Charles University

Faculty of Social Sciences
Institute of Economic Studies

g LA

DA 4/Hu n‘< ﬁ%‘\a‘l

L ‘i‘vﬂz '%JJJ LQW

Y 000000004
OO ,b?

Y/

-,

MASTER'S THESIS

Monetary Policy and House Prices in the
US: Evidence from Time-Varying VAR
Model

Author: Be. Kristyna Brunova
Supervisor: prof. Roman Horvath, Ph.D.
Academic Year: 2017/2018


http://www.cuni.cz/UKEN-1.html
fsveng.fsv.cuni.cz
ies.fsv.cuni.cz
mailto:k1.brunova@seznam.cz
mailto:roman.horvath@fsv.cuni.cz

Declaration of Authorship

The author hereby declares that he compiled this thesis independently, using only

the listed resources and literature, and the thesis has not been used to obtain a

different or the same degree.

The author grants to Charles University permission to reproduce and to distribute

copies of this thesis document in whole or in part.

Prague, January 5, 2018 Signature



Acknowledgments

[ am heartily thankful to my supervisor, prof. Roman Horvath, Ph.D., for his

patience, guidance and valuable comments.



Abstract

This thesis examines the effects of monetary policy shocks on the housing market.
To this end, TVP-VAR model with dynamic dimension selection and stochastic
volatility is estimated using monthly data for the United States over the period
1999-2017. Moreover, the model features estimating the optimal value of the
Bayesian shrinkage coefficient in a time-varying manner. Since the sample covers
the Zero Lower Bound period, Wu-Xia shadow rate is employed to measure the
stance of monetary policy. To assess the link between housing variables and
monetary policy, impulse responses and forecast error variance decompositions
are provided. However, due to the time-varying nature of the model, they are
estimated only for selected time periods that correspond both to the events that
most likely influenced the path of macroeconomic and financial variables and to
periods of low economic uncertainty. The main results are threefold. First, the
model suggests that monetary policy shocks can contribute to developments in
house prices. Second, the stimulative monetary policy positively affects residential
investment and negatively affects mortgage rates, however, the effects are not
significant due to the large confidence bands of the impulse responses. Third,
higher values of the shrinkage hyperparameter are crucial for obtaining reasonable
impulse responses. Those results are fairly robust to various specifications of the

model.

JEL Classification Cl11, C51, E43, E47, R30
Keywords monetary policy, house prices, time-varying

VARs, interest rates, zero interest-rate policy

Author’s e-mail k1.brunova@seznam.cz

Supervisor’s e-mail roman.horvath@fsv.cuni.cz


http://ideas.repec.org/j/C11.html
http://ideas.repec.org/j/C51.html
http://ideas.repec.org/j/E43.html
http://ideas.repec.org/j/E47.html
http://ideas.repec.org/j/R30.html
mailto:k1.brunova@seznam.cz
mailto:roman.horvath@fsv.cuni.cz

Abstrakt

Tato prace zkouma vliv Soku do ménové politiky na realitni trh. K tomuto
ucelu byl odhadnut ¢asové-proménlivy VAR model s dynamickym vybérem di-
menze a stochastickou volatilitou, ktery byl odhadnut na mésiénich datech pro
Spojené staty v obdobi 1999-2017. Model je déale charakterizovan vybérem op-
timalniho Gasové proménlivého Bayesovského koeficientu smrstovani. Protoze
model odhadujeme i v obdobi nulové spodni hranice, byla pouzita Wu-Xia stinova
urokova sazba, abychom mohli kvalifikovat postoj ménové politiky. K posouzeni
vztahu mezi realitnimi proménnymi a ménovou politikou byly odvozeny impulzni
funkce a dekompozice rozptylu v chybé predpovédi. Avsak jelikoz je model ¢asoveé
promeénlivy, tyto jsou odhadnuty pouze ve vybranych casech, které obsahuji jak
udalosti, jez s nejvyssi pravdépodobnosti ovlivnily hodnoty makroekonomickych
a finan¢nich proménnych, tak i obdobi, ve kterych byla ekonomicka nejistota
minimalni. Hlavni vysledky jsou nasledujici. Zaprvé, model indikuje, ze Soky
do ménové politiky mohou ovliviiovat ceny nemovitosti. Zadruhé, stimulativni
monetarni politika pozitivné ovliviiuje realitni investice a negativné ovliviiuje hy-
potecni sazby, avsak tyto efekty nejsou signifikantni kvuli velice sirokym pasmum
okolo impulznich funkei. Zatieti, vétsi hodnoty Bayesovského koeficientu smrstovani
jsou nezbytné pro ziskani rozumnych impulznich funkci. Tyto vysledky jsou ro-

bustni vuci ruznym specifikacim modelu.

Klasifikace JEL C11, C51, E43, E47, R30
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Author Be. Kristyna Brunova
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Proposed topic Monetary Policy and House Prices in the US: Evidence
from Time-Varying VAR Model

Motivation Studying the effect of monetary policy on house prices has become one
of the main concerns for monetary economists over the past years, especially after the
burst of the U.S. housing bubble in 2007 which triggered the so-called mortgage crisis;
the event considered by many as a major impetus to the outbreak of the 2008 financial
crisis. Prior to these events, i.e. between 2001 and 2005, the key interest rate in the
United States, the federal funds rate (which we refer to as the short-term interest rate or
simply the interest rate), was maintained exceptionally low, well below what the Taylor
rule would have implied. This coincidence motivated researchers to examine the impact
of loose monetary policy on asset prices with the emphasis on the possible creation of
asset price bubbles.

Recent crisis also showed that conventional monetary policy may not be sufficient
to revive the economy - in December 2008, the federal funds rate was pushed to almost
zero and the Fed also bought a huge amount of mortgage-backed securities to decrease
mortgage rates and boost real estate sales, however, neither of those actions significantly
helped to raise the aggregate demand. Moreover, with the policy rate near its effective
lower bound, the Fed had to implement unconventional monetary policies aimed at
lowering long-term interest rates. These policies consisted mainly of large-scale asset
purchases and forward guidance, the term referring to central bank’s signaling of the
likely future path of federal funds rate to the public. Unconventional monetary policy
paid off and the U.S. economy, although moderately, started to grow in June 2009.
House prices (as measured by Case-Shiller U.S. National Home Price Index) increased
by 19% from February 2012 to February 2014 following a clear upward trend since the
beginning of that period.

The aim of this thesis is to investigate whether unconventional monetary policy

implemented by the Fed during the crisis influences U.S. house prices more than con-
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ventional monetary policy due to the long-term policy of low interest rates. Although
unconventional monetary policy undoubtedly helped the U.S. economy, it also created
several potential issues we might have to deal with in the future. The low interest
rate environment forces investors to demand more low-quality assets in order to achieve
higher returns than they would have from buying e.g. the U.S. Treasury bonds. In-
vestors may also invest more in real estate, which can create an upward pressure on
house prices and lead to real estate mispricing - the issue that is also supported by the
evidence of very high U.S. real estate prices relative to the yields coming from the rents
on those properties. Raising the interest rate would then cause the rents to be less com-
petitive, resulting subsequently in a price decrease of the properties. This environment
also encourages banks to give mortgages to less reliable customers, a practice that par-
tially led to the already mentioned U.S. housing bubble after 2000. In this thesis we will
assess how traditional monetary policy influences house prices through the short-term
interest rate and how this connection changes when unconventional monetary policy

operating at the Zero Lower Bound (ZLB) takes place.

Hypotheses

Hypothesis #1: The federal funds rate (either effective or target) has negative

effect on house prices in the United States.

Hypothesis #2: All of the following monetary policy measures have a significant
effect on house prices: 1) shadow policy rate, 2) central bank’s assets, 3) forward
guidance, 4) deviation of the federal funds rate from that prescribed by the Taylor
rule. Further, we expect that the shadow policy rate has a negative effect on house
prices; the Federal Reserve’s assets have a positive effect; and the last policy
measure calculated as the difference between the short-term nominal interest rate
and the Taylor rule implied rate negatively affects house prices in the sense that
a negative difference (loose monetary policy) stimulates the increase in prices and

the opposite holds for a positive difference.

Hypothesis #3: The impact of monetary policy on house prices is greater during
the crisis, when the Federal Reserve operates at very low short-term interest rates
and employs unconventional monetary policy measures, than before the crisis,

when the Fed uses only conventional measures.

Methodology To assess the relationship between monetary policy and house prices
as well as whether it changed during and before the crisis, we will use large time-varying
parameter vector autoregressive models (large TVP-VARs). Regarding estimation and
forecasting, we will follow Koop and Korobilis (2013), who proposed approximate es-

timation methods that do not require the use of MCMC methods and thus reduce
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computational burden. Their approach involves the use of forgetting factors, but in-
stead of setting these factors to some constant value, as many authors do, they estimate
them from the data. Estimated forgetting factors are then be needed in the dynamic
model selection (DMS) - a method for choosing the optimal value of the shrinkage pa-
rameter at different points in time. This method hinges upon treating different values
of the shrinkage parameter as defining different models for which we find the optimal
shrinkage parameters. Another advantage of Koop and Korobilis’ approach except the
increased computational feasibility is that it allows for model switching: the algorithm
uses past predictive likelihoods for the set of variables we would like to forecast to select
a small, medium, or large TVP-VAR at each point in time. Koop and Korobilis (2013)
highlight potential usefulness of such a procedure as it identifies which model forecasts
the best and it might also improve the forecast performance of TVP-VARs of different
dimensions.

Since this thesis aims to clarify the effect of monetary policy on house prices with the
emphasis on the central bank’s long-term policy of extremely low interest rates, we will
face the choice regarding which monetary policy instruments we should include into the
model. As a conventional monetary policy tool, we will use the short-term interest rate.
However, during the crisis, the Fed experienced the so-called Zero Lower Bound period
when the interest rate could not be pushed down further, and therefore it implemented
unconventional policy measures. We will include the Federal Reserve’s assets and the
shadow policy rate to account for these measures in our model. The first variable is
commonly used in the literature as a proxy for unconventional monetary policy and it
also reflects the fact that large-scale asset purchases were extensively used by the Fed
during the Zero Lower Bound period. The shadow rate, first estimated by Wu and Xia
2014, is another convenient measure of unconventional monetary policy: it normally
follows the short-term interest rate, but when the interest rate gets stuck at the Zero
Lower Bound, the shadow policy rate can go negative. It basically shows how the interest
rate would have behaved if it could be negative. We will also compute the deviation
of the federal funds rate from the rate implied by the Taylor rule, which is a suitable
indicator for measuring the monetary policy stance as it can be used not only during
the ZLB period. This indicator seems to be relevant as well: many researchers (most
prominently Taylor, 2007, and 2009) argued that because the deviation of the federal
funds rate from the Taylor rule implied rate was so great after 2000, these unusually low
interest rates accompanied with the provision of large amounts of liquidity encouraged
housing market imbalances prior to the crisis.

Lastly, we will also focus on forward guidance, which was one of the key practices
implemented by the Fed during the crisis. We think that forward guidance plays an
important role in the expectations formation of market participants about the future

interest rates, and as such can eventually influence house prices. Quantifying forward



Master's Thesis Proposal Xiii

guidance is however a challenging task; we will use a method developed in Swanson
(2015), who estimated the forward guidance and large-scale asset purchases components
of each announcement of the Fed’s Open Market Committee and showed that these
components have significant effects on asset prices. The variable we are mainly interested
in, house prices, will be measured using Case-Shiller Home Price Index - U.S. national
index - which is now being published by Standard & Poor’s and is available on their

web site.

Expected Contribution There is a large bulk of literature dealing with the impact
of monetary policy on asset prices. However, any of the yet published studies did not
consider employing large TVP-VARs for estimating the effect. Furthermore, to the best
of our knowledge, any paper did not analyze how the relationship between monetary
policy and house prices changes during the crisis when extraordinary monetary policy
measures are implemented. One of these measures, which is frequently neglected in the
literature, is forward guidance. This type of unconventional monetary policy was one of
the key pillars of Fed’s efforts during the crisis and we believe that analyzing its impact
on house prices through the interest rate channel can provide further insights into the
field. Finally, examining how the zero interest-rate policy affects the housing market
could also help to explain the overpricing in the Czech housing market which can be seen
nowadays. One of the reasons might be almost zero rates on savings accounts that can
force rich individuals to seek other investment possibilities, some of them subsequently

buying real estate.

QOutline

1. Introduction - introducing the topic and the aim of the thesis, presenting the mo-
tivation, expected contribution and briefly presenting the main results, outlining

the structure of the thesis

2. Literature review - review of all relevant literature, can have two subsections:
one of them for monetary policy literature and the other for purely econometrics

literature

3. Data - description of the dataset, motivation for using selected variables, data

sources

4. Methodology - description of large TVP-VAR approach: first generally, and then
with respect to the current study, description of the estimation and forecasting

methods which were employed

5. Results - presenting and discussing the results
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6.

Core

Conclusion - summary of the results and their relation to the overall aim of the

thesis, discussion of the contribution, motivation for future research
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Chapter 1
Introduction

Over the past few years, developments in house prices have become increasingly
important for monetary economists, especially in the context of monetary trans-
mission mechanism. Evaluating the impact of monetary policy shocks on the
housing market gained further attention after the U.S. housing bubble burst in
2007 which was considered by many observers as a trigger of the subsequent fi-
nancial crisis. Following this event, central bankers were oftentimes accused (e.g.,
by Taylor (2007)) of promoting a too stimulative monetary policy in the early
2000’s with the federal funds rate well below the rate suggested by Taylor rule,
which was claimed to substantially contribute to housing market imbalances.

The aim of this thesis is to assess the effects of a monetary policy shock on
the housing market. We examine the reaction of house prices to an expansionary
monetary policy shock using a TVP-VAR model with stochastic volatility and dy-
namic dimension selection. We extend the Bayesian state-space model of Koop &
Korobilis (2013) in order to generate impulse responses and forecast error variance
decomposition, which is one of the main contributions of this thesis. Time varia-
tion in VAR coefficients allows us to compare the responses of house prices over
time to examine if and how the link between monetary policy and house prices
changed. We then study the behavior of house prices and residential investment
following a monetary policy shock in six different time periods, including both
periods of good economic conditions and the unstable times. Due to the stochas-
tic volatility in the model, variance of shocks can change over time which better
simulates the actual ongoings in the model. Dynamic dimension selection is used
to select one TVP-VAR model in each time from the pool of possible candidates
that all contain the variables of the small TVP-VAR.

We estimate the model on monthly data from January 1999 to April 2017. One



1. Introduction 2

of the potential problems when estimating a macroeconomic VAR on a sample that
covers both the Zero Lower Bound and non-ZLB periods is that we can no longer
use the federal funds rate to account for the changes in monetary policy, because it
was pushed to nearly zero for the whole ZLB period. Therefore, we decided to use
Wu and Xia shadow rate to approximate for the changes in monetary policy. This
rate serves as an indicator of what would the policy rate be if it could go below
zero. For house prices, we employed S&P /Case-Shiller U.S. National house price
index which is a leading measure of residential real estate prices in the United
States.

The results show that house prices and residential investment respond posi-
tively, though with a delay, to an expansionary monetary policy shock. Moreover,
the response is generally more invariant to different model specifications and sig-
nificant in stable times than in unstable times. Therefore, allowing for time vari-
ation in VAR coefficients seems to be important in quantifying the link between
house prices and monetary policy and its changes over time. It is also shown that
the choice of the shrinkage hyperparameter that controls the degree of variation in
TVP-VAR coefficients around their prior means is crucial for obtaining reasonable
results.

The remainder of this thesis is structured as follows. Chapter two provides
overview of the related literature on the stance of monetary policy and house
prices, while Chapter three describes the data and presents some preliminary
analysis. Chapter four describes the model and the estimation procedure. Chapter
five provides the empirical results and robustness checks. Finally, Chapter 6

concludes and suggests the directions for future research.



Chapter 2
Literature Review

This chapter summarizes relevant literature concerning the effects of monetary
policy on the housing market. It includes all important studies irrespective of
their modeling approach - some of them use VAR methods, while others employ
DSGE models.

Taylor (2007) discusses and also provides an explanation for monetary policy
actions surrounding the housing price boom in the early 2000s. Moreover, he
advices central bankers what to do to prevent future crises. First, he argues
that the volatility reduction in residential construction since the early 1980s was
mainly the result of the more responsive monetary policy to changes in inflation
and real GDP. Accordingly, monetary policy started to be also more systematic
and predictable in 1980s, which helped to keep inflation steadier, and therefore
reduced boom-bust cycles and subsequent interest-rate oscillations, which had
caused volatile housing in the period before 1980. However, he points out that
during 2003-2006, the federal funds rate was lower than it would have been if
the central bankers acted as they did in the so called Great Moderation period
during two previous decades as described above. He thinks that those unusually
low interest rates further increased the (high) demand for housing leading to a
huge house-price inflation. Thus, when the federal funds rate came back to normal
(before-the-reduction) levels in 2006, demand for housing sharply fell, dragging
down both the house-price inflation and residential construction.

To confront his theory with reality, he estimated the equation that links hous-
ing starts to the developments in the federal funds rate on quarterly data from
1959 to 2007, and found that the federal funds rate significantly affects housing
starts, and that this effect is also of a high magnitude and occurs with a lag.

He then used this model to simulate the path of housing starts from 2000 to
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2007 under two different scenarios: first, that the federal funds rate follows its
actual path, and the second, that the federal funds rate follows a Taylor rule
with coefficients of 1.5 and 0.5 on inflation and real GDP, respectively. Under
this specification, alternative paths of the federal funds rate split in the second
quarter of 2002 and merge again in the third quarter of 2006. According to the
results, housing boom under the Taylor-rule prescribed interest rate would have
been of a much smaller magnitude than that occurring when the federal funds rate
follows its actual path. He also argues that the boom would have been reduced
(even with the federal funds rate following its actual path) if the response of the
long-term interest rates to an increase in the federal funds rate would have been
such that it was during the Great Moderation period. However, as the long-term
interest rates adjust according to the expectations of the future short-term rates,
Taylor claims that if, due to the exceptionally low short-term rates, the market
participants believed that the monetary policy response to inflation has changed,
their interest-rate expectations would have declined. Thus, the long-term rates
would not increase similarly as they would have before 2000s following a rise in
the short-term rates with these new expectations. This is further supported by
the fact that policy rule estimates for 2003-2005 display a significant drop in the
responsiveness of the federal funds rate to inflation. Based on this Taylor sug-
gests to implement a policy that is predictable and systematic as the one that was
active during the Great Moderation period, and to adjust the federal funds rate
according to changes in inflation and real GDP, while being careful with adjust-
ments based on other factors, as they may lead to unexpected changes in other
responses in the economy because they are more difficult for market participants
to follow up. Taylor also highlights the importance of clarity and transparency
of the Fed’s actions in resolving the crisis, which is also connected to the forward
guidance policy that the Fed extensively implemented during recent crisis and
that we want to include in the analysis as one of the unconventional monetary
policy measures.

lacoviello & Neri (2010) assess whether the developments in the housing sector
can be one of the driving forces of the business cycles. To answer this question,
they examined the nature of the housing market shocks and the relevance of
spillovers from the housing market to the economy. They estimated a DSGE model
with nominal and real rigidities on quarterly U.S. data from 1965 to 2006 and
studied the combinations of shocks and frictions that can account for the dynamics
of residential investment and housing prices observed in the data. According

to the results, they attributed the increase in real housing prices to the slower
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technological progress in the housing sector and to the inclusion of a fixed factor
(land) in the production function for new houses. They also acknowledged the
three main forces that can explain a substantial part of the cyclical volatility in
residential investment and housing prices: housing demand and housing supply
shocks, and monetary factors, which can explain about 20 percent of this volatility.
They conclude that the sharp increase in housing prices and residential investment
in the early 2000s, including its reversal in 2005 and 2006, was in a great part
driven by monetary factors, as opposed to a housing boom of the 1970s, which
was most probably driven by a faster technological progress in the non-housing
sector.

As for the transmission of the housing market shocks to the economy, they
argue that nominal rigidities, particularly a wage rigidity, increase the responsive-
ness of residential investment to changes in housing demand and monetary policy,
which in turn increases the sensitivity of output to aggregate demand shocks, be-
cause the fluctuations in residential investment directly affect output. Moreover,
they divided the sample into two subsamples to be able to compare how the mag-
nitude of housing market spillovers changed after the financial liberalization in
the mortgage market in 1980s. Results show that the spillovers from the housing
market to the rest of the economy are substantial and that they also became more
important over time.

Smets & Jarocinski (2008) also examined the role of housing market and mon-
etary policy in the U.S. business cycles. After estimating a Bayesian vector au-
toregressive model using the data from 1987 Q1 to 2007 Q2, they tried to forecast
the housing boom and its reversal in the early 2000s based on the observed real
GDP, prices, and short- and long-term interest rate paths. However, with the
benchmark VAR employing only real and nominal GDP developments, they were
not able to explain housing boom in 2000 and its peak in 2006. To obtain a be-
haviour of housing prices and residential investment that would match the data
more accurately, they needed to include the federal funds rate and the long-term
interest rate to the information set, however, the prediction error was still quite
severe. When they focused on the impact of housing demand shocks on the busi-
ness cycles, they found that these shocks significantly influence house prices and
residential investment (which is in line with most of the empirical literature), but
their impact on the performance of the U.S. economy in terms of inflation and
aggregate growth is only limited. Regarding the effects of monetary policy shocks,
the results suggest that they can substantially affect house prices and residential

investment. Thus, the authors conclude that the loose monetary policy of 2002-
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2004 could have contributed to the housing boom in 2004 and 2005, but that its
impacts on the overall economy are limited.

Negro & Otrok (2007) emphasize that it is important to differentiate between
“local bubbles” (with respect to the United States, these are house price bubbles
that emerged only in some states) and “national bubbles”, because the local ones
can be attributed to circumstances specific to each geographic market, whereas
the national ones can be caused by a monetary policy, which is identical across
all states. To examine which increases in the value of housing over mid-80s to
the end of 2005 were idiosyncratic (state-specific) and which can be classified as
a national phenomenon, they employ a factor model using state-level Office of
Federal Housing Enterprise Oversight (OFHEQO) house price indexes. They found
that, historically, house price movements are attributable to local factors, while
recently (from the perspective of their dataset) large increases in house prices
that occurred in many states have been substantially driven by a nation-wide
component, even if the local factors still have played an important role in the
formation of those price bubbles. Nevertheless, the common component of the
house price growth showed up to be significant, therefore they assessed to what
extent monetary policy is responsible for this co-movement. To address this issue,
they estimated VAR model with the common component in house prices being
one of the variables, the others measuring monetary policy stance. According to
impulse responses, loose monetary policy increases the housing factor. Moreover,
they constructed a counterfactual scenario to examine how the housing factor
and house-price growth across states would change if there were no monetary
policy shocks from 2001. They conclude that monetary policy shocks seem to
fairly influence house prices, but that this impact is rather small compared to
the magnitude of the house price increase over 2001-2005. Overall, they conclude
that expansionary monetary policy did not cause the housing boom, but they
emphasize that they focused only on the low-interest-rates component that is
due to monetary policy shocks (due to the Fed’s deviations from its historical
policy rule), and therefore the possibility that housing booms can be created in
an environment of exceptionally low interest rates cannot be ruled out.

Eickmeier & Hofmann (2010) note that the previous four papers did not come
to the consistent conclusion regarding the role of monetary policy in the housing
boom, however, they explain those inconsistencies by the differences in sample
periods. They studied the transmission of monetary policy shocks via financial
conditions as well as whether these shocks contributed to the pre-crisis imbalances

in housing and credit markets. Using 1987-2007 quarterly data for the United
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States, they employed a factor-augmented vector autoregressive model (FAVAR)
to be able to examine the interaction between monetary policy and more than
200 financial and asset variables. Their model includes three macro variables
- GDP growth, GDP deflator inflation, and the federal funds rate - and a set
of financial factors. To distinguish between macro and financial shocks, they
imposed both contemporaneous zero restrictions and short-term sign restrictions
on impulse response functions, which are in line with a large number of theoretical
models and are thus frequently used in monetary transmission studies. Further,
they allowed for contemporaneous interaction between policy rates and financial
variables to be able to assess not only the effect of monetary policy shocks on
financial variables, but also how financial shocks alter the path of policy rates.
Their results suggest that monetary policy shocks significantly and persistently
affect property prices, real estate wealth and the private sector debt, while the
effect on the mortgage market, risk spreads in the money market, and the loan
market is strong, but only short-term. Furthermore, monetary policy shocks,
although at a late stage, noticeably contributed to housing and credit markets’
imbalances prior to 2007. As for the effects of financial shocks on the path of policy
rates, they found that negative financial shocks associated with the burst of the
dot-com bubble could significantly contribute to the exceptionally low policy rates
observed between 2001 and 2006, and that the feedback of those shocks via lower
policy rates on property prices have been probably large.

Goodhart & Hofmann (2008) broadly examine the links between money, credit,
house prices, and the economic activity using fixed-effects panel VAR estimated
on 1973-2006 quarterly data from 17 industrialized countries. Results show that
there is a significant multidirectional relationship between those variables, with
money growth significantly affecting house prices and credit, credit influencing
both money and house prices, and house prices having impact on credit and
money. According to the impulse responses, shocks to money, credit, or to the
house prices significantly affect price inflation and aggregate economic activity,
and shock to either GDP, inflation, or to the interest rate significantly affects
house prices, money and credit. Furthermore, the link between house prices and
monetary variables appears to be stronger in a more recent period from 1985
to 2006, which, the authors believe, is caused by the financial system liberaliza-
tions during the 1970s and the early 1980s. Also, shocks to money or to credit
are intensified when house prices are booming. However, the intensification of
both the link between house prices and monetary variables and of the effects of

money and credit shocks is found statistically insignificant, as the authors report
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large confidence bands around the estimated impulse responses. The authors also
suggest to use a counter-cyclical regulatory ceiling on loan-to-value ratios in mort-
gage lending that would stimulate housing during the periods of poor mortgage
growth and low house price inflation, and hinder the creation of housing bubbles
in the opposite periods. The authors believe that such an instrument could partly
solve the problem of regional differences in house prices and credit dynamics when
implementing a monetary policy that is uniform across more regions. However,
they found only a minor correlation between those loan-to-value ratios and the
differences in the episodes of house price increases or booms across countries.

Hlousek (2013) applied a DSGE model of lacoviello & Neri (2010) to the
Czech economy to analyze the links between developments on the housing market
and the macroeconomy. He used quarterly data from the beginning of 1998 to
the end of 2012. Financial frictions are modelled using collateral constraint that
restricts borrowing capacity and consumer spending. Relaxing the constraint
increases the response of consumption and output to the monetary policy shock,
therefore, monetary policy can have higher impact on real economy if houses
are better collateralizable. From this, Hlousek (2013) concludes that the ability
of monetary policy to influence consumption and output highly depends on the
loan-to-value ratio, and with more accessible loans, the impact of monetary policy
on those variables is stronger, while this does not hold for the impact on inflation.
His results indicate that shocks to consumption, housing technology or housing
preferences are important determinants of fluctuations in real variables, whereas
shocks in inflation target or the cost-push shocks affect mostly nominal variables.
He further argues that the Czech house price boom and bust of 2000s was primarily
caused by housing preference shocks, which are the demand-side shocks, and that
the supply shocks also contributed to the housing market turmoil, but their effect
was much lower.

Another application of DSGE models to housing market and monetary policy
is proposed by Darracq Paries & Notarpietro (2008), but, contrary to the previous
DSGE studies, this one uses an open-economy framework which enables to include
international factors and cross-country spillovers and study the transmission of
housing market and monetary policy shocks both domestically and internationally.
There are two goods in the model: nondurable consumption goods that can be
traded internationally, and residential goods that are non-tradeable. The authors
also included credit market frictions faced by households, because they found them
important for the conduct of monetary policy, as the evidence in the literature

shows that they can significantly influence households’ consumption and home-
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purchasing decisions. With this model at hand, they analyze monetary policy
implications of housing-related shocks and the credit frictions, and the importance
of them for closed and open-economy fluctuations. The model involves the euro
area and the US and is estimated on quarterly data from 1981 to 2005.

Results indicate that there are substantial spillovers from housing market
shocks to the non-residential consumption, which exist because of the collat-
eral channel, and are further affected by the share of borrowers in the economy.
Furthermore, these shocks are the main drivers of the negative cross-country co-
movement of both real house prices and residential investment. The authors also
document that while the collateral channel causes housing shocks to significantly
affect domestic economic activity, it performs relatively poor in transferring those
shocks internationally, as compared to the shocks affecting tradeable consumption
goods. Finally, the authors considered the optimal monetary policy response to
housing shocks and for this exercise they augmented the traditional Taylor rule to
reflect also the house price developments. This new Taylor rule enhanced the em-
pirical fit of the model, and it also showed up to be welfare-improving compared
to the traditional Taylor rule, at least for the U.S. economy.

Williams (2015) focuses on the tradeoff between macroeconomic and financial
stability goals, from which he specifically selects an objective of keeping stable
house prices. Numerous empirical studies report that higher interest rates gen-
erate a decline in house prices, but also in GDP and inflation that can offset
the benefits from lower housing prices. Of course, there does not need to be
a conflict between macroeconomic and financial stability targets if, for example,
both house prices and the overall economy are booming, then higher interest rates
(tighter monetary policy) can help in fulfilling both targets simultaneously. How-
ever, if this is not the case and macroeconomic and financial stability goals differ,
Williams states that the quantitative assessment of benefits and costs from using
monetary policy to regulate house prices should be performed. For researchers
in drawing any conclusions regarding the role of monetary policy for house price
developments, he highlights the importance of proper separation of policy changes
that respond to economic developments from those that are driving those devel-
opments. In this regard, he employs a method developed in Jorda et al. (2014)
and Jorda et al. (2015) who took only countries with exchange rates fixed to some
foreign currency, because those countries are also those that cannot respond freely
to changes in their economic conditions by altering their short-term interest rates,
and therefore their interest rates’ changes are reactions to some other country’s

economic developments and not to domestic economic conditions. This way it is
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possible to examine only the “pure” effect of monetary policy when the effects
of interest rate changes for domestic variables in those countries are examined.
Williams analyzed 17 such countries using annual data from 1870 to 2013 (exclud-
ing the interwar period of 1914-15 and the period of 1973-1980 oil crisis). In the
pooled setting, he found that house prices and real GDP per capita respond neg-
atively to an increase in the short-term interest rate. Inflation response initially
shows a price-puzzling behaviour, and then, after more than one year, inflation
declines. However, Williams mentions that the response of an inflation would
probably be different with a sample consisting of countries which can freely alter
their interest rate paths, because the effect on inflation most probably depends
on each country’s monetary policy regime. He also did not find any evidence
that the monetary policy would have stronger effects during housing or real estate
debt booms. Moreover, he considered a possibility of a structural break that could
occur in such a long sample, however, by replicating the analysis using only the
post World War II data, he obtained only a more negative effect on house prices
and a smaller (but still negative) effect on output after a positive monetary policy
shock. Finally, Williams examined numerous studies focusing on the monetary
policy-house prices link, and reports that the ratio between the magnitude of the
effect on house prices and the magnitude of the effect on GDP appears to be ro-
bust to different sample countries or period specifications, especially across studies
employing a large sample. Based on those empirical studies, he assessed that to
offset an increase of over 50 percent in house price-to-rent ratios that occurred
in the US between 2001 and 2006 with a monetary policy, real GDP per capita
would have to decline by more than 12 percent, which is much more than the 5.5
percent peak-to-trough drop that the U.S. economy experienced during the Great
Recession. He concludes that there is a costly tradeoff between macroeconomic
and financial stability goals in advanced economies when these goals do not co-
incide - positive interest rate shock reduces real house prices but at the expense
of lower output and inflation (for most of the studies, one percent loss in GDP is
accompanied by a four percent reduction in house prices) - and that this result is
robust to all examined studies.

Before the Great Recession, many authors (e.g. Bernanke & Gertler (2001))
argued that the monetary policy should not react to asset price movements. How-
ever, after the huge swings in asset prices during the crisis and a substantial role
of house price developments preceding the crisis, the debate on the role of asset
prices in the monetary policymaking reopened.

Notarpietro & Siviero (2014) focused on house prices and they took a deeper
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look on the role of financial frictions in determining the optimal policy rule. In
particular, they examined if there exists a monetary policy rule that would respond
also to house price movements among other variables and would be social-welfare-
maximizing. Responsiveness of the monetary policy to house price fluctuations
is modelled using a New Keynesian model with a housing sector and households
exposed to financial frictions in the form of collateral constraints that limit the
maximum amount that households can borrow by the value of existing collateral.
Therefore, a degree of financial frictions is determined by the average loan-to-value
ratio (LTV) and by the share of borrowers in the economy. Moreover, there are
two types of households characterized by a different discount factor: patient and
impatient ones, where the latter type of the households has perpetually binding
collateral constraint. According to the results, welfare-maximizing monetary pol-
icy rule entails a reaction to house prices, whose sign and size noticeably depend
on the degree of financial frictions in the economy. Relatively small proportion
of constrained agents implies a welfare-maximizing rule with central bank moving
the policy rate in the opposite direction than the house prices move, irrespective of
the value of the average loan-to-value ratio. However, when the share of borrowers
in the economy increases, the average LTV becomes important in determining the
sign of the policy rate response to house price fluctuations, and with the average
LTV around 90 % or more, it becomes welfare-maximizing to offset house price
increases by setting a higher policy rate. Therefore, according to the authors,
financial frictions play an important role in the assessments of optimal monetary
policy rules.

Lim & Tsiaplias (2016) build on the criticism of previous studies along the
following lines: first, they highlight the importance of regional heterogeneity in
assessing the link between house prices and monetary policy; they argue that
a substantial amount of potentially useful information may be lost if an aggre-
gate house price indicator is used (e.g., a national house price index) because
regional house price differences might be significant. For example, if housing in-
vestors make their investment decisions according to those regional differences,
then certain regions can be more prone to changes in the interest rate condi-
tions, and those effects can even offset each other. Therefore, an aggregation
may result in misleading conclusions about the impact of interest rate changes on
house prices. Moreover, regional differences in labour demand can be potentially
relevant for the house price dynamics. Second, the authors point out that the
overly assumed linearity between interest rates and house prices needs to be ques-

tioned, and they support this view with the evidence of Himmelberg et al. (2005)
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and Kuttner (2012). To overcome those problems, they constructed a model al-
lowing for potential nonlinearities between a house-price-to-income ratio and the
interest rate and also for regional spillovers. Regional house-price-to-income ra-
tios are constructed using Australian regional house price indices that account
also for changes in the housing mix and its quality. Nonlinearities are examined
using a vector-autoregressive model and logistic transition function. This way,
smoothness and threshold parameters are estimated, from which the presence of
an ‘over-reaction’ point is examined, where the response of house prices to the
interest rate significantly changes, and if this point can be classified as ‘hard’ or
‘soft” depending on whether the change in dynamics upon reaching it is abrupt
or smooth. Estimation revealed that such a ‘transition’ point is present and it
can be considered as being ‘soft’; the transition reflects both how much below the
point interest rates were and how long they stayed below the threshold. Moreover,
regional spillovers are contingent on the interest rates being above or below the
threshold, indicating that housing conditions change from stable to unstable. Be-
low the ‘transition’ point, housing bubble can occur as unstable dynamics create
conditions for housing boom and bust. According to the authors, this has im-
portant implications for monetary policy easing, which, after exceeding a certain
point and for a sufficiently long time, creates a non-negligible risk of housing mar-
ket instability. Finally, the authors document that the results are not robust to
the use of aggregate data (either Australian or the U.S. data), which further sup-
ports their assumption that regional heterogeneity should be taken into account
when examining the house prices-interest rate relationship.

Brito et al. (2016) took a different perspective on the highly-examined rela-
tionship and analytically described global house price dynamics under different
monetary policy scenarios. They used overlapping generations general equilibrium
model to which they included a housing market to be able to consider housing-
wealth effects on aggregate consumption. Their setting assures that aggregate
demand responds to changes in housing wealth and transparently models house
price variations under the presence of rules-based monetary policy (Taylor-rule
reflecting policy). They showed that the policy based on Taylor rule cannot burst
the housing market bubbles that are generated by self-fulfilling upward trajecto-
ries in house prices along with the optimal behaviour of forward-looking agents.
Further, boom (or bust) in house prices is accompanied by the monetary policy
being more (or less) active. They also demonstrates that either the boom or the
bust cannot be mitigated by the monetary authority’s interest-rate feedback rule

that reacts to both inflation and house price developments. Moreover, if such a
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rule would respond more to the house price increases than to the consumer price
inflation, the model solution would be attracted to a liquidity trap, and would
result in the local indeterminacy at the steady-state equilibrium in other than
liquidity trap fixed points.

McDonald & Stokes (2013) represent another paper which aims to shed light
on the causes of the pre-crisis housing bubble, now, however, using the same house
price index - S&P /Case-Shiller index - which we will be using in our analysis. The
authors use a simple VAR approach and perform Granger causality tests to assess
the link between the fluctuations in the fed funds rate and those in the U.S. house
prices, and investigate to what extent monetary policy created the housing bubble.
To this end, they use both 10-city and 20-city monthly aggregate housing price
index and effective federal funds rate from January 1987 to August 2010. Granger
causality tests indicate that there exists a link coming from the fed funds rate to
house price indices, and that this Granger causality is much stronger after 2000.
This corresponds to the view that by keeping the fed funds rate artificially low
during 2001-2004, the Federal Reserve significantly contributed to the creation of
the housing price bubble. Similarly, sharp rise in the fed funds rate in 2004-2006
is argued to be a key driving force of a subsequent house price decline. Findings
also suggest that the relationship between the fed funds rate and house prices
changed after 2000, that, the authors say, could be due to the lack of regulation
or changes in the mortgage-market credit standards.

Smith (2013) uses a DSGE model with housing and financial sector in which
housing market and real economy are connected through a housing-secured debt,
and house price fluctuations are amplified through borrowers and banks’ balance
sheets, implying a self-fortifying credit/liquidity crunch. The main purpose of
Smith’s paper is to evaluate how quantitative easing programmes and equity in-
jections into big banks are successful in reducing the house price troughs. To un-
cover the transmission mechanism of unconventional monetary policies, he divided
banks to two categories: simple and complex banks, and shows how movements in
house prices can significantly affect financing premiums and therefore the produc-
tion. House price movements are then amplified because of an asset redistribution
between simple and complex banks. He found that the effectiveness of unconven-
tional monetary policies is highly dependent on the level of heterogeneity in the
financial sector. Therefore, the channel through which house price disturbances
are amplified within the financial sector is the same as the one through which

unconventional monetary policies are transmitted.



Chapter 3

Data

This chapter provides a description of the data set and data adjustments. Further-
more, lag length selection is discussed and the results from Granger non-causality
tests that were performed according to Toda & Yamamoto (1995) procedure are

presented.

3.1 Data description

We use monthly data for the United States covering the period from January
1999 to April 2017. The sample is limited because the data on one of the key
variables - real private residential investment - are not available before 1999. Due
to the fact that we partly adopt the estimation procedure of Koop & Korobilis
(2013), we construct three housing-oriented TVP-VARs! that differ in the number
of included variables. Based on the number of variables - ‘dimension’ of each
VAR - we estimate small, medium and large model. The first one comprises
three standard macroeconomic variables: real GDP, consumer price index (CPI)?
and a short-term nominal interest rate, plus nominal house prices. The second
model adds real residential investment and mortgage rate to the four previous
variables and as such resembles Rahal (2016) VAR model of housing and at the

same time contains ‘lens of fundamentals’ for forecasting house prices: residential

'In the following we use the term VAR or TVP-VAR interchangeably when we talk about our
model, but it always means a TVP-VAR, i.e., the VAR with time-varying parameters. “VAR”
was sometimes used to save space but we stress that all the estimated models are those with
time-varying coefficients.

2We prefer using CPI over other aggregate price level indicators to measure inflation, because
CPI is available in monthly frequency (as opposed to e.g. GDP deflator) and central banks
usually target CPI inflation.
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Variable Small VAR Medium VAR Large VAR
Real GDP v v v
S&P /Case-Shiller U.S. National HPI v v v
Capacity Utilization: Manufacturing v
Civilian Unemployment Rate v
Real Disposable Personal Income: Per Capita v
Real Personal Consumption Expenditures v
Real Private Residential Fixed Investment v v
CPI: All Ttems v v v
Mortgage Debt Qutstanding v
Housing Starts: Total v
Total Reserves of Depository Institutions v
M2 Money Stock v
10-Year Treasury Constant Maturity Rate v
30-Year Fixed Rate Mortgage Average v v
Spot Crude Oil Price: WTI v
S&P 500 Index v
Producer Price Index for All Commodities v
Real Broad Effective Exchange Rate v
CBOE Volatility Index: VIX v
Wu-Xia Shadow Rate v v v

Table 3.1: Variables employed in all TVP-VAR models. The ordering of variables in a small,

medium or large baseline model matches the ordering in this table.

investment, mortgage rates and house prices (Gattini & Hiebert (2010)). Finally,
large VAR includes all medium-VAR (and therefore small-VAR) variables plus
some additional macroeconomic and financial variables that should capture the
overall economic outlook and help to predict house prices. A complete list of
variables included in each TVP-VAR model is in Table 3.1. Below, we briefly
describe main variables used to assess the link between house prices and monetary

policy.

House prices

Changes in nominal house prices are gauged by S&P/Case-Shiller U.S. National
Home Price Index which is a leading measure of residential real estate prices
in the United States. The index is a composite of nine U.S. Census division
home price indices and it intends to measure changes in the market value of all
existing® single-family houses at the national level. Home price indices for all U.S.
Census divisions are calculated based on the repeat sales methodology, which is

considered to be the most reliable method for assessing house price movements.

3Meaning that newly built houses are excluded from the index calculation.
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This method creates the so called ‘sale pairs’ from (single-family) house price
records by matching the original sale price of a house to its new price when the
same house is resold. The difference between those two prices that constitute one
sale pair thus represent the change in the market value of the same house, while
keeping the quality and size of the house unchanged. Only the data for houses that
have been sold at least twice are taken into account and the sale pairs are further
weighted to alleviate the impact of extreme price changes? on the resulting index.
The index is calculated monthly using the sale pairs for the current month (i.e.,
the month for which we want to calculate the index value) and the two preceding
months that are included to offset delays in data records and to make the sample
size large enough to produce reliable price change averages®. Value of the index
is adjusted to equal 100 in January 2000 and the data are available from January
1975 at e.g. the Federal Reserve Bank of St. Louis database (FRED)S.

Other house price indices for the United States also exist; in empirical re-
search, the house price index (HPI) published by the Federal Housing Finance
Agency (FHFA) is oftentimes used. FHFA computes monthly and quarterly HPI
figures for each U.S. Census division, state and Metropolitan Statistical Area,
and the nationwide HPI. The last one has however a slightly different methodol-
ogy than the S&P/Case-Shiller U.S. National HPI, although it is again based on
repeat sales of all existing single-family properties. Dissimilarities include using
only the data on repeat mortgage transactions for mortgages purchased or secu-
ritized by Fannie Mae” or Freddie Mac® to construct FHFA HPI as opposed to
collecting the data on sales prices from county assessor and recorder offices for the
calculation of S&P/Case-Shiller HPI. Moreover, FHFA national HPI uses data
from 50 U.S. states and the District of Columbia, but the S&P /Case-Shiller HPI
misses information on purchase prices from 13 states”. Still, we decided to use the
S&P /Case-Shiller HPI because it covers a broader range of mortgages including

those that do not satisfy the loan purchasing guidelines determined by Fannie Mae

4Non-market, idiosyncratic price changes can occur, e.g., if the original house owner needs to
sell really quickly it results in an abnormally high price which increases the value of the house
relative to the market.

°For more information about the algorithm used to calculate the index, see S&P Core-
Logic Case-Shiller Home Price Indices methodology available at http://us.spindices.com/
index-family/real-estate/sp-corelogic-case-shiller.

6fred.stlouisfed.org/series/CSUSHPINSA

"The Federal National Mortgage Association

8The Federal Home Loan Mortgage Corporation

9Source: www.fhfa.gov.


http://us.spindices.com/index-family/real-estate/sp-corelogic-case-shiller
http://us.spindices.com/index-family/real-estate/sp-corelogic-case-shiller
fred.stlouisfed.org/series/CSUSHPINSA
www.fhfa.gov
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or Freddie Mac (the so called non-conforming mortgages) and also the sub-prime

mortgages.

Residential investment

Another key housing variable is residential investment, which contains expendi-
tures on construction or purchasing of new dwellings. We used the series on
real private residential fixed investment from FRED), available from Q1 1999 with
quarterly frequency. The composition of residential private fixed investment is
displayed in Figure 3.1, and we can see that single family structures make up the
most important part of it implying that changes in single-family housing stock
as measured by S&P/Case-Shiller HPT are likely to be important for residential
investment. There is one feature of Figure 3.1 that is worth noting: all recessions
were preceded by declines in residential investment into single-family dwellings

and followed by strong increases'’.

This could be partly attributed to the more
favorable conditions that can emerge right after the recession has ended, but the
central bank’s measures designed to offset the recession are still stimulating the
economy. However, it appears interesting that residential investment into single-
family homes (as a percentage of GDP) did not experience similar growth after
the most recent recession as it did after almost all the other recessions. Shleifer
et al. (2015) explains the slow recovery by the ‘investment hangover’ defined as
a situation in which housing capital is overbuilt which leads to lower investment
in such capital. They document an overbuilding of housing capital by 2005 and
argue that it occurred because there was also an investment boom in addition to
house price boom and since this capital is highly durable, it accumulated. Over-
built capital then prevents investment in it because an excess of housing stock
compensates for new investment.

Residential investment is mainly affected by the demand for houses, there-
fore any factors affecting the demand also affect residential investment. Income
is among the most prominent ones making the residential investment to vary
procyclically and be more volatile, while changes in the interest rate are also
important since lower interest rates encourage potential home buyers to take a
mortgage, and thus a monetary policy that affects the interest rate can also in-
fluence residential investment. Of course, house prices are presumably the most

relevant factor that influences the demand and therefore residential investment.

0Except for the recession at the beginning of 1960s after which the increase was not so
significant as compared to other recessions.
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Components of Residential Investment as Percent of GDP
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Figure 3.1: Components of residential private fixed investment in structures, 1959-2017,
each as a percentage of GDP. Shaded areas mark U.S. recessions as defined by the
National Bureau of Economic Research.

Source:www . calculatedriskblog.com/2016/05/q1-2016-gdp-details-on-residential-and.
html

Mortgage rate

Mortgage rates also respond to monetary policy that can alter the path of in-
terest rates and at the same time they substantially affect the housing market
because they determine the overall cost of a mortgage and the amount of regular
payments associated with it. Lower mortgage rates make mortgages more attrac-
tive to borrowers, boosting the demand for houses and subsequently residential
investment and, since housing supply is more rigid, lower rates also boost house
prices. Mortgage rates tend to move in the same direction as long-term interest
rates - they mainly follow the 10-year Treasury bond yield. Lower rates usually
occur during a recession, because investors seek safe investment opportunities and
thus increasingly invest in bonds which pushes bond yields down, and as mortgage
rates respond to the 10-year Treasury bond yield, they go down too. Moreover,
as central bank undertakes actions to stimulate the economy during a recession,

short-term (and also longer-term) rates decline which can further contribute to
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lower mortgage rates. This could partly explain the increase in residential invest-
ment observed after every recession'! because cheaper mortgages can encourage
residential investment through channels discussed above. For mortgage rates,
we use the 30-Year Fixed Rate Mortgage Average series retrieved from FRED
and available weekly from April 1971. However, it should be noted that FRED’s
mortgage rate data come from Freddie Mac and thus include only “first-lien prime
conventional conforming home purchase mortgages with a loan-to-value of 80 per-

cent” 12

Wu-Xia rate

As an indicator of the stance of monetary policy, we use Wu & Xia (2014) shadow
federal funds rate!. In standard macroeconomic VAR literature, the federal funds
rate is usually employed as a measure of monetary policy, because it is the Federal
Reserve’s (“the Fed’s”) main monetary policy instrument. It can be lowered to
stimulate the economy or raised when the economy is growing too fast. However,
in December 2008 the Federal Open Market Committee (FOMC) lowered a target
range for the federal funds rate to nearly zero, and therefore moving it down
further to stimulate the economy was no longer an option and the Fed had to rely
on unconventional monetary policy measures such as large-scale asset purchases
and forward guidance. In this zero-interest-rate environment, commonly referred
to as the Zero Lower Bound (ZLB) period, assessing the impact of monetary
policy has become difficult since we cannot use the federal funds rate to evaluate
the effects of monetary policy. This issue was overcome by employing Wu and
Xia rate that is identical to the effective federal funds rate in the non-ZLB period
(i.e., when the target federal funds rate is at least 25 basis points), but in the ZLB
period (from January 2009 to November 2015) it differs from the effective federal
funds rate because it is not lower bounded by zero, suggesting what the path of
the federal funds rate would be if it could evolve to negative values. In December
2015, the FOMC decided to raise the target range for the federal funds rate to 25
to 50 basis points, therefore from this period on the shadow rate is equivalent to
the effective federal funds rate.

There are also alternative measures of the monetary policy stance during the

1 Gee Figure 3.1.

2yyw.freddiemac. com/pmms/about-pmms . html

13Data are available at sites.google.com/site/jingcynthiawu/home/
wu-xia-shadow-rates.
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Z1B period, for example, Krippner (2013) shadow short rate (SSR)4. This rate is
based on a two-factor shadow/lower-bound term structure model (SLM), whereas
Wu and Xia rate emerges from a three-factor SLM. We decided to use Wu and Xia
rate in a baseline model because it is the most common choice in the literature,
however, we use Krippner’s SSR as a robustness check. The paths of the effective
federal funds rate, Wu and Xia rate and Krippner’s SSR during our sample period
are plotted in Figure 3.2. We can see that Krippner’s SSR is more negative from
the beginning of the ZLB period to the end of 2014 than Wu and Xia rate, but then
it starts to rise sharply, while the lift off in Wu and Xia rate is more gradual. Wu
and Xia rate is identical to the effective federal funds rate in the non-ZLB period,
but Krippner’s SSR is slightly different because Krippner provides SSR estimates
also in non-ZLB period and claims that his SSR is “essentially equal to the policy
interest rate” (Krippner (2014), p. 3) during this period. Henceforth, we will use
the terms Wu and Xia rate (or Krippner’s SSR) and policy rate interchangeably
because the shadow rate serves as a reasonable indicator for what the level of the

policy rate would be if it could go below zero during the ZLB period.

“4Data are available at www.rbnz.govt.nz/research-and-publications/
research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy.


www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy
www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy
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Figure 3.2: Effective federal funds rate and the two shadow rates. Effective federal
funds rate is different from Wu and Xia shadow rate only in the ZLB period from
January 2009 to November 2015.

3.2 Data manipulation

Table A.1 provides us with the description of downloaded data. Several adjust-
ments had to be done to construct the final data set. First, since the variables
that are represented by some index have different base periods (e.g., January 2000
for S&P /Case-Shiller HPI and 2012 for industrial production index), we rescaled
all indices to have 2009 as a base year, so that the average of 2009 observations is
equal to 100 for each index. We chose 2009 as a base year because variables that
appear in real terms are already in 2009 dollars. Moreover, monthly nominal vari-
ables (total reserves of depository institutions, M2 money stock) were deflated by
CPI: All items'® because CPI has also monthly frequency, and quarterly nominal

variables (mortgage debt outstanding) were deflated by GDP deflator'® which is

5Now with base year 2009

16GDP deflator does not appear among variables in Table A.1 because it was not used in the
estimation but only to deflate nominal variables; it was retrieved from FRED and is already
based in 2009.
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available only quarterly. Whenever it was possible, the seasonally adjusted series

were downloaded.

3.2.1 Cubic spline interpolation

Next, we needed to unify the frequency of the data because some series were avail-
able only monthly, some only quarterly, and we have also one that is published
weekly (mortgage rate) and one with daily intervals (market volatility). We de-
cided to convert all series to monthly frequency as it is the most common one
among our data. Daily and weekly series were adjusted by taking monthly aver-
ages and quarterly data were converted into monthly by cubic spline interpolation.
This technique can provide estimates between known data points which should be
smoother and more precise than those obtained using other interpolations. Sup-
pose that we have n+ 1 data points (z;, y;) while it holds that zy < z; < --- < z,,.

We are searching for a function P(z) that connects all data points:

s
Sl(ﬂﬂ), o< <I

P(z) = { Si(z), T ST <4

kSn(m): Tn1 Lz < 1xH

by fitting a cubic polynomial S;(z) = a; + bz + ¢z + d;z?, d; # 0, in each of
the n intervals. Therefore, we are solving for 4n coefficients and we know that it

holds that:

Si(zic1) =yi1 and Si(z;) =y, i=1,...,n
Si(zi) = Siyy (i), i=1,...,n—1 (inner points)

S (z;) = Siyy(x;), i=1,...,n—1 (inner points)

Those are 2n+ (n—1)+ (n—1) = 4n— 2 conditions, so we need additional two
conditions to be able to compute the coeflicients of cubic polynomials. Commonly

used are these two boundary conditions:

Si(zp) = S;,(z,) =0 (clamped boundary conditions), or

S{(xo) = S!(zn) =0 (natural boundary conditions)
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In our application, z; are different quarters and y;, = 0,1,...,n, are values
of a given quarterly variable in those quarters. For a purpose of cubic spline inter-
polation, value in each quarter will represent value of the corresponding variable
in monthly frequency in the first month of that quarter, therefore each z; will
denote the first month of some quarter. We need to determine the remaining two
monthly values for each quarter by calculating a;, b;, ¢; and d; for each polynomial
between the two subsequent quarters, and then evaluating S;(z) for the two re-
maining months z in that quarter. Those calculations were done in MATLABusing

spline function.

3.2.2 Transformation of variables

Since we are working with Bayesian models, (non-)stationarity of variables is not
an issue. However, in the model of Koop & Korobilis (2013) which we use, (at
least approximate) stationarity and standardization of variables is required in
order to produce positive-definite covariance matrices. Positive definiteness of a
matrix is necessary for computing its Cholesky decomposition that is needed for
drawing from a normal distribution with this covariance matrix and for calculating
impulse responses using a recursive ordering of variables'”. To transform the data,
we first determine the order of integration of all variables to assess which of them
need to be differenced. To this end, two complementary tests were employed; the
Augmented Dickey—Fuller test (ADF test) with the null hypothesis that a series
contains a unit root and Kwiatkowski—Phillips—-Schmidt—Shin test (KPSS test) for
the null of stationarity. Brief description of both tests follows.

ADF test estimates a regression
Ay =71y + 0+t +aAyi1 + -+ kAy—k + € (3.1)

to test the hypothesis that 7 = 0 (unit root) against the alternative that
7 < 0 (stationarity). Number of lags k can be determined by using a procedure
of Campbell & Perron (1991)!®. We can exclude intercept or a deterministic time
trend if we believe that d or v are equal to zero. Usually, a drift term is included
because it would be highly restrictive to test with zero intercept, as Davidson &

MacKinnon (1993) noted, and we can always test for the joint hypothesis that

7 This is described in Chapter 4.
18We used the number of lags determined by R for unit root tests according to the length of
the series; the number of lags was chosen to be 6.
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7 =0 and § = 0 (unit root without drift). The test statistic for the null 7 =0 is
the usual t-statistic computed by dividing the estimated 7 by its standard error,
however, critical values of the standard t-distribution cannot be used because the
series is non-stationary under the null. Correct critical values were simulated by
Dickey & Fuller (1979) and they are available in any software that conducts the
test.

KPSS test for the null hypothesis of level stationarity uses the equation

y‘ﬁ = T‘.‘: + ft (3.2)

where r; = r;—1 + u; is a random walk with fixed initial value and ¢; a stationary
error, while u; is assumed to be normal i.i.d. with zero mean and variance o2.
Null hypothesis is that ¢2 = 0'? which indicates stationarity. If we want to test
for a trend stationarity, we just include the term 7t into the regression 3.2. The
statistic for the test is LM statistic that is computed using the formula that can
be found in many time series textbooks, e.g., Ko¢enda & Cerny (2014).

Table B.1 shows the results of ADF and KPSS tests for variables in origi-
nal levels. For variables that are clearly growing or declining?®, we included a
deterministic trend component ~t into the regressions 3.1 and 3.2 to consider a
potential trend stationarity of the series, and for those that apparently do not ex-
hibit any long-run trend (e.g., market volatility), we estimated regressions without
a deterministic trend. This is in line with Elder & Kennedy (2001) and Kocéenda
& Cerny (2014) who suggest to choose a regression with or without trend based
on a visual inspection of data and economic intuition and employ trend only if
the series is steadily growing or declining over time. There are also series whose
growth status is unknown and cannot easily be inferred from graphing the series
against time; for those series, unit-root testing was performed by estimating both
regressions?!.

According to Table B.1, most series in levels appear to be non-stationary??, as

19The alternative is, of course, that o2 > 0.

20By visual inspection of data

21There are two exceptions from the above procedure - in case of 10-year treasury constant
maturity rate and 30-year fixed rate mortgage average, there is seemingly a downward trend,
but we test for stationarity using both trend and non-trend regressions because we believe that
the downward trend is only because of the relatively short sample period used, and therefore
it should not appear in the long-run. However, this has no influence on the results since both
tests conclude that both variables are non-stationary.

22Results were qualitatively identical if we took the logarithm of series that are steadily
growing over time, e.g., real GDP, to linearize the trend.
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we cannot reject the null of a unit root by ADF test at the 5% significance level
(which is usually taken as a threshold), and at the same time we can strongly
reject the null of level (or trend) stationarity by KPSS test. Those series were
transformed by taking log-differences except for the civilian unemployment rate
and the interest rates® which, although they are clearly non-stationary, remain in
levels as in Bernanke et al. (2004) or Eickmeier & Hofmann (2010)?*. There are
also three series for which the ADF and KPSS tests conflict: capacity utilization,
real private residential fixed investment and industrial production index. For
capacity utilization, ADF test strongly rejects the null of a unit root suggesting a
stationarity of the series, but KPSS test rejects level stationarity at the 5% level.
Following Bernanke et al. (2004) and Koop & Korobilis (2013), we decided to use
this series in levels. Besides the consistency with the literature, we can argue that
because the ADF test has low power, rejecting the null can be taken as a severe
evidence against the unit root, and therefore we can make an assumption that the
series is stationary. In case of an industrial production index, we can reject the
null of a unit root at the 5% level by ADF test, however KPSS test strongly rejects
trend stationarity®®. Despite this, we decided to take log-differences because it
makes the industrial production index stationary, as confirmed by both ADF and
KPSS tests, and suggests that the original series in levels has a stochastic trend.
The last conflicting case includes residential investment that was steadily growing
from the beginning of our sample (1999), but then it experienced a large decline
following a burst of the housing bubble, and hence we cannot consider it as a
trending variable during the period covered by the data. Following the procedure
of Elder & Kennedy (2001) for variables whose growth status is unknown, we first
include a deterministic trend to regressions 3.1 and 3.2. The result is that although
the ADF test can reject the null of a unit root at the 5% level, KPSS test strongly
rejects trend stationarity. However, if we believed that residential investment is
trend-stationary, as suggested by ADF test and detrended it, we would again get a
mixed evidence from both stationarity tests. Taking log-differences does not help
either, but if we further difference the already log-differenced series, stationarity is
eventually induces, so residential investment appears to be integrated of order 2.

Despite this fact, we decided to avoid those rather extreme transformations due

2310-Year Treasury Constant Maturity, 30-Year Fixed Rate Mortgage Average, Wu-Xia
Shadow Rate and Krippner’s SSR.

24 Another reason for using the interest rates in levels is a better interpretation of an interest
rate shock.

25This variable is clearly growing.
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to the difficult interpretation of the results and use the series in levels for which
we obtained the evidence of stationarity at least from ADF test?®. Moreover,
transforming all variables so that the resulting series is stationary based on both
ADF and KPSS tests would require taking second log-differences of the S&P /Case-
Shiller house price index because, as will become clear in section 3.3.2, this variable
is apparently 1(2). Such transformation would make the interpretation of impulse
responses of this key variable cumbersome, which is why we decided to use first
differences at most when transforming the variables. Transformation codes for all
variables used in the empirical part can be found in Table A.1.

Apart from the transformations, we followed Koop & Korobilis (2013) and
standardized each variable by subtracting off its mean and dividing it by its stan-
dard deviation®"2®. Table B.2 shows the results of ADF and KPSS tests applied
to the transformed and standardized variables. For most of the variables, both
tests now indicate stationarity. However, for house price indices, civilian unem-
ployment rate, residential investment and interest rates there is still an evidence
of a unit root. Therefore, we set the prior mean?® such that for those variables the
coefficients on their first own lags are 1 to express the prior belief that they follow
a random walk. There are also three variables for which the tests contradict -
capacity utilization, real personal consumption expenditures and mortgage debt.
For those variables, the coefficients on the first own lags are set to 0.95 to reflect
a high degree of persistence while still acknowledging the stationarity indicated
by ADF test.

Table 3.2 presents descriptive statistics of transformed and standardized vari-
ables. We can see that all variables that are still non-stationary have notably
different means from zero than those that were confirmed to be stationary. More-
over, their standard deviations are higher as compared to stationary variables. The
highest standard deviation can be observed for residential investment because it

remained in levels and was only standardized. Almost all variables appear to be

26Whether or not the resulting series is stationary is not of immense importance for the
estimation because we can always adjust the prior mean of VAR coefficients accordingly to
equal 1 for the first own lags of non-stationary variables. However, the transformations help
in producing reasonable covariance matrices in terms of positive definiteness. Also, Koop &
Korobilis (2013) transformed the series to be only “approximately stationary” (Koop & Korobilis
(2013), p.30).

2TThis is usually done in factor augmented vector autoregressive models, see e.g., Eickmeier
& Hofmann (2010).

Z8Following Koop & Korobilis (2013), means and standard deviations were computed using a
training sample of the initial 40 observations.

29Prior mean is described in detail in Chapter 4.
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non-normal as the null hypothesis of normality can be rejected by Shapiro-Wilk
test even at the 1% significance level. However, there exist few exceptions to this:
for housing starts, we cannot reject the null of normality at any possible signif-
icance level, and for Macroeconomic Advisers’ real GDP index®”, we can reject
the null of normality at the 10% level (p-value = 0.061) but we cannot reject it
at the 5% level, therefore this variable could be considered normally distributed.
Interestingly, transformed and standardized monthly estimates of real GDP are
closer to normality than (similarly transformed and standardized) quarterly GDP
which was, however, converted to monthly figures using a cubic spline interpo-
lation before it was transformed and standardized. Except for this, values of all
statistics are close to one another for the two GDP measures. Finally, our key
variables for assessing the stance of monetary policy, Wu and Xia shadow rate and
Krippner’s shadow short rate, are also comparable, even though Krippner’s SSR
has a larger minimum which is also apparent from Figure 3.2 and caused probably
by differences in shadow /lower-bound term structure models used to generate the

shadow rates.

30Monthly estimates of real GDP.
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Shapiro-Wilk

Variable mean std.dev min max median . .

statistics
Real GDP —0.192 0.944 —4.263  2.306  —0.085 0.919%**
S&P /Case-Shiller U.S. National HPI —2.140 4412  —16.009  6.249 —0.846 0.919%**
Capacity Utilization: Manufacturing —0.499 0.992 —3.780 1.020  —0.397 0.916™**
Civilian Unemployment Rate 2.694 2.923 —1.082 9.195 1.902 0.878™**
Real Disposable Personal Income: Per Capita —0.150 1.382 —11.327  7.483 —0.090 0.647*
Real Personal Consumption Expenditures —0.208 0.709 —2.626  4.020 —0.223 0.937%+*
Real Private Residential Fixed Investment —3.641 11.495  —21.379 18.406 —3.722 0.953%**
CPI: All Items —0.152 1.369  —9.072  5.243  —0.117 0.891***
Mortgage Debt Outstanding —0.509 2540  —13.400 11.408 —0.545 0.886™**
Housing Starts: Total 0.010 1.811 —4.824  5.096 —0.003 0.997
Total Reserves of Depository Institutions 0.272 1.486 —3.128  14.382 0.113 0.439™**
M2 Money Stock —0.024 1.074 —2.533 5711  —0.125 0.908™**
10-Year Treasury Constant Maturity Rate —3.296 2.367 —7.257  2.067 —3.065 0.962%**
30-Year Fixed Rate Mortgage Average —3.620 2.478 —7.513  1.982 —3.167 0.955%**
Spot Crude Oil Price: WTI —0.142 1.034 —4.124  2.266  —0.018 0.964™**
S&P 500 Index 0.152 0.912 —3.872  2.277 0.264 0.968™**
Producer Price Index for All Commodities 0.052 1.249 —5.891 2.913 0.154 0.935%%*
Real Broad Effective Exchange Rate —0.360 1.500 —4.932 6487 —0.374 0.983™**
CBOE Volatility Index: VIX 0.039 1.198 —2.800  5.481 —0.053 0.938%**
Wu-Xia Shadow Rate —2.120 1.737 —4.997  1.195 —2.399 0.9417%%*
Industrial Production Index®¢ 0.014 1.391 —9.337  2.989 0.140 0.865™**
Macroeconomic Advisers’ Real GDP Index®¢  —0.091 0.905 —3.171 2.709 0.022 0.988*
FHFA House Price IndexR?¢ —1.193 2,773  —11.950 3.295 —0.311 0.870%**
Krippner’s SSRRC —2.191 1.899 —6.000 1.294 —2.424 0.967***
N =220

Table 3.2: Descriptive statistics for all variables used in the empirical part. Superscript RC denotes variables used
for a robustness check. The last column reports test statistics from Shapiro-Wilk test for normality (null hypothesis
is that the data come from a normally distributed population). The asterisks indicate significance at the 10% (*),

5% (**) and 1% (***) levels.
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3.3 Preliminary analysis

3.3.1 Lag order selection

Frequentists usually choose VAR order based on information criteria including
Akaike, Schwarz and Hannan-Quinn information criterion, final prediction error,
or based on the sequential likelihood ratio and Lagrange multiplier tests. However,
those lag order selection criteria mostly do not agree on the optimal lag number,
so it is important to decide which criterion should be trusted based on a partic-
ular application and purpose of VAR. In this regard, Ventzislav & Kilian (2005)
showed that for constructing the most accurate structural and semi-structural
impulse response estimates, Akaike information criterion (AIC) for monthly data
and Hannan-Quinn (HQC) criterion for quarterly data3! is the most preferred
criterion because it yields the lowest ratio of mean-squared error (MSE) of the
impulse response estimates to the MSE obtained by using the true lag order.
Bayesians, on the other hand, typically avoid using information criteria and
select the lag length based on data frequency®? or their prior belief about the
actual ongoings in the system. The selected lag length is conservative and rather
high when the frequency of the data is higher or the variables are persistent?3.
This would usually not be possible in frequentist framework due to the issue of
overparameterization. Bayesians deal with overparameterization by imposing a
structure on the prior variance of lagged coefficients such that the coefficients are
more tightly centered around zero®* at higher lags. This actually makes sense
because for most economic time series, recent observations convey more informa-
tion about their future values than the historical ones. Considering the Bayesian
approach and the periodicity of our data, we should employ 12 lags and select

the prior with diminishing importance of VAR coefficients as the lag length in-

31With the exception of small samples (up to 120 quarters) for which Schwarz information
criterion (SIC) should be used.

32F.g., 4 lags for quarterly data and 12 lags for monthly data.

33For example, Leeper (1997) used 18 lags when estimating a Bayesian VAR with monthly
data.

34Tf the prior mean of the coefficient is zero, ‘tightly centered’ means that its prior variance
is lower.
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creases. However, since we are using a TVP-VAR model, we would have to draw
20-(1412-20) = 4820 coefficients for the large VAR for each ¢, ¢t = 1,..., T, which
would result in an immense computational burden. Therefore, we opted for 4 lags
which is also the optimal lag length selected by SIC for the medium VAR?*3¢. As
demonstrated in Schwarz (1978), SIC can be interpreted as a large-sample version
of Bayes procedures that choose a model based on the posterior model proba-
bilities?”, so that our selection is compatible with Bayesian framework. Banbura
et al. (2010) also utilized SIC in the context of large Bayesian VARs with monthly
frequency and showed that the specification with the lag order selected by SIC

performs well in their forecasting exercises.

3.3.2 Granger causality

To gain more insight into the underlying process, Granger (non-)causality®® tests
were performed. This concept of causality was developed by Granger (1969) and
centers around the idea that a cause has to come prior to its effect. Therefore, if
variable x affects variable y, past values of x should help in predicting y. Formally,

x is said to Granger-cause y if in a model
Y = o+ 1+ Yy + B + -+ By

we can reject®® the null hypothesis that 3; = 0,7 = 1,...,¢. Rejecting the null
implies that the past values of = contain useful information about the current
value of y, beyond and above the information that is already included in the past
values of y.

In testing for Granger non-causality, we proceed according to Toda & Ya-
mamoto (1995) procedure and its step-by-step explanation provided by Giles
(2011). Toda & Yamamoto (1995) showed how to estimate VAR in levels and
test general restrictions on its parameters even if the variables in VAR are in-
tegrated or cointegrated of any order, and therefore developed a way of testing

for Granger non-causality with non-stationary data. Stationarity is required to

35Selection criteria employed with the upper bound of 12 lags.

36For the small VAR, SIC suggests 3 lags and for the large VAR it suggests using only 1 lag,
although in case of the large VAR, SIC could not be computed for higher lags than 10 due to
the overparameterization.

37Given a linear model with i.i.d. observations.

38We use a term ‘non-causality’ because the null hypothesis is that one variable does not
Granger-cause the other.

39Usually, the 5% significance level is taken as a threshold.
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produce test statistics that converge to a convenient limiting distribution; how-
ever, if some of the variables are non-stationary, standard asymptotic theory is
not valid and Wald test statistic computed to assess the null hypothesis above
would not have the asymptotic chi-square distribution under the null (Liitkepohl
(2007)). We decided to use this procedure because even after we transformed the
data, there are some apparently non-stationary variables’ that would make the
test statistic used to evaluate the null of Granger non-causality not to follow any
appropriate distribution, even asymptotically.

We choose to examine Granger causality among variables of the medium VAR
that includes the variables*' that are fundamental for predicting house prices
(Gattini & Hiebert (2010)). The most important thing is to use the variables in
(log-)levels, i.e., not to difference the data even if they are non-stationary. There-
fore, we employ log-levels of real GDP, house price index, residential investment
and CPI, and levels of mortgage and Wu and Xia rates.

Following Toda & Yamamoto (1995) and Giles (2011), our testing for Granger

non-causality then proceeds as follows:

1. Determine the maximum order of integration among variables.

Below we discuss the order of integration of each medium-VAR variable
separately. Results from ADF and KPSS tests to which we below refer were

already assessed in Table B.1 and in the corresponding discussion.

Real GDP Clearly I(1); ADF and KPSS tests both indicate that it is non-
stationary in log-levels, but it becomes stationary when we first-difference
it.

S&P /Case-Shiller house price index Appears to be I(2), because it exhibits
non-stationary behavior in log-levels and even in log-differences as both
ADF and KPSS tests agree, but when we difference it twice, it finally

becomes stationary according to the tests.

Residential investment Seems to be I(2), even though the ADF test for a
series in log-levels rejects the null of a unit root at the 5% level, because
KPSS strongly rejects stationarity. First differences are not stationary
either, however, taking second log-differences finally results in a series

that is marked stationary by both tests.

40T his is of course caused because we refused to use ‘extreme’ transformations, like e.g. double-
differencing the interest rates.
41List of variables included in the medium VAR can be found in Table 3.1.
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CPI Clearly I(1) and the reasoning is similar as in the case of real GDP.
Mortgage average Also I(1) as ADF and KPSS tests both conclude that it

is non-stationary in levels and stationary in first differences.

Wu and Xia rate Clearly non-stationary in levels, however, first-differencing
induces a conflict in both tests: ADF test cannot reject the null of
a unit root at the 5% level, while KPSS concludes that the series is
level stationary. We could argue that because the power of ADF test
is presumably low and its test statistic is close to the 5% critical value
(test statistic is -2.8573 and 5% critical value is -2.88), rejection of the
unit root null by ADF test could be assumed as well and the first-
differenced series could be called stationary, resulting in Wu and Xia
rate being integrated of order 1. Fortunately, it does not make any
difference whether this series is actually I(1) or I(2)*? since we are in-
terested only in the mazimum order of integration among the variables,
which is indeed 2 because of the S&P /Case-Shiller house price index.

To summarize, we found out that the maximum order of integration among

our variables is 2. We denote it by m, therefore, m = 2.

2. Set up the VAR in (log-)levels and determine the optimal lag length p using

information criteria.

Our VAR contains the following variables: (y, hpi, rinv, cpi, ma, ir), where
y, hpi, rinv, cpi are the log-levels of real GDP, house price index, residential
investment and CPI, respectively, and ma and ir are the levels of mortgage
average and Wu-Xia rate. We also included an intercept to each equation.
As Giles (2011) emphasizes it is crucial to set up the VAR in (log-)levels and
not to difference any variables, regardless of what we found in the previous

step.

Next, we need to determine the optimal lag length of our VAR in (log-)levels.
For this purpose, information criteria (AIC, SIC, HQC) were computed for
the lags up to 12. The final lag length was chosen to be 4 according to
SIC which is also favored by Giles (2011). However, when we check the
residuals for autocorrelation using the Ljung-Box Modified Portmanteau
test for multivariate series, we find that there is no autocorrelation from
p = 7 onwards, so we redefined the VAR lag length to p = 7. This VAR is

42Second differences are marked stationary by both tests.
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also dynamically stable as all the eigenvalues of the companion coefficient

matrix are inside the unit circle.

3. Estimate the VAR with selected number of lags p and add m additional lags
of each variable into each equation. Then test for Granger non-causality

using only the first p lags.
We estimate VAR with variables (y, hpi, rinv, cpi, ma, ir) and 9 lags,

because p = 7 is assumed to be the optimal lag length and m = 2 is the
maximum order of integration among variables which was determined in
step 1. Now we test for Granger non-causality as follows. For each pair of
variables X and Y in the VAR, X # Y, we test that the first 7 lags of X
in the equation for Y are jointly equal to zero using Wald test. The null
hypothesis is that X does not Granger cause Y. The coefficients for the
extra m lags are not included in the test because they are there only to
fix up the asymptotics (Giles (2011)). Under the null hypothesis, the test
statistic is asymptotically chi-square distributed. Rejection of the null at a
sufficiently low significance level (usually 5%) can be considered as a firm

evidence of Granger causality from X to Y.

Table 3.3 reveals the results of all pairwise Granger non-causality tests. We can
see that there is a really strong evidence that real GDP Granger-causes all of the
remaining variables, as the null hypothesis that the lagged coefficients of real GDP
are jointly zero can be rejected in all equations at any possible significance level.
The same situation occurs with residential investment which is not so surprising,
given that it is a part of GDP. Developments in house prices Granger-cause real
GDP and residential investment, as the test suggests. Moreover, past values of
CPI help to predict the policy rate?®. This also agrees with economic intuition, as
monetary policy is believed to respond to CPI inflation and GDP that are both
showed to Granger-cause the policy rate. Interestingly, mortgage average does not
Granger-cause house prices as the null could not be rejected at the 5% level, even
though there is a strong evidence that it Granger-causes residential investment.
Importantly for our analysis, the null hypothesis that Wu and Xia rate does not
Granger-cause house prices can be rejected even at the 1% level, implying that
the monetary policy actions may affect the developments in house prices, even
though we cannot assess the magnitude or the direction of such an effect from

Granger causality analysis. For this, we have to use other tools, for example

43Measured by Wu and Xia rate.
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y — hpi y — rinv y — cpi y — ma y —ir
0.0000 0.0000 0.0000 0.0000 0.0000
hpi -y | hpi— rinv hpi — cpi hpi — ma hpi — ir
0.0186 0.0007 0.0824 0.3766 0.4243
rinv -y | rinv— hpi | rinv — cpi | rinv — ma | rinv — ir
0.0000 0.0000 0.0000 0.0000 0.0000
cpi — y cpi — hpi cpi — rinv cpi — ma cpi —ir
0.3013 0.4914 0.7639 0.3680 0.0002
ma —y ma — hpi ma — rinv ma — cpi ma — ir
0.0117 0.2141 0.0000 0.3251 0.0021
ir =y ir — hpi ir — rinv ir = cpi ir - ma
0.2058 0.0032 0.0021 0.1896 0.2329

Table 3.3: P-values from Granger non-causality tests. Variables: y - logarithm of real
GDP, hpi - logarithm of house prices, rinv - logarithm of residential investment, cpi
- logarithm of CPI, ma - mortgage rate in levels and ir - Wu-Xia rate in levels. Null
hypothesis in each X — Y test is that X does not Granger-cause Y. Significant (at

least at 5%) tests and their p-values are in bold.

the impulse response functions. However, the link between the policy rate and

house prices is not bi-directional (“feedback”) because the null that house prices

do not Granger-cause the policy rate could not be rejected at any reasonable

significance level.

A significant bi-directional Granger causality can be found

between house prices and residential investment and between mortgage rates and

residential investment. Finally, house prices are also revealed as an important

predictor for real GDP. However, results from Granger non-causality tests should

be treated with caution because they are dependent on which variables appear in

the VAR, seasonal adjustment of the data, presence of measurement errors, etc.

Therefore, deriving any definite conclusions from those tests would be misleading.



Chapter 4
Methodology

In this chapter, we describe how the TVP-VAR model with stochastic volatility
was estimated and how we extracted impulse responses and calculated forecast

error variance decompositions.

4.1 Brief description of the model

The algorithm for estimating large TVP-VAR with stochastic volatility was de-
veloped by Koop & Korobilis (2013), and we follow their notation below. The

model is the state-space model of the form:

Yo = Zibr + & (4.1)

Bt = Br—1 + we (4.2)

where ¢ isi.i.d. N(0, ;) and u; isi.i.d. N'(0, Q;). € and u, are assumed to be
independent of one another for all s and . Equation 4.1 is called the observation
equation because it links the unobserved states §; to y;, that is, fort =1,...,T,
M x 1 vector of observations on M time series variables. Equation 4.2 is the
transition equation, which specifies the law of motion for the unobserved state

variable. The matrix that links the unobserved states to y;, t =1,...,T, is

zz 0 ... 0
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M x K matrix with K = M(1+ pM) and z; being a vector! of an intercept
and p lags of each of the M variables. 5;,t =1,...,T, is therefore a K x 1 vector
of time-varying VAR coefficients and we assume that those coefficients evolve as
random walks.

TVP-VARs with stochastic volatility can be estimated by combining Gibbs
sampling and Metropolis Hastings (MH) algorithm, whereas the latter is used
for drawing stochastic volatilities from their posterior distribution. Briefly, the
algorithm works as follows (for a detailed description, see Appendix ). First, the
researcher needs to select the specification for ¥; and @);, the prior for the initial
conditions (prior for By and for the free elements of ¥ and @)y, which depends on
the nature of stochastic volatility assumed by the researcher) and the prior for any
remaining parameters of the model (e.g., if there is a drift term in the transition
equation). Next, By, t =1,...,T, is sampled from its conditional posterior, given
Y, Q¢ and the remaining parameters of the model. In this step, usually a multi-
move sampler proposed by Carter & Kohn (1994) is used. Conditional on f;, Q;
and the remaining parameters of the model, ¥;, t =1,...,T, is sampled from its
conditional posterior. Then, conditional on S, ¥; and the remaining parameters
of the model, Q;, t = 1,...,T, is sampled from its conditional posterior. Sampling
Y and (); involves Metropolis Hastings algorithm if a non-linear law of motion
for stochastic volatilities is assumed. Finally, conditional on 5;, Y; and @), the
remaining parameters of the model are sampled from their conditional posteriors.

However, the above approach is very time-demanding, especially for large
models, for which the computational burden can easily become insurmountable.
Therefore, Koop & Korobilis (2013) suggested to replace ¥; and Q; by estimates
and then draw S from its posterior distribution, which in case of Carter and Kohn
algorithm, amounts to drawing repeatedly from normal distributions with known
mean and variance to get one draw of 5, t = 1,...,T. Replacing ¥; and Q)
by estimates is achieved by using an Exponentially Weighted Moving Average
(EWMA) estimator for ¥ and forgetting factors for @), both of which are ex-
plained below during the description of steps in which they enter the algorithm.
This avoids using MCMC methods, and thus considerably reduces the computa-
tional burden. In the following we describe how to estimate 8 and select the best
model in each time from those of different prior shrinkage parameters and different

dimensions. The model features dynamic dimension selection and time-varying

coefficients, therefore Koop & Korobilis (2013) call it TVP-VAR-DDS.

1By vector, we always refer to the column vector; therefore z] is a row vector.
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4.2 Estimation of TVP-VAR-DDS

In this section we describe how we adjusted the algorithm of Koop & Korobilis
(2013) to be able to draw §;, t = 1,...,T, from its posterior distribution, and
subsequently to perform impulse response analysis and provide forecast error vari-
ance decompositions. We had to adjust the algorithm, because Koop and Korobilis
focused on iterated forecasts of their model and its forecast performance as com-
pared to other models, but our aim is not on forecasting. Individual steps of our

algorithm are discussed below.

4.2.1 Kalman Filter with Forgetting Factors

Now consider we have one TVP-VAR model of the form 4.1 and 4.2 with the
prior for the initial condition By ~ N (b, Py), where the form of by and Py will be
specified below, and the initial condition ¥ on ;. We do not need to impose the
initial condition on ();, because the algorithm uses forgetting factors to remove
the need for estimating @)y, as it soon becomes clear. Kalman filter is a recursive
algorithm that provides the estimate of the state variable and its variance for each
time period, given information up to that time period. The estimate of the state
variable at time ¢ given information up to time ¢ is denoted 3;; and its variance Fy.
To calculate those, the algorithm needs to be supplied with the initial conditions
Bojo and Py and with values of all the parameters of the state-space model, which

in our case reduce to ¥; and Q;, t =1,...,T.

Initial conditions [y, and Py

Bojo is set equal to the prior mean of 3y, by, while Py is set equal to its prior
variance, Fy. Koop & Korobilis (2013) stressed the importance of choosing the
prior for 3y in the context of TVP-VARs, because in those models, the number
of parameters is much higher than the number of observations, and therefore
obtaining reasonable results hinges upon having an adequate prior. Therefore,
they employed a Normal prior for 5y that is similar to the Minnesota prior (see
e.g., Doan et al. (1983)), and, if there is no time variation in the parameters, this
prior will be the same as the Minnesota prior in a VAR with constant coefficients.
We adopted similar prior for 5y, but we slightly changed its structure to make it
compatible with our application. In this prior, prior mean E(f,) should be 0 for
variables that are stationary and 1 for those that follow a random walk. Koop &
Korobilis (2013) claim that they transformed all variables to stationarity, so they

set E(fBy) = 0. We did not want to transform some variables by taking second



4. Methodology 38

log-differences even if they were obviously 1(2) or to transform the interest rates
that were mainly I(1) due to the easier interpretation of results, so we still have
some variables that can be shown to follow a random walk (see Table after the
transformation. For those variables, we set F(f;) to 1 for coefficients on their
first own lags so as to shrink towards a random walk, and 0 otherwise. Namely,
variables that clearly follow a random walk even after the transformation are?:
S&P /Case-Shiller U.S. National Home Price Index, Civilian Unemployment Rate,
Real Private Residential Fixed Investment, 10-Year Treasury Constant Maturity
Rate, 30-Year Fixed Rate Mortgage Average and Wu-Xia Shadow Rate. There
are also three variables with mixed evidence from the two complementary tests
for stationarity, specifically Capacity Utilization: Manufacturing, Real Personal
Consumption Expenditures and Mortgage Debt Outstanding. For those variables,
ADF test rejects the null of non-stationarity at least at the 5% level, but KPSS
test rejects the null of stationarity also at least at the 5% level. However, ADF test
has low power, so rejection of the null can be considered as a fairly strong evidence
of stationarity. Therefore, we set prior mean on first own lags for those variables
equal to 0.95 so as to reflect a high degree of persistency which may produce
conflicting test results, but still to express the belief that the series is stationary.
It should also be noted that these are only our prior beliefs; a-posteriori, each
series may follow a different process if there is enough information in the data to
confirm it.

Minnesota priors typically assume that the prior covariance matrix is diago-
nal and Koop & Korobilis (2013) are no exception to this; therefore, our prior
covariance matrix for f; will be diagonal. Let us denote var(f,) = F, and

Poi,t = 1,..., K, its diagonal elements. Then,

—

X for coefficients on lag [ =1,...,
Poi = { ’ s P (4.3)

a for intercepts

This is a Minnesota-type prior which has one key hyperparameter - ~ - that
represents the tightness on the variance of the VAR coefficients on different lags.
The lower the v, the more centered are the VAR coefficients around their prior
means because their variance is lower. This hyperparameter can also have the

interpretation of the shrinkage hyperparameter; the lower the 7, the higher is

2Variables used only for a robustness check with the same property are: FHFA House Price
Index and Krippner’s SSR. For those variables, we also set the prior mean on their first own lag
to 1.
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the degree of shrinkage in which the VAR coefficients shrink towards their prior
means. Large VARs and especially TVP-VARs usually require a high degree of
shrinkage to be able to produce reasonable results due to the otherwise present
overparameterization, and Minnesota-type priors can greatly reduce the overpa-
rameterization worries. Variance of the coefficients also decay with the lag to
express the belief that more distant lags are less informative than recent lags, and
therefore they are shrunk more to zero. The standard Minnesota prior has two
shrinkage hyperparameters®: one for the coefficients on own lags and the other for
coefficients on the lags of other variables, while it typically holds that the first one
is higher than the latter one to reflect the fact that own lags are more important
than the lags of other variables. Koop & Korobilis (2013) used only one shrinkage
hyperparameter to make the computation easier and we follow their practice and
set prior covariance matrix to 4.3. Prior means of intercepts are assumed to be
noninformative, and thus we set a to 10. The selection of v will be discussed in
section 4.2.2 after we describe the particular steps in the Kalman filtering proce-
dure. However, first we focus on the estimation of »; and (); which are needed
for the Kalman filter.

Estimating Y}
To estimate Y, Koop & Korobilis (2013) used an Exponentially Weighted
Moving Average (EWMA) estimator, which takes a form:

S = k51 + (1 — K)&e (4.4)

where € = vy — Z;f:—1 is prediction error produced by the Kalman filter.
This estimator requires to choose the decay factor k, for which we followed the
suggestion in Morgan & Reuters (1996) and set k = 0.96, as Koop & Korobilis
(2013) did. We also need the initial condition, Yy, that is established using the
sample covariance matrix of y”, where 7 is the size of the training sample which

we set to the first 40 observations.

Estimating Q)
Transition error covariance matrix (); is needed in Kalman filter recursions
only for estimating the variance of the state variable at time ¢ using information

up to time t — 1:

Pyt1 =P a1+ Qs (4.5)

3Three, if we consider also exogenous variables.
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Therefore, if we follow the suggestion of Koop & Korobilis (2013) and replace
this by

1
A

we do not have to estimate or simulate ;. A is known as a forgetting factor and

P£|t—1 — P£—1|t—l (4'6)

it holds that 0 < A < 1. Forgetting factors can reduce the computational burden
associated with estimating TVP-VARs or other models with many parameters
and, in the context of TVP-VARs, they were utilized by other authors as well
(e.g., Dangl & Halling (2011))*. However, they serve only as an approximation to
the exact MCMC methods, which in our case would involve drawing repeatedly
Bt, ¢ and ; from their conditional posteriors, but would not be computationally
feasible for many-variable TVP-VAR that we employ. It follows from 4.5 and 4.6
that Q; = ()\_1 - 1)P£—1|t—1-

As noted by Koop & Korobilis (2013), observations j periods before time ¢ get
weight A in the filtered estimate of 3; if we use forgetting factor as in equation
4.6. In many empirical applications using forgetting factors, A is set to a number
slightly lower than one, e.g., 0.99. This implies, for quarterly data as are those
used by Koop & Korobilis (2013), that observations five years (20 quarters) in the
past get approximately 80% (0.99%°) of the last observations’ weight. According to
Koop & Korobilis (2013), this implies a fairly stable model with gradual coefficient
change and ensures that A has properties of the Cogley & Sargent (2005) “business
as usual” prior. Therefore, with our monthly data, we would need to set A to
0.9963 to achieve approximately 80% relative weight for observations five years in
the past if we were to use a fixed A. However, Koop & Korobilis (2013) decided
to estimate A in a time-varying way and for this they used the updating equation

of Park et al. (1991):

At = Amin + (1 — Apin) L (4.7)

where fy = —NINT(€,_,¢_,) and & = y,—Z; 31— is again the prediction error
produced by the Kalman filter. Function NINT returns the nearest integer; half-
integers are rounded to the nearest higher integer in our setting. We choose values
of Anin and L to match those of Koop & Korobilis (2013), therefore A,;;, = 0.96
and L = 1.1. This )\; is used instead of A in equation 4.6 which differentiates this

4For an in-depth discussion of forgetting factors see Jazwinski (1970) or Raftery et al. (2010).
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modeling approach to forgetting factors from most of the existing literature that
simply sets A to a constant (Koop & Korobilis (2013)).
Now when we explained how to obtain the values of all the parameters used

in the Kalman filter algorithm, we can describe its particular steps.

Kalman filter steps (for t =1,...,7):

o Set By¢—1 = Pi—1jt—1- For t = 1, use Sy = by, i.e., the prior mean of Sy

Calculate €; = y — Z;f3;;—1 (prediction error)

For t > 1 estimate A\; = Apin + (1 — Apin) L7, where f; = —NINT(€,_,&_,)

o Set Py = iPt_”t_l. For t = 1, set Py = FPyo = I, ie., the prior

variance of [

Estimate &, = k3, + (1 —K)&e . Fort =1, set il = KXo

e Calculate By, = By + Pt|£—lzg(ﬁt + Z;Pq;_lZ{)‘lEE
[ ] Calculate Ptlt — -Ptlt—l - PEIt—lzé(it + ZtPt|t—IZ£)_1Z£P£|t—1

This algorithm delivers f;; and P;; for t =1,...,T and also the estimates of

the measurement error covariance matrix Y; and forgetting factor A;.

4.2.2 Dynamic Model Selection

Previous results apply to only one model. However, Koop & Korobilis (2013)
decided to employ dynamic model averaging (DMA) and selection (DMS) meth-
ods developed by Raftery et al. (2010) in the context of time-varying parameter
models. Those methods assume that there are j = 1,...,J competing models
under consideration. For each competing model the researcher needs to calculate
Tyjt—1,, 1.e., the probability that model j forecasts the best at time ¢ given infor-
mation up to time ¢t — 1 and m; j, which is the posterior model probability. Those
probabilities are then used in doing dynamic model averaging or selection. Koop
& Korobilis (2013) performs dynamic model selection that occurs if, in each time
t=1,...,T, the model with the highest value of 7 ; is selected. The calculation
of my;_1; and my;; is handled using a fast recursive algorithm of Raftery et al.
(2010).

The algorithm proceeds in two steps that are comparable with the Kalman

filter’s prediction and updating equations. After we specify the initial condition,
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Tojo; for j =1,...,J, the algorithm begins with the prediction equation:

T

o
t—1)t—1,j
Mije—1,5 = % (4.8)
; T -1

=1

and continues with the updating equation:

- ;rm_upj(yzly;_l) (4.9)

E Wz|z—1,zpl(yt|§t—1)
=1

to evaluate my;_y; for t = 1,...,T. In equation 4.9, p;(y:|y;—1) is the pre-
dictive likelihood of model j - predictive density of this model evaluated at y;
given observations up to time ¢t — 1: ¥,y = (¥}, %5,...,y,_;). This predictive
likelihood is available from the Kalman filter if we evaluate the predictive density
N(Zéj)ﬁu) igj) - Zt(j)P(j) Z!(j)) at yt(j), and it measures the forecast perfor-

tlt—1° tjt—121
mance of model j at time ¢. In equation 4.8, a is the forgetting factor and
controls how much weight the forecast performance of model j i = 1,...,t — 1
periods before time ¢ receives in calculating my;—; ;. Koop & Korobilis (2013) show

that:

t—1
Ttlt—1,5 X H[Pj (Yo—ilFei1)]™
i=1

where p;(y;—i|Jt—i—1) is the predictive likelihood of model j ¢ periods before time ¢
and measures the forecast performance of model j in that point in time. As with
the forgetting factor A, if @ = 0.99 and for quarterly data, forecast performance
five years ago receives approximately 80% (0.99%°) of the weight of the forecast
performance at t—1. For monthly data we set a = 0.9963 to obtain the same effect.
Finally, initial conditions g0, j = 1,..., J, are specified as follows: mgo; = % to
express the belief that all models are ex-ante equally likely.

The above algorithm is used to select one model in each time from the pool
of J possible models. Following Koop & Korobilis (2013), we augment the model
space in two ways:

First, we consider 3 TVP-VARs of different dimensions: small, four-variable
VAR?® with three key macroeconomic variables (real GDP, inflation and interest

rate) and add house prices to it; medium, six-variable VAR with additional two

5From now on, whenever we use VAR we mean our specification of VAR, that is a VAR with
time-varying parameters.
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variables that are essential for determining the house-price movements (see Rahal
(2016); or Gattini & Hiebert (2010)); and large, twenty-variable VAR contain-
ing all medium-VAR variables and capturing broad financial and macroeconomic
conditions. List of variables included in each VAR is available in the Appendix.
The only problem here is that the predictive densities p;(y¢|y:—1) will not be com-
parable among TVP-VARs of different dimensions, because y; has a different
dimension for each of the small, medium and large TVP-VAR. Therefore, we de-
cided that for each TVP-VAR model, we will calculate predictive density using
only the variables of the small TVP-VAR. This means that we will always evalu-
ate p;(y¢|y:—1) using the vector y, that includes real GDP, inflation, interest rate
and house prices regardless of how many variables a given TVP-VAR has. Those
variables are present in all TVP-VAR models under consideration, so it makes
sense that we are interested in their joint predictive likelihood to determine which
model is the best and when it is so.

Next, for a given TVP-VAR size (small, medium or large), we define 7 models
based on the values of the prior shrinkage parameter . As explained before, this
hyperparameter controls a degree of shrinkage of the VAR coefficients; see 4.3
and the associated discussion. In the TVP-VAR literature,  is usually deter-
mined using training sample priors (see, e.g., Primiceri (2005)). This approach
involves taking out the small subsample of the data that will then be discarded,
usually from the beginning of the data set, and estimating hyperparameters on
this subsample by, e.g., OLS. Instead of estimating ~ from the training sample, we
will choose one 7 in each point in time among the seven pre-defined values of it:
v € [1071°,107°,0.001,0.005,0.01,0.05,0.1]. Different values of v correspond to
different priors and hence, in a Bayesian framework, to different models. Thus, in
each time the algorithm estimates seven TVP-VAR models for each VAR size from
step 1 (because we have seven possible values of v), and then selects the value
of v for which the posterior model probability 7 ; is maximized. This allows
for switching between TVP-VAR models of different dimensions and for choosing
the best shrinkage for each dimension in each time. Normally, higher shrinkage
is needed in large VARs and this algorithm enables to choose 7 from a very wide
grid of values and to change a degree of shrinkage over time as compared to having
a fixed 7.

To summarize, the full dynamic model selection algorithm proceeds as follows:

1. Set up the small, medium and large TVP-VAR. Medium TVP-VAR contains
all variables of the small TVP-VAR plus some additional variables, and large
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TVP-VAR contains all variables of the medium TVP-VAR plus additional

variables®.

2. For each TVP-VAR dimension from step 1, define 7 possible priors for [
based on the value of «. Different values of v correspond to different prior
covariance matrices of [y, and hence a model 7, 7 = 1,...,7, will have
covariance matrix P with 4@ e [1071°,10%,0.001,0.005,0.01,0.05, 0.1]

in its structure (see eq. 4.3).

7
models determined by their prior for §,. That is, for ¢ = 1,...,7T run

3. Given a TVP-VAR size (small, medium or large), loop over j = 1,...,
Kalman filter recursions to obtain p;(y:|gi—1), and use it and the initial
conditions mg|o; = % to calculate m;;_,; and 7 ;. Perform this step for
each TVP-VAR size. Therefore, at the end of this step, we will have for
each TVP-VAR size my;j fort =1,...,Tand j =1,...,7.

4. For eacht =1,...,T and TVP-VAR dimension, select the model with the
highest posterior model probability 7 ; and denote its value of y as rylImaz)
and the associated j € [1,...,7] as jmae- This gives us the optimal value of
the shrinkage coefficient for each time and TVP-VAR dimension.

5. Conditional on the optimal value of 7, y\mez) compute the posterior model
probabilities of the small, medium and large TVP-VAR: my; ., for t =
1,...,7. Now m = 1,2,3 for the small, medium and large TVP-VAR,
respectively, and we use my—1 ;... and p;j, ... (Y:|Ji—1) to calculate my,, ac-

cording to the equation 4.9:

?rﬂt_l,jmaz(m)pjmaz (m) (yt | gt_l )

3 —
Ek=1 ?Ttlt_lajma:r(k)pjmﬂz(k) (yt |y‘£— ])

Ttjt;m =

where 7yj;_1 j,00(m) 18 Tyi—1 calculated using the optimal shrinkage parameter

7 for a given TVP-VAR size m and similarly for p;, ... m) (4| 7t—1)-

6. Now we evaluate which of the small, medium and large TVP-VAR, condi-
tional on the optimal value of «, is the best model at time t = 1,...,T

in terms of posterior model probability. This is achieved by selecting m €
[1,2,3] for each t with the highest 7y .

SFor the list of variables used in the small, medium and large TVP-VAR consult the Ap-
pendix.
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Therefore, for t = 1,...,T, dynamic model selection algorithm delivers the
optimal dimension of TVP-VAR (small, medium or large) and the optimal value
of the shrinkage coefficient . Those uniquely define the TVP-VAR model in each
time for which we will draw from the posterior of 8 using the Carter and Kohn

algorithm described in the subsequent section.

4.3 Carter and Kohn Algorithm

Up to this point, the modeling strategy follows Koop & Korobilis (2013). The
aim of their paper is, however, on forecasting. Therefore, in the empirical part
they used the last in-sample values of Brr and Prir obtained from the Kalman
filter to simulate the path of Br,pn, where h is the forecast horizon”. Afterwards,
they demonstrate the forecasting superiority of their model over the other fre-
quently used time series models and possibly different modeling choices for their
TVP-VAR, but they do not perform any kind of a structural analysis, which we
however need because we are interested in obtaining impulse responses and fore-
cast error variance decomposition (FEVD). We thus utilized their model to get
filtered estimates of the states f;; and their variance F;;, and mostly to be able
to estimate even the large TVP-VAR. Their algorithm provides us with the esti-
mates of the measurement error covariance matrix %; and the forgetting factors
approximation of the transition error covariance matrix (); that make the estima-
tion of the large TVP-VAR computationally feasible because they avoid the need
of drawing from the conditional posteriors of Y; and );. To perform structural
analysis, we programmed the Carter and Kohn algorithm for this model to obtain
draws from the posterior of §;, t = 1,...,T, and used those draws to calculate
impulse responses and FEVD.

Here we describe key equations of the Carter and Kohn algorithm applied to
our model. In the following we assume that the parameters of the state-space
model, Y; and ), are known. For }; we use its estimate it, and (); can be
expressed from equations 4.5 and 4.6 as Q; = (\;' — 1)P;_41—1 given a time-

varying nature of A. Those are available for t = 1,...,T from the algorithm of

"They employed the two strategies: 1) VAR coefficients are fixed out-of-sample, implying
that §T+j|q~ ~ N(Brir, Prir) for j = 1,...,h, and 2) VAR coefficients are allowed to drift

out-of-sample, for which J§T+j|T are obtained by drawing recursively from A (§T+j—1|T: Pr7r)
for j=1,...,h, where for j =1, BTH_”T = Br|r-
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Koop & Korobilis (2013) for all TVP-VAR dimensions and values of the shrinkage
parameter .

Let Br denote the time series of B fort = 1,...,T, i.e., Br = (81,85, ...,80).
Similarly, 7 = (2,3, ... DYAR Qr = (Q,,Q,,... , Q)" and the observations
through time T are denoted by gr = (v}, %5, ..., y7). When using exact MCMC
methods to draw from the joint posterior distribution of all unknown parameters
and the state variable of the state-space model, Gibbs sampling algorithm is used
to repeatedly draw from the conditional posterior of each parameter (or a group of
parameters) and the state variable, given all other unknowns. In this algorithm,
draws from p(ET|§T,@T,§T), i.e., the joint posterior of Bi,p,,...,Br, can be
obtained using the technique developed by Carter & Kohn (1994) — Carter and
Kohn algorithm. They proposed a multi-move sampler for drawing from the
conditional posterior of 8, meaning that it samples a whole vector of 3, Vt, at
one draw. Single-move algorithms that sample 3; for t = 1,...,T one at a time
from p(B:|Sr, Qr, ¥r, B—t), where By = (B,...,Bi_1,Bis1:---,Br)', are usually
ineffective because the draws obtained from those algorithms tend to be highly
correlated, which increases the number of draws that must be taken to ensure
that the true posterior distribution is simulated accurately enough®. We decided
to use the Carter and Kohn algorithm because it is arguably the most popular
choice in the literature®.

In our implementation of the Carter and Kohn algorithm, >r and é;r are not
taken as random variables, because }; is estimated by an EWMA estimator of the
form 4.4 and @) is replaced using a forgetting factor A (see 4.5 and 4.6). Therefore,

we can express the posterior distribution of 3 as
p(Brlyr)

which is equal to the conditional posterior of 3, p(EﬂET, QT, ur), provided that
Y and Q) are known fort = 1,...,T. As explained above, the treatment of }; and
@ in the model avoids the need for Gibbs sampling (and potentially Metropolis
Hastings) algorithm, and thus provides a time-manageable way of estimating large
TVP-VARs.

For a detailed discussion and derivation of all the equations in the Carter and
Kohn algorithm see e.g. Kim & Nelson (1999). But the key step involves the

8For a summary and comparison of multi- and single-move algorithms, see Koop & Potter
(2011).
90ther algorithms are also possible, e.g., Durbin & Koopman (2002) algorithm.
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result that
T—1

p(Brlir) = p(Brlir) [ ] p(BelBerr, Tr)

Therefore, a draw of ET = (81, B, ..., Bp) from its posterior distribution can
be obtained by first drawing B from p(Br|yr), and then, fort =T —1,...,1 draw
B; from p(B:|Bis1,yr). It can be shown'® that

Brlyr ~ N (Brir, Prir)

BtlﬁH-l: gT ~ N(ﬁtlt,ﬁt+1ﬂ R|t,.3:+1) for t =T — 1: ey 1

The mean and variance of Br|yr are the last Kalman filter estimates of the
state variable and its variance, respectively, obtained from the Kalman filter.
Mean and variance of f3;|B;11,yr can also be computed using 3;; and P from
the Kalman filter. They are computed backwards from ¢t =T — 1 to 1 using the

following recursions:

Btit,Berr = Brit + A1 (Berr — Bee) (4.10)

Pit.giyr = (1— A1) Py (4.11)

where 3;; and P,; fort = 1,...,T—1 are available from the Kalman filter, A; 14
is obtained according to equation 4.7, and [, is the draw of the state variable
obtained in the previous step of this procedure. That is, for t =T — 1, Biy1 = Br
which was drawn from a normal distribution with mean B/ and variance Prir;
fort =T —2, Byy1 = Pr—1 which was drawn from a normal distribution with mean
Br—_i1jr—1,5; and variance Pr_ji7_; g;, etc. Equations 4.10 and 4.11 follow from the
general Carter and Kohn recursions fitted to match our problem (for derivations,

see the Appendix).

10See e.g. Kim & Nelson (1999).
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4.4 Impulse Response Analysis

In this subsection we describe how to use draws of ;, t = 1,...,T, to calculate
impulse responses. Since we are working with TVP-VARs, we would not have
enough computer memory to store the draws of impulse responses for each t,
therefore we decided to compute impulse responses only for selected time periods.
Those time periods were chosen to include both stable periods where economic
policy uncertainty is low, and those of high uncertainty that correspond to the
major events in the recent financial crisis and subsequent recession. Periods of
low uncertainty are chosen to be pre-crisis November 2006 and July 2007. High-
uncertainty periods are represented by October 2008 (the month right after the
collapse of Lehman Brothers) and August 2011, in which high uncertainty orig-
inating from the summer 2011 debt ceiling crisis, i.e., disputes in the Congress
over raising of the debt ceiling that has been normally raised automatically, esca-
lated. In addition to those, we also included December 2013 because it marks the
turnover in quantitative easing (QE) policies of the Federal Reserve; on December
18, 2013 the Federal Open Market Committee announced its first QE tapering.
Finally, we included the most recent period in our sample, April 2017, with eco-
nomic policy uncertainty building up again which some observers attribute to the
Donald Trump’s election.

Economic policy uncertainty is measured by the U.S. Economic Policy Uncer-
tainty Index which was constructed by Baker et al. (2015). The index is calculated
based on occurrences of words related to economic uncertainty in articles in 10
leading U.S. newspapers.

Figure 4.1 displays the path of the index for the whole sample period and
highlights the dates for which we calculated impulse responses. We can see that
the period of maximum uncertainty corresponds to the debt-ceiling battle in Au-
gust 2011 and the second highest marked peak to the aftermath of the Lehman
Brother’s collapse. On the other hand, November 2006 and July 2007 represent
the periods of minimal uncertainty.

Next we show how to obtain impulse responses in the context of our model.
The procedure is the same as with standard VARs, except now the coefficients
are changing over time, so we will have different impulse response functions in

each time, and the models'! are changing over time, so in each time, we get the

1A model is determined by its dimension and the value of the shrinkage parameter 7; see
subsection 4.2.2.
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U.S. Economic Policy Uncertainty Index
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Figure 4.1: Monthly Economic Policy Uncertainty Index from January 1999 to November 2017.
Highlighted periods correspond to those for which we obtain impulse responses and FEVD.
Source: Data were downloaded from policyuncertainty.com/us_monthly.html

impulse responses of the “best” model, i.e. the one with the highest posterior
model probability (see 4.2.2).

Consider impulse responses only for one particular time t, t € (1,...,7T).
Suppose that the number of variables of the “best” model in time t is M, M €
(4,6,20) depending on whether the “best” model in time ¢ is the small, medium,
or large TVP-VAR. Following Liitkepohl (2007) with his notation adjusted for

time variation in the coefficients, we can write TVP-VAR as:

Yi=pm +AY, 1+ E (4.12)
where
Yt Mt
Yt—1 0
th = . ) Mt = . )
Yt—p+1 0

(Mpx1) (Mpx1)


policyuncertainty.com/us_monthly.html
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Ay Age -+ Ap e Ap ;
Iy 0 -~ 0 0 ot
AE = 0 IM 0 0 3 E‘ﬁ =
: : : 0
0 o --- I 0
= M - (Mpx1)
(MpxMp)

Ay fori =1,...,p are M x M matrices of coefficients on the ¢ — th lag; in
the first row, they include the coefficients on the i — th lag for all M variables in
the first equation, in the second row, they include the coefficients on the i — th
lag for all M variables in the second equation, etc. Matrices A; and u; can be
completely determined from our vector of coefficients [3; obtained from the Carter
and Kohn algorithm.

Provided that the process Y; is stable'?, 4.12 has a moving-average (MA)
representation (without deterministic terms as they are irrelevant for the impulse

response analysis):

Y= AE
i=0

If we premultiply this by J := [Ips : 0: --- : 0], which is (M x Mp) matrix, we
get the MA representation of y;

y=» JAJIE,

=0

Following Litkepohl (2007), this can be rewritten as

ve=_ Pue; (4.13)
i=0

if we define ®; := JALJ' because E; = J'JE,; and JE; = ¢,.

It can be shown!® that the MA coefficients ®;; contain the impulse responses
to the innovations in ¢. However, this representation of impulse responses as-
sumes that the shocks in y; variables are independent, which may not be true.

Therefore, we decided to use orthogonalized impulse responses which, as the name

12Tn 4.12, Y; is stable if all eigenvalues of A; have modulus less than one.
13See Liitkepohl (2007) on page 52.



4. Methodology 51

suggests, are responses to orthogonal (i.e. independent) shocks. Those responses

are obtained if we manipulate the MA representation 4.13 as

y=) PuPP e =)  Ouwi s (4.14)
i=0 i=0

where ©;; := ®;P; and w; = P '¢;. P, is a lower triangular matrix obtained
from Cholesky decomposition of 2, i.e. the covariance matrix of TVP-VAR errors:
¢ = P,P]. It follows that w; is white noise with the covariance matrix ¥,z =
P'%(P7YY = P'P,P/(P') = Iy, therefore impulse responses ©; will be
responses to orthogonal shocks. The difference with TVP-VARs with stochastic
volatility is that P; is not time-invariant because Y.; is changing over time, and ®;;
are not time-invariant because the VAR coefficients are changing. The elements
of the matrix ©;; represent the responses to unit innovations in w;. Hence, the
jk — th element of Oy, 61, can be interpreted as the response of variable j to a
unit innovation in variable k that occurred i periods ago. Moreover, the impulse
responses can be computed even if the MA representation 4.14 does not exist
(Hashimzade & Thornton (2013)), which occurs e.g. in case if VAR is not stable
in which case the shocks might permanently affect the variables of the system.

The matrix of contemporaneous impulse responses is Oy = o P, = P, be-
cause ®o; = JAYJ' = I);. Tt follows from the lower triangular nature of P, that
the first variable in the system can contemporaneously respond only to its own
shocks, the second variable can contemporaneously respond only to the shocks in
the first variable and its own shocks, ..., k-th variable can contemporaneously
respond only to shocks in variables 1,...,k. This is a restrictive assumption
because, in the empirical part, we could not have e.g. asset prices contempora-
neously responding to monetary policy shocks and at the same time monetary
policy immediately responding to asset prices, but some studies (e.g., Bjg rnland
& Jacobsen (2013)) found that this interdependence is vital for revealing the role
of asset prices in the monetary-policy transmission mechanism.

We estimated the impulse responses O;; by replacing Y.; by its estimate 5 from
eq. 4.4 and using the draws of §; to construct ®;. For each time period ¢, t €
(November 2006, July 2007, October 2008, August 2011, December 2013, April
2017), we took the “best” model in that time period which is uniquely identified
by TVP-VAR dimension and the shrinkage coefficient 44, and the draws of 3; and

estimates it used to construct the impulse responses are for that model. Because

14Gee section 4.2.2
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the draws of p; are produced by Carter and Kohn algorithm, we get the whole
vector of B¢, t = 1,...,T, at one draw but we use only the coefficients in time
periods in which the impulse responses are calculated. Moreover, it follows that
the dimension of the matrix that contains impulse responses for a particular time
t and impulse response horizon i, ©;, can differ among ¢ based on the TVP-VAR

dimension of the winning model in period t.

4.5 Forecast Error Variance Decomposition

Given the impulse response estimates for ¢, ¢ € (November 2006, July 2007, Oc-
tober 2008, August 2011, December 2013, April 2017), FEVD at time ¢ can be

calculated as follows!®

. Let wji e denote the proportion of the h-step forecast
error variance of variable j that can be explained by innovations in variable k

(Liitkepohl (2007)), given the time period t. It holds that

h—1 5
D Ot

1

(4.15)

=0
ul 2
E Qjm,it
i=0 m=1

where 6 ;; is the jk-th element of the impulse response matrix ©;;, and thus
represents the response of variable j to a shock in variable k that occurred i
periods ago, and M is the number of variables in the TVP-VAR which depends
on the dimension of the winning model in time t. Note that if we sum up wjg nt
for k=1,..., M, we get one, i.e., the forecast error variance of variable j can be
fully explained by innovations in variables of the system (including the innovations
in variable j itself). FEVD in time ¢ are calculated for each matrix of impulse

response coefficients ©;;, and therefore for each draw of ;.

15Tn TVP-VARs, FEVD is time-varying because VAR coefficients (and therefore impulse re-
sponses) are time-varying. Therefore the time periods in which we calculate FEVD are the same
as those in which we provide impulse responses.



Chapter 5
Results

This chapter presents the results of our analysis whose main aim is to assess the
link between house prices and the stance of monetary policy. First, we describe
the main characteristics of the employed model and support them with some em-
pirical evidence. Then, we provide impulse responses and forecast error variance
decompositions for several chosen time periods. Finally, results of the robustness

checks are revealed.

5.1 TVP-VAR with dynamic dimension selection

In this section, estimation results on some important aspects of using a time-
varying parameter VAR whose dimension can change over time, are presented.
First, we briefly summarize the main characteristics of this model!?. The model
follows Koop & Korobilis (2013) in that it features both time-varying VAR co-
efficients and time-varying covariance matrices®, while the dimension of a model
can also change over time based on the past predictive likelihoods of different
sized models. Time variation in VAR coefficients is controlled by a forgetting
factor \; which is estimated in each point in time and the degree of switching
between TVP-VAR models of different dimensions is controlled by another for-
getting factor, a. Basically, we select among 3 TVP-VARs: small VAR with 4
variables, medium with 6 variables, and large VAR that contains 20 variables®.

Each time, posterior model probabilities are computed for each model and the

'Koop & Korobilis (2013) named such a model ‘TVP-VAR-DDS’ where ‘DDS’ stands for
‘dynamic dimension selection’.

2For a detailed description of the estimation procedure see Chapter 4.

3Specifically, covariance matrix of VAR errors and covariance matrix of VAR coefficients.

4See Table 3.1 for variables included in each model.
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one with the highest probability is selected. Posterior model probabilities are
determined based on the past predictive likelihood of the models, and « controls
the weight of those past likelihoods. The key difference and a novelty of Koop
& Korobilis (2013) approach is that covariance matrices are not sampled from
their posterior distributions, but they are estimated. Measurement error covari-
ance matrix is estimated by an EWMA estimator, and covariance matrix that
controls the volatility of VAR coefficients is approximated by the use of the above
mentioned forgetting factor \;.

Besides the selection of one TVP-VAR dimension in each point in time, Koop
& Korobilis (2013) decided to augment the model further by choosing among 7
predefined values for the prior shrinkage coefficient . This coefficient controls a
degree by which VAR coefficients are pushed to zero so that the model with a large
number of parameters can be estimated without the fear of overparameterization.
Shrinkage is very important in TVP-VARs because the number of parameters is
much larger than with standard VAR models, and thus usually a high shrinkage
is needed for obtaining reasonable results. Each time, one value of v for each of
the small, medium and large TVP-VAR is selected based again on the predictive
likelihood of the models with different . Therefore, each time the model with the
highest posterior model probability® can be fully characterized by its dimension
and shrinkage coefficient . All parameters that enter the model are summarized
in D.1 along with their brief description.

Figure 5.1 plots the selected values of the prior shrinkage parameter, =, for
each TVP-VAR dimension. As expected, lower values of v are associated with
TVP-VAR of the largest dimension, implying that VAR coefficients are more
centered around their prior means of zero (lower v means lower variance and
thus higher shrinkage, see equation 4.3). Interestingly, with medium and small
TVP-VARs, a necessary degree of shrinkage exhibits a large drop shortly after
2008 and then continues to decline® which suggests that the (prior) variance of
VAR coefficients needs to be larger from 2008 onwards that could be attributed
to increased volatility following a financial crisis. Minimum shrinkage is attained
by both medium and small TVP-VARs at the end of the sample, while the large
TVP-VAR does not go above v = 0.001 during the sample period.

5 “winning” model

6Rising v implies a declining shrinkage.
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Values of the shrinkage coefficient v - small TVP-VAR
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Figure 5.1: Values of the optimal prior shrinkage parameter v for each TVP-VAR
dimension and time period.
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Values of \; that controls the degree of time-variation in VAR coefficients
are displayed in Figure 5.2 in case of the small TVP-VAR'. Following Koop &
Korobilis (2013), \; is allowed to vary over the interval from 0.96 to 1 which
should induce a gradual change in the coefficients. Higher values of A\; correspond
to lower changes in VAR coefficients (see equation 4.6). We can see that in the
beginning and at the end of the sample, coefficients are changing less than in the
middle of the sample. The highest changes are occurring between 2008 and 2014
and can be associated with unstable periods of high policy uncertainty (see Figure
4.1).

Values of )\; - small TVP-VAR

N T

©
o

T T T T T T
2002 2005 2008 2011 2014 2017

Figure 5.2: Estimated \; for the small TVP-VAR with the optimal shrinkage parameter
v in each time.

To select between small, medium and large TVP-VAR for which we already
determined the optimal shrinkage v®, posterior model probabilities must be evalu-
ated according to equation 4.9. Those probabilities are plotted for each TVP-VAR
size (with the optimal shrinkage coefficient) in Figure 5.3. It follows immediately

from the figure that TVP-VAR dimension changes over time (mostly between the

"Values of \; for medium and large TVP-VARs exhibit similar patterns.
8See Figure 5.1.
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small and the large model). We can also conclude that bigger VARs perform
better in stable times prior to 2008, but from 2008 onwards, following a surge in

small model’s posterior probability, small and medium models are preferred.

Time-varying dynamic dimension selection probabilities
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Figure 5.3: Dynamic dimension selection probabilities of the small, medium and large
TVP-VARs. Each time, the optimal value of the shrinkage parameter v was chosen for
each TVP-VAR and the probability plotted is for that .

Due to the time-varying nature of the model, we present empirical evidence
only for selected time periods. Those time periods were chosen to correspond with
remarkable events that influenced the path of macroeconomic variables’. Based
on the selected model and its shrinkage coefficient, we use 5 different TVP-VAR
models to study the behavior of house prices after a monetary policy shock. Those

time periods and the respective “winning” models are presented in Table 5.1.

9The selection of time periods is discussed in Section 4.4.
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Time period TVP-VAR dimension  Shrinkage ~

November 2006 Large 0.001
July 2007 Large 1075
October 2008 Small 0.05
August 2011 Large 107°
December 2013 Small 0.1
April 2017 Medium 0.1

Table 5.1: Models with the highest posterior model probability in each
time period.

5.2 Impulse responses, FEVD

Here, we present impulse responses of house prices to a negative, one percentage
point shock in Wu and Xia shadow rate. House prices are measured by S&P /Case-
Shiller U.S. National house price index. Since we have a different VAR coefficients
in each time, we would have a different set of impulse responses for each month
in our sample which would be difficult to store given that we need to take a cer-
tain number of draws from their posterior distribution for each time. Therefore,
impulse responses are computed only for 6 time periods. Number of draws from
the posterior distribution of coefficients is set to 10 000°. We do not need to
discard any draws, as it is recommended when using Gibbs sampling, because we
employed the Carter and Kohn algorithm to draw from the posterior of VAR co-
efficients, which was possible since we do not need to draw covariance matrices'.
Another modeling choice involves the ordering of variables which matters since
we are using a Cholesky decomposition to identify a monetary policy shock, and
therefore a position of the policy rate'? among other variables determines which
variables will be contemporaneously affected by the shock. We ordered the policy
rate last to allow for an immediate response of monetary policy to shocks in other
variables. This is a standard assumption in macroeconomic VAR literature. It
follows that according to this ordering, house prices react with a lag to monetary
policy shocks. This is not always (but arguably predominantly) assumed in the
literature as some papers stress the importance of allowing for simultaneous re-
action of house prices and monetary policy (e.g., Bjgrnland and Jacobsen, 2013).

That is, house prices should be allowed to respond contemporaneously to mone-

10 Although, setting it to 1000 does not influence the results.
11See Chapter 4.
12Wu and Xia rate or Krippner’s SSR in the robustness checks.
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tary policy shocks and, at the same time, monetary policy should not be restricted
from immediately responding to house price shocks. This can be accomplished
by employing various long-run or sign restrictions, i.e., a different identification
scheme. In robustness checks'®, we provide impulse responses with house prices
ordered below the policy rate which allows for a contemporaneous reaction of
house prices to a monetary policy shock.

Figures 5.4 plot the impulse responses of S&P /Case-Shiller house price index
to an expansionary monetary policy shock. Impulse responses were rescaled to
correspond to a minus one percentage point shock in Wu and Xia rate. The graph
shows posterior median impulse responses along with their probability bands rep-
resented by 16 and 84" percentiles. Impulse response horizon (on the x-axis)
is in months. For November 2006, July 2007 and August 2011, the impulse re-
sponses display exploding behavior, even though the median impulse response
stays slightly above zero. This is caused by the fact that in those time periods,
the winning model used to generate the impulse responses is the large VAR with
the value of shrinkage coefficient 107° or 0.001. Unfortunately, large VAR was
not able to produce stable draws under several different specifications unless, as
will soon become clear, we would increase the value of the shrinkage coefficient ~.
However, higher v translates into higher variance of VAR coefficients, and thus
less shrinkage to zero. Therefore, the coefficients (not just at higher lags, see equa-
tion 4.3) become more important and the computational burden so immense that
it is not computationally feasible to draw from the posterior of coefficients. In the
remaining time periods, impulse responses were obtained from a small VAR for
October 2008 and December 2013, and from a medium VAR for the most recent
period in our sample, i.e., April 2017. All those models feature a low degree of
shrinkage as is apparent from Table 5.1.

Median responses of house prices generated by small and medium TVP-VARs
are positive, around 4% after approximately 3 years, but the effect is insignificant
in December 2013 which is a period of QE tapering. In this period, the confidence
bands are wider which could be a signal of higher uncertainty. However, Figure 4.1
reveals that even though there is a local peak in policy uncertainty in December
2013, this uncertainty was even larger in April 2017 and much higher in October

2008 for which the impulse responses are significant!*. Still, economic policy

13See Section 5.3
MTmpulse responses in October 2008 become significant after 6 months and in April 2017 after
8 months.
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uncertainty index, as it is designed!®, puts more weight on events that are arguably
not so important for the developments in the main macroeconomic variables'®, for
example, it creates as much as uncertainty following the Trump’s inauguration
in the beginning of 2017 as it was during the financial crisis, even though the
economic conditions were remarkably better in 2017. Therefore, the index may
not fully capture the uncertainty about the future movements of monetary policy
and some kind of monetary policy uncertainty index could be more relevant in

the context of our model.

15Gee section 4.4.
16Except for the widely-recognized critical events such as the collapse of Lehman Brothers.
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Figure 5.4: Impulse responses of S&P /Case-Shiller house price index to a negative 100-
basis-point shock in Wu-Xia rate. In November 2006, July 2007 and August 2011,
impulse responses were generated by large TVP-VAR. In October 2008 and December
2013, impulse responses are from the small TVP-VAR, and in April 2017, they were
generated by medium TVP-VAR.

To extend our discussion about the importance of the shrinkage coefficient -,
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Figure 5.5 depicts the impulse responses of house prices to the same negative 100-
basis-point shock in Wu-Xia rate generated by medium VAR for the two extreme
choices of 7. Impulse responses were plotted for November 2006 and July 2007.
Those are the periods in which the large VAR is the winning model that, however,
produces strange impulse responses. Therefore, we decided to use a medium VAR
in those periods!'” and experiment with a different values of 7. The left-hand-side
panel shows impulse responses when 7 is set to its minimum, v = 1071, implying
a maximal degree of shrinkage in VAR coefficients, whereas the right-hand side
sets v to its maximum, v = 0.1. Values of v near the minimum are typical for a
large VAR due to the presence of many coefficients.

The figure makes it apparent that choosing the maximum degree of shrinkage
produces very strange results, even with a medium VAR, similar to those produced
by a large VAR. This may be because ~ is simply too small: prior variance of
coeflicients in equation 4.3 is then very low, making the coefficients to be tightly
centered around their prior means of zero, and if there is not enough information
in the data to outweigh it, those coefficients will be essentially zero. That could
result in essentially zero impulse responses, as can be seen in the LHS panel of
the figure, even though the confidence bands are widening. This may be one
explanation for the behavior of impulse responses from a large VAR captured in
Figure 5.4. However, we were not able to produce the impulse responses from a
large VAR with high values of + because it would require a huge computational
power. Therefore, we replace a large VAR in periods when it is the winning model
by a medium VAR with the highest possible value of v and provide the impulse
responses for that model.

Figure 5.6 shows the corresponding impulse responses. In October 2008, De-
cember 2013 and April 2017, the models are the same as the winning models
in those periods. However, for the other periods, large VAR was replaced by
a medium VAR with v = 0.1. Responses of house prices in stable periods of
November 2006 and July 2007 are significantly greater than zero right after the
expansionary monetary policy shock. They are also gradually increasing till they
reach the maximum of around 2% (for the median impulse response) about two
and a half years from the shock. Responses become significant after some initial

period for all dates, except for December 2013 which was already discussed above.

17And in August 2011 which is another period in which large VAR was originally selected.
Results from August 2011 are not presented here because they are qualitatively similar and will
be assessed in the following analysis for the maximum value of ~.
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Impulse responses - importance of v
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Figure 5.5: LHS panel shows the impulse responses of house prices to a negative 100-
basis-point shock in Wu-Xia rate from medium TVP-VAR with shrinkage coefficient
v = 10719 RHS panel displays the corresponding impulse responses, but now the
medium TVP-VAR has shrinkage coefficient v = 0.1. First row: impulse responses in
November 2006, second row: impulse responses in July 2007.

For October 2008, August 2011 and April 2017, median IRF's are stronger, around
4% after approximately 3 years. In all figures, the response of house prices seem
to be quite persistent which has been also found in the literature (e.g., Bjornland
and Jacobsen, 2013). A delayed and persistent response of house prices is usu-
ally being explained by lengthy construction processes that makes property prices
different from other assets (Eickmeier & Hofmann (2010)).

The results from November 2006 and July 2007 are comparable with Smets &
Jarocinski (2008) who also used S&P /Case-Shiller house price index and found a

mean response of -0.5% after two and a half years following a positive 25 basis-
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point shock in the federal funds rate!®. However, they used a mixture of zero and
sign restrictions to identify the monetary policy shock, but they also restrict house
prices from responding contemporaneously to monetary policy shocks. Results
from October 2008, August 2011 and April 2017 can be qualitatively related to
those of Eickmeier & Hofmann (2010), who estimated a FAVAR model on the U.S.
data and obtained a median impulse response of S&P/Case-Shiller house price
index of -5% after approximately four years following a contractionary monetary
policy shock in the form of a 100-basis-point increase in the federal funds rate.
The response was also found to be significant from the beginning and persistent.

Next, we present the forecast error variance decomposition of house prices,
i.e., the contribution of different variables to the forecast error variance in house
prices. Figures 5.7, 5.7 and 5.9 plot the results for three time periods: October
2008, December 2013 and April 2017. Those periods were chosen because these
are the three periods from our results evaluating times for which small or medium
TVP-VARs were selected as ‘winning’ models'®. In all graphs, mean forecast
error variance decompositions obtained from 10 000 draws of VAR coefficients are
displayed.

The results slightly differ among the medium and small models. For small
models, innovations in real GDP explain most of the variation in house prices,
while for medium VAR, the contribution is divided between real GDP, residential
investment and house prices. Wu and Xia rate is becoming more and more impor-
tant in explaining house prices and it accounts for almost 4.3% of the variation
in house prices for the longest forecast horizon given a medium VAR. Therefore,
the effect of monetary policy shocks on house prices is delayed.

Tables D.2, D.3 and D.4 reveal the complete results of variance decompositions
for each variable in the corresponding VAR. We focus on the medium VAR. House
price shocks are there estimated to explain around 16% of the variation in real
GDP in the long run and they also account for 23% of the variation in residential
investment. They are also found to explain roughly 22% of the variation in Wu and
Xia rate after five years, which is slightly less than the 30% found by Bjgrnland
and Jacobsen (2013) after the same time period with the effective federal funds

rate in place of Wu and Xia rate.

18 A negative 100-basis-point shock would therefore result in a response of 2% after the same
period.
19See Table 5.1.
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Impulses responses - medium and small TVP-VARs
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Figure 5.6: Impulse responses of S&P/Case-Shiller house price index to a negative
100-basis-point shock in Wu-Xia shadow rate. Responses of the large TVP-VAR were
replaced by responses from the medium TVP-VAR with shrinkage coefficient v = 0.1.
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Figure 5.7: Forecast error variance decomposition of S&P /Case-Shiller house price index based
on impulse response coefficients in October 2008. In this period, small TVP-VAR with v = 0.05
is chosen as a model with highest posterior model probability, and therefore the figure shows the
proportion of forecast error variance of house prices accounted for by innovations in 4 variables.
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Figure 5.8: Forecast error variance decomposition of S&P /Case-Shiller house price index based
on impulse response coefficients in December 2013. In this period, small TVP-VAR with v = 0.1
is chosen as a model with highest posterior model probability, and therefore the figure shows the
proportion of forecast error variance of house prices accounted for by innovations in 4 variables.
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Figure 5.9: Forecast error variance decomposition of S&P /Case-Shiller house price index based
on impulse response coefficients in April 2017. In this period, medium TVP-VAR with v = 0.1
is chosen as a model with highest posterior model probability, and therefore the figure shows the
proportion of forecast error variance of house prices accounted for by innovations in 6 variables.
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5.3 Robustness Checks

Several robustness checks were performed, particularly for:
e Krippner’s Shadow Short Rate instead of Wu and Xia shadow rate

e Industrial production index instead of real GDP that was converted to

monthly figures using cubic spline interpolation in the baseline model

e Macroeconomic Advisers’ monthly estimates of real GDP instead of real
GDP

e F'HFA house price index instead of S&P/Case-Shiller house price index

e Different ordering of variables, mainly, switching the order of house prices
and policy rate so as to allow for the immediate effect of monetary policy

shocks on house prices

Robustness checks are provided for the same time periods as the results for the
baseline model and they use only small or medium VARs. Therefore, results
from robustness checks are comparable to those in Figure 5.6. All robustness
checks have a baseline (medium or small) model as a starting point and just
replace one particular variable or change the ordering according to the list above.
We used 10 000 draws from the posterior of VAR coefficients to obtain median
impulse responses and their 16" and 84" percentiles. Monetary policy shock is
approximated by an unexpected decline in the policy rate (Wu-Xia or Krippner’s
shadow rate) of 100 basis points.

Results from the first robustness check are plotted in Figure D.1. Overall,
the impulse responses tell the same story as those from the baseline model (Fig-
ure 5.6). However, there are a few dissimilarities. In August 2011, a period of
the highest policy uncertainty?’, and in April 2017, median impulse responses for
Krippner’s SSR are significantly different from zero only for around 1 year after
the shock, while those obtained from Wu-Xia rate shock are significant in Au-
gust 2011 for all impulse response horizons and become significant in April 2017
after approximately half a year following the shock. This may be caused by the
differences in methodology used to construct both shadow rates that make the

Krippner’s rate more volatile and the changes in Wu-Xia rate more gradual (see

20Gee Figure 4.1.
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Figure 3.2). To conclude which shadow rate should be preferred would require fur-
ther analysis, however, in most applications involving some kind of a shadow rate,
Wu-Xia rate is used. Nevertheless, Krippner (2015) forcefully argues that Wu-Xia
rate is not robust as compared to his Shadow Short Rate, and therefore should be
avoided. Forecast error variance decomposition (in Table D.6) is comparable to
the one from the baseline model, except that now residential investment explains
more variation in house price.

To extend the present analysis, we further compare responses to Wu-Xia rate
shock and the shock to Krippner’s SSR, but now using residential investment
and mortgage average as the variables whose responses are examined. Figures
5.10 and 5.11 display the impulse responses of residential investment (in levels)
and mortgage average (in percentage points) to a 100-basis-point negative shock in
Wu-Xia and Krippner’s shadow rate, respectively. Impulse responses are presented
for the two periods in which the economic policy uncertainty index attains its
minimum and maximum over the whole sample; November 2006 is the period
with minimal uncertainty and August 2011 marks the other extreme.

Higher uncertainty is visible in the RHS panel of Figure 5.11 as it translates
into much wider confidence bands. In case of Wu-Xia rate, confidence bands are
also wider in August 2011, but the pattern is not so apparent as with Kripp-
ner’s SSR. As expected, residential investment increases after an expansionary
monetary policy shock and mortgage rate declines, though neither of responses is
significant except for the response of residential investment to Wu-Xia rate shock
in stable period, which becomes significant after approximately one year.

Robustness checks using industrial production index or Macroeconomic Ad-
visers’ real GDP estimates (Figures D.2 and D.3) yield practically similar impulse
responses as the baseline model, therefore we do not need to describe them fur-
ther. This result is expected, as the monthly estimates of real GDP are designed
to match the quarterly path of real GDP (which was converted to monthly figures
using cubic spline interpolation for the baseline model), and industrial production
index is frequently used in the literature as a measure of real activity. However,
there is one difference concerning forecast error variance decompositions of those
robustness checks and that of the baseline model. Particularly, the role of real
GDP in explaining forecast error variance in house prices in those robustness
checks is much lower and replaced by residential investment.

Next, we assess the robustness of the results to changes in the house price
index. For this purpose, we used FHFA house price index instead of S&P/Case-

Shiller HPI. The main difference between those two indices is that the first uses
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Figure 5.10: Impulse responses of residential investment (first row) and mortgage aver-
age (second row) to a negative 100-basis-point shock in Wu-Xia shadow rate. Impulse
responses in the left-hand-side panel are from November 2006 and those in the right-
hand-side panel are from August 2011.

only the mortgages purchased or securitized by Fannie Mae or Freddie Mac, while
the latter includes also non-agency financed homes by sub-prime mortgages. Im-
pulse responses of FHFA HPI to a 100-basis-point unexpected decrease in the
policy rate are available in Figure D.4. The responses are rather similar to those
from the baseline model, with the exception of December 2013, for which the re-
sponse becomes significant after approximately one year and a half. This partly
contradicts the findings of Eickmeier & Hofmann (2010) who obtained stronger
responses of S&P/Case-Shiller HPI to a monetary policy shock. Results from
FEVD are similar except that now residential investment and CPI gains more
importance.

Lastly, we examine the robustness to changes in the ordering of variables. The
sensitivity of the results with respect to a different ordering of variables should

be examined when using a Cholesky decomposition to identify a monetary policy
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Figure 5.11: Impulse responses of residential investment (first row) and mortgage aver-
age (second row) to a negative 100-basis-point shock in Krippner’s Shadow Short Rate.
Impulse responses in the left-hand-side panel are from November 2006 and those in the
right-hand-side panel are from August 2011.

shock. We choose to order the asset prices (and therefore the house price index)
after the policy rate so that it can react contemporaneously to monetary policy
shocks. This ordering is compatible with Bernanke et al. (2004) who divide the
variables into fast- and slow-moving, and order the fast-moving variables after the
policy rate. Hence, the ordering is now: real GDP, residential investment, CPI,
policy rate, mortgage average and house prices for medium VAR and the same
for small VAR provided that it uses only the four of the above variables (does
not contain residential investment and mortgage average). With this ordering,
monetary policy is restricted from contemporaneously responding to the shocks
in house prices and mortgage rates.

Impulse responses for this ordering are depicted in Figure D.5. These impulses
responses differ in two aspects from the baseline model. First, for October 2008,

confidence bands are larger, and therefore the response becomes significant at
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higher horizons than in a baseline model, and the response in August 2011 is
considerably lower, but still significant. Second, the initial response of house
prices is negative for all examined time periods. The first result is reasonable
since the uncertainty in October 2008 and August 2011 was very high, while the
second result is the consequence of allowing for a contemporaneous response of
house prices to a monetary policy shock. In the baseline model, those responses
are restricted to zero which is the usual assumption of macroeconomic VAR models
that employ house prices. Therefore, we can conclude that the ordering of house
prices after the policy rate changes the initial response of house prices and slightly
changes the results for highly unstable periods, but the preferred ordering is that
of a baseline model because it does not produce negative immediate responses of

house prices to an expansionary monetary policy shock.



Chapter 6
Conclusion

This thesis estimates a TVP-VAR model with stochastic volatility and dynamic
dimension selection in order to assess the link between house prices and monetary
policy. The model is from Koop & Korobilis (2013) and features changing a
TVP-VAR dimension among small TVP-VAR with 4 variables, medium TVP-
VAR containing 6 variables, and large TVP-VAR with 20 variables. We specified
all models to be housing-oriented. Moreover, the model allows for the estimation
of prior shrinkage hyperparameter in a time-varying manner. As expected, the
necessary degree of shrinkage increases with the number of parameters in the
model.

We extended the model by providing a way to perform impulse response anal-
ysis and forecast error variance decomposition. As the model is time-varying in
many aspects, impulse responses and FEVD are also changing over time. There-
fore, impulse responses of house prices, residential investment and mortgage av-
erage to a monetary policy shock are presented for several time periods. Those
periods include both “stable” times with supreme economic conditions and the
times of high uncertainty. The impulse responses are generally more invariant to
different model specifications in stable times and they are also always significant
during those times. Moreover, the behavior of impulse responses seem to be highly
dependent on the value of the shrinkage hyperparameter, and we show that stable
responses can be generated only from models with lower shrinkage, i.e., those that
allow for more variation around the prior means of their coefficients.

Overall, the results indicate that there is a connection between monetary pol-
icy and the housing market, even though it appears to be less significant in periods
of high uncertainty. House prices positively respond to an expansionary monetary

policy shock approximated by the shock in Wu and Xia rate and the response
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is significant except for December 2013, which is a period of QE tapering. The
responses are sluggish and persistent, with the peak median response of 2-4% af-
ter approximately 3 years following a 100-basis-point decrease in the policy rate.
This corresponds to findings in the literature (e.g., Eickmeier & Hofmann (2010)).
Responses of residential investment and mortgage average have the expected di-
rection, although they are found to be insignificant for most of the examined
periods, except for the most stable period of November 2006 where the response
of residential investment is positive and becomes significant after approximately
one year.

Several robustness checks were performed to assess the stability of the results.
The most prominent ones include changing the measure of monetary policy from
Wu and Xia rate to Krippner’s Shadow Short Rate and changing the order of
variables in order to allow for a contemporaneous response of house prices to a
monetary policy shock. Main results are not qualitatively affected, even though
there is one period in which the responses of house prices to Krippner’s SSR are
insignificant, while for Wu and Xia rate they were mostly significant. This period
is the one with the highest uncertainty - August 2011 - in which the disputes in the
Congress over raising of the debt ceiling escalated. Different ordering affects the
immediate response of house prices to a monetary policy shock that is no longer
restricted to zero and becomes slightly negative. Also, the confidence bands be-
come rather wider following this ordering, and therefore, we concluded that house
prices should be preferably ordered before the policy rate to allow for contempora-
neous response of monetary policy to developments in house prices. The preferred
ordering also implicitly restricts house prices from responding immediately to a
monetary policy shock.

Possible extensions for future work are threefold. First, the impulse responses
could be estimated based on an identification scheme that allows for a simultaneity
between monetary policy and house prices. Therefore, house prices could respond
contemporaneously to monetary policy shocks, while monetary policy could react
immediately to house price shocks. This would require using sign or long-term
restrictions. Second, one could use this model to examine the response of house
prices to a monetary policy shock in periods when the policy rate is below the rate
suggested by Taylor rule and immediately after the recession, and check whether
the response is stronger. The idea would be that the central bank does not know
whether it should increase the rates yet, but we get a better picture ex-post from
the data that were not previously available. Lastly, we could repeat the analysis

using the data for the Czech Republic and compare the results.
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Appendix A

Description of variables

Variables used in the empirical part and their transformation codes (Tcode), frequencies in which the data
were downloaded, data sources and the original units. Transformation codes are as follows: if y;; is the original
(untransformed) variable i at time ¢ and y;; is the corresponding transformed variable; 1 - no transformation
(Tit = vir), 2 - first difference (¥ir := yit — Yit—1), 4 - logarithm (73 := logyi:) and 5 - first difference of
logarithm (y;; := log yi; — log yiz—1)-

Variable Tcode Frequency Source Units SA
Real GDP 5 Quarterly FRED Billions of 2009 USD v
S3&P /Case-Shiller U.S. National HPI 5 Monthly FRED Index Jan 2000=100 v
Capacity Utilization: Manufacturing 1 Monthly FRED Percent v
Civilian Unemployment Rate 1 Monthly FRED Percent v
Real Disposable Personal Income: Per Capita 5 Monthly FRED 2009 USD v
Real Personal Consumption Expenditures 5 Monthly FRED Billions of 2009 USD v
Real Private Residential Fixed Investment 1 Quarterly FRED Billions of 2009 USD v
CPI: All Items 5 Monthly FRED Index 1982-1984=100 Vv
Mortgage Debt Outstanding 5 Quarterly FRED Millions of USD
Housing Starts: Total 5 Monthly FRED Thousands of Units v
Total Reserves of Depository Institutions 5 Monthly FRED Billions of USD

M2 Money Stock 5 Monthly FRED Billions of USD v
10-Year Treasury Constant Maturity Rate 1 Monthly FRED Percent

30-Year Fixed Rate Mortgage Average 1 Weekly FRED Percent

Spot Crude Oil Price: WTI 5 Monthly FRED USD per Barrel

S&P 500 Index 5 Monthly Yahoo Finance Index

Producer Price Index for All Commodities 5 Monthly FRED Index 1982=100

Real Broad Effective Exchange Rate 5 Monthly FRED Index 2010=100

CBOE Volatility Index: VIX 5 Daily FRED Index, NSA

Wu-Xia Shadow Rate 1 Monthly Wu's personal website Percent

Industrial Production Index®¢ 5 Monthly FRED Index 2012=100 v
Macroeconomic Advisers’ Real GDP IndexRC 5 Monthly Macroeconomic Advisers Billions of 2009 USD v
FHFA House Price Index®¢ 5 Monthly FHFA Index Jan 1991=100 v
Krippner’s SSRRC 1 Monthly RBNZ Percent

Table A.1: Variables and their transformation codes, available frequencies, data sources and original units. FRED de-
notes the Federal Reserve Bank of St. Louis database (fred.stlouisfed.org), data from Yahoo Finance are available at
finance.yahoo.com, Cynthia Wu’s personal website is at sites.google.com/site/jingcynthiawu/, Macroeconomic Advis-
ers at macroadvisers.com, FHFA stands for the Federal Housing Finance Agency (www.fhfa.gov) and RBNZ for the Reserve
Bank of New Zealand (www.rbnz.govt.nz). SA denotes seasonally adjusted data.


fred.stlouisfed.org
finance.yahoo.com
sites.google.com/site/jingcynthiawu/
macroadvisers.com
www.fhfa.gov
www.rbnz.govt.nz

Appendix B

Results from ADF and KPSS tests

Variable ADF test KPSS test
Constant Constant+trend Constant Constant+trend
Real GDP —2.7458 0.53373%**
S&P /Case-Shiller U.S. National HPI —2.7211 0.81887***
Capacity Utilization: Manufacturing —3.7769™** 0.53908**
Civilian Unemployment Rate —2.2231 1.6708***
Real Disposable Personal Income: Per Capita —2.5254 0.66962***
Real Personal Consumption Expenditures —1.8597 0.66809™***
Real Private Residential Fixed Investment —3.6178** 0.62257***
CPI: All Ttems —1.7654 0.78962%**
Mortgage Debt Outstanding —2.5914* —2.506 1.1891%** 1.04627%+*
Housing Starts: Total —1.1456 —1.271 3.1951%** 0.65145***
Total Reserves of Depository Institutions —2.1347 1.0109***
M2 Money Stock —0.3847 1.2055™**
10-Year Treasury Constant Maturity Rate —1.3076 —2.8114 4.7055%** 0.17914**
30-Year Fixed Rate Mortgage Average —1.1883 —2.3385 4.7951%** 0.21991%***
Spot Crude Oil Price: WTI —1.9414 —1.6737 2.8102%** 0.73161***
S&P 500 Index —1.3242 0.87968***
Producer Price Index for All Commodities —1.4426 0.69251***
Real Broad Effective Exchange Rate —1.478 2.9895%**
CBOE Volatility Index: VIX —2.7826* 0.63069™**
Wu-Xia Shadow Rate —2.324 —2.6363 3.4732%** 0.29798%***
Industrial Production Index®C¢ —3.6739™* 0.27732%**
Macroeconomic Advisers’ Real GDP Index?C —1.95 0.53948***
FHFA House Price Index®C —2.9406 0.78647***
Krippner’s SSRRC —1.7099 —1.4786 3.1088%*** 0.37572%%*

Table B.1: Test statistics from ADF and KPSS tests for variables in levels. Superscript RC denotes variables used
for a robustness check. Columns Constant and Constant+trend indicate which deterministic terms are included
in the regressions. Null hypothesis: ADF test: Variable has a unit root, KPSS test: Series is level (Constant) or
trend (Constant-+trend) stationary. Critical values for test statistics - Constant: ADF test: -3.46 (1%) -2.88 (5%)
-2.57 (10%), KPSS test: 0.739 (1%) 0.463 (5%) 0.347 (10%); Constant-+trend: ADF test: -3.99 (1%) -3.43 (5%)
-3.13 (10%), KPSS test: 0.216 (1%) 0.146 (5%) 0.119 (10%). The asterisks indicate that the null hypothesis can be
rejected at the 10% (*), 5% (**) and 1% (***) significance levels.
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Variable ADF test KPSS test
Real GDP —4.2644™** 0.29269
S&P /Case-Shiller U.S. National HPI —1.9802 1.0364™**
Capacity Utilization: Manufacturing —3.7769™** 0.53908**
Civilian Unemployment Rate —2.2231 1.6708™**
Real Disposable Personal Income: Per Capita —6.2982%** 0.11106
Real Personal Consumption Expenditures —3.2482%* 0.66284**
Real Private Residential Fixed Investment —2.8508* 2.454%H*
CPI: All Ttems —5.6101%** 0.32024
Mortgage Debt Outstanding —3.1327** 0.7499%***
Housing Starts: Total —4.8678%** 0.24555
Total Reserves of Depository Institutions —5.2214%%* 0.16307
M2 Money Stock —5.7601*** 0.16083
10-Year Treasury Constant Maturity Rate —1.3076 4.7055%**
30-Year Fixed Rate Mortgage Average —1.1883 4.7951***
Spot Crude Oil Price: WTI —6.1341%** 0.25996
S&P 500 Index —5.1123%** 0.23703
Producer Price Index for All Commodities —5.3967F** 0.19354
Real Broad Effective Exchange Rate —5.7281%+* 0.24455
CBOE Volatility Index: VIX —7.3573%** 0.026794
Wu-Xia Shadow Rate —2.324 3.4732%**
Industrial Production Index®¢ —3.8986™** 0.10068
Macroeconomic Advisers’ Real GDP Index®¢ —4.3024*** 0.24279
FHFA House Price Index®C —1.5066 0.95728™**
Krippner’s SSRRC —1.7099 3.1088***

Table B.2: Test statistics from ADF and KPSS tests for variables used in the empirical part.
Superscript RC denotes variables used for a robustness check. ADF and KPSS tests include
intercept and not trend. Null hypothesis: ADF test: Variable has a unit root, KPSS test:
Series is level stationary. Critical values for test statistics: ADF test: -3.46 (1%) -2.88 (5%)
-2.57 (10%), KPSS test: 0.739 (1%) 0.463 (5%) 0.347 (10%). The asterisks indicate that the
null hypothesis can be rejected at the 10% (*), 5% (**) and 1% (***) significance levels.



Appendix C

Carter and Kohn algorithm

For the general state-space model of the form:

Y = L1 + &, var(e) =X (C.1)

Bi = p+ Fpiq +u, var(u) = Q; (C.2)

Bit.8., and Py p,., can be calculated using

Biit.sers = e + PueF (FPyeF" + Qud) ™ (Ber — i — F'Bye) (C.3)

Ptltu@t+1 = PE|E - PE'EF,(FPEHF, + QE+1)_1FPE|E (0.4)

where the meaning of S, P; and (;,, is the same as in 4.10 and 4.11. Equa-
tions 4.10 and 4.11 can be obtained from C.3 and C.4 if we realize that in our
model F' = I, Qi1 = ( —1)P,y;, and p = 0.

1
At+1



Appendix D

Additional results, robustness checks

Parameter Value Description
Q@ 0.9963 forgetting factor for DDS probabilities
Amin 0.96 minimal forgetting factor for the time variation in VAR coefficients
L 1.1 weight of the prediction error in the estimation of A
K 0.96 decay factor for the measurement error volatility
a 10 prior variance of intercepts
¥ [10719,1075,0.001, 0.005,0.01,0.05,0.1]  prior shrinkage coefficient
T 40 size of the training sample
P 4 VAR lag length

Table D.1: Summary of parameters employed in TVP-VAR with dynamic dimension selection (DDS).
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forecast forecast  proportion of forecast error variance h periods ahead
error horizon accounted for by innovations in
in h real GDP  house prices  CPI Wu-Xia rate
real GDP 6 0.968 0.02 0.01 0.002
12 0.928 0.048 0.019 0.004
18 0.883 0.08 0.031 0.005
24 0.836 0.113 0.044 0.006
30 0.792 0.144 0.057 0.008
36 0.753 0.171 0.067 0.008
60 0.644 0.250 0.095 0.011
house prices 6 0.619 0.372 0.008 0.002
12 0.654 0.322 0.022 0.003
18 0.673 0.285 0.038 0.004
24 0.675 0.267 0.053 0.005
30 0.667 0.263 0.064 0.006
36 0.655 0.265 0.073 0.007
60 0.606 0.290 0.094 0.010
CPI 6 0.280 0.162 0.556 0.003
12 0.289 0.133 0.574 0.004
18 0.280 0.160 0.554 0.007
24 0.278 0.208 0.505 0.009
30 0.287 0.252 0.451 0.010
36 0.303 0.284 0.402 0.011
60 0.373 0.333 0.282 0.012
Wu-Xia rate 6 0.279 0.528 0.040 0.153
12 0.226 0.510 0.134 0.130
18 0.292 0.385 0.239 0.084
24 0.358 0.300 0.286 0.056
30 0.394 0.269 0.294 0.043
36 0.406 0.273 0.285 0.036
60 0.382 0.341 0.248 0.030

Table D.2: Mean forecast error variance decomposition in October 2008 for small TVP-VAR
with shrinkage parameter v = 0.05. Means were computed using 10 000 draws from the posterior
distribution of parameters and rounded to three decimal places, therefore the numbers in each
row do not have to sum up to unity.
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Impulse responses, robustness check: Krippner’s SSR

December 2013 April 2017

Figure D.1: Impulse responses of S&P/Case-Shiller house price index to a negative
100-basis-point shock in Krippner’s SSR. For November 2006, July 2007, August 2011
and April 2017, impulse responses were generated from the medium TVP-VAR with
v = 0.1. In October 2008 and December 2013, small TVP-VAR with v = 0.05 and
~v = 0.1, respectively, was selected.
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Impulse responses, robustness check: Industrial
production index

December 2013 April 2017

Figure D.2: Impulse responses of S&P/Case-Shiller house price index to a negative
100-basis-point shock in Wu-Xia shadow rate. In the baseline model, real GDP was
replaced by industrial production index. For November 2006, July 2007, August 2011
and April 2017, impulse responses were generated from the medium TVP-VAR with
v = 0.1. In October 2008 and December 2013, small TVP-VAR with v = 0.05 and
v = 0.1, respectively, was selected.
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Impulse responses, robustness check: Macroeconomic
Advisers’ monthly GDP

December 2013 April 2017

Figure D.3: Impulse responses of S&P /Case-Shiller house price index to a negative 100-
basis-point shock in Wu-Xia shadow rate. In the baseline model, real GDP was replaced
by Macroeconomic Advisers’ monthly real GDP estimates. For November 2006, July
2007, August 2011 and April 2017, impulse responses were generated from the medium
TVP-VAR with v = 0.1. In October 2008 and December 2013, small TVP-VAR with
v = 0.05 and v = 0.1, respectively, was selected.
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Impulse responses, robustness check: FHFA house price
index

December 2013 April 2017

Figure D.4: Impulse responses of FHFA house price index to a negative 100-basis-point
shock in Wu-Xia shadow rate. For November 2006, July 2007, August 2011 and April
2017, impulse responses were generated from the medium TVP-VAR with v = 0.1.
In October 2008 and December 2013, small TVP-VAR with v = 0.05 and v = 0.1,
respectively, was selected.
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Impulse responses, robustness check: different ordering of
variables

December 2013 April 2017

Figure D.5: Impulse responses of S&P/Case-Shiller house price index to a negative
100-basis-point shock in Wu-Xia shadow rate. S&P/Case-Shiller house price index is
now ordered after Wu-Xia rate to allow for immediate effects of monetary policy shocks
on house prices. For November 2006, July 2007, August 2011 and April 2017, impulse
responses were generated from the medium TVP-VAR with v = 0.1. In October 2008
and December 2013, small TVP-VAR with v = 0.05 and v = 0.1, respectively, was
selected.
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Figure D.6: FEVD of house prices, robustness check: Krippner’s SSR instead of Wu and Xia
rate.
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Figure D.7: FEVD of house prices, robustness check: Industrial production index (IPI) instead
of real GDP.
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Figure D.8: FEVD of house prices, robustness check: Monthly estimates of GDP produced by

Macroeconomic Advisors instead of real GDP.
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Figure D.9: FEVD of house prices, robustness check: FHFA house
S&P /Case-Shiller HPI.
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XIV

forecast forecast  proportion of forecast error variance h periods ahead
error horizon accounted for by innovations in
in h real GDP  house prices  CPI Wu-Xia rate
real GDP 6 0.974 0.015 0.008 0.002
12 0.934 0.044 0.017 0.005
18 0.891 0.074 0.028 0.007
24 0.851 0.102 0.039 0.008
30 0.816 0.127 0.048 0.010
36 0.786 0.148 0.055 0.011
60 0.708 0.203 0.075 0.014
house prices 6 0.312 0.671 0.014 0.003
12 0.395 0.570 0.030 0.005
18 0.455 0.492 0.046 0.007
24 0.489 0.442 0.060 0.008
30 0.505 0.414 0.071 0.010
36 0.510 0.399 0.079 0.012
60 0.504 0.383 0.097 0.016
CPI 6 0.330 0.022 0.645 0.004
12 0.408 0.065 0.522 0.005
18 0.449 0.114 0.431 0.007
24 0.480 0.153 0.357 0.009
30 0.508 0.181 0.301 0.011
36 0.531 0.197 0.260 0.011
60 0.576 0.227 0.185 0.013
Wu-Xia rate 6 0.127 0.097 0.274 0.503
12 0.276 0.114 0.394 0.216
18 0.346 0.142 0.401 0.111
24 0.370 0.178 0.382 0.071
30 0.369 0.218 0.357 0.055
36 0.361 0.255 0.334 0.049
60 0.353 0.322 0.282 0.043

Table D.3: Mean forecast error variance decomposition in December 2013 for small TVP-VAR
with shrinkage parameter v = 0.1. Means were computed using 10 000 draws from the posterior
distribution of parameters and rounded to three decimal places, therefore the numbers in each
row do not have to sum up to unity.
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XV

forecast forecast proportion of forecast error variance h periods ahead accounted for by innovations in
error horizon . . L .
i L real GDP  house prices residential investment ~CPI  mortgage rate Wu-Xia rate
real GDP 6 0.941 0.032 0.014 0.009 0.001 0.003
12 0.886 0.055 0.024 0.022 0.006 0.007
18 0.819 0.087 0.031 0.042 0.011 0.011
24 0.763 0.110 0.036 0.063 0.014 0.014
30 0.723 0.124 0.042 0.080 0.015 0.016
36 0.695 0.135 0.046 0.091 0.016 0.018
60 0.643 0.161 0.053 0.106 0.015 0.023
house prices 6 0.039 0.905 0.033 0.017 0.002 0.003
12 0.080 0.806 0.063 0.035 0.010 0.006
18 0.123 0.701 0.094 0.054 0.018 0.010
24 0.172 0.597 0.120 0.072 0.024 0.015
30 0.223 0.511 0.133 0.086 0.026 0.021
36 0.267 0.450 0.134 0.095 0.026 0.028
60 0.348 0.357 0.115 0.116 0.021 0.043
residential investment 6 0.033 0.068 0.870 0.017 0.007 0.005
12 0.087 0.102 0.678 0.088 0.023 0.022
18 0.143 0.126 0.545 0.120 0.026 0.041
24 0.183 0.152 0.452 0.131 0.025 0.057
30 0.210 0.176 0.386 0.136 0.023 0.069
36 0.228 0.195 0.340 0.140 0.021 0.075
60 0.285 0.232 0.249 0.148 0.018 0.069
CPI 6 0.154 0.103 0.041 0.694 0.002 0.005
12 0.277 0.106 0.066 0.538 0.006 0.007
18 0.354 0.112 0.071 0.446 0.009 0.009
24 0.414 0.120 0.069 0.376 0.010 0.011
30 0.459 0.129 0.067 0.323 0.010 0.012
36 0.493 0.135 0.064 0.284 0.011 0.013
60 0.554 0.150 0.061 0.209 0.011 0.014
mortgage rate 6 0.521 0.091 0.172 0.099 0.111 0.006
12 0.516 0.232 0.109 0.075 0.061 0.006
18 0.520 0.275 0.088 0.069 0.041 0.007
24 0.518 0.287 0.085 0.069 0.033 0.008
30 0.510 0.288 0.091 0.074 0.029 0.009
36 0.500 0.287 0.098 0.079 0.026 0.010
60 0.474 0.281 0.108 0.097 0.022 0.018
Wu-Xia rate 6 0.103 0.204 0.111 0.154 0.005 0.423
12 0.174 0.198 0.151 0.237 0.008 0.233
18 0.219 0.186 0.161 0.273 0.009 0.152
24 0.242 0.181 0.167 0.286 0.010 0.114
30 0.255 0.183 0.170 0.284 0.011 0.097
36 0.265 0.191 0.169 0.275 0.011 0.090
60 0.293 0.224 0.150 0.241 0.010 0.081

Table D.4: Mean forecast error variance decomposition in April 2017 for medium TVP-VAR
with shrinkage parameter v = 0.1. Means were computed using 10 000 draws from the posterior
distribution of parameters and rounded to three decimal places, therefore the numbers in each

row do not have to sum up to unity.
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