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Abstract

This thesis examines the effects of monetary policy shocks on the housing market.

To this end, TVP-VAR model with dynamic dimension selection and stochastic

volatility is estimated using monthly data for the United States over the period

1999-2017. Moreover, the model features estimating the optimal value of the

Bayesian shrinkage coefficient in a time-varying manner. Since the sample covers

the Zero Lower Bound period, Wu-Xia shadow rate is employed to measure the

stance of monetary policy. To assess the link between housing variables and

monetary policy, impulse responses and forecast error variance decompositions

are provided. However, due to the time-varying nature of the model, they are

estimated only for selected time periods that correspond both to the events that

most likely influenced the path of macroeconomic and financial variables and to

periods of low economic uncertainty. The main results are threefold. First, the

model suggests that monetary policy shocks can contribute to developments in

house prices. Second, the stimulative monetary policy positively affects residential

investment and negatively affects mortgage rates, however, the effects are not

significant due to the large confidence bands of the impulse responses. Third,

higher values of the shrinkage hyperparameter are crucial for obtaining reasonable

impulse responses. Those results are fairly robust to various specifications of the

model.
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Abstrakt

Tato práce zkoumá vliv šok̊u do měnové politiky na realitńı trh. K tomuto

účelu byl odhadnut časově-proměnlivý VAR model s dynamickým výběrem di-

menze a stochastickou volatilitou, který byl odhadnut na měśıčńıch datech pro

Spojené státy v obdob́ı 1999-2017. Model je dále charakterizován výběrem op-

timálńıho časově proměnlivého Bayesovského koeficientu smršťováńı. Protože

model odhadujeme i v obdob́ı nulové spodńı hranice, byla použita Wu-Xia st́ınová

úroková sazba, abychom mohli kvalifikovat postoj měnové politiky. K posouzeńı

vztahu mezi realitńımi proměnnými a měnovou politikou byly odvozeny impulzńı

funkce a dekompozice rozptylu v chybě předpovědi. Avšak jelikož je model časově

proměnlivý, tyto jsou odhadnuty pouze ve vybraných časech, které obsahuj́ı jak

události, jež s nejvyšš́ı pravděpodobnost́ı ovlivnily hodnoty makroekonomických

a finančńıch proměnných, tak i obdob́ı, ve kterých byla ekonomická nejistota

minimálńı. Hlavńı výsledky jsou následuj́ıćı. Zaprvé, model indikuje, že šoky

do měnové politiky mohou ovlivňovat ceny nemovitost́ı. Zadruhé, stimulativńı

monetárńı politika pozitivně ovlivňuje realitńı investice a negativně ovlivňuje hy-

potečńı sazby, avšak tyto efekty nejsou signifikantńı kv̊uli velice širokým pásmům

okolo impulzńıch funkćı. Zatřet́ı, větš́ı hodnoty Bayesovského koeficientu smršťováńı

jsou nezbytné pro źıskáńı rozumných impulzńıch funkćı. Tyto výsledky jsou ro-

bustńı v̊uči r̊uzným specifikaćım modelu.
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Author Bc. Kristýna Brunová

Supervisor prof. Roman Horváth, Ph.D.

Proposed topic Monetary Policy and House Prices in the US: Evidence

from Time-Varying VAR Model

Motivation Studying the effect of monetary policy on house prices has become one

of the main concerns for monetary economists over the past years, especially after the

burst of the U.S. housing bubble in 2007 which triggered the so-called mortgage crisis;

the event considered by many as a major impetus to the outbreak of the 2008 financial

crisis. Prior to these events, i.e. between 2001 and 2005, the key interest rate in the

United States, the federal funds rate (which we refer to as the short-term interest rate or

simply the interest rate), was maintained exceptionally low, well below what the Taylor

rule would have implied. This coincidence motivated researchers to examine the impact

of loose monetary policy on asset prices with the emphasis on the possible creation of

asset price bubbles.

Recent crisis also showed that conventional monetary policy may not be sufficient

to revive the economy - in December 2008, the federal funds rate was pushed to almost

zero and the Fed also bought a huge amount of mortgage-backed securities to decrease

mortgage rates and boost real estate sales, however, neither of those actions significantly

helped to raise the aggregate demand. Moreover, with the policy rate near its effective

lower bound, the Fed had to implement unconventional monetary policies aimed at

lowering long-term interest rates. These policies consisted mainly of large-scale asset

purchases and forward guidance, the term referring to central bank’s signaling of the

likely future path of federal funds rate to the public. Unconventional monetary policy

paid off and the U.S. economy, although moderately, started to grow in June 2009.

House prices (as measured by Case-Shiller U.S. National Home Price Index) increased

by 19% from February 2012 to February 2014 following a clear upward trend since the

beginning of that period.

The aim of this thesis is to investigate whether unconventional monetary policy

implemented by the Fed during the crisis influences U.S. house prices more than con-
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ventional monetary policy due to the long-term policy of low interest rates. Although

unconventional monetary policy undoubtedly helped the U.S. economy, it also created

several potential issues we might have to deal with in the future. The low interest

rate environment forces investors to demand more low-quality assets in order to achieve

higher returns than they would have from buying e.g. the U.S. Treasury bonds. In-

vestors may also invest more in real estate, which can create an upward pressure on

house prices and lead to real estate mispricing - the issue that is also supported by the

evidence of very high U.S. real estate prices relative to the yields coming from the rents

on those properties. Raising the interest rate would then cause the rents to be less com-

petitive, resulting subsequently in a price decrease of the properties. This environment

also encourages banks to give mortgages to less reliable customers, a practice that par-

tially led to the already mentioned U.S. housing bubble after 2000. In this thesis we will

assess how traditional monetary policy influences house prices through the short-term

interest rate and how this connection changes when unconventional monetary policy

operating at the Zero Lower Bound (ZLB) takes place.

Hypotheses

Hypothesis #1: The federal funds rate (either effective or target) has negative

effect on house prices in the United States.

Hypothesis #2: All of the following monetary policy measures have a significant

effect on house prices: 1) shadow policy rate, 2) central bank’s assets, 3) forward

guidance, 4) deviation of the federal funds rate from that prescribed by the Taylor

rule. Further, we expect that the shadow policy rate has a negative effect on house

prices; the Federal Reserve’s assets have a positive effect; and the last policy

measure calculated as the difference between the short-term nominal interest rate

and the Taylor rule implied rate negatively affects house prices in the sense that

a negative difference (loose monetary policy) stimulates the increase in prices and

the opposite holds for a positive difference.

Hypothesis #3: The impact of monetary policy on house prices is greater during

the crisis, when the Federal Reserve operates at very low short-term interest rates

and employs unconventional monetary policy measures, than before the crisis,

when the Fed uses only conventional measures.

Methodology To assess the relationship between monetary policy and house prices

as well as whether it changed during and before the crisis, we will use large time-varying

parameter vector autoregressive models (large TVP-VARs). Regarding estimation and

forecasting, we will follow Koop and Korobilis (2013), who proposed approximate es-

timation methods that do not require the use of MCMC methods and thus reduce
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computational burden. Their approach involves the use of forgetting factors, but in-

stead of setting these factors to some constant value, as many authors do, they estimate

them from the data. Estimated forgetting factors are then be needed in the dynamic

model selection (DMS) - a method for choosing the optimal value of the shrinkage pa-

rameter at different points in time. This method hinges upon treating different values

of the shrinkage parameter as defining different models for which we find the optimal

shrinkage parameters. Another advantage of Koop and Korobilis’ approach except the

increased computational feasibility is that it allows for model switching: the algorithm

uses past predictive likelihoods for the set of variables we would like to forecast to select

a small, medium, or large TVP-VAR at each point in time. Koop and Korobilis (2013)

highlight potential usefulness of such a procedure as it identifies which model forecasts

the best and it might also improve the forecast performance of TVP-VARs of different

dimensions.

Since this thesis aims to clarify the effect of monetary policy on house prices with the

emphasis on the central bank’s long-term policy of extremely low interest rates, we will

face the choice regarding which monetary policy instruments we should include into the

model. As a conventional monetary policy tool, we will use the short-term interest rate.

However, during the crisis, the Fed experienced the so-called Zero Lower Bound period

when the interest rate could not be pushed down further, and therefore it implemented

unconventional policy measures. We will include the Federal Reserve’s assets and the

shadow policy rate to account for these measures in our model. The first variable is

commonly used in the literature as a proxy for unconventional monetary policy and it

also reflects the fact that large-scale asset purchases were extensively used by the Fed

during the Zero Lower Bound period. The shadow rate, first estimated by Wu and Xia

2014, is another convenient measure of unconventional monetary policy: it normally

follows the short-term interest rate, but when the interest rate gets stuck at the Zero

Lower Bound, the shadow policy rate can go negative. It basically shows how the interest

rate would have behaved if it could be negative. We will also compute the deviation

of the federal funds rate from the rate implied by the Taylor rule, which is a suitable

indicator for measuring the monetary policy stance as it can be used not only during

the ZLB period. This indicator seems to be relevant as well: many researchers (most

prominently Taylor, 2007, and 2009) argued that because the deviation of the federal

funds rate from the Taylor rule implied rate was so great after 2000, these unusually low

interest rates accompanied with the provision of large amounts of liquidity encouraged

housing market imbalances prior to the crisis.

Lastly, we will also focus on forward guidance, which was one of the key practices

implemented by the Fed during the crisis. We think that forward guidance plays an

important role in the expectations formation of market participants about the future

interest rates, and as such can eventually influence house prices. Quantifying forward
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guidance is however a challenging task; we will use a method developed in Swanson

(2015), who estimated the forward guidance and large-scale asset purchases components

of each announcement of the Fed’s Open Market Committee and showed that these

components have significant effects on asset prices. The variable we are mainly interested

in, house prices, will be measured using Case-Shiller Home Price Index - U.S. national

index - which is now being published by Standard & Poor’s and is available on their

web site.

Expected Contribution There is a large bulk of literature dealing with the impact

of monetary policy on asset prices. However, any of the yet published studies did not

consider employing large TVP-VARs for estimating the effect. Furthermore, to the best

of our knowledge, any paper did not analyze how the relationship between monetary

policy and house prices changes during the crisis when extraordinary monetary policy

measures are implemented. One of these measures, which is frequently neglected in the

literature, is forward guidance. This type of unconventional monetary policy was one of

the key pillars of Fed’s efforts during the crisis and we believe that analyzing its impact

on house prices through the interest rate channel can provide further insights into the

field. Finally, examining how the zero interest-rate policy affects the housing market

could also help to explain the overpricing in the Czech housing market which can be seen

nowadays. One of the reasons might be almost zero rates on savings accounts that can

force rich individuals to seek other investment possibilities, some of them subsequently

buying real estate.

Outline

1. Introduction - introducing the topic and the aim of the thesis, presenting the mo-

tivation, expected contribution and briefly presenting the main results, outlining

the structure of the thesis

2. Literature review - review of all relevant literature, can have two subsections:

one of them for monetary policy literature and the other for purely econometrics

literature

3. Data - description of the dataset, motivation for using selected variables, data

sources

4. Methodology - description of large TVP-VAR approach: first generally, and then

with respect to the current study, description of the estimation and forecasting

methods which were employed

5. Results - presenting and discussing the results
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6. Conclusion - summary of the results and their relation to the overall aim of the

thesis, discussion of the contribution, motivation for future research
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Chapter 1

Introduction

Over the past few years, developments in house prices have become increasingly

important for monetary economists, especially in the context of monetary trans-

mission mechanism. Evaluating the impact of monetary policy shocks on the

housing market gained further attention after the U.S. housing bubble burst in

2007 which was considered by many observers as a trigger of the subsequent fi-

nancial crisis. Following this event, central bankers were oftentimes accused (e.g.,

by Taylor (2007)) of promoting a too stimulative monetary policy in the early

2000’s with the federal funds rate well below the rate suggested by Taylor rule,

which was claimed to substantially contribute to housing market imbalances.

The aim of this thesis is to assess the effects of a monetary policy shock on

the housing market. We examine the reaction of house prices to an expansionary

monetary policy shock using a TVP-VAR model with stochastic volatility and dy-

namic dimension selection. We extend the Bayesian state-space model of Koop &

Korobilis (2013) in order to generate impulse responses and forecast error variance

decomposition, which is one of the main contributions of this thesis. Time varia-

tion in VAR coefficients allows us to compare the responses of house prices over

time to examine if and how the link between monetary policy and house prices

changed. We then study the behavior of house prices and residential investment

following a monetary policy shock in six different time periods, including both

periods of good economic conditions and the unstable times. Due to the stochas-

tic volatility in the model, variance of shocks can change over time which better

simulates the actual ongoings in the model. Dynamic dimension selection is used

to select one TVP-VAR model in each time from the pool of possible candidates

that all contain the variables of the small TVP-VAR.

We estimate the model on monthly data from January 1999 to April 2017. One
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of the potential problems when estimating a macroeconomic VAR on a sample that

covers both the Zero Lower Bound and non-ZLB periods is that we can no longer

use the federal funds rate to account for the changes in monetary policy, because it

was pushed to nearly zero for the whole ZLB period. Therefore, we decided to use

Wu and Xia shadow rate to approximate for the changes in monetary policy. This

rate serves as an indicator of what would the policy rate be if it could go below

zero. For house prices, we employed S&P/Case-Shiller U.S. National house price

index which is a leading measure of residential real estate prices in the United

States.

The results show that house prices and residential investment respond posi-

tively, though with a delay, to an expansionary monetary policy shock. Moreover,

the response is generally more invariant to different model specifications and sig-

nificant in stable times than in unstable times. Therefore, allowing for time vari-

ation in VAR coefficients seems to be important in quantifying the link between

house prices and monetary policy and its changes over time. It is also shown that

the choice of the shrinkage hyperparameter that controls the degree of variation in

TVP-VAR coefficients around their prior means is crucial for obtaining reasonable

results.

The remainder of this thesis is structured as follows. Chapter two provides

overview of the related literature on the stance of monetary policy and house

prices, while Chapter three describes the data and presents some preliminary

analysis. Chapter four describes the model and the estimation procedure. Chapter

five provides the empirical results and robustness checks. Finally, Chapter 6

concludes and suggests the directions for future research.



Chapter 2

Literature Review

This chapter summarizes relevant literature concerning the effects of monetary

policy on the housing market. It includes all important studies irrespective of

their modeling approach - some of them use VAR methods, while others employ

DSGE models.

Taylor (2007) discusses and also provides an explanation for monetary policy

actions surrounding the housing price boom in the early 2000s. Moreover, he

advices central bankers what to do to prevent future crises. First, he argues

that the volatility reduction in residential construction since the early 1980s was

mainly the result of the more responsive monetary policy to changes in inflation

and real GDP. Accordingly, monetary policy started to be also more systematic

and predictable in 1980s, which helped to keep inflation steadier, and therefore

reduced boom-bust cycles and subsequent interest-rate oscillations, which had

caused volatile housing in the period before 1980. However, he points out that

during 2003-2006, the federal funds rate was lower than it would have been if

the central bankers acted as they did in the so called Great Moderation period

during two previous decades as described above. He thinks that those unusually

low interest rates further increased the (high) demand for housing leading to a

huge house-price inflation. Thus, when the federal funds rate came back to normal

(before-the-reduction) levels in 2006, demand for housing sharply fell, dragging

down both the house-price inflation and residential construction.

To confront his theory with reality, he estimated the equation that links hous-

ing starts to the developments in the federal funds rate on quarterly data from

1959 to 2007, and found that the federal funds rate significantly affects housing

starts, and that this effect is also of a high magnitude and occurs with a lag.

He then used this model to simulate the path of housing starts from 2000 to
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2007 under two different scenarios: first, that the federal funds rate follows its

actual path, and the second, that the federal funds rate follows a Taylor rule

with coefficients of 1.5 and 0.5 on inflation and real GDP, respectively. Under

this specification, alternative paths of the federal funds rate split in the second

quarter of 2002 and merge again in the third quarter of 2006. According to the

results, housing boom under the Taylor-rule prescribed interest rate would have

been of a much smaller magnitude than that occurring when the federal funds rate

follows its actual path. He also argues that the boom would have been reduced

(even with the federal funds rate following its actual path) if the response of the

long-term interest rates to an increase in the federal funds rate would have been

such that it was during the Great Moderation period. However, as the long-term

interest rates adjust according to the expectations of the future short-term rates,

Taylor claims that if, due to the exceptionally low short-term rates, the market

participants believed that the monetary policy response to inflation has changed,

their interest-rate expectations would have declined. Thus, the long-term rates

would not increase similarly as they would have before 2000s following a rise in

the short-term rates with these new expectations. This is further supported by

the fact that policy rule estimates for 2003-2005 display a significant drop in the

responsiveness of the federal funds rate to inflation. Based on this Taylor sug-

gests to implement a policy that is predictable and systematic as the one that was

active during the Great Moderation period, and to adjust the federal funds rate

according to changes in inflation and real GDP, while being careful with adjust-

ments based on other factors, as they may lead to unexpected changes in other

responses in the economy because they are more difficult for market participants

to follow up. Taylor also highlights the importance of clarity and transparency

of the Fed’s actions in resolving the crisis, which is also connected to the forward

guidance policy that the Fed extensively implemented during recent crisis and

that we want to include in the analysis as one of the unconventional monetary

policy measures.

Iacoviello & Neri (2010) assess whether the developments in the housing sector

can be one of the driving forces of the business cycles. To answer this question,

they examined the nature of the housing market shocks and the relevance of

spillovers from the housing market to the economy. They estimated a DSGE model

with nominal and real rigidities on quarterly U.S. data from 1965 to 2006 and

studied the combinations of shocks and frictions that can account for the dynamics

of residential investment and housing prices observed in the data. According

to the results, they attributed the increase in real housing prices to the slower
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technological progress in the housing sector and to the inclusion of a fixed factor

(land) in the production function for new houses. They also acknowledged the

three main forces that can explain a substantial part of the cyclical volatility in

residential investment and housing prices: housing demand and housing supply

shocks, and monetary factors, which can explain about 20 percent of this volatility.

They conclude that the sharp increase in housing prices and residential investment

in the early 2000s, including its reversal in 2005 and 2006, was in a great part

driven by monetary factors, as opposed to a housing boom of the 1970s, which

was most probably driven by a faster technological progress in the non-housing

sector.

As for the transmission of the housing market shocks to the economy, they

argue that nominal rigidities, particularly a wage rigidity, increase the responsive-

ness of residential investment to changes in housing demand and monetary policy,

which in turn increases the sensitivity of output to aggregate demand shocks, be-

cause the fluctuations in residential investment directly affect output. Moreover,

they divided the sample into two subsamples to be able to compare how the mag-

nitude of housing market spillovers changed after the financial liberalization in

the mortgage market in 1980s. Results show that the spillovers from the housing

market to the rest of the economy are substantial and that they also became more

important over time.

Smets & Jarociński (2008) also examined the role of housing market and mon-

etary policy in the U.S. business cycles. After estimating a Bayesian vector au-

toregressive model using the data from 1987 Q1 to 2007 Q2, they tried to forecast

the housing boom and its reversal in the early 2000s based on the observed real

GDP, prices, and short- and long-term interest rate paths. However, with the

benchmark VAR employing only real and nominal GDP developments, they were

not able to explain housing boom in 2000 and its peak in 2006. To obtain a be-

haviour of housing prices and residential investment that would match the data

more accurately, they needed to include the federal funds rate and the long-term

interest rate to the information set, however, the prediction error was still quite

severe. When they focused on the impact of housing demand shocks on the busi-

ness cycles, they found that these shocks significantly influence house prices and

residential investment (which is in line with most of the empirical literature), but

their impact on the performance of the U.S. economy in terms of inflation and

aggregate growth is only limited. Regarding the effects of monetary policy shocks,

the results suggest that they can substantially affect house prices and residential

investment. Thus, the authors conclude that the loose monetary policy of 2002-
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2004 could have contributed to the housing boom in 2004 and 2005, but that its

impacts on the overall economy are limited.

Negro & Otrok (2007) emphasize that it is important to differentiate between

“local bubbles” (with respect to the United States, these are house price bubbles

that emerged only in some states) and “national bubbles”, because the local ones

can be attributed to circumstances specific to each geographic market, whereas

the national ones can be caused by a monetary policy, which is identical across

all states. To examine which increases in the value of housing over mid-80s to

the end of 2005 were idiosyncratic (state-specific) and which can be classified as

a national phenomenon, they employ a factor model using state-level Office of

Federal Housing Enterprise Oversight (OFHEO) house price indexes. They found

that, historically, house price movements are attributable to local factors, while

recently (from the perspective of their dataset) large increases in house prices

that occurred in many states have been substantially driven by a nation-wide

component, even if the local factors still have played an important role in the

formation of those price bubbles. Nevertheless, the common component of the

house price growth showed up to be significant, therefore they assessed to what

extent monetary policy is responsible for this co-movement. To address this issue,

they estimated VAR model with the common component in house prices being

one of the variables, the others measuring monetary policy stance. According to

impulse responses, loose monetary policy increases the housing factor. Moreover,

they constructed a counterfactual scenario to examine how the housing factor

and house-price growth across states would change if there were no monetary

policy shocks from 2001. They conclude that monetary policy shocks seem to

fairly influence house prices, but that this impact is rather small compared to

the magnitude of the house price increase over 2001-2005. Overall, they conclude

that expansionary monetary policy did not cause the housing boom, but they

emphasize that they focused only on the low-interest-rates component that is

due to monetary policy shocks (due to the Fed’s deviations from its historical

policy rule), and therefore the possibility that housing booms can be created in

an environment of exceptionally low interest rates cannot be ruled out.

Eickmeier & Hofmann (2010) note that the previous four papers did not come

to the consistent conclusion regarding the role of monetary policy in the housing

boom, however, they explain those inconsistencies by the differences in sample

periods. They studied the transmission of monetary policy shocks via financial

conditions as well as whether these shocks contributed to the pre-crisis imbalances

in housing and credit markets. Using 1987-2007 quarterly data for the United
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States, they employed a factor-augmented vector autoregressive model (FAVAR)

to be able to examine the interaction between monetary policy and more than

200 financial and asset variables. Their model includes three macro variables

- GDP growth, GDP deflator inflation, and the federal funds rate - and a set

of financial factors. To distinguish between macro and financial shocks, they

imposed both contemporaneous zero restrictions and short-term sign restrictions

on impulse response functions, which are in line with a large number of theoretical

models and are thus frequently used in monetary transmission studies. Further,

they allowed for contemporaneous interaction between policy rates and financial

variables to be able to assess not only the effect of monetary policy shocks on

financial variables, but also how financial shocks alter the path of policy rates.

Their results suggest that monetary policy shocks significantly and persistently

affect property prices, real estate wealth and the private sector debt, while the

effect on the mortgage market, risk spreads in the money market, and the loan

market is strong, but only short-term. Furthermore, monetary policy shocks,

although at a late stage, noticeably contributed to housing and credit markets’

imbalances prior to 2007. As for the effects of financial shocks on the path of policy

rates, they found that negative financial shocks associated with the burst of the

dot-com bubble could significantly contribute to the exceptionally low policy rates

observed between 2001 and 2006, and that the feedback of those shocks via lower

policy rates on property prices have been probably large.

Goodhart & Hofmann (2008) broadly examine the links between money, credit,

house prices, and the economic activity using fixed-effects panel VAR estimated

on 1973-2006 quarterly data from 17 industrialized countries. Results show that

there is a significant multidirectional relationship between those variables, with

money growth significantly affecting house prices and credit, credit influencing

both money and house prices, and house prices having impact on credit and

money. According to the impulse responses, shocks to money, credit, or to the

house prices significantly affect price inflation and aggregate economic activity,

and shock to either GDP, inflation, or to the interest rate significantly affects

house prices, money and credit. Furthermore, the link between house prices and

monetary variables appears to be stronger in a more recent period from 1985

to 2006, which, the authors believe, is caused by the financial system liberaliza-

tions during the 1970s and the early 1980s. Also, shocks to money or to credit

are intensified when house prices are booming. However, the intensification of

both the link between house prices and monetary variables and of the effects of

money and credit shocks is found statistically insignificant, as the authors report
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large confidence bands around the estimated impulse responses. The authors also

suggest to use a counter-cyclical regulatory ceiling on loan-to-value ratios in mort-

gage lending that would stimulate housing during the periods of poor mortgage

growth and low house price inflation, and hinder the creation of housing bubbles

in the opposite periods. The authors believe that such an instrument could partly

solve the problem of regional differences in house prices and credit dynamics when

implementing a monetary policy that is uniform across more regions. However,

they found only a minor correlation between those loan-to-value ratios and the

differences in the episodes of house price increases or booms across countries.

Hloušek (2013) applied a DSGE model of Iacoviello & Neri (2010) to the

Czech economy to analyze the links between developments on the housing market

and the macroeconomy. He used quarterly data from the beginning of 1998 to

the end of 2012. Financial frictions are modelled using collateral constraint that

restricts borrowing capacity and consumer spending. Relaxing the constraint

increases the response of consumption and output to the monetary policy shock,

therefore, monetary policy can have higher impact on real economy if houses

are better collateralizable. From this, Hloušek (2013) concludes that the ability

of monetary policy to influence consumption and output highly depends on the

loan-to-value ratio, and with more accessible loans, the impact of monetary policy

on those variables is stronger, while this does not hold for the impact on inflation.

His results indicate that shocks to consumption, housing technology or housing

preferences are important determinants of fluctuations in real variables, whereas

shocks in inflation target or the cost-push shocks affect mostly nominal variables.

He further argues that the Czech house price boom and bust of 2000s was primarily

caused by housing preference shocks, which are the demand-side shocks, and that

the supply shocks also contributed to the housing market turmoil, but their effect

was much lower.

Another application of DSGE models to housing market and monetary policy

is proposed by Darracq Paries & Notarpietro (2008), but, contrary to the previous

DSGE studies, this one uses an open-economy framework which enables to include

international factors and cross-country spillovers and study the transmission of

housing market and monetary policy shocks both domestically and internationally.

There are two goods in the model: nondurable consumption goods that can be

traded internationally, and residential goods that are non-tradeable. The authors

also included credit market frictions faced by households, because they found them

important for the conduct of monetary policy, as the evidence in the literature

shows that they can significantly influence households’ consumption and home-
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purchasing decisions. With this model at hand, they analyze monetary policy

implications of housing-related shocks and the credit frictions, and the importance

of them for closed and open-economy fluctuations. The model involves the euro

area and the US and is estimated on quarterly data from 1981 to 2005.

Results indicate that there are substantial spillovers from housing market

shocks to the non-residential consumption, which exist because of the collat-

eral channel, and are further affected by the share of borrowers in the economy.

Furthermore, these shocks are the main drivers of the negative cross-country co-

movement of both real house prices and residential investment. The authors also

document that while the collateral channel causes housing shocks to significantly

affect domestic economic activity, it performs relatively poor in transferring those

shocks internationally, as compared to the shocks affecting tradeable consumption

goods. Finally, the authors considered the optimal monetary policy response to

housing shocks and for this exercise they augmented the traditional Taylor rule to

reflect also the house price developments. This new Taylor rule enhanced the em-

pirical fit of the model, and it also showed up to be welfare-improving compared

to the traditional Taylor rule, at least for the U.S. economy.

Williams (2015) focuses on the tradeoff between macroeconomic and financial

stability goals, from which he specifically selects an objective of keeping stable

house prices. Numerous empirical studies report that higher interest rates gen-

erate a decline in house prices, but also in GDP and inflation that can offset

the benefits from lower housing prices. Of course, there does not need to be

a conflict between macroeconomic and financial stability targets if, for example,

both house prices and the overall economy are booming, then higher interest rates

(tighter monetary policy) can help in fulfilling both targets simultaneously. How-

ever, if this is not the case and macroeconomic and financial stability goals differ,

Williams states that the quantitative assessment of benefits and costs from using

monetary policy to regulate house prices should be performed. For researchers

in drawing any conclusions regarding the role of monetary policy for house price

developments, he highlights the importance of proper separation of policy changes

that respond to economic developments from those that are driving those devel-

opments. In this regard, he employs a method developed in Jorda et al. (2014)

and Jorda et al. (2015) who took only countries with exchange rates fixed to some

foreign currency, because those countries are also those that cannot respond freely

to changes in their economic conditions by altering their short-term interest rates,

and therefore their interest rates’ changes are reactions to some other country’s

economic developments and not to domestic economic conditions. This way it is
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possible to examine only the “pure” effect of monetary policy when the effects

of interest rate changes for domestic variables in those countries are examined.

Williams analyzed 17 such countries using annual data from 1870 to 2013 (exclud-

ing the interwar period of 1914-15 and the period of 1973-1980 oil crisis). In the

pooled setting, he found that house prices and real GDP per capita respond neg-

atively to an increase in the short-term interest rate. Inflation response initially

shows a price-puzzling behaviour, and then, after more than one year, inflation

declines. However, Williams mentions that the response of an inflation would

probably be different with a sample consisting of countries which can freely alter

their interest rate paths, because the effect on inflation most probably depends

on each country’s monetary policy regime. He also did not find any evidence

that the monetary policy would have stronger effects during housing or real estate

debt booms. Moreover, he considered a possibility of a structural break that could

occur in such a long sample, however, by replicating the analysis using only the

post World War II data, he obtained only a more negative effect on house prices

and a smaller (but still negative) effect on output after a positive monetary policy

shock. Finally, Williams examined numerous studies focusing on the monetary

policy-house prices link, and reports that the ratio between the magnitude of the

effect on house prices and the magnitude of the effect on GDP appears to be ro-

bust to different sample countries or period specifications, especially across studies

employing a large sample. Based on those empirical studies, he assessed that to

offset an increase of over 50 percent in house price-to-rent ratios that occurred

in the US between 2001 and 2006 with a monetary policy, real GDP per capita

would have to decline by more than 12 percent, which is much more than the 5.5

percent peak-to-trough drop that the U.S. economy experienced during the Great

Recession. He concludes that there is a costly tradeoff between macroeconomic

and financial stability goals in advanced economies when these goals do not co-

incide - positive interest rate shock reduces real house prices but at the expense

of lower output and inflation (for most of the studies, one percent loss in GDP is

accompanied by a four percent reduction in house prices) - and that this result is

robust to all examined studies.

Before the Great Recession, many authors (e.g. Bernanke & Gertler (2001))

argued that the monetary policy should not react to asset price movements. How-

ever, after the huge swings in asset prices during the crisis and a substantial role

of house price developments preceding the crisis, the debate on the role of asset

prices in the monetary policymaking reopened.

Notarpietro & Siviero (2014) focused on house prices and they took a deeper
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look on the role of financial frictions in determining the optimal policy rule. In

particular, they examined if there exists a monetary policy rule that would respond

also to house price movements among other variables and would be social-welfare-

maximizing. Responsiveness of the monetary policy to house price fluctuations

is modelled using a New Keynesian model with a housing sector and households

exposed to financial frictions in the form of collateral constraints that limit the

maximum amount that households can borrow by the value of existing collateral.

Therefore, a degree of financial frictions is determined by the average loan-to-value

ratio (LTV) and by the share of borrowers in the economy. Moreover, there are

two types of households characterized by a different discount factor: patient and

impatient ones, where the latter type of the households has perpetually binding

collateral constraint. According to the results, welfare-maximizing monetary pol-

icy rule entails a reaction to house prices, whose sign and size noticeably depend

on the degree of financial frictions in the economy. Relatively small proportion

of constrained agents implies a welfare-maximizing rule with central bank moving

the policy rate in the opposite direction than the house prices move, irrespective of

the value of the average loan-to-value ratio. However, when the share of borrowers

in the economy increases, the average LTV becomes important in determining the

sign of the policy rate response to house price fluctuations, and with the average

LTV around 90 % or more, it becomes welfare-maximizing to offset house price

increases by setting a higher policy rate. Therefore, according to the authors,

financial frictions play an important role in the assessments of optimal monetary

policy rules.

Lim & Tsiaplias (2016) build on the criticism of previous studies along the

following lines: first, they highlight the importance of regional heterogeneity in

assessing the link between house prices and monetary policy; they argue that

a substantial amount of potentially useful information may be lost if an aggre-

gate house price indicator is used (e.g., a national house price index) because

regional house price differences might be significant. For example, if housing in-

vestors make their investment decisions according to those regional differences,

then certain regions can be more prone to changes in the interest rate condi-

tions, and those effects can even offset each other. Therefore, an aggregation

may result in misleading conclusions about the impact of interest rate changes on

house prices. Moreover, regional differences in labour demand can be potentially

relevant for the house price dynamics. Second, the authors point out that the

overly assumed linearity between interest rates and house prices needs to be ques-

tioned, and they support this view with the evidence of Himmelberg et al. (2005)
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and Kuttner (2012). To overcome those problems, they constructed a model al-

lowing for potential nonlinearities between a house-price-to-income ratio and the

interest rate and also for regional spillovers. Regional house-price-to-income ra-

tios are constructed using Australian regional house price indices that account

also for changes in the housing mix and its quality. Nonlinearities are examined

using a vector-autoregressive model and logistic transition function. This way,

smoothness and threshold parameters are estimated, from which the presence of

an ‘over-reaction’ point is examined, where the response of house prices to the

interest rate significantly changes, and if this point can be classified as ‘hard’ or

‘soft’ depending on whether the change in dynamics upon reaching it is abrupt

or smooth. Estimation revealed that such a ‘transition’ point is present and it

can be considered as being ‘soft’; the transition reflects both how much below the

point interest rates were and how long they stayed below the threshold. Moreover,

regional spillovers are contingent on the interest rates being above or below the

threshold, indicating that housing conditions change from stable to unstable. Be-

low the ‘transition’ point, housing bubble can occur as unstable dynamics create

conditions for housing boom and bust. According to the authors, this has im-

portant implications for monetary policy easing, which, after exceeding a certain

point and for a sufficiently long time, creates a non-negligible risk of housing mar-

ket instability. Finally, the authors document that the results are not robust to

the use of aggregate data (either Australian or the U.S. data), which further sup-

ports their assumption that regional heterogeneity should be taken into account

when examining the house prices-interest rate relationship.

Brito et al. (2016) took a different perspective on the highly-examined rela-

tionship and analytically described global house price dynamics under different

monetary policy scenarios. They used overlapping generations general equilibrium

model to which they included a housing market to be able to consider housing-

wealth effects on aggregate consumption. Their setting assures that aggregate

demand responds to changes in housing wealth and transparently models house

price variations under the presence of rules-based monetary policy (Taylor-rule

reflecting policy). They showed that the policy based on Taylor rule cannot burst

the housing market bubbles that are generated by self-fulfilling upward trajecto-

ries in house prices along with the optimal behaviour of forward-looking agents.

Further, boom (or bust) in house prices is accompanied by the monetary policy

being more (or less) active. They also demonstrates that either the boom or the

bust cannot be mitigated by the monetary authority’s interest-rate feedback rule

that reacts to both inflation and house price developments. Moreover, if such a
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rule would respond more to the house price increases than to the consumer price

inflation, the model solution would be attracted to a liquidity trap, and would

result in the local indeterminacy at the steady-state equilibrium in other than

liquidity trap fixed points.

McDonald & Stokes (2013) represent another paper which aims to shed light

on the causes of the pre-crisis housing bubble, now, however, using the same house

price index - S&P/Case-Shiller index - which we will be using in our analysis. The

authors use a simple VAR approach and perform Granger causality tests to assess

the link between the fluctuations in the fed funds rate and those in the U.S. house

prices, and investigate to what extent monetary policy created the housing bubble.

To this end, they use both 10-city and 20-city monthly aggregate housing price

index and effective federal funds rate from January 1987 to August 2010. Granger

causality tests indicate that there exists a link coming from the fed funds rate to

house price indices, and that this Granger causality is much stronger after 2000.

This corresponds to the view that by keeping the fed funds rate artificially low

during 2001-2004, the Federal Reserve significantly contributed to the creation of

the housing price bubble. Similarly, sharp rise in the fed funds rate in 2004-2006

is argued to be a key driving force of a subsequent house price decline. Findings

also suggest that the relationship between the fed funds rate and house prices

changed after 2000, that, the authors say, could be due to the lack of regulation

or changes in the mortgage-market credit standards.

Smith (2013) uses a DSGE model with housing and financial sector in which

housing market and real economy are connected through a housing-secured debt,

and house price fluctuations are amplified through borrowers and banks’ balance

sheets, implying a self-fortifying credit/liquidity crunch. The main purpose of

Smith’s paper is to evaluate how quantitative easing programmes and equity in-

jections into big banks are successful in reducing the house price troughs. To un-

cover the transmission mechanism of unconventional monetary policies, he divided

banks to two categories: simple and complex banks, and shows how movements in

house prices can significantly affect financing premiums and therefore the produc-

tion. House price movements are then amplified because of an asset redistribution

between simple and complex banks. He found that the effectiveness of unconven-

tional monetary policies is highly dependent on the level of heterogeneity in the

financial sector. Therefore, the channel through which house price disturbances

are amplified within the financial sector is the same as the one through which

unconventional monetary policies are transmitted.
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Data

This chapter provides a description of the data set and data adjustments. Further-

more, lag length selection is discussed and the results from Granger non-causality

tests that were performed according to Toda & Yamamoto (1995) procedure are

presented.

3.1 Data description

We use monthly data for the United States covering the period from January

1999 to April 2017. The sample is limited because the data on one of the key

variables - real private residential investment - are not available before 1999. Due

to the fact that we partly adopt the estimation procedure of Koop & Korobilis

(2013), we construct three housing-oriented TVP-VARs1 that differ in the number

of included variables. Based on the number of variables - ‘dimension’ of each

VAR - we estimate small, medium and large model. The first one comprises

three standard macroeconomic variables: real GDP, consumer price index (CPI)2

and a short-term nominal interest rate, plus nominal house prices. The second

model adds real residential investment and mortgage rate to the four previous

variables and as such resembles Rahal (2016) VAR model of housing and at the

same time contains ‘lens of fundamentals’ for forecasting house prices: residential

1In the following we use the term VAR or TVP-VAR interchangeably when we talk about our
model, but it always means a TVP-VAR, i.e., the VAR with time-varying parameters. “VAR”
was sometimes used to save space but we stress that all the estimated models are those with
time-varying coefficients.

2We prefer using CPI over other aggregate price level indicators to measure inflation, because
CPI is available in monthly frequency (as opposed to e.g. GDP deflator) and central banks
usually target CPI inflation.



3.Data 15

Variable SmallVAR MediumVAR LargeVAR

RealGDP
S&P/Case-ShillerU.S.NationalHPI
CapacityUtilization: Manufacturing
CivilianUnemploymentRate
RealDisposablePersonalIncome:PerCapita
RealPersonalConsumptionExpenditures
RealPrivateResidentialFixedInvestment
CPI:AllItems
MortgageDebtOutstanding
HousingStarts:Total
TotalReservesofDepositoryInstitutions
M2MoneyStock
10-YearTreasuryConstantMaturityRate
30-YearFixedRateMortgageAverage
SpotCrudeOilPrice: WTI
S&P500Index
ProducerPriceIndexforAllCommodities
RealBroadEffectiveExchangeRate
CBOEVolatilityIndex:VIX
Wu-XiaShadowRate

Table3.1: VariablesemployedinallTVP-VARmodels. Theorderingofvariablesinasmall,
mediumorlargebaselinemodelmatchestheorderinginthistable.

investment,mortgageratesandhouseprices(Gattini&Hiebert(2010)).Finally,

largeVARincludesallmedium-VAR(andthereforesmall-VAR)variablesplus

someadditionalmacroeconomicandfinancialvariablesthatshouldcapturethe

overalleconomicoutlookandhelptopredicthouseprices. Acompletelistof

variablesincludedineachTVP-VARmodelisinTable3.1. Below,webriefly

describemainvariablesusedtoassessthelinkbetweenhousepricesandmonetary

policy.

Houseprices

ChangesinnominalhousepricesaregaugedbyS&P/Case-ShillerU.S.National

HomePriceIndexwhichisaleadingmeasureofresidentialrealestateprices

intheUnitedStates. TheindexisacompositeofnineU.S.Censusdivision

homepriceindicesanditintendstomeasurechangesinthemarketvalueofall

existing3single-familyhousesatthenationallevel.HomepriceindicesforallU.S.

Censusdivisionsarecalculatedbasedontherepeatsalesmethodology,whichis

consideredtobethemostreliablemethodforassessinghousepricemovements.

3Meaningthatnewlybuilthousesareexcludedfromtheindexcalculation.
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This method creates the so called ‘sale pairs’ from (single-family) house price

records by matching the original sale price of a house to its new price when the

same house is resold. The difference between those two prices that constitute one

sale pair thus represent the change in the market value of the same house, while

keeping the quality and size of the house unchanged. Only the data for houses that

have been sold at least twice are taken into account and the sale pairs are further

weighted to alleviate the impact of extreme price changes4 on the resulting index.

The index is calculated monthly using the sale pairs for the current month (i.e.,

the month for which we want to calculate the index value) and the two preceding

months that are included to offset delays in data records and to make the sample

size large enough to produce reliable price change averages5. Value of the index

is adjusted to equal 100 in January 2000 and the data are available from January

1975 at e.g. the Federal Reserve Bank of St. Louis database (FRED)6.

Other house price indices for the United States also exist; in empirical re-

search, the house price index (HPI) published by the Federal Housing Finance

Agency (FHFA) is oftentimes used. FHFA computes monthly and quarterly HPI

figures for each U.S. Census division, state and Metropolitan Statistical Area,

and the nationwide HPI. The last one has however a slightly different methodol-

ogy than the S&P/Case-Shiller U.S. National HPI, although it is again based on

repeat sales of all existing single-family properties. Dissimilarities include using

only the data on repeat mortgage transactions for mortgages purchased or secu-

ritized by Fannie Mae7 or Freddie Mac8 to construct FHFA HPI as opposed to

collecting the data on sales prices from county assessor and recorder offices for the

calculation of S&P/Case-Shiller HPI. Moreover, FHFA national HPI uses data

from 50 U.S. states and the District of Columbia, but the S&P/Case-Shiller HPI

misses information on purchase prices from 13 states9. Still, we decided to use the

S&P/Case-Shiller HPI because it covers a broader range of mortgages including

those that do not satisfy the loan purchasing guidelines determined by Fannie Mae

4Non-market, idiosyncratic price changes can occur, e.g., if the original house owner needs to
sell really quickly it results in an abnormally high price which increases the value of the house
relative to the market.

5For more information about the algorithm used to calculate the index, see S&P Core-
Logic Case-Shiller Home Price Indices methodology available at http://us.spindices.com/

index-family/real-estate/sp-corelogic-case-shiller.
6fred.stlouisfed.org/series/CSUSHPINSA
7The Federal National Mortgage Association
8The Federal Home Loan Mortgage Corporation
9Source: www.fhfa.gov.

http://us.spindices.com/index-family/real-estate/sp-corelogic-case-shiller
http://us.spindices.com/index-family/real-estate/sp-corelogic-case-shiller
fred.stlouisfed.org/series/CSUSHPINSA
www.fhfa.gov
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or Freddie Mac (the so called non-conforming mortgages) and also the sub-prime

mortgages.

Residential investment

Another key housing variable is residential investment, which contains expendi-

tures on construction or purchasing of new dwellings. We used the series on

real private residential fixed investment from FRED, available from Q1 1999 with

quarterly frequency. The composition of residential private fixed investment is

displayed in Figure 3.1, and we can see that single family structures make up the

most important part of it implying that changes in single-family housing stock

as measured by S&P/Case-Shiller HPI are likely to be important for residential

investment. There is one feature of Figure 3.1 that is worth noting: all recessions

were preceded by declines in residential investment into single-family dwellings

and followed by strong increases10. This could be partly attributed to the more

favorable conditions that can emerge right after the recession has ended, but the

central bank’s measures designed to offset the recession are still stimulating the

economy. However, it appears interesting that residential investment into single-

family homes (as a percentage of GDP) did not experience similar growth after

the most recent recession as it did after almost all the other recessions. Shleifer

et al. (2015) explains the slow recovery by the ‘investment hangover’ defined as

a situation in which housing capital is overbuilt which leads to lower investment

in such capital. They document an overbuilding of housing capital by 2005 and

argue that it occurred because there was also an investment boom in addition to

house price boom and since this capital is highly durable, it accumulated. Over-

built capital then prevents investment in it because an excess of housing stock

compensates for new investment.

Residential investment is mainly affected by the demand for houses, there-

fore any factors affecting the demand also affect residential investment. Income

is among the most prominent ones making the residential investment to vary

procyclically and be more volatile, while changes in the interest rate are also

important since lower interest rates encourage potential home buyers to take a

mortgage, and thus a monetary policy that affects the interest rate can also in-

fluence residential investment. Of course, house prices are presumably the most

relevant factor that influences the demand and therefore residential investment.

10Except for the recession at the beginning of 1960s after which the increase was not so
significant as compared to other recessions.
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Figure 3.1: Components of residential private fixed investment in structures, 1959-2017,
each as a percentage of GDP. Shaded areas mark U.S. recessions as defined by the
National Bureau of Economic Research.
Source:www.calculatedriskblog.com/2016/05/q1-2016-gdp-details-on-residential-and.
html

Mortgage rate

Mortgage rates also respond to monetary policy that can alter the path of in-

terest rates and at the same time they substantially affect the housing market

because they determine the overall cost of a mortgage and the amount of regular

payments associated with it. Lower mortgage rates make mortgages more attrac-

tive to borrowers, boosting the demand for houses and subsequently residential

investment and, since housing supply is more rigid, lower rates also boost house

prices. Mortgage rates tend to move in the same direction as long-term interest

rates - they mainly follow the 10-year Treasury bond yield. Lower rates usually

occur during a recession, because investors seek safe investment opportunities and

thus increasingly invest in bonds which pushes bond yields down, and as mortgage

rates respond to the 10-year Treasury bond yield, they go down too. Moreover,

as central bank undertakes actions to stimulate the economy during a recession,

short-term (and also longer-term) rates decline which can further contribute to

www.calculatedriskblog.com/2016/05/q1-2016-gdp-details-on-residential-and.html
www.calculatedriskblog.com/2016/05/q1-2016-gdp-details-on-residential-and.html
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lower mortgage rates. This could partly explain the increase in residential invest-

ment observed after every recession11 because cheaper mortgages can encourage

residential investment through channels discussed above. For mortgage rates,

we use the 30-Year Fixed Rate Mortgage Average series retrieved from FRED

and available weekly from April 1971. However, it should be noted that FRED’s

mortgage rate data come from Freddie Mac and thus include only “first-lien prime

conventional conforming home purchase mortgages with a loan-to-value of 80 per-

cent”12.

Wu-Xia rate

As an indicator of the stance of monetary policy, we use Wu & Xia (2014) shadow

federal funds rate13. In standard macroeconomic VAR literature, the federal funds

rate is usually employed as a measure of monetary policy, because it is the Federal

Reserve’s (“the Fed’s”) main monetary policy instrument. It can be lowered to

stimulate the economy or raised when the economy is growing too fast. However,

in December 2008 the Federal Open Market Committee (FOMC) lowered a target

range for the federal funds rate to nearly zero, and therefore moving it down

further to stimulate the economy was no longer an option and the Fed had to rely

on unconventional monetary policy measures such as large-scale asset purchases

and forward guidance. In this zero-interest-rate environment, commonly referred

to as the Zero Lower Bound (ZLB) period, assessing the impact of monetary

policy has become difficult since we cannot use the federal funds rate to evaluate

the effects of monetary policy. This issue was overcome by employing Wu and

Xia rate that is identical to the effective federal funds rate in the non-ZLB period

(i.e., when the target federal funds rate is at least 25 basis points), but in the ZLB

period (from January 2009 to November 2015) it differs from the effective federal

funds rate because it is not lower bounded by zero, suggesting what the path of

the federal funds rate would be if it could evolve to negative values. In December

2015, the FOMC decided to raise the target range for the federal funds rate to 25

to 50 basis points, therefore from this period on the shadow rate is equivalent to

the effective federal funds rate.

There are also alternative measures of the monetary policy stance during the

11See Figure 3.1.
12www.freddiemac.com/pmms/about-pmms.html
13Data are available at sites.google.com/site/jingcynthiawu/home/

wu-xia-shadow-rates.

www.freddiemac.com/pmms/about-pmms.html
sites.google.com/site/jingcynthiawu/home/wu-xia-shadow-rates
sites.google.com/site/jingcynthiawu/home/wu-xia-shadow-rates
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ZLB period, for example, Krippner (2013) shadow short rate (SSR)14. This rate is

based on a two-factor shadow/lower-bound term structure model (SLM), whereas

Wu and Xia rate emerges from a three-factor SLM. We decided to use Wu and Xia

rate in a baseline model because it is the most common choice in the literature,

however, we use Krippner’s SSR as a robustness check. The paths of the effective

federal funds rate, Wu and Xia rate and Krippner’s SSR during our sample period

are plotted in Figure 3.2. We can see that Krippner’s SSR is more negative from

the beginning of the ZLB period to the end of 2014 than Wu and Xia rate, but then

it starts to rise sharply, while the lift off in Wu and Xia rate is more gradual. Wu

and Xia rate is identical to the effective federal funds rate in the non-ZLB period,

but Krippner’s SSR is slightly different because Krippner provides SSR estimates

also in non-ZLB period and claims that his SSR is “essentially equal to the policy

interest rate” (Krippner (2014), p. 3) during this period. Henceforth, we will use

the terms Wu and Xia rate (or Krippner’s SSR) and policy rate interchangeably

because the shadow rate serves as a reasonable indicator for what the level of the

policy rate would be if it could go below zero during the ZLB period.

14Data are available at www.rbnz.govt.nz/research-and-publications/

research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy.

www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy
www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy
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Figure 3.2: Effective federal funds rate and the two shadow rates. Effective federal
funds rate is different from Wu and Xia shadow rate only in the ZLB period from
January 2009 to November 2015.

3.2 Data manipulation

Table A.1 provides us with the description of downloaded data. Several adjust-

ments had to be done to construct the final data set. First, since the variables

that are represented by some index have different base periods (e.g., January 2000

for S&P/Case-Shiller HPI and 2012 for industrial production index), we rescaled

all indices to have 2009 as a base year, so that the average of 2009 observations is

equal to 100 for each index. We chose 2009 as a base year because variables that

appear in real terms are already in 2009 dollars. Moreover, monthly nominal vari-

ables (total reserves of depository institutions, M2 money stock) were deflated by

CPI: All items15 because CPI has also monthly frequency, and quarterly nominal

variables (mortgage debt outstanding) were deflated by GDP deflator16 which is

15Now with base year 2009
16GDP deflator does not appear among variables in Table A.1 because it was not used in the

estimation but only to deflate nominal variables; it was retrieved from FRED and is already
based in 2009.
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availableonlyquarterly. Wheneveritwaspossible,theseasonallyadjustedseries

weredownloaded.

3.2.1 Cubicsplineinterpolation

Next,weneededtounifythefrequencyofthedatabecausesomeserieswereavail-

ableonlymonthly,someonlyquarterly,andwehavealsoonethatispublished

weekly(mortgagerate)andonewithdailyintervals(marketvolatility). Wede-

cidedtoconvertallseriestomonthlyfrequencyasitisthemostcommonone

amongourdata.Dailyandweeklyserieswereadjustedbytakingmonthlyaver-

agesandquarterlydatawereconvertedintomonthlybycubicsplineinterpolation.

Thistechniquecanprovideestimatesbetweenknowndatapointswhichshouldbe

smootherandmoreprecisethanthoseobtainedusingotherinterpolations.Sup-

posethatwehaven+1datapoints(xi,yi)whileitholdsthatx0<x1<···<xn.

Wearesearchingforafunction P(x)thatconnectsalldatapoints:

P(x)=






S1(x), x0≤x<x1

...

Si(x), xi−1≤x<xi

...

Sn(x), xn−1≤x≤xn

byfittingacubicpolynomialSi(x)=ai+bix+cix
2+dix

3,di=0,ineachof

thenintervals.Therefore,wearesolvingfor4ncoefficientsandweknowthatit

holdsthat:

Si(xi−1)=yi−1 and Si(xi)=yi, i=1,...,n

Si(xi)=Si+1(xi), i=1,...,n−1 (innerpoints)

Si(xi)=Si+1(xi), i=1,...,n−1 (innerpoints)

Thoseare2n+(n−1)+(n−1)=4n−2conditions,soweneedadditionaltwo

conditionstobeabletocomputethecoefficientsofcubicpolynomials.Commonly

usedarethesetwoboundaryconditions:

S1(x0)=Sn(xn)=0 (clampedboundaryconditions),or

S1(x0)=Sn(xn)=0 (naturalboundaryconditions)



3.Data 23

Inourapplication,xiaredifferentquartersandyi,i=0,1,...,n,arevalues

ofagivenquarterlyvariableinthosequarters.Forapurposeofcubicsplineinter-

polation,valueineachquarterwillrepresentvalueofthecorrespondingvariable

inmonthlyfrequencyinthefirstmonthofthatquarter,thereforeeachxiwill

denotethefirstmonthofsomequarter. Weneedtodeterminetheremainingtwo

monthlyvaluesforeachquarterbycalculatingai,bi,cianddiforeachpolynomial

betweenthetwosubsequentquarters,andthenevaluatingSi(x)forthetwore-

mainingmonthsxinthatquarter.ThosecalculationsweredoneinMatlabusing

splinefunction.

3.2.2 Transformationofvariables

SinceweareworkingwithBayesianmodels,(non-)stationarityofvariablesisnot

anissue. However,inthemodelofKoop&Korobilis(2013)whichweuse,(at

leastapproximate)stationarityandstandardizationofvariablesisrequiredin

ordertoproducepositive-definitecovariancematrices.Positivedefinitenessofa

matrixisnecessaryforcomputingitsCholeskydecompositionthatisneededfor

drawingfromanormaldistributionwiththiscovariancematrixandforcalculating

impulseresponsesusingarecursiveorderingofvariables17.Totransformthedata,

wefirstdeterminetheorderofintegrationofallvariablestoassesswhichofthem

needtobedifferenced.Tothisend,twocomplementarytestswereemployed;the

AugmentedDickey–Fullertest(ADFtest)withthenullhypothesisthataseries

containsaunitrootandKwiatkowski–Phillips–Schmidt–Shintest(KPSStest)for

thenullofstationarity.Briefdescriptionofbothtestsfollows.

ADFtestestimatesaregression

∆yt=τyt−1+δ+γt+c1∆yt−1+···+ck∆yt−k+ t (3.1)

totestthehypothesisthatτ=0(unitroot)againstthealternativethat

τ<0(stationarity).Numberoflagskcanbedeterminedbyusingaprocedure

ofCampbell&Perron(1991)18. Wecanexcludeinterceptoradeterministictime

trendifwebelievethatδorγareequaltozero.Usually,adrifttermisincluded

becauseitwouldbehighlyrestrictivetotestwithzerointercept,asDavidson&

MacKinnon(1993)noted,andwecanalwaystestforthejointhypothesisthat

17ThisisdescribedinChapter4.
18Weusedthenumberoflagsdeterminedby Rforunitroottestsaccordingtothelengthof
theseries;thenumberoflagswaschosentobe6.
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τ=0andδ=0(unitrootwithoutdrift).Theteststatisticforthenullτ=0is

theusualt-statisticcomputedbydividingtheestimatedτbyitsstandarderror,

however,criticalvaluesofthestandardt-distributioncannotbeusedbecausethe

seriesisnon-stationaryunderthenull.Correctcriticalvaluesweresimulatedby

Dickey&Fuller(1979)andtheyareavailableinanysoftwarethatconductsthe

test.

KPSStestforthenullhypothesisoflevelstationarityusestheequation

yt=rt+ t (3.2)

wherert=rt−1+utisarandomwalkwithfixedinitialvalueandtastationary

error,whileutisassumedtobenormali.i.d. withzeromeanandvarianceσ
2
u.

Nullhypothesisisthatσ2u=0
19whichindicatesstationarity.Ifwewanttotest

foratrendstationarity,wejustincludethetermγtintotheregression3.2.The

statisticforthetestisLMstatisticthatiscomputedusingtheformulathatcan

befoundinmanytimeseriestextbooks,e.g.,Kǒcenda&Čerńy(2014).

TableB.1showstheresultsofADFandKPSStestsforvariablesinorigi-

nallevels. Forvariablesthatareclearlygrowingordeclining20,weincludeda

deterministictrendcomponentγtintotheregressions3.1and3.2toconsidera

potentialtrendstationarityoftheseries,andforthosethatapparentlydonotex-

hibitanylong-runtrend(e.g.,marketvolatility),weestimatedregressionswithout

adeterministictrend.ThisisinlinewithElder&Kennedy(2001)andKǒcenda

&Čerńy(2014)whosuggesttochoosearegressionwithorwithouttrendbased

onavisualinspectionofdataandeconomicintuitionandemploytrendonlyif

theseriesissteadilygrowingordecliningovertime.Therearealsoserieswhose

growthstatusisunknownandcannoteasilybeinferredfromgraphingtheseries

againsttime;forthoseseries,unit-roottestingwasperformedbyestimatingboth

regressions21.

AccordingtoTableB.1,mostseriesinlevelsappeartobenon-stationary22,as

19Thealternativeis,ofcourse,thatσ2u>0.
20Byvisualinspectionofdata
21Therearetwoexceptionsfromtheaboveprocedure-incaseof10-yeartreasuryconstant
maturityrateand30-yearfixedratemortgageaverage,thereisseeminglyadownwardtrend,
butwetestforstationarityusingbothtrendandnon-trendregressionsbecausewebelievethat
thedownwardtrendisonlybecauseoftherelativelyshortsampleperiodused,andtherefore
itshouldnotappearinthelong-run.However,thishasnoinfluenceontheresultssinceboth
testsconcludethatbothvariablesarenon-stationary.
22Resultswerequalitativelyidenticalifwetookthelogarithmofseriesthataresteadily
growingovertime,e.g.,realGDP,tolinearizethetrend.
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we cannot reject the null of a unit root by ADF test at the 5% significance level

(which is usually taken as a threshold), and at the same time we can strongly

reject the null of level (or trend) stationarity by KPSS test. Those series were

transformed by taking log-differences except for the civilian unemployment rate

and the interest rates23 which, although they are clearly non-stationary, remain in

levels as in Bernanke et al. (2004) or Eickmeier & Hofmann (2010)24. There are

also three series for which the ADF and KPSS tests conflict: capacity utilization,

real private residential fixed investment and industrial production index. For

capacity utilization, ADF test strongly rejects the null of a unit root suggesting a

stationarity of the series, but KPSS test rejects level stationarity at the 5% level.

Following Bernanke et al. (2004) and Koop & Korobilis (2013), we decided to use

this series in levels. Besides the consistency with the literature, we can argue that

because the ADF test has low power, rejecting the null can be taken as a severe

evidence against the unit root, and therefore we can make an assumption that the

series is stationary. In case of an industrial production index, we can reject the

null of a unit root at the 5% level by ADF test, however KPSS test strongly rejects

trend stationarity25. Despite this, we decided to take log-differences because it

makes the industrial production index stationary, as confirmed by both ADF and

KPSS tests, and suggests that the original series in levels has a stochastic trend.

The last conflicting case includes residential investment that was steadily growing

from the beginning of our sample (1999), but then it experienced a large decline

following a burst of the housing bubble, and hence we cannot consider it as a

trending variable during the period covered by the data. Following the procedure

of Elder & Kennedy (2001) for variables whose growth status is unknown, we first

include a deterministic trend to regressions 3.1 and 3.2. The result is that although

the ADF test can reject the null of a unit root at the 5% level, KPSS test strongly

rejects trend stationarity. However, if we believed that residential investment is

trend-stationary, as suggested by ADF test and detrended it, we would again get a

mixed evidence from both stationarity tests. Taking log-differences does not help

either, but if we further difference the already log-differenced series, stationarity is

eventually induces, so residential investment appears to be integrated of order 2.

Despite this fact, we decided to avoid those rather extreme transformations due

2310-Year Treasury Constant Maturity, 30-Year Fixed Rate Mortgage Average, Wu-Xia
Shadow Rate and Krippner’s SSR.

24Another reason for using the interest rates in levels is a better interpretation of an interest
rate shock.

25This variable is clearly growing.
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to the difficult interpretation of the results and use the series in levels for which

we obtained the evidence of stationarity at least from ADF test26. Moreover,

transforming all variables so that the resulting series is stationary based on both

ADF and KPSS tests would require taking second log-differences of the S&P/Case-

Shiller house price index because, as will become clear in section 3.3.2, this variable

is apparently I(2). Such transformation would make the interpretation of impulse

responses of this key variable cumbersome, which is why we decided to use first

differences at most when transforming the variables. Transformation codes for all

variables used in the empirical part can be found in Table A.1.

Apart from the transformations, we followed Koop & Korobilis (2013) and

standardized each variable by subtracting off its mean and dividing it by its stan-

dard deviation2728. Table B.2 shows the results of ADF and KPSS tests applied

to the transformed and standardized variables. For most of the variables, both

tests now indicate stationarity. However, for house price indices, civilian unem-

ployment rate, residential investment and interest rates there is still an evidence

of a unit root. Therefore, we set the prior mean29 such that for those variables the

coefficients on their first own lags are 1 to express the prior belief that they follow

a random walk. There are also three variables for which the tests contradict -

capacity utilization, real personal consumption expenditures and mortgage debt.

For those variables, the coefficients on the first own lags are set to 0.95 to reflect

a high degree of persistence while still acknowledging the stationarity indicated

by ADF test.

Table 3.2 presents descriptive statistics of transformed and standardized vari-

ables. We can see that all variables that are still non-stationary have notably

different means from zero than those that were confirmed to be stationary. More-

over, their standard deviations are higher as compared to stationary variables. The

highest standard deviation can be observed for residential investment because it

remained in levels and was only standardized. Almost all variables appear to be

26Whether or not the resulting series is stationary is not of immense importance for the
estimation because we can always adjust the prior mean of VAR coefficients accordingly to
equal 1 for the first own lags of non-stationary variables. However, the transformations help
in producing reasonable covariance matrices in terms of positive definiteness. Also, Koop &
Korobilis (2013) transformed the series to be only “approximately stationary” (Koop & Korobilis
(2013), p.30).

27This is usually done in factor augmented vector autoregressive models, see e.g., Eickmeier
& Hofmann (2010).

28Following Koop & Korobilis (2013), means and standard deviations were computed using a
training sample of the initial 40 observations.

29Prior mean is described in detail in Chapter 4.
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non-normal as the null hypothesis of normality can be rejected by Shapiro-Wilk

test even at the 1% significance level. However, there exist few exceptions to this:

for housing starts, we cannot reject the null of normality at any possible signif-

icance level, and for Macroeconomic Advisers’ real GDP index30, we can reject

the null of normality at the 10% level (p-value = 0.061) but we cannot reject it

at the 5% level, therefore this variable could be considered normally distributed.

Interestingly, transformed and standardized monthly estimates of real GDP are

closer to normality than (similarly transformed and standardized) quarterly GDP

which was, however, converted to monthly figures using a cubic spline interpo-

lation before it was transformed and standardized. Except for this, values of all

statistics are close to one another for the two GDP measures. Finally, our key

variables for assessing the stance of monetary policy, Wu and Xia shadow rate and

Krippner’s shadow short rate, are also comparable, even though Krippner’s SSR

has a larger minimum which is also apparent from Figure 3.2 and caused probably

by differences in shadow/lower-bound term structure models used to generate the

shadow rates.

30Monthly estimates of real GDP.
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Variable mean std.dev min max median
Shapiro-Wilk

statistics

Real GDP −0.192 0.944 −4.263 2.306 −0.085 0.919∗∗∗
S&P/Case-Shiller U.S. National HPI −2.140 4.412 −16.009 6.249 −0.846 0.919∗∗∗
Capacity Utilization: Manufacturing −0.499 0.992 −3.780 1.020 −0.397 0.916∗∗∗
Civilian Unemployment Rate 2.694 2.923 −1.082 9.195 1.902 0.878∗∗∗
Real Disposable Personal Income: Per Capita −0.150 1.382 −11.327 7.483 −0.090 0.647∗∗∗
Real Personal Consumption Expenditures −0.208 0.709 −2.626 4.020 −0.223 0.937∗∗∗
Real Private Residential Fixed Investment −3.641 11.495 −21.379 18.406 −3.722 0.953∗∗∗
CPI: All Items −0.152 1.369 −9.072 5.243 −0.117 0.891∗∗∗
Mortgage Debt Outstanding −0.509 2.540 −13.400 11.408 −0.545 0.886∗∗∗
Housing Starts: Total 0.010 1.811 −4.824 5.096 −0.003 0.997

Total Reserves of Depository Institutions 0.272 1.486 −3.128 14.382 0.113 0.439∗∗∗
M2 Money Stock −0.024 1.074 −2.533 5.711 −0.125 0.908∗∗∗
10-Year Treasury Constant Maturity Rate −3.296 2.367 −7.257 2.067 −3.065 0.962∗∗∗
30-Year Fixed Rate Mortgage Average −3.620 2.478 −7.513 1.982 −3.167 0.955∗∗∗
Spot Crude Oil Price: WTI −0.142 1.034 −4.124 2.266 −0.018 0.964∗∗∗
S&P 500 Index 0.152 0.912 −3.872 2.277 0.264 0.968∗∗∗
Producer Price Index for All Commodities 0.052 1.249 −5.891 2.913 0.154 0.935∗∗∗
Real Broad Effective Exchange Rate −0.360 1.500 −4.932 6.487 −0.374 0.983∗∗∗
CBOE Volatility Index: VIX 0.039 1.198 −2.800 5.481 −0.053 0.938∗∗∗
Wu-Xia Shadow Rate −2.120 1.737 −4.997 1.195 −2.399 0.941∗∗∗
Industrial Production IndexRC 0.014 1.391 −9.337 2.989 0.140 0.865∗∗∗
Macroeconomic Advisers’ Real GDP IndexRC −0.091 0.905 −3.171 2.709 0.022 0.988∗
FHFA House Price IndexRC −1.193 2.773 −11.950 3.295 −0.311 0.870∗∗∗
Krippner’s SSRRC −2.191 1.899 −6.000 1.294 −2.424 0.967∗∗∗

N = 220

Table 3.2: Descriptive statistics for all variables used in the empirical part. Superscript RC denotes variables used
for a robustness check. The last column reports test statistics from Shapiro-Wilk test for normality (null hypothesis
is that the data come from a normally distributed population). The asterisks indicate significance at the 10% (*),
5% (**) and 1% (***) levels.
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3.3 Preliminary analysis

3.3.1 Lag order selection

Frequentists usually choose VAR order based on information criteria including

Akaike, Schwarz and Hannan-Quinn information criterion, final prediction error,

or based on the sequential likelihood ratio and Lagrange multiplier tests. However,

those lag order selection criteria mostly do not agree on the optimal lag number,

so it is important to decide which criterion should be trusted based on a partic-

ular application and purpose of VAR. In this regard, Ventzislav & Kilian (2005)

showed that for constructing the most accurate structural and semi-structural

impulse response estimates, Akaike information criterion (AIC) for monthly data

and Hannan-Quinn (HQC) criterion for quarterly data31 is the most preferred

criterion because it yields the lowest ratio of mean-squared error (MSE) of the

impulse response estimates to the MSE obtained by using the true lag order.

Bayesians, on the other hand, typically avoid using information criteria and

select the lag length based on data frequency32 or their prior belief about the

actual ongoings in the system. The selected lag length is conservative and rather

high when the frequency of the data is higher or the variables are persistent33.

This would usually not be possible in frequentist framework due to the issue of

overparameterization. Bayesians deal with overparameterization by imposing a

structure on the prior variance of lagged coefficients such that the coefficients are

more tightly centered around zero34 at higher lags. This actually makes sense

because for most economic time series, recent observations convey more informa-

tion about their future values than the historical ones. Considering the Bayesian

approach and the periodicity of our data, we should employ 12 lags and select

the prior with diminishing importance of VAR coefficients as the lag length in-

31With the exception of small samples (up to 120 quarters) for which Schwarz information
criterion (SIC) should be used.

32E.g., 4 lags for quarterly data and 12 lags for monthly data.
33For example, Leeper (1997) used 18 lags when estimating a Bayesian VAR with monthly

data.
34If the prior mean of the coefficient is zero, ‘tightly centered’ means that its prior variance

is lower.
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creases. However, since we are using a TVP-VAR model, we would have to draw

20·(1+12·20) = 4820 coefficients for the large VAR for each t, t = 1, . . . , T , which

would result in an immense computational burden. Therefore, we opted for 4 lags

which is also the optimal lag length selected by SIC for the medium VAR3536. As

demonstrated in Schwarz (1978), SIC can be interpreted as a large-sample version

of Bayes procedures that choose a model based on the posterior model proba-

bilities37, so that our selection is compatible with Bayesian framework. Banbura

et al. (2010) also utilized SIC in the context of large Bayesian VARs with monthly

frequency and showed that the specification with the lag order selected by SIC

performs well in their forecasting exercises.

3.3.2 Granger causality

To gain more insight into the underlying process, Granger (non-)causality38 tests

were performed. This concept of causality was developed by Granger (1969) and

centers around the idea that a cause has to come prior to its effect. Therefore, if

variable x affects variable y, past values of x should help in predicting y. Formally,

x is said to Granger-cause y if in a model

yt = α0 + α1yt−1 + · · ·+ αpyt−p + β1xt−1 + · · ·+ βqxt−q

we can reject39 the null hypothesis that βi = 0, i = 1, . . . , q. Rejecting the null

implies that the past values of x contain useful information about the current

value of y, beyond and above the information that is already included in the past

values of y.

In testing for Granger non-causality, we proceed according to Toda & Ya-

mamoto (1995) procedure and its step-by-step explanation provided by Giles

(2011). Toda & Yamamoto (1995) showed how to estimate VAR in levels and

test general restrictions on its parameters even if the variables in VAR are in-

tegrated or cointegrated of any order, and therefore developed a way of testing

for Granger non-causality with non-stationary data. Stationarity is required to

35Selection criteria employed with the upper bound of 12 lags.
36For the small VAR, SIC suggests 3 lags and for the large VAR it suggests using only 1 lag,

although in case of the large VAR, SIC could not be computed for higher lags than 10 due to
the overparameterization.

37Given a linear model with i.i.d. observations.
38We use a term ‘non-causality’ because the null hypothesis is that one variable does not

Granger-cause the other.
39Usually, the 5% significance level is taken as a threshold.



3. Data 31

produce test statistics that converge to a convenient limiting distribution; how-

ever, if some of the variables are non-stationary, standard asymptotic theory is

not valid and Wald test statistic computed to assess the null hypothesis above

would not have the asymptotic chi-square distribution under the null (Lütkepohl

(2007)). We decided to use this procedure because even after we transformed the

data, there are some apparently non-stationary variables40 that would make the

test statistic used to evaluate the null of Granger non-causality not to follow any

appropriate distribution, even asymptotically.

We choose to examine Granger causality among variables of the medium VAR

that includes the variables41 that are fundamental for predicting house prices

(Gattini & Hiebert (2010)). The most important thing is to use the variables in

(log-)levels, i.e., not to difference the data even if they are non-stationary. There-

fore, we employ log-levels of real GDP, house price index, residential investment

and CPI, and levels of mortgage and Wu and Xia rates.

Following Toda & Yamamoto (1995) and Giles (2011), our testing for Granger

non-causality then proceeds as follows:

1. Determine the maximum order of integration among variables.

Below we discuss the order of integration of each medium-VAR variable

separately. Results from ADF and KPSS tests to which we below refer were

already assessed in Table B.1 and in the corresponding discussion.

Real GDP Clearly I(1); ADF and KPSS tests both indicate that it is non-

stationary in log-levels, but it becomes stationary when we first-difference

it.

S&P/Case-Shiller house price index Appears to be I(2), because it exhibits

non-stationary behavior in log-levels and even in log-differences as both

ADF and KPSS tests agree, but when we difference it twice, it finally

becomes stationary according to the tests.

Residential investment Seems to be I(2), even though the ADF test for a

series in log-levels rejects the null of a unit root at the 5% level, because

KPSS strongly rejects stationarity. First differences are not stationary

either, however, taking second log-differences finally results in a series

that is marked stationary by both tests.

40This is of course caused because we refused to use ‘extreme’ transformations, like e.g. double-
differencing the interest rates.

41List of variables included in the medium VAR can be found in Table 3.1.
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CPI Clearly I(1) and the reasoning is similar as in the case of real GDP.

Mortgage average Also I(1) as ADF and KPSS tests both conclude that it

is non-stationary in levels and stationary in first differences.

Wu and Xia rate Clearly non-stationary in levels, however, first-differencing

induces a conflict in both tests: ADF test cannot reject the null of

a unit root at the 5% level, while KPSS concludes that the series is

level stationary. We could argue that because the power of ADF test

is presumably low and its test statistic is close to the 5% critical value

(test statistic is -2.8573 and 5% critical value is -2.88), rejection of the

unit root null by ADF test could be assumed as well and the first-

differenced series could be called stationary, resulting in Wu and Xia

rate being integrated of order 1. Fortunately, it does not make any

difference whether this series is actually I(1) or I(2)42 since we are in-

terested only in the maximum order of integration among the variables,

which is indeed 2 because of the S&P/Case-Shiller house price index.

To summarize, we found out that the maximum order of integration among

our variables is 2. We denote it by m, therefore, m = 2.

2. Set up the VAR in (log-)levels and determine the optimal lag length p using

information criteria.

Our VAR contains the following variables: (y, hpi, rinv, cpi, ma, ir), where

y, hpi, rinv, cpi are the log-levels of real GDP, house price index, residential

investment and CPI, respectively, and ma and ir are the levels of mortgage

average and Wu-Xia rate. We also included an intercept to each equation.

As Giles (2011) emphasizes it is crucial to set up the VAR in (log-)levels and

not to difference any variables, regardless of what we found in the previous

step.

Next, we need to determine the optimal lag length of our VAR in (log-)levels.

For this purpose, information criteria (AIC, SIC, HQC) were computed for

the lags up to 12. The final lag length was chosen to be 4 according to

SIC which is also favored by Giles (2011). However, when we check the

residuals for autocorrelation using the Ljung-Box Modified Portmanteau

test for multivariate series, we find that there is no autocorrelation from

p = 7 onwards, so we redefined the VAR lag length to p = 7. This VAR is

42Second differences are marked stationary by both tests.
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alsodynamicallystableasalltheeigenvaluesofthecompanioncoefficient

matrixareinsidetheunitcircle.

3.EstimatetheVARwithselectednumberoflagspandaddmadditionallags

ofeachvariableintoeachequation. ThentestforGrangernon-causality

usingonlythefirstplags.

WeestimateVARwithvariables (y,hpi,rinv,cpi, ma,ir)and9lags,

becausep=7isassumedtobetheoptimallaglengthandm=2isthe

maximumorderofintegrationamongvariableswhichwasdeterminedin

step1.NowwetestforGrangernon-causalityasfollows.Foreachpairof

variablesXandYintheVAR,X=Y,wetestthatthefirst7lagsofX

intheequationforYarejointlyequaltozerousing Waldtest. Thenull

hypothesisisthatX doesnotGrangercauseY. Thecoefficientsforthe

extramlagsarenotincludedinthetestbecausetheyarethereonlyto

fixuptheasymptotics(Giles(2011)). Underthenullhypothesis,thetest

statisticisasymptoticallychi-squaredistributed.Rejectionofthenullata

sufficientlylowsignificancelevel(usually5%)canbeconsideredasafirm

evidenceofGrangercausalityfromXtoY.

Table3.3revealstheresultsofallpairwiseGrangernon-causalitytests. Wecan

seethatthereisareallystrongevidencethatrealGDPGranger-causesallofthe

remainingvariables,asthenullhypothesisthatthelaggedcoefficientsofrealGDP

arejointlyzerocanberejectedinallequationsatanypossiblesignificancelevel.

Thesamesituationoccurswithresidentialinvestmentwhichisnotsosurprising,

giventhatitisapartofGDP.DevelopmentsinhousepricesGranger-causereal

GDPandresidentialinvestment,asthetestsuggests. Moreover,pastvaluesof

CPIhelptopredictthepolicyrate43.Thisalsoagreeswitheconomicintuition,as

monetarypolicyisbelievedtorespondtoCPIinflationandGDPthatareboth

showedtoGranger-causethepolicyrate.Interestingly,mortgageaveragedoesnot

Granger-causehousepricesasthenullcouldnotberejectedatthe5%level,even

thoughthereisastrongevidencethatitGranger-causesresidentialinvestment.

Importantlyforouranalysis,thenullhypothesisthat WuandXiaratedoesnot

Granger-causehousepricescanberejectedevenatthe1%level,implyingthat

themonetarypolicyactionsmayaffectthedevelopmentsinhouseprices,even

thoughwecannotassessthemagnitudeorthedirectionofsuchaneffectfrom

Grangercausalityanalysis. Forthis,wehavetouseothertools,forexample

43Measuredby WuandXiarate.
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y→ hpi y→ rinv y→ cpi y→ma y→ ir

0.0000 0.0000 0.0000 0.0000 0.0000

hpi→ y hpi→ rinv hpi → cpi hpi → ma hpi → ir

0.0186 0.0007 0.0824 0.3766 0.4243

rinv→ y rinv→ hpi rinv→ cpi rinv→ma rinv→ ir

0.0000 0.0000 0.0000 0.0000 0.0000

cpi → y cpi → hpi cpi → rinv cpi → ma cpi→ ir

0.3013 0.4914 0.7639 0.3680 0.0002

ma→ y ma → hpi ma→ rinv ma → cpi ma→ ir

0.0117 0.2141 0.0000 0.3251 0.0021

ir → y ir→ hpi ir→ rinv ir → cpi ir → ma

0.2058 0.0032 0.0021 0.1896 0.2329

Table 3.3: P-values from Granger non-causality tests. Variables: y - logarithm of real
GDP, hpi - logarithm of house prices, rinv - logarithm of residential investment, cpi
- logarithm of CPI, ma - mortgage rate in levels and ir - Wu-Xia rate in levels. Null
hypothesis in each X → Y test is that X does not Granger-cause Y. Significant (at
least at 5%) tests and their p-values are in bold.

the impulse response functions. However, the link between the policy rate and

house prices is not bi-directional (“feedback”) because the null that house prices

do not Granger-cause the policy rate could not be rejected at any reasonable

significance level. A significant bi-directional Granger causality can be found

between house prices and residential investment and between mortgage rates and

residential investment. Finally, house prices are also revealed as an important

predictor for real GDP. However, results from Granger non-causality tests should

be treated with caution because they are dependent on which variables appear in

the VAR, seasonal adjustment of the data, presence of measurement errors, etc.

Therefore, deriving any definite conclusions from those tests would be misleading.



Chapter4

Methodology

Inthischapter,wedescribehowtheTVP-VARmodelwithstochasticvolatility

wasestimatedandhowweextractedimpulseresponsesandcalculatedforecast

errorvariancedecompositions.

4.1 Briefdescriptionofthemodel

ThealgorithmforestimatinglargeTVP-VARwithstochasticvolatilitywasde-

velopedbyKoop&Korobilis(2013),andwefollowtheirnotationbelow. The

modelisthestate-spacemodeloftheform:

yt=Ztβt+ t (4.1)

βt=βt−1+ut (4.2)

where tisi.i.d.N(0,Σt)andutisi.i.d.N(0,Qt).tandusareassumedtobe

independentofoneanotherforallsandt.Equation4.1iscalledtheobservation

equationbecauseitlinkstheunobservedstatesβttoyt,thatis,fort=1,...,T,

M ×1vectorofobservationsonM timeseriesvariables. Equation4.2isthe

transitionequation,whichspecifiesthelawofmotionfortheunobservedstate

variable.Thematrixthatlinkstheunobservedstatestoyt,t=1,...,T,is

Zt=










zt 0 ...0

0 zt
...

...
...
...
...0

0 ... 0 zt









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M×KmatrixwithK=M(1+pM)andztbeingavector
1ofanintercept

andplagsofeachoftheM variables.βt,t=1,...,T,isthereforeaK×1vector

oftime-varyingVARcoefficientsandweassumethatthosecoefficientsevolveas

randomwalks.

TVP-VARswithstochasticvolatilitycanbeestimatedbycombiningGibbs

samplingand MetropolisHastings(MH)algorithm,whereasthelatterisused

fordrawingstochasticvolatilitiesfromtheirposteriordistribution. Briefly,the

algorithmworksasfollows(foradetaileddescription,seeAppendix).First,the

researcherneedstoselectthespecificationforΣtandQt,thepriorfortheinitial

conditions(priorforβ0andforthefreeelementsofΣ0andQ0,whichdependson

thenatureofstochasticvolatilityassumedbytheresearcher)andthepriorforany

remainingparametersofthemodel(e.g.,ifthereisadriftterminthetransition

equation).Next,βt,t=1,...,T,issampledfromitsconditionalposterior,given

Σt,Qtandtheremainingparametersofthemodel.Inthisstep,usuallyamulti-

movesamplerproposedbyCarter&Kohn(1994)isused.Conditionalonβt,Qt

andtheremainingparametersofthemodel,Σt,t=1,...,T,issampledfromits

conditionalposterior.Then,conditionalonβt,Σtandtheremainingparameters

ofthemodel,Qt,t=1,...,T,issampledfromitsconditionalposterior.Sampling

ΣtandQtinvolvesMetropolisHastingsalgorithmifanon-linearlawofmotion

forstochasticvolatilitiesisassumed.Finally,conditionalonβt,ΣtandQt,the

remainingparametersofthemodelaresampledfromtheirconditionalposteriors.

However,theaboveapproachisverytime-demanding,especiallyforlarge

models,forwhichthecomputationalburdencaneasilybecomeinsurmountable.

Therefore,Koop&Korobilis(2013)suggestedtoreplaceΣtandQtbyestimates

andthendrawβfromitsposteriordistribution,whichincaseofCarterandKohn

algorithm,amountstodrawingrepeatedlyfromnormaldistributionswithknown

meanandvariancetogetonedrawofβt,t=1,...,T. ReplacingΣtandQt

byestimatesisachievedbyusinganExponentially Weighted MovingAverage

(EWMA)estimatorforΣandforgettingfactorsforQt,bothofwhichareex-

plainedbelowduringthedescriptionofstepsinwhichtheyenterthealgorithm.

ThisavoidsusingMCMCmethods,andthusconsiderablyreducesthecomputa-

tionalburden.Inthefollowingwedescribehowtoestimateβandselectthebest

modelineachtimefromthoseofdifferentpriorshrinkageparametersanddifferent

dimensions. Themodelfeaturesdynamicdimensionselectionandtime-varying

coefficients,thereforeKoop&Korobilis(2013)callitTVP-VAR-DDS.

1Byvector,wealwaysrefertothecolumnvector;thereforeztisarowvector.
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4.2 Estimation of TVP-VAR-DDS

In this section we describe how we adjusted the algorithm of Koop & Korobilis

(2013) to be able to draw βt, t = 1, . . . , T , from its posterior distribution, and

subsequently to perform impulse response analysis and provide forecast error vari-

ance decompositions. We had to adjust the algorithm, because Koop and Korobilis

focused on iterated forecasts of their model and its forecast performance as com-

pared to other models, but our aim is not on forecasting. Individual steps of our

algorithm are discussed below.

4.2.1 Kalman Filter with Forgetting Factors

Now consider we have one TVP-VAR model of the form 4.1 and 4.2 with the

prior for the initial condition β0 ∼ N (b0, P0), where the form of b0 and P0 will be

specified below, and the initial condition Σ0 on Σt. We do not need to impose the

initial condition on Qt, because the algorithm uses forgetting factors to remove

the need for estimating Qt, as it soon becomes clear. Kalman filter is a recursive

algorithm that provides the estimate of the state variable and its variance for each

time period, given information up to that time period. The estimate of the state

variable at time t given information up to time t is denoted βt|t and its variance Pt|t.

To calculate those, the algorithm needs to be supplied with the initial conditions

β0|0 and P0|0 and with values of all the parameters of the state-space model, which

in our case reduce to Σt and Qt, t = 1, . . . , T .

Initial conditions β0|0 and P0|0
β0|0 is set equal to the prior mean of β0, b0, while P0|0 is set equal to its prior

variance, P0. Koop & Korobilis (2013) stressed the importance of choosing the

prior for β0 in the context of TVP-VARs, because in those models, the number

of parameters is much higher than the number of observations, and therefore

obtaining reasonable results hinges upon having an adequate prior. Therefore,

they employed a Normal prior for β0 that is similar to the Minnesota prior (see

e.g., Doan et al. (1983)), and, if there is no time variation in the parameters, this

prior will be the same as the Minnesota prior in a VAR with constant coefficients.

We adopted similar prior for β0, but we slightly changed its structure to make it

compatible with our application. In this prior, prior mean E(β0) should be 0 for

variables that are stationary and 1 for those that follow a random walk. Koop &

Korobilis (2013) claim that they transformed all variables to stationarity, so they

set E(β0) = 0. We did not want to transform some variables by taking second
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log-differenceseveniftheywereobviouslyI(2)ortotransformtheinterestrates

thatweremainlyI(1)duetotheeasierinterpretationofresults,sowestillhave

somevariablesthatcanbeshowntofollowarandomwalk(seeTableafterthe

transformation. Forthosevariables,wesetE(β0)to1forcoefficientsontheir

firstownlagssoastoshrinktowardsarandomwalk,and0otherwise.Namely,

variablesthatclearlyfollowarandomwalkevenafterthetransformationare2:

S&P/Case-ShillerU.S.NationalHomePriceIndex,CivilianUnemploymentRate,

RealPrivateResidentialFixedInvestment,10-YearTreasuryConstantMaturity

Rate,30-YearFixedRateMortgageAverageand Wu-XiaShadowRate. There

arealsothreevariableswithmixedevidencefromthetwocomplementarytests

forstationarity,specificallyCapacityUtilization: Manufacturing,RealPersonal

ConsumptionExpendituresandMortgageDebtOutstanding.Forthosevariables,

ADFtestrejectsthenullofnon-stationarityatleastatthe5%level,butKPSS

testrejectsthenullofstationarityalsoatleastatthe5%level.However,ADFtest

haslowpower,sorejectionofthenullcanbeconsideredasafairlystrongevidence

ofstationarity.Therefore,wesetpriormeanonfirstownlagsforthosevariables

equalto0.95soastoreflectahighdegreeofpersistencywhichmayproduce

conflictingtestresults,butstilltoexpressthebeliefthattheseriesisstationary.

Itshouldalsobenotedthattheseareonlyourpriorbeliefs;a-posteriori,each

seriesmayfollowadifferentprocessifthereisenoughinformationinthedatato

confirmit.

Minnesotapriorstypicallyassumethatthepriorcovariancematrixisdiago-

nalandKoop&Korobilis(2013)arenoexceptiontothis;therefore,ourprior

covariance matrixforβ0willbediagonal. Letusdenotevar(β0) =P0and

p0i,i=1,...,K,itsdiagonalelements.Then,

p0i=
γ
l2
forcoefficientsonlagl=1,...,p

α forintercepts
(4.3)

ThisisaMinnesota-typepriorwhichhasonekeyhyperparameter-γ-that

representsthetightnessonthevarianceoftheVARcoefficientsondifferentlags.

Thelowertheγ,themorecenteredaretheVARcoefficientsaroundtheirprior

meansbecausetheirvarianceislower. Thishyperparametercanalsohavethe

interpretationoftheshrinkagehyperparameter;thelowertheγ,thehigheris

2Variablesusedonlyforarobustnesscheckwiththesamepropertyare:FHFAHousePrice
IndexandKrippner’sSSR.Forthosevariables,wealsosetthepriormeanontheirfirstownlag
to1.
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thedegreeofshrinkageinwhichtheVARcoefficientsshrinktowardstheirprior

means.LargeVARsandespeciallyTVP-VARsusuallyrequireahighdegreeof

shrinkagetobeabletoproducereasonableresultsduetotheotherwisepresent

overparameterization,andMinnesota-typepriorscangreatlyreducetheoverpa-

rameterizationworries. Varianceofthecoefficientsalsodecaywiththelagto

expressthebeliefthatmoredistantlagsarelessinformativethanrecentlags,and

thereforetheyareshrunkmoretozero. ThestandardMinnesotapriorhastwo

shrinkagehyperparameters3:oneforthecoefficientsonownlagsandtheotherfor

coefficientsonthelagsofothervariables,whileittypicallyholdsthatthefirstone

ishigherthanthelatteronetoreflectthefactthatownlagsaremoreimportant

thanthelagsofothervariables.Koop&Korobilis(2013)usedonlyoneshrinkage

hyperparametertomakethecomputationeasierandwefollowtheirpracticeand

setpriorcovariancematrixto4.3.Priormeansofinterceptsareassumedtobe

noninformative,andthuswesetαto10.Theselectionofγwillbediscussedin

section4.2.2afterwedescribetheparticularstepsintheKalmanfilteringproce-

dure. However,firstwefocusontheestimationofΣtandQtwhichareneeded

fortheKalmanfilter.

EstimatingΣt

ToestimateΣt,Koop&Korobilis(2013)usedanExponentially Weighted

MovingAverage(EWMA)estimator,whichtakesaform:

Σt=κΣt−1+(1−κ)tt (4.4)

where t=yt−Ztβt|t−1ispredictionerrorproducedbytheKalmanfilter.

Thisestimatorrequirestochoosethedecayfactorκ,forwhichwefollowedthe

suggestioninMorgan&Reuters(1996)andsetκ=0.96,asKoop&Korobilis

(2013)did. Wealsoneedtheinitialcondition,Σ0,thatisestablishedusingthe

samplecovariancematrixofyτ,whereτisthesizeofthetrainingsamplewhich

wesettothefirst40observations.

EstimatingQt

TransitionerrorcovariancematrixQtisneededinKalmanfilterrecursions

onlyforestimatingthevarianceofthestatevariableattimetusinginformation

uptotimet−1:

Pt|t−1=Pt−1|t−1+Qt (4.5)

3Three,ifweconsideralsoexogenousvariables.
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Therefore,ifwefollowthesuggestionofKoop&Korobilis(2013)andreplace

thisby

Pt|t−1=
1

λ
Pt−1|t−1 (4.6)

wedonothavetoestimateorsimulateQt.λisknownasaforgettingfactorand

itholdsthat0<λ<1.Forgettingfactorscanreducethecomputationalburden

associatedwithestimatingTVP-VARsorothermodelswithmanyparameters

and,inthecontextofTVP-VARs,theywereutilizedbyotherauthorsaswell

(e.g.,Dangl&Halling(2011))4.However,theyserveonlyasanapproximationto

theexactMCMCmethods,whichinourcasewouldinvolvedrawingrepeatedly

βt,ΣtandQtfromtheirconditionalposteriors,butwouldnotbecomputationally

feasibleformany-variableTVP-VARthatweemploy.Itfollowsfrom4.5and4.6

thatQt=(λ
−1−1)Pt−1|t−1.

AsnotedbyKoop&Korobilis(2013),observationsjperiodsbeforetimetget

weightλjinthefilteredestimateofβtifweuseforgettingfactorasinequation

4.6.Inmanyempiricalapplicationsusingforgettingfactors,λissettoanumber

slightlylowerthanone,e.g.,0.99. Thisimplies,forquarterlydataasarethose

usedbyKoop&Korobilis(2013),thatobservationsfiveyears(20quarters)inthe

pastgetapproximately80%(0.9920)ofthelastobservations’weight.Accordingto

Koop&Korobilis(2013),thisimpliesafairlystablemodelwithgradualcoefficient

changeandensuresthatλhaspropertiesoftheCogley&Sargent(2005)“business

asusual”prior. Therefore,withourmonthlydata,wewouldneedtosetλto

0.9963toachieveapproximately80%relativeweightforobservationsfiveyearsin

thepastifweweretouseafixedλ.However,Koop&Korobilis(2013)decided

toestimateλinatime-varyingwayandforthistheyusedtheupdatingequation

ofParketal.(1991):

λt=λmin+(1−λmin)L
ft (4.7)

whereft=−NINT(t−1t−1)andt=yt−Ztβt|t−1isagainthepredictionerror

producedbytheKalmanfilter.FunctionNINTreturnsthenearestinteger;half-

integersareroundedtothenearesthigherintegerinoursetting. Wechoosevalues

ofλmin andLtomatchthoseofKoop&Korobilis(2013),thereforeλmin =0.96

andL=1.1.Thisλtisusedinsteadofλinequation4.6whichdifferentiatesthis

4Foranin-depthdiscussionofforgettingfactorsseeJazwinski(1970)orRafteryetal.(2010).
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modelingapproachtoforgettingfactorsfrommostoftheexistingliteraturethat

simplysetsλtoaconstant(Koop&Korobilis(2013)).

Nowwhenweexplainedhowtoobtainthevaluesofalltheparametersused

intheKalmanfilteralgorithm,wecandescribeitsparticularsteps.

Kalmanfiltersteps(fort=1,...,T):

•Setβt|t−1=βt−1|t−1.Fort=1,useβ0|0=b0,i.e.,thepriormeanofβ0

•Calculate t=yt−Ztβt|t−1(predictionerror)

•Fort>1estimateλt=λmin+(1−λmin)L
ft,whereft=−NINT(t−1t−1)

•SetPt|t−1=
1
λt
Pt−1|t−1. Fort=1,setP1|0=P0|0=P0,i.e.,theprior

varianceofβ0

•EstimateΣt=κΣt−1+(1−κ)tt.Fort=1,setΣ1=κΣ0

•Calculateβt|t=βt|t−1+Pt|t−1Zt(Σt+ZtPt|t−1Zt)
−1

t

•CalculatePt|t=Pt|t−1−Pt|t−1Zt(Σt+ZtPt|t−1Zt)
−1ZtPt|t−1

Thisalgorithmdeliversβt|tandPt|tfort=1,...,Tandalsotheestimatesof

themeasurementerrorcovariancematrixΣtandforgettingfactorλt.

4.2.2 Dynamic ModelSelection

Previousresultsapplytoonlyonemodel. However,Koop&Korobilis(2013)

decidedtoemploydynamicmodelaveraging(DMA)andselection(DMS)meth-

odsdevelopedbyRafteryetal.(2010)inthecontextoftime-varyingparameter

models. Thosemethodsassumethattherearej=1,...,Jcompetingmodels

underconsideration.Foreachcompetingmodeltheresearcherneedstocalculate

πt|t−1,j,i.e.,theprobabilitythatmodeljforecaststhebestattimetgiveninfor-

mationuptotimet−1andπt|t,j,whichistheposteriormodelprobability.Those

probabilitiesarethenusedindoingdynamicmodelaveragingorselection.Koop

&Korobilis(2013)performsdynamicmodelselectionthatoccursif,ineachtime

t=1,...,T,themodelwiththehighestvalueofπt|t,jisselected.Thecalculation

ofπt|t−1,jandπt|t,jishandledusingafastrecursivealgorithmofRafteryetal.

(2010).

ThealgorithmproceedsintwostepsthatarecomparablewiththeKalman

filter’spredictionandupdatingequations.Afterwespecifytheinitialcondition,
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π0|0,jforj=1,...,J,thealgorithmbeginswiththepredictionequation:

πt|t−1,j=
παt−1|t−1,j
J

l=1

παt−1|t−1,l

(4.8)

andcontinueswiththeupdatingequation:

πt|t,j=
πt|t−1,jpj(yt|yt−1)
J

l=1

πt|t−1,lpl(yt|yt−1)

(4.9)

toevaluateπt|t−1,jfort=1,...,T.Inequation4.9,pj(yt|yt−1)isthepre-

dictivelikelihoodofmodelj-predictivedensityofthismodelevaluatedatyt

givenobservationsuptotimet−1:yt−1=(y1,y2,...,yt−1). Thispredictive

likelihoodisavailablefromtheKalmanfilterifweevaluatethepredictivedensity

N(Z
(j)
t β

(j)
t|t−1,Σ

(j)
t +Z

(j)
t P

(j)
t|t−1Z

(j)
t )aty

(j)
t,anditmeasurestheforecastperfor-

manceofmodel jattimet.Inequation4.8,αistheforgettingfactorand

controlshowmuchweighttheforecastperformanceofmodelji=1,...,t−1

periodsbeforetimetreceivesincalculatingπt|t−1,j.Koop&Korobilis(2013)show

that:

πt|t−1,j∝
t−1

i=1

[pj(yt−i|yt−i−1)]
αi

wherepj(yt−i|yt−i−1)isthepredictivelikelihoodofmodeljiperiodsbeforetimet

andmeasurestheforecastperformanceofmodeljinthatpointintime.Aswith

theforgettingfactorλ,ifα=0.99andforquarterlydata,forecastperformance

fiveyearsagoreceivesapproximately80%(0.9920)oftheweightoftheforecast

performanceatt−1.Formonthlydatawesetα=0.9963toobtainthesameeffect.

Finally,initialconditionsπ0|0,j,j=1,...,J,arespecifiedasfollows:π0|0,j=
1
J
to

expressthebeliefthatallmodelsareex-anteequallylikely.

Theabovealgorithmisusedtoselectonemodelineachtimefromthepool

ofJpossiblemodels.FollowingKoop&Korobilis(2013),weaugmentthemodel

spaceintwoways:

First,weconsider3TVP-VARsofdifferentdimensions:small,four-variable

VAR5withthreekeymacroeconomicvariables(realGDP,inflationandinterest

rate)andaddhousepricestoit;medium,six-variableVARwithadditionaltwo

5Fromnowon,wheneverweuseVARwemeanourspecificationofVAR,thatisaVARwith
time-varyingparameters.
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variablesthatareessentialfordeterminingthehouse-pricemovements(seeRahal

(2016);orGattini&Hiebert(2010));andlarge,twenty-variableVARcontain-

ingallmedium-VARvariablesandcapturingbroadfinancialandmacroeconomic

conditions.ListofvariablesincludedineachVARisavailableintheAppendix.

Theonlyproblemhereisthatthepredictivedensitiespj(yt|yt−1)willnotbecom-

parableamongTVP-VARsofdifferentdimensions,becauseythasadifferent

dimensionforeachofthesmall,mediumandlargeTVP-VAR.Therefore,wede-

cidedthatforeachTVP-VARmodel,wewillcalculatepredictivedensityusing

onlythevariablesofthesmallTVP-VAR.Thismeansthatwewillalwaysevalu-

atepj(yt|yt−1)usingthevectorytthatincludesrealGDP,inflation,interestrate

andhousepricesregardlessofhowmanyvariablesagivenTVP-VARhas.Those

variablesarepresentinallTVP-VARmodelsunderconsideration,soitmakes

sensethatweareinterestedintheirjointpredictivelikelihoodtodeterminewhich

modelisthebestandwhenitisso.

Next,foragivenTVP-VARsize(small,mediumorlarge),wedefine7models

basedonthevaluesofthepriorshrinkageparameterγ.Asexplainedbefore,this

hyperparametercontrolsadegreeofshrinkageoftheVARcoefficients;see4.3

andtheassociateddiscussion.IntheTVP-VARliterature,γisusuallydeter-

minedusingtrainingsamplepriors(see,e.g.,Primiceri(2005)). Thisapproach

involvestakingoutthesmallsubsampleofthedatathatwillthenbediscarded,

usuallyfromthebeginningofthedataset,andestimatinghyperparameterson

thissubsampleby,e.g.,OLS.Insteadofestimatingγfromthetrainingsample,we

willchooseoneγineachpointintimeamongthesevenpre-definedvaluesofit:

γ∈[10−10,10−5,0.001,0.005,0.01,0.05,0.1]. Differentvaluesofγcorrespondto

differentpriorsandhence,inaBayesianframework,todifferentmodels.Thus,in

eachtimethealgorithmestimatessevenTVP-VARmodelsforeachVARsizefrom

step1(becausewehavesevenpossiblevaluesofγ),andthenselectsthevalue

ofγforwhichtheposteriormodelprobabilityπt|t,jismaximized. Thisallows

forswitchingbetweenTVP-VARmodelsofdifferentdimensionsandforchoosing

thebestshrinkageforeachdimensionineachtime. Normally,highershrinkage

isneededinlargeVARsandthisalgorithmenablestochooseγfromaverywide

gridofvaluesandtochangeadegreeofshrinkageovertimeascomparedtohaving

afixedγ.

Tosummarize,thefulldynamicmodelselectionalgorithmproceedsasfollows:

1.Setupthesmall,mediumandlargeTVP-VAR.MediumTVP-VARcontains

allvariablesofthesmallTVP-VARplussomeadditionalvariables,andlarge
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TVP-VARcontainsallvariablesofthemediumTVP-VARplusadditional

variables6.

2.ForeachTVP-VARdimensionfromstep1,define7possiblepriorsforβ0

basedonthevalueofγ.Differentvaluesofγcorrespondtodifferentprior

covariancematricesofβ0,andhenceamodelj,j=1,...,7,willhave

covariancematrixP
(j)
0 withγ(j)∈[10−10,10−5,0.001,0.005,0.01,0.05,0.1]

initsstructure(seeeq.4.3).

3.GivenaTVP-VARsize(small,mediumorlarge),loopoverj=1,...,7

modelsdeterminedbytheirpriorforβ0. Thatis,fort=1,...,Trun

Kalmanfilterrecursionstoobtainpj(yt|yt−1),anduseitandtheinitial

conditionsπ0|0,j=
1
7
tocalculateπt|t−1,jandπt|t,j. Performthisstepfor

eachTVP-VARsize. Therefore,attheendofthisstep,wewillhavefor

eachTVP-VARsizeπt|t,jfort=1,...,Tandj=1,...,7.

4.Foreacht=1,...,TandTVP-VARdimension,selectthemodelwiththe

highestposteriormodelprobabilityπt|t,janddenoteitsvalueofγasγ
(jmax)

andtheassociatedj∈[1,...,7]asjmax.Thisgivesustheoptimalvalueof

theshrinkagecoefficientforeachtimeandTVP-VARdimension.

5.Conditionalontheoptimalvalueofγ,γ(jmax),computetheposteriormodel

probabilitiesofthesmall, mediumandlargeTVP-VAR:πt|t,mfort=

1,...,T. Nowm =1,2,3forthesmall, mediumandlargeTVP-VAR,

respectively,andweuseπt|t−1,jmax andpjmax(yt|yt−1)tocalculateπt|t,mac-

cordingtotheequation4.9:

πt|t,m=
πt|t−1,jmax(m)pjmax(m)(yt|yt−1)
3
k=1πt|t−1,jmax(k)pjmax(k)(yt|yt−1)

whereπt|t−1,jmax(m)isπt|t−1calculatedusingtheoptimalshrinkageparameter

γforagivenTVP-VARsizemandsimilarlyforpjmax(m)(yt|yt−1).

6.Nowweevaluatewhichofthesmall,mediumandlargeTVP-VAR,condi-

tionalontheoptimalvalueofγ,isthebestmodelattimet=1,...,T

intermsofposteriormodelprobability.Thisisachievedbyselectingm∈

[1,2,3]foreachtwiththehighestπt|t,m.

6Forthelistofvariablesusedinthesmall,mediumandlargeTVP-VARconsulttheAp-
pendix.
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Therefore,fort=1,...,T,dynamicmodelselectionalgorithmdeliversthe

optimaldimensionofTVP-VAR(small,mediumorlarge)andtheoptimalvalue

oftheshrinkagecoefficientγ.ThoseuniquelydefinetheTVP-VARmodelineach

timeforwhichwewilldrawfromtheposteriorofβusingtheCarterandKohn

algorithmdescribedinthesubsequentsection.

4.3 CarterandKohnAlgorithm

Uptothispoint,themodelingstrategyfollowsKoop&Korobilis(2013). The

aimoftheirpaperis,however,onforecasting. Therefore,intheempiricalpart

theyusedthelastin-samplevaluesofβT|TandPT|TobtainedfromtheKalman

filtertosimulatethepathofβT+h,wherehistheforecasthorizon
7.Afterwards,

theydemonstratetheforecastingsuperiorityoftheirmodelovertheotherfre-

quentlyusedtimeseriesmodelsandpossiblydifferentmodelingchoicesfortheir

TVP-VAR,buttheydonotperformanykindofastructuralanalysis,whichwe

howeverneedbecauseweareinterestedinobtainingimpulseresponsesandfore-

casterrorvariancedecomposition(FEVD). Wethusutilizedtheirmodeltoget

filteredestimatesofthestatesβt|tandtheirvariancePt|t,andmostlytobeable

toestimateeventhelargeTVP-VAR.Theiralgorithmprovidesuswiththeesti-

matesofthemeasurementerrorcovariancematrixΣtandtheforgettingfactors

approximationofthetransitionerrorcovariancematrixQtthatmaketheestima-

tionofthelargeTVP-VARcomputationallyfeasiblebecausetheyavoidtheneed

ofdrawingfromtheconditionalposteriorsofΣtandQt. Toperformstructural

analysis,weprogrammedtheCarterandKohnalgorithmforthismodeltoobtain

drawsfromtheposteriorofβt,t=1,...,T,andusedthosedrawstocalculate

impulseresponsesandFEVD.

HerewedescribekeyequationsoftheCarterandKohnalgorithmappliedto

ourmodel.Inthefollowingweassumethattheparametersofthestate-space

model,ΣtandQt,areknown. ForΣtweuseitsestimateΣt,andQtcanbe

expressedfromequations4.5and4.6asQt=(λ
−1
t −1)Pt−1|t−1givenatime-

varyingnatureofλ. Thoseareavailablefort=1,...,Tfromthealgorithmof

7Theyemployedthetwostrategies:1)VARcoefficientsarefixedout-of-sample,implying

thatβT+j|T ∼N(βT|T,PT|T)forj=1,...,h,and2)VARcoefficientsareallowedtodrift

out-of-sample,forwhichβT+j|T areobtainedbydrawingrecursivelyfromN(βT+j−1|T,PT|T)

forj=1,...,h,whereforj=1,βT+j−1|T=βT|T.
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Koop&Korobilis(2013)forallTVP-VARdimensionsandvaluesoftheshrinkage

parameterγ.

LetβTdenotethetimeseriesofβfort=1,...,T,i.e.,βT=(β1,β2,...,βT).

Similarly,ΣT=(Σ1,Σ2,...,ΣT),QT=(Q1,Q2,...,QT)andtheobservations

throughtimeTaredenotedbyyT=(y1,y2,...,yT). WhenusingexactMCMC

methodstodrawfromthejointposteriordistributionofallunknownparameters

andthestatevariableofthestate-spacemodel,Gibbssamplingalgorithmisused

torepeatedlydrawfromtheconditionalposteriorofeachparameter(oragroupof

parameters)andthestatevariable,givenallotherunknowns.Inthisalgorithm,

drawsfromp(βT|ΣT,QT,yT),i.e.,thejointposteriorofβ1,β2,...,βT,canbe

obtainedusingthetechniquedevelopedbyCarter&Kohn(1994)–Carterand

Kohnalgorithm. Theyproposeda multi-movesamplerfordrawingfromthe

conditionalposteriorofβ,meaningthatitsamplesawholevectorofβt,∀t,at

onedraw.Single-movealgorithmsthatsampleβtfort=1,...,Toneatatime

fromp(βt|ΣT,QT,yT,β−t),whereβ−t=(β1,...,βt−1,βt+1,...,βT),areusually

ineffectivebecausethedrawsobtainedfromthosealgorithmstendtobehighly

correlated,whichincreasesthenumberofdrawsthatmustbetakentoensure

thatthetrueposteriordistributionissimulatedaccuratelyenough8. Wedecided

tousetheCarterandKohnalgorithmbecauseitisarguablythemostpopular

choiceintheliterature9.

InourimplementationoftheCarterandKohnalgorithm,ΣTandQTarenot

takenasrandomvariables,becauseΣtisestimatedbyanEWMAestimatorofthe

form4.4andQtisreplacedusingaforgettingfactorλ(see4.5and4.6).Therefore,

wecanexpresstheposteriordistributionofβas

p(βT|yT)

whichisequaltotheconditionalposteriorofβ,p(βT|ΣT,QT,yT),providedthat

ΣtandQtareknownfort=1,...,T.Asexplainedabove,thetreatmentofΣtand

QtinthemodelavoidstheneedforGibbssampling(andpotentiallyMetropolis

Hastings)algorithm,andthusprovidesatime-manageablewayofestimatinglarge

TVP-VARs.

ForadetaileddiscussionandderivationofalltheequationsintheCarterand

Kohnalgorithmseee.g. Kim&Nelson(1999). Butthekeystepinvolvesthe

8Forasummaryandcomparisonofmulti-andsingle-movealgorithms,seeKoop&Potter
(2011).
9Otheralgorithmsarealsopossible,e.g.,Durbin&Koopman(2002)algorithm.
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resultthat

p(βT|yT)=p(βT|yT)

T−1

t=1

p(βt|βt+1,yT)

Therefore,adrawofβT=(β1,β2,...,βT)fromitsposteriordistributioncan

beobtainedbyfirstdrawingβTfromp(βT|yT),andthen,fort=T−1,...,1draw

βtfromp(βt|βt+1,yT).Itcanbeshown
10that

βT|yT∼N(βT|T,PT|T)

and

βt|βt+1,yT∼N(βt|t,βt+1,Pt|t,βt+1)fort=T−1,...,1

ThemeanandvarianceofβT|yTarethelastKalmanfilterestimatesofthe

statevariableanditsvariance,respectively,obtainedfromtheKalmanfilter.

Meanandvarianceofβt|βt+1,yTcanalsobecomputedusingβt|tandPt|tfrom

theKalmanfilter.Theyarecomputedbackwardsfromt=T−1to1usingthe

followingrecursions:

βt|t,βt+1 =βt|t+λt+1(βt+1−βt|t) (4.10)

Pt|t,βt+1 =(1−λt+1)Pt|t (4.11)

whereβt|tandPt|tfort=1,...,T−1areavailablefromtheKalmanfilter,λt+1

isobtainedaccordingtoequation4.7,andβt+1isthedrawofthestatevariable

obtainedinthepreviousstepofthisprocedure.Thatis,fort=T−1,βt+1=βT

whichwasdrawnfromanormaldistributionwithmeanβT|TandvariancePT|T;

fort=T−2,βt+1=βT−1whichwasdrawnfromanormaldistributionwithmean

βT−1|T−1,βTandvariancePT−1|T−1,βT,etc.Equations4.10and4.11followfromthe

generalCarterandKohnrecursionsfittedtomatchourproblem(forderivations,

seetheAppendix).

10Seee.g.Kim&Nelson(1999).
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4.4 Impulse Response Analysis

In this subsection we describe how to use draws of βt, t = 1, . . . , T , to calculate

impulse responses. Since we are working with TVP-VARs, we would not have

enough computer memory to store the draws of impulse responses for each t,

therefore we decided to compute impulse responses only for selected time periods.

Those time periods were chosen to include both stable periods where economic

policy uncertainty is low, and those of high uncertainty that correspond to the

major events in the recent financial crisis and subsequent recession. Periods of

low uncertainty are chosen to be pre-crisis November 2006 and July 2007. High-

uncertainty periods are represented by October 2008 (the month right after the

collapse of Lehman Brothers) and August 2011, in which high uncertainty orig-

inating from the summer 2011 debt ceiling crisis, i.e., disputes in the Congress

over raising of the debt ceiling that has been normally raised automatically, esca-

lated. In addition to those, we also included December 2013 because it marks the

turnover in quantitative easing (QE) policies of the Federal Reserve; on December

18, 2013 the Federal Open Market Committee announced its first QE tapering.

Finally, we included the most recent period in our sample, April 2017, with eco-

nomic policy uncertainty building up again which some observers attribute to the

Donald Trump’s election.

Economic policy uncertainty is measured by the U.S. Economic Policy Uncer-

tainty Index which was constructed by Baker et al. (2015). The index is calculated

based on occurrences of words related to economic uncertainty in articles in 10

leading U.S. newspapers.

Figure 4.1 displays the path of the index for the whole sample period and

highlights the dates for which we calculated impulse responses. We can see that

the period of maximum uncertainty corresponds to the debt-ceiling battle in Au-

gust 2011 and the second highest marked peak to the aftermath of the Lehman

Brother’s collapse. On the other hand, November 2006 and July 2007 represent

the periods of minimal uncertainty.

Next we show how to obtain impulse responses in the context of our model.

The procedure is the same as with standard VARs, except now the coefficients

are changing over time, so we will have different impulse response functions in

each time, and the models11 are changing over time, so in each time, we get the

11A model is determined by its dimension and the value of the shrinkage parameter γ; see
subsection 4.2.2.
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Figure 4.1: Monthly Economic Policy Uncertainty Index from January 1999 to November 2017.
Highlighted periods correspond to those for which we obtain impulse responses and FEVD.
Source: Data were downloaded from policyuncertainty.com/us_monthly.html

impulse responses of the “best” model, i.e. the one with the highest posterior

model probability (see 4.2.2).

Consider impulse responses only for one particular time t, t ∈ (1, . . . , T ).

Suppose that the number of variables of the “best” model in time t is M , M ∈
(4, 6, 20) depending on whether the “best” model in time t is the small, medium,

or large TVP-VAR. Following Lütkepohl (2007) with his notation adjusted for

time variation in the coefficients, we can write TVP-VAR as:

Yt = μt +AtYt−1 + Et (4.12)

where

Yt :=

⎡⎢⎢⎢⎢⎣
yt

yt−1
...

yt−p+1

⎤⎥⎥⎥⎥⎦
(Mp×1)

, μt :=

⎡⎢⎢⎢⎢⎣
μt

0
...

0

⎤⎥⎥⎥⎥⎦
(Mp×1)

,

policyuncertainty.com/us_monthly.html
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At:=












A1t A2t ···Ap−1t Apt

IM 0 ··· 0 0

0 IM 0 0
...

...
...

...

0 0 ··· IM 0












(Mp×Mp)

, Et:=









t

0
...

0









(Mp×1)

.

Aitfori=1,...,pareM ×M matricesofcoefficientsonthei−thlag;in

thefirstrow,theyincludethecoefficientsonthei−thlagforallM variablesin

thefirstequation,inthesecondrow,theyincludethecoefficientsonthei−th

lagforallM variablesinthesecondequation,etc. MatricesAtandµtcanbe

completelydeterminedfromourvectorofcoefficientsβtobtainedfromtheCarter

andKohnalgorithm.

ProvidedthattheprocessYtisstable
12,4.12hasamoving-average(MA)

representation(withoutdeterministictermsastheyareirrelevantfortheimpulse

responseanalysis):

Yt=
∞

i=0

AitEt−i

IfwepremultiplythisbyJ:=[IM :0:···:0],whichis(M×Mp)matrix,we

gettheMArepresentationofyt

yt=
∞

i=0

JAitJJEt−i

FollowingL̈utkepohl(2007),thiscanberewrittenas

yt=
∞

i=0

Φitt−i (4.13)

ifwedefineΦit:=JA
i
tJ,becauseEt=JJEtandJEt= t.

Itcanbeshown13thattheMAcoefficientsΦitcontaintheimpulseresponses

totheinnovationsint. However,thisrepresentationofimpulseresponsesas-

sumesthattheshocksinytvariablesareindependent,whichmaynotbetrue.

Therefore,wedecidedtouseorthogonalizedimpulseresponseswhich,asthename

12In4.12,YtisstableifalleigenvaluesofAthavemoduluslessthanone.
13SeeL̈utkepohl(2007)onpage52.
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suggests,areresponsestoorthogonal(i.e.independent)shocks.Thoseresponses

areobtainedifwemanipulatetheMArepresentation4.13as

yt=
∞

i=0

ΦitPtP
−1
t t−i=

∞

i=0

Θitwt−i (4.14)

whereΘit:=ΦitPtandwt=P
−1
t t.Ptisalowertriangularmatrixobtained

fromCholeskydecompositionofΣt,i.e.thecovariancematrixofTVP-VARerrors:

Σt=PtPt.ItfollowsthatwtiswhitenoisewiththecovariancematrixΣwt=

P−1t Σt(P
−1
t )=P

−1
t PtPt(P

−1
t )=IM,thereforeimpulseresponsesΘitwillbe

responsestoorthogonalshocks.ThedifferencewithTVP-VARswithstochastic

volatilityisthatPtisnottime-invariantbecauseΣtischangingovertime,andΦit

arenottime-invariantbecausetheVARcoefficientsarechanging.Theelements

ofthematrixΘitrepresenttheresponsestounitinnovationsinwt. Hence,the

jk−thelementofΘit,θjk,it,canbeinterpretedastheresponseofvariablejtoa

unitinnovationinvariablekthatoccurrediperiodsago. Moreover,theimpulse

responsescanbecomputedevenifthe MArepresentation4.14doesnotexist

(Hashimzade&Thornton(2013)),whichoccurse.g.incaseifVARisnotstable

inwhichcasetheshocksmightpermanentlyaffectthevariablesofthesystem.

ThematrixofcontemporaneousimpulseresponsesisΘ0t=Φ0tPt=Pt,be-

causeΦ0t=JA
0
tJ=IM.ItfollowsfromthelowertriangularnatureofPtthat

thefirstvariableinthesystemcancontemporaneouslyrespondonlytoitsown

shocks,thesecondvariablecancontemporaneouslyrespondonlytotheshocksin

thefirstvariableanditsownshocks,...,k-thvariablecancontemporaneously

respondonlytoshocksinvariables1,...,k. Thisisarestrictiveassumption

because,intheempiricalpart,wecouldnothavee.g.assetpricescontempora-

neouslyrespondingtomonetarypolicyshocksandatthesametimemonetary

policyimmediatelyrespondingtoassetprices,butsomestudies(e.g.,Bjørnland

&Jacobsen(2013))foundthatthisinterdependenceisvitalforrevealingtherole

ofassetpricesinthemonetary-policytransmissionmechanism.

WeestimatedtheimpulseresponsesΘitbyreplacingΣtbyitsestimateΣtfrom

eq.4.4andusingthedrawsofβttoconstructΦit.Foreachtimeperiodt,t∈

(November2006,July2007,October2008,August2011,December2013,April

2017),wetookthe“best”modelinthattimeperiodwhichisuniquelyidentified

byTVP-VARdimensionandtheshrinkagecoefficientγ14,andthedrawsofβtand

estimatesΣtusedtoconstructtheimpulseresponsesareforthatmodel.Because

14Seesection4.2.2
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thedrawsofβtareproducedbyCarterandKohnalgorithm,wegetthewhole

vectorofβt,t=1,...,T,atonedrawbutweuseonlythecoefficientsintime

periodsinwhichtheimpulseresponsesarecalculated. Moreover,itfollowsthat

thedimensionofthematrixthatcontainsimpulseresponsesforaparticulartime

tandimpulseresponsehorizoni,Θit,candifferamongtbasedontheTVP-VAR

dimensionofthewinningmodelinperiodt.

4.5 ForecastErrorVarianceDecomposition

Giventheimpulseresponseestimatesfort,t∈(November2006,July2007,Oc-

tober2008,August2011,December2013,April2017),FEVDattimetcanbe

calculatedasfollows15. Letωjk,htdenotetheproportionoftheh-stepforecast

errorvarianceofvariablejthatcanbeexplainedbyinnovationsinvariablek

(L̈utkepohl(2007)),giventhetimeperiodt.Itholdsthat

ωjk,ht=

h−1

i=0

θ2jk,it

h−1

i=0

M

m=1

θ2jm,it

(4.15)

whereθjk,itisthejk-thelementoftheimpulseresponsematrixΘit,andthus

representstheresponseofvariablejtoashockinvariablekthatoccurredi

periodsago,andM isthenumberofvariablesintheTVP-VARwhichdepends

onthedimensionofthewinningmodelintimet.Notethatifwesumupωjk,ht

fork=1,...,M,wegetone,i.e.,theforecasterrorvarianceofvariablejcanbe

fullyexplainedbyinnovationsinvariablesofthesystem(includingtheinnovations

invariablejitself).FEVDintimetarecalculatedforeachmatrixofimpulse

responsecoefficientsΘit,andthereforeforeachdrawofβt.

15InTVP-VARs,FEVDistime-varyingbecauseVARcoefficients(andthereforeimpulsere-
sponses)aretime-varying.ThereforethetimeperiodsinwhichwecalculateFEVDarethesame
asthoseinwhichweprovideimpulseresponses.



Chapter 5

Results

This chapter presents the results of our analysis whose main aim is to assess the

link between house prices and the stance of monetary policy. First, we describe

the main characteristics of the employed model and support them with some em-

pirical evidence. Then, we provide impulse responses and forecast error variance

decompositions for several chosen time periods. Finally, results of the robustness

checks are revealed.

5.1 TVP-VAR with dynamic dimension selection

In this section, estimation results on some important aspects of using a time-

varying parameter VAR whose dimension can change over time, are presented.

First, we briefly summarize the main characteristics of this model12. The model

follows Koop & Korobilis (2013) in that it features both time-varying VAR co-

efficients and time-varying covariance matrices3, while the dimension of a model

can also change over time based on the past predictive likelihoods of different

sized models. Time variation in VAR coefficients is controlled by a forgetting

factor λt which is estimated in each point in time and the degree of switching

between TVP-VAR models of different dimensions is controlled by another for-

getting factor, α. Basically, we select among 3 TVP-VARs: small VAR with 4

variables, medium with 6 variables, and large VAR that contains 20 variables4.

Each time, posterior model probabilities are computed for each model and the

1Koop & Korobilis (2013) named such a model ‘TVP-VAR-DDS’ where ‘DDS’ stands for
‘dynamic dimension selection’.

2For a detailed description of the estimation procedure see Chapter 4.
3Specifically, covariance matrix of VAR errors and covariance matrix of VAR coefficients.
4See Table 3.1 for variables included in each model.



5. Results 54

one with the highest probability is selected. Posterior model probabilities are

determined based on the past predictive likelihood of the models, and α controls

the weight of those past likelihoods. The key difference and a novelty of Koop

& Korobilis (2013) approach is that covariance matrices are not sampled from

their posterior distributions, but they are estimated. Measurement error covari-

ance matrix is estimated by an EWMA estimator, and covariance matrix that

controls the volatility of VAR coefficients is approximated by the use of the above

mentioned forgetting factor λt.

Besides the selection of one TVP-VAR dimension in each point in time, Koop

& Korobilis (2013) decided to augment the model further by choosing among 7

predefined values for the prior shrinkage coefficient γ. This coefficient controls a

degree by which VAR coefficients are pushed to zero so that the model with a large

number of parameters can be estimated without the fear of overparameterization.

Shrinkage is very important in TVP-VARs because the number of parameters is

much larger than with standard VAR models, and thus usually a high shrinkage

is needed for obtaining reasonable results. Each time, one value of γ for each of

the small, medium and large TVP-VAR is selected based again on the predictive

likelihood of the models with different γ. Therefore, each time the model with the

highest posterior model probability5 can be fully characterized by its dimension

and shrinkage coefficient γ. All parameters that enter the model are summarized

in D.1 along with their brief description.

Figure 5.1 plots the selected values of the prior shrinkage parameter, γ, for

each TVP-VAR dimension. As expected, lower values of γ are associated with

TVP-VAR of the largest dimension, implying that VAR coefficients are more

centered around their prior means of zero (lower γ means lower variance and

thus higher shrinkage, see equation 4.3). Interestingly, with medium and small

TVP-VARs, a necessary degree of shrinkage exhibits a large drop shortly after

2008 and then continues to decline6 which suggests that the (prior) variance of

VAR coefficients needs to be larger from 2008 onwards that could be attributed

to increased volatility following a financial crisis. Minimum shrinkage is attained

by both medium and small TVP-VARs at the end of the sample, while the large

TVP-VAR does not go above γ = 0.001 during the sample period.

5“winning” model
6Rising γ implies a declining shrinkage.
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Values of the shrinkage coefficient γ - small TVP-VAR
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Figure 5.1: Values of the optimal prior shrinkage parameter γ for each TVP-VAR
dimension and time period.
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Values of λt that controls the degree of time-variation in VAR coefficients

are displayed in Figure 5.2 in case of the small TVP-VAR7. Following Koop &

Korobilis (2013), λt is allowed to vary over the interval from 0.96 to 1 which

should induce a gradual change in the coefficients. Higher values of λt correspond

to lower changes in VAR coefficients (see equation 4.6). We can see that in the

beginning and at the end of the sample, coefficients are changing less than in the

middle of the sample. The highest changes are occurring between 2008 and 2014

and can be associated with unstable periods of high policy uncertainty (see Figure

4.1).

Values of λt - small TVP-VAR

.9
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.9
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.9
9

1

2002 2005 2008 2011 2014 2017

Figure 5.2: Estimated λt for the small TVP-VAR with the optimal shrinkage parameter
γ in each time.

To select between small, medium and large TVP-VAR for which we already

determined the optimal shrinkage γ8, posterior model probabilities must be evalu-

ated according to equation 4.9. Those probabilities are plotted for each TVP-VAR

size (with the optimal shrinkage coefficient) in Figure 5.3. It follows immediately

from the figure that TVP-VAR dimension changes over time (mostly between the

7Values of λt for medium and large TVP-VARs exhibit similar patterns.
8See Figure 5.1.
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small and the large model). We can also conclude that bigger VARs perform

better in stable times prior to 2008, but from 2008 onwards, following a surge in

small model’s posterior probability, small and medium models are preferred.

Time-varying dynamic dimension selection probabilities

0
.2

.4
.6

.8

2002 2005 2008 2011 2014 2017

small VAR
medium VAR
large VAR

Figure 5.3: Dynamic dimension selection probabilities of the small, medium and large
TVP-VARs. Each time, the optimal value of the shrinkage parameter γ was chosen for
each TVP-VAR and the probability plotted is for that γ.

Due to the time-varying nature of the model, we present empirical evidence

only for selected time periods. Those time periods were chosen to correspond with

remarkable events that influenced the path of macroeconomic variables9. Based

on the selected model and its shrinkage coefficient, we use 5 different TVP-VAR

models to study the behavior of house prices after a monetary policy shock. Those

time periods and the respective “winning” models are presented in Table 5.1.

9The selection of time periods is discussed in Section 4.4.
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Time period TVP-VAR dimension Shrinkage γ

November 2006 Large 0.001
July 2007 Large 10−5

October 2008 Small 0.05
August 2011 Large 10−5

December 2013 Small 0.1
April 2017 Medium 0.1

Table 5.1: Models with the highest posterior model probability in each
time period.

5.2 Impulse responses, FEVD

Here, we present impulse responses of house prices to a negative, one percentage

point shock in Wu and Xia shadow rate. House prices are measured by S&P/Case-

Shiller U.S. National house price index. Since we have a different VAR coefficients

in each time, we would have a different set of impulse responses for each month

in our sample which would be difficult to store given that we need to take a cer-

tain number of draws from their posterior distribution for each time. Therefore,

impulse responses are computed only for 6 time periods. Number of draws from

the posterior distribution of coefficients is set to 10 00010. We do not need to

discard any draws, as it is recommended when using Gibbs sampling, because we

employed the Carter and Kohn algorithm to draw from the posterior of VAR co-

efficients, which was possible since we do not need to draw covariance matrices11.

Another modeling choice involves the ordering of variables which matters since

we are using a Cholesky decomposition to identify a monetary policy shock, and

therefore a position of the policy rate12 among other variables determines which

variables will be contemporaneously affected by the shock. We ordered the policy

rate last to allow for an immediate response of monetary policy to shocks in other

variables. This is a standard assumption in macroeconomic VAR literature. It

follows that according to this ordering, house prices react with a lag to monetary

policy shocks. This is not always (but arguably predominantly) assumed in the

literature as some papers stress the importance of allowing for simultaneous re-

action of house prices and monetary policy (e.g., Bjørnland and Jacobsen, 2013).

That is, house prices should be allowed to respond contemporaneously to mone-

10Although, setting it to 1000 does not influence the results.
11See Chapter 4.
12Wu and Xia rate or Krippner’s SSR in the robustness checks.
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tary policy shocks and, at the same time, monetary policy should not be restricted

from immediately responding to house price shocks. This can be accomplished

by employing various long-run or sign restrictions, i.e., a different identification

scheme. In robustness checks13, we provide impulse responses with house prices

ordered below the policy rate which allows for a contemporaneous reaction of

house prices to a monetary policy shock.

Figures 5.4 plot the impulse responses of S&P/Case-Shiller house price index

to an expansionary monetary policy shock. Impulse responses were rescaled to

correspond to a minus one percentage point shock in Wu and Xia rate. The graph

shows posterior median impulse responses along with their probability bands rep-

resented by 16th and 84th percentiles. Impulse response horizon (on the x-axis)

is in months. For November 2006, July 2007 and August 2011, the impulse re-

sponses display exploding behavior, even though the median impulse response

stays slightly above zero. This is caused by the fact that in those time periods,

the winning model used to generate the impulse responses is the large VAR with

the value of shrinkage coefficient 10−5 or 0.001. Unfortunately, large VAR was

not able to produce stable draws under several different specifications unless, as

will soon become clear, we would increase the value of the shrinkage coefficient γ.

However, higher γ translates into higher variance of VAR coefficients, and thus

less shrinkage to zero. Therefore, the coefficients (not just at higher lags, see equa-

tion 4.3) become more important and the computational burden so immense that

it is not computationally feasible to draw from the posterior of coefficients. In the

remaining time periods, impulse responses were obtained from a small VAR for

October 2008 and December 2013, and from a medium VAR for the most recent

period in our sample, i.e., April 2017. All those models feature a low degree of

shrinkage as is apparent from Table 5.1.

Median responses of house prices generated by small and medium TVP-VARs

are positive, around 4% after approximately 3 years, but the effect is insignificant

in December 2013 which is a period of QE tapering. In this period, the confidence

bands are wider which could be a signal of higher uncertainty. However, Figure 4.1

reveals that even though there is a local peak in policy uncertainty in December

2013, this uncertainty was even larger in April 2017 and much higher in October

2008 for which the impulse responses are significant14. Still, economic policy

13See Section 5.3
14Impulse responses in October 2008 become significant after 6 months and in April 2017 after

8 months.
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uncertainty index, as it is designed15, puts more weight on events that are arguably

not so important for the developments in the main macroeconomic variables16, for

example, it creates as much as uncertainty following the Trump’s inauguration

in the beginning of 2017 as it was during the financial crisis, even though the

economic conditions were remarkably better in 2017. Therefore, the index may

not fully capture the uncertainty about the future movements of monetary policy

and some kind of monetary policy uncertainty index could be more relevant in

the context of our model.

15See section 4.4.
16Except for the widely-recognized critical events such as the collapse of Lehman Brothers.
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Impulses responses - baseline model
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Figure 5.4: Impulse responses of S&P/Case-Shiller house price index to a negative 100-
basis-point shock in Wu-Xia rate. In November 2006, July 2007 and August 2011,
impulse responses were generated by large TVP-VAR. In October 2008 and December
2013, impulse responses are from the small TVP-VAR, and in April 2017, they were
generated by medium TVP-VAR.

To extend our discussion about the importance of the shrinkage coefficient γ,
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Figure 5.5 depicts the impulse responses of house prices to the same negative 100-

basis-point shock in Wu-Xia rate generated by medium VAR for the two extreme

choices of γ. Impulse responses were plotted for November 2006 and July 2007.

Those are the periods in which the large VAR is the winning model that, however,

produces strange impulse responses. Therefore, we decided to use a medium VAR

in those periods17 and experiment with a different values of γ. The left-hand-side

panel shows impulse responses when γ is set to its minimum, γ = 10−10, implying

a maximal degree of shrinkage in VAR coefficients, whereas the right-hand side

sets γ to its maximum, γ = 0.1. Values of γ near the minimum are typical for a

large VAR due to the presence of many coefficients.

The figure makes it apparent that choosing the maximum degree of shrinkage

produces very strange results, even with a medium VAR, similar to those produced

by a large VAR. This may be because γ is simply too small: prior variance of

coefficients in equation 4.3 is then very low, making the coefficients to be tightly

centered around their prior means of zero, and if there is not enough information

in the data to outweigh it, those coefficients will be essentially zero. That could

result in essentially zero impulse responses, as can be seen in the LHS panel of

the figure, even though the confidence bands are widening. This may be one

explanation for the behavior of impulse responses from a large VAR captured in

Figure 5.4. However, we were not able to produce the impulse responses from a

large VAR with high values of γ because it would require a huge computational

power. Therefore, we replace a large VAR in periods when it is the winning model

by a medium VAR with the highest possible value of γ and provide the impulse

responses for that model.

Figure 5.6 shows the corresponding impulse responses. In October 2008, De-

cember 2013 and April 2017, the models are the same as the winning models

in those periods. However, for the other periods, large VAR was replaced by

a medium VAR with γ = 0.1. Responses of house prices in stable periods of

November 2006 and July 2007 are significantly greater than zero right after the

expansionary monetary policy shock. They are also gradually increasing till they

reach the maximum of around 2% (for the median impulse response) about two

and a half years from the shock. Responses become significant after some initial

period for all dates, except for December 2013 which was already discussed above.

17And in August 2011 which is another period in which large VAR was originally selected.
Results from August 2011 are not presented here because they are qualitatively similar and will
be assessed in the following analysis for the maximum value of γ.
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Impulse responses - importance of γ
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Figure 5.5: LHS panel shows the impulse responses of house prices to a negative 100-
basis-point shock in Wu-Xia rate from medium TVP-VAR with shrinkage coefficient
γ = 10−10. RHS panel displays the corresponding impulse responses, but now the
medium TVP-VAR has shrinkage coefficient γ = 0.1. First row: impulse responses in
November 2006, second row: impulse responses in July 2007.

For October 2008, August 2011 and April 2017, median IRFs are stronger, around

4% after approximately 3 years. In all figures, the response of house prices seem

to be quite persistent which has been also found in the literature (e.g., Bjørnland

and Jacobsen, 2013). A delayed and persistent response of house prices is usu-

ally being explained by lengthy construction processes that makes property prices

different from other assets (Eickmeier & Hofmann (2010)).

The results from November 2006 and July 2007 are comparable with Smets &

Jarociński (2008) who also used S&P/Case-Shiller house price index and found a

mean response of -0.5% after two and a half years following a positive 25 basis-
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point shock in the federal funds rate18. However, they used a mixture of zero and

sign restrictions to identify the monetary policy shock, but they also restrict house

prices from responding contemporaneously to monetary policy shocks. Results

from October 2008, August 2011 and April 2017 can be qualitatively related to

those of Eickmeier & Hofmann (2010), who estimated a FAVAR model on the U.S.

data and obtained a median impulse response of S&P/Case-Shiller house price

index of -5% after approximately four years following a contractionary monetary

policy shock in the form of a 100-basis-point increase in the federal funds rate.

The response was also found to be significant from the beginning and persistent.

Next, we present the forecast error variance decomposition of house prices,

i.e., the contribution of different variables to the forecast error variance in house

prices. Figures 5.7, 5.7 and 5.9 plot the results for three time periods: October

2008, December 2013 and April 2017. Those periods were chosen because these

are the three periods from our results evaluating times for which small or medium

TVP-VARs were selected as ‘winning’ models19. In all graphs, mean forecast

error variance decompositions obtained from 10 000 draws of VAR coefficients are

displayed.

The results slightly differ among the medium and small models. For small

models, innovations in real GDP explain most of the variation in house prices,

while for medium VAR, the contribution is divided between real GDP, residential

investment and house prices. Wu and Xia rate is becoming more and more impor-

tant in explaining house prices and it accounts for almost 4.3% of the variation

in house prices for the longest forecast horizon given a medium VAR. Therefore,

the effect of monetary policy shocks on house prices is delayed.

Tables D.2, D.3 and D.4 reveal the complete results of variance decompositions

for each variable in the corresponding VAR. We focus on the medium VAR. House

price shocks are there estimated to explain around 16% of the variation in real

GDP in the long run and they also account for 23% of the variation in residential

investment. They are also found to explain roughly 22% of the variation in Wu and

Xia rate after five years, which is slightly less than the 30% found by Bjørnland

and Jacobsen (2013) after the same time period with the effective federal funds

rate in place of Wu and Xia rate.

18A negative 100-basis-point shock would therefore result in a response of 2% after the same
period.

19See Table 5.1.
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Impulses responses - medium and small TVP-VARs
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Figure 5.6: Impulse responses of S&P/Case-Shiller house price index to a negative
100-basis-point shock in Wu-Xia shadow rate. Responses of the large TVP-VAR were
replaced by responses from the medium TVP-VAR with shrinkage coefficient γ = 0.1.
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Figure 5.7: Forecast error variance decomposition of S&P/Case-Shiller house price index based
on impulse response coefficients in October 2008. In this period, small TVP-VAR with γ = 0.05
is chosen as a model with highest posterior model probability, and therefore the figure shows the
proportion of forecast error variance of house prices accounted for by innovations in 4 variables.
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Figure 5.8: Forecast error variance decomposition of S&P/Case-Shiller house price index based
on impulse response coefficients in December 2013. In this period, small TVP-VAR with γ = 0.1
is chosen as a model with highest posterior model probability, and therefore the figure shows the
proportion of forecast error variance of house prices accounted for by innovations in 4 variables.
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Figure 5.9: Forecast error variance decomposition of S&P/Case-Shiller house price index based
on impulse response coefficients in April 2017. In this period, medium TVP-VAR with γ = 0.1
is chosen as a model with highest posterior model probability, and therefore the figure shows the
proportion of forecast error variance of house prices accounted for by innovations in 6 variables.
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5.3 Robustness Checks

Several robustness checks were performed, particularly for:

• Krippner’s Shadow Short Rate instead of Wu and Xia shadow rate

• Industrial production index instead of real GDP that was converted to

monthly figures using cubic spline interpolation in the baseline model

• Macroeconomic Advisers’ monthly estimates of real GDP instead of real

GDP

• FHFA house price index instead of S&P/Case-Shiller house price index

• Different ordering of variables, mainly, switching the order of house prices

and policy rate so as to allow for the immediate effect of monetary policy

shocks on house prices

Robustness checks are provided for the same time periods as the results for the

baseline model and they use only small or medium VARs. Therefore, results

from robustness checks are comparable to those in Figure 5.6. All robustness

checks have a baseline (medium or small) model as a starting point and just

replace one particular variable or change the ordering according to the list above.

We used 10 000 draws from the posterior of VAR coefficients to obtain median

impulse responses and their 16th and 84th percentiles. Monetary policy shock is

approximated by an unexpected decline in the policy rate (Wu-Xia or Krippner’s

shadow rate) of 100 basis points.

Results from the first robustness check are plotted in Figure D.1. Overall,

the impulse responses tell the same story as those from the baseline model (Fig-

ure 5.6). However, there are a few dissimilarities. In August 2011, a period of

the highest policy uncertainty20, and in April 2017, median impulse responses for

Krippner’s SSR are significantly different from zero only for around 1 year after

the shock, while those obtained from Wu-Xia rate shock are significant in Au-

gust 2011 for all impulse response horizons and become significant in April 2017

after approximately half a year following the shock. This may be caused by the

differences in methodology used to construct both shadow rates that make the

Krippner’s rate more volatile and the changes in Wu-Xia rate more gradual (see

20See Figure 4.1.
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Figure 3.2). To conclude which shadow rate should be preferred would require fur-

ther analysis, however, in most applications involving some kind of a shadow rate,

Wu-Xia rate is used. Nevertheless, Krippner (2015) forcefully argues that Wu-Xia

rate is not robust as compared to his Shadow Short Rate, and therefore should be

avoided. Forecast error variance decomposition (in Table D.6) is comparable to

the one from the baseline model, except that now residential investment explains

more variation in house price.

To extend the present analysis, we further compare responses to Wu-Xia rate

shock and the shock to Krippner’s SSR, but now using residential investment

and mortgage average as the variables whose responses are examined. Figures

5.10 and 5.11 display the impulse responses of residential investment (in levels)

and mortgage average (in percentage points) to a 100-basis-point negative shock in

Wu-Xia and Krippner’s shadow rate, respectively. Impulse responses are presented

for the two periods in which the economic policy uncertainty index attains its

minimum and maximum over the whole sample; November 2006 is the period

with minimal uncertainty and August 2011 marks the other extreme.

Higher uncertainty is visible in the RHS panel of Figure 5.11 as it translates

into much wider confidence bands. In case of Wu-Xia rate, confidence bands are

also wider in August 2011, but the pattern is not so apparent as with Kripp-

ner’s SSR. As expected, residential investment increases after an expansionary

monetary policy shock and mortgage rate declines, though neither of responses is

significant except for the response of residential investment to Wu-Xia rate shock

in stable period, which becomes significant after approximately one year.

Robustness checks using industrial production index or Macroeconomic Ad-

visers’ real GDP estimates (Figures D.2 and D.3) yield practically similar impulse

responses as the baseline model, therefore we do not need to describe them fur-

ther. This result is expected, as the monthly estimates of real GDP are designed

to match the quarterly path of real GDP (which was converted to monthly figures

using cubic spline interpolation for the baseline model), and industrial production

index is frequently used in the literature as a measure of real activity. However,

there is one difference concerning forecast error variance decompositions of those

robustness checks and that of the baseline model. Particularly, the role of real

GDP in explaining forecast error variance in house prices in those robustness

checks is much lower and replaced by residential investment.

Next, we assess the robustness of the results to changes in the house price

index. For this purpose, we used FHFA house price index instead of S&P/Case-

Shiller HPI. The main difference between those two indices is that the first uses
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Figure 5.10: Impulse responses of residential investment (first row) and mortgage aver-
age (second row) to a negative 100-basis-point shock in Wu-Xia shadow rate. Impulse
responses in the left-hand-side panel are from November 2006 and those in the right-
hand-side panel are from August 2011.

only the mortgages purchased or securitized by Fannie Mae or Freddie Mac, while

the latter includes also non-agency financed homes by sub-prime mortgages. Im-

pulse responses of FHFA HPI to a 100-basis-point unexpected decrease in the

policy rate are available in Figure D.4. The responses are rather similar to those

from the baseline model, with the exception of December 2013, for which the re-

sponse becomes significant after approximately one year and a half. This partly

contradicts the findings of Eickmeier & Hofmann (2010) who obtained stronger

responses of S&P/Case-Shiller HPI to a monetary policy shock. Results from

FEVD are similar except that now residential investment and CPI gains more

importance.

Lastly, we examine the robustness to changes in the ordering of variables. The

sensitivity of the results with respect to a different ordering of variables should

be examined when using a Cholesky decomposition to identify a monetary policy



5. Results 71

0
15

30
45

6 12 18 24 30 36 42 48 54 60

-1
0

0
10

20
30

6 12 18 24 30 36 42 48 54 60

-.1
5

-.1
-.0

5
0

.0
5

.1

6 12 18 24 30 36 42 48 54 60

-.2
-.1

0
.1

.2

6 12 18 24 30 36 42 48 54 60

Figure 5.11: Impulse responses of residential investment (first row) and mortgage aver-
age (second row) to a negative 100-basis-point shock in Krippner’s Shadow Short Rate.
Impulse responses in the left-hand-side panel are from November 2006 and those in the
right-hand-side panel are from August 2011.

shock. We choose to order the asset prices (and therefore the house price index)

after the policy rate so that it can react contemporaneously to monetary policy

shocks. This ordering is compatible with Bernanke et al. (2004) who divide the

variables into fast- and slow-moving, and order the fast-moving variables after the

policy rate. Hence, the ordering is now: real GDP, residential investment, CPI,

policy rate, mortgage average and house prices for medium VAR and the same

for small VAR provided that it uses only the four of the above variables (does

not contain residential investment and mortgage average). With this ordering,

monetary policy is restricted from contemporaneously responding to the shocks

in house prices and mortgage rates.

Impulse responses for this ordering are depicted in Figure D.5. These impulses

responses differ in two aspects from the baseline model. First, for October 2008,

confidence bands are larger, and therefore the response becomes significant at
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higher horizons than in a baseline model, and the response in August 2011 is

considerably lower, but still significant. Second, the initial response of house

prices is negative for all examined time periods. The first result is reasonable

since the uncertainty in October 2008 and August 2011 was very high, while the

second result is the consequence of allowing for a contemporaneous response of

house prices to a monetary policy shock. In the baseline model, those responses

are restricted to zero which is the usual assumption of macroeconomic VARmodels

that employ house prices. Therefore, we can conclude that the ordering of house

prices after the policy rate changes the initial response of house prices and slightly

changes the results for highly unstable periods, but the preferred ordering is that

of a baseline model because it does not produce negative immediate responses of

house prices to an expansionary monetary policy shock.



Chapter 6

Conclusion

This thesis estimates a TVP-VAR model with stochastic volatility and dynamic

dimension selection in order to assess the link between house prices and monetary

policy. The model is from Koop & Korobilis (2013) and features changing a

TVP-VAR dimension among small TVP-VAR with 4 variables, medium TVP-

VAR containing 6 variables, and large TVP-VAR with 20 variables. We specified

all models to be housing-oriented. Moreover, the model allows for the estimation

of prior shrinkage hyperparameter in a time-varying manner. As expected, the

necessary degree of shrinkage increases with the number of parameters in the

model.

We extended the model by providing a way to perform impulse response anal-

ysis and forecast error variance decomposition. As the model is time-varying in

many aspects, impulse responses and FEVD are also changing over time. There-

fore, impulse responses of house prices, residential investment and mortgage av-

erage to a monetary policy shock are presented for several time periods. Those

periods include both “stable” times with supreme economic conditions and the

times of high uncertainty. The impulse responses are generally more invariant to

different model specifications in stable times and they are also always significant

during those times. Moreover, the behavior of impulse responses seem to be highly

dependent on the value of the shrinkage hyperparameter, and we show that stable

responses can be generated only from models with lower shrinkage, i.e., those that

allow for more variation around the prior means of their coefficients.

Overall, the results indicate that there is a connection between monetary pol-

icy and the housing market, even though it appears to be less significant in periods

of high uncertainty. House prices positively respond to an expansionary monetary

policy shock approximated by the shock in Wu and Xia rate and the response
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is significant except for December 2013, which is a period of QE tapering. The

responses are sluggish and persistent, with the peak median response of 2-4% af-

ter approximately 3 years following a 100-basis-point decrease in the policy rate.

This corresponds to findings in the literature (e.g., Eickmeier & Hofmann (2010)).

Responses of residential investment and mortgage average have the expected di-

rection, although they are found to be insignificant for most of the examined

periods, except for the most stable period of November 2006 where the response

of residential investment is positive and becomes significant after approximately

one year.

Several robustness checks were performed to assess the stability of the results.

The most prominent ones include changing the measure of monetary policy from

Wu and Xia rate to Krippner’s Shadow Short Rate and changing the order of

variables in order to allow for a contemporaneous response of house prices to a

monetary policy shock. Main results are not qualitatively affected, even though

there is one period in which the responses of house prices to Krippner’s SSR are

insignificant, while for Wu and Xia rate they were mostly significant. This period

is the one with the highest uncertainty - August 2011 - in which the disputes in the

Congress over raising of the debt ceiling escalated. Different ordering affects the

immediate response of house prices to a monetary policy shock that is no longer

restricted to zero and becomes slightly negative. Also, the confidence bands be-

come rather wider following this ordering, and therefore, we concluded that house

prices should be preferably ordered before the policy rate to allow for contempora-

neous response of monetary policy to developments in house prices. The preferred

ordering also implicitly restricts house prices from responding immediately to a

monetary policy shock.

Possible extensions for future work are threefold. First, the impulse responses

could be estimated based on an identification scheme that allows for a simultaneity

between monetary policy and house prices. Therefore, house prices could respond

contemporaneously to monetary policy shocks, while monetary policy could react

immediately to house price shocks. This would require using sign or long-term

restrictions. Second, one could use this model to examine the response of house

prices to a monetary policy shock in periods when the policy rate is below the rate

suggested by Taylor rule and immediately after the recession, and check whether

the response is stronger. The idea would be that the central bank does not know

whether it should increase the rates yet, but we get a better picture ex-post from

the data that were not previously available. Lastly, we could repeat the analysis

using the data for the Czech Republic and compare the results.
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AppendixA

Descriptionofvariables

Variablesusedintheempiricalpartandtheirtransformationcodes(Tcode),frequenciesinwhichthedata

weredownloaded,datasourcesandtheoriginalunits.Transformationcodesareasfollows:ifyitistheoriginal

(untransformed)variableiattimetandyitisthecorrespondingtransformedvariable;1-notransformation

(̃yit:=yit),2-firstdifference(yit:=yit−yit−1),4-logarithm(yit:=logyit)and5-firstdifferenceof

logarithm(yit:=logyit−logyit−1).

Variable Tcode Frequency Source Units SA

RealGDP 5 Quarterly FRED Billionsof2009USD

S&P/Case-ShillerU.S.NationalHPI 5 Monthly FRED IndexJan2000=100

CapacityUtilization: Manufacturing 1 Monthly FRED Percent

CivilianUnemploymentRate 1 Monthly FRED Percent

RealDisposablePersonalIncome:PerCapita 5 Monthly FRED 2009USD

RealPersonalConsumptionExpenditures 5 Monthly FRED Billionsof2009USD

RealPrivateResidentialFixedInvestment 1 Quarterly FRED Billionsof2009USD

CPI:AllItems 5 Monthly FRED Index1982-1984=100

MortgageDebtOutstanding 5 Quarterly FRED MillionsofUSD

HousingStarts:Total 5 Monthly FRED ThousandsofUnits

TotalReservesofDepositoryInstitutions 5 Monthly FRED BillionsofUSD

M2MoneyStock 5 Monthly FRED BillionsofUSD

10-YearTreasuryConstantMaturityRate 1 Monthly FRED Percent

30-YearFixedRateMortgageAverage 1 Weekly FRED Percent

SpotCrudeOilPrice: WTI 5 Monthly FRED USDperBarrel

S&P500Index 5 Monthly YahooFinance Index

ProducerPriceIndexforAllCommodities 5 Monthly FRED Index1982=100

RealBroadEffectiveExchangeRate 5 Monthly FRED Index2010=100

CBOEVolatilityIndex:VIX 5 Daily FRED Index,NSA

Wu-XiaShadowRate 1 Monthly Wu’spersonalwebsite Percent

IndustrialProductionIndexRC 5 Monthly FRED Index2012=100

MacroeconomicAdvisers’RealGDPIndexRC 5 Monthly MacroeconomicAdvisers Billionsof2009USD

FHFAHousePriceIndexRC 5 Monthly FHFA IndexJan1991=100

Krippner’sSSRRC 1 Monthly RBNZ Percent

TableA.1: Variablesandtheirtransformationcodes,availablefrequencies,datasourcesandoriginalunits. FREDde-
notestheFederalReserveBankofSt. Louisdatabase(fred.stlouisfed.org),datafromYahooFinanceareavailableat
finance.yahoo.com,Cynthia Wu’spersonalwebsiteisatsites.google.com/site/jingcynthiawu/,MacroeconomicAdvis-
ersatmacroadvisers.com,FHFAstandsfortheFederalHousingFinanceAgency(www.fhfa.gov)andRBNZfortheReserve
BankofNewZealand(www.rbnz.govt.nz).SAdenotesseasonallyadjusteddata.

fred.stlouisfed.org
finance.yahoo.com
sites.google.com/site/jingcynthiawu/
macroadvisers.com
www.fhfa.gov
www.rbnz.govt.nz
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Results from ADF and KPSS tests

Variable
ADF test KPSS test

Constant Constant+trend Constant Constant+trend

Real GDP −2.7458 0.53373∗∗∗
S&P/Case-Shiller U.S. National HPI −2.7211 0.81887∗∗∗
Capacity Utilization: Manufacturing −3.7769∗∗∗ 0.53908∗∗
Civilian Unemployment Rate −2.2231 1.6708∗∗∗
Real Disposable Personal Income: Per Capita −2.5254 0.66962∗∗∗
Real Personal Consumption Expenditures −1.8597 0.66809∗∗∗
Real Private Residential Fixed Investment −3.6178∗∗ 0.62257∗∗∗
CPI: All Items −1.7654 0.78962∗∗∗
Mortgage Debt Outstanding −2.5914∗ −2.506 1.1891∗∗∗ 1.0462∗∗∗
Housing Starts: Total −1.1456 −1.271 3.1951∗∗∗ 0.65145∗∗∗
Total Reserves of Depository Institutions −2.1347 1.0109∗∗∗
M2 Money Stock −0.3847 1.2055∗∗∗
10-Year Treasury Constant Maturity Rate −1.3076 −2.8114 4.7055∗∗∗ 0.17914∗∗
30-Year Fixed Rate Mortgage Average −1.1883 −2.3385 4.7951∗∗∗ 0.21991∗∗∗
Spot Crude Oil Price: WTI −1.9414 −1.6737 2.8102∗∗∗ 0.73161∗∗∗
S&P 500 Index −1.3242 0.87968∗∗∗
Producer Price Index for All Commodities −1.4426 0.69251∗∗∗
Real Broad Effective Exchange Rate −1.478 2.9895∗∗∗
CBOE Volatility Index: VIX −2.7826∗ 0.63069∗∗
Wu-Xia Shadow Rate −2.324 −2.6363 3.4732∗∗∗ 0.29798∗∗∗
Industrial Production IndexRC −3.6739∗∗ 0.27732∗∗∗
Macroeconomic Advisers’ Real GDP IndexRC −1.95 0.53948∗∗∗
FHFA House Price IndexRC −2.9406 0.78647∗∗∗
Krippner’s SSRRC −1.7099 −1.4786 3.1088∗∗∗ 0.37572∗∗∗

Table B.1: Test statistics from ADF and KPSS tests for variables in levels. Superscript RC denotes variables used
for a robustness check. Columns Constant and Constant+trend indicate which deterministic terms are included
in the regressions. Null hypothesis: ADF test: Variable has a unit root, KPSS test: Series is level (Constant) or
trend (Constant+trend) stationary. Critical values for test statistics - Constant: ADF test: -3.46 (1%) -2.88 (5%)
-2.57 (10%), KPSS test: 0.739 (1%) 0.463 (5%) 0.347 (10%); Constant+trend: ADF test: -3.99 (1%) -3.43 (5%)
-3.13 (10%), KPSS test: 0.216 (1%) 0.146 (5%) 0.119 (10%). The asterisks indicate that the null hypothesis can be
rejected at the 10% (*), 5% (**) and 1% (***) significance levels.
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Variable ADF test KPSS test

Real GDP −4.2644∗∗∗ 0.29269

S&P/Case-Shiller U.S. National HPI −1.9802 1.0364∗∗∗
Capacity Utilization: Manufacturing −3.7769∗∗∗ 0.53908∗∗
Civilian Unemployment Rate −2.2231 1.6708∗∗∗
Real Disposable Personal Income: Per Capita −6.2982∗∗∗ 0.11106

Real Personal Consumption Expenditures −3.2482∗∗ 0.66284∗∗
Real Private Residential Fixed Investment −2.8508∗ 2.454∗∗∗
CPI: All Items −5.6101∗∗∗ 0.32024

Mortgage Debt Outstanding −3.1327∗∗ 0.7499∗∗∗
Housing Starts: Total −4.8678∗∗∗ 0.24555

Total Reserves of Depository Institutions −5.2214∗∗∗ 0.16307

M2 Money Stock −5.7601∗∗∗ 0.16083

10-Year Treasury Constant Maturity Rate −1.3076 4.7055∗∗∗
30-Year Fixed Rate Mortgage Average −1.1883 4.7951∗∗∗
Spot Crude Oil Price: WTI −6.1341∗∗∗ 0.25996

S&P 500 Index −5.1123∗∗∗ 0.23703

Producer Price Index for All Commodities −5.3967∗∗∗ 0.19354

Real Broad Effective Exchange Rate −5.7281∗∗∗ 0.24455

CBOE Volatility Index: VIX −7.3573∗∗∗ 0.026794

Wu-Xia Shadow Rate −2.324 3.4732∗∗∗
Industrial Production IndexRC −3.8986∗∗∗ 0.10068

Macroeconomic Advisers’ Real GDP IndexRC −4.3024∗∗∗ 0.24279

FHFA House Price IndexRC −1.5066 0.95728∗∗∗
Krippner’s SSRRC −1.7099 3.1088∗∗∗

Table B.2: Test statistics from ADF and KPSS tests for variables used in the empirical part.
Superscript RC denotes variables used for a robustness check. ADF and KPSS tests include
intercept and not trend. Null hypothesis: ADF test: Variable has a unit root, KPSS test:
Series is level stationary. Critical values for test statistics: ADF test: -3.46 (1%) -2.88 (5%)
-2.57 (10%), KPSS test: 0.739 (1%) 0.463 (5%) 0.347 (10%). The asterisks indicate that the
null hypothesis can be rejected at the 10% (*), 5% (**) and 1% (***) significance levels.
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CarterandKohnalgorithm

Forthegeneralstate-spacemodeloftheform:

yt=Ztβt+ t,var(t)=Σt (C.1)

βt=µ+Fβt−1+ut,var(ut)=Qt (C.2)

βt|t,βt+1 andPt|t,βt+1 canbecalculatedusing

βt|t,βt+1 =βt|t+Pt|tF(FPt|tF+Qt+1)
−1(βt+1−µ−Fβt|t) (C.3)

Pt|t,βt+1 =Pt|t−Pt|tF(FPt|tF+Qt+1)
−1FPt|t (C.4)

wherethemeaningofβt|t,Pt|tandβt+1isthesameasin4.10and4.11.Equa-

tions4.10and4.11canbeobtainedfromC.3andC.4ifwerealizethatinour

modelF=IK,Qt+1=(
1
λt+1
−1)Pt|t,andµ=0.
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Additional results, robustness checks

Parameter Value Description

α 0.9963 forgetting factor for DDS probabilities

λmin 0.96 minimal forgetting factor for the time variation in VAR coefficients

L 1.1 weight of the prediction error in the estimation of λt

κ 0.96 decay factor for the measurement error volatility

α 10 prior variance of intercepts

γ [10−10, 10−5, 0.001, 0.005, 0.01, 0.05, 0.1] prior shrinkage coefficient

τ 40 size of the training sample

p 4 VAR lag length

Table D.1: Summary of parameters employed in TVP-VAR with dynamic dimension selection (DDS).
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forecast forecast proportion of forecast error variance h periods ahead
error horizon accounted for by innovations in

in h real GDP house prices CPI Wu-Xia rate

real GDP 6 0.968 0.02 0.01 0.002
12 0.928 0.048 0.019 0.004
18 0.883 0.08 0.031 0.005
24 0.836 0.113 0.044 0.006
30 0.792 0.144 0.057 0.008
36 0.753 0.171 0.067 0.008
60 0.644 0.250 0.095 0.011

house prices 6 0.619 0.372 0.008 0.002
12 0.654 0.322 0.022 0.003
18 0.673 0.285 0.038 0.004
24 0.675 0.267 0.053 0.005
30 0.667 0.263 0.064 0.006
36 0.655 0.265 0.073 0.007
60 0.606 0.290 0.094 0.010

CPI 6 0.280 0.162 0.556 0.003
12 0.289 0.133 0.574 0.004
18 0.280 0.160 0.554 0.007
24 0.278 0.208 0.505 0.009
30 0.287 0.252 0.451 0.010
36 0.303 0.284 0.402 0.011
60 0.373 0.333 0.282 0.012

Wu-Xia rate 6 0.279 0.528 0.040 0.153
12 0.226 0.510 0.134 0.130
18 0.292 0.385 0.239 0.084
24 0.358 0.300 0.286 0.056
30 0.394 0.269 0.294 0.043
36 0.406 0.273 0.285 0.036
60 0.382 0.341 0.248 0.030

Table D.2: Mean forecast error variance decomposition in October 2008 for small TVP-VAR
with shrinkage parameter γ = 0.05. Means were computed using 10 000 draws from the posterior
distribution of parameters and rounded to three decimal places, therefore the numbers in each
row do not have to sum up to unity.
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Impulse responses, robustness check: Krippner’s SSR
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Figure D.1: Impulse responses of S&P/Case-Shiller house price index to a negative
100-basis-point shock in Krippner’s SSR. For November 2006, July 2007, August 2011
and April 2017, impulse responses were generated from the medium TVP-VAR with
γ = 0.1. In October 2008 and December 2013, small TVP-VAR with γ = 0.05 and
γ = 0.1, respectively, was selected.



D. Additional results, robustness checks VIII

Impulse responses, robustness check: Industrial
production index
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Figure D.2: Impulse responses of S&P/Case-Shiller house price index to a negative
100-basis-point shock in Wu-Xia shadow rate. In the baseline model, real GDP was
replaced by industrial production index. For November 2006, July 2007, August 2011
and April 2017, impulse responses were generated from the medium TVP-VAR with
γ = 0.1. In October 2008 and December 2013, small TVP-VAR with γ = 0.05 and
γ = 0.1, respectively, was selected.
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Impulse responses, robustness check: Macroeconomic
Advisers’ monthly GDP
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Figure D.3: Impulse responses of S&P/Case-Shiller house price index to a negative 100-
basis-point shock in Wu-Xia shadow rate. In the baseline model, real GDP was replaced
by Macroeconomic Advisers’ monthly real GDP estimates. For November 2006, July
2007, August 2011 and April 2017, impulse responses were generated from the medium
TVP-VAR with γ = 0.1. In October 2008 and December 2013, small TVP-VAR with
γ = 0.05 and γ = 0.1, respectively, was selected.
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Impulse responses, robustness check: FHFA house price
index
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Figure D.4: Impulse responses of FHFA house price index to a negative 100-basis-point
shock in Wu-Xia shadow rate. For November 2006, July 2007, August 2011 and April
2017, impulse responses were generated from the medium TVP-VAR with γ = 0.1.
In October 2008 and December 2013, small TVP-VAR with γ = 0.05 and γ = 0.1,
respectively, was selected.
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Impulse responses, robustness check: different ordering of
variables

0
.0

1
.0

2
.0

3
.0

4
.0

5

6 12 18 24 30 36 42 48 54 60

November 2006
0

.0
1

.0
2

.0
3

.0
4

.0
5

6 12 18 24 30 36 42 48 54 60

July 2007

0
.0

2
.0

4
.0

6
.0

8
.1

6 12 18 24 30 36 42 48 54 60

October 2008

0
.0

2
.0

4
.0

6

6 12 18 24 30 36 42 48 54 60

August 2011

-.0
5

0
.0

5
.1

6 12 18 24 30 36 42 48 54 60

December 2013

0
.0

2
.0

4
.0

6
.0

8

6 12 18 24 30 36 42 48 54 60

April 2017

Figure D.5: Impulse responses of S&P/Case-Shiller house price index to a negative
100-basis-point shock in Wu-Xia shadow rate. S&P/Case-Shiller house price index is
now ordered after Wu-Xia rate to allow for immediate effects of monetary policy shocks
on house prices. For November 2006, July 2007, August 2011 and April 2017, impulse
responses were generated from the medium TVP-VAR with γ = 0.1. In October 2008
and December 2013, small TVP-VAR with γ = 0.05 and γ = 0.1, respectively, was
selected.
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Figure D.6: FEVD of house prices, robustness check: Krippner’s SSR instead of Wu and Xia
rate.
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Figure D.7: FEVD of house prices, robustness check: Industrial production index (IPI) instead
of real GDP.
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Figure D.8: FEVD of house prices, robustness check: Monthly estimates of GDP produced by
Macroeconomic Advisors instead of real GDP.
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Figure D.9: FEVD of house prices, robustness check: FHFA house price index instead of
S&P/Case-Shiller HPI.
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forecast forecast proportion of forecast error variance h periods ahead
error horizon accounted for by innovations in

in h real GDP house prices CPI Wu-Xia rate

real GDP 6 0.974 0.015 0.008 0.002
12 0.934 0.044 0.017 0.005
18 0.891 0.074 0.028 0.007
24 0.851 0.102 0.039 0.008
30 0.816 0.127 0.048 0.010
36 0.786 0.148 0.055 0.011
60 0.708 0.203 0.075 0.014

house prices 6 0.312 0.671 0.014 0.003
12 0.395 0.570 0.030 0.005
18 0.455 0.492 0.046 0.007
24 0.489 0.442 0.060 0.008
30 0.505 0.414 0.071 0.010
36 0.510 0.399 0.079 0.012
60 0.504 0.383 0.097 0.016

CPI 6 0.330 0.022 0.645 0.004
12 0.408 0.065 0.522 0.005
18 0.449 0.114 0.431 0.007
24 0.480 0.153 0.357 0.009
30 0.508 0.181 0.301 0.011
36 0.531 0.197 0.260 0.011
60 0.576 0.227 0.185 0.013

Wu-Xia rate 6 0.127 0.097 0.274 0.503
12 0.276 0.114 0.394 0.216
18 0.346 0.142 0.401 0.111
24 0.370 0.178 0.382 0.071
30 0.369 0.218 0.357 0.055
36 0.361 0.255 0.334 0.049
60 0.353 0.322 0.282 0.043

Table D.3: Mean forecast error variance decomposition in December 2013 for small TVP-VAR
with shrinkage parameter γ = 0.1. Means were computed using 10 000 draws from the posterior
distribution of parameters and rounded to three decimal places, therefore the numbers in each
row do not have to sum up to unity.
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forecast forecast proportion of forecast error variance h periods ahead accounted for by innovations in

error horizon
real GDP house prices residential investment CPI mortgage rate Wu-Xia rate

in h

real GDP 6 0.941 0.032 0.014 0.009 0.001 0.003

12 0.886 0.055 0.024 0.022 0.006 0.007

18 0.819 0.087 0.031 0.042 0.011 0.011

24 0.763 0.110 0.036 0.063 0.014 0.014

30 0.723 0.124 0.042 0.080 0.015 0.016

36 0.695 0.135 0.046 0.091 0.016 0.018

60 0.643 0.161 0.053 0.106 0.015 0.023

house prices 6 0.039 0.905 0.033 0.017 0.002 0.003

12 0.080 0.806 0.063 0.035 0.010 0.006

18 0.123 0.701 0.094 0.054 0.018 0.010

24 0.172 0.597 0.120 0.072 0.024 0.015

30 0.223 0.511 0.133 0.086 0.026 0.021

36 0.267 0.450 0.134 0.095 0.026 0.028

60 0.348 0.357 0.115 0.116 0.021 0.043

residential investment 6 0.033 0.068 0.870 0.017 0.007 0.005

12 0.087 0.102 0.678 0.088 0.023 0.022

18 0.143 0.126 0.545 0.120 0.026 0.041

24 0.183 0.152 0.452 0.131 0.025 0.057

30 0.210 0.176 0.386 0.136 0.023 0.069

36 0.228 0.195 0.340 0.140 0.021 0.075

60 0.285 0.232 0.249 0.148 0.018 0.069

CPI 6 0.154 0.103 0.041 0.694 0.002 0.005

12 0.277 0.106 0.066 0.538 0.006 0.007

18 0.354 0.112 0.071 0.446 0.009 0.009

24 0.414 0.120 0.069 0.376 0.010 0.011

30 0.459 0.129 0.067 0.323 0.010 0.012

36 0.493 0.135 0.064 0.284 0.011 0.013

60 0.554 0.150 0.061 0.209 0.011 0.014

mortgage rate 6 0.521 0.091 0.172 0.099 0.111 0.006

12 0.516 0.232 0.109 0.075 0.061 0.006

18 0.520 0.275 0.088 0.069 0.041 0.007

24 0.518 0.287 0.085 0.069 0.033 0.008

30 0.510 0.288 0.091 0.074 0.029 0.009

36 0.500 0.287 0.098 0.079 0.026 0.010

60 0.474 0.281 0.108 0.097 0.022 0.018

Wu-Xia rate 6 0.103 0.204 0.111 0.154 0.005 0.423

12 0.174 0.198 0.151 0.237 0.008 0.233

18 0.219 0.186 0.161 0.273 0.009 0.152

24 0.242 0.181 0.167 0.286 0.010 0.114

30 0.255 0.183 0.170 0.284 0.011 0.097

36 0.265 0.191 0.169 0.275 0.011 0.090

60 0.293 0.224 0.150 0.241 0.010 0.081

Table D.4: Mean forecast error variance decomposition in April 2017 for medium TVP-VAR
with shrinkage parameter γ = 0.1. Means were computed using 10 000 draws from the posterior
distribution of parameters and rounded to three decimal places, therefore the numbers in each
row do not have to sum up to unity.


	Abstract
	Contents
	List of Tables
	List of Figures
	Thesis Proposal
	Introduction
	Literature Review
	Data
	Data description
	Data manipulation
	Cubic spline interpolation
	Transformation of variables

	Preliminary analysis
	Lag order selection
	Granger causality


	Methodology
	Brief description of the model
	Estimation of TVP-VAR-DDS
	Kalman Filter with Forgetting Factors
	Dynamic Model Selection

	Carter and Kohn Algorithm
	Impulse Response Analysis
	Forecast Error Variance Decomposition

	Results
	TVP-VAR with dynamic dimension selection
	Impulse responses, FEVD
	Robustness Checks

	Conclusion
	Bibliography
	Description of variables
	Results from ADF and KPSS tests
	Carter and Kohn algorithm
	Additional results, robustness checks

