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grateful to Petr Milanov, Tomáš Flodrman, Miroslav Zezula, Miloslav Vlasák
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Introduction
”God does not play dice with the world,” said many times Albert Einstein believ-
ing there must be some fundamental laws of nature that could make possible to
calculate the speed and position of any particle (Hermanns and Einstein (1983)).
Contemporary science formulates these laws in terms of partial differential equa-
tions and use them for describing a wide spectrum of phenomena such as fluid
dynamics, quantum mechanics, elasticity, heat transfer, electrostatics, electrody-
namics, but also dynamics of flocking, pricing of options, crystal growth or gene
propagation.

From the theoretical point of view one can be concerned with proving the
existence, uniqueness or regularity of the solution of these equations. However,
due to the high complexity of partial differential equations it is often impossible
to solve them analytically and a numerical approach is typically required.

Within most of this thesis we deal with the numerical solution of a singu-
larly perturbed convection-diffusion equation using the finite element method.
It describes the flow of particles, heat, or other physical quantities and since
it is singularly perturbed it contains small diffusivity constant (i.e. convection
dominates).

The solution of a convection-dominated convection-diffusion equation pos-
sesses, in general, interior or boundary layers. These are narrow regions where
the solution changes rapidly. If the mesh size is much larger then the width of
these regions, the layers cannot be resolved properly, and thus spurious (non-
physical) oscillations occur in the numerical solution. In order to remove them,
one can use some adaptive mesh-refinement algorithm and refine the mesh along
layers. However, it does not always bring the desired effect since the mesh width
in layer regions should be extremely small.

The second possibility is to adapt the numerical method and enhance its stabil-
ity. Various stabilization strategies have been developed during the last decades.
The pioneer contribution to this development was made in the seventies of the
last century by Christie et al. (1976) and Heinrich et al. (1977). Christie et al.
(1976) used nonsymmetric test functions in the one-dimensional case to achieve
the method stability while Heinrich et al. (1977) derived the two-dimensional
upwind finite elements.

Many nonconsistent methods were developed until Brooks and Hughes (1982)
came with the streamline upwind/Petrov-Galerkin (SUPG) method. It introduces
artificial diffusion along streamlines only and the stability is obtained without the
loss of accuracy. Since it is consistent one may also derive convergence results.
Hughes et al. (1989) then also introduced the Galerkin/least-squares finite ele-
ment method which represents a conceptual simplification of the SUPG method.

The SUPG method produces oscillation-free solutions in regions, where the
solution of the respective partial differential equation is smooth enough and does
not change abruptly. However, it is neither monotone nor monotonicity preserv-
ing and the spurious oscillations unfortunately persist in narrow regions along
sharp (boundary, characteristic) layers. Hence, various (often nonlinear) meth-
ods adding further stabilizing terms to the original SUPG method have been
proposed. John and Knobloch (2007, 2008) call these methods spurious oscilla-
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tions at layers diminishing (SOLD) methods and find Franca et al. (1992) and the
modification of Dutra do Carmo and Galeão (1991), Codina (1993) to be the only
reasonably promising approaches among the SOLD methods they studied. Nev-
ertheless, they conclude with the result that obtaining oscillation-free solutions
is still completely open problem.

The thesis is composed of three chapters and their content is following. We
start with the construction of a matched asymptotic expansion of the solution of
the convection-diffusion equation in 1D and derive a formula for the zeroth-order
asymptotic expansion in several two-dimensional triangular domains (Chapter 1).
In Chapter 2 we present a set of stabilization methods, employ them on simple
one-dimensional examples and prove the uniform convergence of the Il’in-Allen-
Southwell scheme in 1D. Finally, we introduce a modification of the SUPG method
on convection-oriented meshes. This new method enjoys several profitable prop-
erties such as linearity, fulfillment of the discrete maximum principle or possibility
to derive valuable convergence results. Besides the analysis of the method and
derivation of a priori error estimates we also carry out several numerical experi-
ments verifying the theoretical results (Chapter 3).
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1. Asymptotic expansion

1.1 Introduction
While solving singularly perturbed problems, such as convection-diffusion equa-
tion or convection-diffusion-reaction equation, we would like to have some test
solution of the respective differential equation (equipped with some simple bound-
ary data) which can confirm or disprove our analyses or methods. This solution
can be either exact or asymptotically exact. We can also have the same demand
while constructing anisotropic and adaptively refined meshes.

In this context, finding the asymptotically exact solution of the respective
differential equation is more convenient. Although it seems that we loose the
accuracy of the solution it is not the case, since we can choose the accuracy of
the solution ourselves. The construction of the asymptotically exact solutions
for differential equations – the method of matched asymptotic expansions – is
well described for one-dimensional cases and several two-dimensional cases, see
e.g. Eckhaus (1979) or Roos et al. (2008) and the references cited therein. How-
ever, for multidimensional cases the construction of the asymptotic expansions
of the solutions of partial differential equations is more complicated and in fact
treated mostly on simple domains - squares and rectangles in 2D. Moreover, the
analysis of the singularly perturbed problems is performed on these rectangular
domains, as well. Therefore, the main goal of this chapter is to extend the type of
these domains to other convex polygons and enable a generalization of the above
mentioned analysis of these problems.

1.2 Asymptotic expansion in 1D
We would like to apply a one-dimensional theory to higher dimensions, and hence
we start with a one-dimensional issue. It is well described in Roos et al. (2008)
and therefore we proceed according to the theory employed therein.

Let us investigate the singularly perturbed problem

Lu := −εu′′ + b(x)u′ = f in Ω = (0, 1), (1.1)
u(0) = u(1) = 0, (1.2)

with b(x) > β > 0 and 1 ≫ ε > 0. Since we are going to use the derivatives
of functions b and f , let us also assume that b and f are sufficiently smooth on
[0, 1].

It is sometimes difficult to compute the exact solution u of the boundary value
problem (1.1)–(1.2), therefore we would like to find some approximation of it. We
use the fact that ε is considered to be a very small positive number and use an
asymptotic expansion to approximate the solution u.

Definition 1.2.1. The function v is an asymptotic expansion of order m of the
function u (in the maximum norm) if there exists a constant C independent of ε
such that

|u(x) − v(x)| ≤ C εm+1 for all x ∈ [0, 1] and ε sufficiently small. (1.3)

8



The previous definition implies that if v is the asymptotic expansion of order
m of the function u and c ∈ R is any constant, then v+cεm+1 is also an asymptotic
expansion of order m of the function u. Thus, v is not a uniquely defined function
and our aim is to find any v satisfying (1.3). One possibility is to construct the
matched asymptotic expansion uas,m which we will describe now.

Firstly, we formally set ε = 0 in the equation (1.1) and obtain the so-called
reduced problem

L0u0 := b(x)u′
0(x) = f(x) in Ω, (1.4)
u(0) = 0. (1.5)

The reduced solution u0 is, in fact, the first term of the so-called global (or regular)
expansion of the solution u, which is a good approximation of u away from the
boundary layers.
Definition 1.2.2. We call the function ug,m the m-th order global expansion of
the function u when ug,m = ∑m

j=0 ε
juj, where u0 is the reduced solution and uj,

j ∈ {1, 2, . . . ,m}, satisfy

L0uj = u′′
j−1, uj(0) = 0. (1.6)

This definition immediately implies that

L(u− ug,m) = f + εu′′
g,m − L0ug,m = f + ε

m∑
j=0

εju′′
j − f −

m∑
j=1

εjL0uj =

=
m∑

j=0
εj+1u′′

j −
m∑

j=1
εju′′

j−1 = εm+1u′′
m, (1.7)

(u− ug,m)(0) = 0 and (1.8)

(u− ug,m)(1) = −
m∑

j=0
εjuj(1). (1.9)

Since uj(1) generally does not vanish for all j = 0, 1, . . . ,m, local correction terms
at x = 1 must be added. Therefore, we introduce the local variable

ξ(x) = 1 − x

ε
⇒ x(ξ) = 1 − εξ, (1.10)

and consider the following Taylor’s expansion of the function b at x = 1

b(x) =
∞∑

j=0
bj(1 − x)j. (1.11)

If we now define a new function U of the variable ξ by setting U(ξ) = u(x(ξ))
(i.e. u(x) = U(ξ(x))), then there holds

du
dx = dU

dξ
dξ
dx = −1

ε

dU
dξ and d2u

dx2 = 1
ε2

d2U

dξ2 . (1.12)

Consequently, we can express the differential operator L in terms of ξ as

Lu = 1
ε

(
− d2U

dξ2 − b(1 − εξ) dU
dξ

)
= (1.13)

= 1
ε

(
− d2U

dξ2 − b0
dU
dξ

)
− 1
ε

∞∑
j=1

bjε
jξj dU

dξ =: LU. (1.14)
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We observe that the stretching factor 1/ε in the definition of ξ has been chosen
in such a way that the coefficients at the first and the second derivative in (1.13)
are of the same order with respect to ε.

In the expression (1.14), let us denote

L∗
0 := − d2

dξ2 − b0
d
dξ and L∗

j := −bjξ
j d

dξ , j ≥ 1, (1.15)

and let us introduce the local expansion of the m-th order

vloc,m(ξ) =
m∑

j=0
εjvj(ξ), (1.16)

where vj, j = 0, 1, . . . ,m, are functions independent of ε which will be defined
in what follows. Combining this definition with (1.14) then yields (we denote
s = j + k, q = s−m− 2 and t = j − s+m+ 1 = j − q − 1)

Lvloc,m+1 = 1
ε

∞∑
j=0

εjL∗
jvloc,m+1 = 1

ε

∞∑
j=0

εjL∗
j

m+1∑
k=0

εkvk = 1
ε

∞∑
j=0

m+1∑
k=0

εj+kL∗
jvk =

= 1
ε

∞∑
j=0

m+1+j∑
s=j

εsL∗
jvs−j = 1

ε

m+1∑
s=0

εs
s∑

j=0
L∗

jvs−j + 1
ε

∞∑
s=m+2

εs
s∑

j=s−m−1
L∗

jvs−j =

= 1
ε

m+1∑
s=0

εs
s∑

j=0
L∗

jvs−j + εm+1
∞∑

q=0
εq

m+1∑
t=0

L∗
t+q+1vm+1−t, (1.17)

where the sum equality ∑∞
j=0

∑m+1+j
s=j = ∑m+1

s=0
∑s

j=0 +∑∞
s=m+2

∑s
j=s−m−1 results

from the discrete Fubini theorem (see Remark 1.2.1, page 10).
Thus, in order to obtain Lvloc,m+1 = O(εm+1) we require ∑s

j=0 L
∗
jvs−j = 0

for all s = 0, 1, . . . ,m + 1. This is a system of ordinary differential equations,
so-called boundary layer equations, which can be solved recursively, i.e. for each
s = 0, 1, . . . ,m+ 1 we solve the differential equation

L∗
0vs = −

s∑
j=1

L∗
jvs−j

⎛⎝= −
s−1∑
j=0

L∗
s−jvj

⎞⎠ , in (0,∞), (1.18)

equipped with the boundary conditions vs(0) = −us(1) and limξ→∞ vs(ξ) = 0
(when s = 0 we consider −∑s

j=1 L
∗
jvs−j = 0). For instance, the first two solutions

of this system (the first-order correction and the second-order correction) have
the following form

v0(ξ) = −u0(1) e−b0ξ = −u0(1) e−b(1)ξ, (1.19)

v1(ξ) =
(

−u1(1) + b1 u0(1) ξ
b0

+ b1 u0(1) ξ2

2

)
e−b0ξ =

= −
(
u1(1) + b′(1)u0(1) ξ

b(1) + b′(1)u0(1) ξ2

2

)
e−b(1)ξ. (1.20)

Remark 1.2.1. The above applied equality
∞∑

j=0

m+1+j∑
s=j

ajs =
m+1∑
s=0

s∑
j=0

ajs +
∞∑

s=m+2

s∑
j=s−m−1

ajs (1.21)
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does not hold for arbitrary functions (or numbers) ajs. For instance, if ajs = δj,s−
δj+1,s, then ∑∞

j=0
∑m+1+j

s=j ajs = ∑∞
j=0(1 − 1) = 0. On the other hand, there holds∑m+1

s=0
∑s

j=0 ajs = a00 + ∑m+1
s=1 (−1 + 1) = 1 + 0 = 1 and ∑∞

s=m+2
∑s

j=s−m−1 ajs =∑∞
s=m+2(−1 + 1) = 0. Hence, some conditions on ajs are necessary in the case of

infinite sums.
If ajs ≥ 0 for all considered j and s or if ∑∞

j=0
∑m+1+j

s=j |ajs| < ∞, then the
equality (1.21) results from the Fubini and the Tonelli theorems (see, e.g., Whee-
den and Zygmund (2015), Chapter 6). However, since the terms in (1.17) with
s ≥ m + 2 are all O(εm+1), the interchange of sums in (1.17) is always correct,
up to some O(εm+1)-term.

Summing global expansion and local expansion together we obtain the follow-
ing theorem. Since the proof in Roos et al. (2008) does not go into details we
present the full proof here.

Theorem 1.2.1. For sufficiently smooth data and b(x) > β > 0 in [0, 1] the
solution of the boundary value problem (1.1)–(1.2) has a matched asymptotic
expansion of the m-th order of the form

uas,m(x) =
m∑

j=0
εjuj(x) +

m∑
j=0

εjvj

(1 − x

ε

)
, (1.22)

such that for any sufficiently small fixed constant ε0 there holds

|u(x) − uas,m(x)| ≤ Cεm+1 for x ∈ [0, 1] and ε ≤ ε0. (1.23)

The constant C is independent of x and ε.

Proof. Let us consider u∗
as,m(x) = uas,m(x) + εm+1vm+1

(
1−x

ε

)
, then

L
(
u(x) − u∗

as,m(x)
)

= L
(
u(x) − ug,m(x)

)
+ L

(
ug,m(x) − u∗

as,m(x)
)

=

= εm+1u′′
m(x) − L

(
vloc,m+1

(1 − x

ε

))
=

= εm+1u′′
m(x) − Lvloc,m+1(ξ) = O(εm+1) (1.24)

and
(
u− u∗

as,m

)
(0) = 0 −

m∑
j=0

εjvj(1/ε) = O(εµ) for any µ > 0, (1.25)

(
u− u∗

as,m

)
(1) = −

m∑
j=0

εj
(
uj(1) + vj(0)

)
− εm+1vm+1(0) = εm+1um+1(1). (1.26)

Hence, one may find a positive constant Cλ independent of ε such that there
holds

⏐⏐⏐L(u(x) − u∗
as,m(x))

⏐⏐⏐ ≤ Cλε
m+1 for all x ∈ (0, 1) and

⏐⏐⏐(u − u∗
as,m)(0)

⏐⏐⏐ ≤
Cλε

m+1,
⏐⏐⏐(u− u∗

as,m)(1)
⏐⏐⏐ ≤ Cλε

m+1.

If we now denote w(x) = max
{

1, 1
β

}
Cλε

m+1(x + 1), we obtain the following

11



inequalities

Lw ≥ b(x)
β
Cλε

m+1 ≥ L
(
u− u∗

as,m

)
≥ −b(x)

β
Cλε

m+1 ≥ −Lw, (1.27)

w(0) ≥ Cλε
m+1 ≥

(
u− u∗

as,m

)
(0) ≥ −Cλε

m+1 ≥ −w(0),(1.28)

w(1) ≥ 2Cλε
m+1 ≥

(
u− u∗

as,m

)
(1) ≥ −2Cλε

m+1 ≥ −w(1). (1.29)

The comparison principle (Theorem 4.1.6, page 126) then implies that

w(x) ≥ u(x) − u∗
as,m(x) ≥ −w(x) for all x ∈ [0, 1]. (1.30)

It means that

|u(x) − uas,m(x)| ≤ |u(x) − u∗
as,m(x)| + εm+1

⏐⏐⏐⏐vm+1

(1 − x

ε

)⏐⏐⏐⏐ ≤

≤ ∥w∥0,∞,Ω + εm+1∥vm+1∥0,∞,(0,∞) ≤

≤
(

2Cλ max
{

1, 1
β

}
+ ∥vm+1∥0,∞,(0,∞)

)
εm+1. (1.31)

Since both Cλ and vm+1 do not depend on ε we obtain (1.23).

Remark 1.2.2. Using the above derived expression (1.19) the matched asymptotic
expansion of the zeroth order of the solution u of the boundary value problem
(1.1)–(1.2) has the form

uas,0(x) = u0(x) + v0

(1 − x

ε

)
= u0(x) − u0(1) exp

(
−b(1)1 − x

ε

)
. (1.32)

However, sometimes it is convenient to use another version of the zeroth-order
asymptotic expansion

ũas,0(x) = u0(x)
(

1 − exp
(

−b(1)1 − x

ε

))
. (1.33)

To see that this is also an asymptotic expansion of the zeroth order of the solution
u of the boundary value problem (1.1)–(1.2) we estimate the difference ũas,0(x) −
uas,0(x). Therefore, let us denote

e0(x) := ũas,0(x) − uas,0(x) =
(
u0(x) − u0(1)

)
exp

(
−b(1)1 − x

ε

)
, (1.34)

x = arg max
x∈[0,1]

|e0(x)|. (1.35)

Since there holds e0(1) = 0 and e0(0) = −u0(1) exp (−b(1)/ε) then either
|e0(x)| ≤ |u0(1)| exp (−b(1)/ε) ≤ |u0(1)|

b(1) ε for x ∈ [0, 1] or e′
0(x) = 0, i.e. u′

0(x) +
b(1)

ε

(
u0(x) − u0(1)

)
= 0. In the latter case, using bu′

0 = f , we can estimate

|e0(x)| ≤ |e0(x)| = ε
|f(x)|
b(1)b(x) exp

(
−b(1)1 − x

ε

)
≤ ε

∥f∥0,∞,Ω

b(1)β . (1.36)

Thus |u(x) − ũas,0(x)| ≤ |u(x) − uas,0(x)| + |e0(x)| ≤ C(b, f)ε.
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Using the matched asymptotic expansion of the solution u we may also con-
struct the so-called S-decomposition of the solution u. It decomposes the solution
of the boundary value problem (1.1)–(1.2) into a smooth part S (with derivatives
bounded uniformly in ε) satisfying LS = f and a layer part E with a property
LE = 0.

Definition 1.2.3. Let u by the solution of the boundary value problem (1.1)–
(1.2), then u = S + E is an S-decomposition of u, if

S(x) =
m∑

j=0
εjuj(x) + εm+1u∗

m+1(x), (1.37)

E(x) =
m∑

j=0
εjvj

(1 − x

ε

)
+ εm+1v∗

m+1(x), (1.38)

where uj,vj, j = 0, 1, . . . ,m, are standard terms of the matched asymptotic ex-
pansion, whereas u∗

m+1 and v∗
m+1 are solutions of the differential equations

Lu∗
m+1 = u′′

m in (0, 1), (1.39)

Lv∗
m+1 = −ε−(m+1)L

⎛⎝ m∑
j=0

εjvj

(1 − x

ε

)⎞⎠ in (0, 1), (1.40)

equipped with the boundary conditions

u∗
m+1(0) = 0
u∗

m+1(1) = 0 and v∗
m+1(0) = −ε−(m+1)∑m

j=0 ε
jvj(0)

v∗
m+1(1) = 0 . (1.41)

Remark 1.2.3. If the data of the boundary value problem (1.1)–(1.2) are constant,
then choosing m = 0 leads to the S-decomposition S(x) = u0(x) + εu∗

1(x) and
E(x) = v0

(
1−x

ε

)
+ εv∗

1(x), where

−ε(u∗
1)′′ + b(u∗

1)′ = u′′
0 =

(
f

b
x

)′′

= 0 in (0, 1), (1.42)

−ε(v∗
1)′′ + b(v∗

1)′ = −1
ε
L

(
−f

b
exp

(
−b

ε
(1 − x)

))
= 0 in (0, 1), (1.43)

with u∗
1(0) = u∗

1(1) = 0 and v∗
1(0) = f

bε
exp(−b/ε), v∗

1(1) = 0. It means that
u∗

1 ≡ 0 and

v∗
1(x) = f

bε

exp
(
− b

ε

)
− exp

(
− b

ε
(2 − x)

)
1 − exp

(
− b

ε

) . (1.44)

Therefore, the S-decomposition takes the form

S(x) = f

b
x (1.45)

E(x) = −f

b
exp

(
−b

ε
(1 − x)

)
+ ε

f

bε

exp
(
− b

ε

)
− exp

(
− b

ε
(2 − x)

)
1 − exp

(
− b

ε

) . (1.46)

Let us also mention that despite the presence of the factor 1/ε the function v∗
1

for all x ∈ [0, 1] satisfies |v∗
1| ≤ |v∗

1(0)| = |f |
bε

exp(−b/ε) ≤ |f |
bε

ε
eb

= |f |
b2e , where we

have used the inequality exp(−x) ≤ 1
ex

, which is valid for all x > 0.
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Using the S-decomposition of the solution u and setting q = m+1 in Definition
1.2.3 we may prove the following lemma.

Lemma 1.2.1 (S-decomposition). Let q be some positive integer. Consider the
boundary value problem (1.1)–(1.2) with b(x) > β > 0 and sufficiently smooth
data. Its solution u can be decomposed as u = S + E, where the smooth part S
satisfies LS = f and

|S(j)(x)| ≤ CS for 0 ≤ j ≤ q, (1.47)

while the layer part E satisfies LE = 0 and

|E(j)(x)| ≤ CE ε
−j exp

(
−
β(1 − x)

ε

)
for 0 ≤ j ≤ q. (1.48)

Here CS and CE are positive constants independent of ε.

Proof. One can find the proof, e.g., in (Roos et al., 2008, pages 23–24).

1.3 Asymptotic expansion in two dimensions
Analogously to the one-dimensional case we construct the asymptotic expansion
using global and local expansions in the two-dimensional case. The main differ-
ence will be the presence of multiple boundary layers (caused by the presence of
multiple boundary edges). Moreover, in some cases the inner (parabolic, charac-
teristic) layers occur in the solution which causes complications while constructing
the asymptotic expansion.

1.3.1 Model equation and reduced problem
As in the one-dimensional case, the model equation for our purposes will be a
scalar convection-diffusion equation

Lu := −ε∆u(x, y) + b(x, y) · ∇u(x, y) = f(x, y) in Ω ⊂ R2, (1.49)
u(x, y) = 0 on ∂Ω, (1.50)

where Ω is a convex polygonal domain with boundary ∂Ω satisfying

∂Ω = Γ+ ∪ Γ0 ∪ Γ− and Γ+ ∩ Γ0 = Γ0 ∩ Γ− = Γ− ∩ Γ+ = ∅ (1.51)

with Γ+, Γ0 and Γ− defined as follows:

Γ+ = {(x, y) ∈ ∂Ω, b(x, y) · n(x, y) > 0},
Γ0 = {(x, y) ∈ ∂Ω, b(x, y) · n(x, y) = 0}, (1.52)
Γ− = {(x, y) ∈ ∂Ω, b(x, y) · n(x, y) < 0}.

Here n(x, y) denotes a unit vector at (x, y) ∈ ∂Ω orthogonal to the boundary ∂Ω.
Since we are not interested in solving the equation (1.49) for general data

but in finding some test solution for given domain, we can confine ourselves to
sufficiently smooth data, namely b ∈ C1(Ω)2 and f ∈ L2(Ω). In what follows
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we shall also consider that the vector b possesses the Taylor expansion in Ω,
particularly in the neighborhood of ∂Ω.

As ε → 0+, the equation (1.49) becomes singularly perturbed and near the
boundary Γ+ it is usually difficult to compute the solution numerically. Thus we
would like to determine the asymptotic expansion of the solution of the equation
(1.49) near the boundary Γ+. At first we again formally set ε = 0 in the equation
(1.49) and obtain the reduced problem

b(x, y) · ∇u0(x, y) = f(x, y) in Ω ⊂ R2, (1.53)
u0(x, y) = 0 on Γ−, (1.54)

where we have to consider only the boundary condition on Γ− due to the can-
cellation law (see Roos et al. (2008), p. 12 and 35, for details). The problem
(1.53)–(1.54) is a hyperbolic problem and we assume that the solution of this
problem is known, more specifically, we consider only problems with a sufficiently
smooth and (analytically) computable reduced solution u0. Some basic results
on existence, uniqueness and regularity of the solution of (1.53)–(1.54) can be
found in Goering et al. (1983). As we already know, the reduced solution u0 is
the first term of the global (or regular) expansion of the solution u, which is a
good approximation of u away from the layers.

Definition 1.3.1. We call the function ug,m the m-th order global expansion of
the function u when ug,m = ∑m

j=0 ε
juj, where u0 is the reduced solution and uj,

j ∈ {1, 2, . . . ,m} satisfy

[L0uj](x, y) := b(x, y) · ∇uj(x, y) = ∆uj−1(x, y) in Ω ⊂ R2, (1.55)
uj(x, y) = 0 on Γ−. (1.56)

From this definition it follows that

L(u− ug,m) = f + ε∆ug,m − L0ug,m = ε
m∑

j=0
εj∆uj −

m∑
j=1

εjL0uj =

=
m∑

j=0
εj+1∆uj −

m∑
j=1

εj∆uj−1 = εm+1∆um, (1.57)

u− ug,m = 0 on Γ− and (1.58)

u− ug,m = −ug,m on Γ+ ∪ Γ0. (1.59)

Due to the last property, considering ε ≪ ∥ug,m∥∞,Ω, the comparison principle
(Theorem 4.1.6, page 126) yields only ∥u−ug,m∥∞,Ω ≤ ∥ug,m∥∞,Ω. This is reason
why the local correction terms must be introduced. (See Definition 4.1.1, page
124, for the definition of norms.)

1.3.2 Local expansion in exponential layers
In order to construct the local correction terms we introduce new coordinates in
the neighborhood of Γ+. For this purpose let us assume that Γ0 = ∅ and that
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Figure 1.1: A part of the general convex domain Ω.

there are only two vertices {P 0, PH} = Γ− ∩Γ+ and consider Γ+ = ∪H
k=1ek, where

ek are the edges of Γ+. Then P 0 ∈ e1, PH ∈ eH and the remaining vertices of Γ+
satisfy P k = ek ∩ ek+1, k = 1, . . . , H − 1.

The transformation of coordinates Ψk corresponding to the edge ek, k =
1, 2, . . . , H, is now defined as Ψk : (x, y) → (ξk, ηk), where

ξk(x, y) = (P k−1
y − y) cosαk − (P k−1

x − x) sinαk = (P k−1 −X) · nk,(1.60)
ηk(x, y) = (P k−1

x − x) cosαk + (P k−1
y − y) sinαk = (P k−1 −X) · tk. (1.61)

Here P k−1 = [P k−1
x , P k−1

y ], tk = (cosαk, sinαk)T is the unit (tangent) vector par-
allel to the edge ek and nk = (− sinαk, cosαk)T is the normal vector, orthogonal
to the edge ek, see Figure 1.1. Further, let us denote dk = ηk(P k) and due to
the convexity of Ω, we may for simplicity assume that the domain Ω is oriented
in such a way that αk ∈ [0, 2π) and αk < αk+1 for all k = 1, 2, . . . , H − 1. This
notation also implies that the angle corresponding to the vertex P k is equal to
γk = π + αk − αk+1.

Next we stretch the scale in the ξk direction and define the transformation
Ψε

k : (x, y) →
(

ξk

ε
, ηk

)
using the same ξk, ηk, i.e. (ξk, ηk) = Ψk(x, y).

Under the transformation Ψε
k the differential operator L (cf. (1.49)) changes

into

LΨ
k := 1

ε

(
− ∂2

∂ξ2
k

+Bk
1 (εξk, ηk) ∂

∂ξk

)
− ε

∂2

∂η2
k

+Bk
2 (εξk, ηk) ∂

∂ηk

, (1.62)

where

Bk
1 (ξk, ηk) = −b

(
Ψ−1

k (ξk, ηk)
)

· nk = −b
(
P k−1 − ξknk − ηktk

)
· nk,(1.63)

Bk
2 (ξk, ηk) = −b

(
Ψ−1

k (ξk, ηk)
)

· tk = −b
(
P k−1 − ξknk − ηktk

)
· tk. (1.64)

Now we assume that both functions Bk
1 and Bk

2 possess a Taylor expansion in
the variable ξk and write

Bk
1 (ξk, ηk) =

∞∑
j=0

ξj
k

j!
∂jBk

1 (0, ηk)
∂ξj

k

=
∞∑

j=0

ξj
k

j!B
k
1,j(0, ηk) and (1.65)

Bk
2 (ξk, ηk) =

∞∑
j=0

ξj
k

j!
∂jBk

2 (0, ηk)
∂ξj

k

=
∞∑

j=0

ξj
k

j!B
k
2,j(0, ηk), (1.66)
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where naturally Bk
1,0(0, ηk) = Bk

1 (0, ηk) and Bk
2,0(0, ηk) = Bk

2 (0, ηk) are negative
functions defined on the edge ek.

Using this expansion, we can express the differential operator LΨ
k in the local

coordinates as
LΨ

k = 1
ε

∞∑
j=0

εjL
(j)
k , (1.67)

where

L
(0)
k = − ∂2

∂ξ2
k

+ Bk
1 (0, ηk) ∂

∂ξk
,

L
(1)
k = ξkB

k
1,1(0, ηk) ∂

∂ξk
+ Bk

2 (0, ηk) ∂
∂ηk
,

L
(2)
k = − ∂2

∂η2
k

+ 1
2ξ

2
kB

k
1,2(0, ηk) ∂

∂ξk
+ ξkB

k
2,1(0, ηk) ∂

∂ηk
,

L
(j)
k = 1

j!ξ
j
kB

k
1,j(0, ηk) ∂

∂ξk
+ 1

(j−1)!ξ
j−1
k Bk

2,j−1(0, ηk) ∂
∂ηk
, for j ≥ 3.

(1.68)
Expressing the differential operator LΨ

k in the local coordinates allows us to
introduce the local expansion of the m-th order

V k,m
loc (ξk, ηk) =

m∑
j=0

εjV k
j (ξk, ηk). (1.69)

Analogously as in the one-dimensional case the local corrections V k
j have to

satisfy the boundary layer equations in R+ × (0, dk)

L
(0)
k V k

0 = 0, (1.70)

L
(0)
k V k

j = −
j∑

i=1
L

(i)
k V

k
j−i, for j = 1, 2, . . . ,m, (1.71)

equipped for all j = 0, 1, . . . ,m with the boundary conditions

V k
j (0, ηk) = −uj

(
Ψ−1

k (0, ηk)
)
, and (1.72)

lim
ξk→+∞

V k
j (ξk, ηk) = 0, ∀ηk ∈ (0, dk). (1.73)

While the first condition ensures the fulfilment of the boundary condition
on the edge ek, the latter condition provides the local character of the local
correction.

The ordinary differential equations (1.70)–(1.71) are then uniquely solvable,
for instance the zeroth-order local correction has the form

V k
0 (ξk, ηk) = −u0

(
Ψ−1

k (0, ηk)
)

exp
(
Bk

1 (0, ηk)ξk

)
. (1.74)

We use the following lemma and corollary for the estimate of the difference
of the values of the function V k

0 .

Lemma 1.3.1. Let smax ∈ R+ and let ρ ∈ C1[0, smax] and g ∈ C2[0, smax] be
arbitrary functions. If g(s) ≤ −g < 0 for all s ∈ [0, smax], then there exists a
constant C > 0 independent of ε such that

ρ(s) exp
(
g(s)s

ε

)
− ρ(0) exp

(
g(0)s

ε

)
≤ Cε for all s ∈ [0, smax]. (1.75)
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Proof. The proof is analogous to the proof in Remark 1.2.2. Firstly, we show that
there exists a constant C1 independent of ε such that |(ρ(s)−ρ(0)) exp

(
g(0) s

ε

)
| ≤

C1ε for all s ∈ [0, smax]. Let us therefore denote

e1(s) = (ρ(s) − ρ(0)) exp
(
g(0)s

ε

)
. (1.76)

Since e1(0) = 0, then either |e1(s)| ≤ |e1(smax)| ≤ 2|ρ|0,∞,(0,smax)
gsmax

ε for all
s ∈ [0, smax] or there exists s1 ∈ (0, smax) such that s1 = arg max

s∈(0,smax)
|e1(s)|.

Consequently, there holds

e′
1(s1) =

(
ρ′(s1) + g(0)

ε
(ρ(s1) − ρ(0))

)
exp

(
g(0)s1

ε

)
= 0, (1.77)

which results into the inequality

|e1(s)| ≤ |e1(s1)| =
⏐⏐⏐⏐⏐ρ′(s1)
g(0)

⏐⏐⏐⏐⏐ ε exp
(
g(0)s1

ε

)
≤

|ρ|1,∞,(0,smax)

g
ε. (1.78)

Thus, we take C1 = max
{

2|ρ|0,∞,(0,smax)
gsmax

,
|ρ|1,∞,(0,smax)

g

}
.

It remains to estimate the expression
⏐⏐⏐ρ(s) (exp

(
g(s) s

ε

)
− exp

(
g(0) s

ε

))⏐⏐⏐. Let
us therefore denote

e2(s) = exp
(
g(s)s

ε

)
− exp

(
g(0)s

ε

)
. (1.79)

Since e2(0) = 0, then either |e2(s)| ≤ |e2(smax)| ≤ 2
gsmax

ε for all s ∈ [0, smax] or
there exists s2 ∈ (0, smax) such that s2 = arg max

s∈(0,smax)
|e2(s)|. Consequently, there

holds

e′
2(s2) = g′(s2)s2 + g(s2)

ε
exp

(
g(s2)

s2

ε

)
− g(0)

ε
exp

(
g(0)s2

ε

)
= 0, (1.80)

which results into the inequality

|e2(s)| ≤ |e2(s2)| =
⏐⏐⏐⏐⏐ g(0)
g′(s2)s2 + g(s2)

− 1
⏐⏐⏐⏐⏐ exp

(
g(0)s2

ε

)
. (1.81)

Denoting r(s) = g(0)
g′(s)s+g(s) we find out that r(0) = 1, hence from the first part of

this prove it follows that there exists a constant C2 independent of ε such that
|(r(s2) − r(0)) exp

(
g(0) s2

ε

)
| ≤ C2ε. Combining all estimates we get

⏐⏐⏐⏐ρ(s) exp
(
g(s)s

ε

)
− ρ(0) exp

(
g(0)s

ε

)⏐⏐⏐⏐ =

=
⏐⏐⏐⏐ρ(s)(exp

(
g(s)s

ε

)
− exp

(
g(0)s

ε

))
+ (ρ(s) − ρ(0)) exp

(
g(0)s

ε

)⏐⏐⏐⏐ ≤

≤ ∥ρ∥0,∞,(0,smax) C2ε+ C1ε ≤ Cε. (1.82)
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As we already mentioned, the following corollary of Lemma 1.3.1 is applied in
the proof of Theorem 1.3.1 (page 22) where it enables us to estimate the difference
u− uas,0 on Γ+.
Corollary 1.3.1. Let the functions V k−1

0 and V k+1
0 be defined using the expression

(1.74). Then there exist constants CA and CB independent of ε such that for
each ηk ∈ [0, dk] there holds⏐⏐⏐⏐V k−1

0

(
1
ε
ηk sin γk−1, dk−1 − ηk cos γk−1

)
− V k−1

0

(
1
ε
ηk sin γk−1, dk−1

)⏐⏐⏐⏐ ≤ CAε,⏐⏐⏐⏐V k+1
0

(
1
ε
(dk − ηk) sin γk, (dk − ηk) cos γk

)
− V k+1

0

(
1
ε
(dk − ηk) sin γk, 0

)⏐⏐⏐⏐ ≤ CBε.

Proof. In the first case we use a substitution s = ηk sin γk−1 ∈ [0, dk sin γk−1].
Then choosing

ρ1(s) = −u0
(
Ψ−1

k−1(0, dk−1 − s cot γk−1)
)

and g1(s) = Bk
1 (0, dk−1−s cot γk−1)

(1.83)
leads (together with an application of the previous lemma) to the desired estimate.

In the second case one uses a substitution s = (dk − ηk) sin γk ∈ [0, dk sin γk].
Consequently, the functions

ρ2(s) = −u0
(
Ψ−1

k+1(0, s cot γk)
)

and g2(s) = Bk
1 (0, s cot γk) (1.84)

and the previous lemma provide the desired estimate.

Remark 1.3.1. The previous estimates are valid if the functions u0 and b are
sufficiently smooth and if there holds dk−1 − ηk cos γk−1 ∈ [0, dk−1] and (dk −
ηk) cos γk ∈ [0, dk+1]. It means that we should consider only cos γk ≥ 0 for
all k = 0, 1, . . . , H. If we want to use these estimates for obtuse angles γk,
k = 0, 1, . . . , H, the problem data (and consequently the function u0) have to be
defined also in some neighborhood of Ω.

1.3.3 Corner correction
Unlike the one-dimensional case the considered two-dimensional domain contains
corners and if for any order j ∈ {0, 1, . . . ,m} and any k ∈ {1, 2, . . . , H − 1} we
sum

uj(P k) +V k
j (Ψε

k(P k)) +V k+1
j (Ψε

k+1(P k)) = uj(P k) +V k
j (0, dk) +V k+1

j (0, 0) =
= uj(P k) − uj

(
P k
)

− uj

(
P k
)

= −uj(P k), (1.85)

we find out, that the boundary condition at the corner corresponding to the
vertex P k is not satisfied. Thus, we have to add some corner correction terms.

Firstly, for each k = 1, 2, . . . , H − 1 we define the transformation of the coor-
dinates Φk : (x, y) → (ξk, ξk+1) corresponding to the vertex P k as

ξk(x, y) = (P k−1
y − y) cosαk − (P k−1

x − x) sinαk, (1.86)
= (P k

y − y) cosαk − (P k
x − x) sinαk, (1.87)

ξk+1(x, y) = (P k
y − y) cosαk+1 − (P k

x − x) sinαk+1, (1.88)

19



where we used the fact, that the vector P k −P k−1 is perpendicular to the normal
vector nk = (− sinαk, cosαk).

In order to define the corner correction terms we stretch the scale in both ξk

and ξk+1 direction using the transformation Φε,ε
k : (x, y) →

(
ξk

ε
, ξk+1

ε

)
with ξk and

ξk+1 defined in (1.86)–(1.88).
Under the transformation Φε,ε

k the differential operator L (cf. (1.49)) changes
into

Lε,ε
k = 1

ε

(
− ∂2

∂ξ2
k

+ 2 cos γk
∂2

∂ξk∂ξk+1
− ∂2

∂ξ2
k+1

+

+ Bk
1(εξk, εξk+1)

∂

∂ξk

+ Bk
2(εξk, εξk+1)

∂

∂ξk+1

)
(1.89)

with

Bk
1(ξk, ξk+1) = −b

(
Φ−1

k (ξk, ξk+1)
)

· nk =

= −b
(
P k + 1

sin γk

(ξk+1tk − ξktk+1)
)

· nk, (1.90)

Bk
2(ξk, ξk+1) = −b

(
Φ−1

k (ξk, ξk+1)
)

· nk+1 =

= −b
(
P k + 1

sin γk

(ξk+1tk − ξktk+1)
)

· nk+1. (1.91)

We again assume that both functions Bk
1 and Bk

2 possess Taylor’s expansion
in the form

Bk
1(ξk, ξk+1) =

∞∑
i,j=0

ξi
kξ

j
k+1

i!j!
∂i+jBk

1(0, 0)
∂iξk∂jξk+1

=
∞∑

i,j=0

ξi
kξ

j
k+1

i!j! Bk
1,ij and (1.92)

Bk
2(ξk, ξk+1) =

∞∑
i,j=0

ξi
kξ

j
k+1

i!j!
∂i+jBk

2(0, 0)
∂iξk∂jξk+1

=
∞∑

i,j=0

ξi
kξ

j
k+1

i!j! Bk
2,ij, (1.93)

where it obviously holds Bk
1,00 = Bk

1(0, 0) = −b
(
P k
)

·nk = Bk
1 (0, dk) and Bk

2,00 =
Bk

2(0, 0) = −b
(
P k
)

·nk+1 = Bk+1
1 (0, 0). Since we are going to use the (negative)

values Bk
1,00 and Bk

2,00 frequently, we also denote βk
1 = Bk

1,00 and βk
2 = Bk

2,00.
Using Taylor’s expansions (1.92) and (1.93) of the functions Bk

1 and Bk
2 we

can express the differential operator Lε,ε
k in the local coordinates as

Lε,ε
k = 1

ε

∞∑
j=0

εjL(j)
k , (1.94)

where

L(0)
k = − ∂2

∂ξ2
k

+ 2 cos γk
∂2

∂ξk∂ξk+1
− ∂2

∂ξ2
k+1

+ βk
1
∂

∂ξk

+ βk
2

∂

∂ξk+1
, (1.95)

L(r)
k =

⎛⎝ ∑
i+j=r

ξi
kξ

j
k+1

i!j! Bk
1,ij

⎞⎠ ∂

∂ξk

+
⎛⎝ ∑

i+j=r

ξi
kξ

j
k+1

i!j! Bk
2,ij

⎞⎠ ∂

∂ξk+1
, for r ≥ 1. (1.96)

20



Expressing the operator L in the local coordinates (equality (1.94)) allows us
to introduce the two-dimensional corner expansion

Zk,m
cor (ξk, ξk+1) =

m∑
i=0

εiZk
i (ξk, ξk+1). (1.97)

Therefore, we can evaluate (cf. (1.17))

Lε,ε
k Zk,m+1

cor (ξk, ξk+1) = 1
ε

∞∑
j=0

m+1∑
i=0

εj+iL(j)
k Zk

i (ξk, ξk+1) = (1.98)

= 1
ε

m+1∑
s=0

εs
s∑

r=0
L(r)

k Zk
s−r(ξk, ξk+1) + εm+1

∞∑
q=0

εq
m+1∑
t=0

L(t+q+1)
k Zk

m+1−t(ξk, ξk+1)

and thus, the corner corrections Zk
j are the solutions of the system of partial

differential equations in R+ × R+

L(0)
k Zk

0 = 0, (1.99)

L(0)
k Zk

j = −
j∑

i=1
L(i)

k Z
k
j−i, for j = 1, 2, . . . ,m, (1.100)

equipped for all j = 0, 1, . . . ,m with the boundary conditions

Zk
j (ξk, 0) = −V k

j (ξk, dk) , (1.101)
Zk

j (0, ξk+1) = −V k+1
j (ξk+1, 0) and (1.102)

lim
ξk,ξk+1→+∞

Zk
j (ξk, ξk+1) = 0. (1.103)

The boundary conditions (1.101)–(1.102) are formulated in such a way that
we obtain a simple form of the zeroth-order matched asymptotic expansion (from
Remark 1.2.2 we know that asymptotic expansion is not uniquely defined). There-
fore, we consider only m = 0 in Theorem 1.3.1.

In the derivation of the zeroth-order matched asymptotic expansion we shall
use the mapping compositions which can be rewritten using the following lemma.

Lemma 1.3.2. For the mappings Ψk−1,Ψk,Ψk+1 and Φk,Φk−1 there holds

Ψk−1Ψ−1
k (ξk, ηk) = [ηk sin γk−1 − ξk cos γk−1, dk−1 − ηk cos γk−1 − ξk sin γk−1],

Ψk+1Ψ−1
k (ξk, ηk) = [(dk − ηk) sin γk − ξk cos γk, (dk − ηk) cos γk + ξk sin γk],

Φk−1Ψ−1
k (ξk, ηk) = [ηk sin γk−1 − ξk cos γk−1, ξk],

ΦkΨ−1
k (ξk, ηk) = [ξk, (dk − ηk) sin γk − ξk cos γk],

(1.104)

where ξk, ξk+1 and ηk all belong to the domains of respective mappings.

Proof. Since the proof is in all cases analogous, we prove only the first equality.
From (1.60)–(1.61) it follows that

P k−2 − Ψ−1
k (ξk, ηk) = P k−2 −X = P k−2 −P k−1 + ξk(X)nk + ηk(X)tk. (1.105)
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Hence, using the equalities nk ·nk−1 = tk ·tk−1 = − cos γk−1, nk ·tk−1 = − sin γk−1,
tk · nk−1 = sin γk−1 and P k−2 − P k−1 = dk−1tk−1 together with the definition of
Ψk−1 we obtain

(P k−2 − Ψ−1
k (ξk, ηk)) · nk−1 = ηk sin γk−1 − ξk cos γk−1 and (1.106)

(P k−2 − Ψ−1
k (ξk, ηk)) · tk−1 = dk−1 − ηk cos γk−1 − ξk sin γk−1. (1.107)

The behavior of the mapping compositions on an edge ek ⊂ Γ+ immediately
results from the previous lemma.
Corollary 1.3.2. For the mappings Ψk−1,Ψk,Ψk+1 and Φk,Φk−1 there holds

Ψk−1Ψ−1
k (0, ηk) = [ηk sin γk−1, dk−1 − ηk cos γk−1], (1.108)

Ψk+1Ψ−1
k (0, ηk) = [(dk − ηk) sin γk, (dk − ηk) cos γk], (1.109)

Φk−1Ψ−1
k (0, ηk) = [ηk sin γk−1, 0], (1.110)

ΦkΨ−1
k (0, ηk) = [0, (dk − ηk) sin γk], (1.111)

where ηk ∈ [0, dk].
Now we have all necessary ingredients for a construction of a zeroth-order

matched asymptotic expansion.

Theorem 1.3.1. Let Γ0 = ∅, let f and b are sufficiently smooth functions and
let all the characteristics through points of Ω leave Ω at points of Γ+ in finite
time. Then the solution of the problem (1.49)–(1.50) has a zeroth-order matched
asymptotic expansion of the form

uas,0(x, y) = (1.112)

= u0(x, y) +
H∑

k=1
V k,0

loc

(
ξk(x, y)

ε
, ηk(x, y)

)
+

H−1∑
k=1

Zk,0
cor

(
ξk(x, y)

ε
,
ξk+1(x, y)

ε

)
,

where V k,0
loc and Zk,0

cor are defined in (1.69) and (1.97), respectively. Moreover,
there exists a constant C independent of x, y and ε such that

|u(x, y) − uas,0(x, y)| ≤ Cε for [x, y] ∈ Ω and ε ≤ ε0. (1.113)

Here ε0 is any sufficiently small fixed positive constant.

Proof. Instead of uas,0, we firstly prove the theorem considering the function

u∗
as,0(x, y) = u0(x, y) + (1.114)

+
H∑

k=1
V k,1

loc

(
ξk(x, y)

ε
, ηk(x, y)

)
+

H−1∑
k=1

Zk,1
cor

(
ξk(x, y)

ε
,
ξk+1(x, y)

ε

)
,

which has additional local correction and corner correction terms. Using the
definitions and equalities (1.67)–(1.71) together with the interchange of sums
analogous to the one-dimensional case (cf. (1.17)) we obtain

LΨ
k V

k,1
loc = 1

ε

∞∑
j=0

1∑
r=0

εj+rL
(j)
k V k

r = (1.115)

= 1
ε

1∑
s=0

εs
s∑

j=0
L

(j)
k V k

s−j + 1
ε

∞∑
s=2

εs
s∑

j=s−1
L

(j)
k V k

s−j = 1
ε

∞∑
s=2

εs
s∑

j=s−1
L

(j)
k V k

s−j.
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Consequently, there exists a positive constant CV (independent of ε) such that
for all (ξk, ηk) ∈ R+ × (0, dk) there holds

⏐⏐⏐LΨ
k V

k,1
loc

⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐1ε
∞∑

s=2
εs

s∑
j=s−1

L
(j)
k V k

s−j

⏐⏐⏐⏐⏐⏐ ≤ CV ε. (1.116)

Similarly, there exists a positive constant CZ (independent of ε) such that for
all (ξk, ξk+1) ∈ R+ × R+ it holds (cf. (1.94)–(1.100))

⏐⏐⏐Lε,ε
k Zk,1

cor

⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐1ε
∞∑

s=2
εs

s∑
j=s−1

L(j)
k Zk

s−j

⏐⏐⏐⏐⏐⏐ ≤ CZε. (1.117)

Consequently, the function u∗
as,0 in Ω satisfies⏐⏐⏐L (u− u∗

as,0

)⏐⏐⏐ ≤ (2|u0|2,∞,Ω + CV + CZ) ε = C∗
0 ε, (1.118)

where we employed the equality (1.57).
Further, since the functions V k,1

loc and Zk,1
cor have an exponential decay away

from the boundary Γ+, then for arbitrary κ > 0 there exists a constant C−
κ > 0

such that for every ε ≤ ε0 there holds⏐⏐⏐⏐(u− u∗
as,0)|Γ−

⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐−

H∑
k=1

V k,1
loc |Γ− −

H−1∑
k=1

Zk,1
cor|Γ−

⏐⏐⏐⏐⏐ ≤ C−
κ ε

κ. (1.119)

Finally, let ek ⊂ Γ+ be an arbitrary edge and let X = Ψ−1
k (0, ηk) ∈ ek be any

point laying on this edge. Then u(X) = 0 and the value u∗
as,0(X) is given by

the global expansion, the local corrections corresponding to the edges ek−1, ek,
ek+1 and the corner corrections in the corners P k−1 and P k. All the remaining
correction terms are O(ε) due to the presence of exponential functions (exponen-
tial decay). Thus, using the boundary conditions (1.101)–(1.102) results in the
estimate

(u− u∗
as,0)(Ψ−1

k (0, ηk)) =
= O(ε) − u0(Ψ−1

k (0, ηk)) − V k,1
loc (0, ηk) − V k−1,1

loc (Ψε
k−1Ψ−1

k (0, ηk)) −
−Zk−1,1

cor (Φε,ε
k−1Ψ−1

k (0, ηk)) − V k+1,1
loc (Ψε

k+1Ψ−1
k (0, ηk)) − Zk,1

cor(Φε,ε
k Ψ−1

k (0, ηk))=

= O(ε)−
{
u0(Ψ−1

k (0, ηk)) + V k
0 (0, ηk)

}
− εV k

1 (Ψε
kΨ−1

k (0, ηk)) −

−
1∑

j=0
εj
{
V k−1

j (Ψε
k−1Ψ−1

k (0, ηk)) + Zk−1
j (Φε,ε

k−1Ψ−1
k (0, ηk))

}
−

−
1∑

j=0
εj
{
V k+1

j (Ψε
k+1Ψ−1

k (0, ηk)) + Zk
j (Φε,ε

k Ψ−1
k (0, ηk))

}
=

= O(ε)−
{
V k−1

0

(
1
ε
ηk sin γk−1, dk−1 − ηk cos γk−1

)
+ Zk−1

0

(
1
ε
ηk sin γk−1, 0

)}
−

−
{
V k+1

0

(
1
ε
(dk − ηk) sin γk, (dk − ηk) cos γk

)
+ Zk

0

(
0, 1

ε
(dk − ηk) sin γk

)}
=

= O(ε)−
{
V k−1

0

(
1
ε
ηk sin γk−1, dk−1 − ηk cos γk−1

)
− V k−1

0

(
1
ε
ηk sin γk−1, dk−1

)}
−

−
{
V k+1

0

(
1
ε
(dk − ηk) sin γk, (dk − ηk) cos γk

)
− V k+1

0

(
1
ε
(dk − ηk) sin γk, 0

)}
.
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Hence, applying the estimate of Corollary 1.3.1 one can find a constant C+
0 > 0

such that
⏐⏐⏐⏐(u− u∗

as,0)|Γ+

⏐⏐⏐⏐ ≤ C+
0 ε.

One may be interested in the situation in some neighborhood Uε(P ) of a node
P ∈ Γ+ ∩Γ−. Since there holds u0 = 0 on Γ− and we consider u0 being sufficiently
smooth, then it follows that |u0| = O(ε) in Uε(P ) and consequently, we indeed
obtain |u− u∗

as,0| = O(ε) in Uε(P ).
From the assumptions of the theorem and from Lemma 4.1.1 (page 124) it

follows that there exists a function ϕ such that L0ϕ = b · ∇ϕ ≥ ϕ0 > 0 in Ω.
Since any function ϕc = ϕ + c, c ∈ R, satisfies L0ϕc = L0ϕ, we can choose ϕ in
such a way that ϕ > 0 in Ω and ∥ϕ∥0,∞,Ω is the smallest possible. Consequently,
for ε ≤ 1

4 ϕ0/∥ϕ∥2,∞,Ω there holds

Lϕ ≥ ϕ0 − 2ε∥ϕ∥2,∞,Ω ≥ 1
2 ϕ0. (1.120)

Therefore, if we define the function W by the relation

W = max
{

2
ϕ0
C∗

0 , C
−
0 , C

+
0

}(
ϕ+ 1

)
ε, (1.121)

then employing the inequality (1.118) we may estimate

LW ≥ C∗
0 ε ≥ L

(
u− u∗

as,0

)
≥ −C∗

0 ε ≥ −LW. (1.122)

Moreover, from the inequalities (1.119) and (1.120) it follows that

W ≥ max
{
C−

0 , C
+
0

}
ε ≥

(
u− u∗

as,0

)
|∂Ω ≥

≥ − max
{
C−

0 , C
+
0

}
ε ≥ −W. (1.123)

Applying the comparison principle (Theorem 4.1.6, page 126) then gives

W ≥
(
u− u∗

as,0

)
≥ −W in Ω, (1.124)

which for all [x, y] ⊂ Ω implies

⏐⏐⏐(u− uas,0)(x, y)
⏐⏐⏐ ≤

⏐⏐⏐(u− u∗
as,0)(x, y)

⏐⏐⏐+ ε
H∑

k=1

⏐⏐⏐⏐⏐V k
1

(
ξk(x, y)

ε
, ηk(x, y)

)⏐⏐⏐⏐⏐+
+ ε

H−1∑
k=1

⏐⏐⏐⏐⏐Zk
1

(
ξk(x, y)

ε
,
ξk+1(x, y)

ε

)⏐⏐⏐⏐⏐ ≤

≤ W + ε

(
H∑

k=1
∥V k

1 ∥0,∞,R+×(0,dk) +
H−1∑
k=1

∥Zk
1 ∥0,∞,R+×R+

)
≤

≤ ε

(
max

{
2
ϕ0
C∗

0 , C
−
0 , C

+
0

}(
1 + ∥ϕ∥0,∞,Ω

)
+

+
H∑

k=1
∥V k

1 ∥0,∞,R+×(0,dk) +
H−1∑
k=1

∥Zk
1 ∥0,∞,R+×R+

)
. (1.125)
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Let us try to find a solution of the differential equation (1.99) equipped with
the boundary conditions (1.101)–(1.103) for j = 0. We shall seek the solution of
the equation (1.99) in the form

Zk
0 (ξk, ξk+1) = u0

(
P k
)⎧⎨⎩

ρk∑
j=0

exp
(
pk

j ξk + qk
j ξk+1

)
−

ρk−1∑
j=0

exp
(
pk

j+1ξk + qk
j ξk+1

)⎫⎬⎭ ,
(1.126)

where ρk ∈ N, pk
j and qk

j have yet to be defined.
From (1.126) it follows that there holds Zk

0 (0, ξk+1) = u0
(
P k
)

exp
(
qk

ρk
ξk+1

)
and Zk

0 (ξk, 0) = u0
(
P k
)

exp
(
pk

0ξk

)
. Thus, if we choose qk

ρk
= βk

2 and pk
0 = βk

1 the
boundary conditions (1.101)–(1.102) are fulfilled.

On the other hand fulfilment of the boundary conditions (1.103) is guaranteed
only if pk

j < 0 and qk
j < 0 for all j ∈ {0, 1, . . . , ρk}. If we, for instance, choose

pk
m > 0, then the difference exp

(
pk

mξk+1 + qk
mξk

)
− exp

(
pk

mξk+1 + qk
m−1ξk

)
has to

tend to zero as ξk+1 → +∞ or ξk → +∞. However, this is not possible since for
fixed ξk one has

lim
ξk+1→+∞

⏐⏐⏐exp
(
pk

mξk+1
) (

exp
(
qk

mξk

)
− exp

(
qk

m−1ξk

))⏐⏐⏐ = +∞. (1.127)

In order to fulfil the equation (1.99) one also requires the fulfilment of (1.99) for
each function from sums (1.126). Consequently, for any j ∈ {0, 1, . . . , ρk − 1} we
obtain the following set of equations

−
(
pk

j

)2
+ 2pk

j q
k
j cos γk −

(
qk

j

)2
+ βk

1p
k
j + βk

2q
k
j = 0,

−
(
pk

j+1

)2
+ 2pk

j+1q
k
j cos γk −

(
qk

j

)2
+ βk

1p
k
j+1 + βk

2q
k
j = 0,

−
(
pk

j+1

)2
+ 2pk

j+1q
k
j+1 cos γk −

(
qk

j+1

)2
+ βk

1p
k
j+1 + βk

2q
k
j+1 = 0.

(1.128)
Subtracting the second equation from the first one and the third one from the
second one yields(

pk
j+1 − pk

j

) (
pk

j+1 + pk
j − 2qk

j cos γk − βk
1

)
= 0, (1.129)(

qk
j+1 − qk

j

) (
qk

j+1 + qk
j − 2pk

j+1 cos γk − βk
2

)
= 0. (1.130)

If pk
j+1 = pk

j for some j ∈ {0, 1, . . . , ρk − 1}, then two exponential functions in
(1.126) cancel each other, hence one can omit them and set ρk := ρk − 1. The
same argument holds for qk

j . Therefore we consider pk
j+1 ̸= pk

j and qk
j+1 ̸= qk

j for
all j ∈ {0, 1, . . . , ρk − 1}. Consequently, from (1.129) it follows that

pk
j+1 = −pk

j + 2qk
j cos γk + βk

1 (1.131)

and using this equality together with (1.130) we get

qk
j+1 = −qk

j + 2pk
j+1 cos γk + βk

2 = (1.132)
= −2pk

j cos γk +
(
4 cos2 γk − 1

)
qk

j + 2βk
1 cos γk + βk

2 . (1.133)

In order to simplify further calculations we denote wk
j = (pk

j , q
k
j )T for all j ∈

{0, 1, . . . , ρk}. Then for all j ∈ {1, 2, . . . , ρk} it holds

wk
j = Awk

j−1 + rk, (1.134)
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where

A =
(

−1 2 cos γk

−2 cos γk 4 cos2 γk − 1

)
and rk =

(
βk

1
βk

2 + 2βk
1 cos γk

)
. (1.135)

Since pk
0 = βk

1 and qk
0 ̸= 0 then from the first equation in (1.128) it follows

that qk
0 = βk

2 + 2βk
1 cos γk. Thus, there holds wk

0 = rk. Let us further define the
fixed point w̃k of the iterations given by (1.134)

w̃k = Aw̃k + rk. (1.136)

Its value is w̃k = 1
2 sin2 γk

(
βk

1 + βk
2 cos γk, β

k
2 + βk

1 cos γk

)T
. Subtracting (1.136)

from (1.134) then yields

wk
j − w̃k = A

(
wk

j−1 − w̃k
)

= Aj
(
wk

0 − w̃k
)

= Aj
(
rk − w̃k

)
=

= Aj
(
−Aw̃k

)
= −Aj+1w̃k. (1.137)

Thus wk
ρk

= (I − Aρk+1) w̃k and we would like to find such an index ρk ∈ N
for which the second component of wk

ρk
is equal to βk

2 . Consequently, the first
component of this vector has to be equal to βk

1 + 2βk
2 cos γk. This follows directly

from the first equation in (1.128).
Let us therefore denote ŵk = (βk

1 + 2βk
2 cos γk, β

k
2 )T and observe that the

vector ŵk satisfies −Aŵk = rk = (I−A)w̃k by (1.136). From this observation it
follows that wk

ρk
= ŵk if and only if (I − Aρk+1) w̃k = (I − A−1)w̃k, i.e. if(

Aρk+1 − A−1
)
w̃k = 0. (1.138)

Since the eigenvalues of A are exp(±2πi), we can express the j-th power of A
in the following way

Aj = −1
2 sin γk

(
e 1

2 πi e− 1
2 πi

e− 1
2 πi e 1

2 πi

)(
e−2jπi 0

0 e2jπi

)(
e 1

2 πi −e− 1
2 πi

−e− 1
2 πi e 1

2 πi

)
=

= 1
sin γk

(
sin(1 − 2j)γk sin 2jγk

− sin 2jγk sin(1 + 2j)γk

)
. (1.139)

Consequently, the condition (1.138) can be rewritten in the form

− sin(ρk + 2)γk

sin2 γk

(
βk

1 sin ρkγk + βk
2 sin(ρk − 1)γk

βk
2 sin ρkγk + βk

1 sin(ρk + 1)γk

)
= 0. (1.140)

From the definition of βk
1 and βk

2 it follows that both βk
1 and βk

2 are negative.
Thus, the vector on the left-hand side of (1.140) is zero only in the trivial cases
γk = mπ, m ∈ {0, 1, 2}. Therefore, (excluding these trivial cases) the whole
expression on the left-hand side of (1.140) vanishes if and only if (ρk +2)γk = mπ,
for some m ∈ N.

This means that if γk = µk

νk
π for some incommensurable µk, νk ∈ N, νk ≥ 2,

µk

νk
∈ (0, 1), then choosing ρk = mkνk −2 for any mk ∈ N and pk

j , q
k
j defined recur-

sively using (1.134) leads to the fulfilment of (1.99) together with the boundary
conditions (1.101) and (1.102). It remains to verify the fulfilment of the boundary
conditions (1.103).
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Using (1.137) and (1.139) we find out that for j = 0, 1, . . . , ρk there holds(
p k

j

q k
j

)
=
(
I − Aj+1

)
w̃k = sin2(j + 1)γk

sin2 γk

⎛⎝ βk
1 + βk

2
sin jγk

sin(j+1)γk

βk
2 + βk

1
sin(j+2)γk

sin(j+1)γk

⎞⎠ . (1.141)

According to (1.127) all pk
j and qk

j , j ∈ {0, 1, . . . , ρk}, have to be negative.
Comparing pk

j with qk
j−1 we deduce that both terms βk

1 + βk
2

sin jγk

sin(j+1)γk
and βk

2 +
βk

1
sin(j+1)γk

sin jγk
= sin(j+1)γk

sin jγk

(
βk

1 + βk
2

sin jγk

sin(j+1)γk

)
have to be negative and that is why

sin(j + 1)γk

sin jγk

> 0, for all j ∈ {1, 2, . . . , ρk}. (1.142)

However, this property implies that one can consider only µk = 1 and mk = 1,
i.e. γk = π

νk
and ρk = νk − 2. Indeed, if mk ≥ 2, then ρk ≥ 2νk − 2 ≥ 2 and for

j =
⌊

νk

µk

⌋
≤ νk ≤ ρk+2

2 ≤ ρk it holds

2π > (j + 1)γk =
(⌊

νk

µk

⌋
+ 1

)
µk

νk

π > π >

⌊
νk

µk

⌋
µk

νk

π = jγk > 0, (1.143)

which results in sin(j+1)γk

sin jγk
< 0.

Similarly, if ρk = νk − 2 and γk = µk

νk
π for some µk ≥ 2, then for j =

⌊
νk

µk

⌋
=

⌊ρk+2
µk

⌋ ≤ ⌊ρk

2 + 1⌋ ≤ ρk the inequality (1.143) again causes the unfulfilment of
the boundary condition (1.103). Here we considered only ρk ≥ 1, since for ρk = 0
there is just one j = 0 and thus the condition (1.142) is pointless.

Hence, we construct a matched asymptotic expansion in two-dimensional
polygonal domain containing only exponential boundary layers. Unfortunately,
we were able to derive the exact formula only for the inner angles (i.e. angles
included by two neighboring outflow boundary edges) of the form π/m, m ∈ N,
m ≥ 2. Analogous approach can be used for derivation of a matched asymptotic
expansion in 3D, see, for instance, López et al. (2007).

1.3.4 Parabolic boundary layers
In the previous sections we have considered that no parabolic boundary layers
occur in the solution, i.e. Γ0 = ∅. One can use an analogous approach as in
the case of the exponential boundary layers and derive a matched asymptotic
expansion in the parabolic boundary layer(s) (for more details see e.g. Eckhaus
(1979) or Goering et al. (1983)). We shortly describe its construction.

Firstly, we employ the same global (regular) expansion. Further, we construct
the local expansion by stretching the scale in the ξk direction. However, in this
case we use the transformation Ψ

√
ε

k : (x, y) →
(

ξk√
ε
, ηk

)
, where (ξk, ηk) = Ψk(x, y).

Under the transformation Ψ
√

ε
k the differential operator L (cf. (1.49)) changes

into

L
√

ε
k = − ∂2

∂ξ2
k

− ε
∂2

∂η2
k

+ Bk
1 (

√
εξk, ηk)√
ε

∂

∂ξk

+Bk
2 (

√
εξk, ηk) ∂

∂ηk

. (1.144)

A boundary edge ek ⊂ Γ0 (where parabolic boundary layer occurs) is charac-
terized by the condition Bk

1 (0, ηk) = −b(Ψ−1
k (0, ηk)) · nk = 0, for all ηk ∈ [0, dk].
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Therefore, the Taylor expansion (1.65) of the function Bk
1 (ξk, ηk) in the variable

ξk does not contain the first (absolute) term, hence

Bk
1 (

√
εξk, ηk)√
ε

=
∞∑

j=1

ξj
k (

√
ε)j−1

j!
∂jBk

1 (0, ηk)
∂ξj

k

=
∞∑

j=1

ξj
k (

√
ε)j−1

j! Bk
1,j(0, ηk).

(1.145)
Using this expansion, we can express the differential operator L

√
ε

k in the local
coordinates as

L
√

ε
k =

∞∑
j=0

(√
ε
)j
F

(j)
k , (1.146)

where

F
(0)
k = − ∂2

∂ξ2
k

+ ξkB
k
1,1(0, ηk) ∂

∂ξk
+ Bk

2 (0, ηk) ∂
∂ηk
,

F
(1)
k = 1

2ξ
2
kB

k
1,2(0, ηk) ∂

∂ξk
+ ξkB

k
2,1(0, ηk) ∂

∂ηk
,

F
(2)
k = − ∂2

∂η2
k

+ 1
6ξ

3
kB

k
1,3(0, ηk) ∂

∂ξk
+ 1

2ξ
2
kB

k
2,2(0, ηk) ∂

∂ηk
,

F
(j)
k = 1

(j+1)!ξ
j+1
k Bk

1,j+1(0, ηk) ∂
∂ξk

+ 1
j!ξ

j
kB

k
2,j(0, ηk) ∂

∂ηk
, j ≥ 3.

(1.147)
Consequently, the local expansion of the m-th order in the parabolic boundary

layer has a form W k,m
loc (ξk, ηk) = ∑2m

j=0 (
√
ε)j

W k
j (ξk, ηk), where the local correc-

tions W k
j satisfy the boundary layer equations in R+ × (0, dk)

F
(0)
k W k

0 = 0, (1.148)

F
(0)
k W k

j = −
j∑

i=1
F

(i)
k W k

j−i, for j = 1, 2, . . . , 2m, (1.149)

equipped for all j = 0, 1, . . . , 2m with the boundary conditions (functions uj,
j = 0, 1, . . . ,m, and ug,m are defined in Definition 1.3.1, page 15)

W k
j (0, ηk) = −uj/2

(
Ψ−1

k (0, ηk)
)
, ∀ηk ∈ (0, dk), j even, (1.150)

W k
j (0, ηk) = 0, ∀ηk ∈ (0, dk), j odd, (1.151)

lim
ξk→+∞

W k
j (ξk, ηk) = 0, ∀ηk ∈ (0, dk), (1.152)

W k
j (ξk, 0) = 0, ∀ξk ∈ R+. (1.153)

To see that ug,m(x, y) +W k,m
loc

(
Ψ

√
ε

k (x, y)
)

is a matched asymptotic expansion in
the parabolic boundary layer in the vicinity of an edge ek, consider

L
(
u(x, y) − ug,m(x, y) −W k,m

loc

(
Ψ

√
ε

k (x, y)
))

=

= εm+1∆um(x, y) −
∞∑

i=2m+1
(
√
ε)i

2m∑
j=0

F
(i−j)
k W k

j (Ψk(x, y)) = O(εm+1/2), (1.154)

u
(
Ψ−1

k (0, ηk)
)

− ug,m

(
Ψ−1

k (0, ηk)
)

−W k,m
loc (0, ηk) =

= 0 −
m∑

j=0
εjuj

(
Ψ−1

k (0, ηk)
)

−
m∑

j=0
εjW k

2j(0, ηk) = 0 and (1.155)

(
u(x, y) − ug,m(x, y) −W k,m

loc

(
Ψ

√
ε

k (x, y)
))⏐⏐⏐⏐

Γ−

= O(εm+1/2). (1.156)
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Hence, applying the comparison principle one can show that there exists a con-
stant CP > 0 independent of ε such that in the vicinity of the edge ek there holds⏐⏐⏐u(x, y) − ug,m(x, y) −W k,m

loc

(
Ψ

√
ε

k (x, y)
)⏐⏐⏐ ≤ CP ε

m+1/2. (1.157)

Let us again derive a particular form of the zeroth-order matched asymptotic
expansion in the parabolic boundary layer. For simplicity, let us consider that b is
constant in Ω and b ·nk = 0. Then Bk

1 (ξk, ηk) = 0 and Bk
2 (ξk, ηk) = −b · tk = |b|.

Thus, function W k
0 is a solution of the parabolic initial-boundary value problem

−∂2W k
0

∂ξ2
k

+ |b| ∂W
k
0

∂ηk

= 0 in R+ × (0, dk), (1.158)

equipped with the initial condition W k
0 (ξk, 0) = 0 for all ξk ∈ R+ and the bound-

ary condition W k
0 (0, ηk) = g(ηk) = −u0(Ψ−1

k (0, ηk)) = −u0(P k−1 − ηktk) for all
ηk ∈ (0, dk). This is, in fact, the heat equation whose solution can be expressed
in a form

W k
0 (ξk, ηk) =

∫ ηk

0
G(ξk, ηk − s)g(s) ds, (1.159)

where

G(ξ, η) =
ξ
√

|b|
2
√
πη3 exp

(
−|b|ξ2

4η

)
. (1.160)

If we employ a substitution s = ηk − |b|ξ2
k

2r2 the expression (1.159) takes a form

W k
0 (ξk, ηk) =

√
2
π

∫ +∞

ξk

√
|b|

2ηk

g

(
ηk − |b|ξ2

k

2r2

)
exp

(
−r2

2

)
dr. (1.161)

Further, considering g(ηk) = −ηk
f
|b| , we can evaluate the previous integral and

obtain

W k
0 (ξk, ηk) = fηk

|b|

⎡⎣erf
⎛⎝ξk

√
|b|

2√
ηk

⎞⎠− 1 + ξ2
k|b|

4ηk

√
π

Γ
(

−1
2 ,
ξ2

k|b|
4ηk

)⎤⎦ . (1.162)

where Γ(s, x) =
∫∞

x ts−1 exp(−t) dt is the upper incomplete gamma function and
erf(x) = 2√

π

∫ x
0 exp(−t2/2) dt = 1 − 1√

π
Γ(1/2, x2) is the error function. Finally,

the zeroth-order matched asymptotic expansion in the parabolic boundary layer
has a form (see Figure 1.2 for an example with ε = 0.01, f ≡ 1 and |b| = 1)

u0 (x, y) +W k
0

(
ξk(x, y)√

ε
, ηk(x, y)

)
. (1.163)

Remark 1.3.2. Since G(0, η) = 0 for all η ∈ (0, dk) one may deduce from (1.159)
that W k

0 (0, ηk) = 0 for all ηk ∈ (0, dk) and the boundary condition is not fulfilled.
Let us therefore compute the limit limξ→0

∫ η
0 G(ξ, η − s)g(s). Since for any 0 ≤

A ≤ B ≤ η there holds

∫ B

A
G(ξ, η − s) ds = erf

⎛⎝ ξ
√

|b|
2
√
η −B

⎞⎠− erf
⎛⎝ ξ

√
|b|

2
√
η − A

⎞⎠ , (1.164)
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Figure 1.2: The zeroth-order matched asymptotic expansion in the parabolic
boundary layer and its contours, ε = 0.01, f = 1, |b| = 1.

we can split the integral (1.159) into∫ η

0
G(ξ, η − s)g(s) ds =

∫ η−Cξ

0
G(ξ, η − s)g(s) ds+

∫ η

η−Cξ
G(ξ, η − s)g(s) ds

(1.165)
and estimate⎡⎣erf

⎛⎝
√
ξ|b|

2
√
C

⎞⎠− erf
⎛⎝ξ
√

|b|
2√

η

⎞⎠⎤⎦ min
s∈[0,η−Cξ]

g(s) ≤
∫ η−Cξ

0
G(ξ, η − s)g(s) ds ≤

≤

⎡⎣erf
⎛⎝
√
ξ|b|

2
√
C

⎞⎠− erf
⎛⎝ξ
√

|b|
2√

η

⎞⎠⎤⎦ max
s∈[0,η−Cξ]

g(s) (1.166)

and⎡⎣1 − erf
⎛⎝
√
ξ|b|

2
√
C

⎞⎠⎤⎦ min
s∈[η−Cξ,η]

g(s) ≤
∫ η

η−Cξ
G(ξ, η − s)g(s) ds ≤

≤

⎡⎣1 − erf
⎛⎝
√
ξ|b|

2
√
C

⎞⎠⎤⎦ max
s∈[η−Cξ,η]

g(s), (1.167)

where we employed the equality limz→+∞ erf(z) = 1. Since there also holds
erf(0) = 0, taking the limit ξ → 0 gives limξ→0

∫ η
0 G(ξ, η − s)g(s) ds = g(η),

providing g is continuous and bounded function in [0, η].
Using the equality G(√η, η) =

√
|b|

2η
√

π
exp

(
− |b|

4

)
we realize that the function

G(ξ, η) has a singularity in [0, 0]. Moreover, considering g ≡ 1 in the above
derived limit we find out that there holds limξ→0

∫ η
0 G(ξ, η − s) ds = 1. Hence,

G(0, η) is the Dirac delta function.
Remark 1.3.3. If we consider that the function g possesses the Taylor expansion
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of the form g
(
ηk − |b|ξ2

k

2r2

)
= ∑∞

j=0
g(j)(ηk)

j!

(
− |b|ξ2

k

2r2

)j

, then from (1.161) it follows

W k
0 (ξk, ηk) =

√
2
π

∫ +∞

ξk

√
|b|

2ηk

∞∑
j=0

g(j)(ηk)
j!

(
−|b|ξ2

k

4

)j ( 2
r2

)j

exp
(

−r2

2

)
dr =

=
√

2
π

∞∑
j=0

g(j)(ηk)
j!

(
−|b|ξ2

k

4

)j ∫ +∞
ξ2

k
|b|

4ηk

t−j exp (−t) dt√
2t

=

= 1√
π

∞∑
j=0

g(j)(ηk)
j!

(
−|b|ξ2

k

4

)j

Γ
(

1
2 − j,

|b|ξ2
k

4ηk

)
,

whenever the interchange of the sum and the integral is admissible. (One may
again use the Fubini and the Tonelli theorems as in Remark 1.2.1.) This com-
plicated structure of the parabolic boundary layer function causes difficulties
in a derivation of the uniformly convergent numerical schemes (for details see
Ainsworth and Dörfler (2001) or Shishkin (1997)).

1.4 Numerical experiments
Now we shall numerically verify the theoretical estimate (1.113) for the zeroth-
order matched asymptotic expansion of the solution of the equation (1.49) with
simple data b = (1, 0)T and f ≡ 1 on a triangle with vertices P 0 = [0,− tan γ

2 ],
P 1 = [1, 0] and P 2 = [0, tan γ

2 ], where γ = γ(r) = π
r+2 , r ∈ {0, 1, 2, 4} (see

Figure 1.3).

P

P

P

e

e

e

0

1

1

2

2

0

γ

Figure 1.3: A simple triangular domain considered in the numerical experiment.

The mappings Ψ1, Ψ2 corresponding to the edges e1, e2 are then defined by

Ψ1(x, y) = (ξ1(x, y), η1(x, y)) and Ψ2(x, y) = (ξ2(x, y), η2(x, y)),
(1.168)

where

ξ1(x, y) = (1 − x) sin γ
2 + y cos γ

2 , η1(x, y) = x cos γ
2 + (y + tan γ

2 ) sin γ
2 , (1.169)

ξ2(x, y) = (1 − x) sin γ
2 − y cos γ

2 , η2(x, y) = (1 − x) cos γ
2 + y sin γ

2 . (1.170)
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Consequently, the inverse mappings satisfy

Ψ−1
1 (0, η1(x, y)) =

(
η1(x, y) cos γ

2 , η1(x, y) sin γ
2 − tan γ

2

)
, (1.171)

Ψ−1
2 (0, η2(x, y)) =

(
1 − η2(x, y) cos γ

2 , η2(x, y) sin γ
2

)
. (1.172)

Figure 1.4: The three-dimensional plots of the zeroth-order matched asymptotic
expansion (left) and the corresponding distribution of error (right) for the case
γ = π

4 and ε = 0.01.

Figure 1.4 (left) shows the particular case of the zeroth-order asymptotic
expansion uas,0 (γ = π

4 and ε = 0.01). The general form of the function uas,0 for
this simple domain is

uas,0(x, y) = u0(x, y) − u0
(
Ψ−1

1 (0, η1(x, y))
)

exp
(
B1

1(0, η1(x, y)) ξ1(x, y)
ε

)
−

− u0
(
Ψ−1

2 (0, η2(x, y))
)

exp
(
B2

1(0, η2(x, y)) ξ2(x, y)
ε

)
+

+ u0(P 1)

⎧⎨⎩
r∑

j=0
exp

(
pr

j

ξ1(x, y)
ε

+ qr
j

ξ2(x, y)
ε

)
−

−
r−1∑
j=0

exp
(
pr

j+1
ξ1(x, y)

ε
+ qr

j

ξ2(x, y)
ε

)⎫⎬⎭ , (1.173)

where u0(x, y) is the solution of the reduced problem given by (1.53)–(1.54) and

B1
1 = B1

1(0, d1) = −b(P 1) · n1, pr
j = sin2((j+1)γ)

sin2 γ

(
B1

1 +B2
1

sin(jγ)
sin((j+1)γ)

)
, (1.174)

B2
1 = B2

1(0, 0) = −b(P 1) · n2, qr
j = sin2((j+1)γ)

sin2 γ

(
B2

1 +B1
1

sin((j+2)γ)
sin((j+1)γ)

)
, (1.175)

with n1 =
(
sin γ

2 ,− cos γ
2

)
, n2 =

(
sin γ

2 , cos γ
2

)
and j ∈ {0, 1, . . . , r}.

32



Numerical experiments were carried out with the use of the discontinuous
Galerkin method (see, e.g. Riviére (2008)) with piecewise linear approximations
on uniformly refined meshes having approximately 5000 elements for several dif-
ferent values of γ and ε. The difference between the numerical solution uh and
asymptotic expansion uas,0 is depicted in Figure 1.4 (right). Table 1.1 records the
corresponding errors uh − uas,0 in L∞(Ω)-norm together with the experimental
order of convergence (EOC) with respect to ε. We observe that EOC ≈ 1 for all
considered angles γ, which is in a good agreement with derived theoretical results
of order O(ε) according to (1.113).

ε γ = π/2 γ = π/3 γ = π/4 γ = π/6
0.04 8.0211E-02 9.5164E-02 1.4183E-01 2.6822E-01
0.02 3.3935E-02 4.6841E-02 7.8396E-02 1.4062E-01
0.01 1.6045E-02 2.1667E-02 3.8123E-02 7.7320E-02
0.005 9.0778E-03 1.1417E-02 2.0733E-02 4.2789E-02
EOC 1.051 1.029 0.936 0.881

Table 1.1: Computational errors in L∞(Ω)-norm and experimental orders of con-
vergence for different values of γ and ε (adopted from Lamač (2013)).
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2. Stabilization and Upwind
techniques
In this section we present several stabilization methods and demonstrate their
behavior on simple one-dimensional examples. In the second part we prove the
uniform convergence of the Il’in-Allen-Southwell scheme in 1D.

2.1 Stabilization in 1D
For an illustration let us consider a one-dimensional convection-diffusion equation

−εu′′ + b(x)u′ = f(x) in Ω = (0, 1), (2.1)
u|∂Ω = 0, (2.2)

where b(x) > β > 0, −b′ ≥ 0, 1 ≫ ε > 0 and f ∈ L2(Ω).
For solving the equations (2.1)–(2.2) we would like to use the finite element

method. Thus, we have to construct the weak formulation of (2.1)–(2.2). Mul-
tiplying (2.1) by any function φ ∈ H1

0 (Ω), integrating over Ω and using Green’s
theorem or integration by parts in 1D (Theorem 4.1.1, page 124) the weak for-
mulation reads

Find u ∈ H1
0 (Ω) such that

a1(u, φ) = (f, φ)Ω ∀φ ∈ H1
0 (Ω), (2.3)

where
a1(u, φ) = ε(u′, φ′)Ω + (bu′, φ)Ω. (2.4)

Then a1(φ, φ) = ε|φ|21,Ω − 1
2(b′, φ2)Ω ≥ ε|φ|21,Ω and since it is also

a1(u, φ) ≤ ε|u|1,Ω|φ|1,Ω + ∥b∥∞,Ω|u|1,Ω|φ|0,Ω ≤
(
ε+ 1

π
∥b∥∞,Ω

)
|u|1,Ω|φ|1,Ω,

(2.5)
it follows from the Lax-Milgram theorem (Theorem 4.1.2, page 125) that there
exists a unique solution to this weak formulation. In estimates (2.5) we have
applied the Cauchy-Schwarz-Bunyakovsky inequality (Theorem 4.1.4, page 126)
and the one-dimensional Friedrichs’ inequality (Theorem 4.1.3, page 125). (See
Definition 4.1.1, page 124, for the definition of norms.)

To define the finite element discretization of (2.1)–(2.2) we introduce a par-
tition Th of the domain Ω consisting of a finite number of open intervals Ij =
(xj−1, xj), j = 1, 2, . . . , N , x0 = 0, xN = 1. For all types of partitions the dis-
cretization parameter h in the notation Th is a positive real number satisfying
|Ij| ≤ h for all j = 1, 2, . . . , N . Here |Ij| = xj − xj−1 denotes the length of the
interval Ij.

We obtain Galerkin’s finite element discretization of (2.1)–(2.2) simply by
replacing the space H1

0 (Ω) by a finite element subspace Vh = Xh ∩H1
0 (Ω), where

Xh = {φh ∈ C(Ω), φh|Ij
∈ P1(Ij) ∀j = 1, 2, . . . , N}. (2.6)
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Then uh ∈ Vh is a discrete solution of (2.1)–(2.2) if

a1(uh, φh) = (f, φh)Ω ∀φh ∈ Vh. (2.7)

Again, in the space Vh there exists a unique solution to this discrete problem.

2.1.1 Spurious oscillations
Let us now for simplicity consider the equation (2.1) with constant data b =
const., f = const. and let the partition Th of the domain Ω be equidistant with
the mesh parameter h satisfying h = 1/N . If we denote uj = uh(xj), for j =
0, 1, . . . , N , then the equation (2.7) can be rewritten in the form

ε
−uj−1 + 2uj − uj+1

h
+ b

uj+1 − uj−1

2 = fh ∀ j = 1, 2, . . . , N − 1. (2.8)

The solution of this difference equation has a form

uj =
{

f
b

(
jh− rj−1

rN −1

)
, for r = 1+Pe

1−Pe and Pe ̸= 1,
f
b
jh, for Pe = 1,

(2.9)

where Pe = bh
2ε

is the so-called Péclet number. When b is nonconstant we also
write Pe(x) = b(x)h

2ε
. For large Péclet numbers the value of r is approximately

equal to −1 and consequently the discrete solution oscillates (see Figure 2.1).
However the exact solution

u(x) = f

b

⎛⎝x−
exp

(
b
ε
x
)

− 1
exp

(
b
ε

)
− 1

⎞⎠ (2.10)

does not possess any oscillations. Thus, the oscillations in the discrete solution
are spurious and we need to adjust the method in order to remove them.

There are two main possibilities as to how this may be done: We can change
the discretization of the derivatives or we can refine the computational mesh. The
first technique is called stabilization and in what follows we describe several (in
some cases equivalent) methods that stabilize the discrete solution.

2.1.2 SUPG method
The streamline upwind Petrov/Galerkin (SUPG) method introduced by Brooks
and Hughes (1982) adds weighted residuals R(u) = −εu′′ + bu′ − f to the usual
Galerkin finite element method. Since R(u) vanishes for the exact solution, we
can add any multiple of R(u) to the weak formulation and the method remains
consistent, providing u ∈ H1

0 (Ω)∩H2(Ω). Thus, for any τj ∈ R the SUPG method
reads

Find uh ∈ Vh such that

a1(uh, φh) +
N∑

j=1
τj(R(uh), b φ′

h)Ij
= (f, φh)Ω, for all φh ∈ Vh. (2.11)
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Figure 2.1: The solution obtained using the finite element method without any
stabilization (or using the finite difference method with central differences) con-
tains spurious oscillations. In this example we considered ε = 0.01, b = f = 1
and h = 0.1 (i.e. Pe = 5).

In our case uh|Ij
∈ P1(Ij) which implies R(uh) = 0 + bu′

h − f and the equality
(2.11) changes to

ε(u′
h, φ

′
h)Ω +

N∑
j=1

(bu′
h, φh + τjb φ

′
h)Ij

=
N∑

j=1
(f, φh + τjb φ

′
h)Ij

, for all φh ∈ Vh.

(2.12)
The stabilization parameter τj affects the quality of the stabilization. For

τj = 0, j = 1, 2, . . . , N we obtain the original Galerkin method. If we consider
a special case when all τj are nonzero and equal to τ , the stencil of the method
takes the form(
ε+ b2τ

) −uj−1 + 2uj − uj+1

h
+ b

uj+1 − uj−1

2 = fh, ∀ j = 1, 2, . . . , N − 1.
(2.13)

Now choosing τ = τupw = h
2b

leads to the simple upwind scheme

ε
−uj−1 + 2uj − uj+1

h
+ b

(
uj − uj−1

)
= fh, ∀ j = 1, 2, . . . , N − 1. (2.14)

The solution of the respective difference equation is also easily computable

uupw
j = f

b

(
jh− rj − 1

rN − 1

)
, r = 1 + 2Pe. (2.15)

Unlike the central difference solution (2.9), the upwind solution (2.15) does no
longer oscillate. However it does not converge uniformly (with respect to ε) since
one can prove only that there exist positive constants Ĉ0, Ĉ1, Ĉ2 and β∗ such that
(cf. e.g. (Roos et al., 2008, p. 49))

|u(xj) − uupw
j | ≤

{
Ĉ0h [1 + ε−1 exp(−β∗(1 − xj)/ε)] for h ≤ ε

Ĉ1h+ Ĉ2 exp(−β∗(1 − xj+1)/ε) for h ≥ ε
(2.16)

36



Thus, for 1 > h ≥ ε and xj+1 ∈ (1 − ε
β∗ | ln h|, 1) the order of convergence is lost.

To improve the convergence order we have to adjust the stabilization parameter.
The best adjustment provides the Il’in-Allen-Southwell scheme which uses the
stabilization parameter τ∗ = h

2b
coth Pe − ε

b2 . For constant data the solution to
the respective difference equation is

u∗
j = f

b

(
jh− rj − 1

rN − 1

)
, r = exp(2Pe), (2.17)

which means that it is nodally exact.
In section 2.2 we prove the uniform convergence of the Il’in-Allen-South-

well scheme for nonconstant data in the discrete maximum norm ∥vh∥∞,d =
max

1≤i≤N
|v(xi)|.

2.1.3 Changing test functions
If we turn back to the equality (2.12) we observe that since τjb φ

′
h is constant

on the element Ij we can obtain a relation equivalent to (2.12) if we change the
test (weighting) function from φh to φh + τjb φ

′
h in (2.7) (see Figure 2.2 left).

Consequently, for all φh ∈ Vh there holds
N∑

j=1

{
ε
(
u′

h, (φh +τjb φ
′
h)′
)

Ij

+
(
bu′

h, φh +τjb φ
′
h

)
Ij

}
=

N∑
j=1

(
f, φh +τjb φ

′
h

)
Ij

. (2.18)

A method characterized by the use of different shape and test function spaces
is called a Petrov-Galerkin method (see, e.g., Heinrich et al. (1977) for one of the
first publication about this topic).

One can achieve the same effect as in the SUPG method by using continuous
Petrov-Galerkin test functions. Since they are continuous, they belong to H1

0 (Ω),
which can be in many cases useful. The simplest way is to choose continuous
piecewise quadratic test functions. They are for each j = 1, 2, . . . , N − 1 defined
as (see Figure 2.2 right)

φ̃j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x− xj−1

h
− 3σ
h2 (x− xj−1)(x− xj), for x ∈ [xj−1, xj],

xj+1 − x

h
+ 3σ
h2 (x− xj+1)(x− xj), for x ∈ (xj, xj+1],

0, otherwise.

(2.19)

Consequently, the left-hand side of (2.7) changes to

ε
(
u′

h, φ̃
′
j

)
Ω

+ (bu′
h, φ̃j)Ω =

=
(
ε+ σ

bh

2

)
−uj−1 + 2uj − uj+1

h
+ b

uj+1 − uj−1

2 . (2.20)

Comparing (2.20) with (2.13) we realize that considering σ = 1 leads to the simple
upwind scheme, whereas taking σ = coth Pe − 1/Pe yields the Il’in-Allen-South-
well scheme.
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Figure 2.2: SUPG (left) and continuous Petrov-Galerkin (right) test functions for
different choices of τ and σ.

In order to obtain the Il’in-Allen-Southwell scheme local Green’s function of
the adjoint operator of L can be also used as a test function. However, using this
approach one cannot obtain the simple upwind scheme (cf. section 2.1.6).

2.1.4 Adding artificial diffusion
From the equality (2.13) it follows that one can obtain the stabilized solution also
by adding an artificial diffusion to ε. Thus, instead of (2.7) we consider a discrete
problem of the form

Find uh ∈ Vh such that

(ε+ ε̃)
(
u′

h, φ
′
h

)
Ω

+
(
bu′

h, φh

)
Ω

=
(
f, φh

)
Ω

∀φh ∈ Vh. (2.21)

Comparing (2.21) with (2.13) we find out that we obtain the simple upwind
scheme by choosing ε̃ = ε̃upw = b2τupw = bh

2 . Similarly, taking ε̃ = ε̃∗ = b2τ∗ =
bh
2 coth Pe − ε yields the Il’in-Allen-Southwell scheme.

Since there holds ε̃upw > ε̃∗ we say that the simple upwind scheme adds too
much artificial diffusion to the original finite element (difference) method and the
discrete solution is overdiffusive – adding greater amount of the artificial diffusion
causes the smearing of layers (see Figure 2.3). On the other hand if the amount
of the added artificial diffusion is to small it does not suppress all the spurious
oscillations.

Thus, one has to choose the proper amount of the artificial diffusion. Let us,
for instance, consider the equation (2.21) with ε = 0.01, b = f = 1 and h = 1/N ,
where N ∈ {10, 20, 30, 40, 50}. For each N and each ε̃ we may compute the signed
error in the last inner node of the computational domain, i.e. uN−1 − u(xN−1).

We observe (see Figure 2.4) that despite the increasing number of nodes (i.e.
decreasing h) the error of the simple upwind scheme evaluated at the last inner
node of the computational domain can increase (cf. the example in the beginning
of the section 2.2).
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Figure 2.3: The discrete solution obtained by the simple upwind scheme is more
smeared as compared with the Il’in-Allen-Southwell scheme (or the exact solu-
tion). The problem data are ε = 0.01, b = f = 1 and h = 0.02.

2.1.5 Adding bubble functions
Another way how we can stabilize the discrete solution is adding bubble functions
to the space Vh (cf. Brezzi and Russo (1994)). For each element Ij ∈ Th a bubble
function bj ∈ L2(Ω) is any function satisfying bj|Ij

∈ H1
0 (Ij) and supp {bj} = Ij.

Then the space of bubble functions is defined as B = span{bj, 1 ≤ j ≤ N}.
Consequently, the space of shape and test functions is given by Wh = Vh ⊕B.

The finite element formulation then reads: Find uh = uL +uB ∈ Wh (uL ∈ Vh,
uB ∈ B) such that

a1(uh, φL) = (f, φL)Ω for all φL ∈ Vh and (2.22)
a1(uh, φB) = (f, φB)Ω for all φB ∈ B, (2.23)

where we again for simplicity consider b, f to be constant functions.
Since uL is linear function on each Ij and bj vanishes on ∂Ij, we have

(u′
L, b

′
j)Ij

= [u′
Lbj]xj

xj−1
− (u′′

L, bj)Ij
= 0 and (2.24)

(b u′
B, bj)Ij

=
N∑

i=1
ci(b b′

i, bj)Ij
= cj(b b′

j, bj)Ij
= cj

2
[
b b2

j

]xj

xj−1
= 0, (2.25)

where we considered uB = ∑N
i=1 cibi.

Using these equalities the equation (2.23) written for one basis function φB =
bj reduces to

ε(u′
B, b

′
j)Ij

+ (bu′
L, bj)Ij

= (f, bj)Ij
for all j ∈ {1, 2, . . . , N}. (2.26)

Since supp {bj} = Ij, we can write uB|Ij
= cjbj, cj ∈ R. For the coefficients

cj then holds

cj =
(1, bj)Ij

ε|bj|21,Ij

(
f − bu′

L|Ij

)
. (2.27)
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Figure 2.4: A comparison of the discrete solutions obtained by adding artificial
diffusion. Each dashed curve corresponds to a different partition of Ω and the zero
values of each dashed curve correspond to the artificial diffusion resulting in the
Il’in-Allen-Southwell scheme. The intersection of the black solid curve with any
dashed curve corresponds to the artificial diffusion providing the simple upwind
scheme.

Further, for bubbles-containing terms in (2.22) we obtain

(u′
B, φ

′
L)Ω =

N∑
j=1

cj(b′
j, φ

′
L)Ij

= 0 and (2.28)

(b u′
B, φL)Ω =

N∑
j=1

cjb (b′
j, φL)Ij

= −
N∑

j=1
cjb φ

′
L|Ij

(bj, 1)Ij
=

=
N∑

j=1

1
|Ij|

(bj, 1)2
Ij

ε|bj|21,Ij  
τB

j

(
bu′

L − f, bφ′
L

)
Ij

=
N∑

j=1
τB

j

(
bu′

L − f, bφ′
L

)
Ij

. (2.29)

Consequently, the part uL ∈ Vh of the solution uh for each φL ∈ Vh satisfies

ε(u′
L, φ

′
L)Ω + (bu′

L, φL)Ω +
N∑

j=1
τB

j

(
bu′

L − f, bφ′
L

)
Ij

= (f, φL)Ω. (2.30)

The formulation (2.30) is equivalent to the SUPG formulation (2.12) and the
stabilization parameters τB

j depends only on the chosen bubbles. The simplest
choice for the bubble function on the element Ij is the quadratic function bj(x) =
(x− xj−1)(xj − x). Then

τB1
j = 1

|Ij|
(bj, 1)2

Ij

ε|bj|21,Ij

= 1
h

(
1
6h

3
)2

ε 1
3h

3 = h2

12ε. (2.31)

40



This choice is not suitable for ε → 0. We can obtain the optimal stabilization
parameter τB2

j = τ∗ if we choose the bubble function bj as the solution to the
problem

−εb′′
j + b b′

j = 1 in Ij, (2.32)
bj = 0 on ∂Ij. (2.33)

Then using Green’s theorem (Theorem 4.1.1, page 124) and the equality (2.25)
we obtain −ε(b′′

j , bj)Ij
= ε|bj|21,Ij

= (1, bj)Ij
and since the solution of (2.32)–(2.33)

has an exact form bj(x) = 1
b

(
x− xj−1 − h exp(−2Pe(xj−x)/h)−exp(−2Pe)

1−exp(−2Pe)

)
, it holds

τB2
j = 1

|Ij|
(bj, 1)2

Ij

ε|bj|21,Ij

= 1
h

(bj, 1)Ij
=

= 1
h

1
b

(
h2

2 − h
h

2Pe(1 − exp(−2Pe)) − h exp(−2Pe)
1 − exp(−2Pe)

)
=

= h

2b − ε

b2 + h

b

1
exp(2Pe) − 1 = h

2b
exp(2Pe) + 1
exp(2Pe) − 1 − ε

b2 = h

2b coth(Pe) − ε

b2 .

Moreover, in this case, the discrete solution not only is nodally exact, but
also coincides with the exact solution everywhere in Ω (cf. Brezzi and Russo
(1994)). Therefore, the functions bj are called the residual-free bubble functions.
In Russo (2006) one can find an extended comparison of the SUPG method and
the residual-free bubbles method.
Remark 2.1.1. Since there holds

τB2
j = h

2b

(
coth(Pe) − 1

Pe

)
= h

2b

(
Pe
3 + O

(
Pe3

))
= h2

12ε

(
1 + O

(
Pe2

))
,

(2.34)
the stabilization parameter τB1

j (defined in (2.31)) is optimal for Pe → 0.

2.1.6 Local Green’s function method
An alternative method that provides the nodally exact solution for constant data
can be derived by constructing the local Green’s function of the adjoint operator
of L (see Marchuk (1982)). Let us therefore introduce the formal adjoint operator
L∗ of Lw = −εw′′ + bw′

L∗w = −εw′′ − (bw)′. (2.35)

Thus, if v, w ∈ H1
0 (Ω) ∩H2(Ω), the following identity holds∫

Ω
(Lv)w dx =

∫
Ω
v(L∗w) dx. (2.36)

The local Green’s functions gj, j = 1, 2, . . . , N−1, of the operator L∗ with respect
to the nodes xj are then defined by the identities

L∗gj = 0 in Ij ∪ Ij+1 (2.37)
gj(xj−1) = gj(xj+1) = 0 and (2.38)
ε
[
g′

j(x−
j ) − g′

j(x+
j )
]

= 1. (2.39)
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If we now multiply the identity Lu = f by the local Green’s function gj cor-
responding to the node xj, j ∈ {1, 2, . . . , N − 1}, and integrate, we obtain the
equation ∫ xj+1

xj−1
(Lu)gj dx =

∫ xj+1

xj−1
fgj dx. (2.40)

Using the integration by parts the left-hand side of (2.40) can now be rewritten
in the form∫ xj+1

xj−1
(Lu)gj dx =

∫ xj

xj−1
(−εu′′ + bu′)gj dx+

∫ xj+1

xj

(−εu′′ + bu′)gj dx =

=
[

− εu′gj + bugj

]xj

xj−1
−
∫ xj

xj−1
−εu′g′

j + u(bgj)′ dx+

+
[

− εu′gj + bugj

]xj+1

xj

−
∫ xj+1

xj

−εu′g′
j + u(bgj)′ dx.

The property (2.38) together with the continuity of −εu′gj + bugj at the node
xj then yields [

− εu′gj + bugj

]xj

xj−1
+
[

− εu′gj + bugj

]xj+1

xj

= 0. (2.41)

Thus, we obtain∫ xj+1

xj−1
(Lu)gj dx =

∫ xj

xj−1
εu′g′

j − u(bgj)′ dx+
∫ xj+1

xj

εu′g′
j − u(bgj)′ dx =

=
[
εug′

j

]xj

xj−1
−
∫ xj

xj−1
εug′′

j dx−
∫ xj

xj−1
u(bgj)′ dx+

+
[
εug′

j

]xj+1

xj

−
∫ xj+1

xj

εug′′
j dx−

∫ xj+1

xj

u(bgj)′ dx =

= −εg′
j(xj−1)u(xj−1) + u(xj) + εg′

j(xj+1)u(xj+1), (2.42)

where we used the property (2.39) and the fact that −
∫ xj+1

xj−1
u(εg′′

j + (bgj)′) dx =∫ xj+1
xj−1

u(L∗gj) dx = 0 by (2.37).
Consequently, the equation (2.40) changes to

−εg′
j(xj−1)uj−1 + uj + εg′

j(xj+1)uj+1 =
∫ xj+1

xj−1
fgj dx, (2.43)

which is a finite difference scheme producing the nodally exact solution for all
sufficiently smooth data. Indeed, for constant data we can solve the ordinary
differential equation (2.37)–(2.39) and compute the exact form of the local Green’s
function gj

gj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
b

1 − exp
(
− b

ε
(x− xj−1)

)
1 + exp (−2Pe) for x ∈ [xj−1, xj],

1
b

exp
(

b
ε
(xj+1 − x)

)
− 1

exp (2Pe) + 1 for x ∈ [xj, xj+1],

0 otherwise.

(2.44)
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Figure 2.5: Local Green’s functions for b = 1 and different choices of Pe.

Using this expression, we can evaluate all the terms containing gj in the scheme
(2.43) and obtain

− e2Pe

e2Pe + 1 uj−1 + uj − 1
e2Pe + 1 uj+1 = h

b

e2Pe − 1
e2Pe + 1 f. (2.45)

This can be rearranged to the equivalent form

− b

h

e2Pe

e2Pe − 1uj−1 + b

h

e2Pe + 1
e2Pe − 1uj − b

h

1
e2Pe − 1uj+1 = f, (2.46)

or to the form containing differences of u at the nodes xj−1, xj and xj+1

b

2h
e2Pe + 1
e2Pe − 1 (−uj−1 + 2uj − uj+1) + b

2h
e2Pe − 1
e2Pe − 1 (uj+1 − uj−1) = f. (2.47)

Since e2Pe+1
e2Pe−1 = coth Pe, we find out that this is again the Il’in-Allen-Southwell

scheme. For a multi-dimensional extension of this technique, see, e.g., Axelsson
et al. (2009).

2.1.7 Exponentially fitted schemes
Since the behavior of the solution in the exponential layer is well known, one can
also derive a method producing an oscillation-free discrete solution by requiring
nodal exactness for functions from {1, x, exp(bx/ε)} (see Gartland (1987)). Thus,
considering the equidistant partition of Ω we try to find the unknown coefficients
in the scheme

piui−1 + qiui + riui+1 = fi = (Lu)i. (2.48)
These coefficients have to satisfy the equalities
pi + qi + ri = (L(1))i = 0,
pi(xi − h) + qixi + ri(xi + h) = (L(x))i = b,

pi

(
e

bxi
ε e−2Pe

)
+ qi

(
e

bxi
ε

)
+ ri

(
e

bxi
ε e2Pe

)
=

(
L
(
e bx

ε

))
i

= 0,
(2.49)

and can be rewritten in the form
pi + qi + ri = 0,

−hpi + 0 + hri = b,
e−2Pepi + qi + e2Peri = 0.

(2.50)
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The solution of this system of linear equations takes the form

(pi, qi, ri) =
(

− b

h

e2Pe

e2Pe − 1 ,
b

h

e2Pe + 1
e2Pe − 1 ,−

b

h

1
e2Pe − 1

)
, (2.51)

which leads to the scheme (2.46). As we can see, for constant data the coefficients
pi, qi, ri do not depend on i. In the non-constant case, we have to change b for
bi. Let us also mention that for Pe → ∞ we obtain (p, q, r) ≈ b

h
(−1, 1, 0),

which is the backward Euler method, whereas for Pe → 0 we obtain (p, q, r) ≈
ε

h2 (−1, 2,−1) + b
2h

(−1, 0, 1), which is the central difference scheme.
The main advantage of this approach is that one can easily adjust it for

derivation of schemes of higher order. For instance, considering the equidistant
partition with mesh parameter h, a five-point scheme of order h2 is constructed
by requiring nodal exactness for functions from {1, x, x2, exp(bx/ε), x exp(bx/ε)}.
This results into the following quintuple of coefficients

(p, q, r, s, t) =

= b

2h

(
e4Pe(e2Pe+1)

(e2Pe−1)3 , −4e2Pe(e4Pe+1)
(e2Pe−1)3 ,

3(e4Pe+1)(e2Pe+1)
(e2Pe−1)3 , −4(e4Pe+1)

(e2Pe−1)3 ,
e2Pe+1

(e2Pe−1)3

)
+

+ ε

h2

(
−e4Pe

(e2Pe−1)2 ,
2e2Pe(e2Pe+1)

(e2Pe−1)2 , − e4Pe+4e2Pe+1
(e2Pe−1)2 , 2(e2Pe+1)

(e2Pe−1)2 ,
−1

(e2Pe−1)2

)
.

If we again compute the approximation for Pe → ∞, we obtain (p, q, r, s, t) ≈
b

2h
(1,−4, 3, 0, 0) + ε

h2 (−1, 2,−1, 0, 0), which is the backward difference formula of
the second order used on the convective term and the shifted central differences
used on the diffusive term. Computing the limit for Pe → 0 yields (p, q, r, s, t) ≈
ε

h2

(
1
12 ,−

4
3 ,

5
2 ,−

4
3 ,

1
12

)
+ b

h

(
1
12 ,−

2
3 , 0,

2
3 ,−

1
12

)
, which is the central difference formula

for five-point stencil.
This technique can be also used for construction of schemes in higher dimen-

sions (2D, 3D). For an arbitrary mesh in the vicinity of the outflow boundary,
one adjusts the coefficients of the numerical method so that the created scheme
is nodally exact for corresponding boundary layer function (cf. Section 3.6).

This list of stabilization methods clearly is not complete (see Roos (1994)
for another interesting comparison). Other worth-mentioning methods are, e.g.,
the collocation methods (e.g. Surla and Stojanović (1988)), the local projection
stabilization method (e.g. Matthies et al. (2007)), Galerkin least squares methods
(e.g. Hughes et al. (1989)), the discontinuous Galerkin method (e.g. Riviére
(2008) or Doleǰśı and Feistauer (2015)) or a suitable numerical quadrature (e.g.
Hughes (1978) or Payre et al. (1982)).

2.2 Uniform convergence of classical Il’in-Allen-
Southwell scheme

Prior to proving the uniform convergence result we demonstrate the difference in
behavior of the simple upwind scheme and the Il’in-Allen-Southwell scheme on a
simple nonconstant example (ε = 10−6)

−εu′′ + u′ = 2x in (0, 1), (2.52)
u(0) = u(1) = 0. (2.53)
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The exact solution of the problem (2.52)–(2.53), the solution obtained using
the simple upwind scheme and the solution obtained by the Il’in-Allen-Southwell
scheme have the following form

u(x) = x2 + 2εx− (1 + 2ε) ex/ε − 1
e1/ε − 1 , (2.54)

uupw
k = (kh)2 + (2ε+ h)kh− (1 + 2ε+ h)

(
1 + h

ε

)k
− 1(

1 + h
ε

)N
− 1

, (2.55)

uIAS
k = (kh)2 + kh2 eh/ε + 1

eh/ε − 1 −
(

1 + h
eh/ε + 1
eh/ε − 1

)
ekh/ε − 1
e1/ε − 1 , (2.56)

where we have used the equidistant partition of (0, 1) = (x0, xN) with a mesh
step h = 1/N .

The error of both methods computed at the last five inner nodes laying in (the
vicinity of) the exponential boundary layer is depicted in Figure 2.6. We observe
that in contrast to the Il’in-Allen-Southwell scheme, the simple upwind scheme
does not converge uniformly (with respect to ε), i.e. for fixed ε the error of the
simple upwind scheme does not always decrease with decreasing h (increasing
N = 1/h). In this case the error of the solution obtained by the simple upwind
scheme at the node xN−j for fixed j possesses local minimum for N ≈ ε− j

j+1 , i.e.
for h ≈ ε

j
j+1 .

xk uk

N

k 
= N

−3

k 
= N

−2

k 
= N

−4
k 

= N
−1

k 
= N
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Figure 2.6: Comparison of convergence of the simple upwind scheme and the
Il’in-Allen-Southwell scheme.

The proof of the uniform convergence of the Il’in-Allen-Southwell scheme can
be found for example in Roos et al. (2008) or in more details in Kellogg and
Tsan (1978). However, estimates resulting from these proofs contain unknown
multiplicative constants which can in many cases make the estimates significantly
worse. Thus, we derive all estimates with a concrete form of these constants.

We use the classical Il’in-Allen-Southwell scheme for solving model one-di-
mensional convection-diffusion equation (2.1)–(2.2), i.e.

−εu′′ + b(x)u′ = f(x) in Ω = (0, 1), (2.57)
u(0) = u(1) = 0. (2.58)
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Denoting uj = uh(xj), for j = 0, 1, . . . , N , the stencil (and correspond-
ing matrix L∗

h) generated by the Il’in-Allen-Southwell scheme has for all j =
1, 2, . . . , N − 1 form

(L∗
huh)j = εPe(xj) coth (Pe(xj))

−uj−1 + 2uj − uj+1

h2 +b(xj)
uj+1 − uj−1

2h = f(xj).
(2.59)

We divide the proof of the convergence of the Il’in-Allen-Southwell scheme
into several lemmas. Firstly, we express the solution u as the sum of the layer
function v(x) = v0

(
1−x

ε

)
= −u0(1)

(
−b(1) 1−x

ε

)
and the remainder part z. Then

we prove both the consistency and stability of each part v and z.
The function v is the first term of the layer part E of the S-decomposition of

the solution u = S + E (cf. Definition 1.2.3, page 13) and thus

z = u− v = S + E − v. (2.60)

Further, we define the splitting of the discrete solution uh = vh + zh into
functions vh, zh ∈ Xh. They are solutions of the equations

L∗
hvh = Rh(Lv), (vh)0 = v(0), (vh)N = v(1), (2.61)

L∗
hzh = Rh(Lz), (zh)0 = z(0), (zh)N = z(1), (2.62)

where Rh : C(Ω) → RN+1 is the interpolation operator satisfying [Rhv]j = v(jh),
j = 0, 1, . . . , N .

2.2.1 Consistency
Before proving the consistency result for the function v, we prove one technical
lemma.

Lemma 2.2.1. The function sinh(x) satisfies following estimates

sinh(x) ≥ xex

2(x+ 1) , for x > 0, (2.63)

| sinh(x) − x| ≤ |x|3e|x|

6(1 + x2) . (2.64)

Proof. For the first inequality we use the estimate ex ≥ 1 + x which for x > 0
implies e−x ≤ 1

1+x
≤ ex

1+x
. Consequently

sinh x = 1
2(ex − e−x) ≥ 1

2

(
ex − ex

1 + x

)
= xex

2(x+ 1) . (2.65)

Since both functions | sinh(x) − x| and |x|3e|x|

6(1+x2) are even it suffices to prove the
second inequality for x ≥ 0. We firstly consider x ≥ 4. Then

x3ex

6(1 + x2) = xex

6
x2

1 + x2 ≥ 4ex

6
16
17 = 32

51 ex ≥ 1
2 ex ≥ sinh(x) − x, (2.66)

where we used the fact that the function x2

1+x2 is increasing on (0,+∞).
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For the case 0 ≤ x < 4 we use Taylor’s polynomials. Since all derivatives
of the function sinh x in 0 are nonnegative, the Taylor polynomial in 0 of the
function sinh x has nonnegative coefficients. Thus, if we subtract several terms
of this Taylor polynomial from sinh x, we obtain a nondecreasing function (even
if we divide it by the order of the resulting function). This idea leads us to the
estimate

sinh(x) − x− x3

6
x5 ≤

sinh(4) − 4 − 43

6
45 = Cσ for x ∈ [0, 4]. (2.67)

If we now take into account the estimate ex ≥ 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 , then

sinh x− x ≤ x3

6 + Cσx
5 ≤

x3
(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120

)
6(1 + x2) ≤ x3ex

6(1 + x2) .

(2.68)
The second inequality in (2.68) comes from the estimate

x3
(

1 + x+ x2

2 + x3

6 + x4

24 + x5

120

)
− 6

(
1 + x2

)(x3

6 + Cσx
5
)

=

=
[
1 −

(
3Cσ + 1

4

)
x
]2
x4 + CTx

6 +
[
30
(

6Cσ − 1
24

)
− x

2

]2 x6

30 ≥ 0,

where CT = 1
6 −

(
3Cσ + 1

4

)2
−30

(
6Cσ − 1

24

)2
= 5

96 + 27
2 Cσ −1089C2

σ ≈ 0.053.

Now we use the obtained inequalities and prove the following lemma which
provides the consistency of the method for the layer function v.

Lemma 2.2.2. Let L∗
h be the matrix generated by the Il’in-Allen-Southwell sche-

me (2.59), let the function b be Lipschitz-continuous with a constant β1 and let
h∗

0 ∈
(

0, b(1)−β

β1

)
be a positive real number. Then there exists a positive constant

Cz independent of h and ε such that for all h < h∗
0 there holds

⏐⏐⏐Rh(Lv) − L∗
hRhv

⏐⏐⏐ ≤ Cz h
2

ε(ε+ h)Rh exp
(

−β |1 − x|
ε

)
. (2.69)

Proof. At first we compute the exact form of both terms Lv and L∗
hRhv.

(Lv)(x) = −b(1)
ε

(b(1) − b(x))v(x), (2.70)

(L∗
hRhv)(xj) = −2b(xj) sinh(Pe(1))

h sinh(Pe(xj))

(
sinh

(
Pe(1) − Pe(xj)

))
v(xj).(2.71)

Further, let us denote q = Pe(1), p = Pe(xj), S(x) = sinh x − x and ψ(x) =
x2

1+x2 . Then we observe that the function ψ(x) is increasing for x > 0, whereas
functions S(x) and sinh(x) satisfy the estimates (2.63) and (2.64) from Lemma
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2.2.1. We use these observations for estimating the consistency error⏐⏐⏐(Lv)(xj) − (L∗
hRhv)(xj)

⏐⏐⏐ =

= 4ε
h2

⏐⏐⏐⏐⏐−q(q − p) + p
sinh(q)
sinh(p) sinh(q − p)

⏐⏐⏐⏐⏐ |v(xj)| =

= 4ε
h2

⏐⏐⏐⏐p(q − p)S(q) − q(q − p)S(p) + pS(q)S(q − p) + pqS(q − p)
⏐⏐⏐⏐ |v(xj)|
sinh(p) ≤

≤ 4εpq|q − p|
6h2 sinh(p)

[
ψ(q)eq + ψ(p)ep + ψ(|q − p|)e|q−p|

(
1 + ψ(q)eq

)]
|v(xj)| ≤

≤ 2εpq|q − p|
3h2

2(1 + p)
pep

4 max
s∈{p,q}

{ψ(s)} eq+|q−p||v(xj)|. (2.72)

Since the function b is Lipschitz-continuous with a constant β1, we can estimate
the difference |q − p| by

|q − p| ≤ β1h

2ε |1 − xj|. (2.73)

Consequently, for the consistency error of the function v there holds⏐⏐⏐(Lv)(xj) − (L∗
hRhv)(xj)

⏐⏐⏐ ≤

≤ 2εh2∥b∥∞β1|1 − xj| 4(2ε+ ∥b∥∞h) ∥b∥2
∞h

2

3h2(2ε)2 ε (4ε2 + ∥b∥2
∞h

2) exp
(
h

ε
β1|1 − xj|

)
|v(xj)| ≤

≤ 4β1∥b∥3
∞h

2|1 − xj|
3ε2(2ε+ ∥b∥∞h) exp

(
h

ε
β1|1 − xj|

)
|v(xj)|. (2.74)

Now we rewrite the last two factors in the form

|u0(1)| exp
((

hβ1 − (b(1) − β)
) |1 − xj|

ε

)
exp

(
−β |1 − xj|

ε

)
. (2.75)

If h < h∗
0 <

b(1)−β

β1
then using exp(−x) < 1

x
(for x > 0) we have

exp
((

hβ1 − (b(1) − β)
) |1 − xj|

ε

)
<

ε

|1 − xj|
(
b(1) − β − h∗

0β1

) . (2.76)

Consequently for the consistency error there holds
⏐⏐⏐Rh(Lv) − L∗

hRhv
⏐⏐⏐ ≤ Cz h

2

ε(ε+ h)Rh exp
(

−β |1 − x|
ε

)
, (2.77)

where Cz = 4β1∥b∥3
∞|z(1)|

3 min{2,∥b∥∞}
1

b(1)−β−h∗
0β1

. Here we used the fact that u0(1) = −v(1) =
z(1) − u(1) = z(1).

Let us notice that the quality of the above derived estimate depends on the
bound β. If it is too small, then the exponential decay is very slow. On the other
hand, if β is close to b(1), the constant Cz goes to infinity.

The consistency corresponding to the smooth part z is given by the next
lemma.
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Lemma 2.2.3. Let L∗
h be the matrix generated by the Il’in-Allen-Southwell sche-

me (2.59), then for the consistency error corresponding to the function z it holds

|(Lz)(xj) − (L∗
hRhz)j| ≤

≤ CS (ε+ 2∥b∥∞)h+ CE

β
(1 + 2∥b∥∞) sinh

(
βh

ε

)
exp

(
−
β

ε
(1 − xj)

)
. (2.78)

Proof. At the beginning we express the consistency error as the sum of three
terms and estimate them using Taylor polynomial with the remainder in the
integral form.

|(Lz)(xj) − (L∗
hRhz)j| =

=
⏐⏐⏐⏐⏐ε[D2

hz(xj) − z′′(xj)
]

+ b(xj)h
2 ξ(Pe(xj))D2

hz(xj) + b(xj)
[
D1

hz(xj) − z′(xj)
]⏐⏐⏐⏐⏐

≤ 1
2

∫ x+h

x−h
ε|z(3)| + ∥b∥∞|z(2)| + ∥b∥∞|z(2)| dt, (2.79)

where we used the expressions

D2
hz(x) = z′′(x) + 1

2h2

[∫ x+h

x
(x+ h− t)2z(3)(t) dt−

∫ x

x−h
(x− h− t)2z(3)(t) dt

]
,

D2
hz(x) = 1

h2

∫ x+h

x

∫ t

t−h
u′′(s) ds dt,

D1
hz(x) = z′(x) + 1

2h

[∫ x+h

x
(x+ h− t)z(2)(t) dt+

∫ x

x−h
(x− h− t)z(2)(t) dt

]

resulting in estimates

|(D2
hz(xj) − z′′(xj)| ≤ 1

2h2

[
h2
∫ x+h

x
|z(3)| dt+ h2

∫ x

x−h
|z(3)| dt

]
= 1

2

∫ x+h

x−h
|z(3)| dt,

|D2
hz(x)| ≤ 1

h2 h max
t∈[x,x+h]

⏐⏐⏐⏐∫ t

t−h
z′′(s) ds

⏐⏐⏐⏐ ≤ 1
h

∫ x+h

x−h
|z′′(t)| dt,

|(D1
hz(xj) − z′(xj)| ≤ 1

2h

[
h
∫ x+h

x
|z(2)| dt+ h

∫ x

x−h
|z(2)| dt

]
= 1

2

∫ x+h

x−h
|z(2)| dt.

Since z = S + (E − v), we can use Lemma 1.2.1 (page 14) and estimate the
derivatives of z by

|z(j)(t)| ≤ CS + CEε
1−j exp

(
−
β

ε
(1 − t)

)
, (2.80)

where the constants CS and CE are independent from ε and h. This estimate
contains a factor ε1−j instead of εj which is caused by the fact that the layer part
of the S-decomposition of the function z begins with 0.ε0. Consequently

|(Lz)(xj) − (L∗
hRhz)j| ≤

≤ CS (ε+ 2∥b∥∞)h+ CE

(1
2 + ∥b∥∞

) 1
ε

∫ xj+h

xj−h
exp

(
−
β

ε
(1 − t)

)
dt =

= CS (ε+ 2∥b∥∞)h+ CE

β
(1 + 2∥b∥∞) sinh

(
βh

ε

)
exp

(
−
β

ε
(1 − xj)

)
.
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2.2.2 Stability
Both consistency estimates contain exponential functions. This means that a
stability result for exponential functions is necessary.

Lemma 2.2.4. Let b(x) > β > 0. Then for any function exp
(

αx
ε

)
, 0 < α < β,

there exists positive constant Cα (independent of h and ε) such that

L∗
hRh exp

(
αx

ε

)
≥ Cα

max{h, ε}
Rh exp

(
αx

ε

)
. (2.81)

Proof. At first, exact computation gives

L∗
hRh exp

(
αx

ε

)
= 2Rh

⎧⎨⎩exp
(
αx

ε

)
b(x)
h

sinh
(

αh
2ε

)
sinh

(
b(x)h

2ε

) sinh
⎛⎝
(
b(x) − α

)
h

2ε

⎞⎠⎫⎬⎭ .
(2.82)

Now we distinguish two situations. In the case when h ≤ ε, then for all κ ≥ 0
it holds κh

ε
≤ sinh

(
κh

ε

)
≤ sinh(κ)h

ε
. Consequently we have

L∗
hRh exp

(
αx

ε

)
≥ 2Rh

⎧⎨⎩exp
(
αx

ε

) β
h

αh
2ε

sinh
(

b(x)
2

)
h
ε

(
b(x) − α

)
h

2ε

⎫⎬⎭ ≥

≥
βα(β − α)

2ε sinh
(

1
2∥b∥∞

)Rh exp
(
αx

ε

)
. (2.83)

On the other hand, if h ≥ ε, then sinh κ
exp κ

exp
(
κh

ε

)
≤ sinh

(
κh

ε

)
≤ 1

2 exp
(
κh

ε

)
for all κ ≥ 0 and there holds

L∗
hRh exp

(
αx

ε

)
≥

≥ 2Rh

⎧⎪⎪⎪⎨⎪⎪⎪⎩exp
(
αx

ε

) β
h

sinh(α
2 )

exp(α
2 ) exp

(
αh
2ε

)
1
2 exp

(
b(x)h

2ε

) sinh
(

b(x)−α
2

)
exp

(
b(x)−α

2

) exp
⎛⎝
(
b(x) − α

)
h

2ε

⎞⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≥

≥
4β sinh

(
α
2

)
sinh

(
β−α

2

)
h exp

(
1
2∥b∥∞

) Rh exp
(
αx

ε

)
. (2.84)

Thus the constant Cα is given by

Cα = min

⎧⎪⎨⎪⎩ βα(β − α)
2 sinh

(
1
2∥b∥∞

) , 4β sinh
(

α
2

)
sinh

(
β−α

2

)
exp

(
1
2∥b∥∞

)
⎫⎪⎬⎪⎭ . (2.85)

Remark 2.2.1. The constant Cα from Lemma 2.2.4 vanishes for α = β and thus
the stability of the method is lost. In fact, the difference β−α that occurs in the
definition of the constant Cα is an estimate for the difference b(x) − α, and thus
if b(x) > β, the stability preserves.

The last lemma results from the so-called M-criterion (Theorem 4.1.5, page
126) and provides an estimate on the norm of the matrix (L∗

h)−1.
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Lemma 2.2.5. For the inverse matrix corresponding to the Il’in-Allen-Southwell
scheme it holds ∥(L∗

h)−1∥∞,d ≤ 1/β.

Proof. Since we would like to employ the M-criterion, we firstly examine the sign
of the entries of the tridiagonal matrix L∗

h.

(L∗
h)j,j = b(xj)

h
coth(Pe(xj)) > 0, (2.86)

(L∗
h)j,j+1 = b(xj)

2h
(
1 − coth(Pe(xj))

)
< 0, (2.87)

(L∗
h)j,j−1 = −b(xj)

2h
(
1 + coth(Pe(xj))

)
< 0. (2.88)

Secondly, the vector eh = Rhx is positive inside Ω and satisfies L∗
heh = Rhb(x) >

0. Thus the matrix L∗
h is an M-matrix and it holds

∥(L∗
h)−1∥∞,d ≤ ∥eh∥∞,d

mink(L∗
heh)k

≤ 1
β
. (2.89)

2.2.3 Convergence
Now we have all important ingredients for proving the uniform convergence of
the classical Il’in-Allen-Southwell scheme.

Theorem 2.2.1. There exists a positive constant Ĉ (independent of h and ε)
such that for the discrete solution u∗

h of the problem (2.1)–(2.2) obtained by the
Il’in-Allen-Southwell scheme (2.59) there holds

∥Rhu− u∗
h∥∞,d ≤ Ĉh. (2.90)

Proof. The proof is standard - we use consistency and stability for proving the
convergence. At first we decompose the consistency error

|L∗
h(Rhu− u∗

h)| = |L∗
hRhu− L∗

hu
∗
h| = |L∗

hRh(z + v) − L∗
h(zh + vh)| ≤

≤ |L∗
hRhz − L∗

hzh| + |L∗
hRhv − L∗

hvh|. (2.91)

Then we choose arbitrary α ∈ (0, β) and use Lemmas 2.2.2 and 2.2.4 for
estimation of the consistency and stability of the function v

L∗
h(Rhv − vh) = L∗

hRhv −Rh(Lv) ≤ Cz h
2

ε(ε+ h)Rh exp
(

−β |1 − x|
ε

)
≤

≤ Cz h
2

ε(ε+ h)Rh exp
(

−α(1 − x)
ε

)
= Cz h

2

ε(ε+ h) exp
(

−α

ε

)
Rh exp

(
α
x

ε

)
≤

≤ max{h, ε}
Cα

Cz h
2

ε(ε+ h) exp
(

−α

ε

)
L∗

hRh exp
(
α
x

ε

)
. (2.92)

Since L∗
h is an M-matrix (cf. Lemma 2.2.5), it is inverse-monotone and thus

it satisfies the discrete comparison principle (Theorem 4.1.7, page 126). This
implies that

|Rhv − vh| ≤ max{h, ε}
Cα

Cz h
2

ε(ε+ h)Rh exp
(

−α1 − x

ε

)
. (2.93)
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Now we distinguish two situations. If h ≤ ε then

∥vh −Rhv∥∞,d ≤ Cz h
2

Cα(ε+ h) ≤ Cz

2Cα

h. (2.94)

In the case h ≥ ε we use the inequality exp(−x) ≤ x−1 which holds for all
positive x and estimate

∥vh −Rhv∥∞,d ≤ Cz h
2

Cα(ε+ h)
h

ε
exp

(
−αh

ε

)
≤ Cz h

Cα

h

ε+ h

1
α

≤ Cz h

αCα

. (2.95)

Similarly, we use Lemmas 2.2.3 and 2.2.4 for proving the consistency and
stability of the function z. Let us firstly consider h ≤ ε, then

L∗
h(Rhz − zh) = L∗

hRhz −Rh(Lz) ≤

≤ CS (ε+ 2∥b∥∞)h+ CE

β
(1 + 2∥b∥∞) sinh

(
βh

ε

)
Rh exp

(
−
β

ε
(1 − x)

)
≤

≤ CS (ε+ 2∥b∥∞)hL∗
h(L∗

h)−1Rh1 + (2.96)

+ max{h, ε}
Cα

CE

β
(1 + 2∥b∥∞) sinh

(
βh

ε

)
exp

(
−α

ε

)
L∗

hRh exp
(
α
x

ε

)
.

Again, applying the discrete comparison principle gives

|Rhz − zh| ≤ CS (ε+ 2∥b∥∞)h(L∗
h)−1Rh1 +

+ max{h, ε}
Cα

CE

β
(1 + 2∥b∥∞) sinh

(
βh

ε

)
Rh exp

(
−α1 − x

ε

)
.

Since h ≤ ε we can use the inequality sinh
(

βh

ε

)
≤ h

ε
sinh(β) and find out that

∥Rhz − zh∥∞,d ≤
{
CS (ε+ 2∥b∥∞) 1

β
+ CE

Cαβ
(1 + 2∥b∥∞) sinh(β)

}
h. (2.97)

Conversely, when h ≥ ε we apply the inequality (remind that α ∈ (0, β))

sinh
(
βh

ε

)
exp

(
−
β

ε
(1 − xj)

)
≤ 1

2 exp
(
βh

ε

)
exp

(
−
β

ε
(1 − xj)

)
=

= 1
2 exp

(
−
β

ε
(1 − xj+1)

)
≤ 1

2 exp
(

−α

ε
(1 − xj+1)

)
=

= 1
2 exp

(
αh

ε

)
exp

(
−α

ε
(1 − xj)

)
. (2.98)

Lemmas 2.2.3 and 2.2.4 together with this inequality then provide the estimate

L∗
h(Rhz − zh) = L∗

hRhz −Rh(Lz) ≤
≤ CS (ε+ 2∥b∥∞)hL∗

h(L∗
h)−1Rh1 + (2.99)

+ max{h, ε}
Cα

CE

β

(1
2 + ∥b∥∞

)
exp

(
αh

ε

)
exp

(
−α

ε

)
L∗

hRh exp
(
α
x

ε

)
.
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Let us emphasize that instead of the factor sinh
(
βh/ε

)
this estimate contains

exp
(
αh/ε

)
which is important for estimation in the last layer node. This is the

reason, why we cannot simply use the estimate (2.96).
After applying the discrete comparison principle we obtain

|Rhz − zh| ≤ CS (ε+ 2∥b∥∞)h(L∗
h)−1Rh1 +

+ max{h, ε}
Cα

CE

β

(1
2 + ∥b∥∞

)
exp

(
αh

ε

)
Rh exp

(
−α1 − x

ε

)
,

which means that for the error corresponding to the smooth part z of the solution
u in the case when h ≥ ε there holds

∥Rhz − zh∥∞,d ≤
{
CS (ε+ 2∥b∥∞) 1

β
+ CE

Cαβ

(1
2 + ∥b∥∞

)}
h. (2.100)

If we combine all previous estimates we get

∥Rhu− uh∥∞,d ≤ ∥Rhz − zh∥∞,d + ∥Rhv − vh∥∞,d ≤ Ĉh, (2.101)

where (we can take e.g. α = β/2)

Ĉ = Cz

Cα

max
{1

2 ,
1
α

}
+ 3CS∥b∥∞

β
+ CE (1 + 2∥b∥∞)

Cαβ
max

{1
2 , sinh

(
β
)}

.

(2.102)
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3. Modified SUPG method on
convection-oriented meshes

3.1 Introduction and the idea of the method
Let us solve the convection-diffusion equation

−ε∆u(x) + b(x) · ∇u(x) = f(x) in Ω ⊂ Rn, (3.1)
u(x) = 0 on ∂Ω, (3.2)

where n ∈ N, Ω is a polytopic domain with Lipschitz-continuous boundary ∂Ω,
b ∈ W 1,∞(Ω)n is a convective vector field, f ∈ L2(Ω) is a given outer source and
ε > 0 is the constant diffusivity. Further, we divide the boundary ∂Ω into three
subsets

Γ+ = {x ∈ ∂Ω, b(x) · n(x) > 0}, (3.3)
Γ0 = {x ∈ ∂Ω, b(x) · n(x) = 0}, (3.4)
Γ− = {x ∈ ∂Ω, b(x) · n(x) < 0}, (3.5)

satisfying ∂Ω = Γ+ ∪ Γ0 ∪ Γ− and Γ+ ∩ Γ0 = Γ0 ∩ Γ− = Γ− ∩ Γ+ = ∅. Here, the
vector n(x) denotes a unit outer normal to the boundary ∂Ω.

As ε → 0, the equation (3.1) becomes singularly perturbed and near the
boundary Γ+ the finite element solution often contains spurious oscillations. We
call this region exponential boundary layer. In order to diminish the oscillations
at the exponential boundary layers, one may use the SUPG method (cf. Brooks
and Hughes (1982)). However, the SUPG method does not diminish all the
oscillations, in particular, at the parabolic (characteristic) boundary layers. These
regions usually appear near the boundary Γ0, but also along interior layers that
propagate from discontinuous boundary conditions at Γ− .

Apart from the SUPG method, one can also use the method of Mizukami and
Hughes (1985). Unlike the SUPG method, the Mizukami-Hughes method satisfies
the discrete maximum principle and therefore it removes all spurious oscillations
at the layers. The drawback of the Mizukami-Hughes method is its nonlinearity
and the absence of an error analysis. In order to eliminate this drawback we
construct a special mesh, which is well-aligned with the vector field b. The cre-
ated linear method then enjoys both positive properties of the Mizukami-Hughes
method and the SUPG method - it satisfies the discrete maximum principle and
we can apply an error analysis analogous to the SUPG method.

Since ε is considered to be very small, the exact solution at any point x ∈ Ω
away from layers in fact depends only on the values of u in the direction −b(x). It
means that the discretization of the convective term should use only the upwind
values. To achieve this, we construct a special mesh Th . Each element of such a
mesh should have one of its edges oriented in the direction of the vector b. Then,
if bK is a constant approximation of b on the element K ∈ Th parallel to one
of its edges and if we use simplicial finite elements with linear basis functions
{λK,i}n+1

i=1 , only two values of bK · ∇λK,i, i ∈ {1, 2, . . . , n+ 1}, are nonzero. This
property can be used for characterization of a good mesh.
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3.2 Derivation of the method
At the beginning of any finite element discretization, we derive the weak formu-
lation of the respective problem. Let us therefore multiply (3.1) by the function
φ ∈ H1

0 (Ω) and integrate over the whole domain Ω. Using Green’s theorem
(Theorem 4.1.1, page 124) the weak formulation of (3.1) reads:

Find u ∈ H1
0 (Ω) such that

ε(∇u,∇φ)Ω + (b · ∇u, φ)Ω = (f, φ)Ω ∀φ ∈ H1
0 (Ω). (3.6)

Further, let us define the triangulation Th of the domain Ω. It consists of a
finite number of open simplicial elements K. We assume that Ω = ∪K∈Th

K and
that the closures of any two different elements K, K̃ ∈ Th are either disjoint or
possess a common d-dimensional simplex (d ∈ {0, 1, . . . , n− 1}). We also denote
by Mh the set of nodes of Th and by Nh ⊂ Mh the set of all inner nodes of Th.
The number of all nodes of Th is then denoted by Mh = |Mh|, whereas Nh = |Nh|
stands for the number off all inner nodes.

To derive the Galerkin finite element discretization of (3.1), we define a finite
element space Xh = X

(1)
h = {vh ∈ C(Ω), vh|K ∈ P1(K),∀K ∈ Th} and a space of

test functions Vh = V
(1)

h = Xh ∩ H1
0 (Ω). The barycentric coordinates {λK,j}n+1

j=1
of the element K ∈ Th then form a basis of P1(K) and we reorder them so that∫

K

b · ∇λK,j

|∇λK,j|
dx ≤

∫
K

b · ∇λK,j+1

|∇λK,j+1|
dx, for j = 1, 2, . . . , n. (3.7)

Remark 3.2.1. Since ∑n+1
j=1

∫
K b · ∇λK,j dx = 0 for each K ∈ Th, then if one

of the expressions (3.7) is nonzero we obtain
∫

K b · ∇λK,1 dx < 0 and
∫

K b ·
∇λK,n+1 dx > 0.

Further, we assume that the barycentric coordinates {λK,j}n+1
j=1 satisfy for each

K ∈ Th the inequality

(∇λK,j,∇λK,i)K ≤ 0 whenever i ̸= j. (3.8)

In 2D this assumption is satisfied for triangulations not containing obtuse trian-
gles.

The SUPG method adds weighted residuals R(u) = −ε∆u+ b · ∇u− f to the
usual Galerkin finite element method. Since R(u) vanishes for the exact solution,
we can add any multiple of R(u) to the weak formulation providing u ∈ H2(Ω).
Unlike the original SUPG method, which adds the residual multiplied by the
streamline derivative of v, we add the residual multiplied on each K ∈ Th by
derivative of v in the direction PK,n+1 − CK (see Lamač (2015)). Here CK are
the barycentres of K and PK,j, j = 1, 2, . . . , n+ 1 are the vertices of K satisfying
λK,i(PK,j) = δij for 1 ≤ i, j ≤ n+ 1.

Thus, the solution u ∈ H1
0 (Ω) ∩ H2(Ω) of the problem (3.6) satisfies also for

all φ ∈ H1
0 (Ω)

a(u, φ) = F (φ), (3.9)
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where

F (φ) =
∑

K∈Th

(f, φ+ (PK,n+1 − CK)∇φ)K and (3.10)

a(u, φ) = ε(∇u,∇φ)Ω + (b · ∇u, φ)Ω +

+
∑

K∈Th

(
− ε∆u+ b · ∇u, (PK,n+1 − CK)∇φ

)
K
. (3.11)

If we now apply the finite element method using the continuous piecewise
linear finite elements, the spurious oscillations unfortunately persist (analogous
to the original SUPG method). The reason is the presence of the positive off-
diagonal entries in the matrix obtained by the discretization of the last two terms
in (3.11) resulting in the unfulfilment of the discrete maximum principle.

In order to eliminate these positive entries, we define dK,j = PK,n+1 − PK,j,
j = 1, 2, . . . , n and consider the element-wise constant approximation bK of the
vector field b by vectors that are parallel with dK,1 on each element K. More
precisely, first of all we consider that our mesh is ”well-aligned” with respect to the
vector field b and then on each element K we construct a constant approximation
bK of b. This ”well-alignment” is provided by the following assumptions.

(A1) The ordering given by (3.7) on each K ∈ Th uniquely defines the vector
dK,1 = PK,n+1 − PK,1. We assume that if any edge e of Th corresponds to
dK,1 of some K, then e corresponds to dK,1 for each K containing e. We
denote by Eh the set of such edges.

(A2) Each inner node P of Th is the endpoint of exactly two edges of Eh.

Remark 3.2.2. Let us call a discrete streamline any set of edges S ⊂ Eh such that
for each e ∈ S there exists e′ ∈ S such that

e′ ̸= e & e ∩ e′ ̸= ∅. (3.12)

The discrete streamline S is closed if for each e ∈ S there exist exactly two
different edges e′ and e′′ satisfying (3.12). Consequently, the assumptions (A1) −
−(A2) do not allow closed discrete streamlines in 2D. Indeed, if there is a closed
discrete streamline then there exists a node (”inside” the closed streamline) which
does not satisfy (A2). The mesh satisfying (A1) − −(A2) can be, for instance,
constructed by approximation of streamlines by linear spline functions. This will
be the subject of future work. Further assumptions on the structure of the mesh
will be given by the inequalities (3.34) and (3.70).

It remains to define the piecewise constant approximation of b. On each
element K ∈ Th it is defined in the following way

bK = − 1
|K|

(∫
K
b · ∇λK,1 dx

)
dK,1. (3.13)

Consequently, when b = αdK,1 in K for some α ∈ R, the previous definition
of bK implies that bK = − 1

|K| (
∫

K −α dx)dK,1 = b in K.
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Finally, we apply the finite element method and the new method reads:
Find uh ∈ Vh such that for all φh ∈ Vh there holds

ah(uh, φh) = Fh(φh), (3.14)

where

ah(u, φ) = ε(∇u,∇φ)Ω +
∑

K∈Th

(bK · ∇u, φ)K +

+
∑

K∈Th

(
− ε∆u+ bK · ∇u, (PK,n+1 − CK) ∇φ

)
K
, (3.15)

Fh(φ) =
∑

K∈Th

(
f, φ+ (PK,n+1 − CK) ∇φ

)
K

(3.16)

and the vectors bK are defined by (3.13).

3.2.1 Monotonicity
Since we would like to avoid spurious oscillations in the discrete solution, the new
method should satisfy the discrete maximum principle. We prove it with a help
of matrices of nonnegative type.

Definition 3.2.1. The matrix A = {aij}p
i=1

q
j=1, p ≤ q, is of nonnegative type if

the following conditions hold:

aij ≤ 0 whenever i ̸= j and
q∑

j=1
aij ≥ 0 for all i = 1, 2, . . . , p.

(3.17)

When solving partial differential equations numerically one usually comes
to a system of linear equations Ax = z, where A = {aij}p

i=1
q
j=1, p ≤ q, is a

rectangular matrix, z = (z1, z2, . . . , zp)T is a vector obtained by the discretiza-
tion of the right-hand side of the respective partial differential equation and
x = (x1, x2, . . . , xq)T is a vector of unknowns. In fact, q − p entries of the vector
x are known due to the boundary condition and without loss of generality we use
the last q− p entries of x for this purpose. Thus, it remains to compute the first
p components of x.

In order to obtain a system of equations with a square matrix we denote by
S = {sij}q

i=1
p
j=1 the q × p matrix satisfying sij = δij for all i = 1, 2, . . . , q and

j = 1, 2, . . . , p. Then Ar = AS is a square matrix formed by first p columns of
A and xr = STx is a restriction of x to the first p rows. Finally, if we define
z̃ = z − A(I − SST )x and if the matrix Ar is nonsingular, then there exists a
unique solution of the equation Arxr = z̃ (z̃ is defined using xi with i > p). We
can also verify that

Ax = ASSTx+ A(I − SST )x = Arxr + z − z̃ = z. (3.18)

Theorem 3.2.1. Assume that Ax = z, where A ∈ Rp×q, p ≤ q, is a matrix
of nonnegative type and Ar is a nonsingular matrix, then the discrete maximum
principle holds, i.e.

z ≤ 0 ⇒ max
1≤i≤q

{xi} ≤ max{0, xν}, for some ν > p. (3.19)

57



If in addition ∑q
j=1 aij = 0 for all i = 1, 2, . . . , p, then there holds

z ≤ 0 ⇒ max
1≤i≤q

{xi} = xν , for some ν > p. (3.20)

Proof. We proceed as in Codina (1993). Let us begin with the first statement
(i.e. (3.19)). Since the matrix A is of nonnegative type and does not contain
zero rows (Ar is nonsingular) it must have positive entries on the main diagonal.
Consequently, from the equality ∑q

j=1 aijxj = zi it follows

xi = zi

aii

+ 1
aii

∑
j∈Si

|aij|xj ≤ max
j∈Si

{xj}
1
aii

∑
j∈Si

|aij| ≤ max
{

0,max
j∈Si

{xj}
}
,

(3.21)
where Si = {j; 1 ≤ j ≤ q, aij < 0} is a set of indices of nonzero off-diagonal
entries in the i-th row of the matrix A. In other words, Si is a set of indices of
neighboring nodes of the node corresponding to the value xi. Let us now denote
xm = max1≤i≤q{xi}. If xm ≤ 0, then (3.19) holds. Therefore, let us consider the
case xm > 0 and for a contradiction let us assume that

1 ≤ m ≤ p and xj < xm for all j > p. (3.22)

Denoting xk = maxj∈Sm{xj} and using (3.21) with i = m, we obtain 0 < xm ≤
max{0, xk}. Thus, xk has to be positive and xm = xk (xm is the maximum).
Moreover, since xk ̸< xm we have k ≤ p by (3.22) and the maximum is attained
at two inner nodes. The system Ax = z of p equations for q variables can be
now changed into an equivalent system of p − 1 equations for q − 1 variables by
eliminating the k-th row and summing the k-th and them-th column of the matrix
A together (adding the k-th column to the m-th column and then eliminating the
k-th column). The resulting matrix is again of nonnegative type and repeating
this proof we arrive at x1 = x2 = · · · = xp ≤ maxj>p{xj} by (3.21), which is a
contradiction with (3.22).

The second statement of the theorem results from the fact that if ∑q
j=1 aij = 0

for all i = 1, 2, . . . , p, then 1
aii

∑
j∈Si

|aij| = 1 for all i = 1, 2, . . . , p. Consequently,
the inequality (3.21) changes into xi ≤ maxj∈Si

{xj}, for i = 1, 2, . . . , p.

Remark 3.2.3. Analogously, one can prove that if Ax = z, where A ∈ Rp×q,
p ≤ q, is a matrix of nonnegative type and Ar is a nonsingular matrix, then the
discrete minimum principle holds, i.e.

z ≥ 0 ⇒ min
1≤i≤q

{xi} ≥ min{0, xν}, for some ν > p. (3.23)

If in addition ∑q
j=1 aij = 0 for all i = 1, 2, . . . , p, then there holds

z ≥ 0 ⇒ min
1≤i≤q

{xi} = xν , for some ν > p. (3.24)

Theorem 3.2.2. The method (3.14)–(3.16) satisfies the discrete maximum prin-
ciple.
Proof. It suffices to show that the matrix generated by the bilinear form ah is of
nonnegative type. Thus, let φh, φ̃h be arbitrary basis functions of Vh and let us
rewrite the bilinear form ah in the following form

ah(φh, φ̃h) =
∑

K∈Th

{
ε(∇φh,∇φ̃h)K + (bK · ∇φh, φ̃h + (PK,n+1 − CK) ∇φ̃h)K

}
.

(3.25)
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Now we investigate the restriction of ah(φh, φ̃h) to a single element K. Without
loss of generality we denote λK,i = φh|K and λK,j = φ̃h|K for some 1 ≤ i, j ≤ n+1.
Since the first term in the sum (3.25) satisfies the inequality (3.8) (multiplied by
ε > 0), it remains to analyze the second term in the sum. From the linearity of
the function λK,j it follows that

(PK,n+1 − CK) ∇λK,j = λK,j (PK,n+1) − λK,j (CK) . (3.26)

Using this property, the fact that bK ·∇λK,i is a constant function on K, bK ||dK,1
and λK,µ(PK,ν) = δµ,ν for 1 ≤ µ, ν ≤ n+ 1, we deduce

(bK · ∇λK,i, λK,j + (PK,n+1 − CK) ∇λK,j)K =
= (bK · ∇λK,i, λK,j + λK,j (PK,n+1) −λK,j (CK))K =
= (bK · ∇λK,i, λK,j (PK,n+1))K = |bK |

|dK,1| (dK,1 · ∇λK,i, λK,j (PK,n+1))K =

= |bK |
|dK,1| |K| (δi,n+1 − δi,1)δj,n+1, (3.27)

where we used the equality

dK,1 ·∇λK,i = (PK,n+1−PK,1)·∇λK,i = λK,i(PK,n+1)−λK,i(PK,1) = δi,n+1−δi,1.
(3.28)

We observe that when i = j = n + 1 the term (3.27) is positive, for j = n + 1
and i = 1 it is negative and in all remaining cases it vanishes. Moreover, since∑n+1

i=1 (∇λK,i,∇λK,j)K = 0 and ∑n+1
i=1 (δi,n+1 − δi,1)δj,n+1 = 0, the method satisfies

the discrete maximum principle (3.20).

Remark 3.2.4. Instead of adding stabilization term to the weak formulation (3.6)
one can change the test functions to

λ̃K,j = λK,j + (PK,n+1 − CK) · ∇λK,j. (3.29)

Then for all j = 1, 2, . . . , n we obtain λ̃K,j = λK,j − 1
n+1 whereas λ̃K,n+1 =

λK,n+1 + n
n+1 . This choice of test functions is the same as in the Mizukami-Hughes

method (cf. Mizukami and Hughes (1985) or Knobloch (2006)). It means that
the derived method satisfies the discrete maximum principle.

3.3 Mesh properties and notation
In this section we introduce another mesh quantities and labeling. We observe
that the mesh whose edges are oriented along b has a special property: For each
mesh node P s

0 lying on the boundary Γ− there exists a sequence of nodes {P s
j }Ns

j=1
which lay on the same streamline given by the vector field b (of course, that here
the verb ”lay” in fact means ”for a good mesh they almost lay”).

Thus, each node P s
j of the mesh can be characterized by two numbers - the

number denoting the streamline (s) and the number determining the order of the
node on this streamline (j). For each node P s

j we can further define the following
sets: a patch Ωs

j = ∪P s
j ⊂KK, a cluster Cs

j = ∪P s
j−1,P s

j ⊂KK and a complementary
set Ωs

0,j = Ωs
j\
(
Cs

j ∪ Cs
j+1

)
(see Figure 3.1).

From this notation it also follows that each mesh node has double labeling
PK,i and P s

j , in particular, for all K ⊂ Cs
j holds PK,1 = P s

j−1 and PK,n+1 = P s
j .
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Figure 3.1: Definition of the splitting of the domain Ωs
j .

Another property resulting from the structure of the mesh is that we can
rewrite the sum over all elements K ∈ Th in the form

∑
K∈Th

=
P∑

s=1

Ns∑
j=1

∑
K⊂Cs

j

. (3.30)

Indeed, for each element K ∈ Th there exists exactly one edge (determining the
vector dK,1) which is oriented in the flow direction. This edge certainly lies on
some discrete streamline s, 1 ≤ s ≤ P , and the endpoints of this edge are P s

j−1, P
s
j

for suitable j, 1 ≤ j ≤ Ns. All elements sharing this edge then form the cluster
Cs

j and a union of all clusters is the whole domain Ω. Since each element K ∈ Th

lies exactly in one cluster, the expression (3.30) is valid.

Definition 3.3.1. For each cluster Cs
j let us define the quantities

hs
j = |P s

j − P s
j−1|, βs

j = 1
|Cs

j |
∑

K⊂Cs
j

|bK ||K| and

qs
j = −

∑
K⊂Cs

j

∫
K
b · ∇λK,1 dx. (3.31)

For each element K ∈ Th let us also define the mesh parameters θK by

θK = 1
|K|

max
{

max
2≤i≤n

⏐⏐⏐⏐∫
K
b · ∇λK,i dx

⏐⏐⏐⏐ ,
⏐⏐⏐⏐⏐

n∑
i=2

∫
K
b · ∇λK,i dx

⏐⏐⏐⏐⏐
}
. (3.32)

Remark 3.3.1. From the previous definition it follows that hs
j is the length of the

cluster Cs
j in the streamline direction, i.e. hs

j = |P s
j − P s

j−1| = |PK,n+1 − PK,1| =
|dK,1| for each element K ⊂ Cs

j . Further, for the quantity qs
j holds

qs
j = −

∑
K⊂Cs

j

∫
K
b · ∇λK,1 dx. =

∑
K⊂Cs

j

⏐⏐⏐⏐∫
K
b · ∇λK,1 dx

⏐⏐⏐⏐ =

=
∑

K⊂Cs
j

|bK ||K|
|dK,1|

= 1
hs

j

∑
K⊂Cs

j

|bK ||K| =
βs

j |Cs
j |

hs
j

> 0, (3.33)

which results from the Remark 3.2.1.
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In the previous definition the quantity βs
j is the weighted average value of

|bK | on Cs
j and qs

j are fluxes for which we derive inequalities in technical Lemmas
3.4.1, 3.4.2, 3.4.3 and 3.4.4 later. The mesh parameters θK vanish whenever b is
parallel to bK (i.e., to dK,1) in K and therefore we use them for a characterization
of a good mesh.

In order to employ the algebraic lemmas from Section 3.4.1, we have to find
some relation between the values qs

j and qs
j+1. The following lemma provides an

inequality resulting from the structure of the mesh.

Lemma 3.3.1. Let there exists ω > 0 such that div b ≤ −ω < 0 in Ω and let for
each K ∈ Th holds

θK ≤ ω

n+ 1 . (3.34)

Then qs
j ≥ qs

j+1 + ω
n+1 |Cs

j+1| for each s = 1, 2, . . . ,P and j = 1, 2, . . . , Ns.

Proof. Let us consider any inner node P s
j and the corresponding basis function

λs
j satisfying suppλs

j = Ωs
j = Cs

j ∪ Ωs
0,j ∪ Cs

j+1. Then for K ⊂ Cs
j holds ∇λs

j−1 =
∇λK,1 = −∇λK,n+1 −∑n

i=2 ∇λK,i = −∇λs
j −∑n

i=2 ∇λK,i and from the definition
of qs

j it follows

qs
j = −

∑
K⊂Cs

j

∫
K
b · ∇λK,1 dx = −

∑
K⊂Cs

j

∫
K
b · ∇λs

j−1 dx =

=
∑

K⊂Cs
j

n∑
i=2

∫
K
b · ∇λK,i dx+

∑
K⊂Cs

j

∫
K
b · ∇λs

j dx =

=
∑

K⊂Cs
j

n∑
i=2

∫
K
b · ∇λK,i dx+

∫
Ωs

j

b · ∇λs
j dx−

∫
Ωs

0,j

b · ∇λs
j dx+ qs

j+1 =

= qs
j+1 +

∑
K⊂Cs

j

n∑
i=2

∫
K
b · ∇λK,i dx−

∫
Ωs

j

div bλs
j dx−

∫
Ωs

0,j

b · ∇λs
j dx ≥

≥ qs
j+1 −

∑
K⊂Cs

j

ω

n+ 1 |K| + ω

n+ 1 |Ωs
j| −

∑
K⊂Ωs

0,j

ω

n+ 1 |K| =

= qs
j+1 + ω

n+ 1 |Ωs
j\(Cs

j ∪ Ωs
0,j)| = qs

j+1 + ω

n+ 1 |Cs
j+1|. (3.35)

Corollary 3.3.1. If div b < −ω < 0 and the inequality (3.34) holds for all K ∈ Th,
then there are not closed discrete streamlines in Th.

Proof. For a contradiction let us assume that the clusters Cs
j , j = 1, 2, . . . , Ns lay

on some closed discrete streamline s. From the inequality (3.34) it then follows
that qs

1 > qs
2 > · · · > qs

Ns
> qs

1, which is not possible.

Remark 3.3.2. Since the method is formulated in arbitrary dimension Rn, n ∈ N,
let us now investigate the number of elements forming one cluster and one patch in
Rn. Whereas in 1D the cluster always consists of one element and two neighboring
elements form the patch, in higher dimensions these numbers depend on the
structure of the mesh. Therefore, let us for simplicity consider a triangulation
of Ω by a three-directional mesh (in 2D) or its multidimensional analog. These
meshes are constructed in the following way:
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Let Ω ⊂ Rn be a hypercube (one can consider any n-dimensional paral-
lelepiped) and we divide it into small hypercubes whose faces are parallel with
the faces of Ω. Further, we divide each small hypercube into n! n-simplices. We
demonstrate such a partition on the cube [0, 1]n:

Let Sn be a symmetric group of permutations of degree n, i.e. the group of
permutations on the set {1, 2, . . . , n}. Let π ∈ Sn be any permutation and let us
define a set

Kπ = {(x1, x2, . . . , xn) ⊂ Rn, 0 ≤ xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n) ≤ 1}. (3.36)

Since Kπ is defined by n + 1 linearly independent linear inequalities, it is an
n-simplex. Further, any point (x1, x2, . . . , xn) ∈ [0, 1]n clearly lies in the union
of all possible simplices ⋃π∈Sn

Kπ. This is due to the fact that we can always
permute (using some permutation π0) the coordinates x1, x2, . . . , xn in such a
way that they form a non-decreasing sequence and thus (x1, x2, . . . , xn) ∈ Kπ0 .
Finally, if (x1, x2, . . . , xn) ∈ Kπ1 ∩Kπ2 for some permutations π1 ̸= π2, then both
sequences {xπ1(j)}n

j=1 and {xπ2(j)}n
j=1 are non-decreasing (by the definition of Kπ1

and Kπ2). It means that they are identical and there must exist at least one
couple of coordinates xp and xq, p ̸= q, satisfying xp = xq. Thus, all points laying
in two or more simplices always lay on their boundaries (some inequalities are in
fact equalities in the definition of Kπ1 and Kπ2). It means that {Kπ}π∈Sn forms
the partition of [0, 1]n (see Figure 3.2 for 3D example).
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Figure 3.2: Partition of the unit cube into simplices Kπ, π ∈ S3, in 3D. Images a)
– f) correspond to the permutations

(
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)
,
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)
,
(

123
213

)
,
(
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)
,
(
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312
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and

(
123
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,

respectively.

Further, using the definition (3.36) one can compute the volume of each sim-
plex Kπ, π ∈ Sn. It is equal to

|Kπ| =
∫ 1

0

∫ xπ(n)

0
· · ·

∫ xπ(2)

0
1 dxπ(1) · · · dxπ(n) =

∫ 1

0

xn−1
π(n)

(n− 1)! dxπ(n) = 1
n! .

(3.37)
Hence, all the simplices forming the partition of [0, 1]n have the same volume.

It remains to verify that the opposite faces of [0, 1]n are divided into (n− 1)-
simplices in the same way (we want to set the (hyper)cubes together). Therefore,
let j ∈ {1, 2, . . . , n} be arbitrary but fixed and let us consider two faces F0 and F1
laying in the hyperplanes xj = 0 and xj = 1, respectively. Further, let us define
two subsets of Sn

L(j)
n = {π ∈ Sn, π(1) = j} and R(j)

n = {π ∈ Sn, π(n) = j}. (3.38)

Then the sets
{
Kπ ∩ {xj = 0}, π ∈ L(j)

n

}
and

{
Kπ ∩ {xj = 1}, π ∈ R(j)

n

}
form the

partitions of F0 and F1, respectively, and the mapping σ(j)
n : L(j)

n → R(j)
n defined
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by the relation(
σ(j)

n (π)
)
(i) = π

(
1 + (i mod n)

)
for i = 1, 2, . . . , n, (3.39)

is a bijection between L(j)
n and R(j)

n .
What remains to show is that if (x1, x2, . . . , xj−1, 0, xj+1, . . . , xn) is any point

laying in the (n − 1)-simplex Kπ ∩ {xj = 0}, for some π ∈ L(j)
n , then the point

(x1, x2, . . . , xj−1, 1, xj+1, . . . , xn) lies in K
σ

(j)
n (π) ∩ {xj = 1}. However, this is obvi-

ous as for i < n− 1 there holds

x(
σ

(j)
n (π)

)
(i)

= xπ(i+1) ≤ xπ(i+2) = x(
σ

(j)
n (π)

)
(i+1)

, (3.40)

and since it is also x(
σ

(j)
n (π)

)
(n−1)

≤ 1 = x(
σ

(j)
n (π)

)
(n)

the verification is completed.

From the previous observations it follows that using this special type of mesh
each inner mesh node belongs to 2n hypercubes and in each hypercube it lies in
a different position. Equivalently, in each hypercube, there is 2n types of nodes
(corners) depending on their position. Thus, when computing the number of
elements forming one patch, it suffices to consider one hypercube and compute
for each corner the number of simplices containing this corner. The sum of these
numbers equals to the number of simplices forming the hypercube multiplied by
the number of their corners, i.e. n!(n + 1) = (n + 1)!. Using this result, one
can easily compute the number of elements forming one cluster. It is simply the
number of elements forming the (n − 1)-dimensional boundary patch. Indeed,
each boundary node is in fact an endpoint of the streamline and the number of
cluster’s elements is therefore the same as the number of elements forming the
boundary node patch, i.e. n! (see Figure 3.3 for 3D example).

b

Figure 3.3: Example of clusters, a complementary set and a patch in 3D. The
number of elements forming one three-dimensional cluster is the same as the
number of elements forming the two-dimensional boundary patch.

3.4 Coercivity
Since

∫
K vh − vh(CK) dx = 0 for all vh ∈ Vh, we can write(

bK ·∇uh, vh + (PK,n+1 − CK)·∇vh

)
K

=
(
bK ·∇uh, vh + vh(PK,n+1) − vh(CK)

)
K

=

=
(
bK · ∇uh, vh(PK,n+1)

)
K

= |K| |bK |
|dK,1|

(
uh(PK,n+1) − uh(PK,1)

)
vh(PK,n+1).
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Consequently, for the bilinear form ah holds

ah(vh, vh) = ε|vh|21,Ω +
∑

K∈Th

|K| |bK |
|dK,1|

(
vh(PK,n+1)−vh(PK,1)

)
vh(PK,n+1). (3.41)

Thus, when proving coercivity of the bilinear form ah, it is necessary to esti-
mate the second term on the right-hand side of (3.41). For this purpose we use
the following lemmas.

3.4.1 Technical lemmas
Lemma 3.4.1. Let N ∈ N, 0 < ρj < 1, j = 1, 2, . . . , N − 1, and qj, j =
1, 2, . . . , N , are positive numbers satisfying

qj+1

qj

≤ ρj for j = 1, 2, . . . , N − 1. (3.42)

Then for all vj ∈ R, j = 1, 2, . . . , N , holds

q1v
2
1 +

N∑
j=2

qj(v2
j − vjvj−1) ≥ 1

2qNv
2
N + 1

2

N−1∑
j=1

(1 − ρj)qjv
2
j . (3.43)

Proof. Subtracting the right-hand side of (3.43) from the left-hand side we obtain

q1v
2
1 +

N∑
j=2

qj(v2
j − vjvj−1) − 1

2qNv
2
N − 1

2

N−1∑
j=1

(1 − ρj)qjv
2
j =

= 1
2

⎧⎨⎩q1v
2
1 +

N∑
j=2

qj(vj − vj−1)2 +
N−1∑
j=1

v2
j qj

(
ρj − qj+1

qj

)⎫⎬⎭ ,
which is nonnegative due to the inequality (3.42).

In the case when the fractions qj+1
qj

are not smaller then 1, we can use the
following lemma.

Lemma 3.4.2. Let N ∈ N, N ≥ 8, 0 ≤ δ < 4 and qj, j = 1, 2, . . . , N , are
positive numbers satisfying

qj+1

qj

≤ 1 + δ

N2 for j = 1, 2, . . . , N − 1. (3.44)

Then for all vj ∈ R, j = 1, 2, . . . , N , holds

q1v
2
1 +

N∑
j=2

qj(v2
j − vjvj−1) ≥ 4 − δ

2N2

N∑
j=1

qjv
2
j . (3.45)

Proof. Applying the Young inequality on the left-hand side of (3.45) yields

q1v
2
1 +

N∑
j=2

qj(v2
j − vjvj−1) ≥ q1v

2
1 +

N∑
j=2

qj

(
v2

j − 1
2σj

v2
j−1 − σj

2 v
2
j

)
=

=
(
q1 − q2

2σ2

)
v2

1 +
N−1∑
j=2

(
qj

(
1 − σj

2

)
− qj+1

2σj+1

)
v2

j + qN

(
1 − σN

2

)
v2

N ,
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where σj, j = 2, 3, . . . N , are positive numbers. Now we must choose the values
σj in such a way that all terms in the previous expression are positive. Thus, we
take

σj = 1 + 2
N

zN,j

1 − z2
N,j

, with zN,j = 2
N

(
j − N + 1

2

)
. (3.46)

Then zN,2 = −1 + 3
N

, σ2 = 2
3 + 1

2N−3 and consequently for 0 ≤ δ < 4

q1 − q2

2σ2
= q1

(
1 − 1

2
q2

q1

1
σ2

)
> q1

(
1 − 1

2

(
1 + δ

N2

)
6N − 9
4N − 3

)
=

= q1

(
2N + 3
8N − 6 − δ

N2
6N − 9
8N − 6

)
> q1

(
2N + 3
8N − 6 − 4(6N − 9)

N2(8N − 6)

)
=

= q1

(
1
4 + 9

16N − 165
64N2 + 657

32N2(8N − 6)

)
≥ q1(4 − δ)

2N2 , (3.47)

whenever N ≥ 5. For j = N we have zN,N = 1 − 1
N

, σN = 2 − 1
2N−1 and

qN

(
1 − σN

2

)
= 1

4N − 2 qN >
qN(4 − δ)

2N2 (3.48)

for 0 ≤ δ < 4 and N ≥ 8.
The most complicated case occurs when 2 ≤ j ≤ N − 1. Then −1 + 3

N
≤

zN,j ≤ 1 − 3
N

and zN,j+1 = zN,j + 2
N

. Consequently, it holds

qj

(
1 − σj

2

)
− qj+1

2σj+1
= qj

(
1 − σj

2 − 1
2
qj+1

qj

1
σj+1

)
>

>
qj

2

⎛⎜⎝1 −
2
N
zN,j

1 − z2
N,j

−
(

1 + δ

N2

) 1 −
(
zN,j + 2

N

)2

1 −
(
zN,j + 2

N

)2
+ 2

N

(
zN,j + 2

N

)
⎞⎟⎠ =

= qj

2N2

⎛⎜⎜⎝ 4(
1 − z2

N,j

) (
1 − z2

N,j − 2
N
zN,j

) −
δ
[
1 −

(
zN,j + 2

N

)2
]

1 − z2
N,j − 2

N
zN,j

⎞⎟⎟⎠ =

= qj

2N2

⎛⎜⎜⎝4 − δ + δ
[
z2

N,j + (1 − z2
N,j)(zN,j + 2

N
)2
]

(
1 −

(
zN,j + 2

N

)2
) (

1 − z2
N,j − 2

N
zN,j

)
⎞⎟⎟⎠ >

4 − δ

2N2 qj. (3.49)

We have estimated
(

1 −
(
zN,j + 2

N

)2
) (

1 − z2
N,j − 2

N
zN,j

)
≤ 1, where the equality

occurs for zN,j = − 2
N

. We have also used the inequality |zN,j| < 1.

Remark 3.4.1. If we take δ = 0 in Lemma 3.4.2, we obtain a factor 2
N2 on the

right-hand side of (3.45). One can ask whether it is possible to improve this
estimate. Let us therefore consider the worst case qj = q for j = 1, 2, . . . , N .
Then

q

⎛⎝v2
1 +

N∑
j=2

(v2
j − vjvj−1)

⎞⎠ = q
(
vT

NANvN

)
≥ qλN |vN |2, (3.50)

where vN = (v1, v2, . . . , vN), AN = tridiag {−1
2 , 1,−

1
2} and λN = 1 − cos (π/N)

is the minimal eigenvalue of AN .

65



If we now investigate the behavior of the sequence λN as N → +∞, we find
out that limN→+∞ λNN

2 = π2

2 ≈ 4.935. Thus, the constant in the estimate (3.49)
of Lemma 3.4.2 is not optimal, nevertheless, the order is optimal

(
1

N2

)
.

A suboptimal estimate can be achieved considering the discretization of the
second order derivative in 1D by piecewise linear finite elements on equidistant
partition of the interval I = (0, 1). Then using Friedrichs’ inequality (Theorem
4.1.3, page 125) and Lemma 4.2.1 (page 129) we can prove

vT
NANvN = 1

2N |wh|21,I ≥ π2

2N

N∑
j=1

∥wh∥2
0,Ij

≥ π2

2N
h

3 |vN |2 = π2

6N2 |vN |2, (3.51)

where wh ∈ H1
0 (I) is a piecewise linear function satisfying wh(ih) = vi for i =

1, 2, . . . , N .
The upper bound δ < 4 is not optimal as well. However, if we consider

N = 5, qj+1
qj

= 1 + 25
3

1
N2 = 4

3 for j = 1, 2, 3, 4, then q1v
2
1 + ∑5

j=2 qjv
2
j = 0 for

(v1, v2, v3, v4, v5) = (1,
√

3, 2,
√

3, 1). Hence, the optimal upper bound for δ is not
greater than 25

3 . (If we consider only values N ≥ 8 as in the previous lemma,
then we can construct similar example and deduce that the optimal upper bound
for δ has to be smaller than approximately 8.478 > 25

3 .)
In the previous two lemmas we estimated the left-hand side by the sum that

corresponds to the L2-norm. We would also like to estimate it by the sum that
corresponds to the norm of the derivatives in the flow direction. For this purpose
we use the next two lemmas.
Lemma 3.4.3. Let N ∈ N and qj, j = 1, 2, . . . , N , are positive numbers satisfying

qj+1

qj

≤ 1 for j = 1, 2, . . . , N − 1. (3.52)

Then for all vj ∈ R, j = 1, 2, . . . , N , holds

q1v
2
1 +

N∑
j=2

qj(v2
j − vjvj−1) ≥ 1

2

⎧⎨⎩q1v
2
1 +

N∑
j=2

qj(vj − vj−1)2

⎫⎬⎭ . (3.53)

Proof. Subtracting the right-hand side of (3.53) from the left-hand side we obtain

q1v
2
1 +

N∑
j=2

qj(v2
j − vjvj−1) − 1

2

⎧⎨⎩q1v
2
1 +

N∑
j=2

qj(vj − vj−1)2

⎫⎬⎭ =

= 1
2q1v

2
1 + 1

2

N∑
j=2

qj

(
v2

j − v2
j−1

)
= 1

2qNv
2
N + 1

2

N−1∑
j=1

v2
j (qj − qj+1) ≥ 0.

Lemma 3.4.4. Let N ∈ N, N ≥ 8, 0 ≤ δ < 4 and qj, j = 1, 2, . . . , N , are
positive numbers satisfying

qj+1

qj

≤ 1 + δ

N2 for j = 1, 2, . . . , N − 1. (3.54)

Then for all vj ∈ R, j = 1, 2, . . . , N , holds

q1v
2
1 +

N∑
j=2

qj(v2
j − vjvj−1) ≥ 4 − δ

8

⎧⎨⎩q1v
2
1 +

N∑
j=2

qj(vj − vj−1)2

⎫⎬⎭ . (3.55)
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Proof. Denoting α = 1
4δ ∈ [0, 1) and using Young’s inequality we can write

q1v
2
1 +

N∑
j=2

qj

(
v2

j − vjvj−1
)

=

= q1v
2
1 +

N∑
j=2

qjv
2
j −

N∑
j=2

qj(1 − α)vjvj−1 −
N∑

j=2
qjαvjvj−1 ≥

≥ q1v
2
1 +

N∑
j=2

qjv
2
j −

N∑
j=2

qj(1 − α)vjvj−1 − 1
2

N∑
j=2

qjα

(
v2

j−1

σj

+ v2
jσj

)
=

= q1v
2
1 +

N∑
j=2

qjv
2
j + 1

2

N∑
j=2

qj(1 − α)(vj − vj−1)2 −

− 1
2

N∑
j=2

qj(1 − α)
(
v2

j + v2
j−1

)
− 1

2

N∑
j=2

qjα

(
v2

j−1

σj

+ v2
jσj

)
=

= 1 − α

2

⎧⎨⎩q1v
2
1 +

N∑
j=2

qj(vj − vj−1)2

⎫⎬⎭+
{

1 + α− q2

q1

(
1 − α + α

σ2

)}
q1v

2
1

2 +

+ 1
2

N−1∑
j=2

{
1 + α− ασj − qj+1

qj

(
1 − α + α

σj+1

)}
qjv

2
j +

+ {1 + α− ασN} qNv
2
N

2 . (3.56)

In order to complete the proof we have to show that the last three terms are
nonnegative. We use the same definition of σj as in Lemma 3.4.2. Let us begin
with the terms in the sum and use the estimate (3.49), then

1 + α− ασj − qj+1

qj

(
1 − α + α

σj+1

)
≥ (3.57)

≥ 1 + α− ασj −
(

1 + δ

N2

)(
1 − α + α

σj+1

)
=

= 2α
(

1 − σj

2 − 1
2

(
1 + δ

N2

)
1

σj+1

)
− δ (1 − α)

N2 ≥ 2α4 − δ

2N2 − δ (1 − α)
N2 = 0.

Further, using the estimate (3.47) we obtain

1 + α− q2

q1

(
1 − α + α

σ2

)
≥ 1 + α−

(
1 + δ

N2

)(
1 − α + α

σ2

)
= (3.58)

= 2α
(

1 − 1
2

(
1 + δ

N2

)
1
σ2

)
− δ

N2 (1 − α) ≥ 2α4 − δ

2N2 − δ

N2 (1 − α) = 0,

whenever N ≥ 5. Finally, for N ≥8 and using (3.48) we have

1 + α− ασN = 1 − α + 2α
(

1 − σN

2

)
≥ 1 − α + 2α4 − δ

2N2 =

=
(

1 + δ

N2

)
(1 − α) ≥ 0. (3.59)
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3.4.2 Coercivity estimates
In the case when div b < 0, we use Lemma 3.3.1 for proving the coercivity of the
bilinear form ah with respect to the energy norm ||| · |||b. (See Definition 4.1.1,
page 124, for the definition of other norms.)
Definition 3.4.1. When div b ≤ −ω < 0 we estimate the error of the presented
method in the energy norm

|||v|||2b = ε|v|21,Ω + ωκ

2 ∥v∥2
0,Ω +

∑
K∈Th

|dK,1|
2|bK |

∥bK · ∇v∥2
0,K , (3.60)

where κ = min
j,s

{
|Cs

j |
|Ωs

j | ,
|Cs

j+1|
|Ωs

j |

}
, |dK,1| = PK,3 − PK,1 and bK is defined in (3.13)

(page 56).

Theorem 3.4.1 (div b < 0). Let the assumptions of Lemma 3.3.1 be fulfilled.
Further, let there exists a constant κ independent of h (and ε) such that |Cs

j+1|
|Ωs

j | ≥ κ

for all s = 1, 2, . . . ,P and j = 1, 2, . . . , Ns. Then the bilinear form defined in
(3.15) satisfies

ah(vh, vh) ≥ 1
2 |||v|||2b . (3.61)

Proof. Combining (3.41) together with (3.30) and (3.33) we realize that

ah(vh, vh) = ε|vh|21,Ω +
P∑

s=1

Ns∑
j=1

qs
j vh(P s

j )(vh(P s
j ) − vh(P s

j−1)) (3.62)

and it remains to estimate the latter term. In order to do so, we use the inequality
from Lemma 3.3.1

qs
j+1

qs
j

≤ 1 −
ω|Cs

j+1|
(n+ 1)qs

j

< 1. (3.63)

The inequality (3.43) then implies
P∑

s=1

Ns∑
j=1

qs
j vh(P s

j )(vh(P s
j ) − vh(P s

j−1)) ≥
P∑

s=1

Ns∑
j=1

ω |Cs
j+1|

2(n+ 1)v
2
h(P s

j ) ≥

≥
P∑

s=1

Ns∑
j=1

ω κ |Ωs
j|

2(n+ 1)v
2
h(P s

j ) =
∑

K∈Th

ωκ |K|
2(n+ 1)

n+1∑
i=1

v2
h(PK,i) ≥ ωκ

2 ∥vh∥2
0,Ω, (3.64)

where we used the inequality ∥vh∥2
0,K ≤ |K|

n+1
∑n+1

i=1 v
2
h(PK,i) (cf. Lemma 4.2.1),

and the fact that
P∑

s=1

Ns∑
j=1

|Ωs
j|v2

h(P s
j ) =

P∑
s=1

Ns∑
j=1

∑
K⊂Ωs

j

|K|v2
h(P s

j ) =
∑

K∈Th

|K|
n+1∑
i=1

v2
h(PK,i). (3.65)

Similarly, using the inequality (3.53) we obtain
∑

K∈Th

(bK · ∇vh, vh(PK,n+1))K =
P∑

s=1

Ns∑
j=1

vh(P s
j )(vh(P s

j ) − vh(P s
j−1))qs

j ≥

≥ 1
2

P∑
s=1

Ns∑
j=1

qs
j

(
vh(P s

j ) − vh(P s
j−1)

)2
= 1

2

P∑
s=1

Ns∑
j=1

∑
K⊂Cs

j

hs
j

|bK |
∥bK · ∇vh∥2

0,K =

=
∑

K∈Th

|dK,1|
2|bK |

∥bK · ∇vh∥2
0,K , (3.66)
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which results from the equality

∑
K⊂Cs

j

hs
j

|bK |
∥bK · ∇vh∥2

0,K =
∑

K⊂Cs
j

hs
j

|bK |
|K| |bK |2

|dK,1|2

(
n+1∑
i=1
dK,1∇vh (PK,i)

)2

=

=
(
vh(P s

j ) − vh(P s
j−1)

)2 ∑
K⊂Cs

j

hs
j

|bK |
|K| |bK |2

(hs
j)2 . (3.67)

Summing halves of the inequalities (3.64) and (3.66) completes the proof.

In order to prove the coercivity of the bilinear form ah in the case when
div b = 0 we use another auxiliary quantities.

Definition 3.4.2. For each node P s
j , s = 1, 2, . . . ,P and j = 1, 2, . . . , Ns, let us

define the function σ(P s
j ) by the relation

σ(P s
j ) =

|Cs
j | + |Ωs

0,j|
|Cs

j |
(hs

jNs)2 ∥b∥∞,Ωs
j

βs
j

max
K⊂Ωs

j

hK

hs
j

. (3.68)

Further, for each element K ∈ Th we define the value νK = max
1≤i≤n+1

σ(PK,i).

In the case when b is a constant vector, hs
jNs = L and for the mesh considered

in the Remark 3.3.2 it holds |Cs
j | = |K|n!, |Ωs

0,j| = |K|(n− 1)n! and consequently

σ(P s
j ) ≈ |K|n! + |K|(n− 1)n!

|K|n! L2 = nL2 for all possible j, s. (3.69)

For more general data we obtain different values of σ(P s
j ) or νK , however, the

value (3.69) is still a good approximation, in particular for quasi-equidistant
meshes.

We use these quantities together with the Lemmas 3.4.2 and 3.4.4 and prove
the coercivity of the method with respect to the appropriate energy norm. At
first, we again find a relation between qs

j and qs
j+1.

Lemma 3.4.5. Let div b = 0 in Ω and let there exists δ ≥ 0 such that

θK ≤ δ

νK

∥b∥∞,K hK for each K ∈ Th. (3.70)

Then for each s = 1, 2, . . . ,P and j = 1, 2, . . . , Ns it holds

qs
j+1

qs
j

≤ 1 + δ

N2
s

. (3.71)

Proof. At first we observe that for each K ⊂ Ωs
j it holds σ(P s

j ) ≤ max
1≤i≤n+1

σ(PK,i).
This is due to the fact that P s

j belongs to each K ⊂ Ωs
j . Consequently

σ(P s
j ) ≤ min

K∈Ωs
j

max
1≤i≤n+1

σ(PK,i) = min
K∈Ωs

j

νK . (3.72)
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We can use this inequality, the equality from (3.35) and estimate

qs
j+1

qs
j

= 1 + 1
qs

j

⎧⎪⎨⎪⎩
∫

Ωs
0,j

b · ∇λs
j dx−

∑
K⊂Cs

j

n∑
i=2

∫
K
b · ∇λK,i dx

⎫⎪⎬⎪⎭ ≤

≤ 1 +
hs

j

βs
j |Cs

j |

⎧⎪⎨⎪⎩
∑

K⊂Ωs
0,j

⏐⏐⏐⏐∫
K
b · ∇λs

j dx
⏐⏐⏐⏐+ ∑

K⊂Cs
j

⏐⏐⏐⏐⏐
n∑

i=2

∫
K
b · ∇λK,i dx

⏐⏐⏐⏐⏐
⎫⎪⎬⎪⎭ ≤

≤ 1 +
hs

j

βs
j |Cs

j |

⎧⎪⎨⎪⎩
∑

K⊂Ωs
0,j

δ

νK

∥b∥∞,K hK |K| +
∑

K⊂Cs
j

δ

νK

∥b∥∞,K hK |K|

⎫⎪⎬⎪⎭ ≤

≤ 1 +
hs

j δ

βs
j |Cs

j |

⎧⎪⎪⎨⎪⎪⎩
max

K⊂Ωs
0,j

hK

min
K∈Ωs

0,j

νK

∥b∥∞,Ωs
0,j

|Ωs
0,j| +

max
K⊂Cs

j

hK

min
K⊂Cs

j

νK

∥b∥∞,Cs
j

|Cs
j |

⎫⎪⎪⎬⎪⎪⎭ ≤

≤ 1 + δ

N2
s

σ(P s
j )

min
K∈Ωs

j

νK

{
|Ωs

0,j|
|Ωs

0,j| + |Cs
j |

+
|Cs

j |
|Ωs

0,j| + |Cs
j |

}
≤ 1 + δ

N2
s

, (3.73)

where we used the fact that the minimum (maximum) over larger set does not
increase (decrease).

Remark 3.4.2 (div b = 0). In the case when div b = 0 in Ω and the assumptions
of Lemma 3.4.5 are fulfilled Lemma 3.4.4 provides an inequality analogous to the
estimate (3.66)

∑
K∈Th

(bK · ∇vh, vh(PK,n+1))K ≥ 4 − δ

4
∑

K∈Th

|dK,1|
2|bK |

∥bK · ∇vh∥2
0,K . (3.74)

When div b = 0 we have to estimate the error of the method with respect to
the different type of energy norm than ||| · |||b. Hence, we define the energy norm
||| · |||b,∗.

Definition 3.4.3. Let us define the constants β, L and R by the relations

β = min
j,s

{βs
j }, L = max

j,s
{Nsh

s
j} and R = max

j,s

⎧⎪⎨⎪⎩
max
K⊂Ωs

j

hK

hs
j

⎫⎪⎬⎪⎭ . (3.75)

Further, let δ ∈ [0, 4) be any constant satisfying (3.70) for all K ∈ Th. Then the
energy norm used in the case of divergence-free vector field b is defined as

|||v|||2b,∗ = ε|v|21,Ω + C∗
2
∑

K∈Th

hK∥v∥2
0,K + C∗

b

∑
K∈Th

|dK,1|
2|bK |

∥bK · ∇v∥2
0,K , (3.76)

where C∗
2 = (4−δ)κβ

2L2R
(n+ 1) and C∗

b = 4−δ
4 .

Theorem 3.4.2 (div b = 0). Let the assumptions of Lemma 3.4.5 be fulfilled.
Then for each vh ∈ Vh there holds

ah(vh, vh) ≥ 1
2 |||v|||2b,∗. (3.77)
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Proof. Again, we rewrite the convective bilinear form as the sum of streamlines
and clusters and use the inequalities (3.45), (3.71) from Lemmas 3.4.2 and 3.4.5

∑
K∈Th

(bK · ∇vh, vh(PK,n+1))K =
P∑

s=1

Ns∑
j=1

vh(P s
j )(vh(P s

j ) − vh(P s
j−1))qs

j ≥

≥ 4 − δ

2

P∑
s=1

1
N2

s

Ns∑
j=1

qs
jv

2
h(P s

j ) = 4 − δ

2

P∑
s=1

Ns∑
j=1

βs
j |Cs

j |
(Nshs

j)2h
s
jv

2
h(P s

j ) ≥

≥ (4 − δ)κβ
2L2

P∑
s=1

Ns∑
j=1

|Ωs
j|hs

jv
2
h(P s

j ) ≥ (4 − δ)κβ
2L2R

∑
K∈Th

hK |K|
n+1∑
i=1

v2
h(PK,i) ≥

≥ (4 − δ)κβ
2L2R

(n+ 1)
∑

K∈Th

hK∥vh∥2
0,K . (3.78)

Combining the estimates (3.74) and (3.78) completes the proof.

3.5 Error analysis
In this section we recall the error analysis of the standard SUPG method and
then use a similar approach for analysis of the error of the presented method.

3.5.1 SUPG method error analysis
We follow the error analysis of the SUPG method presented in Roos et al. (2008).
However, in contrast to Roos et al. (2008) we use the same stabilization parameter
in both convection-dominated and diffusion-dominated case. Consequently, the
error estimate of the same order as in Roos et al. (2008) is derived.

In order to be more general we (just in this case) consider the convection-
diffusion-reaction equation

−ε∆u+ b · ∇u+ cu = f in Ω (3.79)

equipped with the Dirichlet boundary condition u = 0 on ∂Ω. Further, we assume
that b ∈ W 1,∞(Ω)n, c ∈ L∞(Ω), f ∈ L2(Ω) and c− 1

2div b ≥ ω > 0 in Ω.
The finite element space V (k)

h ⊂ V = H1
0 (Ω) is defined as

V
(k)

h = {φh ∈ V, φh|K ∈ Pk(K) for all K ∈ Th} , (3.80)

where the triangulation Th is assumed to be shape-regular (cf. Theorem 4.2.2).
For each K ∈ Th let δK be any positive numbers (specified later), then the

SUPG solution uSU ∈ V
(k)

h satisfies

aSU(uSU , φh) =
∑

K∈Th

(f, φh + δKb · ∇φh)K for all φh ∈ V
(k)

h , (3.81)

where the bilinear form aSU is for all v ∈ H1
0 (Ω) ∩H2(Ω) and φ ∈ H1

0 (Ω) defined
by the relation

aSU(v, φ) = ε(∇v,∇φ)Ω + (b · ∇v, φ)Ω + (cv, φ)Ω +
+
∑

K∈Th

δK(−ε∆v + b · ∇v + cv, b · ∇φ)K .(3.82)
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We will measure the stability and the error of the SUPG method in the norm
||| · |||SU which is for each v ∈ H1(Ω) defined as

|||v|||SU =
⎛⎝ε|v|21,Ω + ω∥v∥2

0,Ω +
∑

K∈Th

δK∥b · ∇v∥2
0,K

⎞⎠1/2

. (3.83)

The stability of the SUPG method with respect to the ||| · |||SU provides the
following lemma.

Lemma 3.5.1. Let us assume that δK ≤ min
{

ω
∥c∥2

0,∞,K
, hK

2Cinv∥b∥0,∞,K

}
for all K ∈

Th. Then for all functions vh ∈ V
(k)

h holds

aSU(vh, vh) ≥ 1
2 |||vh|||2SU . (3.84)

Proof. We use the inverse inequality (Theorem 4.2.2), the Young’s inequality
together with the bound for δK and estimate

aSU(vh, vh) = ε|vh|21,Ω +
(
c− 1

2div b, v2
h

)
Ω

+
∑

K∈Th

δK∥b · ∇vh∥2
0,K +

+
∑

K∈Th

δK(−ε∆vh + cvh, b · ∇vh)K ≥

≥ ε|vh|21,Ω + ω∥vh∥2
0,Ω +

∑
K∈Th

δK∥b · ∇vh∥2
0,K −

−
∑

K∈Th

δK(εCinv

hK
|vh|1,K + ∥c∥0,∞,K∥vh∥0,K)∥b · ∇vh∥0,K ≥

≥ ε|vh|21,Ω + ω∥vh∥2
0,Ω +

∑
K∈Th

δK∥b · ∇vh∥2
0,K −

∑
K∈Th

δKε
Cinv

hK
|vh|21,K∥b∥0,∞,K −

− 1
2
∑

K∈Th

δK∥c∥2
0,∞,K∥vh∥2

0,K − 1
2
∑

K∈Th

δK∥b · ∇vh∥2
0,K ≥ 1

2 |||vh|||2SU . (3.85)

In the derivation of the error estimate it is necessary to estimate the derivative
in the flow direction. Thus, we use the inequality

∥b·∇v∥0,K ≤ min
{

1
δ

1/2
K

,
∥b∥0,∞,K

ε1/2

}(
ε|v|21,K +ω∥v∥2

0,K +δK∥b·∇v∥2
0,K

)1/2
. (3.86)

Due to the consistency of the method we obtain for all u ∈ H2(Ω) the Galerkin
orthogonality

aSU(u− uSU , vh) = 0 for all vh ∈ V
(k)

h . (3.87)

If we want to derive the error estimate of the SUPG method, we use a V (k)
h -

interpolant uI of the function u (see Definition 4.2.2, page 126) and decompose
the error eh = u− uSU = (u− uI) + (uI − uSU) = ηh + ξh into the approximation
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error ηh = u − uI and the error of the method ξh = uI − uSU ∈ V
(k)

h . The
coercivity (3.84) and the Galerkin orthogonality (3.87) then implies
1
2 |||ξh|||2SU ≤ aSU(ξh, ξh) = aSU(−ηh, ξh) =

= −ε(∇ηh,∇ξh)Ω + (ηhdiv b, ξh)Ω + (ηh, b · ∇ξh)Ω − (cηh, ξh)Ω −
−
∑

K∈Th

δK(−ε∆ηh + b · ∇ηh + cηh, b · ∇ξh)K ≤

≤
∑

K∈Th

ε|ηh|1,K |ξh|1,K +
∑

K∈Th

(
n∥b∥1,∞,K + ∥c∥0,∞,K

)
∥ηh∥0,K∥ξh∥0,K +

+
∑

K∈Th

[
∥ηh∥0,K + δK

(
εn|ηh|2,K +∥b∥0,∞,K |ηh|1,K +∥c∥0,∞,K∥ηh∥0,K

)]
∥b·∇ξh∥0,K .

Now we set µK = n∥b∥1,∞,K + ∥c∥0,∞,K for all K ∈ Th, use the estimate (3.86),
Corollary 4.2.2 with the discrete Cauchy–Schwarz inequality and obtain

1
2 |||ξh|||2SU ≤ |||ξh|||SU

⎛⎝6
∑

K∈Th

{
ε|ηh|21,K + µ2

K

ω
∥ηh∥2

0,K +
[
∥ηh∥2

0,K +

+δ2
K

(
ε2|ηh|22,K +∥b∥2

0,∞,K |ηh|21,K +∥c∥2
0,∞,K∥ηh∥2

0,K

)]
min

{
1
δK

,
∥b∥2

0,∞,K

ε

}}⎞⎠1/2

.

(3.88)
The interpolation inequality (Theorem 4.2.1, page 127) then provides for u ∈

Hr+1(Ω), r ≤ k and m ∈ {0, 1, 2} the estimate⎛⎝ ∑
K∈Th

∥u− uI∥2
m,K

⎞⎠1/2

≤ CX

⎛⎝ ∑
K∈Th

h
2(r+1−m)
K |u|2r+1,K

⎞⎠1/2

. (3.89)

Dividing by |||ξh|||SU and using (3.89) the inequality (3.88) changes into

|||ξh|||SU ≤

⎛⎝24
∑

K∈Th

C2
Xh

2r
K |u|r+1,K

(
ε + µ2

K

ω
h2

K + (3.90)

+
[
h2

K + δ2
K

(
ε2

h2
K

+∥b∥2
0,∞,K +∥c∥2

0,∞,Kh
2
K

)]
min

{
1
δK

,
∥b∥2

0,∞,K

ε

}))1/2

.

Now we choose the value of δK in order to obtain the best possible order of
convergence. Choosing δK = hK

2Cinv∥b∥0,∞,K
≤ ω

∥c∥2
0,infty,K

leads to estimates

for PeK ≥ Cinv : |||ξh|||SU ≤ Cξ
SU

( ∑
K∈Th

∥b∥0,∞,K

2 h2r+1
K |u|2r+1,K

)1/2

,

for PeK < Cinv : |||ξh|||SU ≤ Cξ
SU

( ∑
K∈Th

Cinv εh
2r
K |u|2r+1,K

)1/2

,

(3.91)

where Cξ
SU = CX√

Cinv

(
2 + 1

4C2
inv

+ 8C2
inv

(
1 + nmax

K∈Th

{
|b|1,∞,K

∥c∥0,∞,K

})2
)1/2

and the Péclet

number is defined as PeK = ∥b∥0,∞,KhK

2ε
. From these inequalities it follows that

|||ξh|||SU ≤ C ξ
SU

⎛⎝ ∑
K∈Th

max{Cinv,PeK}εh2r
K |u|2r+1,K

⎞⎠1/2

. (3.92)
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Since for the approximation error holds

|||ηh|||SU ≤

⎛⎝ ∑
K∈Th

C2
X

(
ε+ ωh2

K + ∥b∥0,∞,KhK

2Cinv

)
h2r

K |u|2r+1,K

⎞⎠1/2

≤

≤ C η
SU

⎛⎝ ∑
K∈Th

max{Cinv,PeK}εh2r
K |u|2r+1,K

⎞⎠1/2

, (3.93)

with C η
SU = CX√

Cinv

(
2 + 4n2C2

inv max
K∈Th

{
|b|21,∞,K

∥c∥2
0,∞,K

})1/2
, we can for r ≤ k estimate the

error u− uSU in the energy norm

|||u− uSU |||SU ≤
(
C ξ

SU + C η
SU

)⎛⎝ ∑
K∈Th

max{Cinv,PeK}εh2r
K |u|2r+1,K

⎞⎠1/2

. (3.94)

Remark 3.5.1. Since Cinv > 1 (cf. Remark 4.2.1, page 128), the assumption
δK ≤ min

{
ω

∥c∥2
0,∞,K

, hK

2Cinv∥b∥0,∞,K

}
does not allow to choose δK = hK

2∥b∥0,∞,K
which

is believed to be the optimal choice. Nevertheless, the a priori error estimate of
the same order is achieved for the choice δK = hK

2Cinv∥b∥0,∞,K
, as well.

3.5.2 Error analysis of presented method
Let us turn back from the finite element space of general order k ∈ N to the linear
finite elements, i.e. k = 1. In order to derive a priori error estimates we have to
investigate the consistency error of the presented method.
Lemma 3.5.2. Let u ∈ H1

0 (Ω) ∩ H2(Ω) be the solution of (3.6) and let uh ∈ Vh

satisfy (3.14). Then

ah(u− uh, vh) =
∑

K∈Th

((bK − b)∇u, vh + (PK,n+1 − CK) · ∇vh)K (3.95)

and consequently for any wh ∈ Vh it holds

ah(wh − uh, wh − uh) = (3.96)
= ε(∇(wh− u),∇(wh− uh))Ω + ε

∑
K∈Th

(∆u, (PK,n+1 − CK) · ∇(wh− uh))K +

+
∑

K∈Th

(
(bK − b)·∇wh + b·∇(wh− u), wh− uh + (PK,n+1 − CK)·∇(wh− uh)

)
K
.

Proof. The Galerkin quasi-orthogonality property (3.95) follows from the defini-
tion of ah, a, Fh and F

ah(u− uh, vh) = a(u, vh) +
∑

K∈Th

((bK − b)∇u, vh)K + (3.97)

+
∑

K∈Th

((bK − b)∇u, (PK,n+1 − CK) · ∇vh)K − ah(uh, vh),

which gives (3.95) since a(u, vh) − ah(uh, vh) = F (vh) − Fh(vh) = 0.
Further, using the decomposition

ah(wh − uh, wh − uh) = ah(wh − u,wh − uh) + ah(u− uh, wh − uh) (3.98)

and the fact that ∆wh = 0 we derive the relation (3.96).
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For estimation of the difference bK −b that occurs in Lemma 3.5.2 we use the
following lemma.

Lemma 3.5.3. Let b ∈ W 1,∞(K)n and let us define the vector bI
K ∈ Rn

bI
K = − 1

|K|

n∑
j=1

(∫
K
b · ∇λK,j dx

)
dK,j. (3.99)

Then for every vh ∈ P1(K) holds

∥(bI
K − b) · ∇vh∥0,K ≤ nCΠhK |b|1,∞,K |vh|1,K and (3.100)

∥(bK − bI
K) · ∇vh∥0,K ≤ 1

|K|

⏐⏐⏐⏐⏐⏐
n∑

j=2

∫
K
b · ∇λK,j dx

⏐⏐⏐⏐⏐⏐hK |vh|1,K , (3.101)

where bK is a vector defined in (3.13).

Proof. Since dK,j = PK,n+1 − PK,j and dK,j∇λK,i = −δij for i ̸= n+ 1, it holds
∫

K
bI

K∇λK,i dx =
∫

K
− 1

|K|

n∑
j=1

(∫
K
b · ∇λK,j dy

)
(−δij) dx =

∫
K
b · ∇λK,i dx

(3.102)
for all i = 1, 2, . . . , n and (using ∑n

j=1 b · ∇λK,j = −b · ∇λK,n+1)∫
K
bI

K∇λK,n+1 dx =
∫

K
− 1

|K|

n∑
j=1

(∫
K
b · ∇λK,j dy

)
dx =

∫
K
b · ∇λK,n+1 dx.

(3.103)
Consequently,

∫
K(bI

K −b) · ∇vh dx = 0 for all vh ∈ Vh and we can call bI
K∇vh the

P0-interpolation of the function b · ∇vh on K. Using the approximation property
(Theorem 4.2.3, page 128) we therefore obtain

∥(bI
K − b) · ∇vh∥0,K ≤ CΠhK |b · ∇vh|1,K ≤ nCΠhK |b|1,∞,K |vh|1,K . (3.104)

The estimate (3.101) results directly from the definition of bI
K and bK and

the fact that |dK,j| ≤ hK = maxi ̸=j |PK,i − PK,j|.

Now we use the stability and the Galerkin quasi-orthogonality and derive the
error estimates of the presented method.

Theorem 3.5.1. Let there exists constant κ independent of h (and ε) such that
|Cs

j+1|
|Ωs

j | ≥ κ for all s = 1, 2, . . . ,P and j = 1, 2, . . . , Ns, constant ω > 0 such that
div b ≤ −ω < 0 in Ω and let for each K ∈ Th holds

θK ≤ ω

n+ 1 . (3.105)

If the solution u of the problem (3.1) satisfies u ∈ H2(Ω), then there exists a
constant C1 > 0 independent of h and ε such that for the solution uh ∈ Vh

obtained by the method (3.14) (using continuous piecewise linear finite elements)
it holds

|||u− uh|||b ≤ C1

⎛⎝ ∑
K∈Th

h2
K

(
|u|22,K + |u|21,K

)⎞⎠1/2

. (3.106)
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If, in addition, the mesh parameter θK satisfies for all K ∈ Th

θK ≤ min
{

ω

n+ 1 , |b|1,∞,K

√
ωmax

{
hK

ε1/2 ,
2

|bK |
ε1/2

}}
, (3.107)

then there exists a constant C2 > 0 independent of h and ε such that for the
solution uh ∈ Vh obtained by the method (3.14) there holds

|||u− uh|||b ≤ C2

⎛⎝ ∑
K∈Th

min
{
h2

K ,max
{
h4

K

ε
, εh2

K

}}(
|u|22,K + |u|21,K

)⎞⎠1/2

.

(3.108)

Proof. At first, let uI be again the Vh-interpolant of the function u and let us
denote ηh = u− uI and ξh = uI − uh. Further, we decompose the error u− uh =
(u− uI) + (uI − uh) = ηh + ξh and since ξh ∈ Vh we can use the coercivity (3.61)
together with (3.96) (setting wh = uI), which yields

1
2 |||ξh|||2b ≤ ah(ξh, ξh) =

= −ε(∇ηh,∇ξh)Ω + ε
∑

K∈Th

(∆u, (PK,n+1 − CK) · ∇ξh)K + (3.109)

+
∑

K∈Th

(
(bK − bI

K)·∇uI + (bI
K − b)·∇uI − b·∇ηh, ξh + (PK,n+1 − CK)·∇ξh

)
K
.

Now we estimate each term of (3.109) separately:

1. We use the Cauchy-Schwarz-Bunyakovsky inequalities (Theorem 4.1.4, page
126), the interpolation inequality (Theorem 4.2.1, page 127) and estimate

−ε(∇ηh,∇ξh)Ω = −
∑

K∈Th

ε(∇ηh,∇ξh)K ≤
∑

K∈Th

ε|ηh|1,K |ξh|1,K =

=
∑

K∈Th

(
ε1/2|ηh|1,K

)(
ε1/2|ξh|1,K

)
≤

⎛⎝ ∑
K∈Th

ε|ηh|21,K

⎞⎠1/2⎛⎝ ∑
K∈Th

ε|ξh|21,K

⎞⎠1/2

≤

≤

⎛⎝ ∑
K∈Th

εC2
Xh

2
K |u|22,K

⎞⎠1/2⎛⎝ ∑
K∈Th

ε|ξh|21,K

⎞⎠1/2

≤ CX

⎛⎝ ∑
K∈Th

εh2
K |u|22,K

⎞⎠1/2

|||ξh|||b.

(3.110)

2. Since |PK,n+1 − CK | ≤ hK then similarly as in the previous case we have

ε
∑

K∈Th

(∆u, (PK,n+1 − CK)·∇ξh)K ≤ ε
∑

K∈Th

n|u|2,K hK |ξh|1,K =

= n
∑

K∈Th

(
ε1/2hK |u|2,K

)(
ε1/2|ξh|1,K

)
≤ n

⎛⎝ ∑
K∈Th

εh2
K |u|22,K

⎞⎠1/2

|||ξh|||b.

(3.111)

3. From the inequality (3.101) it follows that there holds ∥(bK−bI
K)·∇uI∥0,K ≤

θKhK |uI |1,K . Consequently, using the inverse inequality (Theorem 4.2.2,
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page 127) and the estimate |uI |1,K ≤ |u|1,K + |ηh|1,K together with the
interpolation inequality (Theorem 4.2.1, page 127) yields∑

K∈Th

(
(bK − bI

K) · ∇uI , ξh + (PK,n+1 − CK) · ∇ξh

)
K

≤

≤
∑

K∈Th

θKhK |uI |1,K(1 + Cinv)∥ξh∥0,K ≤

≤ (1 + Cinv)
√

2√
κ

⎛⎝ ∑
K∈Th

θ2
K

ω
h2

K

(
|u|1,K + CXhK |u|2,K

)2
⎞⎠1/2

|||ξh|||b. (3.112)

4. Since
∫

K(bI
K − b) · ∇uI dx = 0, then using the Cauchy-Schwarz-Bunya-

kovsky inequality (Theorem 4.1.4, page 126), the approximation property
(Theorem 4.2.3, page 128) and the estimate (3.100) we obtain∑
K∈Th

(
(bI

K − b) · ∇uI , ξh + (PK,n+1 − CK) · ∇ξh

)
K

=

=
∑

K∈Th

(
(bI

K − b)·∇uI , ξh − ξh(CK)
)

K
≤
∑

K∈Th

nC2
Πh

2
K |b|1,∞,K |uI |1,K |ξh|1,K ≤

≤ nC2
Π

⎛⎝ ∑
K∈Th

h4
K |b|21,∞,K (|u|1,K + |ηh|1,K)2 min

{
1
ε
,

2C2
inv

ωκh2
K

}⎞⎠1/2

|||ξh|||b ≤

≤ nC2
Π

⎛⎝ ∑
K∈Th

h2
K |b|21,∞,K (|u|1,K + CXhK |u|2,K)2 min

{
h2

K

ε
,
2C2

inv

ωκ

}⎞⎠1/2

|||ξh|||b,

(3.113)

where we employed the inequality |ξh|21,K ≤ min
{

1
ε
,

2C2
inv

ωκh2
K

}
|||ξh|||2b resulting

from the inverse inequality (Theorem 4.2.2, page 127).

5. Using the Green theorem (Theorem 4.1.1, page 124), the approximation
property (Theorem 4.2.3, page 128), the interpolation inequality (Theo-
rem 4.2.1, page 127), the inverse inequality (Theorem 4.2.2, page 127), the
shape-regularity (Assumption 4.2.1, page 127) and the estimates (3.100),
(3.101) we get

−
∑

K∈Th

(b·∇ηh, ξh)K = −(b·∇ηh, ξh)Ω = (ηhdiv b, ξh)Ω + (ηh, b·∇ξh)Ω =

= (ηhdiv b, ξh)Ω +
∑

K∈Th

(ηh, bK ·∇ξh)K +
∑

K∈Th

(ηh, (b− bK)·∇ξh)K ≤

≤
∑

K∈Th

n|b|1,∞,K∥ηh∥0,K∥ξh∥0,K +
∑

K∈Th

∥ηh∥0,K∥bK ·∇ξh∥0,K +

+
∑

K∈Th

∥ηh∥0,K(nCΠ|b|1,∞,K + θK)hK |ξh|1,K ≤

≤

⎛⎝3
∑

K∈Th

γKC
2
Xh

4
K |u|22,K

⎞⎠1/2

|||ξh|||b, (3.114)

where we denoted γK = 2n2

ωκ
|b|21,∞,K + min

{
2σ|bK |

hK
, |bK |2

ε

}
+ (nCΠ|b|1,∞,K +

θK)2 min
{

h2
K

ε
,

2C2
inv

ωκ

}
. In the above estimate we decomposed the difference
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b− bK = (b− bI
K) + (bI

K − bK) and employed the inequalities (3.100) and
(3.101).

6. Finally, the estimate of the last term takes form

−
∑

K∈Th

(
b·∇ηh, (PK,n+1 − CK)·∇ξh

)
K

≤
∑

K∈Th

∥b∥0,∞,K |ηh|1,KhK |ξh|1,K ≤

≤

⎛⎝ ∑
K∈Th

∥b∥2
0,∞,KC

2
Xh

2
K |u|22,K min

{
h2

K

ε
,
2C2

inv

ωκ

}⎞⎠1/2

|||ξh|||b. (3.115)

From the above derived estimates it follows that if we consider θK ≤ ω
n+1 for all

K ∈ Th, we obtain the estimate

|||ξh|||b ≤ C0

⎛⎝ ∑
K∈Th

h2
K

(
|u|22,K + |u|21,K

)⎞⎠1/2

, (3.116)

where the constant C0 does not depend on ε and hK .
However, if the triangulation Th (and a vector field b) is such that a sharper

bound (3.107) is valid for all K ∈ Th, then we may obtain an acceleration of the
convergence. To show this we distinguish three situations:

A) At first, let us consider hK ≥ ε1/2 Cinv

√
2

ωκ
for all K ∈ Th, then

|b|1,∞,K

√
ω
hK

ε1/2 ≥ |b|1,∞,KCinv

√
2
κ

≥ ω

n
Cinv

√
2(n+ 1) ≥ ω

n+ 1 , (3.117)

where we used the apparent inequalities |b|1,∞,K ≥ 1
n

|div b| ≥ 1
n
ω, κ ≤ 1

n+1
and Cinv ≥ 1 (cf. Remark 4.2.1, page 128). Hence, from the assumption
(3.107) it follows that the bound θK ≤ ω

n+1 is used in this case, which together
with Corollary 4.2.2 (page 129) results in the same estimate as above

|||ξh|||b ≤ CA

⎛⎝ ∑
K∈Th

h2
K

(
|u|21,K + |u|22,K

)⎞⎠1/2

,

where the constant CA does not depend on ε and hK . Thus, no improvement
is achieved in this case.

B) If the mesh is refined and 2σ
|bK | ε ≤ hK ≤ ε1/2 Cinv

√
2

ωκ
for all K ∈ Th, then

using the inequality

θK ≤ |b|1,∞,K

√
ω
hK

ε1/2

(
≤ |b|1,∞,KCinv

√
2/κ

)
(3.118)

and the estimate εh2
K = ε2

h2
K

h4
K

ε
≤ |bK |2

4σ2
h4

K

ε
yields

|||ξh|||b ≤ CB

⎛⎝ ∑
K∈Th

h4
K

ε

(
|u|21,K + |u|22,K

)⎞⎠1/2

,

where the constant CB again does not depend on ε and hK . Since in this case
there holds 2σ

|bK | h
3
K ≤ h4

K

ε
≤ h2

K
2C2

inv

ωκ
, one may expect an acceleration of the

convergence in comparison to (3.116).
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C) If the mesh step satisfies hK ≤ ε 2σ
|bK | for all K ∈ Th, then there holds

θK ≤ |b|1,∞,K

√
ω

2σ
|bK |

ε1/2. (3.119)

This bound together with the inequality h4
K

ε
= h2

K

ε2 εh
2
K ≤ 4σ2

|bK |2 εh
2
K then pro-

vides the estimate

|||ξh|||b ≤ CC

⎛⎝ ∑
K∈Th

εh2
K

(
|u|21,K + |u|22,K

)⎞⎠1/2

, (3.120)

with the constant CC independent of both ε and hK .
Hence, in this case we obtain the same result as for the SUPG method. Since
there holds |bK |

2σ
h3

K ≤ εh2
K ≤ ε0h

2
K we observe that the estimate (3.120) is

again an improvement of the estimate (3.116).

Finally, for the approximation error in all cases A), B) and C) the following
inequality holds

|||ηh|||b ≤

⎛⎝ ∑
K∈Th

(
ε+ ωκ

2 h2
K + |bK |

2 hK

)
C2

Xh
2
K |u|22,K

⎞⎠1/2

. (3.121)

Consequently, in the first two cases (A) and B)) we obtain the estimate |||ηh|||b ≤
CX1

(∑
K∈Th

h3
K |u|22,K

)1/2
≤ CX1

(∑
K∈Th

min{h2
K , h

4
K/ε}|u|22,K

)1/2
, whereas in the

case C) there holds |||ηh|||b ≤ CX2
(∑

K∈Th
εh2

K |u|22,K

)1/2
, where CX1 and CX2 are

positive constants independent of ε and hK .
The statement of the proof therefore results from the triangular inequality

|||u− uh|||b = |||ξh + ηh|||b ≤ |||ξh|||b + |||ηh|||b. (3.122)

When div b = 0, the situation gets complicated, since we have to use weaker
norm ||| · |||b,∗ (for all v ∈ H1(Ω) there holds |||v|||2b,∗ ≤ C∗

b |||v|||2b , providing
hK ≤ ωκC∗

b

2C∗
2

for all K ∈ Th). Consequently, we obtain lower order of convergence
with respect to the norm ||| · |||b,∗.

Theorem 3.5.2. Let div b = 0 and let there exists δ ∈ (0, 4) such that

θK ≤ δ

νK

∥b∥0,∞,KhK for all K ∈ Th. (3.123)

Further, let there exist positive numbers κ, L,R and β such that for all s =
1, 2, . . . ,P and j = 1, 2, . . . , Ns it holds

|Cs
j |

|Ωs
j|

≥ κ, Nsh
s
j ≤ L,

max
K⊂Ωs

j

hK

hs
j

≤ R, and βs
j ≥ β. (3.124)
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If the solution u of the problem (3.1) satisfies u ∈ H2(Ω), then there exists con-
stant C∗ > 0 independent of h and ε such that for the solution obtained by the
method (3.14) there holds

|||u− uh|||b,∗ ≤ C∗

⎛⎝ ∑
K∈Th

min
{
hK ,max

{
h4

K

ε
, εh2

K

}}(
|u|22,K + |u|21,K

)⎞⎠1/2

.

(3.125)

Proof. A similar approach like in the proof of Theorem 3.5.1 leads to the following
estimates.

1*. First two inequalities remain the same

−ε(∇ηh,∇ξh)Ω ≤
∑

K∈Th

ε|ηh|1,K |ξh|1,K ≤ CX

⎛⎝ ∑
K∈Th

εh2
K |u|22,K

⎞⎠1/2

|||ξh|||b,∗.

(3.126)

2*.

ε
∑

K∈Th

(∆u, (PK,n+1 −CK) · ∇ξh)K ≤ n

⎛⎝ ∑
K∈Th

εh2
K |u|22,K

⎞⎠1/2

|||ξh|||b,∗. (3.127)

3*. Since div b = 0, we have to use the norm ||| · |||b,∗ and hence we lost one half
of the order in hK .

∑
K∈Th

(
(bK − bI

K) · ∇uI , ξh + (PK,n+1 − CK) · ∇ξh

)
K

≤

≤
∑

K∈Th

θKhK |uI |1,K(1 + Cinv)∥ξh∥0,K ≤

≤ 1 + Cinv√
C∗

2

⎛⎝ ∑
K∈Th

θ2
KhK

(
|u|1,K + CXhK |u|2,K

)2
⎞⎠1/2

|||ξh|||b,∗. (3.128)

4*. Again one half of the order is lost for large hK .
∑

K∈Th

(
(bI

K − b) · ∇uI , ξh + (PK,n+1 − CK) · ∇ξh

)
K

=

=
∑

K∈Th

(
(bI

K − b) · ∇uI , ξh − ξh(CK)
)

K
≤

∑
K∈Th

nC2
Πh

2
K |b|1,∞,K |uI |1,K |ξh|1,K ≤

≤ nC2
Π

⎛⎝ ∑
K∈Th

h2
K |b|21,∞,K

(
|u|1,K + CXhK |u|2,K

)2
min

{
h2

K

ε
,
C2

inv

C∗
2hK

}⎞⎠1/2

|||ξh|||b,∗.

(3.129)

5*. When div b = 0 then using the Green theorem (Theorem 4.1.1, page 124), the
approximation property (Theorem 4.2.3, page 128), the interpolation inequal-
ity (Theorem 4.2.1, page 127), the inverse inequality (Theorem 4.2.2, page
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127), the shape-regularity (Assumption 4.2.1, page 127) and the estimates
(3.100), (3.101) we get

−(b · ∇ηh, ξh)Ω =
∑

K∈Th

(ηh, bK · ∇ξh)K +
∑

K∈Th

(ηh, (b− bK) · ∇ξh)K ≤

≤
∑

K∈Th

∥ηh∥0,K∥bK · ∇ξh∥0,K +
∑

K∈Th

∥ηh∥0,K(nCΠ|b|1,∞,K + θK)hK |ξh|1,K ≤

≤

⎛⎝2
∑

K∈Th

γKC
2
Xh

4
K |u|22,K

⎞⎠1/2

|||ξh|||b,∗, (3.130)

where γK = min
{

2σ|bK |
C∗

b
hK
, |bK |2

ε

}
+ (nCΠ|b|1,∞,K + θK)2 min

{
h2

K

ε
,

C2
inv

C∗
2 hK

}
.

6*. And the estimate of the last term is

−
∑

K∈Th

(
b · ∇ηh, (PK,n+1 − CK) · ∇ξh

)
K

≤
∑

K∈Th

∥b∥0,∞,K |ηh|1,KhK |ξh|1,K ≤

≤

⎛⎝ ∑
K∈Th

∥b∥2
0,∞,KC

2
Xh

2
K |u|22,K min

{
h2

K

ε
,
C2

inv

C∗
2hK

}⎞⎠1/2

|||ξh|||b,∗. (3.131)

The derived estimates imply that if θK is bounded for all K ∈ Th (we even
consider θK ≤ δ

νK
∥b∥0,∞,KhK) we obtain a method of the order 1/2 with respect

to the ∥ · ∥b,∗-norm. Nevertheless, as we will show, when refining the mesh the
convergence can again accelerate.

A*) Firstly, we consider hK ≥ ε1/3 3
√
C2

inv/C
∗
2 . Then using the bound θK ≤

δ
νK

∥b∥0,∞,KhK together with Corollary 4.2.2 (page 129) we obtain the esti-
mate

|||ξh|||b,∗ ≤ C∗
A

⎛⎝ ∑
K∈Th

hK

(
|u|1,K + |u|2,K

)2
⎞⎠1/2

, (3.132)

where the constant C∗
A does not depend on ε and hK .

B*) If the mesh is refined and 2σ
|bK |C∗

b
ε ≤ hK ≤ ε1/3 3

√
C2

inv/C
∗
2 then using the

inequalities εh2
K = ε2

h2
K

h4
K

ε
≤
( |bK |C∗

b

2σ

)2 h4
K

ε
, h3

K = ε
hK

h4
K

ε
≤
( |bK |C∗

b

2σ

)
h4

K

ε
and

θ2
KhK ≤

(
δ

νK
∥b∥0,∞,K

)2
h3

K we obtain

|||ξh|||b,∗ ≤ C∗
B

⎛⎝ ∑
K∈Th

h4
K

ε

(
|u|1,K + |u|2,K

)2
⎞⎠1/2

, (3.133)

where the constant C∗
B again does not depend on both ε and hK .

Since in this case there holds 2σ
|bK |C∗

b
h3

K ≤ h4
K

ε
≤ hK

C2
inv

C∗
2

, one may expect an
acceleration of the convergence in comparison to (3.132).
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C*) If the mesh step satisfies hK ≤ ε 2σ
|bK |C∗

b
then using the inequalities h4

K

ε
=

h2
K

ε2 εh
2
K ≤

(
2σ

|bK |C∗
b

)2
εh2

K and θ2
KhK ≤

(
δ

νK
∥b∥0,∞,K

)2 2σ
|bK |C∗

b
εh2

K we obtain

|||ξh|||b,∗ ≤ C∗
C

⎛⎝ ∑
K∈Th

εh2
K

(
|u|1,K + |u|2,K

)2
⎞⎠1/2

, (3.134)

where the constant C∗
C does not depend on ε and hK .

Since there holds |bK |C∗
b

2σ
h3

K ≤ εh2
K ≤ ε0h

2
K we observe that the estimate

(3.134) is again an improvement of the estimate (3.132).

Finally, for the approximation error in all cases A*), B*) and C*) there holds

|||ηh|||b,∗ ≤

⎛⎝ ∑
K∈Th

(
ε+ C∗

2h
3
K + C∗

b

|bK |
2 hK

)
C2

Xh
2
K |u|22,K

⎞⎠1/2

. (3.135)

Thus, in the first two cases (A*) and B*)) we obtain the estimate |||ηh|||b,∗ ≤
C∗

X1

(∑
K∈Th

h3
K |u|22,K

)1/2
≤ C∗

X1

(∑
K∈Th

min{hK , h
4
K/ε}|u|22,K

)1/2
, whereas in the

case C*) there holds |||ηh|||b,∗ ≤ C∗
X2

(∑
K∈Th

εh2
K |u|22,K

)1/2
, where C∗

X1 and C∗
X2

are positive constants independent of ε and hK .
The statement of the proof therefore results from the triangular inequality

|||u− uh|||b,∗ = |||ξh + ηh|||b,∗ ≤ |||ξh|||b,∗ + |||ηh|||b,∗. (3.136)

Remark 3.5.2. For each numerical method one can define the experimental order
of convergence with respect to some norm ||| · ||| as EOC = log(eh1 /eh2 )

log(h1/h2) , where
eh = |||u − uh|||. Consequently, one obtain eh ≈ ChEOC for suitable constant C
independent of h. From the above derived a priori error estimates it follows which
EOC we should expect. Since ε is constant we use powers of ε as a scale and plot
the progression of the dependency of the expected EOC on h (see Figure 3.4).

div = 0b

SUPG

div < 0b

expected
EOC 3/2

1/2

1

εε ε1 1/2 1/3ε ε ε ε ε4 2 2/3 2/5 2/70

h

Figure 3.4: The expected EOC progression of the original SUPG method and
the new method for div b < 0 and div b = 0. Continuous piecewise linear finite
elements are used and the error is measured in the norms ||| · |||SD, ||| · |||b and
||| · |||b,∗, respectively. We can observe that the theoretical convergence order (the
order of the a priori error estimate) depends on the relation between hK and ε.
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3.5.3 M-matrix
While Theorem 3.2.2 (page 58) ensures the fulfilment of the discrete maximum
principle (3.19), it does not ensure that the matrix Lh of the presented method
is an M-matrix, which can allow us to estimate ∥L−1

h ∥∞,d.
The following theorem provides some sufficient assumptions under which the

matrix of the method is an M-matrix. It also provides an estimate of the discrete
L∞-norm of the matrix L̃−1

h . It is the inverse of the matrix L̃h, which is obtained
from Lh by multiplying each row (corresponding to some basis function λk, 1 ≤
k ≤ Nh) by the factor |supp {λk}|−1. Hence, the matrix L̃h is defined as follows

(L̃h)ki = (Lh)ki

|supp {λk}|
= ah(λi, λk)

|supp {λk}|
, for all 1 ≤ i, k ≤ Nh. (3.137)

In our notation, λk is λs
j for suitable s ∈ {1, 2, . . . ,P}, j ∈ {1, 2, . . . , Ns} and

therefore |supp {λk}| = |Ωs
j|.

In order to make our considerations more simple in this section, we assume
that our grid is quasi-equidistant.

Definition 3.5.1. A family Th of grids is called quasi-equidistant if there exists
some constant Q such that for each grid Th one has

maxK∈Th
hK

minK∈Th
hK

≤ Q. (3.138)

Theorem 3.5.3. Let Ω1 be a domain such that Ω ⊂ Ω1 and let b ∈ C1(Ω1)n with
div b ≤ −ω < 0. Further, let us assume that all the streamlines of the vector field
b leave Ω in finite time (i.e. periodic solutions and points with b(x) = 0 are not
allowed). Then there exists a positive function ϕ ∈ C1(Ω1) so that b ·∇ϕ ≥ ϕ0 > 0
in Ω. Moreover, if θK ≤ ω

n+1 for each K ∈ Th and if there holds

ε ≤ min
{

C1ϕ0

|ϕ|2,∞,Ω
,
C2ϕ

2
0

|ϕ|21,∞,Ω
,
C3ϕ

2
0

|ϕ|22,∞,Ω

}
, (3.139)

where C1 = κ
8 min

{
1

1+nCXσ
,

β

2Q2ωCXL

}
, C2 = κ β

128LQ2ω2 and C3 = κ β

128LQ2C2
X∥b∥2

0,∞,Ω
,

then the matrix of the method (3.14)–(3.16) is an M-matrix and

L̃−1
h


∞,d

≤ 2
κ

max
{
L

β
,

∥ϕ∥0,∞,Ω

ϕ0

}
. (3.140)

Remark 3.5.3. Let us recall that L is the upper bound for the length of any discrete
streamline (cf. Definition 3.4.3, page 70), CX is the constant from the interpola-
tion inequality (Theorem 4.2.1, page 127), σ is the shape-regularity constant (cf.
Assumption 4.2.1), κ is the mesh structure parameter defined in the definition of
the energy norm (Definition 3.4.1, page 68) and β is a positive constant satisfying
|b| ≥ β in Ω. Since it holds⏐⏐⏐|b| − |bK |

⏐⏐⏐ ≤ |b− bI
K | + |bI

K − bK | ≤ (CΠ + θK)|b|1,∞,K hK , (3.141)

we consider β being sufficiently small such there also holds |bK | ≥ β.
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Proof of Theorem 3.5.3. We would like to apply the M-criterion (Theorem 4.1.5,
page 126) and show that the matrix of the method is an M-matrix. We already
know that the method matrix Lh (and L̃h) is a matrix of nonnegative type (Defi-
nition 3.2.1, page 57). Hence, it remains to find a vector e > 0 for which Lhe > 0
(and thus L̃he > 0, as well). We construct such a vector from the function ϕ.

The existence of the function ϕ follows from Lemma 4.1.1 (page 124). Since
any function ϕc = ϕ+ c, c ∈ R, satisfies b · ∇ϕc = b · ∇ϕ ≥ ϕ0 > 0, we can choose
ϕ in such a way that ϕ > 0 in Ω and ∥ϕ∥0,∞,Ω is the smallest possible. We use it
in the second part of the proof.

At first, let us assume that hK ≥
(

2 εL
κβ

)1/2
, for each K ∈ Th, and let us define

a function ψh ∈ Vh by the relations

ψh(P s
0 ) = 0 ∀s = 1, 2, . . . ,P and ψh(P s

j ) = ψh(P s
j−1)+hs

j ∀j = 1, 2, . . . , Ns.
(3.142)

The function ψh is positive inside Ω and satisfies bK · ∇(ψh|K) = |bK | ≥ β

and ψh(P s
j ) = ∑j

i=1 h
s
i ≤ j max

1≤i≤j
hs

i ≤ Ns max
1≤i≤Ns

hs
i ≤ max

i,r
{Nrh

r
i } = L for all

s = 1, 2, . . . ,P , j = 1, 2, . . . , Ns. Using these inequalities we obtain

ah(ψh, λ
s
j) = −ε(∇ψh,∇λs

j)Ωs
j

+
∑

K⊂Cs
j

(bK · ∇ψh, 1)K ≥ (3.143)

≥ −ε
L|Ωs

j|
h2

K

+ β|Cs
j | ≥ −1

2 κβ|Ωs
j| + β|Cs

j | ≥ 1
2 κβ|Ωs

j|.

Thus for large hK the matrix of the method is an M-matrix and there holds

∥L̃−1
h ∥∞,d ≤ ∥ψh∥∞,d

mini(L̃hψh)i

≤ 2L
κβ
. (3.144)

If the mesh is refined and hK =
(

2 εL
κβ

)1/2
for some K ∈ Th (and the condition

hK ≥
(

2 εL
κβ

)1/2
for each K ∈ Th is still valid), then for each K ∈ Th it also holds

hK ≤ max
K∈Th

hK ≤ Q min
K∈Th

hK = Q

(
2εL
κβ

)1/2

. (3.145)

Hence, it remains to prove the theorem for meshes satisfying hK ≤ Q
(

2 εL
κβ

)1/2
.

In these cases using the inequality (3.139) yields

hK ≤ 1
8 min

⎧⎨⎩ ϕ0

CX∥b∥0,∞,Ω|ϕ|2,∞,Ω
,

ϕ0

ω|ϕ|1,∞,Ω
,

(
8ϕ0

ωCX |ϕ|2,∞,Ω

)1/2
⎫⎬⎭ (3.146)

We can use this estimate, the estimate (3.101), the interpolation inequality
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(Theorem 4.2.1, page 127) and obtain for any basis function λs
j ∈ Vh and ϕh = Πhϕ∑

K⊂Ωs
j

(bK · ∇ϕh, λ
s
j(PK,n+1))K =

∑
K⊂Cs

j

(bK · ∇ϕh, 1)K =

=
∑

K⊂Cs
j

{
(bK − bI

K ,∇ϕh)K + (b,∇ϕh)K

}
=

=
∑

K⊂Cs
j

{
(bK − bI

K ,∇(ϕh − ϕ) + ∇ϕ)K + (b,∇(ϕh − ϕ))K + (b,∇ϕ)K

}
≥

≥
∑

K⊂Cs
j

|K|
{

− (n− 1)θKhK

(
|ϕh − ϕ|1,∞,K + |ϕ|1,∞,K

)
−

− ∥b∥0,∞,K |ϕh − ϕ|1,∞,K + ϕ0

}
≥

≥
∑

K⊂Cs
j

|K|
{
ϕ0 − CX∥b∥0,∞,KhK |ϕ|2,∞,K − ωhK (CXhK |ϕ|2,∞,K + |ϕ|1,∞,K)

}
≥

≥
∑

K⊂Cs
j

(
ϕ0 − 1

8ϕ0 − 1
8ϕ0 − 1

8ϕ0

)
|K| = 5

8 ϕ0 |Cs
j | ≥ 5

8 κϕ0 |Ωs
j|. (3.147)

From the condition (3.139) it also follows that ε(1 + nCXσ)|ϕ|2,∞,Ω ≤ 1
8 κϕ0.

Consequently, for arbitrary basis function λP ∈ Vh there holds

ε(∇ϕh,∇λP )ΩP
= ε(∇ϕ,∇λP )ΩP

+ ε(∇ϕh − ∇ϕ,∇λP )ΩP
=

= −ε(∆ϕ, λP )ΩP
+ ε

∑
K⊂ΩP

(∇(ϕh − ϕ),∇λP )K ≥

≥ −ε
∑

K⊂ΩP

n|ϕ|2,∞,K
|K|
n+ 1 − ε

∑
K⊂ΩP

n|ϕh − ϕ|1,∞,K
σ|K|
hK

≥

≥ −ε
∑

K⊂ΩP

(
1 + nCXσ

)
|ϕ|2,∞,K |K| > −1

8 κϕ0 |ΩP |.

Summing two previous estimates together gives the inequality

ah(ϕh, λ
s
j) = ε(∇ϕh,∇λs

j)Ωs
j

+
∑

K⊂Ωs
j

(bK · ∇ϕh, λ
s
j(PK,n+1))K ≥ 1

2 κϕ0 |Ωs
j|.

(3.148)

Thus, for the meshes satisfying hK ≤ Q
(

2 εL
κβ

)1/2
together with the assumption

(3.139) we obtain the estimate

∥L̃−1
h ∥∞,d ≤ ∥ϕh∥∞,d

mini(L̃hϕh)i

≤ 2∥ϕ∥0,∞,Ω

κϕ0
. (3.149)

3.6 L∞-convergence improvement

3.6.1 Constant data
The above derived method is a multi-dimensional analog to the one-dimensional
simple upwind scheme. And, as well as the simple upwind scheme, it possesses
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an unpleasant property as to stop converge in ∥ · ∥d,∞-norm when h ≈ ε. A one-
dimensional remedy is the Il’in-Allen-Southwell scheme which provides a nodally
exact solution for the equidistant partition and constant data, especially for the
zero right-hand side and constant b. In this case the solution is the boundary-layer
function. In Chapter 1 we derived the (zeroth-order) asymptotic expansion of the
solution of the convection-diffusion equation in some two-dimensional domains.
The multi-dimensional boundary-layer function has in the case of constant data
form

vΓ(x) = exp
(

−b·nΓ

ε
distΓ(x)

)
, (3.150)

where nΓ is a unit outer normal to Γ ⊂ ∂Ω and distΓ(x) is a distance of x ∈ Ω
from Γ.

Inspired by the one-dimensional case we would like to adjust the derived
method in such a way that RhvΓ forms a nodally exact solution in the vicinity of
Γ for an equidistant partition of Ω, constant vector field b and a zero right-hand
side f , i.e. in such a way that LhRhvΓ = 0 in the vicinity of Γ. Hence, we define
a bilinear form aΓ by the relation

aΓ(uh, vh) = ah(uh, vh) + ε
∑

K∈Th

(
b·∇uh,

µ

(b·nΓ)2 b·∇v + ν

b·nΓ
nΓ ·∇v

)
K

,

(3.151)
where µ and ν are real numbers which have yet to be defined. Due to the factor ε
before the sum, the added term does not play an important role in the convection-
dominant case.

Since we are interested in the two-dimensional case, we consider an equidistant
partition of the domain Ω (in the vicinity of Γ) by congruent triangles (see Figure
3.5). One of each triangle’s edges is always parallel to b and one is parallel to Γ.
This structure of triangulation is not artificial since it naturally appears when we
use the convection-oriented mesh with constant |dK,1| = h. Further, we denote
the inner angles of each triangle by α, β and γ and choose γ to be the angle
included by b and Γ. Thus, γ ≤ π

2 and b · nΓ = |b| cos(π
2 − γ) = |b| sin γ.

γ γ γ
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γγγ
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γ γ
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α

Figure 3.5: Three-directional mesh in the exponential boundary layer.
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In each triangle K, we also denote by A,B and C the L2(K)-inner products

A = (∇λβ,∇λγ)K = −1
2 cotα, (3.152)

B = (∇λα,∇λγ)K = −1
2 cot β, (3.153)

C = (∇λα,∇λβ)K = −1
2 cot γ, (3.154)

where λα, λβ and λγ are P1(K)-basis functions corresponding to the vertices with
vertex angles α, β and γ, respectively. Since α < π − γ, β < π − γ and γ ≤ π

2 we
obtain the estimates

A < −1
2 cot(π − γ) = 1

2 cot γ = −C, (3.155)

B < −1
2 cot(π − γ) = 1

2 cot γ = −C, (3.156)

C ≤ −1
2 cot π2 = 0. (3.157)

We can now derive the stencil generated by the method. For an arbitrary inner
node S and a corresponding basis function λS ∈ Xh, the value aΓ(uh, λS) can be
computed using the scheme

2ε

⎡⎢⎣ 0 B C
A −2(A+B + C) A
C B 0

⎤⎥⎦− 4ε(B + C)PeΓ

⎡⎢⎣ 0 0 0
0 1 0
0 −1 0

⎤⎥⎦+

+ ε(2µ+ ν)(B + C)

⎡⎢⎣ 0 1 0
0 −2 0
0 1 0

⎤⎥⎦+ νε

⎡⎢⎣ 0 B C
−C −2B −C
C B 0

⎤⎥⎦ , (3.158)

where in each row one can find the coefficients aΓ(λP , λS) with P having identical
distΓ(P ). For the first row there holds distΓ(P ) = distΓ(S) − hb·nΓ

|b| = distΓ(S) −
h sin γ, for the second row distΓ(P ) = distΓ(S) and for the third row one has
distΓ(P ) = distΓ(S) + hb·nΓ

|b| = distΓ(S) + h sin γ. Each column of this stencil
then corresponds to a different streamline.

The Péclet number PeΓ is defined by the relation PeΓ = h(b·nΓ)2

2ε|b| and the
normal nΓ satisfies either nΓ = −1

|∇λK,1|∇λK,1 or nΓ = 1
|∇λK,3|∇λK,3 depending on

the orientation of K. During the derivation of the stencil we used the equalities

2 |b||K|
h

= 2 |b|
h

vαhα

2 = |b|
h

h(b·nΓ)
|b|

(h cos γ + h sin γ cot β) =

= (b·nΓ)2

|b|
h
(

cot γ + cot β
)

= −4ε(B + C)PeΓ, (3.159)

b ·
(

−1
|∇λK,1|

∇λK,1

)
= −1

|∇λK,1|
|b|

|dK,1|
dK,1 ·∇λK,1 = |b|

h|∇λK,1|
, (3.160)

b ·
(

1
|∇λK,3|

∇λK,3

)
= 1

|∇λK,3|
|b|

|dK,1|
dK,1 ·∇λK,3 = |b|

h|∇λK,3|
and (3.161)

−|K||∇λα|2 = (∇λα,∇λβ + ∇λγ)K = B + C. (3.162)
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Choosing the coefficients

As we mentioned earlier, we would like to define the coefficients µ and ν in such
a way that aΓ(RhvΓ, φS) vanishes for each S. Using the above derived stencil
we can compute aΓ(RhvΓ, φS) simply by multiplying the sum of the first, the
second and the third row of the stencil by vΓ(S)e2PeΓ , vΓ(S) and vΓ(S)e−2PeΓ ,
respectively, and then sum these multiples together. Consequently, we obtain

aΓ(RhvΓ, φS) =

= 2ε(B+C)vΓ(S)
[
e2PeΓ(µ+ν+1)−2(µ+ν+1+PeΓ)+e−2PeΓ(µ+ν+1+2PeΓ)

]
=

= 2ε(B + C)vΓ(S)
[
(µ+ ν + 1)4 sinh2(PeΓ) − 2PeΓ e−PeΓ2 sinh(PeΓ)

]
=

= 8ε(B + C) sinh2(PeΓ)vΓ(S)
[
µ+ ν + 1 − PeΓ

e−PeΓ

sinh(PeΓ)

]
=

= 8ε(B + C) sinh2(PeΓ)vΓ(S)
[
µ+ ν + 1 − PeΓ

(
coth(PeΓ) − 1

)]
. (3.163)

Thus, choosing µ + ν = RΓ = PeΓ
(

coth(PeΓ) − 1
)

− 1 leads to the equality
aΓ(RhvΓ, φS) = 0. Therefore, if the discrete maximum principle is satisfied then
for constant data and the three-directional mesh the method provides a solution
uh satisfying ∥u − uh∥d,∞ = O(ε) in the exponential boundary layer near the
boundary Γ (cf. proof of the uniform convergence of the Il’in-Allen-Southwell
scheme, section 2.2).

In order to fulfil the discrete maximum principle the method matrix has to be
of nonnegative type (see Definition 3.2.1, page 57), it means that the off-diagonal
entries have to be nonpositive. Hence, we obtain the following set of constraints

µ+ ν = RΓ, (3.164)
C(ν + 2) ≤ 0, (3.165)
2A− νC ≤ 0, (3.166)

(2µ+ ν)(B + C) +B(ν + 2) ≤ 0. (3.167)

If C = 0, then from (3.166) and (3.167) it follows that it suffices to consider
2A ≤ 0 and 2(µ+ ν + 1)B = 2(RΓ + 1)B ≤ 0, i.e. A ≤ 0 and B ≤ 0. In the case
when C < 0, then from (3.165)–(3.167) we obtain the conditions −2 ≤ ν ≤ 2A

C

and ν ≤ 2RΓ+2(RΓ+1)B
C

. If we again assume that A ≤ 0 and B ≤ 0, then 0 ≤ A
C

and 0 ≤ B
C

. Consequently, any ν satisfying −2 ≤ ν ≤ 2RΓ < 0 is admissible.
Hence, we choose ν = ν1 = 2RΓ and µ = µ1 = RΓ − ν1 = −RΓ.

The assumption A,B,C ≤ 0 is in fact the assumption (3.8) (page 55) meaning
that the angles α, β and γ are not obtuse. However, in thin boundary or interior
layers it would be convenient to use elements with obtuse angles. Thus, if we
allow obtuse angles and consider only the restrictions A ≤ RΓC = |RΓC| and
B ≤ RΓC = |RΓC| (together with C ≤ 0), we fulfil the conditions (3.164)–
(3.167) if we take µ = µ2 − RΓ(2RΓ + 3) and ν = ν2 = 2RΓ(RΓ + 2). Indeed, in
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this case there holds

µ+ ν = −RΓ(2RΓ + 3) + 2RΓ(RΓ + 2) = RΓ, (3.168)
C(ν + 2) = 2C(RΓ(RΓ + 2) + 1) = 2C(RΓ + 1)2 ≤ 0, (3.169)
2A− νC = 2(A− RΓ(RΓ + 2)C) ≤ 2C(RΓ − RΓ(RΓ + 2)) =

= −2CRΓ(RΓ + 1) ≤ 0 (3.170)
(2µ+ν)(B+C)+B(ν+2) = −2RΓ(RΓ + 1)(B + C) + 2B(RΓ + 1)2 ≤ (3.171)

≤ −2RΓ(RΓ + 1)(RΓ + 1)C + 2CRΓ(RΓ + 1)2 = 0.

All considered cases are summarized in the following table Let us also mention
C ≤ A ≤ B ≤ µ ν method’s property

0 0 0 0 0 upwind scheme, DMP
0 0 0 −RΓ 2RΓ DMP, UNI
0 RΓC RΓC −RΓ(2RΓ + 3) 2RΓ(RΓ + 2) DMP, UNI, OBT

Table 3.1: Different choices of the coefficients µ and ν together with the in-
ner angles restriction lead for the constant data to methods with the following
properties: the fulfilment of the discrete maximum principle (DMP), the uniform
convergence in ∥ · ∥d,∞ norm with respect to ε in the vicinity of the boundary Γ
(UNI) and admissibility of obtuse inner angles (OBT).

that in the most interesting case PeΓ ≫ 0 the parameter RΓ is close to −1. Thus,
the conditions A ≤ RΓC and B ≤ RΓC do not significantly restrict the angles
since the inequalities A < −C and B < −C hold for each triangle (cf. inequalities
(3.155) and (3.156)). For small PeΓ (approximately smaller than 3) the angles
restriction is more significant (see Figure 3.6).

PeΓΓ ΓR   = Pe  (coth(      ) − 1) − 1

PeΓ

RΓ

−1

−0.8

−0.6

−0.4

−0.2

 0

 0  0.5  1  1.5  2  3 2.5

PeΓ

8+1

3/4

1/4

1/2

1/8

1/16

0.1307

0.0639

0.2751

0.6282

1.1683

ΓR

3/4
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1/2

1/4

1/8

1/16
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Figure 3.6: Using the Péclet number PeΓ one can compute the parameter RΓ
(left) which restricts the maximum angle in triangles. For instance, when PeΓ ≈
0.6282, then RΓ ≈ −1/2 and the angle α (and β) has to satisfy the inequality
−1

2 cotα = A ≤ −1
2C = 1

4 cot γ. Consequently, if (for instance) γ = 60◦ then
α, β ≤ acot (−1/(2

√
3)) ≈ 106.1◦ (right), which is a sharper bound as compared

to standard α, β < 180◦ − 60◦ = 120◦. The right figure shows the restriction
curves for several choices of RΓ (or PeΓ).
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3.6.2 Non-constant data
In the previous adjustment of the method we have considered constant data and
constant µ and ν. Let us now investigate the non-constant case and consider
different values µK , νK for each K ∈ Th.

At first, we determine necessary coercivity conditions. We start with the
following lemma.

Lemma 3.6.1. Let nK be any constant unit vector satisfying bK · nK > 0 and
let us denote PeK = |dK,1|(bK ·nK)2

2ε|bK | . If the coefficients µK and νK satisfy

PeK + µK >
1
4ν

2
K , (3.172)

then there exists α > 0 such that for all vh ∈ Vh there holds(
bK · ∇vh,

εµK

(bK ·nK)2 bK · ∇vh + ενK

bK ·nK

nK · ∇vh

)
K

≥

≥ (α− 1)ε|vh|21,K + (2α− 1) |dK,1|
2|bK |

∥bK · ∇vh∥2
0,K . (3.173)

Proof. Since ∥nK · ∇vh∥0,K ≤ |vh|1,K , then using the Cauchy-Schwarz-Bunyakov-
sky inequality we can estimate the left-hand side of (3.173) by(
bK · ∇vh,

εµK

(bK ·nK)2 bK · ∇vh + ενK

bK ·nK

nK · ∇vh

)
K

≥

≥ εµK

(bK ·nK)2 ∥bK · ∇vh∥2
0,K − ε|νK |

bK ·nK

∥bK · ∇vh∥0,K |vh|1,K . (3.174)

Thus, denoting X =
(

|dK,1|
2|bK | ∥bK · ∇vh∥2

0,K

)1/2
and Y =

(
ε|vh|21,K

)1/2
it suffices to

prove that there exists α > 0 such that for all X, Y ≥ 0 it holds

2ε|bK |µK

|dK,1|(bK ·nK)2 X
2 −

(
2ε|bK |ν2

K

|dK,1|(bK ·nK)2

)1/2

XY ≥ (α− 1)Y 2 + (2α− 1)X2,

(3.175)
which can be rewritten in the form(

|νK |
2Pe1/2

K

X − Y

)2

+
(
µK

PeK

+ 1 − ν2
K

4PeK

)
X2 ≥ α(Y 2 + 2X2) (3.176)

If X = 0 then one can take any α ∈ (0, 1]. If X > 0 then (due to the
assumption (3.172)) the left-hand side of (3.176) is positive. Consequently, there
surely exists sufficiently small positive α such that the right-hand side remains
smaller than the left-hand side.

Remark 3.6.1. The previous lemma did not specify the exact value of α. One
possible choice is α = 1 − ν0

µ0
, where µ0 = µK

PeK
+ 3 >

ν2
K

4PeK
+ 2 = ν0. Then

µK

PeK
= µ0 − 3, ν2

K

4PeK
= ν0 − 2 and from (3.175) it follows that we need to verify

the validity of the inequality

(µ0 − 3)X2 − 2
√
ν0 − 2XY + ν0

µ0
Y 2 +

(
2 ν0

µ0
− 1

)
X2 ≥ 0. (3.177)
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This inequality can be equivalently rewritten in the form⎛⎝√µ0(ν0 − 2)
ν0

X −
√
ν0

µ0
Y

⎞⎠2

+ 2
(√

ν0

µ0
−
√
µ0

ν0

)2

X2 ≥ 0. (3.178)

The maximal possible value of α can be obtained by investigation of the eigen-
values of the matrix corresponding to the bilinear form

G(X, Y ) =
(
µK

PeK

+ (1 − 2α)
)
X2 − |νK |

Pe1/2
K

XY + (1 − α)Y 2. (3.179)

This bilinear form is positive-semidefinite if α ≤ α0 = min
{
1, 1

2

(
1 + µK

PeK

)}
and

ν2
K

PeK
≤ 4

(
µK

PeK
+ (1 − 2α)

)
(1 − α), i.e. in the case when

g(α) = 2α2 − α
(
µK

PeK

+ 3
)

+ µK

PeK

+ 1 − ν2
K

4PeK

≥ 0. (3.180)

As we already know, since g(α0) = − ν2
K

4PeK
< 0, the inequality (3.180) has a

solution α ∈ (0, α0) only if g(0) > 0, i.e. when µK

PeK
+ 1 > ν2

K

4PeK
. The smaller of

the two solutions of the equation g(α) = 0 is the maximal possible value of α and
it has a form

αK
max =

2
(

µK

PeK
+ 1 − ν2

K

4PeK

)
µK

PeK
+ 3 +

√(
µK

PeK
− 1

)2
+ 2 ν2

K

PeK

= 2(µ0 − ν0)
µ0 +

√
µ2

0 − 8(µ0 − ν0)
. (3.181)

Definition 3.6.1. For each K we denote by

wK = (PK,n+1 − CK) + εµK

(bK ·nK)2 bK + ενK

bK ·nK

nK (3.182)

the vector that we use for stabilization. Further, we define a bilinear form

a∞
h (u, v) = ε(∇u,∇v)Ω +

∑
K∈Th

{
(bK ·∇u, v)K + (−ε∆u+ bK ·∇u,wK ·∇v)K

}
.

The coefficients µK and νK will be defined later.

Lemma 3.6.2. For each K let the assumption (3.172) be fulfilled and let us
denote α∞ = min

K∈Th

αK
max. Then

a∞
h (vh, vh) ≥ α∞|||vh|||2b . (3.183)

Proof. From the inequalities (3.64) and (3.66) (page 68) it follows that
∑

K∈Th

(bK · ∇vh, vh + (PK,n+1 − CK) · ∇vh)K ≥

≥ α∞
ωκ

2 ∥vh∥2
0,Ω + (1 − α∞)

∑
K∈Th

|dK,1|
2|bK |

∥bK · ∇vh∥2
0,K . (3.184)
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Consequently, using the inequality (3.173) we obtain

a∞
h (vh, vh) ≥

≥
∑

K∈Th

⎧⎨⎩ε|vh|21,K + α∞
ωκ

2 ∥vh∥2
0,K + (1 − α∞)

∑
K∈Th

|dK,1|
2|bK |

∥bK · ∇vh∥2
0,K +

+ (αK
max − 1)ε|vh|21,K + (2αK

max − 1) |dK,1|
2|bK |

∥bK · ∇vh∥2
0,K

}
≥

≥ α∞

⎧⎨⎩ε|vh|21,Ω + ωκ

2 ∥vh∥2
0,Ω +

∑
K∈Th

|dK,1|
2|bK |

∥bK · ∇vh∥2
0,K

⎫⎬⎭ . (3.185)

Remark 3.6.2. If we take µK = νK = 0 for each K, then the assumption (3.172) is
fulfilled and αK

max = 2(0+1−0)
3+

√
(0−1)2+0

= 1
2 . Hence, α∞ = 1

2 and we obtain the original
estimate (3.61) (page 68).

In the case of constant data, the three-directional mesh and µK = µ1 = −RΓ,
νK = ν1 = 2RΓ we can compute α

(1)
0 = 1 − ν0

µ0
= 1 − 2+ν2

1 /(4PeΓ)
3+µ1/PeΓ

and α(1)
max

using the formula (3.181). Similarly, we obtain functions α(2)
0 and α(2)

max if we
consider µK = µ2 = −RΓ(2RΓ + 3) and νK = ν2 = 2RΓ(RΓ + 2) (see Figure 3.7).
We observe that for any positive PeΓ there holds α(1)

0 ≥ 0.2984, α(2)
0 ≥ 0.2933,

α(1)
max ≥ 0.3839 and α(2)

max ≥ 0.3675.
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Figure 3.7: For constant data, the three-directional mesh and two considered
choices of µ, ν the estimate (3.183) holds with α(1)

max and α(2)
max. For arbitrary PeΓ

there holds α(1)
max ≥ 0.3839 and α(2)

max ≥ 0.3675. We also observe that the choices
α = α

(1)
0 and α = α

(2)
0 are suboptimal (in comparison with α(1)

max and α(2)
max). The

middle picture shows the detail whereas in the right picture one can see the values
of all functions for large PeΓ.

Lemma 3.6.3. Let there exist positive constants Cµ and Cν independent of ε and
hK such that for each K ∈ Th the coefficients µK and νK satisfy

|µK | ≤ Cµ min{PeK , 1} and |νK | ≤ Cν min{PeK , 1}. (3.186)

Then there exists positive constant Cw > 0 independent of ε and hK such that for
each K ∈ Th the vector wK satisfies |wK | ≤ CwhK . Moreover, for each K ∈ Th

there also holds |wK − (PK,n+1 − CK)| → 0 as ε → 0.
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Proof. Since there holds

|wK | ≤ hK + 1
2

|µK |
PeK

hK + |νK |
PeK

bK ·nK

2|bK |
hK , (3.187)

we can take Cw = 1 + 1
2(Cµ + Cν). The second statement of the lemma follows

directly from the inequality

|wK − (PK,n+1 − CK)| ≤ ε

(
Cµ|bK |

(bK ·nK)2 + Cν

bK ·nK

)
(3.188)

and the fact that bK ·nK > 0.

Corollary 3.6.1. Let the assumptions of Lemma 3.6.1, Lemma 3.6.3 and Theorem
3.5.1 (page 75) be fulfilled. If we replace the bilinear form ah by the bilinear form
a∞

h then there holds the same estimate as in Theorem 3.5.1.

Proof. While Lemma 3.6.1 provides the coercivity of the bilinear form a∞
h , Lemma

3.6.3 ensures that we can estimate ∥wK∇ξh∥0,K ≤ CwhK |ξh|1,K . Thus, the proof
is an analog to the proof of Theorem 3.5.1.

Remark 3.6.3. In the case of constant data and the three-directional mesh both
considered choices of the coefficients µ and ν satisfy the conditions (3.172) and
(3.186). Indeed, for every (positive) PeΓ there holds (see Figure 3.8 left)

PeΓ + µ2 ≥ PeΓ + µ1 ≥ PeΓ ≥ 1
4ν

2
2 ≥ 1

4ν
2
1 , (3.189)

where µ1, ν1, µ2 and ν2 equals to −RΓ, 2RΓ,−RΓ(2RΓ + 3) and 2RΓ(RΓ + 2),
respectively (cf. Remark 3.6.2 and Table 3.1, page 89).

Further, the coefficients µ1, ν1, µ2 and ν2 also satisfy the inequalities (see Fig-
ure 3.8 middle and right)

µ1 ≤ max(PeΓ, 1), (3.190)
|ν1| ≤ 2 max(PeΓ, 1), (3.191)
µ2 ≤ 3 max(PeΓ, 3/8) ≤ 3 max(PeΓ, 1), (3.192)

|ν2| ≤ 4 max(PeΓ, 1/2) ≤ 4 max(PeΓ, 1). (3.193)

PeΓ

1
4 2ν2

ν2
4
1

1

Pe+µ2

µ1Pe+

Pe

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2  2.5 PeΓ

2 max(Pe,1)

max(Pe,1)

µ1

|ν |1

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2 PeΓ

|ν |2

µ2

4 max(Pe,1/2)

3 max(Pe,3/8)

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Figure 3.8: For constant data and the three-directional mesh both considered
choices of the coefficients µ and ν satisfy the conditions (3.172) and (3.186).
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Choosing the coefficients

Let us now describe, how we choose the coefficients µK and νK for a general
oriented mesh (i.e. not necessarily three-directional). At first, we have to define
the vectors nK for K laying inside Ω. For each element K with one edge laying
on the boundary Γ+ we set nK = −1

|∇λK,1|∇λK,1. In addition, if Cs
Ns

= K ∪ T is
a cluster containing K, we set nT = 1

|∇λT,3|∇λT,3. If Q is any element laying in
some cluster on the same discrete streamline we set nQ = −1

|∇λQ,1|∇λQ,1 if Q lies
on the same side from this streamline as K. Otherwise, we set nQ = 1

|∇λQ,3|∇λQ,3

(see Figure 3.9 left). Thus, for a fixed discrete streamline S all elements K
with dK,1 ∈ S are divided into two groups: elements laying on one side from
S satisfy nK = −1

|∇λK,1|∇λK,1, elements laying on the other side from S satisfy
nK = 1

|∇λK,3|∇λK,3.
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Figure 3.9: Parts of Th used for the definition of nK , νs
j , νV and νT .

For each element K ∈ Th we define PeK = |dK,1|(bK ·nK)2

2ε|bK | and for each clus-
ter Cs

j we denote Pes
j = 1

|Cs
j |
∑

K⊂Cs
j

|K|PeK . Consequently, we can define Rs
j =

Pes
j

(
coth(Pes

j) − 1
)

− 1 ∈ (−1, 0). For each element K ∈ Th we also define values

Ki = −1
2 cotαK,i, i = 1, 2, 3, (3.194)

where αK,i are the inner angles of the element (triangle) K corresponding to the
vertex PK,i.

Let us now consider a cluster Cs
j = V ∪ T with nT = −1

|∇λT,1|∇λT,1 and nV =
1

|∇λV,3|∇λV,3. Further, let N be the element neighboring to V satisfying nN = nV

and let Y be the remaining element neighboring to V . Similarly, we denote by
Z the element neighboring to T satisfying nZ = nT and by M the remaining
element neighboring to T (see Figure 3.9 (right)). For each element K ∈ Th we
also assume that if nK = −1

|∇λK,1|∇λK,1 then K3 < 0 and if nK = 1
|∇λK,3|∇λK,3

then K1 < 0 (corresponding acute angles are highlighted in Figure 3.9 (right)).
Then we denote

νs
j := max

{
−1 − Y3

V1
,−1 − M1

T3
, 2Rs

j(Rs
j + 2)

}
, (3.195)

with the values Y3, V1,M1 and T3 computed using (3.194).
Consequently, the coefficients νV and νT are defined as follows

νV := νs
j

max{V1, T3}
V1

and νT := νs
j

max{V1, T3}
T3

. (3.196)

94



Since 0 > νs
j ≥ 2Rs

j(Rs
j + 2) > −2, there holds

νV = νs
j

max{V1, T3}
V1

= νs
j min

{
1, T3

V1

}
≥ νs

j > −2, (3.197)

νT = νs
j

max{V1, T3}
T3

= νs
j min

{
1, V1

T3

}
≥ νs

j > −2. (3.198)

Therefore, we may define the parameters RV and RT by the relations

RV := −1 +
√

1 + νV /2 ⇒ νV = 2RV (RV + 2), (3.199)

RT := −1 +
√

1 + νT/2 ⇒ νT = 2RT (RT + 2). (3.200)

Using the parameters RV and RT we define µV = RV − νV = −RV (2RV + 3)
and µT = RT − νT = −RT (2RT + 3). Moreover, we assume that N1, V2, V3 ≤
RV V1 and T1, T2, Z3 ≤ RTT3. While the assumptions V2, V3 ≤ RV V1 and T1, T2 ≤
RTT3 are the same as for the three-directional mesh, the assumptions N1 ≤ RV V1
and Z3 ≤ RTT3 are additional. Let us recall that nN = nV and nZ = nT , hence
we assume some restriction on the angles of the triangles with the same nK .
Conversely, from this observation it immediately follows that we also assume
that V3 ≤ RNN3 and T1 ≤ RZZ1.
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Figure 3.10: A structure of the domain ΩS (left) and a choice of the vectors nQ,
Q ⊂ ΩS (right).

Let us verify the fulfilment of the discrete maximum principle, i.e. let us show
that the matrix of the method is of nonnegative type (cf. Definition 3.2.1, page
57). For an arbitrary inner node S and the corresponding basis function λS ∈ Xh,
the stencil of the method is computed using values a∞

h (λX , λS), where λX is the
basis function corresponding to the node X neighboring to S. Let the domain
ΩS = suppλS be a hexagon depicted in Figure 3.10 (left) and let for each element
Q ⊂ ΩS the vector nQ be either −1

|∇λQ,1|∇λQ,1 or 1
|∇λQ,3|∇λQ,3 depending on the

rules stated above. Then there holds

a∞
h (λA, λS) = ε

(
L2 + (1 + νK)K2 + (2PeL + µL + νL)(L1 + L2) +

+ (2PeK + µK)(K2 +K3)
)

= (3.201)

= ε
2

{
(2µK + νK + 4PeK)(K2 +K3) + (2 + νK)K2

}
− ε

2νKK3 +

+ ε
2

{
(2µL + νL + 4PeL)(L1 + L2) + (2 + νL)L2

}
+ ε

2νLL1,

a∞
h (λB, λS) = ε

(
L1 +N3 + νNN3

)
, (3.202)
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a∞
h (λC , λS) = ε

(
N1 + V3 − νNN3

)
, (3.203)

a∞
h (λD, λS) = ε

(
T2 +(1 + νV )V2 +(µT + νT )(T2 + T3)+ µV (V1 + V2)

)
= (3.204)

= ε
2

{
(2µV + νV )(V1 + V2) + (2 + νV )V2

}
− ε

2νV V1 +

+ ε
2

{
(2µT + νT )(T2 + T3) + (2 + νT )T2

}
+ ε

2νTT3,

a∞
h (λE, λS) = ε

(
M1 + T3 + νMM1

)
, (3.205)

a∞
h (λF , λS) = ε

(
K1 +M3 − νMM1

)
. (3.206)

From the definition of νN and νM it follows that νN ≥ −1 − L1
N3

and νM ≥
−1 − T3

M1
. Consequently, there holds

L1 +N3 + νNN3 ≤ L1 +N3 + (−N3 − L1) = 0, (3.207)
M1 + T3 + νMM1 ≤ M1 + T3 + (−M1 − T3) = 0. (3.208)

Further, if we take into account the inequalities N1, V3 ≤ RNN3 and K1,M3 ≤
RMM1 we can prove

N1 + V3 − νNN3 ≤ RNN3 + RNN3 − 2RN(RN + 2)N3 =
= −2RN(RN + 1)N3 ≤ 0, (3.209)

K1 +M3 − νMM1 ≤ RMM1 + RMM1 − 2RM(RM + 2)M1 =
= −2RM(RM + 1)M1 ≤ 0. (3.210)

Since there holds νV V1 = νTT3, the inequality a∞
h (λD, λS) ≤ 0 follows immedi-

ately from the estimate (3.171) and the inequalities V2 ≤ RV V1 and T2 ≤ RTT3.
Similarly, the equality νKK3 = νLL1 together with the inequalities L2 ≤ RLL1

and K2 ≤ RKK3 implies a∞
h (λA, λS) ≤ 0. In fact, in this case the inequality

a∞
h (λA, λS) ≤ 0 holds mainly due to the presence of the terms PeK and PeL.
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Figure 3.11: A structure of the domain ΩS in the vicinity of a corner of Ω.

Let us also briefly mention how we choose the coefficients µ and ν in the
vicinity of a domain corner. Since we consider only convex domains, the boundary
cluster laying in the corner of the domain Ω is formed by two elements V and T
with nV = −1

|∇λV,1|∇λV,1 and nT = −1
|∇λT,1|∇λT,1. Hence, for each element Q from

any cluster laying on the same discrete streamline there holds nQ = −1
|∇λQ,1|∇λQ,1
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as well (see Figure 3.11). This changes the stencil of the method from the previous
paragraph, it now takes the form

a∞
h (λA, λS) = ε

(
(1 + νL)L2 + (1 + νK)K2 + (2PeL + µL)(L2 + L3) +

+ (2PeK + µK)(K2 +K3)
)
, (3.211)

a∞
h (λB, λS) = ε

(
L1 +N3 − νNN1

)
, (3.212)

a∞
h (λC , λS) = ε

(
N1 + V3 + νNN1

)
, (3.213)

a∞
h (λD, λS) = ε

(
T2 + V2 +(µT + νT )(T2 + T3) + (µV + νV )(V2 + V3)

)
, (3.214)

a∞
h (λE, λS) = ε

(
M1 + T3 + νMM1

)
, (3.215)

a∞
h (λF , λS) = ε

(
K1 +M3 − νMM1

)
. (3.216)

Since the boundary layer function near the domain corner is different from the
exponential boundary layer function, we no longer require µ+ν = RΓ (moreover,
we cannot determine which part of Γ+ we should use). Hence, for any triangle V
laying on the corner discrete streamline we set RV = PeV (cot PeV − 1) − 1 and
define

νV = max
{

−1 − N1

V3
, 2RV (RV + 2)

}
, (3.217)

where N is an element laying on the same side from the corner discrete streamline
and having different unit vector, i.e. nN ̸= nV . Finally, we define the coefficient
µV as

µV = −RV

1 − ρ
− νV , (3.218)

where ρ ∈ (0, 1) is such that V2 ≤ ρRV V3 < RV V3. This means that using
excessively obtuse angles αV,2 with V2 → RV V3 results in µV → +∞, which is
not allowed due to the condition (3.186). Thus, the restriction on the inner angles
is stronger in this case, however, obtuse angles are still admissible. In the most
important downwind node there holds

a∞
h (λD, λS) = ε

(
T2 + V2 − RT

1 − ρ
(T2 + T3) − RV

1 − ρ
(V2 + V3)

)
≤

≤ ε

((
ρRT − RT

1 − ρ
(ρRT + 1)

)
T3 +

(
ρRV − RV

1 − ρ
(ρRV + 1)

)
V3

)
=

= ε

((
ρ− 1 − |ρRT |

1 − ρ

)
RTT3 +

(
ρ− 1 − |ρRV |

1 − ρ

)
RV V3

)
≤ 0,

since RTT3,RV V3 > 0 and ρ < 1 < 1−|ρRT |
1−ρ

, ρ < 1 < 1−|ρRV |
1−ρ

.

3.7 Higher order finite elements
Although the presented method seems to be designed purely for the piecewise
linear finite elements, it is possible to extend it for higher order finite elements
in any dimension. We describe the main ideas of such an extension on piecewise
quadratic finite elements in 2D (we use an upper index (2) to emphasize the usage
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of piecewise quadratic functions). We skip the precise analysis in these cases and
just test it on several examples.

The finite element space is defined as X(2)
h = {vh ∈ C(Ω), vh|K ∈ P2(K), ∀K ∈

Th} and we are looking for uh ∈ V
(2)

h = X
(2)
h ∩H1

0 (Ω) such that

a
(2)
h (uh, vh) = F

(2)
h (vh) for all vh ∈ V

(2)
h , (3.219)

where the bilinear form a
(2)
h and the functional F (2)

h are defined as

a
(2)
h (u, v) = ε(∇u,∇v)Ω +

∑
K∈Th

(
b

(1)
K · ∇u, v

)
K

+

+
∑

K∈Th

(
−ε∆u+ b(1)

K · ∇u,R(2)
K v − Π(2)

b,Kv
)

K
and (3.220)

F
(2)
h (v) =

∑
K∈Th

(
f, v +R

(2)
K v − Π(2)

b,Kv
)

K
. (3.221)

Thus, the definition of the method is an analog to the P1-case: b(1)
K is a

piecewise polynomial (linear in each component) vector function parallel with
dK,1 on each K ∈ Th and R

(2)
K ,Π(2)

b,K : P2(K) → P1(K) are linear mappings
constructed in such a way that the resulting matrix of the method is a positive-
definite monotone matrix.

We also use special numbering of nodes and basis functions of P2(K). On
each K ∈ Th we denote P (2)

K,1 = PK,1, P (2)
K,3 = PK,2 and P

(2)
K,6 = PK,3 the corner

nodes of K. The midpoints of edges PK,1PK,2, PK,2PK,3 and PK,3PK,1 are denoted
P

(2)
K,2, P

(2)
K,5 and P

(2)
K,4, respectively. (cf. Figure 3.12)

PK,1

PK,3

PK,5

PK,4 PK,6

K
PK,2

b

(2)

(2)

(2)

(2)

(2)(2)

PK,2

PK,1

K

b

PK,3

Figure 3.12: Definition of nodes numbering for P2(K).

The basis functions {φ(2)
K,i}6

i=1 of the space P2(K) are standardly defined by
the relations φ(2)

K,i

(
P

(2)
K,j

)
= δij for all i, j ∈ {1, 2, . . . , 6}.

3.7.1 Definition and properties of the discretized vector
field

Prior to b(1)
K , we firstly define on each K ∈ Th an interpolation bI

K ∈ P1(K)2 of
the vector b. We define bI

K as an orthogonal L2-projection of the vector b on the
space P1(K)2. Hence, it satisfies the equality(

b− bI
K ,φ

)
L2(K)2

= 0, for all φ ∈ P1(K)2. (3.222)
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We can construct this orthogonal L2-projection, for instance, by considering
a basis of the space P1(K)2 in the form {λK,l∇λK,j, j = 1, 2, l = 1, 2, 3} or
{λK,ldK,j, j = 1, 2, l = 1, 2, 3}, where dK,j = PK,3 − PK,j for j = 1, 2. Conse-
quently, we can express the vector bI

K as

bI
K =

2∑
j=1

( 3∑
i=1

α
(j)
K,iλK,i

)
dK,j, (3.223)

where α(j)
K,i, j = 1, 2 and i = 1, 2, 3, are for each j = 1, 2 solutions of the system

of linear equations with the same nonsingular matrix

3∑
i=1

α
(j)
K,i (λK,i, λK,l)K = − (b · ∇λK,j, λK,l)K , l = 1, 2, 3. (3.224)

These systems are obtained by considering the vector bI
K in the form (3.223) and

testing the difference in (3.222) by functions φ from the basis {λK,l∇λK,j, j =
1, 2, l = 1, 2, 3}. For each j = 1, 2 and i = 1, 2, 3 the solutions of (3.224) can be
expressed in the form

α
(j)
K,i = 3

|K|
(−b · ∇λK,j, 4λK,i − 1)K . (3.225)

Since bI
K is the orthogonal L2-projection of b, one can prove the following

generalization of Lemma 3.5.3 (page 75). We formulate and prove it for general
polynomial degree r ∈ N and dimension n ∈ N.

Lemma 3.7.1. Let K ⊂ Rn be a simplex, n, r ∈ N, b ∈ W r+1,∞(K)n and
bI

K ∈ Pr(K)n satisfies for all φ ∈ Pr(K)n

(
b− bI

K ,φ
)

L2(K)n
= 0. (3.226)

If the shape-regularity assumption (4.23) is fulfilled, then there exists a con-
stant c > 0 depending only on n, r and σ such that for all vh ∈ Pr+1(K) holds(b− bI

K

)
· ∇vh


0,K

≤ c hr+1
K |b|r+1,∞,K |vh|1,K . (3.227)

Proof. Using the triangle inequality, the Hölder inequality and the vector version
of the approximation property (Corollary 4.2.1, page 128) we obtain

(b− bI
K

)
· ∇vh


0,K

=


n∑
i=1

[
b− bI

K

]
i

∂vh

∂xi


0,K

≤
n∑

i=1

[b− bI
K

]
i

∂vh

∂xi


0,K

≤

≤
n∑

i=1

[b− bI
K

]
i


0,∞,K

∂vh

∂xi


0,K

≤
(

n∑
i=1

[b− bI
K

]
i

2

0,∞,K

)1
2
⎛⎝ n∑

i=1

∂vh

∂xi


2

0,K

⎞⎠1
2

=

=
⏐⏐⏐b− bI

K

⏐⏐⏐
0,∞,K

|vh|1,K ≤ CΠh
r+1
K |b|r+1,∞,K |vh|1,K . (3.228)
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Lemma 3.7.2. Let n, r ∈ N and let bI
K ∈ Pr(K)n be defined by

bI
K =

n∑
j=1

(
Nr∑
i=1

α
(j)
K,iφ

(r)
K,i

)
dK,j, (3.229)

where α(j)
K,i ∈ R are suitable coefficients. If we denote b(r)

K =
(∑Nr

i=1 α
(1)
K,iφ

(r)
K,i

)
dK,1,

then
(bI

K − b(r)
K

)
· ∇vh


0,K

≤

⎛⎝ n∑
j=2


Nr∑
i=1

α
(j)
K,iφ

(r)
K,i


∞,K

⎞⎠hK |vh|1,K . (3.230)

Proof. It results immediately from the fact that |dK,j| ≤ hK for j = 1, 2, . . . , n.

Remark 3.7.1. In order to fulfil the equality (3.226) the coefficients α(j)
K,i have to

be the solutions of n systems of linear equations (i.e. j = 1, 2, . . . , n)
Nr∑
i=1

α
(j)
K,i

(
φ

(r)
K,i, φ

(r)
K,m

)
K

=
(
−b · ∇λK,j, φ

(r)
K,m

)
K
, m = 1, 2, . . . , Nr. (3.231)

Let us turn back to the case of piecewise quadratic functions in 2D. As in
Lemma 3.7.2 we denote by b(1)

K =
(∑3

i=1 α
(1)
K,iλK,i

)
dK,1 the first term of the sum

(3.223), i.e., the first term of bI
K . Since the bilinear form a

(2)
h (cf. (3.220)) contains

terms
(
b

(1)
K · ∇uh, vh

)
K

, with vh ∈ P1(K) and uh ∈ P2(K), we compute the values(
b

(1)
K · ∇uh, λK,j

)
K

for any j = 1, 2, 3

(
b

(1)
K · ∇uh, λK,j

)
K

=
6∑

i=1
uK,i

(
b

(1)
K · ∇φ(2)

K,i, λK,j

)
K

=

= (uK,4 − uK,1)
(

− bI
K · ∇λK,1, (4λK,1 − 1)λK,j

)
K

+ (3.232)

+ (uK,5 − uK,2)
(

− bI
K · ∇λK,1, 4λK,2λK,j

)
K

+ (3.233)

+ (uK,6 − uK,4)
(

− bI
K · ∇λK,1, (4λK,3 − 1)λK,j

)
K

= (3.234)

= (uK,4 − uK,1)sK
1j + (uK,5 − uK,2)sK

2j + (uK,6 − uK,4)sK
3j, (3.235)

where we denoted by sK
1j, sK

2j and sK
3j the integrals in (3.232), (3.233) and (3.234),

respectively. We also used the notation uK,i = uh(P (2)
K,i) for all i ∈ {1, 2, . . . , 6}.

When constructing the integrals in (3.232)–(3.234) we employed the following
technique: for instance, when i = 6 we express ∇φ(2)

K,6 in the form

∇φ(2)
K,6 = ∇

(
λK,3(2λK,3 −1)

)
= ∇λK,3(4λK,3 −1) = −

(
∇λK,1 +∇λK,2

)
(4λK,3 −1),

(3.236)
which results in(

b
(1)
K · ∇φ(2)

K,6, λK,j

)
K

=
(

− b(1)
K · ∇λK,1, (4λK,3 − 1)λK,j

)
K

=

=
(

− bI
K · ∇λK,1, (4λK,3 − 1)λK,j

)
K
, (3.237)

where we applied the equality dK,i · ∇λK,j = −δij for i, j ∈ {1, 2}.
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3.7.2 Definition and properties of the mapping Π(2)
b,K

Let us now proceed to the definition of the linear mapping Π(2)
b,K : P2(K) → P1(K).

We would like to define it in such a way that(
b

(1)
K · ∇φ(2)

K,i,Π
(2)
b,K

(
φ

(2)
K,j

)
− φ

(2)
K,j

)
K

= 0 for all i, j = 1, 2, . . . , 6. (3.238)

For each j ∈ {1, 2, . . . , 6} we need to solve a system of six (dimP2(K) = 6)
equations for three (dimP1(K) = 3) unknowns. However, due to the equality
b

(1)
K ·∇φ = 0 for φ = 1, λK,2, λ

2
K,2, only three of these six equations are linearly in-

dependent. Thus, for each φ(2)
K,j ∈ P2(K) we define Π(2)

b,K

(
φ

(2)
K,j

)
= ∑3

m=1 µ
(j)
K,mλK,m,

where µ(j)
K,m are solutions of the systems of linear equations

3∑
m=1

µ
(j)
K,m

(
−b(1)

K · ∇λK,1, λK,lλK,m

)
K

=
(
−b(1)

K · ∇λK,1, λK,lφ
(2)
K,j

)
K
, l = 1, 2, 3.

(3.239)
If −b(1)

K · ∇λK,1 > 0 almost everywhere in K, then we obtain for arbitrary
v1, v2, v3 ∈ R the inequality

3∑
l,m=1

vlvm

(
−b(1)

K · ∇λK,1, λK,l, λK,m

)
K

=
⎛⎝−b(1)

K · ∇λK,1,

( 3∑
l=1

vlλK,l

)2⎞⎠
K

> 0,

(3.240)
whenever v2

1+v2
2+v2

3 is nonzero. It means that the matrix of all 6 systems (3.239) is
symmetric, positive definite and therefore nonsingular. Consequently, the values
µ

(j)
K,m are uniquely defined. (If b(1)

K is constant vector then −b(1)
K ·∇λK,1 = |b(1)

K |
|dK,1| > 0

and Π(2)
b,K is the orthogonal L2-projection.)

In addition, using the equalities b(1)
K · ∇λK,2 = 0 and b(1)

K · ∇λK,3 = −b(1)
K ·

∇(λK,1 +λK,2) = −b(1)
K · ∇λK,1 we deduce that b(1)

K · ∇φ(2)
K,i = b

(1)
K · ∇λK,1(ν1λK,1 +

ν2λK,2 + ν3λK,3) for suitable real values ν1, ν2, ν3 depending on i. This and the
definition of the values µ(j)

K,m yields the equality(
−b(1)

K · ∇φ(2)
K,i,

3∑
m=1

µ
(j)
K,mλK,m − φ

(2)
K,j

)
K

= 0. for all i = 1, 2, . . . , 6, (3.241)

which is the equality (3.238).
Further, since the mapping Π(2)

b,K is linear, we can construct a matrix of this
mapping with respect to the standard FEM basis. Then for each function vh ∈
P2(K) there holds

[
Π(2)

b,K

(
vh

)]
M

(1)
K

=

⎛⎜⎜⎝
µ

(1)
K,1, µ

(2)
K,1, · · · µ

(6)
K,1

µ
(1)
K,2, µ

(2)
K,2, · · · µ

(6)
K,2

µ
(1)
K,3, µ

(2)
K,3, · · · µ

(6)
K,3

⎞⎟⎟⎠[vh

]
M

(2)
K

, (3.242)

where
[
Π(2)

b,K

(
vh

)]
M

(1)
K

and
[
vh

]
M

(2)
K

are coordinates of the functions Π(2)
b,K

(
vh

)
and

vh with respect to the bases M (1)
K =

{
λK,j

}3

j=1
and M (2)

K =
{
φ

(2)
K,j

}6

j=1
of the spaces

P1(K) and P2(K), respectively.
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Finally, if we sum all the equations (3.239) for j = 1, 2, . . . , 6 and use the
expressions ∑6

j=1 φ
(2)
K,j = 1 and ∑3

m=1 λK,m = 1 we obtain for all l = 1, 2, 3 the
equality

3∑
m=1

6∑
j=1

µ
(j)
K,m

(
−b(1)

K · ∇λK,1, λK,lλK,m

)
K

=
(

−b(1)
K · ∇λK,1, λK,l

3∑
m=1

λK,m

)
K

,

(3.243)
which can be rewritten in the form

3∑
m=1

⎛⎝1 −
6∑

j=1
µ

(j)
K,m

⎞⎠(−b(1)
K · ∇λK,1, λK,lλK,m

)
K

= 0, ∀ l = 1, 2, 3. (3.244)

It means that for −b(1)
K · ∇λK,1 > 0 almost everywhere in K the vector(

1 −∑6
j=1 µ

(j)
K,1, 1 −∑6

j=1 µ
(j)
K,2, 1 −∑6

j=1 µ
(j)
K,3

)
is a solution of the system of linear

equations with nonsingular matrix and zero right-hand side. Therefore, there
holds ∑6

j=1 µ
(j)
K,m = 1 for all m = 1, 2, 3 (the row sums of the matrix in (3.242)

are equal to 1), and thus the mapping Π(2)
b,K preserves polynomials of degree 0,

i.e. constants. When the sign of −b(1)
K · ∇λK,1 changes in K, then the system of

equations (3.244) can have more then one solution (it has at least one solution –
zero solution – due to the zero right-hand side). If it happens we choose⎛⎜⎜⎜⎜⎜⎝

µ
(1)
K,1, µ

(2)
K,1, · · · µ(6)

K,1

µ
(1)
K,2, µ

(2)
K,2, · · · µ(6)

K,2

µ
(1)
K,3, µ

(2)
K,3, · · · µ(6)

K,3

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
2
5 ,

3
5 , −

1
5 ,

3
5 , −

1
5 , −

1
5

−1
5 ,

3
5 ,

2
5 , −

1
5 ,

3
5 , −

1
5

−1
5 , −

1
5 , −

1
5 ,

3
5 ,

3
5 ,

2
5

⎞⎟⎟⎟⎟⎟⎠ , (3.245)

which is a matrix of the orthogonal L2-projection of P2(K) onto P1(K).

3.7.3 Construction of the mapping R
(2)
K

In order to obtain an upwind scheme we construct the mapping R
(2)
K in such a

way that the matrix corresponding to the discretization of the convective term is
(for a suitable node labeling) triangular. This labeling is carried out successively
streamline by streamline. Then the value of uh in a certain node depends only
on the values in the nodes laying on the same discrete streamline in the upwind
direction.

The triangular matrix can be achieved by setting R(2)
K (φ(2)

K,1) = R
(2)
K (φ(2)

K,2) =
R

(2)
K (φ(2)

K,3) = 0 for each K ∈ Th. This configuration results in the equality(
b

(1)
K · ∇uh, R

(2)
K

(
φ

(2)
K,m

))
K

= 0, for each K ∈ Th and m = 1, 2, 3. Hence, for
a fixed element K none of the values uh(PK,1), uh(PK,2) and uh(PK,3) depends
on other uh(PK,i) (some of these PK,i lay in downwind direction, the other on
different discrete streamline). The matrix of the mapping R

(2)
K with respect to

the standard FEM bases then satisfies

[
R

(2)
K

(
vh

)]
M

(1)
K

=

⎛⎜⎝ 0, 0, 0, rK
14, rK

15, rK
16

0, 0, 0, rK
24, rK

25, rK
26

0, 0, 0, rK
34, rK

35, rK
36

⎞⎟⎠[vh

]
M

(2)
K

. (3.246)
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Using the expression (3.235) we can further write
(
b

(1)
K · ∇uh, R

(2)
K

(
φ

(2)
K,m

))
K

=
3∑

j=1
rK

jm

(
b

(1)
K · ∇uh, λK,j

)
K

=

= (uK,4 − uK,1)
3∑

j=1
sK

1jr
K
jm + (uK,5 − uK,2)

3∑
j=1

sK
2jr

K
jm + (uK,6 − uK,4)

3∑
j=1

sK
3jr

K
jm.

Since we would like to obtain an upwind scheme, the first of these three sums
has to vanish for m = 5 (it already vanishes for m = 1, 2 and 3 and since it is
multiplied by (uK,4 −uK,1) it has to vanish for m = 5 because the node PK,5 does
not lay on the same discrete streamline as PK,1 and PK,4), the second sum has to
vanish for m ∈ {4, 6} and the third for m ∈ {4, 5}. These requirements can be
rewritten in the matrix form⎛⎜⎝ sK

11, sK
12, sK

13
sK

21, sK
22, sK

23
sK

31, sK
32, sK

33

⎞⎟⎠
⎛⎜⎝ rK

14, rK
15, rK

16
rK

24, rK
25, rK

26
rK

34, rK
35, rK

36

⎞⎟⎠ =

⎛⎜⎝ κK
14, 0, κK

16
0, κK

25, 0
0, 0, κK

36

⎞⎟⎠ , (3.247)

where κK
14, κ

K
16, κ

K
25 and κK

36 are generally nonzero values.
Recalling the linear finite elements, the derivative of any vh ∈ P1(K) in the

direction of the stabilization vector was estimated ∥(PK,n+1 − CK) · ∇vh∥0,K ≤
hK |vh|1,K for each vh ∈ P1(K). We would like to extend this property to the
quadratic finite elements. This can be achieved by requiring (Π(2)

b,K −R
(2)
K )vh = 0,

for all vh ∈ P0(K). Since we already know that Π(2)
b,Kvh = vh for all vh ∈ P0(K),

it suffices to require R(2)
K vh = vh for all vh ∈ P0(K), i.e. the row sums of the

mapping matrix corresponding to the mapping R(2)
K have to be equal to 1. Using

this property and multiplying both sides of the equality (3.247) by the vector
(1, 1, 1)T then gives

κK
14 + κK

16 =
3∑

j=1
sK

1j =
(

− b · ∇λK,1, 4λK,1 − 1
)

K
, (3.248)

κK
25 =

3∑
j=1

sK
2j =

(
− b · ∇λK,1, 4λK,2

)
K
, (3.249)

κK
36 =

3∑
j=1

sK
3j =

(
− b · ∇λK,1, 4λK,3 − 1

)
K
. (3.250)

Thus, it remains to determine either κK
14 or κK

16, or to give some restriction on
them. This will probably follow from the assumptions on the coercivity of the
bilinear form a

(2)
h . Since we omit proof of the coercivity in this case, we use in

numerical tests κK
16 = 0.

If the matrix (sK
ij )3

i,j=1 is nonsingular, we can then compute the exact form of
the mapping R(2)

K . For instance, if b · ∇λK,1 is constant and nonzero on K, then
the matrix (rK

ij )3
i,j=1 is a solution of the matrix equation⎛⎜⎝ 1/3, 0, 0

1/3, 2/3, 1/3
0, 0, 1/3

⎞⎟⎠
⎛⎜⎝ rK

14, rK
15, rK

16
rK

24, rK
25, rK

26
rK

34, rK
35, rK

36

⎞⎟⎠ =

⎛⎜⎝ (1 − γK)/3, 0, γK/3
0, 4/3, 0
0, 0, 1/3

⎞⎟⎠ ,
(3.251)

103



where γK = − 3
|K|

κK
14

b·∇λK,1
. Solution of this equation has the form⎛⎜⎝ rK

14, rK
15, rK

16
rK

24, rK
25, rK

26
rK

34, rK
35, rK

36

⎞⎟⎠ =

⎛⎜⎝ 1 − γK , 0, γK
−1+γK

2 , 2, −1−γK

2
0, 0, 1

⎞⎟⎠ (3.252)

and we use it also when the matrix (sK
ij )3

i,j=1 is singular or ill-conditioned.
When the method is coercive with respect to a suitable energy norm, one

can use the inequality ∥(Π(2)
b,K −R

(2)
K )vh∥0,K ≤ C(b)hK |vh|1,K , for all vh ∈ P2(K),

together with Lemma 3.7.1 (page 99) and derive error estimates analogously to
the case of piecewise linear finite elements. This will be the subject of author’s
future work.

In the final paragraph we show how the construction of the mapping R
(2)
K

affects the stability of the method.

3.7.4 Stability of the metod
From the construction of the mapping R(2)

K it follows that for each vh ∈ Vh holds
(
b

(1)
K · ∇vh, R

(2)
K

(
vh

))
K

=
6∑

m=4
vK,m

(
b

(1)
K · ∇vh, R

(2)
K

(
φ

(2)
K,m

))
K

=

= (vK,4 − vK,1)
(
κK

14vK,4 + κK
16vK,6

)
+ (vK,5 − vK,2)κK

25vK,5 + (vK,6 − vK,4)κK
36vK,6.

The matrix generated by this scheme is (due to the structure of the mesh)
reducible. Each discrete streamline forms its own submatrix that does not depend
on the nodes from the other streamlines (submatrices). Moreover, the nodes
numbered P

(2)
K,2 and P

(2)
K,5 (laying between discrete streamlines) also form a chain

independent from the other nodes and we can apply the theory from the section
devoted to the linear finite elements. Thus, the stability of the method is affected
by the remaining nodes (i.e. by the nodes laying on the discrete streamlines).

The matrix corresponding to the discretization of the convective term has for
a single discrete streamline (number s) form

Bs =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ1
14, 0, 0, 0, 0, · · · 0, 0

κ1
16 − κ1

36, κ
1
36, 0, 0, 0, · · · 0, 0

0, −κ2
14, κ2

14, 0, 0, · · · 0, 0

0, −κ2
16, κ

2
16 − κ2

36, κ
2
36, 0, · · · 0, 0

0, 0, 0, −κ3
14 κ

3
14, · · · 0, 0

... ... ... ... . . . . . . ... ...

0, 0, 0, 0, · · · κN−1
14 , 0, 0

0, 0, 0, 0, · · · κN−1
16 − κN−1

36 , κN−1
36 , 0

0, 0, 0, 0, · · · 0, −κN
14, κ

N
14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.253)

where κj
pq = ∑

K⊂Cs
j
κK

pq for all suitable indices p, q, j. The inverse of this matrix
exists if and only if the diagonal values are nonzero. In this case, we can easily
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compute it. It has the following form

B−1
s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/κ1
14, 0, 0, 0, 0, · · · 0

κ1
36−κ1

16
κ1

14κ1
36
, 1/κ1

36, 0, 0, 0, · · · 0
κ1

36−κ1
16

κ1
14κ1

36
, 1/κ1

36, 1/κ2
14, 0, 0, · · · 0

κ1
36−κ1

16
κ1

14κ1
36
, 1/κ1

36,
κ2

36−κ2
16

κ2
14κ2

36
, 1/κ2

36, 0, · · · 0
κ1

36−κ1
16

κ1
14κ1

36
, 1/κ1

36,
κ2

36−κ2
16

κ2
14κ2

36
, 1/κ2

36, 1/κ3
14, · · · 0

... ... ... ... . . . . . . ...
κ1

36−κ1
16

κ1
14κ1

36
, 1/κ1

36,
κ2

36−κ2
16

κ2
14κ2

36
, 1/κ2

36, · · · 1/κN−1
36 , 0

κ1
36−κ1

16
κ1

14κ1
36
, 1/κ1

36,
κ2

36−κ2
16

κ2
14κ2

36
, 1/κ2

36, · · · 1/κN−1
36 , 1/κN

14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.254)

Since we expect ε to be very small positive number, the stability of the method
is mostly affected by the matrices Bs. They are inverse-positive (i.e. B−1

s ≥ 0)
if for all s and j there holds κj

14 > 0, κj
25 > 0, κj

36 > 0 and κj
16 ≤ κj

36. The last
assumption is fulfilled if κK

16 ≤ κK
36 for all K ∈ Th.

However, since for any element K ∈ Th and indices i ̸= j there does not hold
ε(∇φ(2)

K,i,∇φ
(2)
K,j)K ≤ 0, we cannot prove the discrete maximum principle using

Theorem 3.2.1 (page 57). Hence, stabilization terms analogous to the terms from
Section 3.6 have to be added. We again postpone it to the forthcoming work.

3.8 Numerical experiments

3.8.1 Example 1, negative divergence
Let us consider Ω ⊂ Rn and let C = [C1, C2, . . . , Cn] ∈ Rn be any point such that
C ̸∈ Ω. Further, let us choose any constant ω > 0 and define b(x) = ω

n
(C − x),

i.e. bi(x) = ω
n

(Ci − xi), where x = [x1, x2, . . . , xn]. Then div b = −ω and the
streamlines of b are rays ending at the point C.

For each K ∈ Th, let the vector dK,1 (i.e. the corresponding edge PK,1PK,n+1)
lies on some streamline. We are now interested in the evaluating of θK , especially∫

K b · ∇λK,j dx, for j = 2, 3, . . . , n. Let us begin with
∫

K b · ∇λK,n dx.
Since the vectors dK,j, j = 1, 2, . . . , n, are linearly independent, the matrix

D = [dK,1,dK,2, . . . ,dK,n] is invertible and there exists a uniquely defined QR-
decomposition D = QR, where R = QTD is an upper triangular matrix with
positive diagonal entries and Q is an orthonormal matrix (Golub and Van Loan,
2012, Theorem 5.2.3). Using the matrix Q one may define the transformation
(the translation and the rotation) of the element K (see Figure 3.13)

x̂ = 0 + QT (x− PK,n+1). (3.255)

Then R = [d
K̂,1,dK̂,2, . . . ,dK̂,n

] and from the equality d
K̂,j

· ∇λ
K̂,n

= 0 for
j = 1, 2, . . . , n − 1 it follows that ∇λ

K̂,n
= (0, 0, . . . , 0,−1/ĥn), where ĥn is the

height of the n-simplex K̂ in the x̂n direction.
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PK,3

K

PK,1

PK,2

x1

C

x2

Figure 3.13: Rotated element K̂ in 2D.

Since the vector field b is radial, it is invariant under any rotation around the
point C. Hence, it suffices to translate the point C and define the vector field
b̂(x̂) = ω

n
(Ĉ − x̂) = ω

n

(
|C − PK,n+1| − x̂1,−x̂2, . . . ,−x̂n

)
. Consequently

∫
K
b·∇λK,n dx =

∫
K̂
b̂·∇λ

K̂,n
dx̂ =

∫
K̂

ω

n

x̂n

ĥn

dx̂ = ω

n

∫
K̂

−λ
K̂,n

dx̂ = −ω|K|
n(n+ 1) .

(3.256)
Similar approach leads to the same equalities for all ∇λK,j, j = 2, 3, . . . , n−1.

Thus, for the mesh parameters θK in this case there holds

θK = 1
|K|

max
{

max
2≤i≤n

⏐⏐⏐⏐∫
K
b · ∇λK,i dx

⏐⏐⏐⏐ ,
⏐⏐⏐⏐⏐

n∑
i=2

∫
K
b · ∇λK,i dx

⏐⏐⏐⏐⏐
}

=

= 1
|K|

⏐⏐⏐⏐⏐
n∑

i=2

−ω|K|
n(n+ 1)

⏐⏐⏐⏐⏐ = n− 1
n

ω

n+ 1 <
ω

n+ 1 . (3.257)

Therefore, the mesh parameters θK satisfy in this case the required inequality
θK ≤ ω

n+1 (cf. the inequality (3.105), page 75, or the inequality (3.34), page
61). However, since θK are constant for each h (or hK) one cannot expect its
decrement when h → 0.

Let us now be more concrete and specify the data of the example. We consider
n = 2, C = [1, 1] and Ω = (0, 0.9)2. We use two types of the vector field b.
The first type has a form considered above and is defined as

b1A = 1
2 (1 − x, 1 − y)T , (⇒ div b1A = −1). (3.258)

The second considered type of the vector field (used for a comparison of
the matrices of the mappings R(2)

K and Π(2)
b,K)

b1B = 1√
(1 − x)2 + (1 − y)2

(1 − x, 1 − y)T (3.259)

has the same direction and satisfies |b1B| = 1 in Ω. However, div b1B is no longer
constant and the condition θK ≤ ω

n+1 is unfulfilled (see Figure 3.17).
Further, on ∂Ω we consider the discontinuous boundary condition ub1

ub1 = 1 in {x ∈ ∂Ω, |x| ≤ 0.3} and ub1 = 0 otherwise. (3.260)
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b1u   =1

0 0.3 0.9 1

0.3

0.9

1

f=1

f=0

f=0

b1u   =0

Figure 3.14: Definition of the Example 1 data.

It remains to define the right-hand side f = f1 of the differential equation
(3.1). In order to test the behavior of the method in the parabolic layers we
define f1 as a piecewise-constant function satisfying (see Figure 3.14)

f1 =
{

1 for − 3
7 + 10

7 x ≤ y ≤ 3
10 + 7

10 x
0 otherwise. (3.261)

For both data combinations [b1A, ub1, f1] and [b1B, ub1, f1] we may compute the
reduced solutions u1A

0 and u1B
0 (see Definition 1.3.1, page 15) of the differential

equation (3.1). These reduced solutions have the form

u1A
0 (x, y) =

(
1 + min{−2 ln(1 − x),−2 ln(1 − y)}

)
f1(x, y), (3.262)

u1B
0 (x, y) =

(
1 + min

{
x

1 − x
,

y

1 − y

}√
(1 − x)2 + (1 − y)2

)
f1(x, y), (3.263)

and they are depicted in Figure 3.15.
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Figure 3.15: Reduced solutions u1A
0 (up) and u1B

0 (down).

Due to the discontinuous data and the nonzero right-hand side f1 we are not
able to construct the (zeroth-order) asymptotic expansion (see Linß and Stynes
(2001) for sufficient assumptions). Hence, we use a small trick and prescribe the
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reduced solution u0. If u0 = xy, then b1A · ∇u0 = x
2 − xy + y

2 =: f2 and we
may construct the (zeroth-order) asymptotic expansion u(E1)

as (Figure 3.16) for
the problem with the data [b1A, ub2, f2] = [b1A, 0, x

2 − xy + y
2 ]. It has the form

u(E1)
as = xy

(
1 − exp

(0.05
ε

(x− 0.9)
))(

1 − exp
(0.05

ε
(y − 0.9)

))
(3.264)

and we use it as a continuous test problem (u(E1)
as is the solution of the differential

equation (3.1) with the data [b1A, 0, Lu(E1)
as ]).
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Figure 3.16: Graphs of the functions u(E1)
as , f2 and Lu(E1)

as , respectively. The
function u(E1)

as is the (zeroth-order) asymptotic expansion of the solution of the
boundary value problem (3.1) with the data [b, ub, f ] = [b1A, 0, f2]. It is also the
classical solution of the same differential equation with [b, ub, f ] = [b1A, 0, Lu(E1)

as ].
In this example we considered ε = 10−3.

Firstly, let us solve Example 1 using the SUPG method with the continuous
piecewise linear finite elements, the stabilization parameter δK = hK/(2∥b∥∞,K)
and consider three types of meshes (see Figure 3.17).

0.31 

0.315

0.32 

0.325

0.33 

0.335

0.34 

0.345

0.35 

Figure 3.17: Meshes considered in Example 1 formed by 144, 576 and 2304 ele-
ments, respectively. The color scale indicates the value θK/∥div b∥∞,K for b = b1B

and all K ∈ Th.

Figure 3.18 shows solutions computed using the SUPG method — each column
corresponds to a different mesh (with 144, 576 and 2304 elements, respectively)
and each row to a different choice of ε (we consider ε = 10−3, 10−4 and 10−5,
respectively). We observe that the discrete solution contains spurious oscillations
at inner characteristic layers, in particular for ε = 10−5.

If we employ the new method we obtain oscillation-free solutions (see Fig-
ure 3.19). Further, using our test problem u(E1)

as we may verify experimentally the
result of Theorem 3.5.1 (page 75). Hence, we consider b = b1A and ε = 10−2, 10−3

and 10−4. Table 3.2 contains the computational errors in several types of norms.
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Figure 3.18: Solutions of Example 1 with b = b1A obtained by the SUPG method.
Each column corresponds to a different mesh (with 144, 576 and 2304 elements,
respectively) and each row to a different choice of ε (we consider ε = 10−3, 10−4

and 10−5). The bottom right solution is displayed enlarged.
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Table 3.2: Computational errors in several types of norms. We applied the new
method to Example 1 using piecewise linear finite elements with b = b1A and
considered ε = 10−2, 10−3 and 10−4 (eb stands for (∑K

|dK,1|
2|bK | ∥bK ·∇eh∥2

0,K)1/2).

ε Elms |eh|1,Ω ∥eh∥0,2,Ω eb ∥eh∥∞,d |||eh|||b
1E-2 36 2.406E-01 3.157E-02 2.515E-02 1.451E-02 3.711E-02
1E-2 144 1.636E-01 1.668E-02 1.160E-02 9.730E-03 2.118E-02
1E-2 576 9.671E-02 8.574E-03 4.644E-03 5.075E-03 1.129E-02
1E-2 2304 5.145E-02 4.353E-03 1.727E-03 2.766E-03 5.711E-03
1E-2 9216 2.629E-02 2.198E-03 6.293E-04 1.499E-03 2.848E-03
1E-3 36 1.390E-00 1.313E-01 1.092E-01 6.233E-02 1.294E-01
1E-3 144 1.867E-00 7.945E-02 9.324E-02 1.344E-01 1.150E-01
1E-3 576 1.533E-00 4.373E-02 5.166E-02 1.350E-01 7.305E-02
1E-3 2304 9.695E-01 2.272E-02 2.259E-02 7.929E-02 3.920E-02
1E-3 9216 5.442E-01 1.150E-02 8.887E-03 4.524E-02 1.993E-02
1E-4 36 1.483E-00 1.588E-01 1.513E-01 1.274E-02 1.653E-01
1E-4 144 2.146E-00 1.182E-01 1.281E-01 2.948E-02 1.386E-01
1E-4 576 2.529E-00 8.376E-02 9.234E-02 6.944E-02 1.017E-01
1E-4 2304 3.664E-00 5.449E-02 8.159E-02 1.337E-01 9.217E-02
1E-4 9216 5.736E-01 3.300E-02 8.906E-02 2.200E-01 1.068E-01

The experimental order of convergence (EOC) with respect to the energy norm
||| · |||b (cf. Remark 3.5.2, page 82) is in the case when ε = 10−2 equal to 0.809,
0.908, 0.983 and 1.004, respectively. Thus, it increases with increasing number
of elements (decreasing h), which is in line with our expectations. For ε = 10−3

we obtain EOC = 0.166, 0.655, 0.898 and 0.976, respectively. For smaller ε the
convergence is achieved when the boundary layer is resolved.

We may also apply the approach derived in Section 3.7 and obtain the so-
lution of Example 1 using continuous piecewise quadratic finite elements — see
Figure 3.20. Considering the function values in mesh-nodes only, the solutions are
oscillation-free. However, since we are employing the quadratic finite elements,
the oscillations occur inside elements (see Figure 3.21).

From the computational errors it follows that in L2-norm the method pro-
vides similar error values as in the case of piecewise linear finite elements (cf.
Table 3.3). This could have several causes — either the layers are better resolved
by piecewise linear finite elements or the method should be improved. One pos-
sible improvement may include the use of curvilinear elements. The vector b(1)

K

could then point in a non-constant direction. Nevertheless, comparing the error
in mesh-nodes we find out that the use of piecewise quadratic finite elements
provides better results. Unfortunately, we were not able to derive the exact form
of the energy norm in this case (we did not prove the coercivity).
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Figure 3.19: Solutions of Example 1 with b = b1A obtained by the new method
using continuous piecewise linear finite elements. Each column corresponds to a
different mesh (with 144, 576 and 2304 elements, respectively) and each row to
a different choice of ε (we consider ε = 10−3, 10−4 and 10−5). The bottom right
solution is displayed enlarged.
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Figure 3.20: Solutions of Example 1 with b = b1A obtained by the new method
using continuous piecewise quadratic finite elements. Each column corresponds
to a different mesh (with 144, 576 and 2304 elements, respectively) and each row
to a different choice of ε (we consider ε = 10−3, 10−4 and 10−5).

Figure 3.21: Solution of Example 1 with b = b1A obtained by the new method
using continuous piecewise quadratic finite elements, mesh with 576 elements and
ε = 10−4. Despite the fact that the solution is oscillation-free in mesh-nodes, it
contains oscillations inside layer-elements.
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Table 3.3: Computational errors in several types of norms. We applied the new
method to Example 1 using piecewise quadratic finite elements with b = b1A and
considered ε = 10−2, 10−3 and 10−4. Here eh = u− uh, ξh = Rhu− uh, Rhu ∈ P2
is the Lagrange interpolation of u, ∥ · ∥∞,d,P2 is the discrete maximum norm over
all P2-nodes, whereas ∥ · ∥∞,d,P1 is the discrete maximum norm over all P1-nodes.

ε Elms |ξh|1,Ω ∥ξh∥0,2,Ω ∥eh∥0,2,Ω ∥eh∥∞,d,P2 ∥eh∥∞,d,P1

1E-2 36 7.524E-02 5.003E-03 4.679E-02 1.591E-02 1.243E-02
1E-2 144 3.651E-02 1.895E-03 2.643E-02 7.542E-03 5.648E-03
1E-2 576 1.366E-02 8.839E-04 1.422E-02 2.387E-03 2.387E-03
1E-2 2304 4.996E-03 4.712E-04 7.407E-03 1.098E-03 1.098E-03
1E-2 9216 2.052E-03 2.488E-04 3.785E-03 5.452E-04 5.452E-04
1E-3 36 3.587E-01 1.948E-02 1.078E-01 1.170E-01 8.867E-02
1E-3 144 4.505E-01 1.550E-02 7.548E-02 1.195E-01 4.283E-02
1E-3 576 3.880E-01 6.459E-03 4.683E-02 5.156E-02 2.841E-02
1E-3 2304 1.816E-01 2.243E-03 2.578E-02 1.610E-02 1.237E-02
1E-3 9216 6.038E-02 9.528E-04 1.334E-02 4.643E-03 4.381E-03
1E-4 36 4.445E-01 2.110E-02 1.144E-01 7.832E-02 4.051E-02
1E-4 144 3.437E-01 1.059E-02 7.870E-02 5.238E-02 5.238E-02
1E-4 576 3.857E-01 6.764E-03 5.256E-02 1.061E-01 5.574E-02
1E-4 2304 8.435E-01 7.274E-03 3.641E-02 1.803E-01 4.613E-02
1E-4 9216 1.586E-00 5.741E-03 2.556E-02 1.769E-01 2.396E-02

3.8.2 Example 2, zero divergence
Let us now consider the equation (3.1) in (X, Y )2 ⊂ (0, 1)2, where X = 1

20

√
2

and Y = 7
20

√
2. The right-hand side f = f3 satisfies f3(x, y) = 1 whenever(

7
30

)2
≤ x2 + y2 ≤

(
11
30

)2
and f3(x, y) = 0 otherwise. The boundary condition ub2

satisfies ub2 = 1 in {x ∈ Γ−, f(x) = 1} and ub2 = 0 otherwise (see Figure 3.22).
Again, we use two definitions of the vector field b

Example 2A : b(x, y) = (−y, x)T , Example 2B : b(x, y) = 1√
x2+y2

(−y, x)T ,

(3.265)
where the second one is used for a comparison of the matrices of the mappings
R

(2)
K and Π(2)

b,K .
The circle (streamline) passing through the vertices [X, Y ] and [Y,X] divide

the diagonal (with the endpoints [X,X] and [Y, Y ]) into two parts in the ratio
2:1. Indeed, the length of the square’s diagonal is 3

5 , the radius of the considered
circle (streamline) is

√
X2 + Y 2 = 1

2 and thus, the length of the larger part of the
diagonal is 1

2 −X
√

2 = 2
5 (hence, the length of the shorter part is 1

5). We can now
construct the triangulation of the square (X, Y )2 by constructing the streamlines
(circles) in such a way, that the partition of the square’s diagonal (with endpoints
[X,X] and [Y, Y ]) is equidistant.

For instance, if we divide the diagonal into 2j + j = 3j parts, then the length
of each part is 1

5j
. Since we would like to obtain an isotropic triangulation of Ω

and the height of each triangle is approximately given by the distance between
two neighboring streamlines (i.e. 1

5j
), we have to divide each streamline using
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a mesh step h = 1
5j

2
√

3
3 = 2

√
3

15j
. In order to obtain an equidistant partition of each

streamline s we change h into hs, which is the closest value to h allowing the
equidistant partition of the streamline s (we want to avoid small odd segments
near the boundary). Then one can show that there holds |h−hs| ≤ 3π2

2Ls
h2, where

Ls is the length of the streamline s. Hence, away from the corners [X,X] and
[Y, Y ], the partition of all streamlines is almost equidistant.

Y

X

X

0 Y=7X

f=0

f=1

b

f=0

7/30 11/30

u  =1b2

Y

X

X

0 Y=7X

Figure 3.22: Definition of the Example 2 data.

For both data combinations [b2A, ub2, f3] and [b2B, ub2, f3] we may compute the
reduced solutions u2A

0 and u2B
0 (see Definition 1.3.1, page 15) of the differential

equation (3.1). These reduced solutions have the form

u2A
0 (x, y) =

[
1 + atan

(
y
x

)
− asin

(
1
20

√
2

x2+y2

)]
f3(x, y),

u2B
0 (x, y) =

[
1 +

(
atan

(
y
x

)
− asin

(
1
20

√
2

x2+y2

))√
x2 + y2

]
f3(x, y),

and they are depicted in Figure 3.23.
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Figure 3.23: Reduced solutions u2A
0 (up) and u2B

0 (down).

In order to construct the (zeroth-order) asymptotic expansion of the solution
of the boundary value problem (3.1) we again prescribe the reduced solution u0.
This time we assume that u0 = (Y − x)(y − X), then b2A · ∇u0 = y2 − yX +
xY − x2 =: f4 and we may construct the (zeroth-order) asymptotic expansion
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u(E2)
as (Figure 3.24) for the problem with the data [b, ub, f ] = [b2A, 0, f4]. It has

the form

u(E2)
as = (Y −x)(y−X)

(
1 − exp

(
y

ε
(X − x)

))(
1 − exp

(
x

ε
(y − Y )

))
(3.266)

and we use it as a continuous test problem (u(E2)
as is a solution of the differential

equation (3.1) with the data [b2A, 0, Lu(E2)
as ]).
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Figure 3.24: Graphs of the functions u(E2)
as , f4 and Lu(E2)

as , respectively. The
function u(E2)

as is the (zeroth-order) asymptotic expansion of the solution of the
boundary value problem (3.1) with the data [b, ub, f ] = [b2A, 0, f4]. It is also the
classical solution of the same differential equation with [b, ub, f ] = [b2A, 0, Lu(E2)

as ].
In this example we consider ε = 2 × 10−3.

Firstly, let us solve Example 2 using the SUPG method with the continuous
piecewise linear finite elements, the stabilization parameter δK = hK/(2∥b∥∞,K)
and as in Example 1 we consider three types of meshes (Figure 3.25).

0.01  

0.03  

0.1   

0.3   

1     

3     

10    

30    

Figure 3.25: Meshes considered in Example 2 formed by 284, 1124 and 4498
elements, respectively. The color scale indicates the value θK/hK for b = b2A and
all K ∈ Th.

Figure 3.26 shows solutions computed using the SUPG method — each column
corresponds to a different mesh (with 284, 1124 and 4498 elements, respectively)
and each row to a different choice of ε (we consider ε = 10−3, 10−4 and 10−5).
We observe that the discrete solution contains spurious oscillations at inner char-
acteristic layers, in particular for ε = 10−5.

If we again employ the new method we obtain oscillation-free solutions (see
Figure 3.27). Further, using our test problem u(E2)

as we may try to verify experi-
mentally the result of Theorem 3.5.2 (page 79). Hence, we consider b = b2A and
ε = 10−2, 10−3 and 10−4. Table 3.4 again shows the computational errors in sev-
eral types of norms. We observe, that the solution fails to converge in the energy
norm ||| · |||b,∗ and it only converges in L2-norm. This is caused by the fact that,
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Figure 3.26: Solutions of Example 2 with b = b2A obtained by the SUPG method.
Each column corresponds to a different mesh (with 284, 1124 and 4498 elements,
respectively) and each row to a different choice of ε (we consider ε = 10−3, 10−4

and 10−5). The bottom right solution is displayed enlarged.

116



Table 3.4: Computational errors in several types of norms. We applied the new
method to Example 2 using piecewise linear finite elements with b = b2A and
considered ε = 10−2, 10−3 and 10−4. We observe, that for small ε the solution
converge only in L2-norm (eb stands for (∑K

|dK,1|
2|bK | ∥bK ·∇eh∥2

0,K)1/2).

ε Elms |eh|1,Ω ∥eh∥0,2,Ω eb ∥eh∥∞,d |||eh|||b,∗

1E-2 72 2.158E-01 5.008E-03 1.276E-02 2.070E-02 2.510E-02
1E-2 284 2.313E-01 2.778E-03 9.347E-03 1.351E-02 2.496E-02
1E-2 1124 2.396E-01 1.459E-03 6.903E-03 8.015E-03 2.493E-02
1E-2 4498 2.444E-01 7.852E-04 5.056E-03 4.647E-03 2.496E-02
1E-2 17956 2.472E-01 4.188E-04 3.666E-03 2.759E-03 2.499E-02
1E-3 72 3.867E-01 1.099E-02 2.882E-02 1.554E-02 3.146E-02
1E-3 284 4.673E-01 7.533E-03 2.457E-02 1.620E-02 2.871E-02
1E-3 1124 6.512E-01 4.619E-03 2.386E-02 2.025E-02 3.152E-02
1E-3 4498 8.917E-01 2.665E-03 2.094E-02 2.792E-02 3.513E-02
1E-3 17956 1.018E-00 1.490E-03 1.363E-02 3.125E-02 3.495E-02
1E-4 72 4.425E-01 1.170E-02 3.437E-02 1.277E-03 3.480E-02
1E-4 284 6.627E-01 8.333E-03 3.442E-02 7.002E-03 3.509E-02
1E-4 1124 8.864E-01 5.980E-03 3.428E-02 1.384E-02 3.542E-02
1E-4 4498 1.151E-00 4.228E-03 3.326E-02 1.944E-02 3.520E-02
1E-4 17956 1.409E-00 2.912E-03 2.868E-02 2.040E-02 3.196E-02

since the mesh was constructed heuristically, there does not hold θK = O(hK)
(see Figure 3.25), which is crucial for estimates carried out in Theorem 3.5.2.
Moreover, from Example 1 it follows, that for certain types of vector fields b it
may be complicated (or even impossible) to construct a mesh satisfying θK → 0.

Again, we may use continuous piecewise quadratic finite elements for solving
Example 2 and obtain solutions which are oscillation-free in mesh-nodes (see
Figure 3.20). Visualization of the oscillations emerging from the element’s interior
is depicted in Figure 3.29.

The numerical experiments again provides improved computational errors in
the discrete maximum norm in mesh-nodes (as compared to the linear case) and
unimproved results in the L2-norm (cf. Table 3.5).

Let us now verify our result from Section 3.6 considering Example 2 with
b = b2A, ε = 10−3 and mesh containing 1124 elements. As we already know
from Section 2.1.4, upwind scheme in 1D adds too much artificial diffusion to
the original finite element method, and thus, the discrete solution is smeared (cf.
Figure 2.3, page 39). This happens in 2D as well, therefore we apply the layer
correction of Section 3.6 and obtain more accurate solution (see Figure 3.30). We
cannot apply it to our test solution u(E2)

as since it contains corner expansion (two
multiplied exponential functions), and hence, the technique of Section 3.6 fails.
The remedy will be a subject of the future work.

Last thing we would like to mention is the way how the vector field b affects
the structure of the mappings (or corresponding matrices) R(2)

K and Π(2)
b,K from

Section 3.7. As h → 0, the entries of the matrices of the mappings R(2)
K and

Π(2)
b,K tend to some constant values. The matrix of the mapping Π(2)

b,K converges
(probably under some mesh-related conditions) to the matrix of the orthogonal
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Figure 3.27: Solutions of Example 2 with b = b2A obtained by the new method.
Each column corresponds to a different mesh (with 284, 1124 and 4498 elements,
respectively) and each row to a different choice of ε (we consider ε = 10−3, 10−4

and 10−5). The bottom right solution is displayed enlarged.
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Figure 3.28: Solutions of Example 2 with b = b2A obtained by the new method
using continuous piecewise quadratic finite elements. Each column corresponds
to a different mesh (with 284, 1124 and 4498 elements, respectively) and each
row to a different choice of ε (we consider ε = 10−3, 10−4 and 10−5).

Figure 3.29: Solution of Example 2 with b = b2A obtained by the new method
using continuous piecewise quadratic finite elements, mesh with 1124 elements
and ε = 10−4. Although the solution is oscillation-free in mesh-nodes, it contains
oscillations inside layer-elements.
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Table 3.5: Computational errors in several types of norms. We applied the new
method to Example 2 using piecewise quadratic finite elements with b = b2A and
considered ε = 10−2, 10−3 and 10−4. Here eh = u− uh, ξh = Rhu− uh, Rhu ∈ P2
is the Lagrange interpolation of u, ∥ · ∥∞,d,P2 is the discrete maximum norm over
all P2-nodes, whereas ∥ · ∥∞,d,P1 is the discrete maximum norm over all P1-nodes.

ε Elms |ξh|1,Ω ∥ξh∥0,2,Ω ∥eh∥0,2,Ω ∥eh∥∞,d,P2 ∥eh∥∞,d,P1

1E-2 72 3.785E-02 9.884E-04 5.390E-03 1.053E-02 4.797E-03
1E-2 284 1.561E-02 3.087E-04 3.139E-03 3.724E-03 2.025E-03
1E-2 1124 5.964E-03 1.230E-04 1.642E-03 1.428E-03 1.176E-03
1E-2 4498 3.135E-03 7.922E-05 8.665E-04 9.872E-04 9.590E-04
1E-2 17956 2.596E-03 6.965E-05 4.402E-04 9.112E-04 9.056E-04
1E-3 72 8.459E-02 1.067E-03 8.050E-03 1.438E-02 4.418E-03
1E-3 284 1.049E-01 1.017E-03 5.610E-03 1.850E-02 8.684E-03
1E-3 1124 1.316E-01 8.360E-04 4.073E-03 1.732E-02 6.888E-03
1E-3 4498 1.555E-01 4.925E-04 2.809E-03 1.834E-02 3.366E-03
1E-3 17956 1.086E-01 1.803E-04 1.714E-03 1.039E-02 1.100E-03
1E-4 72 3.882E-02 4.718E-04 8.033E-03 9.013E-03 4.944E-03
1E-4 284 1.173E-01 4.217E-04 5.707E-03 1.950E-02 7.196E-03
1E-4 1124 1.454E-01 3.407E-04 4.074E-03 1.773E-02 4.859E-03
1E-4 4498 2.040E-01 3.445E-04 2.917E-03 2.030E-02 4.878E-03
1E-4 17956 2.757E-01 3.229E-04 2.104E-03 1.832E-02 6.354E-03
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Figure 3.30: Solution of Example 2 with b = b2A, ε = 10−3 and the mesh
containing 1124 elements, obtained by the new method using continuous piecewise
linear finite elements. In the right figure the layer correction was applied and the
solution is not smeared.
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L2-projection of P2(K) onto P1(K) (cf. equality 3.245), whereas the matrix of the
mapping R(2)

K tends to the matrix given by 3.252 (page 104). In Figure 3.31 one
can find a comparison of all considered vector fields . The error values of entries
given by the vector fields b1A and b1B are depicted in the upper row, whereas in
the bottom one can find the error values of entries given by the vector fields b2A

and b2B. Similarly, Figures 3.32–3.35 show not only a comparison of the vector
fields b2A and b2B, but also the convergence of the respective matrix entries when
the mesh is refined.

0.02
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0.1 

0.01

0.02

0.05

0.1 

Figure 3.31: In any quarter, each square (i, j), i, j = 1, 2, 3, corresponds to one
entry rK

ij of the matrix of the mappings R(2)
K , K ∈ Th. The color of each element

indicates how close is this entry to its limit state. Up: Example 1, 144 elements,
b1B left, b1A right; Down: Example 2, 284 elements, b2B left, b2A right
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Figure 3.32: Each square (m, j),m = 1, 2, 3, j = 1, 2, . . . , 6, corresponds to one
entry µ(j)

K,m of the matrix of the mappings Π(2)
b,K , K ∈ Th. The color of each element

indicates how close is this entry to its limit state. (Example 2B, 72 elements)
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Figure 3.33: Each square (m, j),m = 1, 2, 3, j = 1, 2, . . . , 6, corresponds to one
entry µ(j)

K,m of the matrix of the mappings Π(2)
b,K , K ∈ Th. The color of each element

indicates how close is this entry to its limit state. (Example 2B, 284 elements)
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Figure 3.34: Each square (m, j),m = 1, 2, 3, j = 1, 2, . . . , 6, corresponds to one
entry µ(j)

K,m of the matrix of the mappings Π(2)
b,K , K ∈ Th. The color of each element

indicates how close is this entry to its limit state. (Example 2A, 72 elements)
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Figure 3.35: Each square (m, j),m = 1, 2, 3, j = 1, 2, . . . , 6, corresponds to one
entry µ(j)

K,m of the matrix of the mappings Π(2)
b,K , K ∈ Th. The color of each element

indicates how close is this entry to its limit state. (Example 2A, 284 elements)
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4. Appendix

4.1 Important theorems and lemmas
Lemma 4.1.1. Suppose that b is in Ck of some neighborhood of Ω and k ≥ 1.
Every solution to the initial value problem

ζ ′(t) = b(ζ(t)), ζ(0) = ζ0 ∈ Ω, (4.1)

remains in some fixed neighborhood Ω1 of Ω for only a finite time in the time
interval (−∞,+∞) if and only if there exists a function ϕ ∈ Ck(Ω1) so that
b · ∇ϕ > 0 in Ω.

Proof. See Devinatz et al. (1974).

Theorem 4.1.1 (Green’s theorem). Let Ω ⊂ Rn be a domain with Lipschitz-con-
tinuous boundary ∂Ω. Then for each vector function f ∈ C1(Ω)n∫

Ω
div f dx =

∫
∂Ω
f · n ds (4.2)

holds. Here n is the outward pointing unit normal field of the boundary ∂Ω.

Proof. See, e.g., Matthews (1998).

Definition 4.1.1. For p ∈ [1,∞) we denote by Lp(Ω) the Lebesgue space of all
functions u measurable on Ω such that

∫
Ω |u(x)|p dx < +∞. The space Lp(Ω) is

equipped with the norm

∥u∥0,p,Ω =
(∫

Ω
|u(x)|p dx

)1/p

. (4.3)

Further, the space L∞(Ω) consists of such measurable functions on Ω for which
the norm

∥u∥∞,Ω = esssup Ω|u| = inf
{

sup
x∈Ω\Z

|u(x)|; Z ⊂ Ω, meas (Z) = 0
}

(4.4)

is finite. The space L2(Ω) is a Hilbert space with the inner product

(u, v)Ω =
∫

Ω
u(x)v(x) dx. (4.5)

For k ∈ N ∪ {0} and p ∈ [1,∞] we define the Sobolev space W k,p(Ω) as the space
of all functions from Lp(Ω) whose distributional derivatives Dαu, up to order k,
also belong to Lp(Ω), i.e.,

W k,p = {u ∈ Lp(Ω); Dαu ∈ Lp(Ω) ∀α : |α| ≤ k}. (4.6)

The Sobolev space W k,p(Ω) is equipped with the norm

∥u∥k,p,Ω =
⎛⎝ ∑

|α|≤k

∥Dαu∥p
0,p,Ω

⎞⎠1/p

for p ∈ [1,∞), (4.7)

∥u∥k,∞,Ω = max
|α|≤k

{
∥Dαu∥∞,Ω

}
for p = ∞, (4.8)
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and the seminorm

|u|k,p,Ω =
⎛⎝ ∑

|α|=k

∥Dαu∥p
0,p,Ω

⎞⎠1/p

for p ∈ [1,∞), (4.9)

|u|k,∞,Ω = max
|α|=k

{
∥Dαu∥∞,Ω

}
for p = ∞. (4.10)

Further, we denote Hk(Ω) = W k,2(Ω) and if k ̸= ∞ we put ∥u∥k,Ω = ∥u∥k,2,Ω and
|u|k,Ω = |u|k,2,Ω. For vector-valued functions v = (v1, v2, . . . , vn) ∈ W k,p(Ω)n we
put

∥v∥k,p,Ω =
(

n∑
i=1

∥vi∥2
k,p,Ω

)1/2

and |v|k,p,Ω =
(

n∑
i=1

|vi|2k,p,Ω

)1/2

. (4.11)

When there is no misunderstanding we also use ∥b∥∞ = ∥b∥∞,Ω = ∥b∥0,∞,Ω. For
more details about function spaces, see, e.g., Kufner et al. (1977) or Rudin (1987).

Theorem 4.1.2 (Lax-Milgram). Let V be a Hilbert space with the norm ∥ · ∥,
let f : V → R be a continuous linear functional V and let a : V × V → R be a
bilinear form on V × V that is coercive, i.e., there exists a constant α > 0 such
that

a(v, v) ≥ α∥v∥2 ∀ v ∈ V, (4.12)

and continuous (bounded), i.e. there exists a constant M > 0 such that

|a(u, v)| ≤ M∥u∥∥v∥ ∀ u, v ∈ V. (4.13)

Then there exists a unique solution u0 ∈ V of the problem

a(u0, v) = f(v) ∀ v ∈ V. (4.14)

Proof. See, e.g., (Ciarlet, 1978, Theorem 1.1.3).

Theorem 4.1.3 (Friedrichs’ inequality). Let Ω ⊂ Rn be a bounded domain with
Lipschitz continuous boundary Γ, then there exist positive constants CF and DF

depending on Ω and n such that for all v ∈ H1(Ω) holds

∥v∥0,Ω ≤ CF |v|1,Ω +DF ∥v∥0,Γ. (4.15)

In particular, when n = 1 then for all v ∈ H1(I), I = (a, b), holds

∥v∥2
0,I ≤

(
2(b− a)

π

)2

|v|21,I + 2(b− a)
π

(
v2(a) + v2(b)

)
. (4.16)

For v ∈ H1
0 (I) one can derive sharper estimate

∥v∥2
0,I ≤ (b− a)2

π2 |v|21,I . (4.17)

Proof. See, for instance, Rektorys (1999).
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Theorem 4.1.4 (Cauchy-Schwarz-Bunyakovsky inequality). Let (V, ⟨·, ·⟩) be an
inner product space. Then for each u, v ∈ V it holds

|⟨u, v⟩| ≤ ⟨u, u⟩ ⟨v, v⟩. (4.18)

The equality occurs if and only if there exists α ∈ R such that u = αv or v = αu.

Proof. See, e.g., (Garling, 2007, Proposition 2.3.1).

Theorem 4.1.5 (M-criterion). Let the matrix A satisfies aij ≤ 0 for i ̸= j. Then
A is an M-matrix if and only if there exists a vector e > 0 such that Ae > 0.
Furthermore, we have

∥A−1∥∞,d ≤ ∥e∥∞,d

mink(Ae)k

. (4.19)

Proof. See Axelsson and Kolotilina (1990).

Theorem 4.1.6 (Comparison principle). Let w ∈ C2(Ω) ∩ C(Ω) and L is defined
by (1.50) (page 14). If there holds

Lw ≥ 0 in Ω and w ≥ 0 on ∂Ω, (4.20)

then w ≥ 0 in Ω.

Proof. See, e.g., (Gilbarg and Trudinger, 2001, Theorem 3.3).

Definition 4.1.2 (Inverse-monotone matrix). A matrix A is called inverse-mo-
notone if A−1 exists and A−1 ≥ 0.

Theorem 4.1.7 (Discrete comparison principle). Let A be an inverse-monotone
matrix. Then Av ≤ Aw implies v ≤ w.

Proof. If A(w − v) ≥ 0, then using A−1 ≥ 0 implies

w − v = A−1
[
A(w − v)

]
≥ 0. (4.21)

4.2 Finite-element theory
Let us recall some basic theorems from the finite-element theory. For details see
Ciarlet (1978).

Definition 4.2.1. We say that two open subsets Q and Q̂ of Rn are affine-equi-
valent if there exists an invertible affine mapping F : Rn → Rn, F (x̂) = Bx̂+ r,
such that Q = F (Q̂).

Definition 4.2.2 (Xh-interpolant). Let there be given a finite element space Xh

with a set of degrees of freedom (functionals) Σh = {ϕj,h, 1 ≤ j ≤ M} and the
basis functions wj of Xh satisfying ϕi,h(wj) = δij for all 1 ≤ i, j ≤ M . Then with
any function v : Q → R sufficiently smooth so that the degrees of freedom ϕj,h,
1 ≤ j ≤ M , are well defined, we associate the function

Πhv =
M∑

j=1
ϕj,h(v)wj. (4.22)

The function Πhv is called the Xh-interpolant of the function v.
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Assumption 4.2.1 (Assumptions on Th). In the finite elements framework we
consider the following assumptions

(H1) We consider a regular family of triangulations Th in the following sense:

(a) The system of triangulations {Th}h∈(0,h0) is shape-regular, i.e. there
exists a constant σ > 0 such that for all K ∈ Th, h ∈ (0, h0), it holds

hK

ρK

≤ σ. (4.23)

(b) The quantity h = maxK∈Th
hK approaches zero.

(H2) The family (K,PK ,ΣK), K ∈ Th, h ∈ (0, h0), is an affine family of finite
elements (used for the construction of Xh), i.e. all the finite elements
(K,PK ,ΣK), K ∈ Th, h ∈ (0, h0), are affine-equivalent to a single element
(K̂, P̂ , Σ̂).

(H3) All the finite elements (K,PK ,ΣK), K ∈ Th, h ∈ (0, h0), are of class C0,
i.e. Xh ⊂ C0(Ω) for all h ∈ (0, h0).

Theorem 4.2.1 (Xh-interpolation). In addition to the assumptions (H1), (H2)
and (H3) let there exists integers k ≥ l ≥ 0, such that the following inclusions
are for each K̂ ∈ Th satisfied

Pk(K̂) ⊂ P (K̂) ⊂ H l(K̂), (4.24)
Hk+1(K̂) ↪→ Cs(K̂), (4.25)

where s is the maximal order of partial derivatives occurring in the definitions of
the set Σ̂.

Then there exists a constant CX independent of h such that, for any function
v ∈ Hk+1(Ω) ∩ V there holds

∥v − Πhv∥m,Ω ≤ CXh
k+1−m|v|k+1,Ω, for 0 ≤ m ≤ min{1, l}, (4.26)⎛⎝ ∑

K∈Th

∥v − Πhv∥2
m,K

⎞⎠1/2

≤ CXh
k+1−m|v|k+1,Ω, for 2 ≤ m ≤ min{k + 1, l},(4.27)

where Πhv ∈ Vh is the Xh-interpolant of the function v.

Proof. See (Ciarlet, 1978, Theorem 3.2.1).

Theorem 4.2.2 (Inverse inequality). Let the shape-regularity assumption (4.23)
be valid and let there be given two pairs (l, r) and (m, q) with integers m ≥ l ≥ 0
and real numbers r, q ∈ [1,∞] such that P (K) ⊂ W l,r(K)∩Wm,q(K). Then there
exists a constant Cinv = Cinv(σ, l, r,m, q) such that

|vh|m,q,K ≤ Cinv

h
m−l+n max{0,1/r−1/q}
K

|vh|l,r,K , for all vh ∈ P (K). (4.28)

When q = ∞ or r = ∞ we set 1/∞ := 0.

Proof. See (Ciarlet, 1978, Theorem 3.2.6).
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Remark 4.2.1. The inverse inequality can be also formulated without the shape-
regularity assumption (4.23) in the form:

For any dimension n > 1 and polynomial degree k ∈ N there exists a constant
Cn,k independent of hK , v and K such that

|v|1,K ≤ Cn,k
|∂K|
|K|

∥v∥0,K for all v ∈ Pk(K), k ∈ N. (4.29)

Using this inequality we can easily compute the constant Cinv. For instance,
in 2D there holds |∂K|

|K| = 2
ρK

which results in the estimates

4
√

3
hK

≤ |∂K|
|K|

≤ 2σ
hK

. (4.30)

It means that in 2D it is necessary σ ≥ 2
√

3 and for Cinv holds Cinv = 2σC2,k.
Following table provides several optimal values of the constants Cn,k (c.f. Ozısık
et al. (2010)).

n 2 3
k 1 2 3 4 1 2 3 4
Cn,k

√
6

√
45/2 ≈7.542 ≈10.946

√
40

√
126 ≈17.175 ≈24.365

Table 4.1: Several optimal values of the constants Cn,k for n = 2 and 3.

Denotation 4.2.1 (Orthogonal L2-projection). Let r ≥ 0 be an integer, then for
each K ∈ Th and for each φ ∈ L2(K) we can construct the polynomial approxi-
mation πK,rφ ∈ Pr(K) of the function φ satisfying

(πK,rφ− φ, v)K = 0 ∀v ∈ Pr(K). (4.31)

The function πK,rφ is uniquely defined and we called the mapping πK,r : L2(K) →
Pr(K) the orthogonal L2-projection onto the space Pr(K).

For each function ψ ∈ L2(K)n we also define a mapping πK,r : L2(K)n →
Pr(K)n by the relation

[πK,rψ]i = πK,rψi, for each i = 1, 2, . . . , n. (4.32)

Theorem 4.2.3 (Approximation property). When the shape-regularity assump-
tion (4.23) is valid then there exists a constant CΠ > 0 such that for all v ∈
W s,p(K), K ∈ Th, there holds

|πK,rv − v|m,p,K ≤ CΠh
µ−m
K |v|µ,p,K , (4.33)

where p ∈ [1,∞] and 0 ≤ m ≤ µ = min{r + 1, s}.

Proof. See, for instance, Doleǰśı and Feistauer (2015).

Corollary 4.2.1. If the shape-regularity assumption (4.23) is valid then for all
ψ ∈ W s,p(K)n, K ∈ Th, there holds

|πK,rψ −ψ|m,p,K ≤ CΠh
µ−m
K |ψ|µ,p,K , (4.34)

where p ∈ [1,∞] and 0 ≤ m ≤ µ = min{r + 1, s}.
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Proof. From Theorem 4.2.3 and the definition of πK,r it follows

|πK,rψ −ψ|m,p,K =
(

n∑
i=1

|πK,rψi − ψi|2m,p,K

)1/2

≤ (4.35)

≤ CΠh
µ−m
K

(
n∑

i=1
|ψi|2µ,p,K

)1/2

= CΠh
µ−m
K |ψ|µ,p,K .

Lemma 4.2.1. Let n ∈ N and let K ⊂ Rn be a simplex with nodes PK,i, i =
1, 2, . . . , n+ 1. Then every vh ∈ P1(K) satisfies

|K|
(n+ 1)(n+ 2)

n+1∑
i=1

v2
h(PK,i) ≤ ∥vh∥2

0,K ≤ |K|
n+ 1

n+1∑
i=1

v2
h(PK,i). (4.36)

Proof. Let us denote v = (vh(PK,1), vh(PK,2), . . . , vh(PK,n+1))T and let A be a
matrix satisfying aii = 2, for i = 1, 2, . . . , n + 1, and aij = 1 for i ̸= j, i, j =
1, 2, . . . , n+ 1. Then

∥vh∥2
0,K =

∫
K

(
n+1∑
i=1

vh(PK,i)λK,i

)2

dx =

= 2|K|
(n+ 1)(n+ 2)

⎧⎨⎩
n+1∑
i=1

v2
h(PK,i) +

∑
1≤i<j≤n+1

vh(PK,i)vh(PK,j)

⎫⎬⎭ =

= |K|
(n+ 1)(n+ 2) v

TAv. (4.37)

Thus, it remains to determine the eigenvalues of A. Since the characteristic
polynomial of the matrix A is det(A − λI) = (n + 2 − λ)(1 − λ)n, we get |v|2 ≤
vTAv ≤ (n+ 2)|v|2 which completes the proof.

Lemma 4.2.2. Let n ∈ N and let ai, i = 1, 2, . . . , n, be arbitrary real numbers.
Then (

n∑
i=1

ai

)2

≤ n
n∑

i=1
a2

i . (4.38)

Proof. From the Cauchy-Schwarz-Bunyakovsky inequality (Theorem 4.1.4, page
126) it follows that(

n∑
i=1

ai

)2

=
(

n∑
i=1

1 · ai

)2

≤
(

n∑
i=1

12
)(

n∑
i=1

a2
i

)
= n

n∑
i=1

a2
i . (4.39)

Corollary 4.2.2. For any n ∈ N and s
(i)
K ≥ 0, i = 1, 2, . . . , n, K ∈ Th, it holds

n∑
i=1

⎛⎝ ∑
K∈Th

s
(i)
K

⎞⎠1/2

≤

⎛⎝n n∑
i=1

∑
K∈Th

s
(i)
K

⎞⎠1/2

=
⎛⎝n ∑

K∈Th

n∑
i=1

s
(i)
K

⎞⎠1/2

. (4.40)

Proof. It suffices to take ai =
(∑

K∈Th
s

(i)
K

)1/2
in Lemma 4.2.2.
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Conclusion
In the first part of this thesis we were concerned with the construction of the
asymptotic expansion of singularly perturbed convection-diffusion equations. We
adjusted approaches and techniques derived for one-dimensional problems and
applied them to the two-dimensional case. Additional corner correction terms
had to be added to the sum of the standard layer functions. Consequently, we
proved the asymptotic behavior of this structure and derived an exact formula for
the zeroth-order matched asymptotic expansion in the two-dimensional domain
containing exponential boundary layers and with inner angles of the form π/m,
m ∈ N, m ≥ 2. Finally, we verified our theoretical results by experiments.

The second part of the thesis was devoted to a brief overview of several sta-
bilizing techniques. We demonstrated their behavior and mutual interconnection
on a set of examples. We showed that for constant data almost all of them are
equivalent. Several observations were later employed in the rest of the thesis. We
concluded this part of the thesis with the proof of the uniform convergence of the
Il’in-Allen-Southwell scheme in 1D. We also showed how the constants appearing
in this proof depend on problem parameters.

In the third and most important part of this thesis we presented a modification
of the classical SUPG finite element method for solving singularly perturbed
problems. This modification is based on the observation that when convection
dominates the value of the solution at any single point depends only on the values
at nodes laying on the same streamline in the upwind direction. Therefore, one
should construct the triangulation of the computational domain in such a way
that this property holds for the discrete solution as well.

Further, we showed that once we have the mesh oriented along streamlines
and the divergence of the given vector field b is non-positive, we can discretize
b and add stabilizing terms so that the problem bilinear form is coercive and
the method satisfies the discrete maximum principle. Moreover, we were able
to derive the a priori error estimates in the SUPG-like energy norms. We also
presented the a priori error analysis of the SUPG method itself.

In the remaining sections of the thesis we introduced several modifications of
the new method. We used knowledges acquired in the second part of the thesis
and proposed several stabilizing terms that can improve the L∞-convergence at
layers. Finally, we demonstrated how to extend the new method to higher order
finite elements and carried out several numerical experiments on heuristically
constructed meshes. Both — linear and quadratic — finite elements provided
satisfactory results and computational errors confirmed our expectations.

To be able to use this method in the future one should firstly design a suitable
mesh-generator cooperating with the method. The modifications of the method
could be improved as well. The extension to higher dimensions and higher order
finite elements is not yet fully resolved and a derivation of further corner ex-
pansions may lead to the construction of the uniformly convergent scheme (with
respect to ε) in 2D, or even 3D.
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atické fyziky. Česká matice technická. Academia, Prague, 1999. ISBN 978-80-
200-0714-8.

133
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