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Abstract

During the last few years, market micro-structure research has been active in 

analysing the dependence of market efficiency on different market characteris­

tics. Make-take fees are one of those topics as they might modify the incentives 

for participating agents, e.g. broker-dealers or market-makers. In this thesis, 

we propose a Hawkes process-based model that captures statistical differences 

arising from different fee regimes and we estimate the differences on limit or­

der book data. We then use these estimates in an attempt to measure the 

execution quality from the perspective of a market-maker. We appropriate 

existing theoretical market frameworks, however, for the purpose of finding op­

timal market-making policies we apply a novel method of deep reinforcement 

learning. Our results suggest, firstly, that maker-taker exchanges provide bet­

ter liquidity to the markets, and secondly, that deep reinforcement learning 

methods may be successfully applied to the domain of optimal market-making.
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Abstrakt

Posledných pár rokov sa výskům ohladom mikro-štruktúry trhu snaží odhalit 

závislosti tržnej efektivity na rozličných charakteristikách trhov. Poplatkový 

systém make-take je právě jedným z takýchto tém, kedže móže mať vplyv na 

správanie agentov, napr. broker-dealerov či market-makerov. V tejto diplo- 

movej práci navrhneme model založený na Hawksovom procese, ktorý bude 

mať za ciel zachytit štatistické rozdiely vyplývajúce z odlišných poplatkových 

režimov a zároveň tieto rozdiely odhadnúť na dátach z limitnej knihy. Následné 

sa pokúsime použit tieto odhady na zmeranie kvality obchodovania z pohladu 

market-makera. Za týmto účelom použijeme existujúce tržné modely, avšak, 

optimálnu funkciu market-makera budeme hlaclať pomocou metody hlbokého 

spátnovázbového učenia. Naše výsledky implikujú, že maker-taker burzy posky- 

tujú kvalitnejšiu likviditu a zároveň, že hlboké spátnovázbové učenie móže byť 

úspěšně použité v oblasti hladania optimálnych politik market-makera.
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Author Be. Rastislav Kisel

Supervisor PhDr. Jozef Barunik, Ph.D.

Proposed topic Quoting behaviour of a market-maker under different ex­
change fee structures

Motivation The exchanges in the US have been undergoing some detrimental 
changes in the last decade. Stabilisation of algorithmic trading as a new normal 
practice among all market participants, proliferation of exchanges or migration of 
volume to non-lit venues present a challenging environment for operations of individ­
ual exchanges. The desire to remain profitable constantly forces them to implement 
innovations that try to cater to different market participants. Either renting co- 
location facilities to attract HFT, enabling proprietary dark liquidity trading options 

(e.g. hidden orders or exchange-owned dark pools) to attract institutional investors 
or implementing tailored fee structures.

This thesis will consider the effect of the last of the above-mentioned innovations 
on the quality of the equity markets. There are two fee structures present across US 
exchanges (although they are applied in several types of markets we will primarily 
have equity markets in mind). The first one, so called maker-taker arrangement, 
supplies rebates to parties quoting limit orders (i.e. order to buy/sell at the defined 
price) and bills parties that "take" this liquidity by posting market orders (i.e. order 
to buy/sell at the best existing price). The taker-maker setting follows the same but 
only inverted scheme, meaning paying rebates for market orders and extracting fees 

for limit orders. There is an empirical evidence that parameters describing market 
quality change with the fee structure and the level of rebate. Particularly, several 
authors have found that the fill rate is higher for markets with taker-maker setting 
or low taker fees (see Aldridge 2013; Battalio, R. et al. 2015; Cardella, L. et al. 2013; 
Yiping, L. et al. 2016).

We will try to incorporate this empirical evidence into modelling the behaviour 
of HFT market-maker on markets with different fee structures and with different
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fee levels. Therefore, the HFT market-maker will be deciding to quote under the 
trade-off between the fill rate and rebate, i.e. the higher the arrival of market orders 
the lower the rebate (or even payment of fees) for limit orders and vice versa. We 
will try to evaluate the market quality in regard to market-maker quoting implied 
by different fee structures.

Hypotheses

Hypothesis #1: P&L of the market-maker will be higher in a market with 
maker-taker setting

Hypothesis ^2: Bid-ask spread will be lower in a market with fee structure 
preferring market orders

Hypothesis #3: Bid-ask spread will be lower under stress conditions in a mar­
ket with fee structure preferring market orders

Methodology The study will be based on a zero intelligence model of the limit 
order book. Zero intelligence models are a class of models assuming random trading 
of agents on the market in a continuous double action (i.e. buying and selling) setting. 
Two zero intelligence order books with different fee structures (and therefore different 
marketable order arrivals) will provide the background where the rational agent will 
be situated. Therefore, integrated with the model will be objective function of this 
market-maker, which will incorporate his aim to maximize expected terminal profit.

The study will simulate the model after establishing it. The simulation will 

be calibrated either on the existing empirical evidence mentioned earlier or on the 
estimation of fill rates on particular datasets (the path taken will depend on the 
author’s access to proper datasets). The result of simulation is expected to be the 
relationship between the quoted optimal bid-ask spread of the market-maker and the 

fee structure of the market.

Expected Contribution We are persuaded of the soundness of our venture by the 

fact that the high-frequency companies are extensively overtaking market-making 
business from traditional players in equity markets and the rebates from liquidity 
provision are evidenced to constitute the bulk of the profit of several HFT traders 
(see Biais, B. et al. 2014). However, existing academic literature doesn’t consider the 
nexus of market-making behaviour and exchange fee structure. Bearing these points 
in mind, to gauge the impact of market fee structures on the quoting behaviour of 
market-makers is a topic that warrants attention.
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Therefore, we believe our study could enrich current debate on market microstruc- 
ture by presenting the effects of institutional fee arrangement on the quality of liq­
uidity provision.

Outline

1. Introduction

2. Literature Review

3. Model

4. Calibration on the data

5. Simulations

6. Conclusions
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Chapter 1

Introduction

Currently, a highly fractioned nature of US markets forces exchanges to com­

pete with each other in the quest to attract high-quality liquidity. They may 

decide to provide different features, e.g. multiple options of data access or 

plethora of order types and fee structures, catering to individual market pop­

ulations. Each modification of market micro-structure propels the overall dy­

namics of the markets. However, not all directions financial markets take may 

be normatively warranted. For example, if there would be an evidence that 

providing access to proprietary high-frequency trading worsens the execution 

quality for large buy-side institutions (e.g. insurance companies, pension funds, 

asset-management companies...), the sensibility of fixing this market structure 

might be questioned.

Providing quality analysis of market micro-structure is therefore of signifi­

cant importance not only to the financial institutions themselves, but also to 

the policy-makers. It is therefore not surprising that even Permanent Sub­

committee on Investigations of the US Senate requested a hearing attended 

by several executives of prominent US stock exchanges regarding possible con­

flicts of interests stemming from currently popular market liquidity-based fee 

models (Permanent Subcommittee on Investigations, 2014). The discussion of 

the Subcomittee also revolved around the study of Battalio et al. (2016) who 

have investigated the quality of market liquidity with regard to different fee 

structures. US stock exchanges currently employ either maker-taker or taker- 

maker fees (exchanges charge several other types of fees, however, we will focus 

exclusively on liquidity-based fees). In the former case, the exchanges pay re­

bates to liquidity providers and take fees from liquidity demanders, while in 

the later case, the liquidity providers pay fees that are further disseminated
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to liquidity demanders. Battalio et al. (2016) gathered evidence that maker- 
taker exchanges provide worse liquidity conditions (e.g. lower probability of 
fill and lower fill speed conditional on fill). Therefore, potential conflict of 
interest might arise when broker-dealers send their orders to maker-taker ex­
changes, where they obtain financial rebates, while at the same time decreasing 
execution quality for their clients.

Although solely financial incentive of broker-dealers is unequivocal under 
these market circumstances, the decision-making of market-makers is more 
complicated. If the claims of Battalio et al. (2016) would be true, market- 
makers have to find a balance between market quality and rebate provision. 
Higher probability of order fill on some exchanges would mean that the quan­
tity of trading would be higher and the risk of informed trading would be lower 
there. However, by posting quotes on such exchanges the market-maker would 
incur taker-maker fees. The opposite situation holds for his engagement on 
maker-taker exchanges.

Although several authors have weighted in the debate (even before Battalio 
et al., 2016), no comprehensive modelling approach for this feature of market 
micro-structure has been yet proposed. In this diploma thesis, we try to create 
a model that would be able to capture differences between probability of fill 
and fill rates in connection with maker-taker and taker-maker exchanges. This 
modelling will be based on a self-exciting point process system, called Hawkes 
process. Our initial idea was then to calibrate the model on market data and 
by tools of optimal control show what are the optimal quotes from the per­
spective of the market-maker. However, the structure and quality of available 
datasets challenged the first part of this direction. We have therefore decided 
to optimize the Hawkes model, obtain the corresponding market quality pa­
rameters and then use these parameters as an input to some existing model of 
optimal market-making. We have decided to implement a well-known model 
developed by Avellaneda & Stoikov (2008) that has been employed by several 
other research teams since its publication (see Fodra & Labadie, 2012, Guéant 
et al., 2013, or Guéant, 2017). However, we have appropriated only the funda­
mental market framework of the original paper. We will not be using methods 
of stochastic optimal control via Hamilton-Jacobi-Bellman (HJB) equations, as 
the authors click Instead, we propose solving the problem of finding the optimal 
quotes of the market-maker by reinforcement learning. Particularly, we will be 
implementing Double Deep Q-Network used initially by Mnih et al. (2015) to 
solve optimal control of game playing. An advantage stemming from using this
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method instead of analytical solution via HJB equations is the generality this 

optimal control method provides. In the original paper, in order to quote opti­

mally, the market-maker needs to have a knowledge of the underlying market 

parameters (i.e. volatility and market order arrival intensity). Also, more com­

plicated market structure models may be intractable. Both of these problems 

are surpassed by reinforcement learning. As of the date of writing this thesis, 

the author is not aware of any existing literature discussing deep reinforcement 

learning tools in the domain of market-making.

The thesis is structured as follows. Second chapter briefly summarizes the 

current state of research in the domains of make-take fees, Hawkes process 

limit order book modelling and finally optimal market-making and deep rein­

forcement learning. Next chapter introduces Hawkes processes and proposes a 

Hawkes process-based model for the limit order arrival from maker-taker and 

taker-maker exchanges and market order arrivals. The simulation of the pro­

cess with successive optimization is provided as an evidence that the maximum 

likelihood optimization techniques work well even in multidimensional case. A 

chapter describing origin of the data and adjustments needed for the modelling 

follows. Chapter 5 presents the results of optimizations of the Hawkes process 

on the data. Next chapter introduces and applies deep reinforcement learning 

methods on the market framework of Avellaneda & Stoikov (2008). Conclusion 

follows.



Chapter 2

Literature review

2.1 Impact of Liquidity-based Fees on Market Qua 

lity

The spread of make-take fees 1 can be traced back to the dissemination of alter­
native trading systems (ATS) in the late 90ties. One of the first exchanges to 
offer maker-taker fee structure was Island Electronic Communication Network 
(ECN). This plan to attract order flow was met with success and other ATSs 
followed the suit. Traditional stock exchanges had to jump on the bandwagon 
in order to compete with the ATSs. By the mid-2000s, most US equity trading 
was done on platforms that charged some kind of fee for demanding liquidity 
and paid rebates to liquidity suppliers. The federal agency for securities super­
vision, U.S. Securities and Exchange Commission (SEC), quickly noticed the 
raging race for attracting order flow through liquidity rebates and approved 
a regulation regarding access fees as part of Reg NMS (Regulation National 
Market Service) in 2005 (implemented in 2007). Rule 610 established ceiling of 
30 cents per 100 shares on the taker fee. This ceiling is still in place and besides 
that, all equity exchanges have to hie fee changes to the SEC (see Securities 
and Exchange Commission Division of Trading and Markets, 2015). Currently, 
all of the 13 registered stock exchanges follow some kind of liquidity-based fee 
pricing system. While three of those (Bats BYX Exchange, Inc., Bats EDGA 
Exchange, Inc. and NASDAQ BX, Inc.) follow inverted, i.e. taker-maker, 
pricing system, majority adhere to the maker-taker fee schedule.

xIn the following text, I will refer to the system when an exchange imposes fees or rebates 
based on the liquidity supply or demand as make-take fees, while by maker-taker (taker- 
taker) system I will denote the specific version of make-take fees when liquidity providers 
(demanders) receive rebates and liquidity demanders (providers) pay fees.
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The benchmark argument on the impact of make-take fees on the quality 
of trading assumes frictionless market conditions. Under this assumption, any 
change in the fee distribution, i.e. any change in the maker fee and taker fee (or 
equivalently rebates) as a proportion of the total fee (holding this total fee con­
stant) is reflected in the change of raw, i.e. quoted, bid-ask spread. Therefore, 
in case of substitution of maker-taker fees for undiscriminating fee payment, 
net spread, computed as a raw bid-ask spread plus two times the taker fee (i.e. 
actual costs for a roundabout market order), should remain the same. The 
reason is that higher taker fee would force some (less informed) agents to trade 
with limit orders, therefore increasing competition on the limit order book. 
This increased competition will tighten the spreads and the resulting net fees 
will be identical to the ones paid by the agents before the fee reform. Possible 
frictions (e.g. agency problems of brokers, obligatory minimum tick size, inter­
exchange competition or competition of exchanges with limited display venues, 
so-called "dark pools”) are not taken into account in this argument. We will 
firstly take a look at the formulation of the impact of make-take fees under 
perfect competition as postulated by Angel et al. (2011) and later formalized 
by Colliard & Foucault (2012) and then we will consider possible deviations in 
form of market imperfections and consequences on market quality implied by 
these deviations.

Colliard & Foucault (2012) model the market of investors trying to trade 
with a predetermined deadline for trade execution. They can either choose 
to enter a limit order market as a maker or taker or a dealer market. As a 
maker they run the risk of missing the deadline for the execution, however, 
they can obtain the desired price for their asset, and as a taker, they have to 
accept market maker’s quotations, but there is no risk of missing the deadline. 
Similar trade-off is present in the dealer market. Investors are further differ­
entiated according to their deadline intensity on patient and impatient ones - 
discount factors for both groups are different. The first corollary originating 
from an equilibrium states that the cum fee bid-ask spread is independent of 
the maker/taker fee breakdown as the total fee stays the same. Therefore, any 
change in the composition of the maker/taker fee payment structure impacts 
solely the raw bid-ask spread, while leaving all other market quality parameters 
(e.g. trading volume, fill rate, investors’ welfare, etc.) untouched.

One of the first responses to the thesis stating that the composition of fee 
payment does not affect market quality came from Foucault et al. (2013). The 
authors model a market with maker and taker agents with specific monitoring
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costs. Their model predicts, besides other things, that when the tick size is zero, 
any change in the fee composition is neutralized by the adequate change in the 
raw bid-ask spread, leaving the cum fee spread and market quality parameters 
unaffected. However, when there is a positive tick size, the neutralization 
response is a step function. Under these conditions, any fee change not copying 
the price grid will change the market quality parameters. The logical conclusion 
is that influencing the market by changing the market microstructure is possible 
only by imposing "between tick size" fee changes. As the authors state: "... as 
long as the tick size is not zero, the make/take pricing model has true economic 
consequences: it affects the monitoring intensities, the trading rate, and market 
participants’ welfare."

Another possible source of market imperfection hindering the smooth ad­
justment of raw spread to the changes in the fee composition was described 
by Brolley & Malinova (2013). The main contribution of the study lies in in­
vestigating the differences in the impact between the setting when brokers are 
passing the maker/taker fees to end investors and the setting when investors 
are paying flat fees to the broker who pays the liquidity access costs or re­
ceives the rebates from the exchange. Under former conditions, the authors 
arrive at the same conclusion as obtained by Colliard & Foucault (2012) that 
the market quality is independent of the fee distribution between makers and 
takers. However, under the latter setting, the investors are primarily affected 
by the changes in the raw bid-ask spread. Therefore, when the maker rebate 
increases, the raw bid-ask spread decreases and investors are more motivated 
to post market orders. The trading volume increases as a consequence. How­
ever, the authors also find a certain population of uninformed investors who 
decide to abstain from the market because the spread is smaller and decreased 
adverse selection costs (due to an increase in market order trading of other un­
informed investors) are not enough to offset the hrst effect. Similar conclusions 
are drawn by O’Donoghue (2015) who strips the model of Colliard & Foucault 
(2012) of deadlines and a chance of non-execution for investors’ orders. The 
author finds that in the case of keeping the net fee fixed, the increase in the 
taker fee and maker rebate lowers the market participation, while increasing 
the share of market orders. The change is driven by investors who would prefer 
to trade by posting limit orders before, but now decide to trade with market 
orders. The change in their behaviour is affected by the fact that investors 
pay flat commission to the broker and therefore the lower bid-ask spread in- 
centivizes posting market orders as the surplus from them becomes relatively
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higher than the surplus from posting limit orders. Therefore, simultaneously 
with rising taker fees and maker rebates the fill rate increases.

Empirical analysis have consistently shown that the benchmark argument 
does not hold in real markets and the make-take fee structures do indeed affect 
market quality, thus giving credit to the imperfect market models. However, 
empirical analysis are not unanimous regarding the sign of the effect of the 
change in the maker/taker fee distribution (keeping the total fee fixed).

Malinova & Park (2015) find evidence in accordance with the model of 
Brolley & Malinova (2013) and O’Donoghue (2015). They studied the se­
lected group of stocks that underwent a change in the fee structure on the 
Toronto Stock Exchange (TSX) in 2005. The change consisted of the transfor­
mation from volume-based taker fee (makers did not pay or receive any pay­
ments) to the maker-taker pricing system. The authors document a betterment 
of prices (therefore lowering of raw spreads) as a consequence of installing a 
maker rebate, thus corroborating the hypothesis of Colliard & Foucault (2012). 
However, unlike the perfect market models predict, market quality parameters 
changed. The authors present evidence of an increase in the trading volume, 
the fill rate for limit orders and a decrease of price impact (i.e. signed change 
of the midpoint following a trade) of marketable orders (that is equivalent to 
lower adverse selection costs).

However, some authors have questioned the generalizability of the hirelings 
of Malinova & Park (2015). Lin et al. (2016) argue that TSX was a monopoly 
exchange in Canada at that period (i.e. during 2005), and therefore the impact 
of market competition was almost non-existent in those circumstances. They 
hypothesize that there might have been no change in the informativness of 
the order How as a consequence of starting the TSX experiment due to the 
monopolistic nature of the exchange. However, similar venture would result 
in a major shift in the character of the order How in the LIS circumstances. 
Even though Malinova & Park (2015) mention that the stocks they study were 
cross-listed with NASDAQ and AMEX, the investors’ desire to trade equities 
on foreign exchanges may have been restrained back then. Also, it could be 
argued that the presence of HFT companies have been lower back in 2005 
and therefore the circumstances now differ in a significant way from those 
studied. Lin et al. (2016) together with Battalio et al. (2016) analyse more 
recent data from US stock exchanges and find contrary evidence to Malinova & 
Park (2015). The former study analyses data documenting temporary decrease 
in the access fees (from 30/29 basis points per share to 5/4 basis points per
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share for takers/makers) for a sample of 14 selected stocks on NASDAQ during 
2015. The authors have found that the market share, routed volume and depth 
share at the NBBO (i.e. average percentage quote size when a NASDAQ quote 
is at the NBO/NBB) all declined as a result of the reform. They argue that 
this effect was caused by a drop in the position of NASDAQ in the routing 
tables of liquidity providers’ (who were discouraged by small maker rebates). 
Similar chase for taker rebates by market orders is documented by Aldridge 
(2013). Lin et al. (2016) interestingly also find that market share decreased by 
a much smaller coefficient than the depth share and they deduce that liquidity 
demanders were more prone to trade on the NASDAQ compared to the passive 
liquidity side. This result was further strengthened by the findings that fill 
rate and speed of fill both improved at the selected sample of NASDAQ stocks. 
The authors also do not find strong support of the perfect market hypothesis 
- although they find a decrease in the effective spread (i.e. two times signed 
difference between trading price and midpoint), they also notice a decrease in 
the cum-fee effective spread. The explanation they provide is that the decline 
in the maker fee shifts the informed trading from NASDAQ to other, higher 
rebate-paying, exchanges, and as a result the adverse selection costs for liquidity 
providers also lower. Therefore, liquidity providers may be more willing to 
forgo some part of the original revenue by quoting prices slightly lower than 
were prevalent before the reform. Results of Battalio et al. (2016) are in line 
with the ones of Lin et al. (2016) in the domain of fill rates and fill speed. By 
analysing proprietary data together with NYSE TAQ data, authors consistently 
find that fill rates are much higher for exchanges that pay smaller maker rebates 
(and extract smaller take fees) and that conditional on fill, the speed of fill is 
much slower for those exchanges.

The baseline prediction of the neutral effect of the make-take fees on the 
market quality relied on the assumption of frictionless markets. More complex 
view was considered by some authors by adding either the mechanisms of fee 
passing (e.g. brokers) or inter-market competition. The theoretical models sur­
passing the perfect market circumstances predict that higher maker rebate and 
higher taker fee (keeping net fee constant) will decrease market participation 
but increase the share of market orders and therefore the fill rate. However, 
empirical studies of the LIS markets were not able to corroborate the latter 
hypothesis. Currently, besides a drop in the market share, the most evidenced 
effect of the higher maker rebate (and simultaneous higher taker fee) is a de­
crease in the fill rate and a slower speed of fill.
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2.2 Modelling of the Limit Order Book

Our main goal consists in capturing potential statistical differences in patterns 
of dependence between market and limit orders within different exchange fee 
structures and then simulating such markets. Therefore, models that allow 
interdependence between arrival rates of individual order types would be the 
most befitting ones for our purposes. Also, we need to obtain models that allow 
estimation of its parameters on high-frequency market data. Several recent 
studies (Bowsher, 2007, Toke, 2011, Muni Toke & Pomponio, 2011, Gould 
et al., 2013, Bacry et al., 2013 or Lallouache & Challet, 2016) have evidenced 
that Hawkes process, a special type of self-exciting point process, can be used 
to model trade and limit order events and provides reasonable, and in some 
cases remarkable, fits to empirical datasets. It easily lends itself to multivariate 
extensions, it allows closed form maximum likelihood formula, also several non- 
parametric estimation approaches have been derived, goodness-of-fit tests are 
available and there are multiple methods for its simulation. In contrast to 
other zero-intelligence models, it does not suppose independent and identically 
distributed inter-arrival times of individual orders and it also might be easily 
adjusted to a real-time grid.

The first formulation of the model is due to Hawkes (1971), who besides 
proposing the general univariate and multivariate versions of the process, also 
derived its Fourier spectra for the special case of exponentially decaying kernel. 
Few years after the formulation saw contributions to the explicit formulation of 
maximum likelihood estimator (Ozaki, 1979), proof of consistency, asymptotic 
normality and efficiency of the MLE in a univariate stationary case (Ogata, 
1978), and simulation techniques (e.g. Ogata, 1981). Since then, Hawkes pro­
cess has been applied to a wide range of scientific areas, Lallouache & Challet 
(2016) mention earthquake occurrences, neuroscience, criminology and social 
networks modelling.

Bowsher (2007) was the first one to extensively appropriate the model for 
realities of financial econometrics. He started by introducing a generalized 
version of the Hawkes process (called by him g-HawkesE(k) in case of k intensity 
processes) that appended a dependence of the intensity function on the intensity 
from the end of the previous trading day (due to the closing of equity markets 
during the night) and derived the likelihood function for estimating parameters 
of such multivariate models. However, main contribution of the study consists 
in applying the random time change argument to the multivariate case in order
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to derive appropriate specification tests. He proposed two such tests, called "o- 
tests" and "m-tests", that test the correct specification jointly and separately 
for each intensity function, respectively. He then went on to analyse General 
Motors Corporation equity data from 2000 with respect to mid-quote changes 
and trades by the g-HawkesE(2) model. He found strong evidence of cross- and 
self-excitation in both directions. In the case of cross-excitation, the effects were 
of very high magnitude, but low half-lives and vice versa for the self-excitation.

Since then, several studies have focused on modelling limit order book by 
incorporating Hawkes process. Toke (2011) tried to model the dependencies 
in market making. After empirically observing shorter time spans between 
arrivals of market orders and subsequent arrivals of limit orders, he decided 
to capture this phenomena by modelling it with a bivariate Hawkes process 
with both self-excitation effects and one cross-excitation effect in the direction 
from market orders to limit orders. In comparison to simplified models, this 
bivariate Hawkes presented a reasonable fit and after simulation, exhibited 
distributions of time intervals between market and limit orders resembling the 
ones seen in data. Muni Toke & Pomponio (2011) concentrated on possible 
interdependence between trades-through (single market orders that trade at 
least the size available at the best ask/bid) at different market sides. They 
found that when comparing fits to BNP stock data of model with cross- and self­
excitation terms and models with just self-excitation terms, the two were almost 
the same in their likelihoods. The authors concluded that cross-excitation is 
unimportant in modelling trades-through.

Bacry & Muzy (2014) proposed a comprehensive treatment of trade and 
price dynamics. They suggested a model with 4 underlying Hawkes processes. 
The first two were connected with trades at bid and ask and the second two 
were connected with prices changes (i.e. one for upward and one for downward 
price moves). The authors established auto-covariance function and asymptotic 
diffusive properties of the model. As an addition, they proposed another pair 
of Hawkes processes that were connected with market orders (bid and ask) of a 
single agent and derived the market impact profile of an order of this agent. Fur­
thermore, they derived a new non-parametric estimator of the kernel function 
and used it to estimate the parameters of the model on the futures contracts 
of EuroStoxx and EuroBund. They found evidence for strong self-excitation in 
trades and cross-excitation (i.e. mean-reversion) in price dynamics.

Similar model was used by Bacry et al. (2013) in an analysis of two incon­
sistencies observed by current market microstructure research between theo-



2. Literature review 11

retical diffusion models of prices and stylized facts of a behaviour of variance 
and covariance between assets at small time scales. The first one, belonging to 
the microstructure noise effects (graphically represented by a signature plot), 
states that with increasing granularity of data the empirical measures of daily 
variance increases without bound, while the second one, so-called Epps effect, 
describes the empirical observation that the higher granularity, the lower is 
the correlation of prices of two assets. Both observations are inconsistent with 
properties of diffusion models. The aim of authors was to capture these two 
effects while still keeping the Brownian characteristics of price dynamics on 
higher granularity scales. They started with modelling univariate and bivari­
ate price dynamics as a difference of two counting processes (one for positive 
and one for negative price moves) and they established that, in a limit, the 
processes converge to a univariate or bivariate Brownian motions. The authors 
estimated the models on Euro-Bund and Euro-Boble data and showed that, 
indeed, both models capture the empirical realities of the signature plot and 
the Epps effect quite well.

One of the major threads in the literature on Hawkes process is investigat­
ing properties and appropriateness of application of different kernels. Rambaldi 
et al. (2014) try to model the activity in FX markets around the announce­
ment of major macroeconomics news. They estimate Hawkes process models 
with double exponential and approximation of power-law kernel on currency 
quote data. They consistently find better fits with power-law kernel. As a next 
step, they add to the intensity equation another (exponential) kernel that is 
connected with a Poisson process of news. These second models are evidenced 
to reproduce changes of quotes around the announcement of major news well, 
with the power-law kernel being qualitatively more precise in capturing trading 
activity shortly after the announcement. Different conclusions are drawn by 
Lallouache & Challet (2016), who fit EUR/USD trade arrival data on differ­
ent kernels of Hawkes process. They estimate the models with exponential, 
power-law, power-law with a cut-off, and a mixed kernel. In the case of decom­
position of data into hourly cycles as well as in the case of daily decomposition, 
exponential kernel was the most appropriate kernel. However, a multiplicity 
of other studies (Hardiman et al., 2013, Hardiman & Bouchaud, 2014, Bacry 
et al., 2012, Bacry & Muzy, 2014 or Bacry et al., 2015) have corroborated the 
notion that power-law kernels are more appropriate in modelling limit order 
book. It is surprising that this statement is evidenced to hold for different 
types of events (e.g. trade arrivals and quote changes).
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A marked extension of Hawkes process was treated by Embrechts et al. 
(2011). They proposed two versions of marked Hawkes process - the first one 
in a multivariate setting and the second one in a vector-valued setting. The first 
one is defined by univariate marks associated with several counting processes 
and intensity functions, while in the second case, the marks are multivariate 
and there is only one underlying counting process and intensity function. The 
authors then test their models on empirical data - the first model is fit on 
extreme values of closing prices of Dow Jones Industrial Index (DJIA) for the 
period of 1994-2010 (i.e. values below 10% and above 90% quantiles) and the 
second model is fit on extreme hourly log returns (i.e. below 1% and above 
99% quantile) of DJIA, NASDAQ-100 and SP500 Composite (time range from 
1997 to 2010). Both estimations provided reasonable fits.

Flexibility inherent in the Hawkes process was appropriated for very diverse 
range of problems in the area of financial econometrics besides modelling limit 
order book and price dynamics. Large (2007) studied the resiliency of the mar­
ket, i.e. the ability of an order book to replenish quickly after a large market 
order. He used characterization of the intensity function as a conditional ex­
pectation of a jump happening in the infinitesimally small neighbourhood of 
an occurrence of some other event. The author concluded that "in over 60 per 
cent of cases, the order book does not replenish reliably after a large trade. 
However, if it does replenish, it does so with a fairly fast half life of around 20 
s." Filimonov & Sornette (2012) exploited the characterization of the Hawkes 
process as a composition of mother events and descendants. The mother events 
were considered a representation of the price movements due to the exogenous 
arrival of news (i.e. changes in the fundamental value of the underlying asset), 
while descendants were perceived as the price movements stemming from the 
market itself. The branching ratio, i.e. the ratio of descendant events to the ra­
tio of all events stemming from one mother event, can be explicitly formulated 
in case of several kernel specifications of Hawkes process and the authors relate 
this number to a quantitative measure of the endogenous character of the price 
movements. By estimating the model on E-mini S&P 500 futures data, authors 
have found that the level of endogeneity has increased from 30% in 1998 to 70% 
in 2007. Hardiman et al. (2013) reacted to the Filimonov & Sornette (2012) by 
showing that when one changes the underlying kernel of the Hawkes process 
(from exponential to power-law) and the time window of the estimation, the 
results obtained can be very different. The authors have found that the ratio 
of non-fundamental trading in markets is steady over time and close to critical
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(i.e. spectral radius of the kernel matrix is close to 1), however, the reactions 
of markets get swifter with time. Filimonov & Sornette (2015) answered by 
making an extensive overview of possible biases (e.g. presence of outliers, edge 
effects in estimation of power-law kernel or non-stationary character of data) 
that could be a source of differences between the two studies. Hardiman & 
Bouchaud (2014) reacted by introducing a non-parametric approximation to 
the branching ratio that requires only knowledge of the first two moments. 
This asymptotically unbiased estimator was applied to the same dataset as 
used in Filimonov & Sornette (2012). Authors provided evidence supporting 
their previous claims about stability and criticality of the endogeneity param­
eter. Contagion of financial crises between different markets was considered 
in a recent study by Ait-Sahalia et al. (2015). The authors suggested sub­
stituting traditional Poission counting process in the jump term of the Levy 
diffusion by the Hawkes process as a means to allow the dependency struc­
ture in the jumps. The resulting Hawkes jump-diffusion, as the authors call 
it, does not have stationary and independent increments, but allows for rich 
mutual excitation between different processes. The authors provided GMM 
estimation technique and presented evidence of self-excitation and asymmet­
ric cross-excitation between markets (direction is stemming from US markets). 
A remarkable study was published by Linderman & Adams (2014), who esti­
mated the Hawkes process model enhanced with latent distance random graph 
on all individual components of SP100. They obtained a measure of distance 
between individual companies that exhibited clustering patterns in certain sec­
tors of economy (e.g. energy and financials). They have also found that certain 
companies (e.g. Apple and Exxon) have strong cross-excitation effects on the 
performance of large number of companies.

A comprehensive treatment of stylized facts and modelling practices of limit 
order books can be found in Abergel et al. (2016). Modelling approach based on 
Hawkes process dynamics is also represented and several important theoretical 
results (e.g. generator, ergodicity, large scale limit) and simulation techniques 
are synthesized. A concise recent summary of existing research on the usage of 
Hawkes process in financial econometrics was completed by Bacry et al. (2015). 
Besides introducing several theoretical results, the authors gather the most 
promising studies in the areas of market activity, market endogeneity, price 
creation, market impact, optimal execution strategies, order book modelling 
and other miscellaneous models exploiting the framework of Hawkes process.



2. Literature review 14

2.3 Market Making and Reinforcement Learning

The theory of optimal market-making develops optimal strategies that market- 
maker should follow in order to maximize his returns, while simultaneously 
minimizing inventory risk from repricing and minimizing the risk of informed 
trading. The domain has practical applications and has attracted considerable 
attention in recent years. The study that invigorated the research into optimal 
market-making was Avellaneda & Stoikov (2008). The authors considered a 
simple diffusion mid-price process with a zero drift and a constant volatility 
and Poisson process-driven market order arrival rates grounded in recent econo­
physics results. By specifying a Hamilton-Jacobi-Bellman (HJB) framework of 
the model, they obtained closed form approximations to optimal quotes.

Several authors continued in developing either the benchmark model and/or 
the solution of it. Guéant et al. (2013) modified the Avellaneda-Stoikov model 
by adding inventory constraints. Then they showed that a solution of the HJB 
control equations can be found as a solution to a system of ordinary differential 
equations. Thus they obtained optimal quotes and their asymptotic behaviour 
(asymptotic in terminal time). Solution, optimal quotes and asymptotic limits 
were also obtained for the case of a diffusion with non-zero drift as the under­
lying mid-price and for the case of market impact. Fodra & Labadie (2012) 
solved the HJB equations and obtained approximations to optimal quotes for 
the general cases of either linear or exponential utility functions with possi­
ble inventory-risk aversion. Quite recent addition to the literature came from 
Guéant (2017), who extended the Guéant et al. (2013) solution by allowing for 
a more general market order intensity function than the exponential one used 
in the original Avellaneda & Stoikov (2008).

However, although these results are already very general, they may still 
be applied only in settings where we do assume certain distributional charac­
teristics of the mid-price dynamics and market order arrivals. This limitation 
could be avoided by using some model-free technique of optimal control. Re­
inforcement learning is a family of methods, where an agent "interacts with 
environment by adaptively choosing actions in order to achieve some long-term 
objectives" (Chan & Shelton, 2001). Until recently, more massive expansion 
of reinforcement learning was hindered by either tedious manual crafting of 
features to represent the range of the target function or by the necessity to dis­
cretize its domain. These limitations have been overcome by recent advances 
in deep reinforcement learning, a method appropriating neural networks in ap-
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proximating target function that reinforcement learning agent uses for searching 
for the optimal behaviour. Deep reinforcement learning was shown to exhibit 
extraordinary learning skills, most notably in playing a large spectrum of video 
games (e.g. Mnih et al., 2015) or an ancient table game Go (e.g. Silver et al., 
2017).

These advances seem to be very slowly encroaching into the domain of 
quantitative finance. Reinforcement learning tools have found their applica­
tions mostly in time-series predictions, with minor excursions into the topic of 
optimal execution of trades. Corazza & Bertoluzzo (2014) or recently Jiang 
et al. (2017) and Deng et al. (2017) may be consulted for the application of 
regular and deep reinforcement learning systems to the task of enhancing time- 
series prediction or portfolio management. Much closer to our task, Nevmyvaka 
et al. (2006) and Hendricks & Wilcox (2014) have studied the application of 
regular Q-learning techniques for optimizing execution costs in markets. Re­
cently, Fernandez-Tapia (2015) developed an iterative algorithm based on the 
stochastic gradient descent for a version of market-making problem and proved 
its convergence to global minimum under certain conditions.

Closest to our endeavour may be considered Chan & Shelton (2001) who 
studied the performance of Monte Carlo, SARSA and actor-critic algorithms 
given a task of maximizing profits for a market-maker. In the first part of 
the study, the authors developed a simple model of monopolistic market-maker 
that is unaware of the fundamental price of the asset. He sets only a single price 
and waits for trades from informed and uniformed traders. His state variable 
is inventory imbalance and he decides his actions based on different levels of 
this imbalance. Authors proved theoretically optimal policies for different pro­
portions of informed and uninformed traders. In practical application, Monte 
Carlo and SARSA approximated the theoretical optima very well. In the sec­
ond part of the study, the market-maker was able to set bid and ask prices and 
therefore had to control both the spread and the direction of his quotes. Both 
SARSA and actor-critic tracked reasonably well the true price process, while 
actor-critic finishing with a much lower variance of spread distribution (spread 
being directly incorporated into rewards).

Chan & Shelton (2001) thus provided evidence that stochastic policies re­
sulting from applying actor-critic algorithms may be well suited for optimal 
control of market-makers. However, the state space representation for the al­
gorithms consists of 3 states in the first and 12 in the second case, while action 
space has cardinality 3 in the hrst and cardinality 9 in the second case. The
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simplicity of the model and inability to scale it simultaneously with the algo­

rithms therefore hinders the generalizability of its hirelings. The potential of 

deep reinforcement learning in searching for optimal policies in large products 

of state and action spaces can be, in my opinion, applied with the aim of pro­

viding solutions to optimal quoting problem in a much more realistic market 

settings.



Chapter 3

Limit Order Book Model

3.1 Introduction to the Hawkes process

As suggested in the previous chapter, we will be using a multivariate Hawkes 
process in modelling the arrival of market and limit orders. This chapter will, 
after reviewing some technical preliminaries, introduce the Hawkes process in 
a multivariate setting. We will also present log-likelihood specification and 
statistical tests. Then, we will propose a particular version of a multivariate 
Hawkes process, that will be used in an empirical estimation, and finally, we 
will provide an evidence for reliability of the MLE estimation.

Definition 3.1 (Point process). Let (Q,=F,P) be a probability space and (P, 
ď) a measurable space. A sequence of non-decreasing ^"-measurable valued 
random variables {7k}fc=i,2,... with 7k : Q —> E is called a point process.

Point processes on 1R+ are generally considered, therefore the measurable 
space is a pair of IR+ and an associated Borel a—algebra. Besides this, simple 
point processes are most often considered, which means that increasing prop­
erty of the sequence {7k}fc=i,2,... is required. Also, we will be interested only in 
processes that are non-explosive, i.e. lim^oo 7k = oo.

In the following sections, we will always consider processes defined on a 
filtered probability space (Q,d^", F, P) with filtration F = {^t}t>o and if not 
stated otherwise, the processes will be adapted to the filtration F.

Definition 3.2 (Counting process). A cadlag process

W) = IZ ^{Tk<t} (3.1)
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is called a counting process associated with the point process {Tk}k=1^,...-Definition 3.3 (Conditional intensity function). A conditional intensity function of a counting process 7V(f) is a left-continuous function:
A(^) = |jm + (3 2)

h->0+ hDefinition 3.4 (Univariate Hawkes process). A simple non-explosive counting pro­cess 7V(f) with intensity A(i|^t) satisfying1. 7V(0) = 0.2. A(i|^i) is a left-continuous process given by
A(i|^t) =//+ Z g(t — u)dN{u\ (3.3)7—00

where the integral is a stochastic integral w.r.t. semimartingale and g(v) : IR^ -> RÍ.3. P(7V(t + h) - 7V(i) = 1|^) = A(i|^)h + o(h)4. P(7V(t + h) - 7V(f) > 2|^t) = o(h)where by o(h) we denote a quantity that satisfies:
limh^o+^- = 0 (3.4)

is called a univariate Hawkes process.Although the integral presented by Hawkes (1971) has lower bound at —oc, generally the processes starting at 0 are considered and therefore the integration is done only on some subset of Rq  . Hawkes (1971) also derived the condition on the function g(v) in order for the process to be stationary, and that is:
/ gMdv < 1. (3.5)

JoA multivariate Hawkes process is defined similarly as the univariate one - the difference is that a system of point processes and an inter-dependence between their intensities is introduced. Also, the underlying probability space needs to be adjusted. We now have several hltrations, i.e. Fm = {JPm(t)}t>o- Furthermore, the conditional intensity function needs to be adapted to the
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filtration defined by F' = {^}t>o, where &'t = U^Li^T- In the following, we assume exactly that different point processes are adapted to individual filtrations Fm and that the conditional intensity is adapted to F\Definition 3.5 (Multivariate Hawkes process). A vector N(t) = (7V1(t),AM(f)) of simple non-explosive counting processes satisfying Vm G {1,..., M}:1. 7Vm(0) = 02. A"' (ir|,^//) is a left-continuous process given by
M

n=l
gm’n(t - u)dNn(u), (3-6)

where V(m, n) G B, where B = {(f, J) : i G {1,M}, j G {1,..., M}}, gm,n(v IRo -g  RÍ.3. P(7Vm(f + h) - 7Vm(t) = 1|^) = + o(h)4. P(7Vm(f + h) - 7Vm(t) > 2|^t) = o(h)is called a multivariate Hawkes process.Brémaud & Massoulié (1996) proved that there exists a condition under which the multivariate Hawkes process allows uniqueness and stability, the latter in the form of exponentially fast convergence towards stationary dis­tribution. And the condition specifies that a matrix A(MrcM) with entries 
amn = Jo° gm,n(v)dv needs to have spectral radius strictly less than 1.There are different types of functions used as kernels in the literature. One can usually find strictly decreasing functions that try to imitate the nature of clustering of events, where the impact of an event is decreasing with the time from the occurrence of it. Also, most regularly, positivity of the base intensity and kernel intensity is applied, which causes an absence of inhibitory impacts in the process.Exponential kernel of the form cne_/3i is the most commonly used one, as it allows for an O(n) reduction of the usual O(n2) complexity of the computation of the log-likelihood, compensator or simulation of the process through the use of the recursive formula (following Ozaki, 1979). a parameter represents the measure of an instantaneous impact of the event, while /3 parameter represents the speed of decay of the impact. Larger /3 signifies that the event doesn’t affect the intensity of the process after a short period of time.



3. Limit Order Book Model 20

The condition for the stationarity of the exponential kernel can be found by 
using the above-mentioned formula. We obtain that the matrix A is composed 
of elements amn = Therefore, the spectral radius of this matrix needs to 
be strictly lower than one in order for the Hawkes process to be stationary.

Another popular kernel is a power-law kernel parametrized by multiple 
slightly different versions in the literature. However, the basic representation 
takes the form , where /3 > 1 (Bacry et al., 2012). This kernel, although 
documented in the literature to capture the realities of the limit order book 
events well (see Section 2.2), is prohibitively slow due to its O(n2) complexity. 
Therefore, several exponential approximations have been tested in the literature 
in order to ease the computational burden. Lallouache & Challet (2016) used 
this parametrization composed of power-law factors in sum of exponentials:

where & = tqj 1 for 0 < i < J. Parameter Z is chosen such that /0°° g(v)dv = 
n, therefore Z = (t o /t T)-6• Parameter j controls the precision of the
approximation and J specifies the range of it (the authors chose j = 5 and 
J = 15). 1 + e term approximates the power-law decay with an identical
exponent.

Stationarity condition for this kernel is easily obtained from the condition 
for Z. Therefore, in a multivariate case, the A matrix will be composed of 
am.„ = nm,n and if this matrix has a spectral radius lower than 1, the resulting 
process is stationary.

Other possible parametrizations of the kernel (mostly with power-law dy­
namics) can be found in Filimonov & Sornette (2015), Hardiman et al. (2013), 
or Lallouache & Challet (2016).

However, because most of the kernels besides exponential have been scarcely 
applied outside the univariate setting, we will be using the exponential kernel 
as the base kernel for our estimations. In Section 3.5, we will slightly adjust 
the base intensity of our conditional intensity function in order to approximate 
the dynamics specific to the intra-day fluctuations of financial markets.

3.2 Estimation of the Hawkes process

In our study, we will be using the MLE method in order to pinpoint the parame­
ters of our model. However, reader should be aware that there are several other
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possible estimation techniques available for the Hawkes process. One can con­
sult Bacry et al. (2012) for a non-parametric estimation of symmetric kernels 
through covariance matrix, Bacry & Muzy (2014) for another non-parametric 
estimation method, Olson & Carley (2013) for an estimation using branch­
ing property of the Hawkes process, Rasmussen (2013) for a method using 
Bayesian inference, Da Fonseca & Zaatour (2014) and Ait-Sahalia et al. (2015) 
for a GMM method of estimation or Kirchner (2017) for one recent formulation 
of another non-parametric method. A more comprehensive overview of possi­
ble methods and their description can be found in Bacry et al. (2015). Our 
choice of MLE was dictated by the fact that a lot of the presented estimation 
methods were tested mainly for univariate cases and also that the MLE was 
used by several influential papers in the area, see for example Bowsher (2007), 
Filimonov & Sornette (2012), Lallouache & Challet (2016). However, we shall 
accentuate that to the best of our knowledge, there is no proof of consistency 
and asymptotic normality of the MLE in the multivariate setting (only in the 
univariate one given by Ogata, 1978). Also, we are not aware that there exists 
a comprehensive study evaluating empirical qualities of different estimators, 
therefore we will provide a small simulation study presenting the quality of the 
MLE-based optimization on an artificial dataset.

Now, we will introduce the log-likelihood function for the general case of 
point processes and then for a specific case of the Hawkes process with an 
exponential kernel.

Theorem 3.1. Let N be a counting process on [0, TJ for some finite positive T, 
let be a realization of N on this interval and let A(i|^) denote its

conditional intensity. Then the likelihood function of N satisfies:

L =
rw(T) / i / /-T
n exp[ - / A(uiX)^

L i=1 J \ JO
(3.8)

Proof. For a proof see e.g. Laub et al. (2015). □

The likelihood of the multivariate point process is just a product of likeli­
hoods of individual components. The hnal log-likelihood of an M-variate point 
process takes therefore the following form:

AÍ r N(T) rp
logL = E T /.;•></ - / »"«)*)

,„.i (i.i •'«
(3.9)

In the case of the Hawkes process with an exponentially decaying kernel,
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the formula for partial log-likelihood of single dimension m looks like this (see 
for example Abergel et al., 2016):

n=l Cm,n < k:t™<T
— e

+ log Urn + y) Ot-m^R m,n (fc) ,
L n=l J >

(3.10)

where

and 7?m,n(0) = 0. For identical dimension also Emjm(l) = 0 and for
k > 2 simplifies to:

Rm.mW = + «„„(/»• - 1)) (3.12)

Because individual dimensions are not interdependent in their parameters, 
we can simply maximize the log-likelihood of individual dimensions separately. 
Methods of optimization will be described in Section 3.5.

3.3 Goodness-of-fit statistics

Several qualitative and quantitative tools have been proposed in the literature 
in order to test the quality of the estimation and assess the hypothesis that given 
stochastic process is indeed a Hawkes process. All of the tools are connected 
with the random time change theorem. We will present the multivariate version 
here:

Theorem 3.2. Let us have a vector N(t) = (TV1^), ...,7VM(t)) of counting pro­
cesses with conditional intensity satisfying for each m G {1,..., M}:

(3.13)Am(f )dt = oo a.s.
0
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/ X'fisfiPfids = t. (3.14)
Jo

Then a vector of counting processes N(t) = (7Vx(t),7VM(f)) defined by

Ňm(t) = Nm(Tm(tfi) (3.15)

is composed of independent Poisson processes with unit intensity and the inter­
arrival times of these processes are given by:

rt™= // Am(i|^)di (3.16)

Proof. For a proof see Bowsher (2007). □

The integral of the intensity function on the specified time domain of the 
counting process is generally called the compensator and the inter-arrival times 
of the transformed Poisson processes are called residuals. As a consequence of 
the theorem, one can test whether the distribution of the residuals {i™ x — 
ř™}í=i,...,Jvm(T) follows an exponential distribution with parameter 1 (clue to the 
fact that inter-arrival times of a unit Poisson process are distributed this way).

Several test statistics and qualitative measures of similarity are available 
for a researcher. The one used in several studies (Lallouache & Challet, 2016 
or Embrechts et al., 2011) as a qualitative measure is to compare the Q-Q plot 
of the exponential distribution with unit rate and the residuals. A rigorous 
way to test the similarity, applied for example by Lallouache & Challet (2016), 
is to use the Kolmogorov-Smirnov test statistic. Lallouache & Challet (2016) 
also exploited the excess dispersion test defined by Engle & Russell (1998) for 
ACD models, that measures whether the empirical second moment of residuals 
resembles the expected theoretical variance. Under the null hypothesis, the 
variable defined as

S =
cr - 1

(3.17)

where d2 is an empirical variance of residuals, has a limiting normal distribu­
tion.

Several studies (see e.g. Laub et al., 2015) have used an equivalent version 
of previous tests by using transformation to uniform distribution. By defining 
the integral
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rt™
Am(n= ' (3.18)

Jo
it can be easily deduced that a sequence {Am(A)/Am(T)}j=1 is distributed
according to the uniform distribution. Kolmogorov-Smirnov test may be used 
to measure the relationship quantitatively.

The independence property of residuals can be checked by some auto­
correlation-based test statistic, e.g. Ljung-Box or Box-Pierce tests. The in­
ability to reject either one or both of the last two tests, however, does not nec­
essarily imply the independence property. Also, visual plots of pairs (LA, LA+i), 
where Ui = F(t™ — ť^) = 1 — (p being the cumulative distribution
function), can be studied for any regular patterns which may signify devia­
tion from the underlying model specification. Even tests based on convergence 
properties of Hawkes processes to Brownian motion have been constructed and 
applied, see e.g. Laub et al. (2015) or Bacry et al. (2015).

In our study, we will be using Kolmogorov-Smirnov test to measure the 
similarity between the exponential distribution with unit rate and the empiri­
cal distribution of the residuals. We will also present Q-Q plots between these 
two distributions. The excess dispersion test will be used in order to mea­
sure specifically the similarity between the variances of these two distributions. 
Independence property will be tested by the Ljung-Box test statistic.

For an exponential kernel, the integral of the conditional intensity that is 
used to obtain the residual process can be found for example in Abergel et al. 
(2016) and takes the following form:

m,n

—1 (3m,r

E

R-m,n(k 1) (3.19)
M

+ E
+

a

! _ e-/3m,«(ír-í"))

where Rm,n(k) is an identical recursion formula as in the log-likelihood case.
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3.4 Model

As mentioned in the Chapter 2, our goal is to measure quantitatively the char­
acter of reaction of trades on quotes coming from exchanges with different fee 
structure. Therefore, in order to make our model parsimonious, but at the 
same time appropriate for the task, we shall assume that relevant events in 
the limit order book can be modelled by three dependent point processes. The 
first one shall be a point process of arrival of NBBO quotes from taker-maker 
exchanges, the second one shall be a point process of arrival of NBBO quotes 
from maker-taker exchanges and the third point process shall be a point process 
of arrival of trades. The NBBO condition is included due to the fact that Or­
der Protection Rule 611 of Reg NMS requires the exchanges to allow all trades 
to happen at the best protected quotes. Protected quotes represent the best 
quotes from individual trading centres. Therefore, market participants that 
post trade orders non-exempt from Reg NMS (e.g. intermarket sweep orders 
or ISOs) trade always at the NBBO, defined as the best protected quote from 
all trading centres. Including in our model only NBBO quotes means we are 
assuming that market participants decide on trading because of noticing the 
arrival of a best quote. However, several other adjustments will be needed due 
to data specifics that are commented on in Chapter 4.

Mathematically, the composition of our model will take the form:

Ax(i|X) = Ml + E ťi=i Jo

A2(Í|X) = R2 + E i' a^e-^-^dN^s) (3.20)
i=i Jo

A3(Í|X) = R3 + E Í' a^e-^-^dN^s),i=i Jo

where the first index refers to the process of arrival of quotes from taker-maker 
exchanges, the second index refers to the process of arrival of quotes from 
maker-taker exchanges and the third index refers to the process of occurrences 
of trades.

In order to fit the intraday fluctuation in the arrival of quotes and trades 
more closely, we have also tried an alternative of the above model that does 
not have a constant base intensity. Even though some authors have used linear 
interpolation functions (e.g. Bowsher, 2007 or Lallouache & Challet, 2016),
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due to our desire to minimize the number of parameters, we have specified 
quadratic function of the form + /J^ft — 0.5)2, where t represents the current 
time on the interval [0,1], as a base intensity (we will represent constant case 
as ;z2 = 0). We believe quadratic pattern could potentially approximate the 
larger traffic present in markets during opening and closing minutes/hours.

Parameters that will be of utmost interest for us are 0:3,1, 013,2 and
/53i2. The first one represents the instantaneous reaction of trade activity on 
the arrival of a single quote from a taker-maker exchange, while the second 
one represents the time evolution of this reaction. The term osje-^3’1* will 
correspond to the intensity of the non-homogeneous Poisson process that was 
initialized as a result of the event of type 1 and its integral on our empirical 
time interval (with lower bound at the time of the occurrence of the event) 
can be interpreted as how much a single event of this type contributed to the 
overall intensity process of dimension three. The same interpretations apply to 
parameters that correspond to the reaction of trades on the arrival of quotes 
from maker-taker exchanges. As we have mentioned in Section 2.1, current 
results of the literature on the make-take fees establish that inverted fee regimes 
will induce higher fill rates and conditional on fill, higher fill speeds. To test 
the first conclusion, we should derive the probability of fill connected with the 
corresponding non-homogeneous Poisson process introduced as a consequence 
of an occurrence of an event of type 1 or 2. The theorem and the proof are 
given below:

Theorem 3.3. The probability of an occurrence of at least one event for a non- 
homogeneous Poisson process N(t) with intensity function ae~^ on a finite 
interval [0, TJ is given by:

P[N(T) > 1] = 1 - e"?(1_e /3T) (3.21)

Proof. A result on the distribution function of a non-homogeneous Poisson 
process with right-continuous intensity function A(f) and a property of being 
bounded away from zero states that (see e.g. Gallager, 2013):

P(7V(f) = n) =
A(f)ne-AW

(3.22)

where A(f) = /J A(s)ds.
However, we have a function decaying on 1R+ and therefore it is not bounded 

away from zero on its domain. In order to use this theorem, we need to divide
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our intensity function A(f) domain into two intervals, [0, T’) and [T’, oo) with 
T’ being an arbitrary finite number G R+. On the first interval, our intensity 
function will take the form q G3 and on the second interval it will be a constant 
c (e.g. ae~^T' for the purpose of continuity):

A(f) = l(f < T'^ae-^ + l(f > T')«e^r' (3.23)

And with this adjustment, we can compute the probability of at least one 
event happening in a finite interval [0, T]:

P(7V(P) > 1) =1 - P(7V(P) = 0) = 1 - e"A(T)
(3 24j— 1 _ l(r<r')(-S(l-e-/3'r))+l(r>T')(T-T')ae-'3T' V ’ 7— i e p ,

which simplifies to:

P(7V(T) > 1) = 1 - e"?(1_e"/3T), (3.25)

for the case of P <T'.

□

Therefore, we can use these probabilities to measure fill probabilities of 
different triggers in the trade intensity function.

The second empirical conclusion present in the literature, i.e. that condi­
tional on fill, the fill speed is higher on taker-maker exchanges, can be also 
analytically tested. We present the case for an exponential kernel in the theo­
rem below:

Theorem 3.4. The expected time of a first event p for a non-homogeneous Pois­

son process N(t) with intensity function ae~^ for the cases when at least one 

event happens until some finite T is given by:

E[tfiN(T) > 1] = yo t i _ e_g(1-e-,T) dt (3.26)

Proof. In order to use the theorem related to the distribution function of 
number of arrivals of a non-homogeneous Poisson process, we need to apply 
the same idea as in the proof of Theorem 3.3 of dividing our time domain into 
two parts. Therefore, our intensity function will again take the form:

A(f) = l(f < Tfiae~^ + 1(7 > P>e—f3T'
1 (3.27)
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for some finite T' > T.
We continue by deriving the conditional distribution function of a first event 

given an event N(T) > 1 for some T < T':

FM = P[ti<t\N(T)>l]

= 1 - P[fi > t|7V(T) > 1]
pfc > <r) > i]

P[7V(T) > 1]
_ ! P[N(ť) = 0, N(T) - N(ť) > 1]

' P[N(T) > 1] (3.28)

P[N(ť) = 0](l - P[N(T) - N(ť) = 0])
1 - P[N(T) = 0]

e-A(i)(1 _ e-(A(T)-A(i))^
= 1 1 - e-MP

l_e-AW
“ i _ e-A(T)

by the conditional probability law, independence of increments of a non- 
homogeneous Poisson process and the formula for the distribution of arrivals 
of a non-homogeneous Poisson process given in the proof of Theorem 3.3, re­
spectively.

Although this function has domain on [0, T], it can be elongated to —oo to 
oo by specifying that:

1—e A(0 
l-e-A(T) ’

—oo < t < 0

0<t <T

T < t < oo

(3.29)

We can see that our function now is a distribution function (i.e. non­
decreasing and right-continuous with = 0 and lirrit-Hx, = 1)- It is
continuously differentiable on its domain, except for the points 0 and T, where 
one-sided derivatives exist, but are not equal. The derivative of this function 
at all sets except these two points is:

= 0,
ae p e-Pt

1—e

— OO < t < 0

0 <t <T (3.30)

T < t < oo
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In order to find an expectation of given N(T) > 1, we will need to 

calculate it by using improper integrals (with y being in the interval (0, T)):

Z
OO

-oo

= Ihn í tf^t)dt + lim Í tfijtfdt (3.31)
x—>0 J—oo x—>0+ Jx

!*X i*(X)
+ lim / tfJ dt + lim / tf? dt 

x^T- Jy ' x^T+ Jx 1

The first and the fourth integral converge to zero, so they can be omitted. 
Therefore, by just inserting the formulas for density functions:

E[tl\N(T) > 1] = lim f
z->0+ Jx 1

, ,. ix oa
dt + Inn / t—

X—\T~ Jy | _g(l_e-0T) dt
— e

-«(1-e-/3T)
— e

(3.32)

Because the terms inside the integral are smaller or equal to 

for Vi G [0, T], we can use a limit comparison test. The integrals:

at
1—e-«(1-e-/3T)

x^Jx
at

lim
z—>o+

at2
1-2(1 - e 

a?/2
(3.33)

-|(l-e-^)
2(1 -e

and

lim
at

= lim
at2

x^t - Jy ! _ e-^1-6 1.2(1 - e">(1_e /’T))

«(T2 - y2)
(3.34)J y

2(1 - e

both converge and therefore our original integrals converge. The result 
follows:

E[i1|7V(T)>l] =
fT ^ae~^^~e ^e~pt 

Jo ť i _ dt (3.35)
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□

3.5 Simulations and estimations of the Hawkes 

process

In this chapter, we will present simulations and estimations of a three- di­
mensional Hawkes process. The reason for this exercise is to provide some 
evidence of a reliability of the estimation procedures as there is no analytical 
proof of the consistency of the MLE in the multivariate setting. We would 
also like to provide some evidence that non-stationary character of the se­
ries introduced by the quadratic base intensity does not hinder the estima­
tion quality. The routines for the simulation, calculation of residuals and log- 
likelihood were written in C++ for efficiency purposes, while the optimization 
is done in Python (the binding was achieved through Cython). The algorithm 
for simulation was adapted from Abergel et al. (2016). The code underly­
ing the simulation, statistical testing, estimation, and plotting may be seen 
on the github page of the author.1 The reason why we have chosen to im­
plement the routines by ourselves is due to the fact, that at the time of the 
preparation of the thesis, there were no libraries providing reliable function­
alities befitting our purpose. R library hawkes https : //cran. r-project. 
org/web/packages/hawkes/hawkes .pdf is not correctly implemented, as it 
omits certain parts of the simulation and log-likelihood algorithms, and it 
also does not provide compensator calculation routines, https : //github. 
com/dunan/MultiVariatePointProcess is a C++ library that provides, ac­
cording to the author, simulation, estimation and residual analysis routines, 
however, the binding to Python in order for an MLE optimization would 
be unnecessarily complicated. A recent addition to the computational tools 
for Hawkes processes is tick library (Bacry et al., 2017) for Python available 
at https://github.com/X-DataInitiative/tick/tree/master/doc. Even 
though the library provides several simulation and inference routines, it lacks 
support for statistical analysis. At the end, we have therefore decided to im­
plement the necessary functions by ourselves.

We have simulated a three-dimensional Hawkes process with an exponential 
kernel and T = 22, 800 (equal to the number of seconds from 9.35am to 3.55pm 
that will be our empirical time range) and parameters:

1https://github.com/ragoragino/py-hawkes

https://github.com/X-DataInitiative/tick/tree/master/doc
1https://github.com/ragoragino/py-hawkes
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Table 3.1: Optimizations 
- statistics

12 3
KS test 0.765 0.530 0.439
ED test
LB test

0.381 0.342 0.343
0.925 0.478 0.454

- LogL -13,259.32
KS test 0.637 0.642 0.543
ED test
LB test

0.357 0.250 0.370
0.342 0.684 0.438

- LogL -45,607.261

Note: The p-values for
Kolmogorov-Smirnov, Excess- 
Dispersion and Ljung-Box test 
and negative log-likelihood for 
constant (C) and quadratic 
(Q) base intensity of a simu­
lated three-dimensional Hawkes 
process.

Mi = ^0.2 1.7 0.6J

M2 = (o.8 0.4 0.5^

^0.4 0.1 0.1

a = 0.3 0.5 0.4

^0.18 0.2 0.31;

^1.8 3 3.?

/3 = 1.2 1 1.3

k4-2 2.15 2.5;

The choice of parameters was random and was adjusted in order to fit ap­
proximately the length characteristics of the empirical data samples, where the 
second component has around 100,000 events, while the hrst one only around 
10,000, and the third one around 20,000 events. We have generated 11,195 
events in the hrst dimension, 100,431 events in the second dimension, and 
26,971 events in the third dimension (for the case of quadratic base intensity 
specification, the lengths of the series are 22,465, 119,147, and 35,245, respec­
tively). We provide the p-values for Kolmogorov-Smirnov, Excess Dispersion 
and Ljung-Box tests for individual components in Table 3.1.
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We have used optimization routine Sequential Least Squares Programming 

(SLSQP) provided by the scipy module developed by Jones et al. (2001-). The 

reason why this routine was chosen was due to its allowance of bounds and 

constraints which are both present in the Hawkes process.2 Initial values of 

the parameters were set to resemble results found in the literature: /zi and 

values were drawn from an exponential distribution with rate 1 and a and /3 
parameters were drawn from a uniform distribution on (0,15). In the case of 

SLSQP optimization, the bounds were set in range (0, 5) for /zi and /j ,2 and 

in range (0,15) for other parameters. The constraints were the stationarity 

conditions for the exponential kernel. The lower bound for the parameters is 

due to the positivity of parameters in a general Hawkes process. We have tried 

different upper bounds together with ranges of initial parameters for a and p as 

/zi and /z2 parameters are expected to be in the given range (in case /zi or /z2 will 

be estimated on the edge of the parameter space, we will know that we might 

need to change the bounds for it too). The bounds that were chosen as hnal 

were the ones, where optimization routine was not behaving chaotically, i.e. 

the negative log-likelihood in individual optimizations was stable. Therefore, 

different initial values will be set for the optimization of the empirical dataset, 

as the parameter space might be different and therefore the optimizations might 

behave differently.

The results for the SLSQP optimization for the case of constant and quadratic 

base intensity are presented in Table 3.2. The optimization results paint an 

optimistic picture. The median values for /zi, /z2 and a parameters have been 

very precisely captured with little uncertainty. /3 values have also been opti­

mized pretty well, however, there is much more uncertainty compared to the 

first two parameters. Also, we may notice much worse optimizations for pa­

rameters that are related to the first dimension, e.g. /?2,i ,/?3,i and /?i,3- This 

may be connected to the fact that the first dimension represents the shortest 

leg of the whole process. Therefore, in optimizations on real data we might 

have to be cautious about interpretations of results connected with the first 

dimension.

2 We have also tried other routines provided in the scipy module and referenced in the 
literature, e.g. bounded L-BFGS-B or Nelder-Mead, however, they provided reliable, but 
slightly worse results compared to the SLSQP and therefore, we will be omitting these results 
from our study.
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Table 3.2: Optimization of a simulated Hawkes process

c
1 2

Q OR
3

Q OR C C Q OR
0.182 0.183 0.2 1.671 1.682 1.7 0.631 0.629 0.6

Mi (4e-05) (le-04) (3e-04) (3e-04) (le-04) (2e-04)
0.783 0.8 0.444 0.4 0.534 0.5

M2 (le-04) (5e-04) (2e-04)
0.372 0.380 0.4 0.105 0.108 0.1 0.067 0.068 0.1

(3e-05) (6e-05) (3e-05) (6e-05) (4e-05) (le-04)

ZY 9 0.336 0.310 0.3 0.519 0.505 0.5 0.386 0.422 0.4
O'

(9e-04) (6e-04) (5e-05) (6e-05) (2e-04) (3e-04)

q 0.127 0.167 0.18 0.209 0.206 0.2 0.299 0.315 0.31
o

(6e-04) (5e-04) (4e-05) (6e-05) (le-04) (le-04)

1 1.665 1.688 1.8 2.974 3.012 3 1.814 1.996 3.1
(2e-04) (4e-04) (0.001) (0.003) (0.002) (0.007)
1.606 1.578 1.2 1.03 1 1 1.111 1.253 1.3

/3 2
(0.007) (0.005) (2e-04) (3e-04) (0.001) (0.001)

q 4.955 4.226 4.2 2.339 2.363 2.15 2.407 2.557 2.5
o

(0.035) (0.026) (0.001) (0.001) (0.001) (0.002)

Note: The result of 100 optimizations of a three-dimensional Hawkes process with an expo­
nential kernel and a constant (C) and quadratic (Q) base intensity with SLSQP optimization 
routine. The values are medians of the optimization results, while in brackets are median 
absolute deviations of optimized parameters (with normal adjustment). The maximum 
number of iterations was set to 20,000, all iterations ended successfully. OR abbreviation 
means original values of the parameters. The original negative log-likelihood for constant 
base intensity was -13,259.319, while for quadratic base intensity it was -45,607.261. The 
median for the two cases was -13,276.001 and -45,619.954 respectively, and median absolute 
deviation was 0.000 and 0.001 respectively. Median-based measures were chosen for robust­
ness reasons as less than 5% of optimizations ended heavily dispersed from the rest of the 
optimizations.



Chapter 4

Data Description and Statistics

The primary data source for our study consists of the whole order book data 
for a trading during a single day, the October 24th of 2016. The TAQ (Trades 
and Quotes) data1 cover market activity in all equity issues traded on NYSE, 
NASDAQ and regional exchanges that is reported to one of two central Secu­
rity Information Processors (SIP) either by participants of Consolidated Tape 
Association (CTA) or Unlisted Trading Privileges (UTP) plans. All stock ex­
changes currently participate in CTA and UTP plans. These facilities provide 
collection, processing and distribution of the market data, the former for Tape 
A (i.e. listed on NYSE) and Tape B securities (i.e. listed on NYSE Area, NYSE 
MKT, or BATS BZX Exchange), and the latter for Tape C securities (i.e. listed 
on NASDAQ).2 Therefore, we will be able to discriminate between exchanges 
with taker-maker and maker-taker fees. At the date of the origination of our 
data sample, there were three exchanges, BATS BYX Exchange, BATS EDGA 
Exchange, and NASDAQ OMX BX, that applied taker-maker fee schemes.

We will consider the Daily TAQ Quotes hie and the Daily TAQ Trades Hie. 
These Hies are a complete overview of all quotes and trades reported to the 
SIP by UTP or CTA participants. The Daily TAQ Quotes for our selected 
stocks contain nanosecond timestamp, exchange symbol, bid price, bid size, 
offer price, offer size, and other fields. The Daily TAQ Trades data contain 
nanosecond timestamp, exchange symbol, trade volume, trade price, and other 
fields. The complete enumeration of all fields and their short descriptions can 
be found in the Daily TAQ Client Specification (NYSE, 2016). However, we 
will be using only the ones mentioned.

The number of unique stock tickers being represented in the dataset is

'Obtained from NYSE: ftp://ftp . nyxdata. com/Historical’/„20Data’/„20Samples/.
2As of date of origination of our data sample.

ftp://ftp
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around 8400. We will be focusing our study on four securities - Netflix (NFLX), 
Nvidia (NVDA), T-Mobile US (TMUS), and Shire PLC (SHPG). Our choice 
was dictated firstly by the focus on Tape C securities, that are processed by 
UTP and therefore have timestamps in nanosecond precision in contrast to 
microsecond precision for securities on Tape A or Tape B. The second crite­
rion was given by the size of the data for NBBO quotes in general and for 
NBBO quotes originating in taker-maker exchanges in particular. Big stock 
names (e.g. Apple, Microsoft...) do not have such a large traffic of quotes 
originating in taker-maker markets, therefore we had to abandon selection of 
these otherwise most highly traded and quoted stocks. Hence, our data selec­
tion may have already created a bias as there may be some underlying reasons 
why some stocks are more heavily traded on taker-maker exchanges than other 
stocks. Unfortunately, we have not been able to gather some possible explana­
tions regarding this difference and we are not able to pinpoint the sign or the 
magnitude of the bias.

The trading on U.S. exchanges happens during two time slots - one is reg­
ular trading hours (9.30am - 4.00pm) and one is pre- and after-hours activity 
(4.00am - 9.30am, 4.00pm - 8.00pm). However, due to the small amount of 
trades in the latter trading hours and higher volatility during opening and 
closing minutes, we will be focusing on the market activity during the time 
slots of 9.35am - 3.55pm. Besides this modification, we will also clean the data 
from the FINRA Alternative Display Facility (ADF) and FINRA Trade Re­
porting Facility (TRF) trade observations, because they originate from trades 
with non-displayed liquidity. As was already mentioned, we will be focusing 
only on NBBO quotes because we want to measure the time it takes trades 
to respond to quotes coming from markets with different fee structure. We 
will also exclude large amount of trades that are not regular or odd-lot. This 
step targets almost exclusively trade-throughs, e.g. ISO orders, because they 
are effectively trades not obeying the Order Protection Rule 611 and we have 
no reliable method how to classify whether the side of the quote matching the 
ISO (both on a single exchange) is the NBBO side or not. Due to the fact that 
certain quotes definitely traded, this operation may cause misclassifying quotes 
(instead of matching them with ISOs, which they could have traded in reality, 
we match them with regular trades), and therefore we have to acknowledge here 
another potential source of bias. However, we were not able to find resources 
suggesting some alleviation techniques for this issue and so again, we may not 
be able to say what may be the sign or the magnitude of the bias.
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Table 4.1: Length of data samples for selected 
stocks

1
BID
2

ASK
3 1 2 3

NFLX 6,139 40,784 11,959 4,611 43,329 14,303
NVDA 1,442 68,596 9,345 3,752 63,863 10,353
SHPG 2,312 14,387 3,079 3,688 14,063 3,710
TMUS 3,565 47,762 16,664 3,377 47,288 15,080

Note: Length of data samples for selected stocks. For quote and 
trade classification we have used quote and tick rules applied in 
Lee-Ready algorithm, see e.g. Lee & Ready (1991).

The classification of quotes and trades was done firstly with Lee-Ready 
algorithm that combines a quote and a tick rule for trades (see Lee & Ready, 
1991 or Odders-White, 2000) and the quotes that remained non-classihed were 
classified according to the tick rule for quotes. The quote rule says that trades 
should be classified as buys when their transaction price is higher than the 
midprice and as sells when their transaction price is lower than the midprice. 
When the transaction price is equal to the midprice, tick rule is used, meaning 
that when price increases relative to the previous trade price, the trade is 
classified as buy and as sell when the price decreases relative to the previous 
trade price. The quotes are subsequently classified on opposite sides (i.e. when 
trade is buy, the quote is ask, and when trade is sell, the quote is bid). As a hnal 
step, all the non-classihed quotes are classified according to the tick rule, i.e. 
when the quote moves better or less worse on one side than on the other side 
relative to the previous quote, then that quote is classified as NBBO on that 
side. However, in contrast to Lee and Ready, we are not delaying the trades by 
a 5-second rule, as there is some evidence that the limit order book data are 
currently best classified without the application of delays, see e.g. Carrion & 
Kolay (2016).

The precise enumeration of observations in our data sample is presented in 
Table 4.1.



Chapter 5

Estimation results

In this chapter, we provide optimization results for individual stocks, NFLX, 

NVDA, SHPG, and TMUS, for both constant and quadratic intensity specifica­

tions, and for both sides, i.e. bid and ask, of the order book. We then continue 

with results concerning the execution quality measures for all these branches 

that will provide comparison between taker-maker and maker-taker exchanges 

relating to probabilities of fill and fill speed conditional on fill.

5.1 NFLX
In the case of NFLX, optimizations turn out very well for the base intensity, 

which was restricted to the range (0,5), and a parameters. For both cases, 

ASK and BID, it seems that the quadratic specification is helpful in maker- 

taker dimension as there seems to be a significant intra-day variation. As we 

have already seen in the case of simulations, /3 parameters are optimized with 

very high MAD. Therefore, there is quite a lot of uncertainty regarding the 

precision of the parameters. The optimizations themselves, however, ended 

all successfully and the MAD of negative log-likelihood is around 2-3%. This 

might suggest that the optimizations have found a local minimum, but a one 

where changes in some parameters’ values have little impact on the hnal log- 

likelihood. From the values of parameters, it seems that immediate reactions to 

individual events are very high, most pronounced in the case of self-excitations 

and instantaneous impact of dimension 2 on dimension 3 (i.e. maker-taker 

events on trades). The decay of these impacts is proportionally quicker than for 

other events, except /?3i2 which seems to be relatively small and in connection 

with corresponding a parameter suggests prolonged intensity impact. The
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reasoning that might explain high parameter values is that, indeed, there is 

a high level of clustering of events on extremely small time-scales (i.e. order 

of microseconds). In the quest to capture this high-frequency clustering, the 

optimizer had to bloat the values of parameters in order the make the effect 

palpable. We have tried experimenting with different time scales, i.e. setting 

base units smaller than 1 second, but the resulting MADs of negative log- 

likelihoods were much more unstable than in the case of seconds, suggesting no 

such local minima existed for these different time specifications.

The statistics of the resulting optimization are also not entirely satisfac­

tory. There is no test that could be passed on any reasonable significance level, 

suggesting the specified three-dimensional Hawkes model does not capture the 

dynamics of limit order book events. Plots in the Appendix present qualitative 

measures of the reliability of the estimation. In A.3, we can see the intensity 

function of taker-maker exchanges reacting to maker-taker events and trade ar­

rivals. We can see an extremely high instantaneous impact simultaneously with 

extremely quick decays. A.2 compares event arrivals for a specific time range 

for maker-taker quotes and simulated events of this dimension. As we can see, 

the clustering of events and long no-event periods are captured authentically by 

the simulated series. A.l presents the compensator connected with the trade 

arrivals, and as we can see, the quantiles of the exponential distribution and 

the compensator series are not following the same patterns, suggesting again 

model misspecification.

Table 5.1: NFLX BID optimiza­
tions - statistics

1 2 3
KS test 4e-171 3e-565 9e-168

C ED test 0 0 8e-281
LB test 0 0 0
- LogL -144,792.770
KS test le-170 2e-226 3e-181
ED test 0 0 6e-303
LB test 0 0 0
- LogL -146,987.287

Note: The p-values for Kolmogorov-
Smirnov (KS), Excess-Dispersion (ED), and 
Ljung-Box (LB) test, and negative log- 
likelihood for the constant (C) and the 
quadratic (Q) base intensity for NFLX BID 
optimizations.
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Table 5.2: NFLX BID optimizations

1 2 3
c Q C Q C Q

0.127 0.118 0.724 0.460 0.146 0.087
Ml (0.037) (0.004) (0.072) (0.023) (0.09) (0.006)

0.019 0.534 0.133
M2

(0.003) (0.108) (0.004)
751.341 796.684 51.517 54.878 125.538 127.054

(594.828) (604.953) (21.256) (29.417) (57.787) (47.912)

ZY 9 424.152 332.888 946.622 1047.196 526.075 255.886
O'

(477.223) (387.424) (298.747) (201.286) (745.706) (343.070)

q 574.875 556.515 1740.169 1875.266 771.595 627.644
o

(199.356) (216.804) (696.925) (748.242) (642.393) (438.126)

1 3410.931 3575.577 1311.832 1407.870 7277.022 7409.851
(2767.260) (3090.794) (644.982) (865.625) (3415.513) (2500.461)
3823.980 2831.656 2113.472 2176.112 2098.333 661.428

/3 2
(5077.977) (3740.925) (834.053) (400.328) (3028.375) (893.663)

q 8415.279 8154.182 14574.892 15184.948 3125.495 2232.257
o

(2287.157) (3130.288) (5096.440) (6203.271) (2766.617) (1533.554)

Note: The result of 100 optimizations of NFLX NBBO series with an exponential kernel 
and the constant (C) and the quadratic (Q) base intensity with SLSQP optimization rou­
tine. The values are medians of optimization results, while in brackets are median absolute 
deviations of optimized parameters. The maximum number of iterations was set to 20,000, 
all iterations ended successfully. The median of negative log-likelihoods for the constant 
case was -144,792.770, while for quadratic case it was -146,987.287. Median absolute devi­
ation of the negative log-likelihood was 3,952.230 for the constant case and 3,284.859 for 
the quadratic case. Median-based measures were chosen for robustness reasons.

Table 5.3: NFLX ASK optimiza­
tions - statistics

1 2 3
KS test 8e-134 2e-304 9e-200
ED test 0 0 0
LB test 0 0 0
- LogL 168,476.069
KS test 4e-164 le-268 le-189
ED test 0 0 8e-270
LB test 0 0 0
- LogL 168,972.729

Note: The p-values for Kolmogorov-
Smirnov (KS), Excess-Dispersion (ED), and 
Ljung-Box (LB) test, and negative log- 
likelihood for the constant (C) and the 
quadratic (Q) base intensity for NFLX ASK 
optimizations.
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Table 5.4: NFLX ASK optimizations

1 2 3
c Q C Q C Q

0.09 0.084 0.77 0.528 0.164 0.094
Ml (0.005) (0.009) (0.065) (0.044) (0.006) (0.003)

0.021 0.627 0.161
M2 (0.005) (0.114) (0.008)

1094.297 959.693 51.255 48.931 81.584 86.712
(576.949) (615.207) (32.682) (32.305) (40.733) (49.948)

ZY 9 598.504 583.474 1017.302 938.850 477.604 698.564
O'

(486.311) (402.912) (379.597) (366.489) (663.520) (988.679)

q 631.983 623.585 2093.276 2210.183 1549.229 1666.252
o

(282.584) (332.985) (1238.588) (1131.207) (1242.843) (1359.351)

1 5781.958 5562.447 1590.908 1656.858 6939.068 8007.255
(2615.400) (3447.485) (1073.048) (1212.134) (2908.594) (3507.981)
4851.720 5389.313 2337.259 2162.727 2148.206 2703.831

/3 2
(4871.304) (4226.257) (1122.064) (887.958) (3069.009) (3886.358)

q 8249.662 7634.843 14638.850 15989.005 5118.335 5308.573
o

(3284.117) (2756.740) (8465.995) (8345.470) (4010.160) (4283.654)

Note: The result of 100 optimizations of NFLX NBBO series with an exponential kernel 
and the constant (C) and the quadratic (Q) base intensity with SLSQP optimization rou­
tine. The values are medians of optimization results, while in brackets are median absolute 
deviations of optimized parameters. The maximum number of iterations was set to 20,000, 
all iterations ended successfully. The median of negative log-likelihoods for the constant 
case was -168,476.069, while for quadratic case it was -168,972.729. Median absolute devi­
ation of the negative log-likelihood was 4,195.388 for the constant case and 4,665.950 for 
the quadratic case. Median-based measures were chosen for robustness reasons.



5. Estimation results 41

5.2 NVDA

For NVDA, the picture resulting from optimizations is not very different from 
the one we have seen in the NFLX case. //, parameters are estimated with 
high precision, a with less acuity and (3 with even larger imprecision. The 
quadratic case also captures the intra-day variation, most pronounced for the 
maker-taker quote arrivals. All optimizations ended successfully, with MADs 
of negative log-likelihood being always less than 2% (for ASK case even less 
than 1%). Large values of parameters again suggest a picture of high clustering 
of events. It is interesting to note that (3 values are always higher than 5000, 
except for the case of /?2,2- This parameter being relatively low (and with 
also relatively low MAD) signifies longer intensity impact in self-excitation on 
maker-taker exchanges.

The statistics of resulting optimizations are again unsatisfactory. There is 
no test that could be passed on any reasonable significance level, suggesting 
the specified three-dimensional Hawkes model does not capture the dynamics 
of limit order book events. Plots in the Appendix present qualitative measures 
of the quality of the estimation. In A.6, we can see the intensity function of 
maker-taker exchanges reacting to taker-maker events and trade arrivals. We 
can see the extremely high instantaneous impact simultaneously with extremely 
quick decays. A.5 compares event arrivals for a specific time range for taker- 
maker quotes and simulated events of this dimension. Although there are not 
so many events in the first dimension, the scarcity is similar in both cases. 
A.4 presents the compensator connected with trade arrivals, and even though 
the quantiles of the exponential distribution and the compensator series are 
not following the same patterns, the difference is not as pronounced as in the 
previous case.
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Table 5.5: NVDA BID 
optimizations - 
statistics

12 3
KS test 0 0 7e-174

c ED test 0 0 4e-116
LB test 0 0 0
- LogL 356,058.321
KS test 0 0 5e-183

Q
ED test 0 0 2e-84
LB test 0 0 0
- LogL 356,474.881

Note: The p-values for
Kolmogorov-Smirnov (KS),
Excess-Dispersion (ED), and 
Ljung-Box test (LB), and neg­
ative log-likelihood for the 
constant (C) and the quadratic 
(Q) base intensity for NVDA BID 
optimizations.

Table 5.6: NVDA BID optimizations

1 2 3
c Q C Q C Q

0.032 0.022 0.879 0.700 0.090 0.051
Ml (0.003) (0.006) (0.017) (0.090) (0.004) (0.010)

0.023 0.403 0.087
M2 (0.008) (0.126) (0.008)

1201.547 1069.253 44.990 55.255 37.005 31.191
(838.504) (634.171) (28.083) (34.232) (43.819) (42.426)

ZY 9 1191.870 1351.010 2245.125 2309.880 2679.086 2539.946
O'

(826.685) (983.862) (350.707) (522.194) (1787.072) (1912.287)

q 924.988 861.995 530.109 512.400 2975.826 3039.172
o

(1050.460) (975.679) (234.089) (235.879) (1032.312) (1197.070)

1 7195.038 7100.036 7613.063 8545.347 7916.362 8104.938
(2613.762) (1998.815) (3239.853) (3372.544) (2732.685) (3698.781)

ft 9 6510.376 7182.339 3586.000 3589.249 6948.695 6379.076
P * (3016.080) (2824.229) (660.730) (758.051) (2451.156) (3103.201)

q 7735.160 8072.822 9190.783 9008.058 7710.445 8049.520
o

(2969.707) (2637.903) (2935.730) (3254.137) (2146.834) (2339.546)

Note: The result of 100 optimizations of NVDA NBBO series with an exponential kernel 
and the constant (C) and the quadratic (Q) base intensity with SLSQP optimization rou­
tine. The values are medians of optimization results, while in brackets are median absolute 
deviations of optimized parameters. The maximum number of iterations was set to 20,000, 
all iterations ended successfully. The median of negative log-likelihoods for the constant 
case was -356,058.321, while for quadratic case it was -356,474.880. Median absolute devi­
ation of the negative log-likelihood was 1,821.280 for the constant case and 6,802.818 for 
the quadratic case. Median-based measures were chosen for robustness reasons.
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Table 5.7: NVDA ASK opti­
mizations - statis­
tics

1 2 3
KS test le-169 0 2e-222
ED test 0 0 le-112
LB test 0 0 0
- LogL -330,330.420
KS test 3e-150 0 4e-228
ED test 0 0 6e-101
LB test 0 0 0
- LogL -331,008.656

Note: The p-values for Kolmogorov-
Smirnov (KS), Excess-Dispersion 
(ED), and Ljung-Box (LB) test, and 
negative log-likelihood for the constant 
(C) and the quadratic (Q) base inten­
sity for NVDA ASK optimizations.

Table 5.8: NVDA ASK optimizations

1 2 3
c Q C Q C Q

0.087 0.086 0.821 0.616 0.110 0.065
Ml (0.006) (0.006) (0.008) (0.007) (0.004) (0.003)

0.000 0.476 0.104
M2 (0.000) (0.007) (0.005)

1450.344 1481.721 84.553 86.847 97.318 98.501
(862.864) (1092.081) (52.214) (58.296) (63.809) (61.942)

ZY 9 496.666 508.718 1935.101 1915.462 2571.334 2779.551
O'

(274.639) (393.397) (196.821) (181.760) (1818.482) (1579.184)

q 482.317 481.115 504.401 482.490 3481.432 3386.527
o

(315.826) (336.177) (198.180) (218.212) (1029.100) (908.016)

1 5631.521 5312.752 6705.603 7081.026 7886.873 8577.666
(2984.348) (3045.707) (3844.083) (4301.729) (2782.543) (3845.109)
7365.430 7385.836 3069.564 3033.176 7366.814 7185.738

/3 2
(3010.964) (2417.843) (301.505) (269.948) (2837.650) (3066.504)

q 7654.972 7634.843 9253.305 8553.228 8416.105 8495.226
o

(2597.741) (2978.633) (3463.401) (3664.692) (2190.255) (1968.855)

Note: The result of 100 optimizations of NVDA NBBO series with an exponential kernel 
and the constant (C) and the quadratic (Q) base intensity with SLSQP optimization rou­
tine. The values are medians of optimization results, while in brackets are median absolute 
deviations of optimized parameters. The maximum number of iterations was set to 20,000, 
all iterations ended successfully. The median of negative log-likelihoods for the constant 
case was -330,330.420, while for quadratic case it was -331,008.655. Median absolute devi­
ation of the negative log-likelihood was 1,594.195 for the constant case and 2,071.103 for 
the quadratic case. Median-based measures were chosen for robustness reasons.



5. Estimation results 44

5.3 SHPG

SHPG estimation does not in any way modify our existing views on the opti­

mization properties, /z and a parameters are again estimated with a relatively 

high precision, while j3 with very large MAD. The quadratic base intensity 

specification helps in capturing the intra-day variation mainly for maker-taker 

quote arrivals. All optimizations ended successfully, with MADs of negative 

log-likelihood being always less than 3%. Large values of parameters again 

induce a picture of high clustering of events. The self-excitation effects present 

for maker-taker quotes dimension resemble the ones in NVDA case. Time-scale 

transformations again did not bring any success.

The statistics of optimizations are also unsatisfactory, even though the p- 

values for trade dimension are much better than in previous cases. Plots in 

the Appendix present qualitative measures of the quality of the estimation. 

A.8 compares event arrivals for a specific time range for processes of actual 

and simulated trades. A. 7 presents the compensator connected with maker- 

taker quotes, where we can notice large discrepancy between the two compared 

distributions.

Table 5.9: SHPG BID opti­
mizations - statis­
tics

1 2 3
KS test 0 3e-106 7e-26

C ED test 0 0 3e-38
LB test 0 0 4e-5
- LogL -25,131.338
KS test 0 3e-101 le-23
ED test 0 0 3e-30
LB test 0 0 5e-5
- LogL -25,646.790

Note: The p-values for Kolmogorov-
Smirnov (KS), Excess-Dispersion 
(ED), and Ljung-Box (LB) test, 
and negative log-likelihood for the 
constant (C) and the quadratic 
(Q) base intensity for SHPG BID 
optimizations.
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Note: The result of 100 optimizations of SHPG NBBO series with an exponential kernel 
and the constant (C) and the quadratic (Q) base intensity with SLSQP optimization rou­
tine. The values are medians of optimization results, while in brackets are median absolute 
deviations of optimized parameters. The maximum number of iterations was set to 20,000, 
all iterations ended successfully. The median of negative log-likelihoods for the constant 
case was -25,131.338, while for quadratic case it was -25,646.790. Median absolute devi­
ation of the negative log-likelihood was 280.093 for the constant case and 339.211 for the 
quadratic case. Median-based measures were chosen for robustness reasons.

Table 5.11: SHPG ASK opti­
mizations - statistics

12 3

c

KS test
ED test
LB test
- LogL

le-63
0
0

le-139
0
0

-27,268.010

4e-48
3e-47
0.001

KS test 2e-64 4e-145 5e-48

Q
ED test 0 0 2e-34
LB test 0 0 0.013
- LogL -27,935.626

Note: The p-values for Kolmogorov-
Smirnov (KS), Excess-Dispersion (ED), 
and Ljung-Box (LB) test, and negative
log-likelihood for the constant (C) and the 
quadratic (Q) base intensity for SHPG 
ASK optimizations.
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Table 5.12: SHPG ASK optimizations

1 2 3
c Q C Q C Q

0.070 0.053 0.288 0.140 0.049 0.023
Ml (0.000) (0.000) (0.007) (0.006) (0.001) (0.000)

0.040 0.349 0.060
M2 (0.000) (0.006) (0.001)

182.470 182.187 79.691 80.179 246.933 241.929
(7.489) (6.964) (2.980) (2.544) (127.813) (126.822)

ZY 9 201.403 181.516 232.199 233.267 970.079 1012.885
O'

(215.409) (225.660) (18.068) (14.645) (413.988) (362.466)

q 473.431 456.264 686.416 711.260 1055.840 1057.017
o

(152.410) (210.864) (1209.802) (177.768) (205.753) (141.794)

1 776.383 773.886 1028.008 1034.720 6549.578 6372.586
(37.558) (29.901) (33.993) (32.829) (2918.176) (3377.675)
2364.438 4047.608 510.215 516.229 5089.733 5623.382

/3 2
(3499.712) (5844.225) (57.543) (50.752) (2395.595) (2454.446)

q 8152.654 7853.278 9204.777 9512.860 2911.401 2907.622
o

(2222.397) (3050.286) (2612.497) (1801.659) (515.865) (356.855)

Note: The result of 100 optimizations of SHPG NBBO series with an exponential kernel 
and the constant (C) and the quadratic (Q) base intensity with SLSQP optimization rou­
tine. The values are medians of optimization results, while in brackets are median absolute 
deviations of optimized parameters. The maximum number of iterations was set to 20,000, 
all iterations ended successfully. The median of negative log-likelihoods for the constant 
case was -27,268.010, while for quadratic case it was -27,935.626. Median absolute devi­
ation of the negative log-likelihood was 483.921 for the constant case and 530.756 for the 
quadratic case. Median-based measures were chosen for robustness reasons.
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5.4 TMUS
Results for TMUS closely follow the pattern for NVDA. // parameters are again 
optimized very precisely, while a with less acuity and /3 with large imprecision. 
The quadratic parameter is high for maker-taker quote arrivals. All optimiza­
tions ended successfully, with MADs of negative log-likelihood being always 
around 1%. Strong clustering of events on small time-scales is captured by 
high values of parameters. /?2,2 is again significantly smaller than other /3 pa­
rameters, thus capturing strong self-excitation in maker-taker exchanges. We 
have also tried modifications of time-scales, however, without much success.

The statistics of the optimizations are again not providing strong reasons for 
a selection of our Hawkes model in capturing the dynamics of the empirical limit 
order data. Plots in the Appendix present qualitative measures of the quality 
of the estimation. A. 10 compares event arrivals for a specific time range for 
actual and simulated trade process. A.9 presents compensator series connected 
with taker-maker arrivals that, as we can observe, follow a distribution with 
fatter tails than the exponential one.

Table 5.13: TMUS BID opti­
mizations - statis­
tics

1 2 3
KS test le-157 0 4e-268
ED test 0 0 6e-295
LB test 0 0 5e-12
- LogL -263,973.723
KS test le-153 0 6e-243
ED test 0 0 7e-313
LB test 0 0 0
- LogL -264607.423

Note: The p-values for Kolmogorov-
Smirnov (KS), Excess-Dispersion 
(ED), and Ljung-Box (LB) test, and 
negative log-likelihood for the constant 
(C) and the quadratic (Q) base inten­
sity for TMUS BID optimizations.
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Table 5.14: TMUS BID optimizations

1 2 3
c Q C Q C Q

0.06 0.003 0.630 0.440 0.197 0.102
Ml (0.011) (0.005) (0.008) (0.007) (0.006) (0.002)

0.053 0.442 0.221
M2

(0.013) (0.011) (0.007)
1158.486 1176.267 130.798 126.159 77.342 77.750
(957.911) (792.913) (119.295) (103.207) (42.239) (39.838)

ZY 9 539.191 545.377 1521.633 1575.232 1333.262 1304.654
O'

(302.130) (247.863) (150.887) (208.371) (568.720) (625.609)

q 904.140 952.938 1165.082 1085.224 2279.795 2548.140
o

(380.784) (502.413) (374.519) (333.290) (1120.274) (939.963)

1 5208.971 5171.371 4622.947 4777.956 7853.645 7873.282
(4220.648) (4141.647) (4671.873) (4508.334) (3161.090) (2567.624)
6658.078 7346.089 2439.232 2532.115 6763.670 7149.317

/3 2
(3831.235) (2937.118) (232.596) (339.334) (3056.668) (3418.764)

q 8134.119 8515.154 9396.709 8573.582 7054.835 7365.792
o

(2483.843) (2253.206) (2967.611) (2405.511) (3220.594) (2522.575)

Note: The result of 100 optimizations of TMUS NBBO series with an exponential kernel 
and the constant (C) and the quadratic (Q) base intensity with SLSQP optimization rou­
tine. The values are medians of optimization results, while in brackets are median absolute 
deviations of optimized parameters. The maximum number of iterations was set to 20,000, 
all iterations ended successfully. The median of negative log-likelihoods for the constant 
case was -263,973.723, while for quadratic case it was -264,607.423. Median absolute de­
viation of the negative log-likelihood was 2,702.453 for the constant case and 1910.808 for 
the quadratic case. Median-based measures were chosen for robustness reasons.

Table 5.15: TMUS ASK opti­
mizations - statistics

12 3
KS test 2e-160 0 le-168

C
ED test 0 0 2e-178
LB test
- LogL

0 8e-09
-27,268.010

0

KS test 2e-167 0 le-171

Q
ED test 0 0 3e-137
LB test
- LogL

0 4e-13
-27,935.626

0

Note: The p-values for Kolmogorov-
Smirnov (KS), Excess-Dispersion (ED), 
and Ljung-Box (LB) test, and negative log- 
likelihood for the constant (C) and the 
quadratic (Q) base intensity for TMUS 
ASK optimizations.
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Table 5.16: TMUS ASK optimizations

1 2 3
c Q C Q C Q

0.055 0.023 0.628 0.442 0.177 0.088
Ml (0.007) (0.003) (0.009) (0.009) (0.006) (0.003)

0.072 0.428 0.207
M2 (0.009) (0.014) (0.008)

1166.962 1135.326 141.161 139.679 82.408 79.367
(636.833) (695.371) (97.288) (118.219) (54.193) (45.914)

ZY 9 576.833 598.445 1622.082 1639.169 1304.318 1231.081
O'

(438.352) (323.283) (182.743) (240.675) (833.125) (815.574)

q 924.015 880.488 1161.833 1096.971 2117.319 2093.742
o

(372.082) (424.814) (323.222) (379.964) (904.941) (929.258)

1 5868.378 6714.034 5254.403 4945.736 7745.235 6892.537
(2963.878) (3238.562) (4095.375) (4267.425) (3202.260) (3814.443)
7087.393 7520.002 2586.105 2670.087 6630.284 5989.607

/3 2
(3081.338) (2306.977) (292.981) (389.335) (3858.576) (4457.623)

q 7835.784 7334.944 8825.339 8445.110 7144.622 6957.073
o

(2526.519) (2628.371) (2737.982) (2893.778) (3133.367) (2558.092)

Note: The result of 100 optimizations of TMUS NBBO series with an exponential kernel 
and the constant (C) and the quadratic (Q) base intensity with SLSQP optimization rou­
tine. The values are medians of optimization results, while in brackets are median absolute 
deviations of optimized parameters. The maximum number of iterations was set to 20,000, 
all iterations ended successfully. The median of negative log-likelihoods for the constant 
case was -253,323.147, while for quadratic case it was -254,308.422. Median absolute devi­
ation of the negative log-likelihood was 2,654.213 for the constant case and 2,555.849 for 
the quadratic case. Median-based measures were chosen for robustness reasons.
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5.5 Execution quality

As we could see, the statistical tests did not detect a presence of the Hawkes 
process specified by us in any stock at any reasonable significance level. Be­
sides that, we could also observe overall statistical uncertainty connected with 
the estimation of /3 parameters. Therefore, we have to be very cautious about 
the relevance of our interpretations. Nonetheless, we believe, that the op­
timized Hawkes process might still be of some theoretical value. The main 
reason for this optimism of ours is that the simulated series obtained from the 
optimized parameters resemble the original series. Not only in several qual­
itative measures we have referenced in previous sections (mainly present for 
trade dimension), but also in their lengths. Table 5.17 presents a comparison 
of lengths of actual point process series and mean lengths of 100 simulated 
Hawkes processes with parameters set to medians of optimized parameters. 
For all presented stocks, the lengths of both series are almost identical. The 
resemblance is slightly better for the quadratic base intensity case, as this in­
tensity might have captured some intra-day fluctuations (palpable mainly for 
NFLX and NVDA).

Finally, keeping these dilemmas in mind, we might be able to present the 
results concerning the execution quality statistics. Tables 5.18 and 5.19 show 
the probabilities of fill and fill speeds in case of fill connected to the taker- 
maker and maker-taker exchanges for all stocks and constant and quadratic base 
intensity. The picture that we have before provides evidence that maker-taker 
exchanges might be supplying higher quality execution services for their clients. 
Probabilities of fill are, except NVDA stock, always higher for maker-taker 
exchanges, sometimes even by a factor of 2 (NFLX). This holds regardless of 
the base intensity specification. The fill speed quality is even more unequivocal 
(shown in seconds with 6 decimal places, i.e. the last decimal place presents 
1 microsecond). Besides BID side of SHPG, all stocks have a higher fill speed 
(meaning lower expected time to fill) in the case of maker-taker exchanges 
compared to taker-maker exchanges (the difference is in the order of tens of 
microseconds), for NFLX the difference is also by a factor of 2. The relationship 
holds for both intensity specifications.

We again stress that these probabilities of fill and fill speed are not rep­
resenting the overall probabilities of fill and fill speed for trades’ reactions, 
however, they represent an additional probability that is engendered when a 
new (taker-maker or maker-taker) quote arrives and fill speed connected with
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Table 5.17: Comparison of length of actual 
and simulated processes

NFLX NVDA SHPG TMUS
6,139 1,442 2,312 3,565

1 5,744 1,388 2,330 3,705
6,039 1,428 2,319 3,487

40,784 68,596 14,387 47,762
BID 2 35,895 64,280 14,477 47,272

40,844 67,527 14,391 46,689
11,959 9,345 3,079 16,664

3 10,625 9,632 3,098 15,891
12,170 9,640 3,041 16,548
4,611 3,752 3,688 3,377

1 4,327 3,876 3,695 3,357
4,143 3,942 3,670 3,265

43,329 63,863 14,063 47,288
ASK 2 37,424 61,161 13,966 47,103

39,376 62,540 13,656 45,676
14,303 10,353 3,710 15,080

3 13,492 10,420 3,737 15,128
13,840 10,353 3,709 14,835

Note: Comparison of length of actual processes and
100 simulated processes with parameters set to medians 
of estimated parameters. Actual process length is al­
ways in the upper cell, while simulated process lengths 
for constant and quadratic base intensity are always in 
the bottom cells in this order.

Table 5.18: Execution quality statistics for the con­
stant base intensity

NFLX NVDA SHPG TMUS

PF
TM 0.066 0.113 0.055 0.105

BID
MT 0.113 0.056 0.078 0.117

FS
TM 0.000117 0.000125 0.000121 0.000120
MT 0.000067 0.000107 0.000144 0.000103

PF
TM 0.074 0.066 0.056 0.111

ASK
MT 0.133 0.053 0.072 0.123

FS
TM 0.000119 0.000139 0.000121 0.000124
MT 0.000066 0.000107 0.000107 0.000110

Note: The probability of fill (PF) and fill speed in case of fill (FS) 
compared for bid and ask sides for all analysed stocks. TM rep­
resents taker-maker exchanges, while MT represents maker-taker 
exchanges.
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this additional probability. Overall probabilities/fill speeds for trades will be 
higher/lower as they contain an additional base intensity (i.e. a simple Poisson 
process) and a sum of sensitivities to previous events, i.e. intensities of other 
non-homogeneous Poisson processes. However, these results are still of high 
informative values for our purposes, as additional probabilities and fill speeds 
provide a measure of execution quality gained from quoting on that particular 
type of exchange.

Table 5.19: Execution quality statistics for the 
quadratic base intensity

NFLX NVDA SHPG TMUS

PF TM 0.066 0.101 0.057 0.106

BID MT 0.116 0.055 0.075 0.119

FS
TM 0.000120 0.000121 0.000119 0.000114
MT 0.000063 0.000109 0.000143 0.000113

PF TM 0.078 0.061 0.056 0.113

ASK
MT 0.129 0.055 0.075 0.122

FS
TM 0.000128 0.000129 0.000125 0.000132
MT 0.000060 0.000115 0.000103 0.000115

Note: The probability of fill (PF) and fill speed in case of fill (FS) 
compared for bid and ask sides for all analysed stocks. TM rep­
resents taker-maker exchanges, while MT represents maker-taker 
exchanges.

Our results are in direct contradiction with the results of Battalio et al. 
(2016) and Lin et al. (2016), who provide an evidence of qualitative difference 
in execution measures favouring taker-maker exchanges. However, documented 
higher fill rate for maker-taker exchanges is in accordance with the theoretical 
work of O’Donoghue (2015) and empirical results of Malinova & Park (2015) 
on TSX. However, even if our results would be correct, we would have to still 
understand, why there are stocks that are not in line with general results, e.g. 
NVDA for probability of fill and SPHG for fill speed. Besides that, in order for 
our results to provide a strong evidence, the Hawkes processes would need to be 
statistically significant. Therefore, replication on other datasets is warranted.



Chapter 6

Optimal Market-Making with Deep 
Reinforcement Learning

6.1 Market model

Current literature on the optimal market-making is almost uniform in its usage 
of the framework of Avellaneda & Stoikov (2008) for the characterization of the 
market mid-price evolution and the distribution of market order arrivals. Orig­
inal model is appealing due to its simplicity and the fact that it appropriates 
results from econophysics of market micro-structure. It assumes a diffusive 
asset mid-price evolution {Su}u>t with a zero drift and a constant volatility:

dSu = adWu, (6.1)

where II), is a standard Brownian motion and initial value St = s.
The probability of trading with market orders depends on the distance form

the mid-price. The amount of shares bought/sold is formalized as a Poisson 
process Nb/N° with an intensity \b/\a (6 index denotes bid and a ask). The 
intensities are symmetric and are formalized in the following way:

A(5) = Aexp(-kS) (6.2)

where A and k are parameters and S is the distance from the mid-price. 
The market-maker strives to maximize his objective function of the form:

u(s,x,q,t) = max-Ei[errp(-7(AV + Q't 'S't ))], (6.3)óa,ób

where s denotes the asset price, x the money account of the market-maker,
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q the inventory of the market-maker (all at initial time t of the trading), and 
7 is the discount factor. Avellaneda & Stoikov (2008) solved the problem by 
using Hamilton-Jacobi-Bellman equations and an asymptotic expansion in the 
inventory variable. They obtained a result that optimal quotes of the market- 
maker revolve around a reservation price

r(s, i) = s — Q7cr2(T — i). (6.4)

Market-maker computes this reservation price and then quotes around this 
price with a symmetric spread given by:

J“ + Jb = 7a2(T-f) + -Zn(l + ^) (6.5)
7 fc

The reservation price has a clearly stabilizing effect on market-makers’ in­
ventory, as in the case of positive inventory, it moves his ask quotes closer to 
the mid-price and his bid quotes far away from it, and vice versa. It can be also 
observed that several factors - negligible inventory (meaning minimal repricing 
risk), small discount factor (representing short-sighted agent), low volatility, or 
closeness to the terminal state - may make the quoting behaviour very similar 
to the symmetric quoting w.r.t. to the mid-price (i.e. always quoting a time 
average of Equation 6.5).

Avellaneda & Stoikov (2008) run simulations comparing this optimal, inven­
tory, strategy with symmetric strategy. They found that generally, the optimal 
strategy has a lower mean, but it also has a lower variance.

We will appropriate this market framework. The market mid-price will 
evolve according to a diffusion with a constant volatility and a zero drift, 
market arrivals will follow Poisson processes based on the distance from the 
mid-price. The market-makers’ hnal utility will be specified as an expectation 
of his terminal money account balance and the value of (stock) assets held at 
terminal time. We will only substitute for the exponential expectation function 
its linear counterpart (see also Fodra & Labadie, 2012):

u(s,x,q,ť) = maxEi[7(XT + qTST))] (6.6)5a,Sb

The motivation is that then the specification of rewards in the reinforcement 
learning setting (see the next section) will be more straightforward. However, 
in contrast to Avellaneda & Stoikov (2008) and other optimal market-making 
literature, we will use deep reinforcement learning techniques instead of analytic
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solutions in finding optimal quotes of the market-maker. Precisely, we will 
follow the framework of Double Deep Q-network (DDQN) used by Mnih et al. 
(2015) that trained reinforcement learning agents that were able to emulate or 
even surpass human performance in 29 of 46 different Atari games.

6.2 Reinforcement Learning

Reinforcement learning1 is a machine learning domain where agents interact 
in an environment specified by a finite state space S, finite action space A, 
reward space 7v C R, and in case of Markov Decision Processes (MDP) also a 
probability transition mapping P(s',r\s G S, a G A), Vs G S, a G A, r in 7?. and 
s' G S+, where <S is S including the terminal state, and reward probability 
distribution P(r|s G S, a G A), Vs G 5, a G A and r in 7?.. The agent performs 
actions by following certain policy 7r(a|s), obtains rewards r and moves to new 
states s'. The problem may be either episodic with finite terminal states or 
infinite.

The return from a state (in a discrete and finite case) is defined as Rt = 
5Zfc=o lkrt+ki where 7 is a discount factor. The goal of the agent is to either eval­
uate states or state/action pairs given a policy or find a policy that maximizes 
the expected returns from each possible state or state/action pair. The value 
function u7r(s) = = s] measures exactly what is the value of the state
given certain policy 7r, while the action-value function qn(s,a) = =

s, at = a] measures what is the value of the state and performing an action 
in that state given certain policy 7T. Both functions can be written in a form 
called Bellman equations:

Ms) = E“’s'’r[r + 7^(5') Is] (6-7)

^(s,n) = Eŝ r[r + [q^s', a')\s']\s, a] (6.8)

Bellman optimality equations specify values of states or state/action pairs 
when the agent tries to find a policy that maximizes his/her expected returns 
from a state or a state/action pair:

xThis brief introduction is based on Sutton & Barto (1998) and Li (2017).
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v*(s) = maxu7r(s) = maxmaxB“,s ,r[r + 7u*(sz)|s] (6.9)

q*(s, a) = max q-^s, a) = max ,r[r + 7 maxes', az)|s, a] (6.10)

Plethora of algorithms may be used in order to iteratively evaluate some 
states or state/action pairs given a policy, or to iteratively find a maximizing 
policy. Dynamic programming may be used for problems where probability 
transition matrix is available. However, for most practical application this is 
not the case. Then, most often Monte Carlo methods or Temporal Differ­
ence learning is used. Monte Carlo methods, although proven to minimize the 
MSE on the training set, are not efficient, as they update the target function 
at the end of each episode, and therefore they are not even useful for non- 
episodic problems. Temporal Difference (TD) learning overcomes this hurdle 
and updates target functions by certain amount that is proportional to the er­
ror between the current target function and the estimate of it each single step 
(or with delays of few steps). SARSA, an on-policy method, or Q-Learning, an 
off-policy method, are the most common ones used for the purpose of policy 
evaluation or the search for maximizing policy.

The most commonly applied algorithms use some form of Bellman optimal­
ity equation. We will present only the relevant case of Q-learning that is a 
model-free, off-policy (i.e. it does not use the same function for updating the 
action-value as for the decision-making), and online algorithm that searches 
for optimal values of the action-value function. The pseudo-code for the Q- 
Learning is shown in Algorithm 1.

Algorithm 1 Q-Learning (off-policy TD control) for estimating t t  ~ 7iy

1: Initialize Q(s, a),Vs G S, a G A, arbitrarily, and Q(Sterminaii •) = 0 
2: for episode = 1 to END do 
3: Initialize St = S\
4: while True do
5: Choose At from St using the policy derived from Q(St,At) (e.g.,

e-greedy)
6: Take action At, observe Rt+i, St+i
7-. Q(St, At) G- Q(St, At) + a[Ri_|_i + 7m&xQ(St+i, a) — Q(St, At)]
8: If St is terminal : break

However, one can notice that in order to find the optimal policy, one needs 
to find the values of states or state/action pairs for each combination of eligi-
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ble states or state/action pairs. This can be done with either tabular meth­
ods, where the value of each combination is separately estimated. For large 
state and/or action spaces, this can pose an insurmountable hurdle. One then 
has to to turn to function approximation methods, where the state values or 
state/action values are formalized by a certain function with a parameter vector 
w: n(s; w) or q (s , a; w). Semi-gradient learning methods, such as semi-gradient 
TD(0), can then be used for optimal policy control. For these methods, con­
vergence guarantees are provided for a linear function approximation. Their 
disadvantage lies in the need of the feature specification.

This is the place where artificial neural networks come into play. They can 
act as a universal continuous function approximator and therefore may serve 
as an automatic engine for a feature selection. This property was successfully 
exploited by several research teams, most notably by the DeepMind researchers 
in several studies (e.g. Mnih et al., 2013, Mnih et al., 2015, Lillicrap et al., 
2015, Van Hasselt et al., 2016, Silver et al., 2016, Silver et al., 2017). As was 
already noted, we will appropriate the Double Deep Q-Learning algorithm with 
experience replay that was concisely presented in Mnih et al. (2015).

In this study, the authors used deep convolutional neural networks for ap­
proximating the action-value Q-function. The loss measure of the learning 
process at step t was defined as:

Li(wt) = E^a[(yt - Q(s, a-, wt))2], (6.11)

where yt = E^[r + 7 max Q(s', a'-, wt_i)|s, a] is the target value at time t.
a!

As we can observe, one obtains the maximum with respect to the current Q- 
function and uses this value to update the parameters of this Q-function (similar 
as in the case of the classical Q-learning). Gradient of the loss function takes 
the form:

VWtLt(wt) = Eŝ s r + 7 max Q(s', a'-, wt_i) - Q(s, o; wt)) VWtQ(s, a-, wt))

(6-12)
This loss function may be optimized by stochastic gradient descent methods 

(e.g. vanilla SGD, Adam, RMSProp, etc.). The algorithm becomes classical 
Q-learning when one replaces expectation by sample averages and update of 
weights occurs at each time step. Therefore the iteration update looks likes 
this:
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wt+i = Wt + a[Rt+i + 7maxQ(Si+i,a; w,) - Q(St, A,, wt)]VwtQ(S, At, Wt) 
(6.13)

For a long time it was observed that non-linear function approximators very 

often diverge in reinforcement learning applications. In order to stabilize the 

learning, the authors appropriated an experience replay and a different target 

and update network - in the former case, the problem of correlated samples and 

in the latter case, the problem of biased learning and possible large swings in 

successive policies, was mitigated. Experience replay stores a buffer of samples 

(St, At, Rt+t, St+-t) from previous steps and draws randomly from this buffer a 

selection of samples as an input to the deep Q-network. The second novelty, 

i.e. separating the target and update network, consists of creating a second 

convolutional deep neural network that is used for maximizing the target value. 

The update equation therefore takes the following form:

wt+i = wt+a[Rt+1+'y max Q^-S'i+i, a, wt)-Q“(S'i, At, wt)]VwtQu(5t, At, wt), 
(6.14)

where Q* is the estimated target network and Qu is the estimated update 

network. In order for the target network to track the development of the update 

network, each C steps the target network copies the weights from the update 

network. Between these updates, the target network stays unchanged. The 

full pseudocode of the Double Deep Q-learning is presented in Algorithm 2 (we 

present the version without pre-processing, as our data input does not have a 

visual origin).

6.3 Optimal Quoting with Deep Reinforcement Learn 

ing

Our goal will be therefore to situate an agent that will try to optimize his 

expected terminal gains from the continuous quotation on the market in the 

market-making framework of Avellaneda & Stoikov (2008). By continuing the 

thread of the Hawkes order book model estimations, we will differentiate be­

tween two markets - maker-taker and taker-maker. These markets will have 

different probabilities of trading, specifically Equation 6.2 will incorporate an
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Algorithm 2 Double Deep Q-learning with experience replay (without pre­
processing)

1: Initialize replay memory D to capacity N, initialize weights for target and 
update network, ()' and respectively

2: for episode = 1 to END do 
3: Initialize sequence St = Si
4: while True do
5: With probability e select a random action at, otherwise select at =

max Qu(St, a-, 0)
a

6: Execute action At and observe reward Rt+i and new state St+i
7: Store transition (St, At, Rt+i, <St+i) hr D
8: Sample random minibatch of transitions (5,-, A,-, Rj+i, Sj+1) from D
9: Set

R-i+i, for terminal Sj+i
J J (6.15)

Rj+i + 7 max QÍ(S',+1, a'\ 0), for non-terminal Sj+1 
a'

10: Perform a gradient descent step on (jq — Qu(St, At', #))2 according to
the equation 6.12

11: If St is terminal : break

additional probability for trading on different exchange types. Although results 
from previous sections suggest that quoting on maker-taker exchanges is gen­
erally more profitable for market-makers, as they obtain liquidity rebates and 
simultaneously have higher probabilities of fill and speeds of fill, this section 
proposes a way to measure these trading gains. The optimization procedure 
itself will be done with a Double Deep Q-Network. One may ask, whether the 
results of the market-making framework of Avellaneda & Stoikov (2008) are not 
enough for computing the profitability gains/losses. However, the Avellaneda- 
Stoikov results are correct only under a specific assumption on the dynamics 
of the underlying stochastic process and are relevant only for a market-maker 
with a knowledge of the market parameters (cr and /c). Reinforcement learning 
is a model-free tool for optimal control, hence no knowledge of the underly­
ing process is required. Therefore, the deep Q-network applied in this section 
might converge to optimum even under very different market conditions. The 
generality of the optimum search is the advantage of this novel approach.

Our input data consist of the state of the market - current asset (stock) 
price, current inventory position of the market-maker, time distance from the 
last bid and ask trade and time distance to the terminal time. The choice of this 
state representation was guided by our experimentation. We specify possible
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actions on a discrete grid from -0.3 to 2.1 (by a step of 0.3), i.e. the action set 
has cardinality 81. Other parameters are overtaken from Avellaneda & Stoikov 
(2008), i.e. St = 100, T = 1, a = 2, dt = 0.005, k = 1.5, and A = 140. Initial 
money account and inventory are both set to zero (short-selling is allowed).

As our input data are not of visual character, we will use only a feedforward 
neural network instead of a convolutional one. The neural networks will consist 
of 2 hidden layers (128 and 256 neurons, respectively) and an output layer 
comprising activations for all actions (similar to Mnih et al., 2013 and Mnih 
et al., 2015). In setting the parameters of the neural network, we have been 
guided by current research practices and our own experimentation. We will 
be using normal initialization for weights adjusted by the number of inputs 
to that particular layer and zero initialisation of biases. Leaky RELLI will be 
considered as an activation function. We set the learning rate and regularizer 
to 0.001. Size of the experience replay buffer was set to 2,056, while the batch 
size is 64. Target network is updated every 100 steps. Exploration is linearly 
interpolated from 0 to 5,000 episodes, ending at the value of 0.001. Simulation 
length is 10,000 episodes (each episode being of length 200), and all outputs 
are taken for the last 2,500 episodes. Discount parameter was set to 0.95.

The setting of a fee value is quite subtle. Even though the price of the 
simulated asset is realistic, spread of the optimal quote from the solution of 
Avellaneda & Stoikov (2008) with linear utility function is around 0.66 (see 
next paragraph), which would imply an extremely illiquid market. In order 
to adjust the fee, we have set it to the same value as when comparing the 
fee rebates/charges to the usual spreads on the US markets. Maximum fee 
charge in the US markets specified by the Rule 610 of RegNMS is 0.003$ for 
one share transaction (Securities and Exchange Commission Division of Trading 
and Markets, 2015). When we take the median spread of the US stocks as 0.05$ 
(see Angel et al., 2015), then applying the ratio to our case results in the fee 
rebate/charge of 0.04. The probability of fill differential between taker-maker 
and maker-taker exchanges will be set to an average value of our empirical 
estimation, i.e. 0.03.

Firstly, we will show that deep reinforcement learning agent is able to 
approximate the optimum quotation in the base scenario, i.e. without the 
fees/rebates and probability of fill adjustments. From Fodra & Labadie (2012) 
we know, that for a linear utility function and a martingale process, the optimal 
controls (5*, 5“) around the mid-price are given by:
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Table 6.1: Statistics of the performance of agents - base scenario

Agent Mean of P&L St. dev. of P&L Mean of inventory St. dev. of inventory
RL 68.27 13.52 -0.09 9.18

AS 0.1 65.05 6.50 0.03 3.06
AS 0.01 68.75 8.95 0.14 5.31

SQ 69.02 13.64 -0.12 8.60

Note: Selected statistics for the reinforcement learning (RL), our replication of Avellaneda-
Stoikov (AS) with the discount parameter either 0.1 or 0.01 and symmetric quoting (SQ) of 
optimal spread (1/fc) agents.

(6.16)

This means that for our case of k = 1.5, the optimal control of our agent 
should be either 0.6 or 0.9. Indeed, it turns out that the higher one is 0.6 
and the agent learns this value (see Figure 6.3). Figure 6.2 presents hnal P&L 
for the RL agent and symmetric strategies around the mid-price with different 
spreads. We can see here that the RL agent is closely imitating the profit of 
the strategy with a constant 0.6 bid/ask spread. Even though we have different 
baseline utility specification than Avellaneda & Stoikov (2008), we can try to 
compare the two as decreasing the discount parameter in the original study 
moves its solution closer to the strategy of symmetric quoting (with the bid 
and ask spread given by the time average of Equation 6.5). Figure 6.1 and 
Table 6.1 show the resemblance between the final P&L of the strategy from 
the Avellaneda & Stoikov (2008) and between our RL agent. Our agent learns 
to maximize the mean, however, s/he is sacrificing higher variance of the P&L 
and hnal inventory. The cause of this discrepancy is due to the utility function 
specification as the exponential implicitly penalizes larger negative P&L results 
more than larger positive ones (for similar results see also Fodra & Labadie, 
2012). Therefore, volatility of the P&L and inventory will be higher under the 
linear utility specification. We can also observe that the performance of our 
agent closely resembles the strategy of symmetric quoting of optimal quotation 
corroborating the quality of learning of the agent.

Next, we shall add an access market fee and a rebate of 0.04 for taker- 
maker and maker-taker exchanges, respectively, and a probability of fill decrease 
for taker-maker exchanges of 0.03. Table 6.2 summarizes the results for both 
exchanges for this case.

As was expected, the hnal P&L is higher when quoting on maker-taker 
exchanges. The standard deviations of both P&L and inventory are lower for
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Figure 6.1: Final P&L histogram of the Reinforcement Learning agent 
(RL) and a solution of Avellaneda-Stoikov (AS) 0.1, i.e. 
with a discount parameter 7 = 0.1

Figure 6.2: Final P&L histogram of the Reinforcement Learning agent 
(RL) and strategies of symmetric quoting around the mid­
price.

Table 6.2: Statistics of the performance of agents w.r.t. different exchange fees

Exchange type Mean of P&L St. dev. of P&L Mean of inventory St. dev. of inventory
Maker-taker 72.82 13.66 -0.09 9.18
Taker-maker 65.18 13.35 -0.09 8.87

Note: Selected statistics for reinforcement learning agents for maker-taker and taker-maker ex­
changes. Access fee was set to 0.04 and probability differential was chosen as 0.03.
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Figure 6.3: A sample of the mid-price evolution with optimal bid and 
ask quotes from the RL agent

Table 6.3: Statistics of the performance of agents - base scenario with 
cr = 4

Agent Mean of P&L St. dev. of P&L Mean of inventory St. dev. of inventory
RL 68.34 25.49 -0.09 9.18

AS 0.1 52.75 6.72 -0.0056 2.20
AS 0.01 67.58 10.07 0.05 3.78

SQ 69.06 25.25 -0.12 8.60
Note: Selected statistics for the reinforcement learning (RL), our replication of Avellaneda-

Stoikov (AS) with discount parameter either 0.1 or 0.01 and symmetric quoting (SQ) of 
optimal spread (1/fc) agents.

taker-maker exchanges which is caused by a lower amount of trades due to the 
smaller probability of fill.

The hnal learning will occur under a heightened market stress, i.e. we have 
set cr = 4. Firstly, we will show the results for the base scenario without any 
probability and fee adjustments in order to see the behaviour of the RL agent 
in comparison with the analytical results.

The strategy of Avellaneda & Stoikov (2008) results in a significant decrease 
in the P&L, but the variation of it is almost identical to the case of the bench­
mark market volatility. On the other hand, our agent finishes with an almost 
identical P&L, but with a doubled standard deviation of it. Inventory mea­
sures remain the same for our agent, as the optimal quoting did not change 
and therefore also the number and composition of trades was stable during the 
learning.
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Figure 6.4: Final P&L histogram of the Reinforcement Learning agent 
(RL) and a solution of Avellaneda-Stoikov (AS) 0.1, i.e. 
with a discount parameter 7 = 0.1, under the market 
stress, meaning a = 4.

Figure 6.5: Final P&L histogram of the Reinforcement Learning agent 
(RL) and strategies of symmetric quoting around the mid­
price with a = 4.
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Figure 6.6: A sample of the mid-price evolution with optimal bid and 
ask quotes from the RL agent under a = 4.

Table 6.4: Statistics of the performance of agents w.r.t. different exchange fees 
under the market stress

Exchange type Mean of P&L St. dev. of P&L Mean of inventory St. dev. of inventory
Maker-taker 72.89 25.56 -0.09 9.18
Taker-maker 65.32 24.92 -0.09 8.87

Note: Selected statistics for reinforcement learning agents for maker-taker and taker-maker ex­
changes under the conditions of doubled market volatility, i.e. <7 = 4. Access fee was set to 0.04 and 
probability differential was chosen as 0.03.

Now we shall add the probability add-on and the fee rebate/charge to the 

market environment. The comparison between optimal values for both ex­

changes is presented in Table 6.4.

The situation is similar as in the previous case. Quoting on maker-taker 

exchanges results in a higher terminal profit, while the statistics for inventory 

remain the same as for the benchmark volatility case, because the optimal 

quoting does not change.

Finally, we can answer the hypotheses we have posed in the Proposal of 

our thesis. To the hrst question, the P&L of the market-maker is higher when 

quoting on maker-taker exchanges. To the second and third question, the 

spreads are the same for both volatility specifications for both fee regimes. 

The reason lies in the linear utility specification which does not penalize large 

inventory positions and its optimal quotes depend only on the parameters of 

the market order arrivals. Possible extensions with an inventory penalization
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or an exponential utility specification might improve on the latter results.



Chapter 7

Conclusion

The role of the (designated) market-makers is to provide continuous liquidity to 

the markets. Under normal circumstances, their quotes compete with those of 

a wide range of other actors (e.g. non-designated liquidity providers) and their 

absence on the top of the limit order book may not affect adversely the quality 

of the order flow. However, in more volatile times, their quotes may constitute 

only liquidity available. Therefore, from the perspective of the market-makers 

and other market actors, the knowledge of an impact of market micro-structure 

changes on the P&L of the market-maker is non-trivial.

In this thesis, we have tried to model the impact of one of the market 

micro-structure features, i.e. different fee regimes, on the P&L of the market- 

maker. We began with a specification of the model that captures probability 

of fill and fill speed for different types of fee structures. However, applying the 

model on selected order book data proved to be disappointing as no statistical 

importance was detected. Nonetheless, we believe that data inconsistency may 

have been the root cause of this discrepancy, and further replication may turn 

out to be more meaningful. We then cautiously interpreted the results of the 

optimizations of the model relating to the execution quality. It turns out that 

maker-taker exchanges may provide better liquidity to the markets.

These preliminary estimations were later on applied in the framework of op­

timal market-making. We have appropriated the model of Avellaneda & Stoikov 

(2008) for the purpose of setting up a general market framework. However, we 

have applied a novel deep reinforcement learning technique, Double Deep Q- 

Network, and obtained results that are comparable to the results of the original 

study. The advantage of deep reinforcement learning is that it is model-free. In 

contrast to the existing literature, we do not need to assume any knowledge of



7. Conclusion 68

market parameters by market-making agents. The only requirement is a large 

dataset of historical or simulated time series that could be used for the training 

of the agent.

By using the Double Deep Q-Network in the context of make-take fee 

regimes, we have obtained an approximate enumeration of the optimal P&L 

and spreads. The fact that maker-taker exchanges provide better profit maxi­

mization opportunities for market-makers was already expected from the first 

part, as on these markets the liquidity providers obtain besides official fee re­

bates also better execution quality conditions. We have also seen that under the 

linear utility specification, the optimal spreads under both exchanges remain 

the same.

Although the hrst part of the thesis has not provided reliable answers, we 

believe that the results of the second part are of some importance. As it was 

already mentioned, this thesis, as far as the knowledge of the author goes, is the 

hrst attempt to apply deep reinforcement learning techniques to the domain of 

market-making. And the quality of the approximation of analytical results by 

our agent leaves us very optimistic. Future extensions are quite diverse - from 

specifying much more complicated underlying processes (e.g. Levy processes), 

to appending inventory constraints or using deep reinforcement learning tech­

niques applicable to continuous action spaces (e.g. deep deterministic policy 

gradients).
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Appendix A

Plots of the Hawkes process-based 

limit order book model

As a side note, we shall mention that all the following plots concerning the 

Hawkes process are done with a constant base intensity specification. No prin­

cipal differences were observed between the constant and the quadratic inten­

sity, and therefore for the sake of consistency we present only the plots for the 

base intensity one. Also, because we wanted to stay concise, only a selection 

of plots is provided. In case of interest, feel free to request the rest from the 

author.



A. Plots of the Hawkes process-based limit order book model

Figure A.l: Q-Q plot of the compensator for the trade process for 
NFLX ASK

Note: An alignment of red and blue line would suggest the process specified is 
indeed a Hawkes process.

Figure A.2: Comparison of actual and simulated events for the maker- 
taker quote process for NFLX BID for range (10,000, 
10,200)

Note: Process in the upper cell is an extract from the dataset, while the lower 
one is a simulated Hawkes process with parameters set to median of estimated 
values.



A. Plots of the Hawkes process-based limit order book model

Figure A.3: Plot of the conditional intensity function for the taker- 
maker quote process for NFLX BID for range (10,000, 
10,005)
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A. Plots of the Hawkes process-based limit order book model IV

Figure A.4: Q-Q plot of the compensator for the trade process for 
NVDA BID

Note: An alignment of red and blue line would suggest the process specified is 
indeed a Hawkes process

Figure A.5: Comparison of actual and simulated events for the maker- 
taker quote process for NVDA ASK for range (10,000, 
10,200)

Note: Process in the upper cell is an extract from the dataset, while the lower 
one is a simulated Hawkes process with parameters set to median of estimated 
values.



A. Plots of the Hawkes process-based limit order book model V

Figure A.6: Plot of the conditional intensity function for the taker- 
maker quote process for NVDA ASK for range (10,000, 
10,005)
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A. Plots of the Hawkes process-based limit order book model VI

Figure A.7: Q-Q plot of the compensator for the maker-taker quote 
process for SHPG ASK

Note: An alignment of red and blue line would suggest the process specified is 
indeed a Hawkes process

Figure A.8: Comparison of actual and simulated events for the trade 
process for SHPG BID for range (10,000, 10,200)

Note: Process in the upper cell is an extract from the dataset, while the lower 
one is a simulated Hawkes process with parameters set to median of estimated 
values.



A. Plots of the Hawkes process-based limit order book model VII

Figure A.9: Q-Q plot of the compensator for the taker-maker quote 
process for TMUS ASK

Note: An alignment of red and blue line would suggest the process specified is 
indeed a Hawkes process

Figure A. 10: Comparison of actual and simulated events for the trade 
process for TMUS BID for range (10,000, 10,200)

Note: Process in the upper cell is an extract from the dataset, while the lower 
one is a simulated Hawkes process with parameters set to median of estimated 
values.
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