating that a player plays the first match after a long injury 
are included. Motivated by Knottenbelt et al. (2012) only statistics against 
common opponents are utilized. Furthermore, surface and time-weighting of 
previous matches are applied, accounting for the fact the players perform differ
ently across surfaces and more recent events are more important for assessing 
current quality of the players.

2.1.5 Other Modeling Approaches

Some authors also use alternative approaches. For instance, McHale & Morton 
(2011) employ Bradley-Terry model as a popular approach for handling data 
on paired comparison. The abilities of professional tennis players are inferred 
from a likelihood of games won and lost between player and opponent, with an 
exponential decay function to weigh more recent matches more heavily. Pre
vious matches statistics, surface, ATP rankings, and the easiness of prior wins 
are utilized as explanatory variables. A different approach based on recogni
tion heuristics is proposed by Serwe & Frings (2006) and Scheibehenne et al. 
(2007). Under this methodology, an alternative ranking system is constructed 
based on surveying both amateur tennis player and laymen. Players are ranked 
depending on how frequently their names were recognized. Subsequently, the 
winner of the match is predicted based on the recognition rankings.

2.1.6 Prediction Accuracy of Previous Models

The prediction accuracy of presented models ranges from 64% (Knottenbelt et 
ah, 2012) to 77% (Lisi and Zanella, 2017). Nevertheless, one should be cautious 
about making the comparison between models due to the following reasons. 
Firstly, the best-performing models assess their prediction accuracy only on 
grand slam matches (Barnett et ah, 2006; Serwe & Frings, 2006; Scheibehenne 
et ah, 2007; Somboonphokkaphan et ah, 2009; Madurska, 2012; Lisi & Zanella, 
2017). Underdogs are much less likely to win a match at grand slam tourna
ments as they need three sets to win the match instead of two for lower-profile 
tournaments. Also, better players are more motivated due to higher prize 
money and ATP points awarded at grand slam tournaments. Secondly, the 
predictive performance of some models is difficult to compare with others as
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only Brier score, or log loss is provided (Boulier & Stekler, 1999; Del Coral & 
Prieto-Rodriguez, 2011; Sipko & Knottenbelt, 2015).

Kovalchik (2016) validates the prediction accuracy of selected models on all 
2014 ATP matches played, yielding range 59-67%. She also finds that models 
perform best for matches where TOP 30 players are involved, for grand slam 
matches, and for matches played on hard court.

Table 2.1 presents the overview of predictive performance for all tennis 
models we were able to extract information from. Table 2.1 also shows the 
prediction accuracy validation by Kovalchik (2016).

Table 2.1: Overview of Predictive Performance

P a p e r M o d e l  T y p e A c c u r a c y  -  C l a i m e d A c c u r a c y  -  K o v a l c h ik  ( 2 0 1 6 )

B a r n e t t  e t  a l .  ( 2 0 0 6 ) M a r k o v  m o d e l 7 2 % 6 7 %

K n o t t e n b e l  e t .  a l  ( 2 0 1 2 ) M a r k o v  m o d e l 6 4 % 6 3 %

S p a n i a s  &  K n o t t e n b e l t  ( 2 0 1 2 ) M a r k o v  m o d e l 6 7 % 6 4 %

M a d u r s k a  ( 2 0 1 2 ) M a r k o v  m o d e l 7 0 % N A

M c H a l e  &  M o r t o n  ( 2 0 1 1 ) l o g i s t i c  r e g r e s s i o n 6 5 % N A

L is i  &  Z a n e l l a  ( 2 0 1 7 ) l o g i s t i c  r e g r e s s i o n 7 7 % N A

S i p k o  &  K n o t t e n b e l t  ( 2 0 1 5 ) l o g i s t i c  r e g r e s s i o n 0 . 6 1 3  l o g i s t i c  l o s s N A

D e l  C o r a l  &  P r i e t o - R o d r i g u e z  ( 2 0 1 0 ) p r o b i t  r e g r e s s i o n 0 . 1 5 8  B r i e r  s c o r e 6 7 %

B o u l i e r  &  S t e k l e r  ( 1 9 9 9 ) p r o b i t  r e g r e s s i o n 0 . 1 7 3  B r i e r  s c o r e 5 9 %

S o m b o o n p h o k k a p h a n  e t  a l .  ( 2 0 0 9 ) n e u r a l  n e t w o r k s 7 4 % N A

S i p k o  &  K n o t t e n b e l t  ( 2 0 1 5 ) n e u r a l  n e t w o r k s 0 .6 1 1  l o g i s t i c  l o s s N A

S c h e i b e h e n n e  e t  a l .  ( 2 0 0 7 ) r e c o g n i t i o n  h e u r i s t i c s 7 0 % N A

S e r w e  &  F r i n g s  ( 2 0 0 6 ) r e c o g n i t i o n  h e u r i s t i c s 7 0 % N A

M c H a l e  &  M o r t o n  ( 2 0 1 1 ) B r a d l e y - T e r r y  m o d e l 6 7 % 6 5 %

N o te :  M o d e ls  w i t h  N A  a re  n o t  a s s e s s e d  b y  K o v a lc h ik  (2 0 1 6 ). 
S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n
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2.2 Features Used for Tennis Modelling

A plethora of variables has been implemented across models. The majority of 
variables can be categorized as follows.

1. Player’s past performance
- ATP rankings, ATP points, previous matches statistics (e.g., serve, 
return, break point performance, tiebreak performance, total points won), 
head-to-head record

2. Player’s physical attributes and the current physical state
- age, height, handedness, fatigue, injury

3. Match characteristics
- surface, tournament level, tournament round, prize money, match qual
ity, home advantage

Besides presented variables, additional ones such as the effect of marriage, 
social support, or temperature have been investigated. Only a limited emphasis 
has been put on mental characteristics and the current mental state of the 
players so far.

2.2.1 Player’s Past Performance

Player’s past performance represents the most significant feature category across 
all models. The official ATP ranking is compiled to reflect player’s perfor
mance in previous tournaments while using use a rolling 12 months window. 
It is designed to serve as a proxy for real player’s ability. ATP rankings enter 
models in various forms. While the majority of models employ the difference 
in rankings between match participants (Boulier & Stekler, 1999; Del Coral 
& Prieto-Rodriguez, 2010; McHale & Morton, 2011), others opt for different 
transformations. For instance, Klaasen & Magnus (2003) utilize difference of 
transformed ATP rankings with transformation reflecting expected tournament 
round reached. Klaassen & Magnus (2003) and Koning (2011) include the sum 
of ranking as a measure of the absolute quality of the match. Lisi & Zanella
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(2017) assume some homogeneity among the players within some intervals of 
ATP ranking, and thus five rank intervals are used instead.

Despite ATP rankings being widely used in models, some authors question 
the official tennis ranking system as a proxy for real player’s ability. Instead, 
various alternatives are proposed and compared to the official ATP rankings in 
their predictive power. For example, Irons et al. (2014) show that the ranking 
based on the number of games won instead of the number of matches won re
sults in improved predictive power. Bedford & Clarke (2000) use exponential 
smoothing method based on the margin of victory expressed in sets and games 
won. Despite its simplicity compared to the ATP ranking, this alternative algo
rithm performs similarly. Several authors also suggest surface-specific ranking 
(McHale & Morton, 2011; Irons et ah, 2014). Glickman (1999) presents alter
native ranking based on dynamic paired comparison similar to ELO ranking 
system used in chess.

Despite their similarity with ATP rankings, some authors opt for A T P  

points instead. Points depend upon progression within tournaments as well as 
tournament level (i.e., grand slam tournaments award more points compared to 
ATP 250). While some models use difference in points (Clarke & Dyte, 2000; 
Gilsdorf & Sukhatme, 2008), others select the ratio of ATP points instead 
(Konaka, 2017).

The evidence across prediction models emphasize the importance of the of
ficial ATP rankings or ATP points as predictors, these two variables themselves 
do not include all the necessary information for precise forecasting (McHale & 
Morton, 2011).

Albeit the previous matches statistics are statistically significant across all 
models, the evidence on the most important one is ambiguous. While Reid et al. 
(2010) show by examining the relationship between rankings and 14 statistics 
describing the match performance of TOP 100 ATP players during 2007 the 
prevalence of second serve points won and second serve return points won, Ma 
et al. (2013) favour first serve statistics. Sipko & Knottenbelt (2015) reveal 
that combining raw match statistics into more complex ones such as overall 
serve advantage can provide further improvement. Besides the match statistics 
above, total points won along with break point and tiebreak performance are 
often used.
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As for other measures of player’s past performance, Del Coral & Prieto- 
Rodriguez (2010) show that previous results on the same tournament are cor
related with the probability of winning a match. Gilsdorf & Sukhatme (2008) 
and Sipko & Knottenbelt (2015) include head-to-head record and find its effect 
significant.

2.2.2 Player’s Physical Attributes and Current Physical State

The most commonly used features related to physical attributes and current 
physical state are age, height, and handedness. The older the player gets, 
the more experienced he becomes. On the other hand, as repeated bouts of 
matches characterize professional tennis, often with only a little time to rest, 
the older players are at disadvantage due to their lower ability to recover. Del 
Coral & Prieto (2010) conclude that the probability of a higher-ranked player 
win decreases as he plays against the younger player. Schulz & Curnow (1988) 
argue that top tennis player reach their peak performance at age 24, while Lisi 
& Zanella (2017) show that the players achieve their peak rank at around age 
27. Both age and square of age are used in models with both being significant 
(Gilsdorf & Sukhatme, 2008; Del Coral & Rodriguez, 2010).

Height affects the playing style as taller players have the advantage over 
shorter players for serve speed (Cross & Polland, 2009). On the other hand, 
taller players usually have worse coordination abilities. Ma et al. (2013) con
clude that the most optimal height lies within interval 181-185 cm. Neverthe
less, the effect of height on probability of winning a match is negligible across 
specifications.

Due to the significantly smaller proportion of left-handed players on ATP 
circuit, the effect of reduced familiarity with their playing style on the success 
of left-handed players is examined. By analysing the period 1968-1999, Holtzen 
(2000) shows that left-handed players were significantly over-presented among 
TOP players (World Number One and TOP10) and grand slam finalists, includ
ing champions, with the rate of left-handedness ranged from two to five times 
higher than expected in these highly successful players. Del Coral & Prieto- 
Rodriguez (2010) found some evidence of left-handers having higher probability 
of winning a match.
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A standard explanation for the under-performance of a player in a match 
is the accumulated fatigue from previous matches. By utilising 20 320 Grand- 
slams matches from 1992 till 2011, Goosens et al. (2015) conclude that there 
is an impact of the relative effort invested in winning a match on the proba
bility of winning the next match. For men, a set difference of two was found 
to decrease the winning probability. Sipko & Knottenbelt (2015) include the 
number of games a player played in the past three days as a proxy for fatigue.

Sipko & Knottenbelt (2015) argue that a player’s form is affected by recent 
injuries. Thus, they use player’s withdrawal from the tournament as an ap
proximation of injury. Subsequently, a dummy variable indicating that player 
plays his first match after an injury is included in the model. The effect of 
injury is found significant, although less important than fatigue.

2.2.3 Match Characteristics

As far as match characteristics are concerned, surface, tournament level, tour
nament round, home advantage, and prize money are discussed most frequently.

Tennis is played on four main surfaces - clay, hard, grass, and carpet; with 
clay and hard court accounting for the majority of matches. Surfaces differ in 
their characteristics such as speed and bounce of the ball, or physiological and 
physical demands (Fernandez et ah, 2006). As a result, players perform differ
ently across surfaces as some playing styles are more effective on a particular 
surface. For example, current No.l player Rafael Nadal won 10 out of his 14 
grand slam titles on clay. Tennis models incorporate information about the 
surface in various ways. For example, Gilsdorf & Sukhatme (2008) account for 
the familiarity with the surface by including the difference in career wins on the 
particular surface. Lisi & Zanella (2017) include dummy that indicates whether 
the match is played on player’s favourite surface. Somboonphokkaphan et al. 
(2009) include set of dummies for each surface. McHale & Morton (2011) and 
Sipko & Knottenbelt (2015) utilize a more comprehensive approach and apply 
surface-weighting for assessing the player’s past performance. The effect of the 
surface is found to be significant across specifications.

As awarded ATP points, prize money, and prestige differ through tourna
ment levels and tournament rounds, the players are likely to exert higher effort
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at high profile tournaments and in later rounds. While Gilsdorf & Sukhatme 
(2008) include dummy indicating whether the tournament is grand slam or 
master series, Del Coral & Prieto-Rodriguez (2010) and Ma et al. (2013) 
use separate dummies for each grand slam. Some of the dummies in these 
three studies are statistically significant. As for tournament rounds, Gilsdorf 
& Sukhatme (2008) include the number of remaining matches after the current 
match while Del Coral & Prieto-Rodriguez (2010) create a separate dummy for 
each tournament round. After controlling for tournament level, these variables 
are insignificant.

Home advantage suggests that player will perform above their expected 
performance level providing that the tournament is held in their own country. 
Several explanations for home advantage have been proposed - increased crowd 
support, lowered fatigue due to traveling, or familiarity with the home venue. 
Koning (2011) and Lisi & Zanella (2017) found its effect significant, being 
increasingly substantial with the absolute quality of the match, as measured 
by the sum of the rankings of both players.

Similar to tournament level and tournament round, prize money should 
exhibit a positive correlation with motivation and exerted effort. Sunde (2003) 
shows that prize money exhibits a highly significant and positive effect on 
effort. Substantially higher prizes to be won in finals also result in higher effort 
exerted by players, compared to semi-finals. In line with these findings, Gilsdorf 
& Sukhatme (2008) confirm that increase in prize money differential have a 
positive, statistically significant impact on the stronger player’s probability of 
winning the match.

Although aforementioned variables represent most common features used in 
models, others are also considered. For example, Farrelly & Nettle (2007) show 
that married players suffer a significant drop in ranking points between the year 
before and the year following the marriage. Rees & Hardy (2004) examine the 
effect of social support on player’s performance. Smith et al. (2017) explore 
the impact of temperature on playing style. By analysing Australian Open 
matches, authors show that increased temperature reduces net approaches and 
leads to more aces, indicating that temperature can have a substantial effect 
on specific playing styles (e.g., serve-volley strategy), but an only negligible 
impact on others (e.g., defensive play from baseline).
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So far only a little effort has been exerted to examine the effect of player’s 
intrinsic mental characteristics and current mental state of the player on the 
probability of winning a tennis match. Even though Chitnis & Vaidya (2014) 
use the number of tiebreaks won, the number of matches won after losing the 
first set, and the number of matches lost after winning the first as proxies 
for player’s mental toughness, these variables were employed only in a non- 
parametric approach called Data Envelopment Analysis. Nevertheless, this 
technique was only used to assess the relative performance of an individual 
player and provide an alternative to the official ATP rankings.

Table 2.2 presents an overview of features used in tennis modeling.

Table 2.2: Overview of Features Used

M o d e l L R 1 L R 2 L R 3 L R 4 L R 5 L R 6 L R 7 L R 8 P R 1 P R 2 P R 3 N N 1 N N 2 B T M

v a r i a b l e s 1 1 1 6 1 2 0 8 2 1 1 2 7 2 0 2 7 2 0 4

A T P  R a n k in g s * * * * * * * *

A T P  P o in ts * * * *

A g e  o r  H e ig h t * * * *

H a n d e d n e s s * *

H e a d - to -H e a d * * *

T o u r n a m e n t  L eve l * * *

T o u r n a m e n t * *

R o u n d

S u r fa c e * * * * * *

H o m e  A d v a n ta g e * *

1
M a tc h  S ta ts * * * * * *

B e t t in g  O d d s *

I n ju r y * *

F a tig u e * *

O th e r
2 3

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n

N o te s :
L R  - lo g is t ic  r e g r e s s io n ,  P R  - p r o b i t  r e g r e s s io n ,  N N  - n e u r a l  n e tw o rk s ,  B T M  - B r a d le y - T e r r y  m o d e l

T o  f in d  o u t  in  w h ic h  p a p e r  e a c h  m o d e l  c a n  b e  fo u n d ,  see  L is t  o f  A c ro n y m s .

1 I n c lu d e s  s t a t i s t i c s  f ro m  p r e v io u s  m a tc h e s  s u c h  a s  % f i r s t / s e c o n d  s e rv e  in , %  f i r s t / s e c o n d  s e rv e  p o i n t s  w o n , % 
r e t u r n  p o i n t  w o n , %  b r e a k  p o i n t  c o n v e r te d  /  s a v e d ,  o r  %  t o t a l  p o i n t s / g a m e s / s e t s  w o n .
C a r e e r  w in s  a n d  p r iz e  m o n e y

3 C a r e e r  w in s
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2.3 Sport Betting Markets and Betting Return for 
Tennis

2.3.1 Efficiency of Sport Betting Markets

Various authors have examined the efficiency of sport betting markets. While 
some have questioned efficiency of sport betting markets across variety of sports 
(Pope & Peel, 1989; Gandar et ah, 1998; Sauer, 1998; Cain et ah, 2003; Rosen
bloom & Notz, 2006; Graham & Stott, 2008; Spann & Skiera, 2009; Koning, 
2012; Kopřiva, 2015), others have elaborated explicitly on tennis betting mar
ket (Forest & McHale, 2005; Forest & McHale, 2007; Easton & Uylangco, 
2010; Lahvička, 2014; Abinzano et ah, 2016). Besides, few authors have tried 
to exploit these inefficiencies in search for profitable betting strategies on pre
match tennis betting market (Forest & McHale, 2005; McHale & Morton, 2011; 
Knottenbelt et ah, 2012; Sipko & Knottenbelt, 2015; Lisi & Zanella, 2017).

According to the efficient market hypothesis, the bookmaker odds should 
reflect all available information relevant to the match outcome. While some 
authors advocate bookmaker odds as an efficient reflection of match outcome 
(Gandar et ah, 1998; Pope & Peel, 1989), others question the efficiency of sport 
betting markets.

For instance, Sauer (1998) and Cain et al. (2003) suggest that betting on 
favourites tend to have higher expected return than betting on longshots. There 
are three main reasons for this phenomenon. Firstly, bettors are risk-lovers and 
betting agencies exploit this by lowering odds for longshots. Secondly, bettors 
overestimate winning probability for longshots. Finally, betting agencies hedge 
themselves against information asymmetry and thus bookmakers may lower 
odds on outsiders as an insurance against bet made by private information 
holders (Forrest & McHale, 2005).

Other researchers analyze bettor’s behaviour and cognitive biases associated 
with it. By examining the world’s largest betting exchange Betfair, Kopřiva 
(2015) argues that bettors tend to overweight small and underweight vast dif
ferences in probabilities. As a result, this behaviour leads to biased bookmarker 
odds. Subsequently, inefficient odds can be exploited. Dixon & Pope (2004)
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imply that differences in bookmaker odds often generate an arbitrage opportu
nity.

Some authors test market efficiency with specific reference to soccer betting 
market. Koning (2012) reveals odds on soccer betting market are not entirely 
informationally efficient. Graham & Stott (2008) confirm the existence of sys
tematic biases and claim that these biases cannot be explained merely by the 
omitted variable or excluding extraneous information. The systematic devia
tions for games between strong and weak teams are found.

In line with findings as mentioned earlier, Rosenbloom & Notz (2006) con
clude the superior accuracy of the real-money market for non-sports events 
compared to sports events.

As far as the market efficiency in tennis betting market specifically is con
cerned, the empirical evidence is ambiguous, however with a majority of em
pirical evidence implying the presence of biases.

Easton & Uylangco (2010) show that there is a high level of efficiency in the 
tennis betting market and demonstrate that betting odds are a good predictor 
of tennis match outcome. Furthermore, Klaasen & Magnus (2003) reveal that 
their hierarchical Markov point-by-point model yields probabilities that exhibit 
extremely high correlation with probabilities implied by bookmaker odds.

On the contrary, in line with findings of Sauer (1998) and Cain et al. 
(2003), several papers have found an evidence of positive favourite-longshot 
bias3. Lahvicka (2014) and Abinzano et al. (2016) support the existence 
of positive favourite-longshot bias with the bias being most pronounced in 
matches between lower-ranked players, in high-profile tournaments, and in 
later-round matches. Forest & McHale (2007) also confirm the existence of 
positive favourite-longshot bias.

3Favourite-longshot bias is an observed phenomenon where on average, bettors tend to 
overvalue ’’long shots” and undervalue favourites - the bets on low probability outcomes have 
lower expected return than bets on high probability outcomes.
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2.3.2 Betting Performance of Previous Models

To our best knowledge, the profitability potential of seven different models has 
been assessed against pre-match tennis betting market so far. Naive decision 
rule presented by Forest & McHale (2005) places a bet on favourite of each 
match (i.e., the player with lower bookmaker odds). By betting on grand slam 
matches during 2001-2004, this simple heuristics was able to generate 2,1% 
ROI. These results further support the existence of positive favourite-longshot 
bias. The advantage of this approach is that it places a bet on every single 
grand slam match.

Other betting models are based on predictive tennis models. These models 
compare model-implied probabilities with bookmaker odds-implied probabili
ties to identify matches to bet on. As a result, only a fraction of matches is 
identified to bet on.

Overall, all presented models exhibit a positive ROI ranging from 3.8 to 
16.3%. Nevertheless, one should be cautious about comparing these models 
based only on their ROI due to the following reasons. Firstly, some betting 
models are evaluated only on grand slam matches (McHale & Morton, 2011; 
Lisi & Zanella, 2017), while others consider betting on all ATP matches (Knot- 
tenbelt et ah, 2012; Sipko & Knottenbelt, 2015). As grand slam tournament 
account for only about 20% matches played, later models naturally lead to much 
more placed bets.4 Secondly, betting rules are not uniform across all models. 
Even though all models bet only on matches where model-implied probabil
ity exceeds bookmaker odds-implied one, some models bet only on predicted 
winner (Knottenbelt et ah, 2012; Sipko & Knottenbelt, 2015), while others 
also bet on underdogs providing that minimum threshold difference5 in implied 
probabilities is suggested (McHale & Morton, 2012; Lisi & Zanella, 2017). The 
latter approach naturally leads to more bets placed. Lastly but not least, bet 
size differs across models. While some betting models place a constant bet 
size (Knottenbelt et ah, 2012; McHale & Morton, 2012), others determine the 
proportion of bankroll to bet for each match based on Kelly criterion6 (Sipko 
& Knottenbelt, 2012; Lisi & Zanella, 2017). Under this criterion, the bet size is

4In terms of absolute profitability, it is better to exhibit 4% ROI on 1000 bets than 10% 
ROI on 200.

5 Ranging from 5 to 10%
6For more details, see Kelly (1956) or Baker & McHale (2013)
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higher for betting on favourites and when the difference between model-implied 
and bookmarker odds-implied probability is more substantial.

Table 2.3 shows ROI for various betting models along with information 
about approaches to bet sizes, the proportion of ATP matches to bet on, and 
whether only bets on the favourite of the match are considered.

Table 2.3: Overview of Betting Returns and Strategies

P a p e r M o d e l  T y p e R O I P r o p o r t i o n  o f

A T P  M a t c h e s

B e t  S i z e F a v o u r i t e  /

U n d e r d o g

K n o t t e n b e l t  e t .  a l  (2 0 1 2 ) M a rk o v  m o d e l 3 .8 % 4 0 .1 % c o n s ta n t o n ly  f a v o u r i te

L is i  & Z a n e lla  (2 0 1 7 ) lo g is t ic  r e g r e s s io n 1 6 .3 % 2 .4 % K e lly

c r i t e r io n

b o t h

S ip k o  & K n o t t e n b e l t  (2 0 1 5 ) lo g is t ic  r e g r e s s io n 4 .2 % 5 0 .4 % K e lly

c r i t e r io n

o n ly  f a v o u r i te

S ip k o  & K n o t t e n b e l t  (2 0 1 5 ) n e u r a l  n e tw o rk s 4 .4 % 5 0 .4 % K e lly

c r i t e r io n

o n ly  f a v o u r i te

M c H a le  & M o r to n  (2 0 1 1 ) B r a d  le y - T e r ry

m o d e l

10% 8% c o n s ta n t b o t h

F o r re s t  & M c H a le  (2 0 0 5 ) n a iv e  d e c is io n  r u le 2 .1 % 19 .3 % c o n s ta n t o n ly  f a v o u r i te

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n



Chapter 3

Methodology

This chapter presents algorithms used for modeling, evaluation metrics em
ployed to assess their performance, and betting strategies tested to determine 
whether monetary gains can be generated on online pre-match tennis betting 
market.

3.1 Models

In this paper, we apply four methodologies to build our models for prediction - 
logistic regression, random forest, boosted trees, and artificial neural networks.

3.1.1 Logistic Regression

The logistic regression is one of the most commonly used classification algo
rithms due to its simplicity and ability to make inferential assertions about 
model features.

Logistic regression models the fog odds of the event as a linear function:

fogQ =  + ^ lXl +  • • • +  fip X p -, (3-1)

where:
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p(x) =  P r(Y  =  1|Y)
P  - number of features

In binary classification setting, we can infer event probability as:

1 _|_ e [ - ( / 3 0 + /3 1iK1 + . . .+ / 3 p iz : p ) ]  ’

where p(Y) =  P r(Y  =  1|Y).

This non-linear function is a sigmoidal function of the model features and 
maps real-valued inputs between —oo and co to values within the interval 
(0,1), allowing for output to be interpreted as the probability approximation. 
Similar to linear regression, even though the equation for p is nonlinear, this 
model also produces linear class boundaries, unless the predictors used in the 
model are non-linear transformations of the data, such as quadratic, cubic or 
higher polynomial functions.

Although other methods1 are used to fit the model (see Equation 3.1), 
maximum likelihood based on the conditional likelihood of Y  given X is most 
widely used. This method seeks parameter estimates of /%, /?i • • •, Ap such that 
the predicted probability for observations corresponds as closely as possible to 
their true values (i.e., for observations with Y = l, predicted probability should 
be as close to 1 as possible, while for those with Y =0, predicted probability 
should approach 0). Mathematically, parameters /30, /?i • • • ,(3p are selected to 
maximize the likelihood function:

. . .  ,/3P) =  (1 -p (x i') )
i :y i= l i'-yi/=0

Penalized Logistic Regression

As we include 342 features in our model, we opt for a penalized logistic regres
sion with built-in feature selection mechanism and shrinkage of less relevant 
predictors. Both lasso and ridge penalty terms are commonly used. While 
lasso implements built-in feature selection, the ridge is more suitable for cases

1 Alternative methods such as non-linear least squares, gradient descent, conjugate gradi
ent, BFLS, or L-BFGS could also be considered.
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when features exhibit high collinearity. As both of these characteristics are 
beneficial for our modeling, we employ elastic-net penalty term introduced by 
Friedman et al. (2001) that combines both lasso and ridge penalty terms in 
one equation:

(5q +  (5T Xi) +  A[(l -  ct)| |/3| |2/2 +  a||/3||],
v i=i

where:
N - number of observations
Wi - weight of the observation i
l(g/i,(3o +  (3TXi) - negative log-likelihood contribution of observation i
a  - elastic-net penalty that bridges the gap between lasso (cv=l) and ridge
(cv=0)
A - overall strength of the penalty

The algorithm is implemented by using glmnet method in R package caret.

An efficient logistic regression model would require a comprehensive inspec
tion to parametrize the model in a way that would account for non-linear effects 
through including quadratic, cubic or higher polynomial functions of original 
features as well as interaction terms. Thus, prescribing an exact functional 
form for the predictors is difficult (Kuhn & Johnson, 2013). An alternative so
lution could be using cubic splines (Harrel, 2015) or generalized additive models 
(James et ah, 2013). Nevertheless, as we employ a penalized logistic regres
sion model with a limited set of interaction and quadratic terms, non-linear 
methods presented below are expected to lead to a better performance.

3.1.2 Tree-based Methods, Random Forest, and Boosted 

Trees

Tree-based methods stratify the feature space into a set of rectangulars, and 
then fit a simple model (like a constant) for each one. For classification prob
lems, we predict the response for each new observation by the most frequently 
occurring class in the region where it belongs.

These algorithms aim to fold  a segmentation of feature space that mini-
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mizes the selected error rate 2. As it is computationally infeasible to consider 
all possible partition of feature space, the recursive binary partition is often 
considered. Friedman et al. (2001) present this procedure for classification as 
follows:

1. Starting with all of the data, we consider a splitting variable j and split 
point s and define the pair of half-planes as:

A i(j, s) =  and #20', s') =  > s}

2. Then we seek the splitting variable j and split point s that solve:

mirths (m inCl E I(yi 4  ci) + mmC2 I fa  /  c2) ) ,
x i£ R 2 ( j ,s )

where cn takes value 0 or 1, depending on which class of Y  prevails in the 
region n.

3. Having found the best fit, we segregate data into the two resulting regions 
and repeat the splitting process on each of the two regions.

4. Then, this process is repeated on all of the resulting regions until some 
stopping rule is reached3.

Nevertheless, as this approach is likely to overfit the data and lead to poor 
test set performance (Friedman et ah, 2001; James et ah, 2013), cost-complexity 
pruning is performed. This procedure, as presented in Friedman et al. (2001), 
finds, for each ck, the subtree Ta C To that minimizes the following cost com
plexity criterion:

\T\
C a ( T )  =  ^ N m Q m ( T )  +  a \ T \ ,

m=l

where:
Nm - number of observations assigned to terminal node m represented by region 

Rm

2 While both Gini index and cross-entropy are preferred as a criterion for making the 
binary splits, only for the demonstration purposes, the minimization presented below employs 
misclassification error rate to keep the notation more straightforward. For more details, see 
Friedman et al. (2001).

3For example, once some minimum terminal node size is reached.
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Qm(T") - node impurity measure4
a  - tuning parameter that governs trade-off between goodness of fit to the data 
and tree size. Large values of a  result in smaller trees.

Tree-based methods are simple and easy to interpret. Moreover, these meth
ods are non-parametric and require few statistical assumptions. Nevertheless, 
one major problem of tree-based methods is their high variance. Thus, the 
prediction accuracy of simple tree-based methods is often inferior to other ma
chine learning algorithms. To alleviate high variance of a single tree, we employ 
random forest and boosted trees instead.

Random Forest

Random forest builds an extensive collection of de-correlated trees, and aver
ages them afterwards. Each of the B de-correlated trees of random forest is 
obtained as presented in Friedman et al. (2001):

1. We draw a bootstrap sample Z of size N from the training data.

2. We grow a random-forest tree to the bootstrapped data, by recursively 
repeating the following steps for each terminal node of the tree, until the 
minimum node size is reached.

(a) We select m out of p variables at random.

(b) We pick the best variable/split among m selected variables.

(c) We split the node into two daughter nodes.

Subsequently, we can obtain class prediction as:

C'^-(x) =  Majority vote {Cb(%)}b=i>

where:
C'b(x) - class prediction for observation x made by bth random-forest tree 
B  - number of trees in random forest

The algorithm is implemented by using rf method in R package caret.

4 Any of misclassification error rate, Gini index, and cross-entropy can be used, but typi
cally misclassification error rate is selected (Friedman et al., 2001).
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Boosted Trees

Boosted trees combine an output of many ’weak’ trees to produce a powerful 
’committee’. A weak tree is one whose error rate is only slightly better than 
random guessing. The purpose of boosting is to sequentially apply the weak 
classification algorithm to repeatedly modified versions of the data, thereby 
producing a sequence of weak classifiers Sm(x), m  =  1 ,2 , . . . ,  M . The data 
modifications at each boosting step consists of applying weights hi, h2, . . . ,  hjv 
to each of the training observations (y^Xi), i =  1 ,2 , . . . ,  N. Initially, all of 
the weights are set to hi =  1/N . At step m, those observations that were 
misclassihed by the classifier Rr,,-\ induced at the previous step have their 
weights increased, whereas the weights are decreased for correctly classified 
observations. The predictions from all of the weak classifiers are then combined 
through a weighted majority vote to produce the final prediction. Formally, 
following Friedman et al. (2001), the algorithm is implemented as follows:

1. We initialize the observation weights hi =  1/N , i =  1 ,2 , . . . ,  N

2. For m = l to M:

(a) We fit a classifier Sm(x) to the training data using weights hi

(b) We compute
^ = i hil(y i 4  Sm{x ^  

v ___________________________________

D = i  hi

(c) We compute a m =  log (/l — e rr^ /e rrm )

(d) We set hi := 2 , . . . ,  2V

Given weak classifiers Sm(x) produce a prediction taking either -1 or 1, 
we can obtain final class prediction as:

M

S (x) = sign [ 7 ^  a g n S ^ / x ) ] , 

m = l

where cti, « 2 , . . . ,  o a/ are computed by the boosting algorithm, and weight 
contribution of each respective Smix).

The algorithm is implemented by using ada method in R package caret.
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3.1.3 Artificial Neural Networks

Artificial neural networks are inspired by the learning processes that occur 
in the biological system. In these systems, neurons receive information from 
another neuron, process it, and pass it to the next neuron. Although the term 
neural network encompasses a large class of models and learning methods, 
in this thesis, we consider only the most widely used neural net - the single 
hidden layer back-propagation network. As Hornik et al. (1989) show that 
a single hidden layer with a finite number of neurons can approximate any 
continuous function, provided that a sufficient number of hidden layers is used. 
The applied neural network is a two-stage classification model. Figure 3.1 
presents the example of single hidden layer network for binary classification 
problem.

Figure 3.1: Example of a single-layer neural network with four hidden 
and two output neurons

input layer
hidden layer

S ource: h t tp : / / c s 2 3 1 n .g i th u b .io /n e u r a l- n e tw o r k s - l /

In this model, the outcome is modeled by an intermediary set of unobserved 
variables called hidden neurons. As presented in Friedman et al. (2001), hidden 
neurons Hm are created from linear combination of some or all the original fea
tures, and then the target Yk is modeled as some function of linear combinations 
of H.m.

Hm = g (aom + , m =  1 ,. . . ,  M,

Tk =  > ;,/ ,•< //. /,• I . . . . .A .

A(X) = gk(T), fc =  l , . . . , /< ,

where H =  (77i, 772, . . . ,  HM), and T =  (71, 7 1 ,..., TK).

The sigmoid function a(u) =  1+g_tt is typically selected as an activation 
function cr(u). The output function gk(T) performs a final transformation of

http://cs231n.github.io/neural-networks-l/
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the vector of outputs T. For classification problems, softmax function is used:

eTi
E L  eTl

This transformation produces positive estimates that sum to one. The neural 
network has the following unknown parameters, often called weights, that have 
to be estimated:

{o 0,„. rn =  1 ,2 , . . . ,  M } M (p +  1) weights

{/3Ofc,/3fc; k =  1, 2 , . . .  ,K }  K (m  +  1) weights.

For classification, either squared error:

K  i= l

k = l N

or cross-entropy can be used as a measure of fit:

K  i= l

y i k l o g f k ( x i )

k = l N

The parameters are usually initialized to random values, and then special
ized algorithms for solving are used. Gradient descent called back-propagation 
is a general approach to minimize A(A). In the back propagation algorithm, 
each hidden neuron passes and receives information only to and from neurons 
that share a connection. The gradient uses the chain rule for differentiation5.

Neural networks have tendency to overfit. Two most widely used methods 
to moderate overfitting are early stopping rule and weight decay. An early 
stopping rule terminates the optimization procedure when some estimate of 
error rate starts to increase. A more rigorous method is to use weight decay, a 
penalization method similar to ridge regression.

5For more technical details on back propagation algorithm, see Rumelhart et al. (1985) 
or Friedman et al. (2001).
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Neural Networks Using Model Averaging

Instead of employing a single neural network, we follow approach presented 
in Ripley (2007). Thus, the same neural network model is fit using different 
random number seeds. All the resulting models are used for prediction. The 
model scores are first averaged, then translated to predicted classes. As we 
employ 342 features and neural networks are not robust to predictor noise nor 
perform automatic feature selection, this procedure is preferred to fitting a 
single neural network.

The algorithm is implemented by using avNNet method in R package caret.

Table 3.1 presents an overview of all algorithms we use in this thesis and 
summarizes some of their characteristics.

Table 3.1: Overview of Applied Models and Their Characteristics

M odel P re -

P rocessin g

R equired

A u to m atic

Featu re

Selection

R ob u st to

P re d icto r

N oise

C om p u tation al

Tim e

Penalized

Logistic

Regression

C, S, NZV YES NO FAST

Boosted Trees - YES YES SLOW

Random

Forests
- PARTIALLY YES SLOW

Neural

Networks

C, S, NZV, CF NO NO SLOW

Note: C-centering, S-scaling, NZV-near-zero variance filter, CF-correlation filter 

Source: Kuhn & Johnson (2013)
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3.2 Evaluation Metrics and Benchmarks Used

This section presents all evaluation metrics employed to evaluate and compare 
the performance of all presented machine learning techniques with each other 
as well as with models presented in the literature so far. Also, we present simple 
rules that serve as benchmarks for both prediction accuracy and betting return.

C onfusion m a tr ix  is a conventional method to describe the performance 
of a classification algorithm. It is a simple cross-tabulation of the predicted 
and observed classes for the data. While diagonal cells denote cases where 
the classes are correctly predicted, off-diagonal elements depict the number of 
errors for each class. Table 3.2 shows the confusion matrix for the two-class 
problem. The table cells illustrate the number of the true positives (TP), false 
positives (FP), true negatives (TN), and false negatives (FN).

Table 3.2: Confusion Matrix for Two-Class Problem

Predicted Observed
Event Nonevent

Event TP FP
Nonevent FN TN

O verall a c c u ra c y  r a te  can be inferred from confusion matrix as follows:

Overall accuracy rate =
T P  + T N

T P  + FP + T N  + F N

R e ce iv e r o p e ra tin g  c h a ra c te r is tic  (ROC) is a graphical plot that depicts 
the true-positive rate against the false-positive rate at various thresholds.

The a re a  u n d er cu rv e  (hereafter AUC) estimate corresponds to the prob
ability that the classification algorithm would assign a higher score to a ran
domly selected positive example than to a randomly selected negative example. 
It represents the area under the ROC curve with values of [0,1]. The value of 
0.5 corresponds to a coin flip, while value of 1 represents a perfect classifier.

In this thesis, we employ both overall accuracy rate and AUC to evaluate 
and compare all model specifications.

R e tu rn  on in vestm en t (ROI) represents a non-accuracy-based evaluation
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metric that assesses the betting performance of presented machine learning 
techniques. In the context of tennis betting, ROI is defined as:

-bblend -Rhlinitiinitial

e:i= l

where:
n - number of matches we bet on
Si - bet size placed on ith match
B  ̂ initial - initial betting bankroll
BRend - betting bankroll at the end of betting period

We consider the following two simple rules as benchmarks for both predic
tion accuracy and betting return:

1. B ack in g  a  b e t te r - ra n k e d  p lay er
We favour the player with the lower ranking.

2. B ack in g  a  b o o k m a k e r’s fav o u rite
We opt for the player with lower bookmaker odds.
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3.3 Betting Strategies

The fundamental problem for bettors is to find positive expectation bets. Also, 
the bettor needs to know how to manage his money, i.e., how much to bet for 
any selected match.

3.3.1 Decision Criteria for Matches to Bet on

To identify positive expectation bets, our model-implied probability of a player 
winning a match has to exceed bookmaker odds-implied probability. Betting 
odds represent the return that bettor receives if he correctly predicts the out
come. For example, if bettor accurately predicts the winner of the match at 
1.75, he will obtain 1.75 times his initial bet. If the bettor mispredicts the 
outcome, he will lose the full amount of his initial bet. In theory, odds should 
reflect the bookmaker’s estimate of true probabilities of both players winning 
the match. However, as the betting agency operates with margin, the odds are 
lowered6 in practice. We can infer bookmaker odds-implied probability of a 
player winning a match as follows7:

p (X  wins') =

where X is a pre-match bookmaker odds for a player winning a match.

6If a bettor placed a bet on both possible match outcomes, he would obtain less money 
than the sum of his bets

follow ing approach presented by Dixon & Coles (1997) and Sipko & Knottenbelt (2015), 
we could alternatively use a scaled version of bookmaker odds-implied probability:

Y
p(X unns) = x  + y ,

where:
Y - pre-match bookmaker odds for opponent winning the match
X - odds for the player for whom we want to calculate the odds-implied probability. 
Nonetheless, employing an inverse of bookmaker odds instead leads to more prudent and 
realistic betting rules (i.e., if real bookmaker’s estimate of match-winning probability were 
0.5, he would not list 2.00, but rather 1.9 to operate with margin. As a result, bookmaker 
odds-implied probability would be 1/1.9=0.526. Consequently, we consider betting only if 
the model-implied probability exceeds 52.6%, not just 50% (1/2.00).



3. Methodology 33

Motivated by Lisi & Zanella (2017), we bet on positive expectation matches 
if and only if the following criteria are met:

1. The model and the bookmaker odds must agree on the favourite/underdog 
player

2. Expected gain has to exceed some safety threshold

3. Bookmaker odds belong to a moderately sized interval of values

We bet on favourites only if both model-implied probability and odds- 
implied probability are below the selected upper boundary. Similarly, we 
bet on underdogs only if both model-implied probability and odds-implied 
probability are above the selected lower boundary.

While majority of previously tested betting strategies consider betting exclu
sively on match favourite (Forrest & McHale, 2005; Knottenbelt et ah, 2012; 
Madurska, 2012; Sipko & Knottenbelt, 2015), some place a bet on any player 
once the match with positive expected gain is identified (McHale & Morton, 
2011; Lisi & Zanella, 2017). In this thesis, as betting on favourites and betting 
on underdogs are mutually exclusive, we evaluate and compare the profitability 
of these two approaches separately.

The following indicator function summarizes our decision rule for betting 
on a match favourite:

z x f 1 -  1 -  r ^PMf > < b u NpBf < b u
If(bet) =  < PBfI 0 else

where:
pMf - model-implied probability of a favourite winning the match
PBf - bookmaker odds-implied probability of a favourite winning the match
r - safety threshold
bu - upper boundary
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And for an underdog as follows:

1 if %% “  1 -  r <  7 i  A/>a/" -  bl ~  bl

0 else

where:
Pmu - model-implied probability of an underdog winning the match
Pbu - bookmaker odds-implied probability of an underdog winning the match
r - safety threshold
bi - lower boundary

The higher r we select, the stricter betting regime we follow. Nevertheless, 
with higher r, fewer bets are placed. To select the optimal safety threshold, we 
test six different levels of safety threshold - 1, 1.05, 1.1, 1.15, 1.20, and 1.25. 
The same logic applies for boundary levels. For upper boundary, we evaluate 
six different choices - 100%, 95%, 90%, 85%, 80%, and 75%, while for lower 
boundary, we examine six different values - 15%, 20%, 25%, 30%, 35%, and 
40%.

As we aim to compare betting return between grand slam and non-grand- 
slam matches, the following four betting strategies are examined:

1. Betting exclusively on favourites for grand slam matches only

2. Betting exclusively on favourites for non-grand-slam matches only

3. Betting exclusively on underdogs for grand slam matches only

4. Betting exclusively on underdogs for non-grand-slam matches only

3.3.2 Bet Size

So far, the majority of authors have opted for constant bet size for each match 
(Forrest & McHale, 2005; McHale & Morton, 2011; Knottenbelt et ah, 2012; 
Madurska, 2012). Nonetheless, several recent papers propose dynamic bet size 
based on Kelly criterion (Sipko & Knottenbelt, 2015; Lisi & Zanella, 2017).

Kelly criterion is designed to maximize the long-run wealth of the investor 
by maximizing the period by the period expected utility of wealth with a loga-
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rithmic utility function (Macleand et al., 2011). For a binary outcome, bankroll 
proportion s placed for the match should maximize the following function:

/(s) =  plog(l +  s) +  (1 -  p)log(l -  s),

where:
p - probability of winning a bet 
s - bankroll proportion to bet

Therefore, the bankroll proportion s that maximizes the expected wealth is 
calculated as:

B p — 1 
S =  B - V

where:
p - probability of winning a bet
B  - bookmaker odds

Nevertheless, various authors argue that while Kelly criterion is asymptot
ically optimal, it is less appealing for short-run as it can lead to considerable 
losses a small percent of the time (Grant & Johnstone, 2010; Macleand et ah, 
2011; Baker & McHale, 2013). Therefore, the size of the bet is often shrunk, 
especially in the presence of parameter uncertainty, with the half-size to be 
widely used choice (Thorp, 1969; Baker & McHale, 2013).

In this thesis, both constant bet size and variable bet size based on half-sized 
Kelly criterion are tested.

As we consider 12 different model specifications 8, betting on both favourites 
and underdogs, betting on both grand slam and non-grand-slam matches, two 
different approaches to determine the bet size, six different levels of safety 
thresholds, and six boundary values, we evaluate 3456 different betting set
tings.

8We employ four machine learning algorithms and three set of features. For details on set 
of features applied see Subsection 4.2.1 Feature Engineering.



Chapter 4

Data Description and Manipulation

4.1 Data Sources and Their Manipulation

4.1.1 Overview of Data Sources

Our dataset combines data from three online sources. The core data source orig
inates from www.tennisabstract.com and comprises information about match 
characteristics, player’s physical characteristics, match outcome, and match 
statistics for both players since 1970. As data are not downloadable in standard 
forms such as Excel or CSV, we perform web scrapping through Wolfram Math- 
ematica and Bash. Table 4.1 provides an overview of all information gathered 
from www.tennisabstract.com. The second online data source www.tennis- 
data.co.uk provides bookmaker odds for all ATP matches since 2001. Odds 
listed by 11 betting agencies1 are included. Finally, we gather ATP points 
awarded for each win based on the tournament level and tournament round 
from www.atpworldtour.com.

xThe comprehensive list of all betting agencies from which odds are collected can be 
found at http://tennis-data.co.uk/notes.txt. For the analysis, we use the best odds available 
defined as the maximum of all available odds at the time of the match. In reality, as one bets 
some time before the match, one is likely to obtain different bookmaker odds as bookmakers 
continually adjust the odds based on the total amount of bets placed on both players.

http://www.tennisabstract.com
http://www.tennisabstract.com
http://www.tennis-data.co.uk
http://www.tennis-data.co.uk
http://www.atpworldtour.com
http://tennis-data.co.uk/notes.txt
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Table 4.1: Overview of Information Gathered from
www.tennisabstract.com

Match Characteristics Player’s Physical
Attributes

Match Outcome Match Statistics

Tournament Age Score Duration of Match

Tournament Level Height Winner of the Match #  Winners

Round Country of Origin #  Unforced Errors

Surface Playing Hand #  Double Faults

Date

ATP Official Rankings

#  Sets Needed to Win

Backhand Style #  Aces

First Serve Statistics

Second Serve Statistics

Break Points Statistics
Source: A u th or ’ s ow n e laboration

4.1.2 Data Pre-Handling Flow

To obtain final data for analysis, the following intermediate steps are performed:

1. Merging Data Sources
Firstly, we merge our data sources. Initially, we add ATP points that 
players are awarded after winning a particular match by merging an 
auxiliary table inferred from www.atpworldtour.com with our core data 
from www.tennisabstract.com. Subsequently, we join our newly obtained 
dataset with bookmaker odds. Due to the availability of bookmaker odds 
only since 2001, we proceed only with ATP matches since 2001. Both 
joins are performed in statistical software R by employing dplyr package 
for data manipulation. After performing both joins, we obtain Raw Data 
#1 . At this point, our dataset comprises 40 897 ATP matches played 
during 2001-2016.

2. PostgreSQL Calculations2
After obtaining Raw Data # 1 , we employ them in PostgreSQL to cal
culate historical match statistics through a different set of opponents, 
surfaces, tournament levels, and time spans. As a result, Raw Data #  2 
is obtained.

2 A few thousand lines of code are written to handle this intermediary step. SQL code is 
available on request.

http://www.tennisabstract.com
http://www.atpworldtour.com
http://www.tennisabstract.com
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3. Data Cleansing

At this step, we perform the following data cleansing operations with 
Raw Data #2:

(a) Omission of variables with more than 50%  missing values
Two variables (height, seed number) exhibit more than 50% missing 
values. As height is not widely shown to be significant across previ
ous papers and seed number is extremely positively correlated with 
the official ATP rankings, we delete these two variables.

(b) Omission of matches with unlikely high margin and sure 
bets exhibiting unrealistic profitability
189 matches exhibit sure bets with profitability higher than 15% or 
betting agency’s margin above 15% which is an obvious error.

(c) Omission of matches when the official A TP  rankings is miss

ing
398 matches do not include official ATP ranking for at least one 
player. As we cannot infer whether it is caused by an error or player 
is unranked, we rather delete these less than 1% observations.

(d) Omission of matches with obvious-error percentages
30 matches exhibit negative or above 100 percent for some of the per
centage variables. We replace this values with NA and subsequently 
use K-nearest neighbours imputation (see next data cleansing step).

(e) Imputing missing values

209 out of 342 features have at least one value missing. In total, 1,3% 
values are not present in the dataset. As a widely used approach, 
K-nearest neighbour-based imputation is applied. This technique 
is carried out by finding the k closest samples (Euclidian distance). 
It imputes mode value for binary/dummy variables and mean for 
continuous ones.

After performing all previous data pre-handling steps, we obtain our dataset 
that contains 40 310 ATP matches and 342 features. As the last step, this 
dataset is split into training and test set:

1. Train Set (1 /2 0 0 1 -1 2 /2 0 1 4 )
The train set is utilized to train a model and obtain parameters estimates
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that minimize selected loss criterion for training data. It is used to build 
the model and select tuning parameters. We select 35 628 ATP matches 
played during 2001-2014 as our test set.

2. Test Set (1/2015-10/2016)
The test set is used to quantify the predictive performance of the model. 
It is utilized on previously unseen data. The most recent data (2015- 
2016) are used as the test set as they reflect the current competitiveness 
of betting market more closely than previous years. In total, 4 682 ATP 
matches are used in the test set.

Figure 4.1 depicts a schematic of whole data pre-handling flow. 

Figure 4.1: A Schematic of Data Pre-Handling Flow

x k  v v
PostgreSQL

V_____________________/

Training Set 
(2001-2014)

Test Set 
(2015-2016)

S ource: A u th o r ’s  ow n e la b o ra tio n
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4.2 Feature Engineering and Feature Introduction

4.2.1 Feature Engineering

Dealing with Symmetric Match Representation

The tennis match has symmetric form. For illustration, winning a point by one 
player implies losing a point for his opponent. Also, better statistics on the 
serve of one player indicate worse return statistics of his opponents during the 
match. Thus, the efficient model has to consider characteristics of both players 
participating in a match. So far, there is no consensus on how information for 
both players should enter the model.

Various authors employ differences between two values. For instance, Sipko 
& Knottenbelt (2015) argue that keeping both values may cause the model to 
give different weights to those two initial inputs. Thus, under keeping both 
values separately, the predicted outcome could differ if players were re-labeled. 
Also, halving the number of features reduces the variance of the model and 
alleviates overfitting. Nevertheless, using differencing alone leads to a loss of 
information. For example, rank difference 50 cannot be perceived as the same 
across different rankings of better-ranked player. In other words, if player 1 is 
World Number One and player 2 is 51, the player 1 is arguably more likely to 
win than in the case of the rank of player 1 to be 51 and rank of player 2 to 
be 101. Taking simple differences fails to capture this well-known and intuitive 
fact. Alternatively, some studies such as neural network-based tennis modeling 
by Somboonphokkaphan et al. (2009), utilize information for both players and 
include two separate features in the model.

While inspired by recent approaches, we want to address their limitations. 
Therefore, we employ features in the following form. Firstly, we model outcome 
as the probability of a rank favourite winning match instead of match-winning 
probability of a randomly selected player. Thus, rank favourite always enters 
a model as Player 1, while the underdog is labeled as Player 2. This prevents 
labeling problem. Secondly, we experiment with the following three approaches 
for how to incorporate information for both players into the model:

1. Including original values for both players
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2. Including favourite’s original value along with difference between favourite’s 
and underdog’s value

3. Including favourite’s original value along with the ratio of favourite’s and 
underdog’s value

By examining the prediction accuracy of all three features specifications 
across various set of features and models3, we opt for including favourite’s 
original value along with the difference between favourite’s and underdog’s 
value. This approach offers not only a slight improvement over other options 
regarding accuracy, but the variance4 of the model is much lower.

Set of Features Used

In this thesis, we employ all four machine learning algorithms with three dif
ferent set of features:

1. Baseline M odel
As a starting point, we include only nine features related to the official 
ATP rankings and bookmaker odds. Besides, we incorporate the dummy 
indicating that three sets are needed to win the match. As for rank- 
related features, we include dummy expressing that the match does not 
have a favourite based on the rank group, favourite’s rank, and rank 
difference between players. For bookmaker odds-related features, we use 
external info, external info squared and the set of three dummies pinpoint
ing the extent to which a rank favourite is also a bookmaker’s favourite.

2. Lim ited M odel
To our best knowledge, only Lisi & Zanella (2017) include information 
about bookmaker odds among explanatory variables. To warrant the 
meaningful comparison with previous research, one of our specifications 
do not incorporate any knowledge about bookmaker odds into the model. 
As a result, limited models include 337 features.

3We use all original features as well as set of principal components with various thresh
olds (0.9,0.95) across penalized logistic regression, random forests, and flexible discriminant 
analysis.

4 The variance and prediction accuracy of all model specification are assessed through 
10-fold cross-validation.
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3. Full M odel
The full model extends the limited model by including six bookmaker 
odds-related features. In total, we utilize 342 features in full models. 
While we expect this setting exhibiting higher prediction accuracy, the 
predicted probabilities will likely be highly correlated with bookmaker 
odds-implied ones and thus our betting rules may detect fewer matches 
to bet on.

The correlation between all model-implied and bookmaker odds-implied prob
abilities for all sets of features can be found in Appendix (Tables A.1-A.3).

Feature Selection

While presented features reduction techniques (see Subsection 4.3.2 Feature 
Reduction) alleviate overhtting, we still might deal with redundant features 
that may negatively affect model performance. Nevertheless, both penalized 
logistic regression and boosted trees have built-in feature selection procedures. 
Also, as presented in Kuhn & Johnson (2013), random forest performs well 
in the presence of irrelevant features. Also, weight decay in neural networks 
also controls for unnecessary features. The susceptibility of neural networks is 
further diminished by applying model averaging.

As our presented feature reduction and selection methods are based on 
simple heuristics, one could also opt for more elaborate alternatives such as 
wrapper methods5. Nevertheless, as these methods are much more computa
tionally intensive in our setting6, we do not utilize any of them. Furthermore, 
various simulations show that built-in feature selection procedures make al
gorithms reasonably susceptible to inclusion of redundant features (Kuhn & 
Johnson, 2013).

5For example, recursive feature elimination, genetic algorithms, or simulated annealing 
could be used. For more details, see Kuhn & Johnson (2013).

6Even employing 10-fold cross-validation for model tuning leads to the 2-day runtime for 
both support vector machines and neural networks. An additional optimization for feature 
selection would lead to the infeasible runtime for both models.
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4.2.2 Features Introduction

In this thesis, we utilize 342 input features that can be categorized into 12 
different groups. Tables 4.2 summarizes the number of features within each 
category.

Table 4.2: Number of Features Across Feature Categories

C ateg o ry #  Featu res

Rank-related features 15

Bookmaker odds-related features 5

Player’s physical attributes and fatigue 10

Player’s mental toughness and consistency 22

Player’s motivation 33

Player’s historical in-match statistics 31

Match characteristics 14

Historical number of matches played and winning percentages 143

Common-opponents statistics 13

Surface-specific features 34

H2H-related features 12

Miscellaneous features 10

Source: Author’s own elaboration

Rank-Related Features

As the majority of previous papers related to tennis modeling include ATP 
official rankings in some form, we include a set of rank-related features as well. 
Current rank of match favourite is a natural candidate and is included among 
put-aside variables. In addition, we include variables indicating career/last one- 
year best rank for both favourite and underdog, dummies indicating whether 
favourite or underdog is a former TOP 10 or TOP 11-30 player, dummies ex
pressing whether the match favourite is currently ranked in TOPlO/TOPll- 
30, dummy pinpointing that match is played between players from the same 
rank group7, and dummies indicating whether favourite or underdog is a seeded 
player.

7We categorize players based on their current rank into five different rank groups - G1 
for player from TOPIO, G2 for players ranked 11-30, G3 for players ranked 31-100, G4 for 
101-300, and G5 for players with rank higher than 300.
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Bookmaker Odds-Related Features

Inspired by Lisi & Zanella (2017), we include information about bookmaker 
odds to account for the external information  that is not captured by other 
features in the model. Variable external info equals 0 if the rank favourite 
is the same as bookmaker’s favourite, while it takes rank favourite’s odds if 
this player is bookmaker’s underdog. Quadratic term for external info is also 
included. Besides, we include dummies indicating that bookmaker odds for 
rank favourite are below a certain threshold - 1.8, 1,5, and 1.25.

Player’s Physical Attributes and Fatigue

As for physical attributes, we employ age, age squared and dummies repre
senting whether a favourite or underdog is left-handed. Furthermore, following 
Sipko & Knottenbelt (2015), we employ proxies for fatigue - time spent on the 
current tournament before current match and number of matches played during 
last three months.

Player’s Mental Toughness and Consistency

To our best knowledge, only Chitnis & Vaidya (2014) address the player’s men
tal performance and consistency in their model. In this thesis, we significantly 
extend the set of features related to mental aspects of the tennis match. As 
proxies for player’s mental toughness, we add the percentage of matches in 
which a player won the first set and eventually lost the match, the percentage 
of matches in which a player lost the first set and eventually won the match, 
and the percentage of matches won in which final decisive set was played. To 
account for consistency, we employ the percentage of matches in which a player 
lost while was a bookmaker’s favourite and the percentage of matches in which a 
player won while was a bookmaker’s underdog. All features here are calculated 
both during last three months and last one year.
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Player’s Motivation

To our best knowledge, only Sunde (2003) and Gilsdorf & Sukhatme (2008) 
address the effect of motivation on exerted effort and thus the probability of 
winning a match. In this thesis, we employ the number of ATP points the 
player would gain by winning a corresponding match, dummies indicating that 
favourite/underdog plays in his home country, and dummies for each level of 
match absolute quality 8 as proxies for motivation. Besides, we also include 
several interaction terms. Motivated by Lisi & Zanella (2017), we incorporate 
interaction term between home country dummy and absolute match quality 
quartiles for both favourite and underdog. Also, we employ interaction of ratio 
of favourite and underdog rank with the set of match characteristics dummies 
(tournament level, tournament round) to control for the fact that a better 
player’s motivation may vary across different match characteristics.

Player’s Historical In-Match Statistics

As for historical in-match statistics, we employ historical averages during whole 
career and last one year. As serve statistics are a common choice in previous 
papers, we include three serve statistics - the percentage of first serve points 
won, the percentage of serving points in which an ace was hit by a serving 
player, and percentage of serving points in which a double fault was made by 
a serving player. Besides serve statistics, to proxy for a performance during 
crucial points of the match, we include four in-match statistics related to break 
points performance - the number of break points created per match, percentage 
of break point chances converted, percentage of break points saved, and the 
ratio of later two variables as a measure of overall break point performance.

Match Characteristics

We apply set of dummies related to match characteristics. Separate dummies
for each tournament level and tournament round are employed in our models
to control for the fact that the favourite’s performance is likely to vary across
these factors. Moreover, dummies indicating whether two or three sets are

8We divide all matches into four groups based on the sum of favourite and underdog rank. 
The lower the sum, the higher absolute quality match is played.
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needed to win a match are included as underdog is less likely to win three sets 
against a more-skilled player compared to only two sets.

Historical Number of Matches Played and Winning Percentages

Historical winning percentage in matches across different match conditions may 
be a strong indication of a player’s performance once he faces the same con
dition in the future. Also, we utilize the number of matches across different 
factors as well. The number of matches across different categories is included 
due to the two main reasons. Firstly, the number of matches played at specific 
conditions (e.g., in the specific round, in specific tournament level, against the 
specific rank group) is used as a proxy for player’s experience with particular 
match conditions. Secondly, using historical percentages alone might be mis
leading as some players have played only a few matches under the particular 
conditions and thus the sample to calculate historical averages is not sufficient9. 
Historical performance and the number of matches are calculated across dif
ferent opponent’s rank group, surface, tournament level, tournament round. 
Several timeframes are used for computation - last three months (as a proxy 
for current form), last one and two years (as a proxy for medium-term form), 
and whole career as a proxy for player’s true ability. This feature category 
represents by far the most extensive set of features used in this thesis.

Common-Opponents Statistics

The simple averaging of player performance across all past matches is biased if 
two players have had different average opponents. Therefore, as suggested in 
Knottenbelt et al. (2012), Madurska (2012) and Sipko & Knottenbelt (2015), 
we alleviate this issue by using the set of features that consider only matches 
played against common opponents. The number of matches played against 
common opponents along with winning percentage in those matches during 
the whole career, last two years, and last one year are employed. Besides, 
average opponent rank during last one year is included for both favourite and 
underdog in our models.

9If we compare the winning percentage of a player that won 19 out of 20 matches with 
winning percentage of a player that won his single match under particular condition, the 
second player would be favoured if we include winning percentages only.
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Surface-Specific Features

Tennis is played on four main surfaces - clay, hard, grass, and carpet; with 
clay and hard court accounting for the majority of matches. Surfaces differ in 
their characteristics such as speed and bounce of the ball, or physiological and 
physical demands (Fernandez et ah, 2006). As a result, players perform differ
ently across surfaces as some playing styles are more effective on the particular 
surface. We account for surface effect by including the number of matches pre
viously played on each surface along with winning percentages during whole 
career, last two years, and last one year. Furthermore, separate dummies for 
each surface are included among input features. Also, dummies indicating that 
a match is played on favourite’s/underdog’s most favourite/least favourite sur
face10 are utilized in our models.

H2H-Related Features

As player are susceptible to different playing styles, previous results against the 
current opponent might be a strong indicator of how the player will perform in 
the next match against him. To account for head-to-head balance, the number 
of matches, sets, games, and tiebreaks played in all previous encounters along 
with their winning percentages are used in our models.

Miscellaneous Features

Besides all features above, we experiment with few more. We utilize dummies 
representing that favourite/underdog had to win qualification matches to get 
to the main draw, dummies indicating that favourite/underdog obtained a wild 
card, and dummies pinpointing that favourite/underdog is a lucky loser* 11. Also, 
we include dummies indicating that favourite/underdog is close to his best 
form12. Finally, we utilize dummies expressing that favourite’s/underdog’s last

10 To determine the most/least favourite surface, we calculate historical winning percentage 
on each surface at the time of the match. The surface with the highest value is selected as 
favourite, while the one with the lowest is perceived as the least favourite.

11A player lost in the final qualification match, but as some players accepted to the main 
draw cancel their participation in the tournament, the ’loser’ eventually gets to the main 
draw despite losing his final qualification match

12If player’s current ranking is at most 120% of his career-best rank, a player is expected 
to play close to his best.
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tournament was successful13.

Descriptive Statistics

Here we present descriptive statistics for rank and bookmaker odds. We also 
show the proportion of matches played across different categories.

Table 4.3: Descriptive Statistics for Ranking and Boookmaker Odds 
- Train Set

Min Q l Median Mean Q3 Max

Ranking - favourite 1.00 12.00 30.00 38.66 55.00 1078.00

Ranking - underdog 2.0 51.0 81.0 108.6 122.0 2159.0

Bookmaker odds - favourite 1.010 1.270 1.480 1.632 1.781 16.500

Bookmaker odds - underdog 1.090 2.200 2.900 4.322 4.350 121.000
N ote: Q l  - 1st quartile, Q 3 - 3rd quartile

Source: A u th or ’ s ow n e laboration  in R

Table 4.4: Descriptive Statistics for Ranking and Boookmaker Odds 
- Test Set

Min Q i Median Mean Q3 Max

Ranking - favourite 1.00 13.00 28.00 37.1 53.00 837.00

Ranking - underdog 2.0 48.0 77.0 108 120 1809.0

Bookmaker odds - favourite 1.001 1.240 1.450 1.623 1.760 11.170

Bookmaker odds - underdog 1.080 2.240 3.050 4.573 4.740 81.000
N ote: Q l  - 1st quartile, Q 3 - 3rd quartile

Source: A u th or ’ s ow n e laboration  in R

13Last tournament is considered to be successful if the player’s rank after the last tourna
ment improved compared to the rank he started the last tournament with
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Table 4.5: Proportion of Matches Played

Train Set Test Set Category

Matches - Total 35 628 4 682

Grand Slam 19.3% 18.5% Tournament Level
Non-Grand-Slam 80.7% 81.5% Tournament Level

Clay 33.65% 33.79% Surface

Hard 51.41% 51.39% Surface
Grass 11.50% 11.62% Surface
Carpet 3.44% 3.20% Surface

Favourite - TOPIO 21.48% 21.21% Favourite’s Rank
Favourite - TOP30 51.25% 53.25% Favourite’s Rank

S o u rc e :  A u t h o r ’s o w n  e l a b o r a t i o n  in  R



4. Data Description and Manipulation 50

4.3 Feature Pre-Processing

In this section, we present all feature pre-processing operations.

4.3.1 Data Transformations

Following James et al. (2013) and Kuhn & Johnson (2013), we perform both 
centering and scaling for all non-binary variables14. As a result of centering, the 
feature has a zero mean, while by scaling data are coerced to have a standard 
deviation of one. These two common data transformations are used to improve 
the numerical stability of various calculations (Kuhn & Johnson, 2013).

Formally, the transformed variable is obtained as:

Y  — Yy -  __ ^ o r ig in a l  ^ o r ig in a l
^ n e w  i

(J X  ■ ■ i^ o r i g i n a l

where:
A'',,,,,. - new variable obtained after standardization

^original - an original variable
X  - the mean of an original variable
(jx • • , - the standard deviation of an original variable.^ o r i g i n a l  o

4.3.2 Feature Reduction

In addition to learning general patterns in the data, the models also learn 
unique noise of each sample. Using too many features (especially irrelevant 
ones) leads to complex models that can overemphasize patterns in the data 
that are not reproducible. This phenomenon is widely known as overhtting. 
Such models exhibit great accuracy on training data, but poor performance 
on previously unseen data. To mitigate overhtting, we reduce the number of 
features used in models through removing predictors with near-zero variance, 
removing highly-correlated features and principal components.

14While the majority of our variables is continuous, some exhibit discrete values, but over 
large set of values (e.g., the number of matches played ranking from 0 to 1 000).
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Removing Predictors with Near-Zero Variance

Employing variables with sparse values and unbalanced distributions can inval
idate our modeling procedures. Thus, inspired by Kuhn & Johnson (2013), we 
filter out near-zero variance predictors. This procedure removes features with 
the frequency of unique values being severely disproportionate or with only one 
unique values.

Removing Highly-Correlated Features

Using highly correlated predictors can result in numerical errors, highly unsta
ble models and degrade predictive performance (Kuhn & Johnson, 2013). Also, 
including redundant features increases the complexity of the models and thus 
their computational time15.

Inspired by Kuhn & Johnson (2013), we apply the following heuristic al
gorithm for removing features that ensures that all pairwise correlations are 
below a selected threshold:

1. Calculating correlation matrix of all features

2. Determining the two predictors with the largest pairwise correlation (call 
them X and Y)

3. Determining average correlation of X and Y  with all other features

4. Removing either X or Y, depending on which one exhibits larger average 
correlation with other predictors

5. Repeating Steps 2-4 until no pairwise correlation is above a selected 
threshold

While this method only investigates pairwise correlation, it can have a sub
stantially positive effect on the performance of the models (Kuhn & Johnson, 
2013).

15 As we employ computationally intensive models such as support vector machines and 
neural networks, this issue is crucial in our modeling .
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Constructing Principal Components

Principal component analysis (hereafter PC A) is a commonly used unsuper
vised technique for feature reduction. This approach seeks to find linear com
binations of features, known as principal components (hereafter PCs), which 
capture the most variance. The first PC is constructed as the linear combi
nation of the features that captures the most variability of all possible linear 
combinations. Then, subsequent PCs are derived such that these linear com
binations capture the most remaining variability while also being uncorrelated 
with all previous PCs. Formally:

P C k =  (s ji * F eatu re  1) +  (sj2 * F eatu re  2) +  . . .  +  (sjp * F eatu re P ),

where:
P  - number of features
Syi, Sj2,. . .  Sjp - component weights that imply which features are most impor
tant to each PC

We construct PCs until 90% of the original variance is captured by our set 
of PCs.

Following Kuhn & Johnson (2013), data transformation and feature reduc
tion procedures are performed in the following order:

1. Near-zero variance filter

2. Correlation filter

3. Centering

4. Scaling

5. Principal components construction
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Table 4.6 summarizes data transformation and feature reduction procedures 
that we perform for both binary and continuous variables.

Table 4.6: Overview of Data Transformation and Feature Reduction 
Procedures

Non-Binary Variables Binary Variables
Near-zero variance filter
Centering
Scaling
Principal components construction

Near-zero variance filter 
Correlation filter

S o u rce : A u th o r ’s ow n e la b o ra tio n

For put-aside variables (favourite’s rank, rank difference, and five bookmaker 
odds related features), we perform all procedures, except near-zero variance 
filter and correlation filter as we aim to keep all of them in our models. As 
a result of all aforementioned procedures, we decrease the number of features 
from 342 (55 binary, seven put-aside, and 280 non-binary) to 122 (43 binary, 
72 PCs, and seven put-aside) for the full model and 117 (43 binary, 72 PCs, 
and two put-aside) for the limited model.
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4.4 Model Tuning

Many models have essential parameters which cannot be directly estimated 
from the data. All machine learning techniques discussed in this text have 
at least one tuning parameter. Since many of these parameters control the 
complexity of the model, poor choices for the values can result in overhtting.

There are different approaches 16 to searching for the optimal tuning param
eters. A general approach is to define a set of candidate values. In this thesis, 
we employ a pre-dehned set of tuning parameters accessible in R package caret 
for all four machine learning algorithms.

Table 4.7 presents all tuning parameters that are optimized in our models.

Table 4.7: Overview of Optimized Tuning Parameters

Penalized Logistic

R egression

R an d om  F o r

est

B o o sted  T rees N eu ral N etw orks

a  - relative weight 
of lasso and ridge 
penalty

mtry - #
randomly
selected
predictors

iter - #  trees W - weight decay

A - penalty term maxdepth - max 
tree depth

I I - / /  hidden neurons

nu - learning rate
S o u rce : A u th o r ’s ow n e la b o ra tio n

Once we select a set of candidate values, we must obtain reliable estimates 
of model performance for each combination. For this purpose, resampling tech
niques are often used.

4.4.1 K-Fold Cross-Validation

While alternative resampling techniques such as bootstrapping can be used, 
we employ K-fold cross-validation in this thesis. K-fold cross-validation uses 
part of available data as a training set and the rest of the data as a test set.

16 As an alternative to a pre-defined set of candidates, one could opt for the random search. 
Nevertheless, due to its excessive computational time, this method is not utilized in this 
thesis.
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Firstly, we split the data into K roughly equally-sized parts. Subsequently, we 
fit the model using K -l parts, with the remaining kth part used to determine 
the prediction error of the fitted model. We repeatedly estimate the model 
for k =  and combine the K estimates of prediction error. The
performance on the K hold-out samples is then aggregated into a performance 
profile which is then used to determine the final tuning parameters. Although 
there is no formal rule for the selection of k, we opt for 10-fold cross-validation 
as this choice has desirable properties both regarding computational efficiency 
and bias-variance trade-off (Kuhn & Johnson, 2013).

In addition to obtaining optimal tuning parameters, 10-fold cross-validation 
allows us to produce appropriate estimates of model performance using the test 
set. As several researchers show that validation using a single test can be a poor 
choice (Martin & Hirschberg 1996; Hawkins et al. 2003; Molinaro et ah, 2005), 
by employing 10-fold cross-validation, we can obtain more robust estimates of 
the model’s predictive performance.

Once the model performance has been quantified across sets of tuning pa
rameters, we opt for one with the best mean prediction accuracy17. Subse
quently, we refit the model with the entire training set by using the final tuning 
parameters.

Table 4.8 presents values of all tuning parameters for all full models.

Table 4.8: Selected Values of Tuning Parameters - Full Model

LR RF BT NN

a  =  0.55 m try= 62 ite r=  100 H =3

A =  0.027 m ax d e p th = l W =0.0001

nu=0.1
N o te : L R  - lo g is tic  reg ressio n , R F  - ra n d o m  fo rest, B T  - b o o s te d  tre e s , NN - n e u ra l netw ork

S o u rce : A u th o r ’s ow n e la b o ra tio n

17. Alternatively, one could favour less complex models providing that they still yield 
acceptable performance. The conventional approach is to use ’’one standard error rule” 
that chooses the simplest model whose performance is still within one standard error of the 
numerically best model. Nevertheless, as the interpretability of our model is not the primary 
concern, we select the one with the best performance regardless its interpretability.
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Table 4.9 presents values of all tuning parameters for all limited models. 

Table 4.9: Selected Values of Tuning Parameters - Limited Model

LR R F BT N N

a =  0.55 m try=59 iter=150 H=3

A =  0.002 m axdepth=3 W =0.1

nu=0.1
N ote: LR  - lo g istic  reg ress io n , R F  - ran d o m  fo re s t, B T  - b o o s te d  tre e s , NN - n e u ra l n e tw ork

S ource: A u th o r ’s  ow n e la b o ra tio n

Finally, Table 4.10 outlines values of all tuning parameters for all baseline 
models.

Table 4.10: Selected Values of Tuning Parameters - Baseline Model

LR R F BT N N

a =  0.55 m try=2 iter=150 H=1

A =  0.003 m axdepth=2 W =0.1

nu=0.1
N ote: LR  - lo g istic  reg ress io n , R F  - ran d o m  fo re s t, B T  - b o o s te d  tre e s , NN - n e u ra l n e tw ork

S ource: A u th o r ’s  ow n e la b o ra tio n

Figure 4.2 summarizes a schematic of the whole parameter tuning process.

Figure 4.2: A Schematic of the Parameter Tuning Process

S ource: K u h n  & .Johnson (2013)



Chapter 5

Results and Discussion

In this chapter, we assess and compare the predictive performance, the betting 
performance, and the variable importance.

5.1 Predictive Performance

We use two evaluation metrics to assess and compare the predictive perfor
mance - the overall accuracy rate and AUC.

5.1.1 Overall Accuracy Rate

As for the comparison with both benchmarking rules, all model specifications 
for both train and test data outperform backing a better-ranked player (the 
difference ranges from 2% to 6%). As for backing a bookmaker’s favourite, 
only all baseline and full model specifications (except the full model for neural 
networks) perform better, indicating that without any knowledge about betting 
odds, our models are not able to beat bookmakers’ models.

Except for the full model for neural networks, all models perform better 
on the test data. There are two main explanations. Firstly, both better- 
ranked players (67.3% compared to 65.5%) and bookmaker’s favourites (70.7% 
compared to 69.7%) won more regularly during 2015-2016. As can be seen from 
variable importance (see subsection Variable Importance), all our models are
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strongly influenced by bookmaker odds and rank-related features. Secondly, the 
application of 10-fold cross-validation prevents overfitting on the train data1.

As for the best-performing model, the full model for neural networks 2 along 
with the baseline model for random forest yield the best overall accuracy rate. 
For the test data, the full model for boosted trees and the baseline model for 
random forest perform the best. Nevertheless, differences across models are 
relatively small - for the train data, the difference between the best-performing 
and the worst-performing model is 3%3, while for the test data only 1.6%.

For all models, benchmarking rules and data sets, the overall accuracy for 
grand slam matches is significantly higher than the overall accuracy for non
grand-slam matches (the difference ranges from 6.9% to 10.1%).

One can note that both the baseline and the full set of features outperform 
the limited set of features indicating that the overall accuracy is negatively 
affected by omitting bookmaker odds-related features. As the baseline models 
consistently bet limited models, we can infer that the inclusion of our more than 
300 variables cannot sufficiently compensate for missing information about the 
bookmaker odds.

To compare with previous papers, the overall prediction accuracy exceeds 
the current state-of-art models for non-grand-slam matches (67%) evaluated 
by Kovalchik (2016). Also, we surpass current state-of-art models that employ 
grand slam matches exclusively (Somboonphokkaphan et ah, 2009 - 74%; Lisi 
& Zanella, 2017 - 77%).

To obtain the overall accuracy rate for the train set, we firstly find the best model by 
using 10-fold cross-validation, and then apply the selected model on the full train set. For 
more details, see Section Model Tuning in Chapter Methodology.

2 As can be seen from the comparison of train and test overall accuracy rate, the full model 
for neural networks is the only model specification performing worse on the test data. As 
this algorithms does not have a built-in feature selection mechanism (as opposed to penalized 
logistic regression and boosted trees), it is likely that we slighly overfit despite using 10-fold 
cross-validation.

3If we omit the full model for neural networks, the difference is only 1.9%.
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Table 5.1 outlines the overall accuracy rate across all model specifications 
for both train  and test data. Also, it provides the overall accuracy rate for our 
two benchmarking rules.

Table 5.1: Overall Accuracy Rate - Overview

T rain  Set Test Set
M odel All NG G All NG G
LR - full 69.9% 68.4% 76.1% 70.8% 68.9% 79.0%
RF - full 69.9% 68.5% 76.2% 70.4% 68.7% 77.9%
BT - full 69.9% 68.3% 76.3% 70.9% 69.0% 79.0%
NN - full 71.5% 70.1% 77.4% 70.4% 68.5% 78.7%
LR - limited 69.1% 67.7% 75.1% 69.9% 68.1% 78.1%
RF - limited 69.0% 67.7% 74.6% 69.3% 67.7% 76.2%
BT - limited 68.5% 67.1% 74.4% 69.7% 68.0% 77.1%
NN - limited 69.1% 67.7% 74.8% 69.7% 67.9% 78.0%
LR - baseline 69.9% 68.4% 76.1% 70.8% 68.9% 78.9%
RF - baseline 70.4% 68.9% 76.8% 70.9% 69.1% 78.8%
BT - baseline 69.9% 68.4% 76.1% 70.8% 69.0% 78.8%
NN - baseline 69.9% 68.4% 76.3% 70.8% 68.9% 78.9%
Better-ranked player 65.5% 64.0% 71.7% 67.3% 65.4% 75.6%
Bookmaker’s favourite

N o te :  A ll  - a l l  m a tc h e s

69.7%
, N G  - n o n

68.2%
g r a n d - s la m

76.1%
m a tc h e s  o n ly , G

70.7%
g r a n d  s la m

68.8% 
m a tc h e s  o n ly

79.0%

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n

For details on the baseline, the limited, and the full set of features see 
Subsection 4.2.1 Feature Engineering.

5.1.2 AUC

As for AUC, the inference made for the overall accuracy rate holds with three 
exceptions. Firstly, the full model for boosted trees is no longer among the best
performing models on the test data. Baseline models for logistic regression and 
boosted trees along with the full model for neural networks exhibit the highest 
AUC. Secondly, the limited model for neural networks outperforms some full 
and baseline models, indicating th a t the limited models are not inferior in all 
cases. Finally, despite one of the best overall accuracy rates on the test data, 
the baseline model for random forest shows the second lowest AUC.
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Table 5.2 presents AUC across all model specifications for both train and 
test data.

Table 5.2: AUC - Overview

Model
Train Set

All
Test Set

NG GAll NG G
LR - full 0.716 0.698 0.777 0.715 0.698 0.773
RF - full 0.715 0.697 0.775 0.703 0.686 0.755
BT - full 0.714 0.697 0.774 0.711 0.695 0.759
NN - full 0.750 0.735 0.805 0.716 0.698 0.773
LR - limited 0.710 0.694 0.764 0.710 0.694 0.756
RF - limited 0.709 0.693 0.759 0.683 0.670 0.726
BT - limited 0.706 0.690 0.758 0.700 0.685 0.752
NN - limited 0.724 0.707 0.779 0.700 0.686 0.748
LR - baseline 0.715 0.697 0.771 0.716 0.698 0.773
RF - baseline 0.733 0.716 0.806 0.695 0.682 0.752
BT - baseline 0.717 0.699 0.776 0.716 0.697 0.770
NN - baseline 0.716 0.697 0.771 0.714 0.695 0.768

N ote: A ll - all m atches, N G  - non -grand-slam  m atches only, G - grand slam m atches on ly

Source: A u th or ’ s ow n e laboration
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5.2 Betting Performance

5.2.1 Betting Benchmarks

To assess the profitability of our two selected betting benchmarks, we consider 
both constant and variable bet size 4 . We employ a constant bet size set to 
100, while variable bet size is determined as follows:

1 bf * 100
bet size =  — - ,

bs
where:
bf - average bookmaker odds for a better-ranked player
bs - bookmaker odds for the player we want to bet on

The average bookmaker odds for a better ranked player are 1.62 for the test 
set and 1.63 for the train set.

The results show that both benchmark rules lead to a loss if applied to non
grand-slam matches exclusively. The loss for the train set ranges from -0.98% 
to -2.96%, while it fluctuates from -1.18% to -1.93% for the test set. Although 
for the train set the loss is more pronounced for betting on a better-ranked 
player, the opposite is true for the test set.

As for betting on grand slam matches, betting on a bookmaker’s favourite 
is profitable for both train (ROI 1.25-1.4%) and test set (ROI 1.87-2.05%). The 
betting on a better-ranked player for grand slam matches is shown to be prof
itable under both bet size for the test set (ROI 1.87-2.2%) and under variable 
bet size for the train data (ROI 0.61%). The evidence of the positive ROI for 
betting on favourites applied to grand slam matches favours the existence of 
favourite-longshot bias and support the results of Forrest & McHale (2005).

As for the comparison of the constant bet size with the variable bet size, 
the variable bet size leads to a higher profit if applied to both train and test 
set. The evidence on the magnitude of the loss for non-grand-slam matches 
varies.

4 As we cannot use Kelly criterion without the model-implied probability, we employ 
variable bet size as an alternative.
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Tables 5.3-5.4 present the performance of both betting benchmarks on the 
train set.

Table 5.3: Betting Benchmarks on Train Set - Total Profit

Model
Constant =  100 Variable =  163/odds

NG G NG G
Better-ranked player -85065 -2498 -69593 4854
Bookmaker’s favourite -31918 8567 -31612 11787

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n

Table 5.4: Betting Benchmarks on Train Set - ROI

Constant =  100 Variable = 163/odds
Model NG G NG G
Better-ranked player -2.96% -0.36% -2.27% 0.61%
Bookmaker’s favourite -1.11% 1.25% -0.98% 1.40%

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n

Tables 5.5-5.6 depict the performance of both betting benchmarks on the 
test set.

Table 5.5: Betting Benchmarks on Test Set - Total Profit

Model
Constant =  100 Variable =  162/odds
NG G NG G

Better-ranked player -4485 1618 -4839 2286
Bookmaker’s favourite -7343 1774 -7472 2034

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n



5. Results and Discussion 63

Table 5.6: Betting Benchmarks on Test Set - ROI

Model
Constant =  100 Variable =  162/odds

NG G NG G
Better-ranked player -1.18% 1.87% -1.18% 2.20%
Bookmaker’s favourite -1.93% 2.05% -1.73% 1.87%

S o u rce : A u th o r ’s ow n e la b o ra tio n

5.2.2 Searching for the Most Optimal Betting Strategy

To find the most optimal strategy, we firstly find the most optimal betting 
setting for each model specification (12 model specifications in total) across all 
four main betting strategies (F-NG: betting of favourites for non-grand-slam 
matches only; F-G: betting of favourites for grand slam matches only; U-NG: 
betting of underdogs for non-grand-slam matches only and U-G: betting of 
underdogs for grand slam matches only) on the train set. As a result, we seek 
the optimal solution for 48 different combinations. For each of them, we select 
the most profitable strategy that meets the following two criteria:

1. The number of matches to bet on is at least 1000 for non-grand- 
slam matches and 250 for grand slam matches
As we want to identify consistent strategies, we omit strategies with only 
a small fraction of matches eligible for betting.

2. ROI of selected betting setting is at least 2%

We disregard all settings with profitability below betting benchmarks.

The search is performed through six different safety threshold levels, six 
lower/upper boundary values, and two bet sizes - constant bet size and the 
best sized based on the half-sized Kelly criterion. Therefore, for each of 48 
combinations, 72 different betting settings are tested.

We manage to find at least one profitable betting settings with both ROI 
and the number of matches to bet on exceeding presented thresholds for 35 
out of 48 combinations. The full and the limited model for neural networks 
exhibit the best performance followed by the limited model for penalized logistic 
regression and the full model for the random forest.
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Table 5.7 presents the rankings of all models for each of the four main 
betting strategies applied on the train set. The ranking is based on the total 
profitability.

Table 5.7: Ranking of Betting Strategies - Train Set

F-NG F-G U-NG U-G
LR - full - 10 10 -
R F - full 5 8 5 4
B T  - full - 11 - -
NN - full 1 1 1 1
LR - limited 3 4 4 6
R F - limited 6 - 8 3
B T  - limited 4 5 3 -
NN - limited 2 2 2 2
LR - baseline - 7 9 7
R F - baseline - 3 - -
B T  - baseline 7 8 7 4
NN - baseline - 6 6 -

S o u rce : A u th o r ’s ow n e la b o ra tio n

Subsequently, we evaluate all 35 scenarios on the test data. 17 out of 35 
scenarios exhibit the positive return on the test data. While six out of seven 
betting scenarios for betting on favourites applied to non-grand-slam matches 
and 11 out of 11 betting scenarios for betting on favourites applied to grand 
slam are profitable on the test set, none of the betting strategies for betting 
on underdogs exhibits a positive return once employed on the test data. The 
full models for neural networks and random forest show the best performance 
regarding the total profitability.
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Table 5.8 presents the rankings of all models for each of the four main 
betting strategies applied on the test set. The ranking is based on the total 
profitability.

Table 5.8: Ranking of Betting Strategies - Test Set

F-NG F-G U-NG U-G
LR - full - 8 - -
R F - full 1 2 - -
B T  - full - 7 - -
NN - full 2 1 - -
LR - limited 3 11 - -
R F - limited 5 - - -
B T  - limited 6 9 - -
NN - limited - 3 - -
LR - baseline - 4 - -
R F - baseline - 6 - -
B T  - baseline 4 10 - -
NN - baseline - 5 - -

S o u rce : A u th o r ’s ow n e la b o ra tio n

In majority of cases, ROI is higher for betting on grand slam matches. Al
though we do not successfully replicate any of the betting strategies for betting 
on underdogs, the identification of several profitable strategies for betting on 
underdogs on the train set indicates that other approaches to betting strategy 
selection should be examined. We assume that with more comprehensive ap
proach to betting strategy selection, one could identify consistently profitable 
betting strategies for betting on underdogs as well 5.

Table 5.9 outlines the median ROI for each of the four main betting strate
gies applied to both test and train set.

Table 5.9: Median ROI of Betting Strategies

F-NG F-G U-NG U-G
Train Set 6.8% 5.5% 3.7% 6.4%
Test Set 1.6% 2.9% - -

S o u rce : A u th o r ’s ow n e la b o ra tio n

The analysis of betting on favourites applied to non-grand-slam matches
favours the full model for random forest and the full model for neural networks

5 Our in-sample optimization for test set reveals various profitable betting settings for 
betting on underdogs, both for non-grand-slam and grand slam matches.
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as two most profitable options in absolute terms 6. Regarding ROI, the baseline 
model for boosted trees is preferred. Overall, ROI fluctuates between 0.8% and 
6.5%. As for the proportion of matches to bet on, models range from 5% to 
46%.

Table 5.10 outlines the betting strategies for betting on favourites applied 
to non-grand-slam matches.

Table 5.10: Betting on Favourites for Non-Grand-Slam Matches - 
Overview

Model Bet
Size

Safety
Thresh
old

Upper
Bound
ary

Profit ROI #  Bets %
Matches 
to Bet
on

RF - full Kelly 1.05 90% 3000 2.4% 606 16%
NN - full Kelly 1.00 100% 2000 0.8% 1737 46%
LR - limited Kelly 1.00 100% 1800 2.3% 820 22%
BT - baseline Kelly 1.10 100% 1200 6.5% 630 17%
RF - limited Kelly 1.00 95% 1000 0.8% 843 22%
BT - limited Kelly 1.15 100% 490 0.9% 200 5%
Average 1.05 98% 1582 2.3% 806 21%

S o u rce : A u th o r ’s ow n e la b o ra tio n

The analysis of betting on favourites applied to grand slam matches favours 
the full model for random forest and the full model for neural networks as two 
most profitable options in absolute terms. Regarding ROI, the full model for 
boosted trees is preferred. Overall, ROI fluctuates between 0.7% and 9.3%. 
As for the proportion of matches to bet on, models range from 13% to 44%. 
The betting on favourites for grand slam matches leads to both the higher ROI 
(4% compared to 2.3%) and the higher proportion of matches to bet on (30% 
compared to 21%) as compared to betting on favourites for non-grand-slam 
matches. Therefore, our results strongly favour betting on grand slam matches 
once the betting on favourites is considered.

6To calculate the total profitability (column profit) and the bet size based on the half
sized Kelly criterion, we assume the initial bankroll of 2000 USD. For the simplicity and the 
meaningful comparison with the previous models, the bet size is determined based on the 
initial balance and does not evolve dynamically with the bankroll balance.
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Table 5.11 shows the betting strategies for betting on favourites applied to 
grand slam matches.

Table 5.11: Betting on Favourites for Grand Slam Matches - Overview

Model Bet
Size

Safety
Thresh
old

Upper
Bound
ary

Profit ROI #  Bets %
Matches 
to Bet
on

NN - full Kelly 1.00 100% 4900 7.4% 344 40%
RF - full Kelly 1.05 100% 2700 6.1% 130 15%
NN - limited Kelly 1.00 95% 2000 2.5% 322 37%
LR - baseline Kelly 1.00 100% 1800 2.9% 383 44%
NN - baseline Kelly 1.00 100% 1700 3.0% 373 43%
RF - baseline Kelly 1.25 100% 1500 1.7% 350 40%
BT - full constant 1.00 100% 1400 9.3% 153 18%
LR - full Kelly 1.00 100% 740 5.6% 179 21%
BT - limited Kelly 1.05 100% 470 1.8% 117 13%
BT - baseline Kelly 1.00 100% 450 1.2% 320 37%
LR - limited Kelly 1.00 95% 280 0.7% 226 26%
Average 1.03 99% 1631 4% 263 30%

S o u rce : A u th o r ’s ow n e la b o ra tio n

One can notice that the half-sized Kelly criterion puts only soft restrictions 
on both safety threshold (1.05 for non-grand-slam matches and 1.03 for grand 
slam matches on average) and the upper boundary (98% for non-grand-slam 
matches and 99% for grand slam matches on average). This finding is not 
surprising as unlike the constant bet size, the bet size based on the half-sized 
Kelly criterion is adjusted automatically based on the size of the encountered 
betting edge and bookmaker odds.

Although some of the previous papers show higher ROI (Lisi & Zanella, 
2017 - 16.3% for grand slam matches) or the higher proportion of matches to 
bet on (Sipko & Knottenbelt, 2015 - 50.4% for all matches), one should be 
cautious about making the comparison with their betting performance. From 
the previous papers, it is not clear whether the presented betting strategies 
were selected on the train set and subsequently evaluated on the test set or 
authors performed in-sample optimization only. Therefore, their performance 
might be artificially high. As we initially find the optimal betting settings 
on the train data and eventually assess their performance on the test set, our 
betting strategies should be reasonably robust, and we should obtain a realistic 
estimate of their performance on previously unseen matches.
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5.2.3 Determining the Optimal Bet Size

As for the optimal bet size, the bet size determined by the half-sized Kelly 
criterion is consistently preferred for betting on favourites. Only one out of 18 
identified betting scenarios for betting on favourites prefers the constant bet 
size. On the contrary, the bet size determined by the half-sized Kelly criterion 
is preferred in only seven out of 17 selected scenarios for betting on underdogs.

Table 5.12 summarizes the proportion of optimal betting strategies with bet 
size based on the Kelly criterion.

Table 5.12: Proportion of Optimal Betting Strategies with Bet Size 
Based on the Kelly Criterion

F-NG F-G U-NG U-G
Train Set 7/7 10/11 3/10 4/7
Test Set 6/6 10/11 - -

S o u rce : A u th o r ’s ow n e la b o ra tio n

The analysis of the identified betting scenarios shows that the betting that 
utilizes the half-sized Kelly criterion leads to a significantly larger average bet 
size for betting on favourites - from 1.46 to 1.91 times larger compared to a 
constant size. As for betting on underdogs, bet sizes are roughly the same.

Table 5.13: Median Kelly Bet Size Across Models

F-NG F-G U-NG U-G
Train Set 177 174 101 102
Test Set 146 191 - -

S o u rce : A u th o r ’s ow n e la b o ra tio n

5.2.4 Payoff Profile of the Best Models

Here we present the payoff profile for three best-performing models for both bet
ting on favourite applied to grand slam matches and betting on favourites ap
plied to non-grand-slam matches. Besides, we compare ROI and % of matches 
to bet on between train and test set for all best-performing strategies.

Figures 5.1-5.3 show the payoff profile for three best-performing strategies 
for betting on favourites applied to non-grand-slam matches. Full models for 
random forest and neural networks exhibit the highest absolute profitability, 
while the baseline model for boosted trees exhibits that highest ROI.
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Figure 5.1: Random Forest for Non-Grand-Slam Matches - Payoff 
Profile
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Figure 5.2: Neural Networks for Non-Grand-Slam Matches - Payoff 
Profile
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Figure 5.3: Boosted Trees for Non-Grand-Slam Matches - Payoff Pro
file
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Table 5.14 outlines the comparison of ROI and % of matches to bet on 
between train and test set for betting on favourites applied to non-grand-slam 
matches.

Table 5.14: Best Models for Non-Grand-Slam Matches - Overview

Model
Train Set Test Set

ROI % Matches ROI % Matches
R F - full 2.8% 17.0% 2.4% 15.9%
NN - full 14.0% 49.0% 0.8% 45.5%
B T  - baseline 3.9% 7.0% 6.5% 16.5%

Source: A uthor’s own elaboration

Figures 5.4-5.6 show the payoff profile for three best-performing strategies 
for betting on favourites applied to grand slam matches. Full models for random 
forest and neural networks exhibit the highest absolute profitability, while the 
full model for boosted trees exhibits that highest ROI.

Figure 5.4: Neural Networks for Grand Slam Matches - Payoff Profile
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Figure 5.5: Random Forest for Grand Slam Matches - Payoff Profile
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Figure 5.6: Boosted Trees for Grand Slam Matches - Payoff Profile
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Table 5.15 outlines the comparison of ROI and % of matches to bet on 
between train and test set for betting on favourites applied to grand slam 
matches.

Table 5.15: Best Models for Grand Slam Matches - Overview

M odel
T rain  Set Test Set

ROI % Matches ROI % Matches
NN - full 14% 46.7% 7.4% 39.7%
R F - full 5.3% 16.0% 6.1% 15.0%
B T  - full 2.7% 22.1% 9.3% 17.6%

Source: A uthor’s own elaboration
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5.3 Variable Importance

As we apply principal components to all non-binary features (280 out of 342), 
we cannot compare variable importance across original features. Nonetheless, 
we can still infer which binary and put-aside features are the most relevant and 
how their importance compares to PCAs. Here we discuss the most relevant 
binary and put-aside features across all three set of features - the baseline, the 
limited, and the full models. One can also examine how they compare to PCAs.

As expected, the full model is driven by bookmaker-odds related features 
with the external info and the dummy indicating that rank favourite is also a 
huge favourite based on bookmaker odds (odds below 1.25) exhibiting the high
est importance. Besides, favourite’s rank, rank difference, dummy indicating 
that the match does not have a favourite based on a rank group, and dummies 
pinpointing that the favourite is a former TOP10/TOP11-30 as representatives 
of rank-related features are also significant. Two of our miscellaneous and ex
perimental variables show a high importance as well - dummy indicating that 
the favourite’s last tournament was successful and the dummy expressing that 
an underdog had to qualify to the main draw.

As for the model without bookmaker odds-related features (limited model), 
additional important binary variables are revealed - three sets are needed to win 
the match, the favourite is seeded, favourite/underdog plays home, underdog 
got a wild card, underdog’s last tournament was successful, the match is played 
on underdog’s least favourite surface, and the match is an R16 match.

Finally, the variable importance for baseline models confirms that book
maker odds-related variables are more important than rank-related ones. Ei
ther external info or the dummy indicating that rank favourite is also a huge 
favourite based on bookmaker odds is shown to be the most important vari
able across all four machine learning algorithms. Favourite rank, as the most 
relevant rank-related features, is ranked in the third place at best.
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Tables 5.16-5.18 outline the scaled variable importance7 for the full, the 
limited, and the baseline set of features across all machine learning algorithms. 
TOPIO most important variables are selected for each model unless there are 
less than ten variables with the importance above 1.

Table 5.16: Variable Importance - Full Models

LR RF BT N N
External info 33 92 84 66
External info squared 3 100 84 48
Favourite is a former TOP 11-30 player 29
Favourite is a former TOPIO player 51
Favourite rank 72
Favourite’s last tournament was successful 29
Match without favourite - rank group 50
PCI 1 35 100
PC11 30
PC13 30
PC20 29
PC3 2 29 77
PC30 30
PC55 23
Rank difference 66
Rank favourite is a big favourite - odds 26 32
Rank favourite is a favourite - odds 13 37
Rank favourite is a huge favourite - odds 100 65 71 100
Tournament level is A250 22
Underdog is a qualificant 34

N o te :  P C X  - p r in c ip a l  c o m p o n e n t

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n

7The variable with the highest importance takes value 100, while others are scaled back 
based on their relative importance to the most important variable.
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Table 5.17: Variable Importance - Limited Models

LR RF BT N N
3 sets to win 62 48
Favourite is a former TOP 10 player 51
Favourite is seeded 49
Favourite is a TOPIO player 44
Favourite plays home 68 66
Favourite rank 26 72
Match without favourite - rank group 49
PCI 100 100
PC12 26 35 31
PC13 28
PC16 28 29 37
PC2 27
PC21 58
PC3 38 77
PC44 49
PC55 32 26
PC6 27
PC75 46
PC9 79
R16 match 81
Rank difference 26 28 66
Underdog got a wild card 38 56
Underdog is a qualificant 100 100
Underdog plays home 60
Underdog’s last tournament was successful 66
Underdog’s least favourite surface 48

N o te :  P C X  - x t h  p r in c ip a l  c o m p o n e n t

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n

Table 5.18: Variable Importance - Baseline Models

LR RF BT N N
External info 12 100 100 100
External info squared 13 92 100 68
3 sets to win 7 29
Favourite rank 1 36 81 25
Match without favourite - rank group 6 46 9
Rank difference 3 30 72 50
Rank favourite is a big favourite - odds 37 24 44 32
Rank favourite is a favourite - odds 24 23 10
Rank favourite is a huge favourite - odds 100 70 80 82

N o te :  P C X  - p r in c ip a l  c o m p o n e n t

S o u rc e :  A u t h o r ’s o w n  e la b o r a t io n



Chapter 6

Conclusion

In this thesis, by employing 40 310 ATP matches played during 1/2001-10/2016 
and 342 input features, we examine the prediction accuracy and betting return 
of four machine learning algorithms applied to men tennis matches - penal
ized logistic regression, random forest, boosted trees, and artificial neural net
works. Three sets of features are investigated across all four machine learning 
algorithms - the baseline sets that includes only five bookmaker odds-related 
features along with three rank-related and one additional feature, the limited 
set that contains all but bookmaker odds-related features, and the full set that 
utilizes all input features. Therefore, we evaluate 12 different model specifica
tions.

The contributions of this work are fourfold. First, we investigate the ap
plicability of previously untapped machine learning methods concerning tennis 
forecasting - random forests and boosted trees. Secondly, while the majority of 
tennis models employ only a limited set of explanatory variables (i.e., usually 
well below ten), we re-employ all significant features found in all papers written 
on the topic and add a set of new features resulting in 342 features in total. 
Thirdly, following the notion ’here is a need to test the relative performance of 
heuristics, experts, and complex forecasting methods more systematically over 
the years rather than in a few arbitrary championships’ (Goldstein & Gigeren- 
zer, 2009), this thesis covers whole ATP seasons during the period 2001 - 2016, 
as opposed to only a few seasons or few specific tournaments majority of other 
papers use. As a result, presented results are more robust. Finally, our the
sis examines whether a constant bet size or a variable bet size based on the
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half-sized Kelly criterion is preferred for tennis betting.

The analysis provides the following answers to our four hypotheses. Firstly, 
we show that a profitable strategy for online tennis betting market can be for
mulated. We develop six profitable betting strategies for betting on favourites 
applied to both non-grand-slam with ROI ranging from 0.8% to 6.5%. Also, 
we identify ten profitable betting strategies for betting on favourites applied to 
grand slam matches with ROI fluctuating between 0.7% and 9.3%. We beat 
both benchmark rules - backing a better-ranked player as well as backing a 
bookmaker’s favourite. Neural networks and random forest are the most op
timal models regarding the total profitability, while boosted trees yield the 
highest ROI.

Secondly, as far as the prediction accuracy is concerned, all model specifi
cations beat backing a better-ranked player, while the majority also surpasses 
backing a bookmaker’s favourite. While some of the more complex model 
specifications outstrip the penalized logistic regression in both overall accuracy 
rate and AUC, the improvement is negligible. Overall, our models outperform 
current state-of-art models for both non-grand-slam (69%) and grand slam 
matches (79%).

Thirdly, we conclude that the bet size based on the half-sized Kelly cri
terion leads to a higher betting return if applied to betting on favourites for 
both non-grand-slam and grand slam matches. 17 out of 18 identified betting 
strategies for betting on favourites prefer the bet size based on the half-sized 
Kelly criterion to the constant bet size. On the contrary, as for the betting on 
underdogs, the bet size based on the half-sized Kelly criterion is preferred only 
in seven out of 17 cases.

Finally, we examine that grand slam matches outperform non-grand-slam 
matches both in terms of prediction accuracy and betting performance. As 
for the prediction accuracy, the overall accuracy rate for grand slam matches 
exceeds the overall accuracy rate for non-grand-slam matches by 6.9% to 10.1%. 
The significant difference is also encountered by AUC - from 0.062 to 0.090. As 
far as the betting performance is concerned, the betting on favourites for grand 
slam matches surpasses the betting on favourites for non-grand-slam matches 
regarding the total profitability (1631 compared to 1582 on average), ROI (4% 
compared to 2.3% on average), and the proportion of matches to bet on (30%
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compared to 21% on average).

With further optimization of tuning parameters of more complex models 
(e.g., the number of trees or the number of features considered at each split 
for random forest; learning rate or the number of iterations for boosted trees; 
the number of hidden neurons or weight decay for neural networks), more 
comprehensive feature selection procedures such as simulated annealing, the 
extension of the set of input features, or by employing alternative approaches 
to the betting strategy selection, the improvement of both prediction accuracy 
and betting return might be achievable. Chapter Further Extensions presents 
some of the areas for potential improvement.



Chapter 7

Further Extensions

Despite our best effort, we believe that one can further enhance this work by 
the following:

Firstly, presented algorithms and betting strategies could be tested on 
women matches taking pronounced differences between men and women’s ten
nis into account. For instance, Magnus & Klaasen (1999) show that men play 
fewer points per game and more games per set as the dominance on serve is 
greater for men. Also, Del Coral & Prieto-Rodriguez (2010) reveal that tennis 
skills are much more surfaced-biased for men than for women. Besides, De 
Paola & Scoppa (2017) reveal that women losing the first set are much more 
likely to play poorly in the second set, compared to men. Early modeling at
tempts to capture women’s tennis dynamics suggest that an efficient model for 
women’s tennis can lead to better predictive power as well as higher betting 
return, compared to men’s tennis (Madurska, 2012).

Secondly, although we significantly extend the set of explanatory variables, 
several important aspects of tennis match are still not captured sufficiently 
(e.g., player’s susceptibility to particular playing style, fear against specific 
opponents, form at the day of the match, or current mental state of the players). 
Furthermore, more extensive experimentation with interaction terms could also 
lead to an improved model performance.

Thirdly, one may employ presented machine learning techniques with dif
ferent dependent variables, such as the number of games/sets played or the 
duration of the match. Although betting performance of these models is vir-
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tually impossible to assess due to historical unavailability of bookmaker odds 
other than pre-match odds for winning the match, the data on the number of 
games/sets played along with the duration of the match are easily available and 
thus at least the predictive power of these alternative models can be inferred.

Also, even though we introduce previously untapped machine learning al
gorithms - random forest and boosted trees, alternative techniques such as 
k-nearest neighbours, stochastic gradient boosting, flexible discriminant anal
ysis, support vector machines, or C 5.0 can be used. Furthermore, even with 
presented algorithms, further optimization can be performed. Due to the com
putational limitations, we deal with a limited set of hyperparameters of the 
model to tune. Enlarging set of tuning parameters might lead to an improve
ment, especially for more complex approaches such as neural networks and 
boosted trees.

Moreover, with the improved availability of point-by-point data, the poten
tial of presented machine learning techniques for in-game betting can also be 
investigated.

Last but not least, although we identify 17 profitable betting strategies for 
betting on underdogs on the train set, none of them yield a positive return on 
the test data. Therefore, as far as the betting on underdogs is concerned, the 
alternative approaches for betting strategy selection could be investigated.
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Appendix A

Appendix

Correlation of Predictions

Table A .l: Correlation of Predictions - Full Model

LR R F BT N N Im plied P ro b
LR 1.00 0.90 0.98 0.94 0.97
R F 0.90 1.00 0.89 0.88 0.90
BT 0.98 0.89 1.00 0.92 0.95
NN 0.94 0.88 0.92 1.00 0.93
Im plied P ro b 0.97 0.90 0.95 0.93 1.00

Table A .2: Correlation of Predictions - Limited Model

LR R F BT N N Im plied P ro b
LR 1.00 0.84 0.92 0.93 0.90
R F 0.84 1.00 0.86 0.82 0.80
BT 0.92 0.86 1.00 0.88 0.86
NN 0.93 0.82 0.89 1.00 0.85
Im plied P ro b 0.90 0.80 0.86 0.85 1.00

Table A .3: Correlation of Predictions - Baseline Model

LR R F BT N N Im plied P ro b
LR 1.00 0.81 0.99 0.99 0.97
R F 0.81 1.00 0.82 0.81 0.79
BT 0.99 0.82 1.00 0.99 0.97
NN 0.99 0.81 0.99 1.00 0.97
Im plied P ro b 0.97 0.79 0.97 0.97 1.00
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