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Abstract

This thesis analyses what drives sovereign credit risk when contagion is con-

trolled for. CDS spreads are used as a measure of credit risk and bond yields

are used to estimate interconnectedness of the examined countries. The main

contribution lies in the use of high–frequency data and a robust wavelet based

estimator in addition to spatial econometric model. The aim of this thesis is to

test for presence of contagion and to evaluate which fundamentals are decisive

for market perception of sovereign credit risk. Another goal is to evaluate the

possibility of a structural break caused by the Greek debt restructuring.

The results show that the restructuring did bring change. Contagion is present

during the post–crisis period and it diminishes as the economies recover. Sim-

ilarly, fundamentals are of higher importance in the post–crisis period when

compared with the following period.
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Abstrakt

Tato práce analyzuje, co ovlivňuje kreditńı riziko stát̊u, za zohledněńı přenos̊u

rizika. Pro měřeńı kreditńıho rizika jsou použity Credit Default Swap (CDS)

spready a úroky vládńıch dluhopis̊u jsou použity k odhadu provázanosti zk-

oumaných stát̊u. Hlavńı př́ınos této práce spoč́ıvá v použit́ı vysokofrekvenčńıch

dat a robustńıch metod jako doplňku k prostorovému ekonometrickému mod-

elu. Ćılem práce je testovat př́ıtomnost přenos̊u rizika a vyhodnotit, které

ekonomické indikátory jsou rozhoduj́ıćı pro tržńı ohodnoceńı kreditńıho rizika.

Daľśım ćılem je vyhodnotit možnou př́ıtomnost strukturálńı změny zp̊usobené

restrukturalizaćı řeckého státńıho dluhu.

Výsledky analýzy potvrzuj́ı tuto strukturálńı změnu. K přenosu rizika docháźı

v obdob́ı po krizi a jeho efekt se ztráćı při ekonomickém oživeńı. Význam eko-

nomických indikátor̊u je vyšš́ı v obdob́ı po krizi oproti následuj́ıćımu obdob́ı.

Klasifikace JEL C22, C31, C33, G01, G32, G33

Kĺıčová slova prostorová ekonometrie, CDS spready,

kreditńı riziko státu, nákaza, realizovaná
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Motivation Understanding of credit risk drivers is of substantial importance for

policy makers to take proper steps in its evaluation and management. To under-

stand the forces behind credit risk, it is crucial to properly specify the models to

be estimated. Drivers of sovereign credit risk can be explored with a simple (panel)

regression. However, due to economies’ interconnectedness, the regression results can

be biased as economically close countries tend to influence each other also in terms of

credit risk. Generally, sovereign credit risk drivers have been investigated by many

studies but the spatial impact has not been given sufficient attention. Therefore, I

am willing to extend the current state of research by extending the investigation into

spatial perspective.

For my analysis I will use daily data on credit default swap (CDS) rates which are

commonly considered to be an appropriate measure of credit risk in the literature.

(e.g. Tang and Yan (2010), Pesaran et al (2003), Eder and Keiler (2012)). To

estimate the interconnectedness of the countries, I will work with data on interest

rates at high frequency. With higher frequency data, it is possible to get more

information from the data while cleaning the estimates from negative effects of micro-

structure noise and jumps with use of sophisticated estimators. ”The proportion

of co-jumps relative to the covariance increased during 2012 - 2015. Hence, the

impact of co-jumps on correlations increased, and appropriately estimating co-jumps

is becoming a crucial step.” (Baruńık and Vácha 2016).

Hypotheses

Hypothesis #1: Macroeconomic conditions drive sovereign credit risk.

Hypothesis #2: The drivers’ impact is biased by cross-country correlation.



Master’s Thesis Proposal xii

Hypothesis #3: The impact of cross-country correlation as well as the other

drivers changed significantly during the crisis.

Methodology First part of the thesis will be dedicated to literature review. I will

investigate recent studies of sovereign credit risk determinants and used methodology.

I suspect that the explanatory variables’ impact evaluation using panel data is biased

by interconnectedness of financial sectors between countries. This will be taken into

account during construction of the econometric model. Additionally, I will divide

the data into sub-periods to see if the impact was different in different sub-periods.

Second part will focus on the data and choice of proper estimators. I will use high

frequency data on interest rates to estimate interconnectedness of financial sectors

between countries. Using this data, I will estimate cross-country correlations to

obtain spatial weights matrix which will be subsequently used in the final spatial

estimation. I suspect the simple correlation estimates to be biased by presence of

jumps and co-jumps. Therefore, I will investigate the data to explore the presence

of jumps and co-jumps and based on results of this investigation I will choose proper

estimator based on current literature regarding this topic. Using the estimator with

the lowest expected bias given the structure of the used data, I expect to obtain

credible correlation estimates for the spatial analysis.

Since I want to work with daily data on CDS to measure credit risk, further

steps are needed before final estimation as macroeconomic indicators are updated

at lower frequencies. To tackle this issue I will work with wavelet reconstruction

and averaging or other appropriate framework to obtain quarterly measures of credit

risk levels to cope with the frequency mismatch in the data. This way I will have

all variables for the estimation with the same (quarterly) frequency and be able to

estimate the effects.

In the final estimation, I will use chosen model from the spatial econometrics

framework to evaluate macroeconomic conditions’ impact on sovereign credit risk

having controlled for the interconnectedness of the countries’ financial sectors. Choice

of the model will be subject to further theoretical analysis. I will use the cross-

country pairwise correlation estimates to construct the spatial weights matrix in the

model. Subsequently, I will regress the calculated quarterly credit risk levels on

chosen macroeconomic indicators.

In the absence of cross-country correlation bias, the correlation coefficient of the

spatial parts of the model will be insignificant. If it will be significant, it means that

the estimates in simple panel estimation would be biased and countries’ intercon-

nectedness must be controlled for. Subsequently, I will compare these results with

results of an estimation not taking countries’ interconnectedness into account to see

the size of possible bias.
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Expected Contribution I will conduct an empirical analysis of sovereign credit

risk drivers. I will work with daily data on CDS spreads to get as much information

about sovereign credit risk as possible. Using sophisticated estimators, I will evaluate

true cross-country correlations to construct spatial weights matrix for further analysis

based on the spatial econometrics framework. In contrast to previous analyses, I will

control for the countries’ interconnectedness in the estimation to obtain unbiased

estimates of macroeconomic conditions’ impact on sovereign credit risk. The results

will provide information on importance of taking countries’ interconnectedness into

consideration when performing analyses and will improve general understanding of

the forces behind sovereign credit risk. Also, this work differs from current literature

with its aim to demonstrate the possibility of employment of elaborate estimators

working with high-frequency data and using their results in broader context, in this

case spatial econometric models working with macroeconomic conditions.

Outline

1. Motivation: there are analyses of credit risk drivers but they do not take

countries’ interconnectedness into account. Spatial autocorrelation can be of

substantial importance to results of econometric analyses which I suspect to

be this case.

2. Studies on sovereign credit risk drivers: I will briefly describe how recent stud-

ies evaluate drivers of sovereign credit risk.

3. Data: I will explain how I will choose proper estimators and subsequently

construct the spatial weights matrix and quarterly levels of sovereign credit

risk based on high-frequency data.

4. Methods: I will explain existing spatial econometric models and choose one

that will suit this case the best.

5. Results: I will discuss the results of my estimations and compare them pairwise

between chosen sub-periods as well as with results of other studies.

6. Concluding remarks: I will summarize my findings and their implications for

future research.
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Chapter 1

Introduction

Understanding what drives sovereign credit risk is important for both policy-

makers and market participants. Appropriate specification of the problem, and

consequent specification of models is necessary for proper understanding of the

topic. Drivers of sovereign credit risk can be explored with structural models

using panel data. However, as a result of economies’ interconnectedness, the es-

timation results can be biased as economically close countries tend to influence

each other in various economic aspects, including credit risk. This phenomenon

is often referred to as spillovers or contagion, and is present especially during

crisis and post–crisis periods. Generally, sovereign credit risk drivers have been

investigated by many studies but the impact of spillovers and contagion has

not been given sufficient attention. This thesis aims to extend the current state

of research by extending the investigation into spatial perspective, i.e. include

spillovers and contagion into the models.

The objective of this thesis is to investigate drivers behind sovereign credit

risk while controlling for spillover effects and contagion. This topic is anal-

ysed using a dataset covering 14 European countries over the 2009–2016 pe-

riod. Data on CDS spreads are used as a measure of sovereign credit risk. To

control for spillover effects and contagion, spatial econometrics framework is

employed. To model the interconnectedness of the examined countries, robust

wavelet based covariance estimator is used on daily data of 10–year sovereign

bond yields. To our knowledge, the approach of adding information based on

high–frequency data has not been used before in related literature.

Correlations estimated with this estimator are consequently used in the spatial

component of the econometric model. Macroeconomic indicators are used as
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explanatory variables in the model. The dataset is split into two parts — be-

fore and after the Greek sovereign debt restructuring — and separate models

are estimated. It is found that fundamentals (represented by macroeconomic

indicators) have lower explanatory power to sovereign credit risk in times of

economic prosperity, i.e. after the Greek sovereign debt restructuring. Simi-

larly, spillover effects and contagion, represented by the spatial component of

the model, lose their importance when moving from the first sub–period to the

second sub–period.

The rest of the text is organised as follows: Chapter 2 provides an overview

of literature regarding topics related to the topic of this thesis. Chapter 3

builds on the literature and describes the steps taken in empirical research. In

Chapter 4, the used data are described. The results of the used econometric

model are presented and discussed in Chapter 5. Chapter 6 concludes.



Chapter 2

Literature Review

This chapter provides a summary of selected studies regarding the topic of

sovereign credit risk as well as spatial approach to the problem resulting mainly

from the presence of contagion and interconnectedness of markets.

2.1 Sovereign Credit Risk

A substantial amount of literature was published on the topic of credit risk

recently. The analysis of credit risk has become a hot topic especially since the

emergence of the 2007–2009 crisis. More importantly, the perception of credit

risk as well as findings regarding the drivers behind it have changed ever since.

It is worth noting that corporate credit risk has received more attention than

sovereign credit risk. Nevertheless, sovereign credit risk has also been broadly

analysed since its role has changed during the crisis due to the interconnected-

ness of sovereigns and financial systems, and stabilisation programmes intro-

duced by governments. This section summarises existing literature related to

this topic which helped us understand the problem and provided us with ideas

to pursue when writing this thesis. The chapter starts with an introduction of

the topic of sovereign credit risk and its measures and follows up with empiri-

cal analyses viewing the topic from various perspectives, e.g. different types of

determinants of sovereign credit risk or different groups of sovereigns.

As mentioned above, corporate credit risk has been subject to many studies.

Corporate credit risk is simpler to assess as it can be modelled using detailed

and accurate firm–level information. A typical example is data regarding cap-

ital structure which makes no sense on the country level. Crouhy et al. (2000)
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analysed and compared various credit risk models used in business. On top of

firm–level information, macroeconomic variables are often used to explain part

of the credit risk, e.g. Bonfim (2009) uses macroeconomic variables together

with firm–specific characteristics to model default probabilities. The inclu-

sion of macroeconomic variables not only leads to more precise results, but

macroeconomic variables also show to be of stronger influence than firm–level

information. Pesaran et al. (2006) added a global perspective to this topic and

developed a new approach to modelling of conditional credit loss distributions.

The approach is constructed by linking firms’ asset value changes to a global

dynamic macroeconomic model allowing for firm–specific reaction to the busi-

ness cycles. Both local and global business cycles are considered in the model

as well as their interconnectedness. Koopman et al. (2009), on the other hand,

found little influence of macroeconomic fundamentals on the default dynamics

of firms. More specifically, the authors suggest that the models seem to be

dynamically misspecified and having controlled for this misspecification, the

significance of macroeconomic variables drops sharply.

Augustin (2014) has summarized knowledge on the topic of sovereign CDS

premia and related topics like spillovers, contagion or frictions. This paper

provides an introduction into existing literature on the topic of sovereign CDS’s

as well as basic characteristics of the market. It provides the reader with

insight into the topic and sources of detailed information on particular sub–

topics. Similarly, Packer & Suthiphongchai (2003) provided introduction into

the topic of sovereign credit risk, and on top of a brief explanation of the func-

tion and structure of CDS’s, the authors used a dataset of CDS’s covering the

period of 1997 — 2003 to compare sovereign, corporate, and bank CDS’s from

various perspectives. The sharp upswing in use of derivatives since the mid

90’s is also worth mentioning. In the used sample, quotes on sovereign CDS’s

accounted for 7.4% of all quotes. On the other hand, sovereign CDS’s were the

most concentrated in activity as they exhibit highest mean quotes per name.

The authors discovered differences in sovereign CDS’s as opposed to corporate

and bank ones. In the sub–group of highly rated debtors, sovereign CDS premia

tended to be lower. This can be accounted to the presence of strong sovereigns

in the sample who would probably be rated even above AAA if it was possible.

Another suggested explanation works with differences in liquidity. This differ-

ence diminishes when moving towards the sub–groups with lower rating. For

ratings below BB, the difference turns to the opposite direction as sovereign
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CDS’s reported higher premia than CDS’s of corporates with the same rating.

The authors suggest that this is due to uncertainty regarding the situation fol-

lowing a sovereign default.

Cantor & Packer (1996) was the first study to use Moody’s and Standard

and Poor’s ratings of sovereigns and quantify the determinants behind. The

authors covered a sample of 49 countries over 1987 — 1995 and used ratings

as a measure of sovereign credit risk. The authors stressed the importance of

sovereign credit assessment as it not only influences the sovereigns themselves,

but also borrowers of the same nationality. The study quantified the influence

of macroeconomic indicators on the sovereign rating. Most of the used variables

(e.g. Gross Domestic Product (GDP), per capita income, inflation etc.) turned

up significant and of expected signs. Fiscal and external balances, however,

did not seem to have any impact on the rating. This may be due to the fact

that market forces do not allow poorly rated sovereigns to enter weak posi-

tions in the first place and therefore the effect of fiscal and external balances

diminishes. The authors also investigated the relationship between ratings and

yields. According to their estimation, 92% of the variation in spreads can be

explained by ratings. Together with other estimations carried out in the study,

the result suggests that the ratings not only summarize the information covered

by macroeconomic indicators, but also contain additional information which is

quite expectable since the rating agencies do not rely solely on these indicators.

All in all, the authors confirmed the relation between macroeconomic indica-

tors and credit risk as well as additional information provided by ratings which

is of importance regarding assessment and pricing of sovereign credit risk.

Recent studies on credit risk have focused on CDS spreads as a measure of credit

risk, but ratings have remained being an important indicator. Aizenman et al.

(2013a) have looked for links between rating as a primary indicator of credit

risk and their link to CDS spreads in European countries during pre–crisis and

crisis period. With the arrival of the 2007 — 2009 crisis, disputes over the effi-

cacy of credit ratings have returned and the authors attempted to contribute to

this discussion by shedding light on the link between ratings and credit pricing

of sovereigns. Using a dataset covering all 27 European Union (EU) coun-

tries except Luxembourg during the period from January 2005 to August 2012

the authors find that the relationship between credit rating changes and actual

sovereign spreads is complicated and non–linear and depends on the level of rat-

ing. Moreover, during the crisis, differences in this relationship have emerged
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among sub–groups of European countries. The authors have confirmed that

rating changes influence CDS spreads even having controlled for fundamentals.

In the pre–crisis period, EU countries showed similar responses in CDS spreads

to changes in rating, while during the crisis differences emerged. In particular,

Portugal, Ireland, Italy, Greece and Spain (PIIGS) started to be significantly

more sensitive. In general, the response was the strongest at the lowest lev-

els of rating and then followed an inverted U–shaped curve. Interestingly, no

contagion from PIIGS’ downgrades of rating to other EU countries was discov-

ered. As for the link between ratings and CDS spreads, the authors suggested

the crisis had caused a shift in sovereign credit risk pricing towards increased

importance of economic fundamentals, and divergence of the perception of risk

between market and rating agencies.

Another interesting perspective is to investigate the relation between CDS’s

and underlying assets. Fontana & Scheicher (2016) studied the pricing of Euro

area sovereign CDS’s and its relation to the underlying bonds on a sample of

10 countries from January 2006 to June 2010. The authors first analysed both

instruments and the spread determinants separately and then studied the basis

— the difference between CDS spread and bond spread. The authors noted

that the 2007 — 2009 crisis has changed the perception of developed countries’

sovereign bonds, and at least partially assigned the repricing of the sovereign

debt to changes in investor risk appetite during and after the crisis. This change

in risk appetite was also found to be one of the major drivers of the increase in

CDS premia (an unprecedented upsurge of CDS’s was experienced by the end of

2008 and early 2009). Nevertheless, the authors noted that the sovereign CDS

market had remained strongly less liquid than the bond market, which implies

the possibility of so called flight to liquidity effects, especially in times of crisis.

This is, according to the authors, one of possible explanation of the existence

of the aforementioned basis. The authors have discovered some differences in

the determinants of CDS spreads and bond spreads. For both spreads, it was

confirmed that they are related to corporate CDS premia, and that global risk

appetite influences the spreads. Interestingly, the ratio of bonds outstanding

over GDP was significant only for bond spreads. The authors also employed

lead–lag analysis of CDS and bond spread changes. While before the crisis, no

cointegration was discovered (probably due to low activity at the CDS mar-

ket in that period), it was present for all analysed countries in the sub–period

starting in September 2008. Nevertheless, the order (i.e. at what market the
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price discovery takes place and which market adjusts) differed among coun-

tries. Overall, the study showed presence of arbitrage opportunities, not easily

exploitable nevertheless. Also, it showed similar patterns in the behaviour of

sovereign bond and CDS spreads, which indicates that our choice of sovereign

bond spreads cross–correlations as a measure of economic proximity in the em-

pirical model is suitable. Similarly, Afonso et al. (2012) investigated spread

between bond spreads and CDS spreads and impact of rating announcements

on the spread. This study found causality between ratings and spreads. Also,

spillover effects were confirmed, especially in the Euro area countries. Spillovers

from lower rated countries to higher rated countries were of major importance

compared to the opposite direction. Moreover, countries with recent history

of downgrade(s) showed persistence effects in the perception of their risk mea-

sured by CDS and bond spreads.

Many studies conclude that during the crisis, market perception of sovereign

credit risk and its determinants have changed. The publications most fre-

quently analyse possible determinants of sovereign credit risk, mostly economic

fundamentals and related indicators. Pokorná & Teplỳ (2011) discussed these

changes and stressed the increase in importance of fundamentals impact on CDS

premia as a measure of sovereign credit risk. During the crisis, European gov-

ernments participated in various programs to stabilise financial systems which

influenced their fiscal position and consequently market perception of their

credit risk. Aizenman et al. (2013b) analysed the relation between sovereign

risk pricing and fiscal space (ratio of debt and deficits to tax revenues) together

with other economic indicators on a sample of 50 countries over 2005 — 2010.

Also, the authors tried to evaluate whether the sovereign risk was overpriced

in some regions. Regarding this issue, they focused on South–West Euro Area

Periphery (SWEAP) countries. The study confirmed importance of fiscal space

as well as other fundamentals in risk pricing. The models accuracy, however,

fell sharply during the crisis. Also, the study showed that even having con-

trolled for the fundamentals, sovereign spreads for Euro countries (including

SWEAP) were substantially lower than for the rest of the world. On the other

hand, the spreads for SWEAP countries were strongly above average the whole

time and rising even in the times of global trend of decline in 2010. Moreover,

the study showed divergence of SWEAP countries from other country groups

during the crisis which calls for closer attention in this thesis since some of

the SWEAP countries are present in our sample as well. Beirne & Fratzscher
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(2013a) analysed the drivers behind sovereign credit risk during and after the

crisis. The authors used sample of 31 advanced and emerging market econo-

mies over the 2000 — 2011 period to analyse links between risk measures and

economic fundamentals looking for explanation of market overreactions such as

contagion. Even though the dataset covers more countries, the authors focused

on the subset of Euro–area countries. Like other studies, this one found that

economic fundamentals had little importance in explanation of sovereign credit

risk before the crisis and their influence had been growing ever since. Moreover,

the authors found that cross–country spillovers had declined during the crisis

and pure contagion was confirmed only in several short periods. These findings

together with the estimations carried out in the paper lead the authors to the

following conclusions: Cross–country spillovers were of negligible importance

and importance of “pure contagion” was very limited. Changes in fundamentals

and corresponding fundamentals contagion, on the other hand, proved to be

major drivers of sovereign credit risk during the crisis. The increase in impor-

tance of fundamentals during the crisis may be attributed to change in market

agents’ perception of those fundamentals since in the pre–crisis period, their

importance was lower, whereas regional contagion and cross–country spillovers

played a more important role. These findings suggest closer attention is paid

to possible changes in importance of contagion over time in the empirical part

of this thesis since our dataset covers crisis and post–crisis period. It is plausi-

ble that in the post–crisis period, cross–country spillovers have started gaining

importance again. This will be subjected to further analysis.

Dieckmann & Plank (2012) documented the upsurge in sovereign CDS mar-

ket liquidity during the crisis as a result of government–funded stabilization

programs and related private–to–public risk transfer. This study extended the

research on sovereign CDS’s as majority of publications regarding this topic

focused on emerging markets, whereas Dieckmann & Plank (2012) worked

with a sample of 18 developed economies — members of Western European

sovereign CDS market and covered period from January 2007 to April 2010. The

study showed increase in cross–sectional correlation of CDS’s among European

sovereigns with emergence of the crisis. This finding supports our hypothesis

of spatial autocorrelation of sovereign credit risk. We see investigation of this

topic as one of the main contributions of this thesis.

In further analysis, the authors used Principal Component Analysis (PCA) and

confirmed importance of fundamentals (such as health of financial system, gov-
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ernment exposure to the financial system etc.) to the perceived sovereign credit

risk (quantified by CDS spread). Moreover, they quantified the phenomenon of

government absorption of private sector risk which is generally believed to oc-

cur, especially in times of crises. Another interesting finding was higher sensi-

tivity of Euro–area countries (compared with non–Euro countries) to the health

of financial system due to their lower flexibility of monetary policy. This find-

ing is of importance for this thesis as our dataset includes Euro area countries

as well. Similarly, Ang & Longstaff (2013) studied systemic sovereign credit

risk by analysing data on the U.S. sovereigns and selected Euro area countries.

The used framework allowed the authors to distinguish between systemic as

well as country–specific shocks which resulted in finding that systemic risk was

strongly more present in the Euro area compared to U.S. sovereigns. Impor-

tance of financial market indicators for the sovereign credit risk, on the other

hand, was confirmed in both cases. Taking into consideration similar economic

state of the analysed countries, these results suggest that macroeconomic fun-

damentals are of lesser importance compared to financial markets indicators.

For better understanding of the consequences of the crisis, Ali & Daly (2010)

analysed default rates on a country level. The authors use a macroeconomic

credit model to conduct comparative analysis of the USA and Australia. The

motivation for ‘the choice of these two countries is the difference in to what

extent they were affected by the crisis. The results showed different default

rates resulting from the same set of macroeconomic variables. Also, Australian

economy proved to be less sensitive to adverse macroeconomic shocks compared

to the US economy.

2.2 Spatial Perspective

As suggested above, contagion and spillover effects are expected to occur in

the field of sovereign credit risk. Various studies show the usefulness of spatial

econometric approach in various fields but heretofore, the field of finance did

not receive sufficient attention. This section starts with review of publications

on theoretical point of view on the topic of spatial econometrics and then pro-

ceeds to its applications in fields close to the topic of this thesis. It is worth

noting that to our knowledge, sovereign credit risk was not analysed using such

approach. Therefore, this section summarises empirical studies regarding only

credit risk of other entities. Elhorst (2014) discussed existing models in the

field of spatial panel econometrics — static as well as dynamic models. Apart
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from general description of existing models, the author also provided sources

of information about them. The author described the differences in models

estimating demand for cigarettes, which is distant from topic of this thesis, but

still provides useful insight into the topic of spatial econometrics. Building on

this study and its sources regarding specific models, the best model given the

topic and data will be chosen. For further extension of the theoretical knowl-

edge of spatial econometrics, LeSage & Pace (2009) was studied. This book

provides thorough explanation of the theoretical fundamentals together with

plausible estimation techniques and their advantages and disadvantages. This

book is used as the main source of ’technical’ knowledge for the model con-

struction in the empirical part of the thesis. Additionally, Elhorst (2014) and

Anselin et al. (2008) are used regarding panel data extension of the originally

cross–sectional setting of the models. The analysis of Barunik & Vacha (2016)

then serves as a source of information on estimators’ performance when choos-

ing proper correlation estimator for the spatial weights matrix in the empirical

part of this thesis. This study investigated influence of noise, especially jumps

and co–jumps on various estimators of covariance or correlation. The authors

proposed a wavelet based estimator and compared its performance with other

estimators under varying conditions regarding presence of jumps.

As for applied work, Fernandez (2011) explored the possibilities of using the

concept of spatial econometrics in the field of finance. As the author states,

spatial dependency has been studied in various fields of study but in the case

of finance, it has not received adequate attention. The author worked with a

sample of more than 100 South–American companies over 1997 — 2006 and

a Spatial Capital Asset Pricing Model (S-CAPM) — a spatial extension of the

original Capital Asset Pricing Model (CAPM). Most importantly, the paper

described the principles of spatial econometrics and theoretical background of

its application. The author confirmed the existence of spatial dependency in

general, but when looking at each country separately, the evidence differed.

Nevertheless, this paper provides a solid introduction into the concept of spa-

tial econometrics along with basics of its theoretical background as well as its

potential importance in the field of finance. By applying the concept of spatial

econometrics on CDS’s, Keiler & Eder (2013) studied credit risk and spillover

effects on a sample of chosen 15 important financial institutions over 2004 —

2009. The authors introduced a new approach to the analysis and modelling

of credit risk by employment of the concept of spatial econometrics. This
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approach allows to control for and measure spillover effects by extending the

general regression model with an autocorrelation term specified by a weighting

scheme. Consequently, the analysed risk charge can be decomposed into its con-

stituent parts according to the theory: systemic, systematic and idiosyncratic.

The systematic component, which refers to the risk resulting from fundamen-

tals, and idiosyncratic (specific) component were subject to various analyses.

What is innovative in the employment of spatial econometrics is the separation

and measurement of the systemic component which stems from contagion as

a result of interconnectedness of the financial institutions. This study showed

that spillover effects are present due to institutional interconnectedness of a

significant magnitude, both statistically and economically. Specifically, up to

one fifth of credit risk changes are due to systemic risk. These results not only

show the importance of systemic risk but also imply that misleading results can

be obtained when the interconnectedness of the institutions is neglected. This

article analysed credit risk of financial institutions and estimated the intercon-

nectedness of these based on their equity correlations. This approach can be

used in a similar manner in this thesis with proper selection of an indicator to

measure interconnectedness of sovereigns. Similarly to the study of Keiler &

Eder (2013), CDS spreads are used in this thesis as a measure of credit risk.

There are also other ways to control for spatial correlation in models than

spatial econometrics as described in this section. For example, Fernandes &

Artes (2013) inspected spatial correlation in credit risk, specifically its impact

on credit risk scoring using data on approx. 9 million Brazilian SME’s. The

authors defined a variable measuring local risk and included it in their scor-

ing models. The authors first estimated spatial correlations using distance

and then incorporated it into the model to control for the effects. However,

this study confirmed importance of spatial dependence which seems favourable

for our hypothesis. Another example is Barro & Basso (2010) who studied

contagion in a portfolio of bank loans by a dynamic analysis of credit risk hav-

ing controlled for relations among the debtors, which is achieved by a spatial

interaction model. The authors generated networks using information about

economic sector and geographical location to model business connections. Re-

sults of the model show fat tails of the loss distribution resulting from the

component modelling of counterparty risk. This result speaks for presence of

contagion effect yielding increased credit risk.



2. Literature Review 12

2.3 Covariance Estimator

Barndorff-Nielsen & Shephard (2004a) extended the concept of realised variance

to multivariate environment and introduced the so called “realised covariance”.

By providing a new asymptotic distribution theory, their framework allows to

examine high–frequency correlations. The main drawback of this theory is in

the assumption of zero jumps and no noise. Therefore, real–world data con-

taminated with both jumps and micro–structure noise lead to biased results.

To deal with this issue, various approaches have been introduced. One of them

is in sparse sampling which reduces bias its robustness is redeemed by removal

of a large amount of data without any use. Empirically, bias increases with

increased sampling frequency as a result of higher presence of micro–structure

noise (Barunik & Vacha 2016). Therefore, quite counter–intuitively, smaller

amount of data leads to more precise estimations. Other possible approach is

in development of robust estimators using all available data.

Zhang (2011) introduced Two Scales Realized Covariance (TSCV) estimator

as a multi–variate extension of Two Scales Realized Variation (TSRV) estimator

presented by Zhang et al. (2005). This estimator deals with noise and reduces

bias while using all the data by sub–sampling. Griffin & Oomen (2011) con-

firmed the dependence of bias of realised covariance estimators on the level of

micro–structure noise. Also, the authors developed a consistent and efficient

covariance estimator dealing with micro–structure noise and non–synchronous

trading. Barndorff-Nielsen et al. (2011) developed a multivariate realised ker-

nel to robustly estimate covariation of log–prices. This estimator was examined

both in Monte Carlo study and in real–world data application on US equity

data.

These approaches, however, dealt mostly with presence of noise and did

not consider presence of jumps and co–jumps which can strongly influence the

estimated covariance. Keiler & Eder (2013) discussed the problem of correla-

tion estimates biased by shocks in their construction of spatial weights matrix.

Specifically, the authors analysed CDS spreads and used equity correlations for

the spatial weights matrix. They argued that the presence of jumps (or shocks)

influencing both CDS spreads and equity correlations is problematic. Based on

the spatial econometric framework of LeSage & Pace (2009), this causes en-

dogeneity of the spatial weights matrix and consequently inconsistency of the
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model. Keiler & Eder (2013) dealt with this issue by lagging the correlations.

In their analysis, the jumps are corrected for in order to obtain estimates of

the underlying correlations unaffected by the jumps. Nonetheless, the CDS’s are

directly linked to the bonds whose yields are used for calculation of the cor-

relation. This implies possible presence of endogeneity even having controlled

for the jumps. Hence, lagged matrices are used in the model.

The presence of jumps without adequate approach can lead to process

misspecification and severe consequences. As a result, jumps and co–jumps

have been addressed with increased attention lately (Barunik & Vacha 2016).

Barndorff-Nielsen & Shephard (2004b) introduced an approach building on

the difference between realised variance and bipower variation. Aı̈t-Sahalia

& Jacod (2009) introduced new test for jump detection in discretely sampled

processes comparing volatility on different scales. Another possible approach

lies in usage of individual intraday returns and their relation to daily volatility.

Such approaches were presented in Andersen et al. (2007) or Lee & Mykland

(2007). Lee & Mykland (2007) used their jump test on S&P Index and found

relationship between jumps and general market news announcements. Simi-

larly, Andersen et al. (2007) had started with Monte Carlo analysis and then

proceeded to use their estimator on S&P futures returns and confirmed the

importance of accounting for jumps when analysing the data. Andersen et al.

(2010) came up with an empirical framework which works with high–frequency

data on the basis of realised variation measures and non–parametric jump de-

tection statistics. This framework assesses distributional properties of the data

and uses a sequence of moment based tests to detect location and size of in-

traday jumps. Additionally, Andersen et al. (2012) developed two variance

estimators robust to jumps building on MinRV and MedRV measures. Finally,

Barunik & Vacha (2015) introduced a jump robust realised variance estimator

building on wavelet decomposition for detection of jumps and two–scale esti-

mation of variance robust to noise. This estimator was further extended to

multivariate environment to estimate covariances in Barunik & Vacha (2016).



Chapter 3

Model Specification

CDS’s are financial instruments that provide insurance against default. Since

markets reflect all available information and are forward looking, CDS spreads

seem to be a suitable measure of credit risk. Forte & Pena (2009) and Bun-

desbank (2010) confirmed CDS spreads’ superiority as a measure of credit risk.

One of the standard approaches to credit risk analysis is construction of struc-

tural models. This discipline assumes links between economic fundamentals or

other characteristics and credit risk. Moreover, this thesis extends the current

research on sovereign credit risk by incorporating spatial dependence term into

the models. This chapter describes the theoretical background used as well as

specific steps taken when specifying the model used in this thesis. The chapter

is organised as follows: section 3.1 provides an introduction into the topic of

spatial econometrics, section 3.2 describes the steps taken when constructing

spatial weights matrix, an essential component of the model, section 3.3 dis-

cusses model selection and model averaging techniques used to specify the final

model. Finally, section 3.4 discusses use of robustness check.

3.1 Spatial Econometrics

Spatial econometrics is a sub–field of econometrics which, on top of classic

relationship between the dependent variable and explanatory variables, intro-

duces the concept of spatial dependence. In other words, a spatial dimension

is added to the data and models are altered according to it. Based on the spa-

tial dimension, interdependence between the cross–sectional units is allowed in

some form. This implies that altered data generating processes are assumed
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when building models. The most commonly used models combine conventional

regression model approach with the spatial autoregressive structure (Anselin

2013). There are three main types of models that incorporate the concept

of spatial dependence into conventional econometrics: Spatial Autoregressive

Model (SAR), Spatial Error Model (SEM), and Spatial Lag of X Model (SLX),

all of which are briefly described below.

All of these models assume some form of spatial dependence. This depen-

dence is quantified by spatial weights matrixW which is exogenous and is incor-

porated into corresponding components of the model. This matrix represents

the ties between the cross–sectional units. In its simplest form, its elements can

be set to 1 for neighbouring countries and 0 otherwise. More complex structure

estimating proximity of the cross–sectional units can be used. Finally, the ma-

trix needs some form of standardisation in order to keep the data generating

process non–explosive. In the case of this thesis, the economic proximity of the

countries is modelled using correlation estimates of 10–Year sovereign bonds.

The whole procedure is described in section 3.2.

SAR accounts for spatial autocorrelation of the dependent variable. This

model is formalised in equation (3.1). The parameters to be estimated in this

model are β, σ, and λ. If λ is estimated to be equal to zero, the spatial au-

toregressive component is eliminated and only the conventional data structure

is left. This model assumes spatial autocorrelation of the dependent variable

which means that cross–sectional units influence each other in terms of the de-

pendent variable. A typical example of such data structure is profits of related

companies, say business partners. If a company’s performance drops, it can

have a negative effect on its business partners, as the volume of trade with

those partners is likely to decrease.

y = λWy +Xβ + ε

ε ∼ N(0, σ2In)
(3.1)

SEM assumes spatial dependence between the residuals. This approach mod-

els heterogeneity. This model is formalised in equation (3.2). The approach

of this model is similar in assumptions to panel data models in a sense that

heterogeneity is assumed to be present, i.e. each cross–sectional unit has an

individual intercept. This is not feasible when working with cross–sectional
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data, but in a spatial setting, the vector of individual intercept can be treated

as a spatially structured random vector (LeSage & Pace 2009). In panel data

structure, heterogeneity is originally assumed and therefore, this approach loses

its importance.

y = Xβ + u

u = ρWu+ ε

ε ∼ N(0, σ2In)

(3.2)

Finally, SLX, is based on presence of externalities. As the model name

suggests, spatial lag of X — the explanatory variable(s) — is included, i.e. ex-

planatory variables of other cross–sectional units can influence the dependent

variable. A typical example of such setting are prices of real estate. If a house is

located in a neighbourhood with expensive, nice houses with carefully trimmed

gardens, its price will be higher than the price of an otherwise same house in

neighbourhood full of trash with rats coming from neighbour’s garden (Anselin

2003). This model is formalised in equation (3.3).

y = Xβ1 + ρWXβ2 + ε

ε ∼ N(0, σ2In)
(3.3)

The models can be combined into a more complex structure. Combining

these models, different spatial weights matrices can be used for each type of

spatial dependence considered.

Elhorst (2014) provided extension of the originally cross–sectional setting

to spatial panel data structure. It is important to note that since originally,

spatial weights were cross–sectional. This means that for panel estimation, the

weights must be assumed to be constant which is not likely under the presence

of structural changes. This applies to this thesis due to the aforementioned

Greek debt restructuring. This event is likely to have changed the nature of

international interdependence of financial systems. Moreover, in the early years

of the examined period, the countries were recovering from the effects of the

crisis which again could have influenced the interdependence since contagion
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and spillover effects are usually stronger in crisis and post–crisis times. These

facts support the idea to split the dataset into sub–periods and observe differ-

ences.

As a result of two–directional property of the spatial autocorrelation, prob-

lem of spatially lagged errors arises. The heterogeneity of one cross–sectional

unit enters the explanatory variable of other cross–sectional units via the spatial

autocorrelation term. This implies joint dependence of the dependent variable

and the error term in each observation period. This issue can be dealt with in

two ways: Maximum Likelihood Estimation (MLE) estimation with complete

distributional specification or Generalised Method of Moments (GMM) estima-

tion using instrumentation(Anselin et al. 2008).

The general model used in this thesis is specified in equation (3.4). It is a

SAR model, i.e. it accounts for spatial autocorrelation of the dependent vari-

able. Heterogeneity is assumed to be controlled for by the nature of the panel

data treatment method itself. Given the topic of this thesis, there is no reason

to expect direct influence of spatial lags of explanatory variables on the depen-

dent variable. The inclusion of spatial lags of the dependent variable, on the

other hand, allows for incorporation and evaluation of systemic risk (Keiler &

Eder 2013).

y = λWy +Xβ + ε

ε ∼ N(0, σ2In)
(3.4)

As suggested above, there are two possible approaches to estimation of the

model: MLE and GMM. The common approach for estimation of spatial models

is MLE. This approach is well developed for cross–sectional spatial models and

Anselin et al. (2008) provided its extension to panel data setting. Assuming

normality, log–likelihood functions are derived and consequently optimised. In-

ference relies on asymptotic normality. Spatial lag terms can be incorporated

into the log–likelihood function to adjust to spatial panel data setting. Nu-

merical procedure of estimation and inference follows. For the assumption of

normality necessary for MLE estimation is often unlikely to hold, an alternative

approach is convenient. One such alternative is GMM estimator; the presence
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of endogeneity of the spatial lag component in the model can be solved via

instrumentation with the use of spatial lags of the explanatory variables as

instruments (Kelejian & Robinson 1993), (Kelejian & Prucha 1998). This way,

the endogenous spatial lag of the dependent variable is instrumented, and the

model can be consistently estimated using iterative spatial three–stage least

squares estimator. See Anselin et al. (2008) for further explanation of the

methods.

3.2 Construction of Spatial Weights Matrix

One of the main focuses of this analysis is the estimation of the spatial weights

matrix. The basis for the construction is in estimation of cross–country corre-

lations from daily data on 10–year bond yields. Highly robust Jump Wavelet

Two-Scale Covariance (JWTSCV) is engaged due to the presence of jumps, co–

jumps, and noise in the data. This estimator uses wavelet decomposition for

jump detection, and subsequently, for two–scale estimation of the correlation

of the jump–adjusted process. This section builds on the work of Barunik &

Vacha (2016) and other studies mentioned in section 2.3.

Consider an observed logarithmic price process Yt. Assume this process con-

sists of an underlying logarithmic price process Xt and a microstructure noise

term εt with zero mean and finite variance and independent of the logarithmic

price process. This is specified in equation (3.5).

Yt = Xt + εt (3.5)

As specified by Protter (1990), the quadratic return covariation of (X1
t , X

2
t )

denoted by QV1,2 can be decomposed into integrated covariance of the price

process (IC1,2) and the co–jump variation (CJ1,2). Hence, the quadratic co-

variation matrix QV as specified in equation (3.6) holds quadratic variance

terms on the diagonal and quadratic covariation on the off–diagonal compo-

nents.

QV =

(
QV1,1 QV1,2

QV2,1 QV2,2

)
=

(
IC1,1 + CJ1,1 IC1,2 + CJ1,2

IC2,1 + CJ2,1 IC2,2 + CJ2,2

)
(3.6)
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The realised covariance estimator in its simple form specified by Andersen

et al. (2003) and Barndorff-Nielsen & Shephard (2004a) over a fixed time period

[0, T ] is defined in equation (3.7)

R̂C1,2 =
N∑

i=1

∆iYt,1∆iYt,2 (3.7)

where ∆iYt,j is the i-th return of the process j in period t. Such estimator is

a consistent estimator of quadratic covariation as N → ∞ under assumption

of no jumps and no microstructure noise. Both Andersen et al. (2003) and

Barndorff-Nielsen & Shephard (2004a) provide details regarding this result.

This means that estimator (3.7) measures the covariation of the observed price

process rather than that of the underlying price process which leads to bias

under presence of jumps and noise. Regarding noise, robust estimators of the

underlying process covariance were introduced e.g. by Barndorff-Nielsen et al.

(2011) or Zhang (2011). These estimators, however, assume zero jumps which

requires additional steps regarding the jumps, e.g. detection of the jumps and

adjustment of the observed data.

JWTSCV uses wavelet decomposition of the price process for its analysis.

The wavelet decomposition extends the scope of analysis by introducing fre-

quency domain (most analyses are set in time domain). Due to heterogeneity in

trading horizons of various market participants, it is reasonable to expect that

frequency domain, as opposed to time domain, brings additional information.

Moreover, wavelets were already used for jumps detection by Xue et al. (2014).

The quadratic covariation can be decomposed by continuous wavelet trans-

form as specified in equation (3.8) which allows for identification of contribution

of each wavelet scale to the total quadratic covariation.

QV1,1 =
1

Cψ

∫ ∞

0

[∫ ∞

−∞

W 1
j,kW

2
j,kdk

]
dj

j2
(3.8)

where Wj,k is continuous wavelet transform with respect to a wavelet ψj,k(t).

The term inside the brackets represents contribution of covariation at scale j to

the total quadratic covariation. The outer integral puts all the scales together

(Barunik & Vacha 2016).
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The continuous form estimator can be transposed to discrete time setting

which is important since discrete data are being analysed. Instead of con-

tinuous wavelet transform, a non–subsampled discrete version can be used.

JWTSCV proposed by Barunik & Vacha (2016) uses Maximum Overlap Discrete

Wavelet Transform (MODWT). This wavelet transform uses scales representing

frequency bands. In the discrete case, Wj,k represents vector of wavelet coef-

ficients at scale j at an intraday observation k where j = 1, 2, ...,Jm, where

Jm is the maximal wavelet decomposition level and k = 1, 2, ..., N . JWTSCV

uses wavelet coefficients on levels 1 through Jm and additionally wavelet scale

coefficients at level Jm. Therefore, a matrix of Jm + 1 vectors is used. The

discrete version of the wavelet estimator of quadratic covariance of processes

(1, 2) over a fixed period is specified in equation (3.9). Similarly to the continu-

ous version, it estimates covariance at separate scales (frequency bands) which

are then summed to obtain total quadratic covariation estimate.

Q̂C1,2 =
Jm+1∑

j=1

N∑

k=1

W 1
j,kW

2
j,k (3.9)

where Wj,k are MODWT coefficients at scale j for k = 1, 2, ..., N intraday obser-

vations. This estimator can be considered as equal to the estimator from equa-

tion (3.7) and it converges in probability to the quadratic covariation (Barunik

& Vacha 2016). This estimator, however, assumes no jumps and zero noise.

The use of wavelet decomposition in JWTSCV is also important in the topic

of jump detection. The MODWT coefficients are used for construction of a

threshold and subsequently compared to it for detection of jumps. This allows

for construction of a jump–adjusted process which allows for loosening of the

assumption of zero jumps in further estimation of integrated covariation. For

this, MODWT coefficients of the first scale are used as in this particular scale,

jumps are expected to influence the coefficients. The threshold ξ is calculated

as specified in equation (3.10).

ξ =

√
2median{|W1,k|}

0.6745

√
2logN (3.10)

whereW1,k is the vector of MODWT coefficients at the first scale and N is the

number of intraday observations. Locations k at which the coefficient exceeds

the threshold ξ are considered to be locations of jumps (Barunik & Vacha 2016).
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Size of jump at location k is then estimated as specified in equation (3.11).

Jt = ∆iYt · I(|W1,k| > ξ) (3.11)

Such estimated jumps can then be subtracted from the original process to ob-

tain jump–adjusted process which converges in probability to the continuous

part (Fan & Wang 2007). Hence, the assumption of no jumps is fulfilled using

the jump–adjusted process. Moreover, the estimated jumps can be used to

estimate the co–jump variation. This is, however, of no interest regarding the

topic of this thesis.

Second issue to be dealt with is the presence of microstructure noise. For

this, JWTSCV builds on TSCV as proposed by Zhang (2011). Specifically, TSCV

is calculated using MODWT coefficients of the jump–adjusted process on ev-

ery wavelet scale separately to obtain contributions of the scales to the total

integrated covariance. These separate scale components are then summed to

obtain the total integrated covariation. The two scale estimator is specified in

equation (3.12) and its components in detail in equation (3.13).

ÎC
JWTSCV

1,2 = sumJm+1
j=1

(
ÎC

G,J

1,2 (j)−
nG
nS
ÎC

WRC,J

1,2 (j)

)
(3.12)

where nG = (N −G+ 1)/G and nS = N .

ÎC
G,J

1,2 (j) =
1

G

G∑

g=1

N∑

k−1

W 1
j,kW

2
j,k

ÎC
WRC,J

1,2 (j) =
N∑

k−1

W 1
j,kW

2
j,k

(3.13)

Note that the component ÎC
WRC,J

1,2 (j) is the same as the estimator originally

specified in equation (3.9) and ÎC
G,J

1,2 (j) is virtually the same but averaged on

a grid of size N/G. This estimator converges in probability to the integrated

covariance of the processes (Barunik & Vacha 2016). This estimator is used

in this thesis to calculate correlations from which the spatial weights matrix is

consequently constructed. Diagonal elements of the integrated variation matrix

(ÎC) are integrated variances of separate processes. Therefore, correlations can

be obtained from the matrix as specified in equation (3.14).
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Corr(Xi, Xj) =
ÎCi,j√
ÎCi,i ÎCj,j

(3.14)

The presented framework represents the essence of this thesis. Analysis

and robust estimation of high–frequency data in combination with the spatial

econometrics framework is its main contribution. To the knowledge of the au-

thor, such framework has not yet been used in the topic of sovereign credit risk.

3.3 Model Selection and Model Averaging

Another step in our analysis is the choice of suitable explanatory variables.

Some of the explanatory variables may turn out to be irrelevant. Sequential

elimination of statistically insignificant variables based on t–test performed af-

ter the model estimation and re–estimation of the model is not statistically

valid. Hence, a more complex approach needs to be engaged.

One possibility is the method of model selection. This method chooses the

best model from the space of models based on a measure of goodness of fit.

Akaike Information Criterion (AIC) introduced by Akaike (1998) is a standard

tool for model selection (Turkheimer et al. 2003). The essence of this approach

lies in estimation of all possible models given the data and selecting the best

one based on AIC, i.e. the one with the smallest AIC. Using maximum likeli-

hood estimation, AIC can be calculated as described in equations (3.15). Its

alternative form for other estimation methods is described in equation (3.16).

AIC = −2log
(
L
(
θ̂|y
))

+ 2k (3.15)

AIC = nlog
(
σ̂2
)
+ 2k (3.16)

where L(·) is the likelihood function, θ is the unknown parameter vector, k is

the number of model parameters, n is the sample size and σ̂2 is the estimated

variance of residuals. For small samples, correction is needed, as was researched

by Sugiura (1978) or Hurvich & Tsai (1989), who came up with corrected AIC

— AICc — which is specified in equation (3.17).
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AICc = AIC +
2k(k + 1)

n− k − 1
(3.17)

Another, more complex method, is weighted model averaging over space of

models which compares the possibilities and comes with possibly the best solu-

tion. Frequentist model averaging based on goodness of fit measures provides

robust possibility to tackle this issue. However, this approach can get com-

putationally extensive having too many possible explanatory variables. Other

possibility is Bayesian model averaging which does not require selecting one

individual specification. This method uses weights building on posterior prob-

abilities of the individual models. Bayesian model averaging works with uncer-

tainty of the explanatory variables to be included. Moreover, it can account for

the specificity of different estimates coming from different datasets (Havranek

et al. 2017). This feature is especially convenient in meta analyses which com-

pare various studies. The Bayesian approach is, however, beyond the scope of

this thesis.

The case of this thesis, is more straightforward since only one dataset is

used. Moreover, the amount of explanatory variables considered is not exces-

sive and therefore, frequentist approach is feasible. All possible model speci-

fications given the dataset are estimated and consequently averaged to come

to final model which includes all of the explanatory variables. The method

of weighted averaging used in this analysis follows the procedure suggested by

Turkheimer et al. (2003).

First define the difference between AIC of a particular model i and mini-

mum AIC of all the models considered as ∆i. (See equation (3.18).) Building

on Akaike (1983), the likelihood of model i, given the data and the model

space, is then calculated as specified in equation (3.19). Such ratios represent

model likelihood ratios. These ratios can consequently be normalised in order

to obtain weights w or “Akaike weights” as specified in equation (3.20). These

weights can then be used in model averaging.

∆i = AICi −min(AIC) (3.18)

L (modeli|y) = e−∆i/2 (3.19)
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wi =
e−∆i/2

∑M
j=1 e

−∆i/2
(3.20)

The essence of this approach is to weight all models using weights speci-

fied in equation (3.20) to obtain estimations of parameters θi from all models,

rather than the best model selected. Estimates of parameters are calculated as

specified in equation (3.21).

θ̂ =
M∑

i=1

wiθ̂i (3.21)

Variance estimates of the estimated parameters V ar(θ̂) can be obtained

with the use of the same weights. Additionally, model misspecification bias

needs to be accounted for. Building on specification introduced by Buckland

et al. (1997), define βi as specified in equation (3.22). When summing model

estimates, their covariance has to be added to the sum of variances, but this

covariance term is unknown. The bias βi can be used in the calculation as its

upper bound in order to estimate the variance of the parameters. For details,

see e.g. Turkheimer et al. (2003). Finally, the variance estimate of the esti-

mated parameters is calculated as specified in equation (3.23).

βi = θ − θ̂iE
(
θ̂i|β

)
= θ + β (3.22)

V ar
(
θ̂
)
=

[
M∑

i=1

wi

√
V ar

(
θ̂|β̂i

)
+ β̂2

i

]2
(3.23)

In this thesis, both model averaging and model selection are used and com-

pared. Model averaging, on one hand, shows more complex results, but on the

other hand, the variance estimates of the estimated parameters can be over–

estimated due to the use of upper bound in the calculation, and therefore the

inference need not be precise. Moreover, model selection provides simpler re-

sults by specifying which variables are important and which are not.
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3.4 Robustness Check

Techniques described in section 3.2 are suitable not only for the construction of

the spatial weights matrix but can also contribute to inspection of the depen-

dent variable. Since the used dataset consists of daily data on CDS spreads and

the model is constructed using quarterly data, this mismatch needs to be taken

care of. This problem can be tackled by using quarterly closes — last values

of the daily data for each quarter. This way, all the changes in CDS spread are

included. On the other hand, it is reasonable to expect presence of noise and

jumps in the data and therefore, robustness checks may be useful and bring

additional information. This will be further examined in section 4.1.



Chapter 4

Data Description

The main focus of this thesis is applying financial theory as well as statistical

methodology on empirical data. This chapter introduces used data and its

characteristics together with the methodology. The used data can be divided

into two main categories based on frequency.

The first group consists of daily data provided by Thomson Reuters Datas-

tream (2017) and includes time series of CDS spreads on 10–year sovereign

bonds and yields of the underlying 10–year sovereign bonds.

The CDS spreads is the main variable of interest. This variable is commonly

used as a measure of credit risk. Therefore, it will be used as dependent vari-

able in the models after a transformation to quarterly frequency.

The series of bond yields will be used to estimate financial systems’ intercon-

nectedness using a measure of realised covariance and consequently control for

this interconnectedness in the models.

Originally, use of intra–day data was planned as higher frequency data carry

more detailed information and with the use of sophisticated estimators to cope

with jumps and micro–structure noise, it can provide more accurate results.

However, such data are virtually impossible to obtain and therefore daily data

are used as the “second best” option.

The second group comprises of quarterly data coming from open access

databases (Eurostat, OECD, etc.) regarding mostly macroeconomic and finan-

cial variables indicating economic and financial conditions of countries from

different perspectives. These variables will be used as explanatory variables in
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the models to examine their influence on sovereign credit risk, or more specifi-

cally, market perception of the risk.

4.1 Daily Data

As indicated in the beginning of this chapter, great deal of work is dedicated

to work with higher–frequency data. We are in possession of daily data on

CDS spreads on 10–year sovereign bonds and yields of these bonds provided by

Thomson Reuters Datastream (2017). The dataset covers 17 European coun-

tries. The data on CDS cover period of late 2008 until the end of 2016. The

dataset regarding bond yields covers longer period as it starts in 2007. This

is necessary in order to use lagged data which will be discussed later on. The

countries present in the original dataset are the Czech Republic, Germany,

France, Greece, Belgium, Denmark, Norway, Spain, the Netherlands, Austria,

Italy, Poland, Portugal, Slovakia, the United Kingdom, Finland and Sweden.

Nevertheless, the amount of data used in estimations and models is limited as

a result of the data availability.

First, Slovakia and Norway are excluded due to large gaps in the data. In

this case, the gaps are stemming from absence of sufficiently liquid 10 year

sovereign bond. If a 10 year bond is issued in sufficient amount, it is used as

a benchmark for 10 year sovereign bond for given country. However, the next

year, it has only 9 years to maturity and therefore it cannot be considered

as a benchmark for 10 year sovereign bond any more. If no new bonds are

issued in sufficient amount, there are no bonds to be used for this time series.

As a result, Slovakia has missing time series of over 2 years and Norway of 1

year. Therefore, they are excluded as for the methodology used, it is necessary

to have data for all the cross–sectional units to maintain consistency. Never-

theless, these countries can still bring valuable information regarding the data

analysis. Hence, they are included in this section even though they are not

included in the models.

The second case regards the data on CDS spreads. In this case, the CDS’s

of Greece had to be excluded since they were not traded since February 23rd

2012 as a result of the newly accepted bailout programme for Greece and con-

sequent implementation of a market–based restructuring of Greek public debt.
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Figure 4.1: Greek 10–year Bond Yield and Corresponding CDS
Spread
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This event lead to 53.5% reduction in the nominal face value of Greek sovereign

bonds held by private investors (Monokroussos et al. 2012). On this day, the

value of Greek CDS spread closed at 10758.84 basis points (bps) and did not

change ever since. (see Figure 4.1) Therefore, the time series of Greek CDS is

not of interest for the analysis since last five years carry no information.

This event, on the other hand, suggests an extension to this thesis. As

mentioned above, the restructuring had caused significant haircut in the value

of the debt and Greece lost access to capital market. Long time ahead of this

event, the conditions of the haircut, as well as consequent settlements, were

being discussed. Even though the event fulfilled the definition of a default, for

a long time it was not clear whether the issuers of debt protection (CDS) were

going to pay the settlement, as the restructuring could have been approved by

the creditors. Nevertheless, the proposed voluntary haircut was drastic in its

measures to the investors and was not accepted by many of them. On the other,

many feared the case of credit event as a possible cause for bankruptcy of the

CDS issuers. This lowered the trust in sovereign CDS’s as means of protection

against default, and consequently lead to turbulences in the CDS market. In the

end, the voluntary haircut was not agreed on and the participation thresholds
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of 90% for the exchange and amendment had been met. Therefore, credit event

was triggered and CDS settlements were paid (Zettelmeyer et al. 2013).

As a result, not only did the Greek CDS’s stop being traded, but it is also

plausible that this event influenced investors’ trust in sovereign CDS as a means

of protection against default — after a long period of uncertainty during the

Greek debt crisis, the settlements were paid, proving that the CDS served their

purpose. Taking these events into account, the dataset was split into two pe-

riods — before February 23rd 2012 and after. To evaluate possible differences

in these two sub–periods, the data were visualised. First, time–plots of log–

returns of the bonds yields as well as CDS spreads for all the countries were

examined. An example of such plot for Greece might be seen in Figure 4.1. The

plots of CDS spreads and bond yields indicate quite a turbulent period until

the early 2012 with lower values as well as variances for both time series. The

CDS spreads were additionally examined by the Change Point Model (CPM)

framework for sequential change detection, testing for both mean and variance

changes in the time series. Most of the series shows a structural break in, among

other, the first quarter of 2012 or close to it. To discover more, histograms are

plotted to visualise and compare distributional properties of log–returns of the

CDS spreads between the two chosen sub–periods for each country present in

the dataset. The same is done for log–returns of the bond yields.

As for the bond yields, some patterns are clear. All the countries show

wider range of values in the second sub–period (from February 23rd 2012 on-

ward). Correspondingly, the second sub–period shows higher variance for all

countries. Also, most of the countries (approximately two thirds) have higher

peaks around the centre in the first sub–period, suggesting excess kurtosis in

the log–returns distribution. Moreover, the rest of the countries have peaks

of comparable height in both sub–periods, i.e. no country shows significantly

higher peaks in the second sub–period compared to the first one. Slightly over

half of the countries show excess kurtosis and more fat tails in the second

sub–period compared to the first one. Most of the rest, on the other hand,

show similar shape of the histogram in both sub–periods. Almost all the his-

tograms (including both sub–periods) diverge from normal distribution curve

(constructed using empirical sample mean and variance) having higher peaks

in the centre.

The case of CDS spreads is more complex. The data for the first sub–period
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for most countries spread over wider range stating presence of larger changes

in the values. The few exceptions in this regard are Sweden, Great Britain,

and Germany. The case of overall variance corresponds. The data of the first

sub–period show higher variance in most cases. The exceptions in this case

are Sweden, Great Britain, Germany and Denmark. As can be seen in the

histograms, except for Denmark, the countries diverging from the common

pattern are the same. All of the countries show increased or at least the same

concentration of values around the centre in the second sub–period. This, to

some extent, corresponds to the comparison of the shape of the histogram to

normal distribution curve (again constructed using empirical sample mean and

variance). It is important to stress that none of the countries is even close to

normal distribution due to presence of significant peaks in the centre. If the

centre is omitted, it can be seen by looking at the rest of the range that the

values in the first sub–period are closer to the normal distribution shape for

most countries, while fat(ter) tails are observable in the second period.

To further investigate statistical properties of the used daily data on bond

yields, realised measures are employed. Main purpose of the use of daily data

on bond yields is to estimate cross–country realised correlations as a measure

of interconnectedness of the economies. This can be measured in various ways.

Since different estimators have different properties regarding robustness and

precision, decision on particular methodology to be used stems from investiga-

tion of presence of jumps (and co–jumps) and noise.

Basis of the analysis presented in this section lies in the concept of realised

variation measures based on Back (1991), whose work was followed up by e.g.

Barndorff-Nielsen & Shephard (2004b) or Andersen et al. (2003). To estimate

jumps, methodology proposed by Andersen et al. (2011) is used. This study

proposes a reduced form framework for modelling of realized volatility. The

idea is to decompose the total quadratic variation into two components: con-

tinuous part — integrated variance, and jumps. By splitting the variation into

theese two parts, the “true” underlying variance can be estimated and, more

importantly for our case, jumps can be detected. Note that realised volatil-

ity measures were primarily developed for work with intraday data and this

notation from their definition is kept here to be consistent with the authors.

This thesis, however, works with daily data for which the same methodology

applies with the exception that daily data are used instead of intraday data
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and calculate quarterly measures instead of daily measures.

The “naive” realized variation estimator as specified in equation (4.1) does

not differentiate between the continuous (integrated) component of quadratic

variance and the jump part. The bipower variation estimator proposed by

Barndorff-Nielsen & Shephard (2004b) and specified in equation (4.2), on the

other hand, converges to the integrated component of quadratic variation. Both

equations specify the estimator of variation of asset i at day t with m intraday

observations. r denotes logreturn of the price process.

RVi,t =
m∑

j=1

r2i,t−1+jn (4.1)

BPVi,t =
m
m−2

(π
2
)2

m∑

j=3

|ri,t−1+(j−2)n| · |ri,t−1+jn| (4.2)

Hence, the jump component can be identified as a difference between the two

estimators. The jump statistic used to measure jump significance as proposed

by Andersen et al. (2011) is specified in equation (4.3).

Zi,t =

RVi,t−BVi,t
RVi,t√

1
n
((π

2
)2 + π − 5)max{1, TQi,t

BV 2

i,t

}
(4.3)

where TQi,t denotes realised tripower quatricity defined in equation (4.4). The

test statistic Zi,t is normally distributed under the null hypothesis.

TQi,t = nµ−1
4/3

(
n

n− 4

) m∑

j=5

|ri,t−1+(j−4)n|4/3|ri,t−1+(j−3)n|4/3|ri,t−1+(j−2)n|4/3

(4.4)

where µ4/3 = 24/3 Γ(7/6)
Γ(1/2)

and Γ(·) is the Gamma function.

Using the jump statistic Zi,t and its property of normal distribution, jumps

can be located by comparing it to the standard normal distribution quantiles

Φα. Table 4.1 presents counts of estimated quarterly jumps over the two de-

fined sub–periods (denoted as I and II) as well as the whole sample on 1%

and 5% significance levels.
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Table 4.1: Estimated Counts of Jumps at 1% Significance Level
CZ DE FR BE DK ES NL AT IT PL PT GB FI SE

5%

I 3 0 0 1 1 1 0 1 0 0 2 0 0 0
II 4 2 2 1 2 1 2 3 1 1 0 1 0 3
TOTAL 7 2 2 2 3 2 2 4 1 1 2 1 0 3

1%

I 2 0 0 0 1 0 0 0 0 0 1 0 0 0
II 1 0 0 0 1 0 0 1 0 0 0 0 0 1
TOTAL 3 0 0 0 2 0 0 1 0 0 1 0 0 1

Based on these results, a robust estimator is employed for the calculation of

cross–country realised correlations. Specifically, JWTSCV proposed by Barunik

& Vacha (2016) was chosen. This estimator uses wavelet decomposition to iden-

tify the statistically significant jumps (and co–jumps) and exploits the ability

of TSCV proposed by Zhang (2011) to cope with noise. As a result, it is ro-

bust to (co)jumps and noise in the data. It also performs better under such

conditions in comparison with other realised covariance measure estimators

like Realized Covariance Estimator (RC), Bipower Covariance Estimator (BC),

TSCV or Multivariate Realized Kernel (MRK), which is examined in numerical

study carried out by the authors in Barunik & Vacha (2016). This estima-

tor, along with results of its application on our data was discussed in detail in

Chapter 3.

In the case of CDS’s, it is favourable to capture all the information carried

by the spreads, i.e. including jumps. Therefore, a different approach is more

suitable. Nevertheless, a similar start can be employed in order to gain insights

regarding the data structure. The first step is to calculate log–returns of the

spreads. The second step is to perform an analysis by using realised volatility

measures. Estimation of jumps will be discussed later on. Main insights come

from inspection of realised volatility measures (realised variance, bipower vari-

ation).

From the plots which are provided in the Appendix, two main groups of

countries can be distinguished: The first group, consisting of Austria, Belgium,

the Czech Republic, Finland, France, Italy, the Netherlands, Poland, Portugal,

and Spain, shows significantly higher values of realised variance in the first

sub–period (2009 — 2011) while the second group, comprising Denmark, Ger-

many, Sweden and The United Kingdom, shows higher values in the second

sub–period, especially near its end. The properties of the second group slightly

differ between realised variance and bipower variation, while the patterns in
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the first sub–period hold for both estimators. This suggests increased presence

of jumps in the second sub–period. Interestingly, the first group is more than

twice as large as the second one. Moreover, no clear pattern regarding country

size or foreign policy is observable — both groups include members as well as

non–members of the Euro–area, which also holds for small and large countries.

The SWEAP countries are present only in the first group but, on the other

hand, countries from other parts of Europe are present in both groups, which

lowers the significance of this separation. Detailed classification and possible

separation with the use of classing of economic variables will be presented in

Chapter 3. Nevertheless, these results support the hypothesis of change in risk

perception (and consequently the drivers of risk evaluation) between the two

selected sub–periods.

The observed shifts in volatility suggest that the use of robustness checks in

the model as proposed in section 3.4 is appropriate. As can be seen in the plots

of bipower variation discussed above and as presented in the appendix, the

level of volatility of the dependent variable differs across time. Based on this

finding, integrated volatility and jump variation of the dependent variable are

included in the model as explanatory variables. Moreover, presence of jumps

is further examined.

Using MODWT and threshold presented in section 3.2, the daily data of the

dependent variable are examined. Based on this measure, relatively large share

of observations is considered to be jumps. Estimated percentage of jumps by

country are presented in figure 4.2. Based on this amount of jumps, it is rea-

sonable to expect jumps will be present in some of the observations of quarterly

close values. As a result, robustness checks are added. The robustness checks

of the models are carried out by estimating the same model using quarterly

mean and median as the dependent variable.

4.2 Quarterly Data

The second type of data used in this thesis is quarterly data regarding macroe-

conomic and financial indicators. This data were obtained from OECD (2017),

EUROSTAT (2017), and Yahoo (2017). This data will be used as explanatory

variables in the models in order to assess the influence of various country–
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Figure 4.2: Percentage of Jumps in 10–year CDS Spreads

Source: Thomson Reuters

specific conditions on sovereign credit risk, and possibly find main drivers be-

hind it. The list of used indicators, along with their sources is listed in Table

4.2. Furthermore, Table 4.3 presents basic summary statistics for these vari-

ables such as mean, standard deviation or chosen quantiles. The economic

reasoning for the inclusion of these indicators into the models is further dis-

cussed later in this chapter. All of the data cover the same set of countries over

the same time period as the daily data presented in section 4.1. The used data

are seasonally adjusted. Moreover, most of the used variables are not station-

ary and trending is present. Therefore, in the case of non–stationary variables,

first differences were used to assure stationarity. These variables are denoted

with “ d” at the end of their name. Statistics provided in Table 4.3 describe

the calculated differences.



4. Data Description 35

Table 4.2: Candidate Explanatory Variables Description

Variable Description Source

CurAccBal d Current account balance [% GDP] OECD

CPI Inflation rate represented by CPI OECD

DebtToGdp d Government debt[% GDP] Eurostat

Unemp d Unemployment Rate [%] Eurostat

FinSector Financial sector size [% GNI] Eurostat

GDPpcgr Growth of GDP per capita [%] OECD

IntlTrd d International trade index Eurostat

MMIR d Money market 3M interest rates [%] Eurostat

IndexLD Local stock exchange index log–returns Yahoo Finance

IndProd d Industrial production index Eurostat

RVol Integrated volatility of 10–year CDS spread Reuters

JVar Jump variation of 10–year CDS spread Reuters

Table 4.3: Candidate Explanatory Variables Summary Statistics

Variable Mean Std. Dev. Min 25% Median 75% Max

CurAccBal d 0.08 1.38 -7.35 -0.66 0.06 0.83 7.54

CPI 1.33 1.29 -1.51 0.30 1.12 2.26 4.70

DebtToGdp d 0.57 1.83 -7.20 -0.60 0.40 1.43 11.70

Unemp d -0.01 0.33 -1.10 -0.20 0.00 0.20 1.20

FinSector 5.16 1.46 2.30 4.20 4.60 6.12 9.30

GDPpcgr 1.06 2.19 -8.22 0.11 1.29 2.31 7.88

IntlTrd d 1.25 6.03 -27.03 -1.47 1.02 3.90 29.10

MMIR d -0.06 0.18 -0.82 -0.10 -0.03 0.02 0.60

IndexLD d 0.02 0.10 -0.35 -0.04 0.02 0.08 0.26

IntlTrd d 1.13 5.91 -27.03 -1.54 0.95 3.84 29.10

RVol 0.03 0.02 0.00 0.02 0.03 0.05 0.18

JVar 0.08 1.11 0.00 0.00 0.00 0.00 19.88

extracted 29/10/2017

Selected Explanatory Variables

Main explanatory variables used in the model are macroeconomic indicators

chosen based on other studies presented in section 2.1. On top of macroeco-
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nomic indicators, volatility of the dependent variable in the previous period

is included in the model. Specifically, integrated volatility is estimated using

Jump Wavelet Two Scales Realized Variation (JWTSRV) estimator proposed

by Barunik & Vacha (2015). Lag of the dependent variable is also included in

order to avoid serial autocorrelation of the disturbances.

CDS 10Y: Lag of the dependent variable. As suggested above, this variable

is included in order to avoid serial autocorrelation. It is reasonable to expect

that previous level of credit risk influences present level of credit risk.

RVol: Lagged integrated volatility of the dependent variable estimated using

JWTSRV estimator proposed by Barunik & Vacha (2015). Previous volatility

of credit risk may lead to its rise. By using the JWTSRV, integrated volatility

can be estimated even under presence of noise and, more importantly, it can be

separated from jumps. Calculation of this variable is described in section 3.2.

The effect of this variable is expected to be persistent over the years as on one

hand, risk stemming from volatility may be higher in the early years when the

effects of the crisis were still present, but on the other hand, the volatility is

significantly lower in the later years which could yield higher variable coefficient

in the model as can be observed from the plots of CDS spreads.

JVar: Jump component of the CDS spread volatility in previous period. As

in the case of integrated volatility, jumps can increase future credit risk. The

influence of jumps, however, is different from the influence of volatility. There-

fore, its separation can provide further information. The jump component is

calculated as a sum of squared jumps in the univariate CDS spread time series.

The jumps are detected with the use of threshold specified in equation (3.10)

in section 3.2.

FinSector: Size of financial sector as a percentage of GNI. As a result of the

crisis, financial institutions were unstable and risk of their fall was increased

at least in the early years of the time period covered in our dataset. Such fall

could influence the economy directly by the potential loss of positions held by
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a given financial institution and general economic slowdown. Moreover, fear

of such effect could force the government into a costly bailout. In such case,

size of financial sector relative to country’s wealth is an important indicator

of government’s ability to avoid and, more importantly, survive such scenario.

This directly influences the credit risk of the government. The effect of this

variable is expected to be stronger in the first sub–period.

GDPpcgr: Growth of GDP per capita. GDP is the most common variable to

represent overall economic level of a country. Using GDP per capita, coun-

try size is accounted for and the statistic is comparable among countries. Its

growth then reflects improvements rather than overall level. This is important

as changes in the level of sovereign credit risk are influenced by changes in the

economic condition rather than its overall state. The influence of the “base-

line” economic condition is included in the unobserved heterogeneity, which is

accounted for in both random and fixed effects panel models.

IndProd d: Industrial production index. This index measures monthly changes

in the price–adjusted output of industry. Specifically, it reflects the develop-

ment of value added in industry. This index should identify turning points

in the economic development and therefore reflect the stage of business cycle

given country is in. It is used in GDP forecast and, more importantly for this

thesis, to form economic and monetary policies. These policies as well as the

business cycle stage influence sovereign credit risk through economy as first,

economic and monetary policies imply changes in government financial flows

and second, financial health of government depends on the real economy which

is influenced by the business cycles.

Unemp d: Unemployment rate. This is one of the real economy indicators. It

reflects the situation on labour market, which indicates the condition of the real

economy in terms of presence of economic activity or firms’ profitability, which

influences the taxes paid and therefore financial possibilities of the government.
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CPI: Inflation represented by Consumer Price Index (CPI). Inflation reflects

price stability which is essential for economic development. Price stability as

defined by the European Central Bank (ECB) is a year–to–year increase in the

index of consumer prices slightly below 2%. Lower inflation indicates low eco-

nomic activity and danger of deflation. High inflation, on the other hand, can

be a sign of overheating economy or unstable monetary policy and complemen-

tary deterioration of the economy. Both cases are present in the dataset which

may lead to offsetting of the effects of having inflation that is either too high or

too low. Moreover, growth in inflation may be initiated by increased economic

activity as well as loss of competitiveness and economic decline. Therefore, ex-

pectation of its coefficient in the model is not clear. Given the circumstances,

however, one can anticipate that in the first sub–period, inflation was more re-

lated to economic decline, while in the second sub–period its increase was more

related to increase in economic activity as is usually the case after periods of

extremely low inflation. Therefore, the coefficients in the models are expected

to differ between the two sub–periods.

IntlTrd d: International trade volume index. This index monitors country’s

volume of international trade in goods and services. International trade on

one hand enables countries to specialise and thrive through cooperation. On

the other hand, high level of internationalisation means increased exposure to

credit risk , since a failure of one country affects all members of the chain

given their interdependence. This risk can be perceived more strongly in “bad

times”. Therefore, stronger significance is expected in the first sub–period as

opposed to the second sub–period.

CurAccBal d: Current account balance. Current account of the balance of

payments provides information on international transactions in goods, services,

and primary and secondary income. It provides a view on international engage-

ment of countries from a different perspective than the aforementioned inter-

national trade volume index. The international trade volume index monitors

volume of international trade. Current account balance, on the other hand,

shows whether given country’s export prevails over its import or the other way

around. Positive balance means that the country is earning more from export

than spending on import, i.e. the balance is calculated as export - import. This
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indicator can be correlated with credit risk as export–oriented countries are

more exposed to economic condition of their customer countries. Therefore,

economic downturn can spread more strongly among countries that trade to-

gether which is definitely the case of the EU. This effect, however, might be

included in the spatial autocorrelation component of the model. Therefore, its

effect is questionable.

MMIR d: Money market interest rate. Interest rates represent the price of

borrowing. In this thesis, 3–month money market interest rates are used. These

rates are one of the shortest rates published. This means these rates reflect

liquidity on the money markets. The rates are the same for all Euro–area

countries which takes away the information on differences between Euro–area

countries. On the other hand, it can provide some information not only for the

non–Euro countries, but can also point out some differences between them and

Euro countries since Euro–area short–term interest rates are one of the lowest

within the group. This difference cannot be assessed by using dummy variables

in fixed effects panel data model.

IndexLD: Local stock index log–returns. This is one of the indicators that

assesses general economic condition of a country, specifically its capital market

representing the private sector.

DebtToGdp d: Government debt as a percentage of GDP. The case is quite

straightforward here. Since CDS’s are directly linked to government debt, the

influence of debt size relative to the country’s wealth on credit risk is obvious.

Using first differences to tackle the non–stationarity issue converts this vari-

able into changes of debt, i.e. fiscal balance. This variable can be even more

important since fiscal discipline (and avoidance of excessive borrowing) is even

more important for credit risk than size of the debt as such.

The chosen explanatory variables together with the type of model used be-

fore model selection and model averaging are formalised in equation (4.5). In

the robustness checks, logCDS and logCDSt−1 are replaced by quarterly mean

and median of their values.
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logCDS =λW · logCDS + logCDSt−1 +RV ol c 1st−1 + JV ar c 1st−1+

+ CurAccBal dt−1 ++FinSectort−1 + IndProd dt−1+

+GDPpcgrt−1 + Unemp dt−1 + IntlTrd dt−1 +MMIR dt−1+

+ IndexLDt−1 ++CPIt−1 +DebtToGdp dt−1 + u

(4.5)



Chapter 5

Estimation Results

5.1 Spatial Weights Matrix

The estimator described in section 3.2 is used on daily data of 10–year sovereign

bond yields of chosen European countries. By this, correlations of country pairs

as well as individual country variances are calculated. Moreover, the dataset

is split into two sub–periods to examine possible changes in credit risk drivers

after the Greek debt restructuring. The calculated correlation tables for the

first sub–period, second sub–period and the whole sample are presented in the

appendix in tables A.1, A.2, and A.3, respectively. Graphical representation

of the correlations, specifically range of correlations for specific countries, is

presented in figures 5.1 for the first sub–period, 5.2 for the second sub–period,

and 5.3 for the whole sample. Significant differences can be observed between

the two sub–periods in the inter–quartile ranges. In the first sub–period, the

range is significantly wider than in the case of the second sub–period. Close-

ness of the whole–sample correlations to those of the second sub–period stems

from different lengths of the two sub–periods — the first sub–period covers

only three years while the second sub–period covers five years and therefore

puts more weight into the overall result.

Note that the presented correlations are for illustrative purpose only. These

correlations describe the situation during the examined period but as specified

in section 3.2, the spatial weights matrices are lagged in order to avoid their

endogeneity. Specifically, for the second sub–period, spatial weights matrix

constructed based on the data from the first sub–period is used and for the

first sub–period, historical data not originally included in the dataset are used.
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Figure 5.1: Range of Cross–Country Correlations (First Sub–Period)

CZ DE FR GR BE DK NO ES NL AT IT PL PT SK GB FI SE

0
.0

0
.2

0
.4

0
.6

0
.8

Second Sub−Period

Figure 5.2: Range of Cross–Country Correlations (Second Sub–
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Figure 5.3: Range of Cross–Country Correlations (the Whole Sample)

As specified in section 3.1, the diagonal elements of the matrix are set to

0. Moreover, in order to retain stationarity (given λ ∈ (−1, 1)), the spatial

weights matrix must be standardised (LeSage & Pace 2009). Having pairwise

correlations bound to (−1, 1), the row sum can exceed 1 and the linear combi-

nation
∑N

j=1 λWi,jyj representing the contribution of spatial lags can become

explosive. In this case, the common approach in this case is row standardi-

sation of the matrix, i.e. each element is divided by corresponding row sum

making the row sums of the matrix equal to one (Plümper & Neumayer 2010).

This approach, however, diminishes the differences in overall influence of spa-

tial lags on the dependent variable across countries. Having all row sums equal

to one results in omission of differences in international engagement of the

countries, as measures of economic proximity represented by the correlations

are transformed from absolute measures to relative measures. This is not de-

sirable taking into account the differences in size as well as range of pairwise

correlations of different countries in the used dataset. Therefore, an approach

proposed by Keiler & Eder (2013) is used in this thesis. The elements of the

matrix are divided by the maximum absolute eigenvalue of the matrix. This

way, the matrix is standardised in order to retain stationarity while preserving

the differences in countries’ international engagement and consequent differ-

ence in impact of spatial lags.
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5.2 Spatial Model

As specified above, the correlation matrices were standardised with the use of

the maximum absolute eigenvalue. With the use of these matrices, models were

estimated for the two chosen sub–periods.

To eliminate the possibility of serial autocorrelation of the errors, lag of the

dependent variable is included.

In the case of non–stationary variables, first differences were used. Such vari-

ables are denoted with “ d” at the end of their name. In the case of local stock

indices, log–returns were calculated.

Moreover, endogeneity is reasonable to be expected for all the explanatory vari-

ables. To deal with this issue, all explanatory variables as well as the spatial

weights matrices are lagged.

Given the to reasonable expectations of structural break and the change in

international interdependence between the two selected sub–periods, the model

estimated for the whole sample need not be valid. Therefore, this estimation

is not reported.

First, MLE was used to estimate the results. Unfortunately, normality of

residuals was rejected by multiple tests. When looking at the histograms, lep-

tokurtic distribution with fat tails was present in all of the models. This is quite

typical for financial markets data. As a result, GMM was used for estimation.

This method does not require normality for consistence. The GMM estimation

yields similar results as MLE but with higher variance of the estimates, i.e. less

variables are found to be statistically significant. Nonetheless, this price has to

be paid for robustness to the non–normality in data.

Two techniques were used in order to obtain the final results of the analysis:

model selection and model averaging. When using model selection, different

explanatory variables were chosen for the best model. Lag of the dependent

variable is included in all of the models considered for both model selection

and model averaging. This is to avoid serial correlation of the residuals which

would make the estimation inconsistent. All other variables were subject to

model selection. As a result, sharp differences between the two sub–periods
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can be observed. The results of the estimations for the first and the second

sub–period are presented in tables 5.1 and 5.2, respectively.

Table 5.1: Model Selection Results for the First Sub–Period

Dependent variable: 10–Year CDS Spread

Baseline Model

Estimate Std. Error t–stat p–value
lambda 0.340409 0.114184 2.981 0.00287**

CDS10Yt−1 0.744916 0.060497 12.313 0.00000***
JVart−1 4015.195395 2205.800251 1.820 0.06871 .
FinSectort−1 25.776056 12.250556 2.104 0.03537*
GDPpcgrt−1 -6.469986 2.322493 -2.786 0.00534**
CPIt−1 9.712964 5.611827 1.731 0.08349 .
MMIR dt−1 88.851031 27.586366 3.221 0.00128**
IndexLDt−1 80.681365 36.217493 2.228 0.02590*
DebtToGdp dt−1 6.881838 2.140169 3.216 0.00130**

R-squared 0.816
AIC 1095.59

Robustness Check: Mean

Estimate Std. Error t–stat p–value
lambda 0.164515 0.085572 1.923 0.05454 .

CDS10Y meant−1 0.955209 0.047949 19.921 0.00000***
JVart−1 3716.987996 1485.356049 2.502 0.01233*
FinSectort−1 19.199516 8.309828 2.310 0.02086*
GDPpcgrt−1 -6.071599 1.557138 -3.899 0.00010***
CPIt−1 5.051226 3.912029 1.291 0.19663
MMIR dt−1 85.945379 17.893626 4.803 0.00000***
IndexLDt−1 5.085429 25.241627 0.201 0.84033
DebtToGdp dt−1 3.782751 1.457792 2.595 0.00946**

R-squared 0.950
AIC 986.26

Robustness Check: Median

Estimate Std. Error t–stat p–value
lambda 0.165382 0.089938 1.839 0.06594 .

CDS10Y medt−1 0.915934 0.049709 18.426 0.00000***
JVart−1 4184.934558 1571.171010 2.664 0.00773**
FinSectort−1 19.798325 8.783324 2.254 0.02419*
GDPpcgrt−1 -6.501449 1.645972 -3.950 0.00008***
CPIt−1 6.526379 4.100423 1.592 0.11147
MMIR dt−1 91.968105 18.970619 4.848 0.00000***
IndexLDt−1 12.727566 26.662340 0.477 0.63310
DebtToGdp dt−1 4.847508 1.537314 3.153 0.00161**

R-squared 0.950
AIC 1001.91

Note: . p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 5.2: Model Selection Results for the Second Sub–Period

Dependent variable: 10–Year CDS Spread

Baseline Model

Estimate Std. Error t–stat p–value
lambda 0.173759 0.099818 1.741 0.08173 .

CDS10Yt−1 0.680473 0.033443 20.348 0.00000***
FinSectort−1 9.046474 5.948361 1.521 0.12830
Unemp dt−1 22.066425 5.936524 3.717 0.00020***
CPIt−1 -2.165786 2.082920 -1.040 0.29844
IndexLDt−1 26.265415 19.003454 1.382 0.16693

R-squared 0.836
AIC 1824.05

Robustness Check: Mean

Estimate Std. Error t–stat p–value
lambda 0.034743 0.061908 0.561 0.57467

CDS10Yt−1 0.878587 0.024064 36.511 0.00000***
FinSectort−1 12.545191 4.258145 2.946 0.00322**
Unemp dt−1 12.196905 4.279030 2.850 0.00437**
CPIt−1 -1.889270 1.477614 -1.279 0.20104
IndexLDt−1 9.371700 13.616684 0.688 0.49129

R-squared 0.933
AIC 1778.85

Robustness Check: Median

Estimate Std. Error t–stat p–value
lambda 0.006990 0.064690 0.108 0.91395

CDS10Yt−1 0.889888 0.024673 36.067 0.00000***
FinSectort−1 13.194469 4.364381 3.023 0.00250**
Unemp dt−1 13.307767 4.385621 3.034 0.00241**
CPIt−1 -2.183380 1.516613 -1.440 0.14997
IndexLDt−1 7.574180 13.960719 0.543 0.58745

R-squared 0.930
AIC 1810.02

Note: . p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Explanatory Variables

Size of financial sector relative to nation’s wealth remains in both models but

decreases in its magnitude as well as significance. In the second period it is in-

cluded in the best model but is not statistically significant. This is attributable

to general recovery from the effects of the crisis. In general, the level of risk

in this sector has decreased, and therefore risk of possible bailouts or adverse

effects on the economy is lower, and it loses its importance in determination

of sovereign credit risk. This variable becomes statistically significant in the

robustness checks even in the second sub–period. It is significantly lower than

in the case of the first sub–period nevertheless.

Loss of significance can be observed for inflation as well. Note that the sign

of the coefficient has changed from negative in the first sub–period to positive in

the second sub–period. This is attributable to the facts discussed in section 4.2

— while in the first sub–period, rising inflation can be a sign of deterioration of

the economy, the second sub–period represents low–inflation environment and

rise of inflation can mean renewal of economic activity. Nonetheless, this effect

is not strong enough to become statistically significant which, as opposed to

the size of financial sector, is confirmed by the robustness checks. Inclusion

of year 2017 could strengthen it given the general economic growth connected

with subtle rise of inflation in the world.

The coefficient of local stock index is quite counter–intuitive. Its sign sug-

gests that rise in local stock index implies increased sovereign credit risk. On

the other hand, it is not significant at all in the second sub–period and it

loses its statistical significance in the first sub–period in the robustness checks.

Therefore, this is probably an anomaly.

The inclusion of unemployment into the model in the second sub–period and

its omission in the first sub–period is interesting. It is of expected sign and re-

mains statistically significant in the robustness checks in the second sub–period.

Possible explanation is that in the first, post–crisis sub–period, unemployment

rose in vast majority of the countries so its influence on sovereign credit risk

could have been “consumed” by other factors. In the second sub–period, on the

other hand, the pace of recovery was different among countries, and therefore

the detection of the link between unemployment and sovereign credit risk was
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possible.

Finally, a set of variables is only included in the selected model for the

first sub–period. These include jump variation of the dependent variable, GDP

growth, money market interest rates and size of debt. All of these variables’

coefficients are of expected sign and remain statistically significant in the ro-

bustness checks. Their link to sovereign credit risk was confirmed. Its theo-

retical basis was discussed in section 4.2 and therefore it is not necessary to

discuss it again. Nonetheless, it is worth noting that these variables have lost

their importance when moving on to the second sub–period.

As for jump variation, its presence is quite sparse and its influence was more

visible in the more turbulent first sub–period while in the second sub–period,

markets did not react as vigorously and the effect faded quickly.

The case of the size of sovereign debt is similar. After recovering from the ef-

fects of the crisis, markets tend to care less about the size of debt as the agents

regain trust in governments’ ability to repay it.

In the case of GDP growth, the difference could reflect the fact that in the first

sub–period this variable did vary more than in the second sub–period. Moving

to the second, stagnant sub–period, less variation is observable and therefore

it cannot be easily linked to sovereign credit risk.

Finally, short–term money market interest rate is somewhat similar to GDP

growth in its patterns. While in the first sub–period it was showing more vari-

ability, in the second sub–period small or no changes are observable. The rates

have reached their historical minima and have remained so for a long time.

With such low variability, links are difficult to detect.

Studies such as Beirne & Fratzscher (2013b) or Arghyrou & Kontonikas (2012)

carry out a study which finds increased sensitivity of financial markets to eco-

nomic fundamentals during “bad times” which is in accordance with the results

of this thesis. In the second sub–period, less factors are found to be decisive

for determination of sovereign credit risk.

Spatial Autocorrelation Term

The main focus of this thesis is to examine the presence of spillover effects

represented by the spatial autocorrelation component of the model. Decrease
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of its size as well as statistical significance can be observed between the two

sub–periods. Moreover, the robustness checks report lower importance, again

in magnitude as well as in statistical significance. In the first sub–period, the

size of the spatial autocorrelation coefficient decreases approximately by half

and its significance drops but remains on the edge of statistical significance

having p − value of .055 for mean and 0.066 for median. Since some portion

of information is lost when using mean or median, presence of spillover effects

in the first sub–period can still be confirmed. Its size, however, can be a sub-

ject of discussion. In the second sub–period, on the other hand, the drop is

more significant: the spatial autocorrelation coefficient turns into so called “in-

significant zero” for both mean and median. This means that not only is it

statistically insignificant, but its estimate is also close to zero. This speaks for

the absence of spillover effects in the second sub–period.

While the results for the first sub–period confirm the presence of spatial

autocorrelation of the dependent variable, i.e. spillover effects, the results for

the second sub–period rather reject it. This can be explained by the differ-

ences in economic conditions between the two sub–periods. Contagion and/or

spillovers of credit risk, often referred to as “excess correlation”, are known to

appear more frequently during crisis. This is confirmed by numerous studies,

e.g. De Bruyckere et al. (2013) which explores patterns of contagion between

banks and sovereigns, Arezki et al. (2011) which examines the spillover effects

of sovereign rating news during the crisis or Longstaff (2010) which examines

subprime credit crisis and contagion in subprime indexes. While in the first

sub–period the effects of the crisis were still present and Greek sovereign debt

crisis was reaching its peak, the second sub-period was marked by the start of

recovery and overall better condition of the economy.

The results presented above were obtained using model selection as de-

scribed in section 3.3. Additionally, an analysis using frequentist model aver-

aging as specified in the same section was carried out. Its results, however,

provide little additional information to those of model selection. Due to the

discussed possible over–estimation of estimates’ variance, less variables were

found to be statistically significant. The patterns, however, remain unchanged.

The results of the models obtained using model averaging are presented in the

Appendix.
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Conclusion

This thesis analyses sovereign credit risk drivers in a spatial perspective. Specif-

ically, it estimates the influence of macroeconomic indicators on sovereign credit

risk while accounting for international interconnectedness and resulting spill-

overs. It contributes to existing research by adding information from high–

frequency data to econometric model which works with quarterly data. Specif-

ically, high–frequency data is analysed with the use of robust wavelet based

covariance estimator JWTSCV. These correlations are used in a spatial econo-

metric model to model international spillovers of credit risk. Consequently,

quarterly data on macroeconomic indicators are used as explanatory variables

assessing what drives sovereign credit risk.

In the first part of the thesis, research related to the topic of this thesis is

summarised. While building on the existing literature, theoretical background

for all the steps in the analysis is introduced. Fundamentals of spatial econo-

metrics and possible models are introduced. Presentation of robust wavelet

based covariance estimator JWTSCV follows. Finally, model selection and model

averaging techniques are presented and robustness checks are suggested.

The empirical part shows the main contribution of this thesis. Additional

information obtained from high–frequency data analysis is used in the con-

struction of the model. Moreover, contagion and spillovers are accounted for

in the estimation.

Daily data on CDS spreads and 10–year sovereign bond yields are analysed to

support the decision to use robust covariance estimator and robustness checks.

Quarterly close, mean, and median of the CDS spreads are used as the de-
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pendent variable. JWTSCV is used to estimate cross–country correlations from

daily data on bond yields. A spatial weights matrix is constructed based on

these estimates. The spatial weights matrix is standardised by its maximum

absolute eigenvalue.

Several macroeconomic indicators are chosen to be used in the model. Fi-

nally, econometric model is specified and estimated. The dataset is split into

two sub–periods to accommodate for Greek debt restructuring which may have

changed investors’ attitude towards CDS. Moreover, the first sub–period covers

the period of 2009 — 2011 where the effects of the 2007–2009 crisis are still

present and Greece is going through sovereign debt crisis.

The models are estimated using GMM. All explanatory variables as well

as the spatial weights matrix were lagged in order to avoid their endogene-

ity. Significant differences are discovered between the two sub–periods. In the

first sub–period, more variables are found to be statistically significant when

compared to the second sub–period. Lag of the dependent variable is included

in all the models and is statistically significant. Apart from the lag, 7 ex-

planatory variables are included in the selected model for the first sub–period:

Jump variation, size of financial sector, GDP growth, inflation rate, short term

money market interest rate, local stock index log–returns and debt to GDP.

All the variables are statistically significant, but local stock index log–returns

and inflation rate lose their significance in robustness checks. In the second

sub–period, the size of financial sector and unemployment rate are statistically

significant. Additionally, inflation rate and local stock index log–returns are

included in the selected model but are nowhere near statistical significance.

In both sub–periods, the variables’ coefficients are of expected sign with the

exception of local stock index. This variable, however, turns out to be statisti-

cally insignificant in robustness checks.

The spatial autocorrelation component of the model is statistically significant

in the first sub–period, while in the second sub–period it is not. These results

are in compliance with findings of other studies, which generally report presence

of spillovers or contagion and higher sensitivity of credit risk to fundamentals

in times of crisis. Model averaging provides little additional information to

model selection and essentially the same conclusions are drawn from results of

this approach.

To conclude, the empirical research has proved the benefit of the new
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methodology presented in this thesis. It was shown that additional informa-

tion stemming from high–frequency data analysis can be added to conventional

econometric models to improve their performance. Moreover, international in-

terconnectedness can yield spillovers which have to be accounted for in order

to obtain consistent estimates. Finally, in accordance with other studies, im-

portance of fundamentals as well as presence of spillovers and contagion are

stronger in crisis and post–crisis period, whereas in times of economic prosper-

ity, the market perception of sovereign credit risk becomes less dependent on

fundamentals, and spillovers and contagion become negligible.
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A.1 Bipower Variation of 10–year CDS Log–returns
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Figure A.1: Bipower Variation of 10–Year CDS Log–Returns I
Source of Data: Thomson Reuters
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Figure A.2: Bipower Variation of 10–Year CDS Log–Returns II
Source of Data: Thomson Reuters
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Poland
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Figure A.3: Bipower Variation of 10–Year CDS Log–Returns III
Source of Data: Thomson Reuters
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Figure A.4: Bipower Variation of 10–Year CDS Log–Returns IV
Source of Data: Thomson Reuters
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Table A.1: Correlation Matrix, First Sub–Period

CZ DE FR GR BE DK NO ES NL AT IT PL PT SK GB FI SE

CZ 1 0.182 0.153 -0.030 0.111 0.170 0.052 0.080 0.202 0.191 0.034 0.110 0.011 0.048 0.148 0.177 0.143
DE 0.182 1 0.727 -0.101 0.370 0.840 0.509 0.033 0.875 0.607 -0.030 -0.131 0.003 0.121 0.782 0.819 0.766
FR 0.153 0.727 1 0.001 0.631 0.628 0.340 0.297 0.741 0.731 0.263 -0.033 0.096 0.111 0.595 0.701 0.505
GR -0.030 -0.101 0.001 1 0.140 -0.068 -0.133 0.323 -0.064 0.031 0.271 0.104 0.535 0.020 -0.026 -0.051 -0.102
BE 0.111 0.370 0.631 0.140 1 0.269 0.064 0.562 0.437 0.571 0.551 0.064 0.297 0.106 0.291 0.433 0.152
DK 0.170 0.840 0.628 -0.068 0.269 1 0.436 0.054 0.793 0.575 -0.025 -0.136 -0.027 0.133 0.712 0.757 0.690
NO 0.052 0.509 0.340 -0.133 0.064 0.436 1 -0.041 0.453 0.245 -0.089 -0.220 -0.110 0.013 0.385 0.365 0.534
ES 0.080 0.033 0.297 0.323 0.562 0.054 -0.041 1 0.165 0.334 0.712 0.106 0.429 0.064 0.084 0.123 -0.022
NL 0.202 0.875 0.741 -0.064 0.437 0.793 0.453 0.165 1 0.701 0.059 -0.076 0.016 0.133 0.715 0.789 0.713
AT 0.191 0.607 0.731 0.031 0.571 0.575 0.245 0.334 0.701 1 0.239 -0.020 0.083 0.162 0.494 0.617 0.440
IT 0.034 -0.030 0.263 0.271 0.551 -0.025 -0.089 0.712 0.059 0.239 1 0.104 0.374 0.080 0.003 0.053 -0.110
PL 0.110 -0.131 -0.033 0.104 0.064 -0.136 -0.220 0.106 -0.076 -0.020 0.104 1 0.132 0.001 -0.105 -0.075 -0.212
PT 0.011 0.003 0.096 0.535 0.297 -0.027 -0.110 0.429 0.016 0.083 0.374 0.132 1 0.021 0.051 0.034 -0.114
SK 0.048 0.121 0.111 0.020 0.106 0.133 0.013 0.064 0.133 0.162 0.080 0.001 0.021 1 0.056 0.119 0.106
GB 0.148 0.782 0.595 -0.026 0.291 0.712 0.385 0.084 0.715 0.494 0.003 -0.105 0.051 0.056 1 0.640 0.666
FI 0.177 0.819 0.701 -0.051 0.433 0.757 0.365 0.123 0.789 0.617 0.053 -0.075 0.034 0.119 0.640 1 0.603
SE 0.143 0.766 0.505 -0.102 0.152 0.690 0.534 -0.022 0.713 0.440 -0.110 -0.212 -0.114 0.106 0.666 0.603 1
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Table A.2: Correlation Matrix, Second Sub–Period

CZ DE FR GR BE DK NO ES NL AT IT PL PT SK GB FI SE

CZ 1 0.156 0.296 -0.022 0.278 0.138 0.246 0.158 0.186 0.272 0.201 0.190 0.074 0.224 0.227 0.201 0.188
DE 0.156 1 0.458 -0.047 0.427 0.249 0.235 0.110 0.286 0.339 0.141 0.087 0.027 0.242 0.345 0.352 0.328
FR 0.296 0.458 1 -0.0002 0.943 0.641 0.441 0.453 0.711 0.871 0.504 0.277 0.238 0.527 0.627 0.832 0.577
GR -0.022 -0.047 -0.0002 1 0.010 -0.036 -0.119 0.263 -0.014 -0.013 0.279 0.121 0.360 -0.027 -0.121 -0.015 -0.047
BE 0.278 0.427 0.943 0.010 1 0.591 0.423 0.447 0.642 0.832 0.502 0.273 0.236 0.525 0.608 0.816 0.529
DK 0.138 0.249 0.641 -0.036 0.591 1 0.262 0.207 0.617 0.585 0.209 0.129 0.059 0.325 0.413 0.669 0.404
NO 0.246 0.235 0.441 -0.119 0.423 0.262 1 0.148 0.233 0.386 0.189 0.251 -0.015 0.317 0.521 0.312 0.505
ES 0.158 0.110 0.453 0.263 0.447 0.207 0.148 1 0.240 0.374 0.837 0.367 0.633 0.285 0.187 0.337 0.216
NL 0.186 0.286 0.711 -0.014 0.642 0.617 0.233 0.240 1 0.698 0.234 0.117 0.085 0.302 0.385 0.801 0.428
AT 0.272 0.339 0.871 -0.013 0.832 0.585 0.386 0.374 0.698 1 0.409 0.255 0.188 0.480 0.584 0.797 0.558
IT 0.201 0.141 0.504 0.279 0.502 0.209 0.189 0.837 0.234 0.409 1 0.374 0.659 0.309 0.183 0.330 0.240
PL 0.190 0.087 0.277 0.121 0.273 0.129 0.251 0.367 0.117 0.255 0.374 1 0.283 0.233 0.254 0.194 0.216
PT 0.074 0.027 0.238 0.360 0.236 0.059 -0.015 0.633 0.085 0.188 0.659 0.283 1 0.144 0.0002 0.129 0.082
SK 0.224 0.242 0.527 -0.027 0.525 0.325 0.317 0.285 0.302 0.480 0.309 0.233 0.144 1 0.384 0.426 0.375
GB 0.227 0.345 0.627 -0.121 0.608 0.413 0.521 0.187 0.385 0.584 0.183 0.254 0.0002 0.384 1 0.530 0.487
FI 0.201 0.352 0.832 -0.015 0.816 0.669 0.312 0.337 0.801 0.797 0.330 0.194 0.129 0.426 0.530 1 0.547
SE 0.188 0.328 0.577 -0.047 0.529 0.404 0.505 0.216 0.428 0.558 0.240 0.216 0.082 0.375 0.487 0.547 1
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Table A.3: Correlation Matrix, the Whole Sample

CZ DE FR GR BE DK NO ES NL AT IT PL PT SK GB FI SE

CZ 1 0.152 0.284 -0.018 0.265 0.136 0.204 0.143 0.180 0.264 0.175 0.181 0.055 0.205 0.216 0.196 0.185
DE 0.152 1 0.456 -0.036 0.422 0.253 0.212 0.098 0.288 0.340 0.125 0.080 0.021 0.230 0.326 0.355 0.330
FR 0.284 0.456 1 -0.0003 0.932 0.637 0.394 0.421 0.703 0.866 0.468 0.255 0.188 0.494 0.591 0.825 0.572
GR -0.018 -0.036 -0.0003 1 0.021 -0.028 -0.105 0.240 -0.012 -0.008 0.237 0.099 0.369 -0.015 -0.073 -0.013 -0.040
BE 0.265 0.422 0.932 0.021 1 0.582 0.350 0.437 0.633 0.824 0.488 0.259 0.209 0.492 0.548 0.805 0.513
DK 0.136 0.253 0.637 -0.028 0.582 1 0.240 0.185 0.617 0.583 0.184 0.117 0.043 0.308 0.394 0.670 0.407
NO 0.204 0.212 0.394 -0.105 0.350 0.240 1 0.102 0.206 0.337 0.117 0.160 -0.037 0.251 0.476 0.282 0.473
ES 0.143 0.098 0.421 0.240 0.437 0.185 0.102 1 0.216 0.353 0.803 0.325 0.539 0.247 0.166 0.304 0.187
NL 0.180 0.288 0.703 -0.012 0.633 0.617 0.206 0.216 1 0.693 0.210 0.109 0.065 0.286 0.355 0.799 0.425
AT 0.264 0.340 0.866 -0.008 0.824 0.583 0.337 0.353 0.693 1 0.380 0.238 0.151 0.454 0.542 0.792 0.552
IT 0.175 0.125 0.468 0.237 0.488 0.184 0.117 0.803 0.210 0.380 1 0.336 0.547 0.272 0.137 0.295 0.198
PL 0.181 0.080 0.255 0.099 0.259 0.117 0.160 0.325 0.109 0.238 0.336 1 0.230 0.207 0.196 0.180 0.184
PT 0.055 0.021 0.188 0.369 0.209 0.043 -0.037 0.539 0.065 0.151 0.547 0.230 1 0.109 0.013 0.101 0.046
SK 0.205 0.230 0.494 -0.015 0.492 0.308 0.251 0.247 0.286 0.454 0.272 0.207 0.109 1 0.327 0.403 0.351
GB 0.216 0.326 0.591 -0.073 0.548 0.394 0.476 0.166 0.355 0.542 0.137 0.196 0.013 0.327 1 0.499 0.490
FI 0.196 0.355 0.825 -0.013 0.805 0.670 0.282 0.304 0.799 0.792 0.295 0.180 0.101 0.403 0.499 1 0.546
SE 0.185 0.330 0.572 -0.040 0.513 0.407 0.473 0.187 0.425 0.552 0.198 0.184 0.046 0.351 0.490 0.546 1
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A.3 Model Averaging Results

Table A.4: Model Averaging Results for the First Sub–Period

Dependent variable: CDS10Y

Spatial Component

Estimate Std. Error t–stat p–value
lambda 0.306507 0.139481 2.197 0.02864*
Explanatory Variables

CDS10Yt−1 0.750515 0.067164 11.174 0.00000***
CPIt−1 6.279846 4.426195 1.419 0.15685
CurAccBal dt−1 0.077456 0.597019 0.130 0.89685
DebtToGdp dt−1 7.104213 2.218084 3.203 0.00149**
FinSectort−1 15.898396 9.945867 1.598 0.11084
GDPpcgrt−1 -5.360176 2.321428 -2.309 0.02153*
IndProd dt−1 -1.517243 1.293019 -1.173 0.24143
IndexLDt−1 42.715609 29.019580 1.472 0.14193
IntlTrd dt−1 0.051394 0.165126 0.311 0.75580
JVart−1 2117.021809 1566.613194 1.351 0.17746
MMIR dt−1 83.310857 30.839478 2.701 0.00724**
RVolt−1 -76.724353 93.938175 -0.817 0.41462
Unemp dt−1 1.237570 3.601558 0.344 0.73134

Note: . p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A.5: Model Averaging Results for the First Sub–Period

Dependent variable: CDS10Y

Spatial Component

Estimate Std. Error t–stat p–value
lambda 0.112190 0.104552 1.073 0.28399
Explanatory Variables

CDS10Yt−1 0.683841 0.034084 20.063 0.00000***
CPIt−1 -0.916929 1.186714 -0.773 0.44024
CurAccBal dt−1 -0.133491 0.298215 -0.448 0.65470
DebtToGdp dt−1 -0.131633 0.266342 -0.494 0.62146
FinSectort−1 5.543110 4.263443 1.300 0.19441
GDPpcgrt−1 -0.178153 0.345317 -0.516 0.60624
IndProd dt−1 -0.622904 0.573450 -1.086 0.27812
IndexLDt−1 12.860317 11.476216 1.121 0.26322
IntlTrd dt−1 -0.012363 0.052670 -0.235 0.81456
JVart−1 0.046326 0.238199 0.194 0.84591
MMIR dt−1 0.066740 2.125470 0.031 0.97497
RVolt−1 7.653656 18.487643 0.414 0.67914
Unemp dt−1 21.009234 6.148532 3.417 0.00071***

Note: . p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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