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Abstract: Time-dependent and three-dimensional flow of Newtonian fluid is studied in
context of two biomechanical applications, flow in cerebral aneurysms and flow in stenotic
valves.
In the first part of the thesis, the computational meshes obtained from the medical imaging
techniques are used for the computation of hemodynamic parameters associated with the
rupture potency of the cerebral aneurysms. The main result is the computation within
twenty geometries of aneurysms. It is shown that the aneurysm size has more important
role in wall shear stress distribution than the fact whether the aneurysm is ruptured or
unruptured.
The second part of the thesis is addressed to the flow in stenotic valves. It is shown
that the method currently used in medical practice is based on assumptions which are too
restrictive to be apply to blood flow in the real case. The full continuum mechanics model
is presented with physiologically relevant boundary conditions and it is shown that results
are consistent with measured data obtained from literature.
Then we focus on the obtaining the pressure field from the velocity field. The presented
method provides more accurate pressure approximation than commonly used Pressure
Poisson Equation. The last chapter of the thesis is dedicated to Nitsche’s method for
treating slip boundary condition. The numerical results are presented in comparison to
the flow with no-slip boundary condition and the differences are significant.
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iii



Contents

1 Introduction - computational fluid dynamics 6
1.1 Heart anatomy and the cardiac cycle . . . . . . . . . . . . . . . . . . . . . 6
1.2 Willis Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Structure and the main results of the thesis . . . . . . . . . . . . . . . . . 9
1.4 Simplifying assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Flow in patient specific geometries representing cerebral arteries affected
by an aneurysm 14
2.1 Computational geometry for patient - specific modeling . . . . . . . . . . . 15
2.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Hemodynamic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Numerical simulation in comparison with numerical benchmark . . . . . . 27
2.5 Numerical simulation performed on two inflow aneurysm geometry . . . . . 31
2.6 Numerical simulation of the wall shear stress on 20 middle cerebral aneurysms 36
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Flow in highly narrowed domains representing stenotic aortic valve 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Derivation of assumptions leading to the Bernoulli equation . . . . . . . . 52
3.3 Determination of dissipated energy using continuum mechanics approach . 59

3.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Numerical model and outflow boundary treatment for circulation . . . . . 65
3.5 Numerical computations of the pressure drop and dissipated energy . . . . 68
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Computation of the pressure data directly from velocity data including
the potential error in measurements 75
4.1 Determining the pressure for the flow of the Navier-Stokes fluid . . . . . . 76

4.1.1 Reference flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Determination of the pressure by the PPE method . . . . . . . . . 78
4.1.3 Determination of the pressure using the STE method . . . . . . . . 79
4.1.4 Weak formulation of the problems . . . . . . . . . . . . . . . . . . . 79

4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Fine data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 Coarse data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Data with the noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Computation of the pressure from the velocity field in patient specific geometry 92
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

1



5 Flow with slip boundary condition on the wall 96
5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Nitsche’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Conclusion 112

Bibliography 114

List of Figures 124

List of Tables 126

2



Abbreviations and notation

Abbreviations

CFD
HR
AV
FSI
ALE
NS
CT
MR

wss
WSS
WSSG
OSI
RRT
P-
TA-
AR
EL
PLc
LSA
ICI
SCI
VDR

AS
AVA
LV
SET, SEP
CO
r
SEE
SV
F

PPE
STE

computational fluid dynamics
heart rate
aortic valve
fluid structure interaction
arbitrary Lagrangian-Eulerian
Navier-Stokes
computed tomography
magnetic resonance

wall shear stress vector
wall shear stress (wall shear stress vector magnitude)
gradient of wall shear stress vector
oscillatory shear index
relative residence time
peak values
time averaged values (over a cardiac cycle)
aspect ratio
energy loss
pressure loss coefficient
low shear area
inflow concentration index
shear concentration index
viscous dissipation ratio

aortic stenosis
aortic valve area
left ventricle
systolic ejection time, systolic ejection period
cardiac output
correlation coefficient
standard error in estimation
stroke volume
flow rate

Pressure Poisson Equation
Stokes Equation

Abbreviations used for the main arteries in Willis circle are provided in Tab. 1.1.
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Notation

v velocity
p pressure
T Cauchy stress tensor
n unit outer vector normal to the boundary
Tn surface-traction vector
t time
T maximal computational time
Ω bounded fixed computational domain in R3

R3 three-dimensional Euclidean Space
∂Ω boundary of the computational domain
Γin,Γout,Γwall parts of the boundary
ρ∗ constant density
µ∗ constant dynamic viscosity
ν∗ constant kinematic viscosity

V (t) magnitude of the inlet velocity averaged over the inlet plane

P (t) prescribed pressure averaged over the otlet plane
D symmetric part of the velocity gradient
vtest, ptest test functions
V, P function spaces for the velocity and the pressure
Vh, Ph discrete approximations of V, P spaces
vh, ph discrete approximations of functions v, p
vtest
h , ptesth discrete approximations of test functions vtest, ptest

C(Ω) space of continuous functions on Ω[
C(Ω)

]3
space of continuous vector functions on Ω

L2(Ω), L2(∂Ω) Lebesgue spaces[
H1(Ω)

]3
Sobolev space W1,2(Ω) of vector functions on Ω

(f, g)Ω scalar product in L2(Ω); f, g ∈ L2(Ω)
(f, g)∂Ω scalar product in L2(∂Ω); f, g ∈ L2(∂Ω)

(u,v)Ω scalar product in
[
L2(Ω)

]3
; u,v ∈

[
L2(Ω)

]3
K,E tetrahedron, triangle
P1(K) space of linear functions on K
P+
1 (K) space of linear functions on K with additional bubble function

I time interval [0,T]
Lp (I, X) Bochner space
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| |
g
h
Ek, Edis
Q
·
⊗
pdrop

D
d
mmHg
(f)−

Γ

L, l
∥f∥L2

∥f∥H1

vector magnitude or absolute value of the scalar value
standard acceleration due to gravity
height of fluid appearing in hydrostatic pressure hρg
kinetic energy, rate of energy dissipation
flow rate
scalar product
dyadic product
pressure difference pin − pout

diameter of the valve without stenosis
diameter of the stenotic valve
millimeters of mercury; 1 Pa = 0.0075mmHg
negative part of function f;

(f)− = f while f < 0, (f)− = 0 while f ≥ 0
cross-sectional area perpendicular to the centerline

length of the valve; length of the stenotic part of the valve
L2− norm of function f ∈ L2(Ω); ∥f∥L2 = (f, f)Ω
H1− norm of function f ∈ H1(Ω);

∥f∥H1 = (f, f)Ω + (∇f,∇f)Ω

5



1. Introduction - computational fluid
dynamics

Analyzing fluid flow through the computational fluid dynamics has been used in many med-
ical applications. The computational simulations have been performed on different medical
topics including heart disease, ventricle function, cerebrovascular diseases, plaque forma-
tion in carotid bifurcation, air flow in lungs, artificial organ design and others (Cebral et al.,
2010; He, 1996; Qi et al., 2014; Dasi et al., 2009). The problem consists of several parts
including the problem definition, definition of the the patient specific geometry through
the imaging techniques, problematic of boundary and initial conditions derivation, smooth
fine volumetric mesh generation, model description with the proper choice of the numerical
method and solver, and finally the visualization of the results and data interpretation. In
all these steps one can work with only limited data accuracy and has to be careful to draw
any conclusion relevant to medical practice. The thesis focuses on all of these aspects with
respect to two applications, the flow in cerebral arteries affected by an aneurysm and the
flow in aortic valves affected by a stenosis.

1.1 Heart anatomy and the cardiac cycle

The heart is an organ serving as a pump to the blood circulation. Heart is divided into
four chambers, right atrium, right ventricle, left atrium and left ventricle, see Fig. 1.1.
Deoxygenated blood goes through the right atrium and ventricle to the pulmonary valve
and the lungs. Oxygenated blood goes back to the left atrium and, through the mitral
valve, to the left ventricle.

Leaving the heart, blood goes to the ascending aorta and then to the rest of the body.
Between all chambers there is a valve, highly deformable viscoelastic body which is opening
and closing during a cardiac cycle, namely there is a mitral valve between the left atrium
and left ventricle, and an aortic valve between the left ventricle and aorta. The stimulus
for the movement is the pressure difference or so called pressure drop. The dependency of
their movement on the pressure is described in Fig. 1.2.

The length of cardiac cycle depends on the number of heart beats per minute, it means
that for heart rate (HR) 70 beats per minute the length of cardiac cycle can be calculated as
60/70 = 0.86 s. A cardiac cycle has two phases, systole and diastole. From a left ventricle
point of view, there is an ejection phase during the systole (systolic ejection period) and a
filling phase during the diastole. The blood pressure in the left ventricle moves between 0
to about 110mmHg, in contrary to the aorta where minimal pressure is about 75mmHg.
Volume of the blood going from the left ventricle per beat is about 100ml for men and
85ml for women (Maceira et al., 2006).
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Figure 1.1: Heart. (from (MedicineNet, Inc., 2017))

1.2 Willis Circle

The cerebral aneurysms, pathologic extensions of the brain vessels, typically occur within
the arteries of the Circle of Willis. The Willis circle is a system of arteries that sits at the
base of the brain, see Fig. 1.3. In this thesis we will use the common abbreviations for
arteries in Willis circle. The list of them is provided in Tab. 1.1.

short name
ACA anterior cerebral artery

AComA anterior communicating artery
MCA middle cerebral artery
OA ophtalmic artery
ICA internal carotid artery

PComA posterior communicating artery
PCA posterior cerebral artery
BA basilar artery

Table 1.1: The abbreviations for main arteries in Willis circle.
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Figure 1.2: Blood pressure in the left ventricle during a cardiac cycle.
(from (Wikipedia, 2017a), modified.) Phase 1, left ventricle is filled by blood. Mitral
valve (MV) is open, aortic valve (AV) is closed. The left ventricular pressure is almost 0.
Phase 2, the pressure of the left atrium exceeds the left ventricular pressure and mitral
valve closes. Aortic valve remains closed. There is isovolumic contraction, when pressure
in the left ventricle increases up to exceed the aortic pressure. Phase 3, the pressure of
the left ventricle exceeds the aortic pressure and aortic valve opens. This phase is called
systolic ejection period while volume of the left ventricle blood is decreasing to its min-
imum value. Phase 4, ejecting the blood, left ventricular pressure is decreasing, aortic
pressure exceeds the left ventricular pressure and aortic valve closes. This phase is called
isovolumic relaxation. There is an increase in aortic valve pressure to ensure the blood
would not go back (and down) to the heart.

Figure 1.3: Willis circle. (from (Wikipedia, 2017b), modified.)
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1.3 Structure and the main results of the thesis

The thesis consists of four chapters focusing on four different topics of biomechanical prob-
lems applied to the flow in cerebral arteries affected by an aneurysm (chapter 2) and the
flow in aortic valves affected by a stenosis (chapters 3-5).

The chapter 2 is based on my research of the blood flow in the cerebral aneurysms with
main focus on the patient specific geometries and flow conditions. All data were obtained
in cooperation with three institutions: the Department of Neurosurgery of Masaryk Hospi-
tal, J. E. Purkyně University in Úst́ı nad Labem in Czech Republic, International Clinical
Research Center, St. Anne’s University Hospital in Brno in Czech Republic and Divi-
sion of Engineering, Mayo Clinic in Rochester in Minnesota, United States. Two original
articles, raising from this cooperation, have already been published. There is also a con-
tribution to a CFD benchmark (Berg et al., 2015). The results presented there are used in
sections 2.3, 2.4 and 2.5. An article concerning the hemodynamic parameters in ruptured
and unruptured MCA aneurysms is to be published. It is modified for the purpose of this
thesis and presented in section 2.6.

There are several contributions of this chapter. The process of obtaining computational
meshes from medical imaging techniques is presented and the meshes are used for the cal-
culation. The study of two inflow geometry of an ruptured aneurysm is provided showing
that the peak values of wall shear stress and normal pressure have the same location for
different prescribed ratios between the flow coming through the first and the second in-
put plane. Moreover, this location corresponds to the point of aneurysm rupture. Then
the hemodynamic parameters associated with the aneurysm rupture status (whether the
aneurysm is unruptured or ruptured) are presented and discussed in context of the com-
putation of the flow in twenty middle cerebral aneurysms. It is shown that the size of the
aneurysm has more important role in wall shear stress distribution than the fact whether
the aneurysm is ruptured or unruptured. The suggested approach is to compare the flow
in volume matched pairs of ruptured and unruptured aneurysms.

The chapters 3 and 4 are based on two original articles presented as a study focusing
on the application in cardiovascular mechanics of stenotic aortic valves. The second part
of this study concerns on the direct computation of the energy dissipation and pressure
loss in the narrowed pipes. The text of the article was modified in chapter 3 to eliminate
the medical background and to provide more information about current approaches to the
pressure drop and orifice area calculations. The chapter 4 is based on the first part of
the study with small modifications. The study of the flow in stenotic aortic valves was
prepared in cooperation with the University of Texas-Houston/Memorial Hermann Texas
Medical Center, Center for Advanced Heart Failure in Houston in Texas, United States and
with Texas A&M University, Department of Mechanical Engineering in College Station in
Texas, United States.
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The current methods used for stenosis evaluation (whether this is physiologically rel-
evant or not) are based on comparing the value of the transvalvular pressure difference
computed through the simplified Bernoulli equation. The assumptions leading to the con-
servation of mass, expressed by Bernoulli equation, are presented in chapter 3. Their
oversimplification is demonstrated in section 5.3 where the surface integrals, neglected in
this approach, are computed next to the values of transvalvular pressure difference and
dissipated energy. In opposite to this method, the full time-dependent Newtonian model,
using realistic three-dimensional geometry and physiologically relevant boundary condi-
tions, is presented. The numerical quantities are then computed in the valvular geometries
with severity up to 80%. The boundary condition preventing the recirculation on the outlet
(and consequent numerical instability) is prescribed.

The chapter 4 is devoted to the determination of the pressure data from known (possibly
measured) velocity data. Two methods are tested in idealized geometries of aortic stenotic
valves with symmetric and non-symmetric obstacle. The verification of the methods on
patient-specific geometries is added in section 4.3. The classical Pressure Poisson equation
method is numerically compared with the method based on the Helmhholtz decomposition
leading to the Stokes equation. This method allow us to compute the pressure under lower
regularity requirements on the given velocity and it is shown that it provides more accurate
pressure approximation.

The chapter 5 is related to chapter 3 as it concentrates on the same issues considering
however slip boundary condition on the wall (instead of no-slip boundary condition consid-
ered in chapter 3). We presented the Nitsche’s method for three-dimensional Navier-Stokes
equations applied on the free (or perfect) slip boundary condition on the walls. The satis-
faction of the condition v · n on Γwall is tested and numerical results are provided on the
valvular geometries with symmetric stenoses up to 50% severity. The differences between
the computations using free-slip and no-slip boundary conditions are remarkable. The
other benefit of this chapter is computation of the integrals arising from the Navier-Stokes
equations and appearing also in the Bernoulli equation. It is shown that the values of
surface integrals, neglected in Bernoulli equation, are comparable next to the values of
transvalvular pressure difference and dissipated energy.

Specifically, the thesis incorporates the following articles (parts of abstracts are pro-
vided):

1, Berg, et al. (2015): The computational fluid dynamics rupture challenge 2013 phase
II: Variability of hemodynamic simulations in two intracranial aneurysms. In: Journal of
Biomechanical Engineering, 137(12): 121008.
The International CFD Rupture Challenge 2013 seeked to comment on the sensitivity of
the various CFD assumptions to predict the rupture by undertaking a comparison of the
rupture and blood-flow predictions from a wide range of independent participants utilizing a
range of CFD approaches. Twenty-six groups from 15 countries took part in the challenge.
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Participants were provided with surface models of two intracranial aneurysms and asked
to carry out the corresponding hemodynamics simulations, free to choose their own mesh,
solver, and temporal discretization. They were requested to submit velocity and pressure
predictions along the centerline and on specified planes. Participants were free to choose
boundary conditions in the first phase, whereas they were prescribed in the second phase,
described in this paper, but all other CFD modeling parameters were not prescribed.

2, Sejkorová, A., Dennis, K. D., Švihlová, H., Petr, O., Lanzino, G., Hejčl, A., and
Dragomir-Daescu, D. (2016): Hemodynamic changes in a middle cerebral artery aneurysm
at follow-up times before and after its rupture: a case report and a review of the literature.
In: Neurosurgical Review, 40(2): 329338.
Hemodynamic parameters play a significant role in the development of cerebral aneurysms.
Parameters such as wall shear stress or velocity could change in time and may contribute to
aneurysm growth and rupture. However, the hemodynamic changes at the rupture location
remain unclear because it is difficult to obtain data prior to rupture. We analyzed a case
of a ruptured middle cerebral artery aneurysm for which we acquired imaging data at three
time points, including at rupture. Imaging data from two visits before rupture and the 3D
DSA images at the moment of aneurysm rerupture were acquired, and CFD simulations
were performed.

3, Hejčl, A., Švihlová, H., Radovnický, T., Sejkorová, A., Adámek, D., Hron, J., Dragomir-
Daescu, D., and Sameš, M. (2017): Computational fluid dynamics of a fatal ruptured ante-
rior communicating artery aneurysm a case report. Submitted in: Journal of Neurological
Surgery Part A.
Using CFD to model the hemodynamics in ruptured aneurysms may provide better in-
sight into the rupture risk described by the hemodynamic parameters in light of the real
rupture situation. Several studies have assessed the hemodynamic parameters in ruptured
aneurysms, such as wall shear stress, flow velocity or flow characteristics. In this report
we present the case of a patient operated on for a ruptured anterior communicating artery
aneurysm. The CFD parameters were calculated and correlated to the site of the rupture.

4, Švihlová, H., Hron, J., Málek, J., Rajagopal, K. R., and Rajagopal, K. (2016): De-
termination of pressure data from velocity data with a view toward its application in
cardiovascular mechanics. Part 1. Theoretical considerations. In: International Journal
of Engineering Science, 105:108127.
In this paper we discuss a rigorous new mathematical procedure for the determination of
the pressure (mean normal stress) field, from data for the velocity field that can be obtained
through imaging procedures such as 4D magnetic resonance imaging or echocardiography.
We then use the procedure to demonstrate its efficacy by considering flows in an idealized
geometry with a symmetric and asymmetric obstruction. We delineate the superiority of
the method with regard to the methods that are currently in place.

5, Švihlová, H., Hron, J., Málek, J., Rajagopal, K. R., and Rajagopal, K. (2017). De-
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termination of pressure data from velocity data with a view towards its application in
cardiovascular mechanics. Part 2: A study of aortic valve stenosis. In: International Jour-
nal of Engineering Science, 113:3750.
This paper is Part 2 of a study of blood flow across cardiovascular stenoses. In this Part,
existing methods for quantifying stenoses, with specific reference to cardiac valves, are
reviewed. Using the mathematically rigorous and physically accurate approach that we de-
veloped in Part 1, for a pre-specified flow velocity field proximal to the stenosis and pressure
waveform field distal to the stenosis, we ascertain the intro-stenosis and distal flow velocity
field, pressure field proximal and within the stenosis, and energy dissipation, all as func-
tion of position and time. The computed dissipation, kinetic energy and pressure are then
presented in an idealized, but realistic, geometry, with a symmetric stenosis.

1.4 Simplifying assumptions

Several assumptions were taken into account in this thesis, more or less limiting the value
of the results. They are listed below.

• The blood is taken as a Newtonian fluid. This can be considered in the case of flow in
ascending thoracic aorta (diameter of the vessel about 24mm, time averaged velocity
about 0.5 m

s
) but it can be problematic in case of cerebral vessels (diameter of the

vessel about 3mm, velocity about 0.5 m
s
) or in case of stenotic valves (diameter of

the 80% stenotic valve about 5.4mm, velocity up to 3 m
s
).

The presence of the Fahraeus-Lindqvist phenomenon (a decrease of the blood vis-
cosity flowing through the capillaries) was verified in tubes of lower than 0.2mm
diameter. In two cases used in the thesis the ratio between the diameter of the red
blood cell (8µm) and the vessel diameters are about 0.3 ·10−3 for healthy aortic valve
and 1.5 ·10−3 for 80% stenotic valve, and 2.7 ·10−3 for cerebral vessel, so the diameter
of the vessel should be high enough for this critical case. On the other hand, even
a fluid showing Newtonian characteristics at changing shear rates but exhibiting in-
creasing normal stress at increasing shear rate - even Newton-like plasma can exhibit
normal stress differences (Dintenfass, 1985).

Moreover, it was shown that Newtonian model underestimated blebs (an irregular
bulge of aneurysm, see Fig. 2.1) ) in comparison with Carreau viscosity model (Hip-
pelheuser et al., 2014), more specifically blebs presence moves the wall shear stress
histograms to the left. This was significant for non-Newtonian case but not in New-
tonian case.

The Newtonian fluid assumption may also underestimate the viscosity and over-
estimate WSS in regions of stasis, as was shown in comparison with Casson and
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Herschel-Bulkley models (Xiang et al., 2011).

To the flow in the aorta (diameter of the vessel about 24mm, time averaged veloc-
ity about 0.5 m

s
), it was shown that overall velocity distributions and wall pressure

distributions were similar in comparison with Casson model. On the other hand,
the Newtonian model underestimated the wall shear stress values up to 8.121Pa ∼
0.061mmHg (Kumar et al., 2017) .

• The vessel walls were considered rigid in the thesis which is probably the most lim-
iting assumption, especially for the modelling flow in aortic valves.

There are several studies concerning the fluid structure interaction (FSI) with hemo-
dynamic applications and using the different approaches, i.e. Arbitrary Lagrangian-
Eulerian (ALE) formulation with monolithic coupling approach (Mádĺık, 2010) or
with monolithic geometric multigrid solver (Richter, 2015). The FSI was computed
in the 3D model of patient-specific aorta and in the 3D model representing abdominal
aortic aneurysm in (Bertoglio, 2012) using the 3D-0D coupling on the outlets.

Aneurysm growth was neglected in this study, as the plaque growth in the stenotic
valves. Both problems, interaction with the solid tissue and its growth, are more
demanding for the computational time and efficient numerical methods. There is
also a difficulty concerned to getting proper wall parameters.

• Only mechanical properties of the flow are considered, possible effects of the chemical
and electrical properties are neglected. However, the blood flow exhibits also the
thermal, and even the optical properties (Woodcock, 1976).

• Other limitations are related to wall compliance in patient-specific geometries and
to the fact that small vessels are neglected, to outflow conditions used in chapter 2
(stress free) and to the limiting accuracy of the measurements of boundary conditions.

• Finally, the inflow and outflow conditions are simplified to Dirichlet or Neumann
boundary conditions. The blood passes through the circulatory system and the choice
of proper boundary conditions can be modeled by another technique such as 3D-0D
coupling. However, there is a problem to identify proper coupling parameters in such
a case.

13



2. Flow in patient specific geometries
representing cerebral arteries
affected by an aneurysm

A cerebral aneurysm can be defined as a local extension of the cerebral vessel, usually
expressed by the outpouching. Its rupture can lead to a fatal situation as a stroke and a
subanachroid hemorrhage.
With increasing popularity of modern imaging techniques an aneurysm is more often de-
tected. This brings a question whether one can identify the factors leading to the aneurysm
rupture.
An estimated 5% of the general population is affected by the cerebral aneurysms but the
risk of rupture is only about 1.5-2% per year (Rinkel et al., 1998). On the other hand, in
the case of aneurysm rupture, about one quarter of patients die, while roughly half of the
survivors live with persistent neurological deficits (Meng et al., 2013).

Aneurysms can be divided according to their location, size, shape and rupture status.
An aneurysm is usually formed as an aneurysm sac and a visible neck, see schema in Fig. 2.1.
Usually only the arteries located on a Willis circle can be affected, see Fig. 1.3. Aneurysms
can be saccular (located in the branching of the vessels) or sidewall (or fusiform). More
than 80% of the aneurysms are saccular (Meng et al., 2013).

Figure 2.1: The scheme of an aneurysm: The blood goes from the parent artery to the
aneurysm. The first picture shows the sidewall aneurysm with a visible neck, the second
one shows the saccular aneurysm. The bleb, an irregular bulge, can be presented in both
types of aneurysms.

Computational fluid dynamics (CFD) has been gaining increasing interest in the clini-
cal community. The geometry for each case is unique as the flow condition. CFD studies
are based on two patient specific inputs. Firstly, the 3D geometry, including the inflow
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and outflow blood vessels and the aneurysm itself, and secondly, the inflow and outflow
boundary conditions.

This chapter is divided into 7 sections. We briefly recall the process of obtaining the
patient-specific geometry, as was described in (Švihlová, 2013). This is done in section 2.1.
To see how the flow conditions can be derived from magnetic resonance, one can see i.e.
(Rebergen et al., 1993). The numerical model is presented in section 2.2 and the hemody-
namic parameters, describing the flow in the aneurysm and thought to be responsible for
initiation, growth or rupture of the aneurysm, are described in section 2.3. The method
is then applied to a geometry of the ruptured aneurysm with two inflows to describe the
hemodynamics near the rupture location, see section 2.5, and to the 20 middle cerebral
aneurysms, 10 ruptured and 10 unruptured, to show the hemodynamic parameters depen-
dence on the aneurysm rupture status and volume, see section 2.6. A comparison of the
computation with PIV model and other CFD groups, published as a numerical bench-
mark in (Janiga et al., 2014), is provided in section 2.4. The influence of hemodynamic
parameters to the aneurysm rupture status is discussed in section 2.7.

2.1 Computational geometry for patient - specific

modeling

Mesh quality has a big influence on an accuracy of the computations for solving partial
differential equations. In this section we will briefly describe the process of obtaining
computational mesh from the imaging techniques such as computed tomography. For
better illustration, the process is shown in Fig. 2.2. We start with a description of getting
the voxel representation of data from computer tomography. The process of obtaining
smooth surface mesh from the voxel array follows. At the end, volumetric tetrahedral
mesh is derived.

From CT scan to voxel segmentation

The result of an imaging technique is a set of 2D slices of pixels with different intensities
and resolution in a range about 0.4 − 0.7mm. Each of them represents one thickness of
the whole image. Scanning the brain, big amount of X rays passes through the tissue.
Slices show the permeability of the tissue on each pixel expressed by the real number. This
number measures the coefficient of the ray weakness passing through the tissue (Jovanović
and Jovanović, 2010). A voxel, volumetric element, is a three-dimensional version of the
pixel. The voxel resolution is specific for each machine. Voxel resolution is given by
resolution of a pixel and by a distance between the slices. By voxel representation of the
data we mean a three-dimensional binary array where 1 expresses the tissue presence and
0 expresses the tissue absence in particular voxel.

Defining what part of the CT scan belongs to the final image is not an automatic
process. One can pass through each slice and define the region to be segmented. The
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program itk-snap was used for the purpose of this work. Itk-snap is a tool for ”3D active
contour segmentation of anatomical structures” (Yushkevich et al., 2006). The other option
is to prescribe the interval of real numbers representing image intensity. However, this
process leads to both, to obtain the holes in the image and to add redundant tissue.
The relevant image also has to be defined by a person. The advantage of this process is
commercial software existence, i.e. Mimics 16.0 (Materialise, Leuven, Belgium). Both ways
are challenging and demand the experienced neurosurgeon or neuroradiologist to decide
whether the final geometry corresponds to the reality. Small arteries are usually neglected.
The geometries used in this work were segmented in Department of Neurosurgery, Masaryk
hospital, Úst́ı nad Labem and Department of Engineering, Mayo hospital, Rochester MN.
Both methods and softwares were used.

Figure 2.2: The process of obtaining patient specific geometry includes the CT scan with
high resolution, accurate voxel segmentation of the vessel, generating surface mesh and
finally smoothing, generating volumetric mesh and prescribing inlets and outlets with pos-
sible shortening and elongating of the outputs.
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From voxel segmentation to the computational mesh

We will describe the process of obtaining the surface mesh through the isosurface creating
as is used in program iso2mesh (Fang and Boas, 2009) based on CGAL library (The CGAL
Project, 2016). All meshes used in this chapter were obtained by the process described in
the previous section.

An example of voxel segmentation is shown in the second part of Fig. 2.2. Usually, some
voxels has to be interactively removed to prevent the surface intersection. Isosurfaces are
surfaces with the same level of intensity. That is prescribed through the isovalue, the real
number from the interval [0, 1]. Each voxel in the segmentation is divided into 6 tetrahedra
and created mesh is a base to generating surface mesh. All vertices are numbered according
to the number of tetrahedra they belonged to. The numbers are always taken from [0, 1].
Then the isosurface is generated according to the prescribed isovalue. For illustration, the
schema for two-dimensional array is shown in Fig. 2.3.

Figure 2.3: Schema of isosurface method for two-dimensional array. The isosurface, in two
dimensions isocurve, is prescribed by connecting the points with the same value of the
intensity. This isovalue must be prescribed, it is 0.5 in this case.

The generated surface mesh must be smoothed. The goals of smoothing meshes for
medical computations can be divided into two categories. The first is to visually improved
the mesh, to reduce parts with sharp edges and with ”stairs”. The second category is to
preserve the volume and distances in the image. This category also includes the problem
of stopping criteria (Bade et al., 2006).

Smoothing filters can be used to improve the mesh. The backward Laplacian filter
is used in this work. It is an iterative method. The position of each mesh vertex is
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symbol name value

ρ∗ density 1000 kg
m3

µ∗ dynamic viscosity 3.71.10−3 Pa s

ν∗ kinematic viscosity 3.71.10−6 m2

s

Table 2.1: Constant parameters used in calculation.

recalculated from its current position and the position of its neighbors in each iteration.
The length of the input and output vessels can be prescribed. Finally, the tetrahedral

volumetric mesh is computed by Delaunay triangulation. This algorithm is also part of
iso2mesh program. The example of final computational mesh is shown in Fig. 2.2.

2.2 Numerical model

Problem formulation

In this section we will compute the fluid flow described by the non-stationary incompressible
Navier-Stokes equations in bounded fixed domain Ω ⊂ R3. The domain is derived as was
described in previous section.

The boundary of the domain can be divided into the inlet plane, outlet plane/s and
walls as ∂Ω = Γin ∪ Γout ∪ Γwall, Γin ∩ Γout = ∅, Γin ∩ Γwall = ∅, Γwall ∩ Γout = ∅. The
vertices and edges which can belong to two of the boundary parts are labeled to belong
primarily to the boundaries with prescribed Dirichlet boundary condition.

The problem is formulated as to find the unknowns (v, p) such that

ρ∗
∂v

∂t
+ ρ∗ (∇v)v − divT = 0

T = −pI+ µ∗

(
∇v +∇vT

)
div v = 0

v = vin

v = 0

Tn = 0

in Ω,

in Ω,

in Ω,

on Γin,

on Γwall,

on Γout,

(2.1)

where n is the unit outward normal vector on boundary, T is a Cauchy stress tensor and
µ∗ is a constant dynamic viscosity. We will use the subscript ∗ for constants. The list of
constants and their values used in all thesis are shown in Tab. 2.1. The initial condition
for the problem (2.1) is set to

v(t = 0) = 0

v(t = 0) = vin(t = 0)

in Ω; on Γout ∪ Γwall,

on Γin.
(2.2)

The Dirichlet boundary condition for velocity is prescribed on the inlet. The function
vin = vin(t,X) depends on time t and positionX[x, y, z]. The parabolic profile is prescribed
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to be consistent with no-slip boundary condition. In three-dimensional case the parabolic
profile can be described as

vin(t,X) = −2V (t)v(X)n; v(X) =
r2 − |CX|2

r2
(2.3)

where V (t) is a function depended only on time, r is a radius of circular inlet andC[cx, cy, cz]

is its centerpoint. V (t) is the magnitude of the inlet velocity averaged over the inlet plane.
The no-slip condition is prescribed as Dirichlet boundary condition on the walls. As we do
not have any information of the pressure, we prescribe the traction free condition, imposed
as a Neumann boundary condition, on the outlet/s.

Defining the inlet condition on the patient-specific geometry, one cannot assume that
the inlet would be circular. There are several possibilities how to deal with this, we will
mention three of them. The first one is to extend the inlet part and end it with the circular
plane. This option is used in section 2.6 to get the circular inlet for Womersley profile.
The second option is to prescribe the condition directly on the input polygon M , define
the centerpoint C of all its vertices and then prescribe the profile as

v(X) ≈
(
1− |CX|

|CY|

)2

, (2.4)

where Y ∈ ∂M ∩
−−→
CX.

The third option is to use the following equation for the input polygon M ;

v(X) ≈
max

(
r2 − |CX|, 0

)
r2

, (2.5)

where r = minA∈∂M |CA|. This approach can be applied when the assumption of the
almost circular inlet plane is satisfied. This option is used in section 2.5 for parabolic
profile.

Weak formulation

Multiplying the eq. (2.1) by the test functions vtest and integrating over the domain Ω and
over the finite time interval [0,T] we get∫ T

0

[
ρ∗

(
∂v

∂t
,vtest

)
Ω

+ ρ∗
(
(∇v)v,vtest

)
Ω
− (divT,vtest)Ω

]
dt = 0. (2.6)

The choice of function spaces in the weak formulation can be

V : =

{
v ∈ L∞

(
I,
[
H1(Ω)

]3)
; v = 0 on Γin ∪ Γwall

}
, (2.7)

P : =
{
p ∈ L2

(
I,L2 (Ω)

)}
(2.8)
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where L∞
(
I,
[
H1(Ω)

]3)
and L2

(
I,L2 (Ω)

)
are Bochner spaces. For more details about the

choice of function spaces one can see standard book on numerical analysis as (Ciarlet,
2002).

Multiplying the eq. (2.1)3 by the test functions ptest, using the per-partes method
for eq. (2.6) and imposing the boundary conditions we get the weak formulation of the
problem (2.1). For simplicity we will identify v with its part having homogeneous Dirichlet
boundary condition on Γin, namely v : = v − vin ∈ V . Then the weak formulation can
be formulated as follows.
Find (v, p) in V × P satisfying for all (vtest, ptest) ∈ V × P :∫ T

0

[
ρ∗

(
∂v

∂t
,vtest

)
Ω

+ ρ∗
(
(∇v)v,vtest

)
Ω
+ (T,∇vtest)Ω

]
dt = 0,

−
∫ T

0

(div v, ptest)Ω dt = 0

(2.9)

while surface integral (Tn,vtest)∂Ω = 0 due to the vtest ∈ V from eq. (2.7) and due to the
boundary condition (2.1)6.
In following, we will approximate eq. (2.9) with the finite element method and treated the
time derivation by the Crank-Nicholson time discretization scheme.

Finite element method discretization

Let us for simplicity assume that the domain Ω is given as a union of tetrahedra forming
regular tetrahedralization.
The finite element used in sections 2.4 and 2.5 will be the MINI element. It was introduced
for mixed formulation of the Stokes problem in (Arnold et al., 1984). The element uses
the continuous P1 approximation for the pressure and the continuous approximation for
the velocity described as a P+

1 , namely

vh,v
test
h ∈ Vh : =

{
vh ∈

[
C(Ω)

]3
, vh |K∈

[
P+
1 (K)

]3 ∀K ∈ Ω; vh |E= 0 ∀E ∈ Γin

}
,

ph, p
test
h ∈ Ph : =

{
ph ∈ C(Ω), ph |K∈ P1(K) ∀K ∈ Ω

}
(2.10)

and [
P+
1 (K)

]3
: =

[
P1(K) +B4(K)

]3
. (2.11)

A local degree of the bubble function
[
B4(K)

]3
is represented by a function value in the

centerpoint of the tetrahedron. Local degrees of freedom for MINI element are shown in
Fig. 2.4, their number is 19, 5 for each velocity component and 4 for pressure.
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Figure 2.4: The local degrees of freedom for velocity and pressure in finite element MINI.

The finite element discretization of eq. (2.9) leads to the following formulation:
Find (vh, ph) ∈ Vh × Ph such that for all (vtest

h , ptesth ) ∈ Vh × Ph holds∫ T

0

[
ρ∗

(
∂vh

∂t
,vtest

h

)
Ω

+ L(vh, ph,v
test
h , ptesth )

]
dt =0 (2.12)

where

L(vh, ph,v
test
h , ptesth ) = ρ∗

(
(∇vh)vh,v

test
h

)
Ω
+
(
Th,∇vtest

h

)
Ω
−
(
div vh, p

test
h

)
Ω

(2.13)

and

Th = −phI+ µ∗

(
∇vh +∇vT

h

)
. (2.14)

Time discretization

To discretize the formula (2.12) we will divide time interval [0,T] into the time steps
[tk, tk+1], k ∈ [0,N− 1] of a length dk and get

N−1∑
k=0

∫ tk+1

tk

ρ∗

(
∂vh

∂t
,vtest

h

)
Ω

dt+
N−1∑
k=0

∫ tk+1

tk

L(t) dt = 0 (2.15)

using notation

L(t): = L(vh(t), ph(t),v
test
h (t), ptesth (t)). (2.16)
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Then the approximations ∫ tk+1

tk

f(t) dt ≈ dk
f(tk+1) + f(tk)

2
, (2.17)

∂f

∂t
≈ f(tk+1)− f(tk)

dk
, (2.18)∫ tk+1

tk

∂f(t)

∂t
dt ≈ f(tk+1)− f(tk) (2.19)

lead to the classical Crank-Nicholson time stepping scheme: Find (vh, ph) ∈ Vh × Ph such
that

N−1∑
k=0

ρ∗
(
vh(tk+1)− vh(tk),v

test
h

)
Ω
+

N−1∑
k=0

dk
L(tk+1) + L(tk)

2
= 0 (2.20)

holds for all (vtest
h , ptesth ) ∈ Vh × Ph, with respect to definitions (2.13) and (2.16).

2.3 Hemodynamic parameters

Recent studies showed that hemodynamics in cerebral aneurysms can be considered as one
of the leading factors of aneurysm rupture (Shojima et al., 2004), (Jou et al., 2008), (Metaxa
et al., 2009), (Qian et al., 2011). Nowadays neurosurgeons assesses the potential rup-
ture risk according to the morphological factors as size, shape and localization of the
aneurysm (Sejkorová et al., 2016).

As the morphological parameters should describe the shape of the aneurysm, the hemo-
dynamic parameters should describe the flow inside the aneurysm. However, computational
fluid dynamics was criticized for the amount of hemodynamic parameters suggested to be
responsible to the initiation, growth or rupture of the aneurysms although some of them
were correlated with the rupture status in relatively big amount of cases ((Mut et al., 2014)
on 210 cases, (Miura et al., 2012) on 106 cases).

The hemodynamic factors, studied in recent papers, are mostly flow patterns, their
complexity and number of vortices inside the aneurysm, wall shear stress (WSS) and the
oscillatory shear index (OSI) which can capture the WSS oscillations during a cardiac cy-
cle. The most popular hemodynamic parameter is WSS because it can express the changes
in the flow near the wall by one or two numbers. But larger aneurysms are associated with
lower WSS regardless the rupture status, see (Lauric et al., 2013). Since this fact can lead
to many misunderstandings, recent studies are focused usually on one location in the brain
and, most importantly, on the similar size of the aneurysms (Chien et al., 2009).

In this section we will derive the formulas for three commonly used hemodynamic pa-
rameters related to the problematic of the cerebral aneurysms, namely WSS, OSI and
relative residence time (RRT). Then we will summarize the morphological and hemody-
namical parameters which were used in recent studies and which are thought to have
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an influence to the aneurysm formation. The discussion of their influence, based on the
study of 10 ruptured and 10 unruptured middle cerebral aneurysms, will be provided in
section 2.7.

Wall shear stress

Wall shear stress is defined as a magnitude of the stress vector projected to the tangential
plane.

Cauchy’s theorem(text taken from (Gurtin, 1982)): Let s be a surface force for
the body during a motion. Then a necessary and sufficient condition that the momentum
balance laws be satisfied is that there exist a spatial tensor field T (called the Cauchy stress)
such that for each unit vector n,

s(n) = Tn. (2.21)

In this text we will use the notation Tn for a surface-traction vector. The tangential
part of this vector, wss, is derived as

wss = Tn− [Tn · n]n. (2.22)

As a hemodynamic factor, usually only its magnitude, denoted here WSS, is used. For the
Newtonian fluid and Cauchy stress tensor of the type (2.1)2 we have

Tn = −pn+ µ∗(∇v + (∇v)T )n

wss = −pn+ µ∗(∇v + (∇v)T )n−
(
−pn+ µ∗

[
(∇v + (∇v)T )n · n

]
n

)
and the WSS is expressed as a magnitude of

wss = µ∗

(
(∇v)n+ (∇v)Tn

)
− µ∗

[
(∇v + (∇v)T )n · n

]
n. (2.23)

Usually, the time averaged WSS is also computed through

TAWSS =
1

T

∫ T

0

WSS dt (2.24)

where T is a length of a cardiac cycle.
(Ku et al., 1985) observed that the highest WSS was connected to the location where

intimal thickening was minimal. Note that intima is an inner part of the arterial wall
consisted of a single layer of endothelial cells. This layer can be damaged by high WSS
and it can lead to the aneurysm initiation (Metaxa et al., 2009) and rupture (Chien et al.,
2009).
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Oscillatory shear index

Time changes of the wss directions and magnitude during a cardiac cycle can be expressed
by an oscillatory shear index. This index was introduced by (He, 1996) as

OSI =
1

2

(
1−

|
∫ T

0
wss dt|∫ T

0
|wss| dt

)
. (2.25)

(Ku et al., 1985) compared the velocity andwss vectors with plaque thickness in atheroscle-
rotic human carotid bifurcation. The data were obtained from histology. They observed
that the velocity and wss oscillated in both, magnitude and direction, during the systolic
phase. They proposed the OSI as a ratio between the specified vector magnitude aver-
aged over the cardiac cycle and wss magnitude averaged over the cardiac cycle and find
the strong correlation between this OSI and the wall thickness. But the specified vector
was introduced differently for different wall parts according to the plaque position. They
simplified the definition to eq. (2.25) in (He, 1996).

(Himburg, 2004) observed that endothelial permeability of porcine aortic trifurcation
increases slightly with OSI. The study was compared with in vivo measurements in domes-
tic swine.
OSI was computed also in the cerebral aneurysm geometries, i.e. (Liu et al., 2013), (Miura
et al., 2012), but they did not show the statistical difference between ruptured and unrup-
tured group.
OSI is thought to be an index correlating with atherosclerotic plaque presence. This is a
case of big aneurysms. But stagnation of blood flow can lead to both, destruction of the
wall due to increased inflammatory cell infiltration and other pathobiologic responses, and
to the stabilization by atherosclerotic remodeling process (Meng et al., 2013).

Relative residence time

The other parameter thought to correlate with atherosclerotic plaque presence is relative
residence time (RRT). It represents time that a particle spends in a particular system.
With high RRT there is a stagnation of blood flow, especially in aneurysm dome, and
there is a space for inflammatory processes and plaque formation. Residence time is a
relative concept because moving particles do not stay in any position (Sugiyama et al.,
2013).

RRT is proportional to the inverse of Cartesian distance D(y), the distance that a
particle near boundary travels during a cardiac cycle, namely

RRT ∼ D(y)−1. (2.26)

We assume a circular pipe with laminar flow in z direction. Due to symmetry, we can
assume that Cartesian distance depends only on y coordinate and the unit vector normal
to the boundary near the particle is n = (0, 1, 0). The velocity is then of a form
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v = (0, 0, vz(y)).
From this form and eq. (2.23) we then have

∇v + (∇v)T =

⎛⎜⎝0 0 0
0 0 v′z
0 v′z 0

⎞⎟⎠ , wss = µ∗

⎛⎜⎝ 0
0
v′z

⎞⎟⎠ = µ∗
∂v(y)

∂y
. (2.27)

Near the wall we can assume that spatial variation in wss can be neglected and Carte-
sian distance D(y) is then calculated through

D(y) =

⏐⏐⏐⏐⏐
∫ T

0

v(y) dt

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐
∫ T

0

y

µ∗
wss dt

⏐⏐⏐⏐⏐ = Ty

µ∗
(1− 2 ·OSI)

1

T

∫ T

0

WSS dt (2.28)

where the eq. (2.25) was used in the last equality.
The standard expression of the RRT is then calculated from eq. (2.26) using the defi-

nition (2.24) as

RRT ∼
[
(1− 2 ·OSI)TAWSS

]−1
. (2.29)

RRT was computed on 30 cerebral aneurysms, 7 of them with atherosclerotic lesions,
in (Sugiyama et al., 2013). They showed the significant relation (P=0.02) between the
maximum RRT and atherosclerotic lesion on the intracranial aneurysmal wall.

Another morphological and hemodynamical parameters thought
to be involved in aneurysm formation

The morphological parameters should be prescribed to evaluate the size and shape of the
aneurysm. The commonly used parameters are size and aspect ratio of the aneurysm,
the irregularity of the aneurysm sac and bleb presence. The list of the morphological
parameters used in recent studies and their definitions are shown in Tab. 2.2. The meaning
of the terms ”aneurysm sac”, ”neck” and ”bleb” and the terms ”height”, ”size”, ”neck
diameter” and ”convex hull” are shown in Fig. 2.1 and Fig. 2.5, respectively.

Discussing the flow of the aneurysm we try to have a similar set of the hemodynamic
parameteres. Next to the WSS, OSI and RRT introduced above, there are several others.
Their influence on the aneurysm rupture status was studied in recent papers. They are
listed in Tab. 2.3 and discussed in section 2.7.

We will continue with the numerical results using the mesh extraction, numerical model
and hemodynamic parameters introduced above. The section 2.4 shows the results in
comparison with numerical benchmark and section 2.5 the results using the two inflow
study. Finally, there is a study comparing the flow in 10 ruptured and 10 unruptured
aneurysms in section 2.6 with discussion of the parameters influence in section 2.7.
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parameter definition

size maximum distance within the aneurysm

neck diameter maximum distance in the neck plane

height maximum perpendicular height of the aneurysm

aneurysm angle

angle between the lines containing neck diameter and

maximum height (maximum distance from the centroid

of the aneurysm neck to any point on the aneurysm dome)

aspect ratio height/neck diameter

size ratio height/average vessel diameter

S, V surface area and volume of the aneurysm

Sch, Vch surface area and volume of its convex hull

nonsphericity index
1− Shem(V )

S
- deviation of the aneurysm surface

from that of a perfect hemisphere with the same volume

ellipticity index 1− Shem(Vch)
Sch

undulation index 1− V
Vch

- captures the degree of surface concavity

Table 2.2: Morphological parameters for evaluating the shape of the aneurysm.

parameter definition

energy loss EL = (pin +
ρ∗
2
v2in + hinρ∗g)− (pout +

ρ∗
2
v2out + houtρ∗g)

pressure loss coefficient PLc =
(0.5ρ∗v2in+pin)−(0.5ρ∗v2out+pout)

0.5ρ∗v2in

low shear area LSA = area of the aneurysm under the low WSS
area of whole aneurysm

· 100%

inflow concentration index ICI = flow rate in aneurysm/flow rate in parent artery
area of the inflow region/area of the neck plane

shear concentration index SCI =

∫
Sh

WSS dS/
∫
S WSS dS

Shigh/S

viscous dissipation ratio V DR =
∫
V 2µ∗D·D dV/V∫

Vnear
2µ∗D·D dV/Vnear

Table 2.3: Hemodynamic parameters for evaluating the flow in the aneurysm - v, p, D,
WSS are velocity magnitude of the flow, normal pressure, symmetric part of the velocity
gradient and wall shear stress, ρ∗ and ν∗ are constant density and dynamic viscosity. Low
WSS is defined as a 10% of the WSS of the parent artery. Shigh in SCI definition is the area
of the region on the aneurysm where WSS is higher than the mean WSS over the parent
artery, S is the area of the aneurysm. Vnear is the volume of the ”near” parent artery, V
is the volume of the aneurysm.
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Figure 2.5: Scheme of an aneurysm representing the measurements of the morphological
parameters: size of the aneurysm, neck diameter and the height of the aneurysm. The grey
parts show the convex hull of the aneurysm. All of the parameters are measured from the
three-dimensional pictures.

2.4 Numerical simulation in comparison with numer-

ical benchmark

The Computational Fluid Dynamics Challenge for Rupture-Predicton in Intracranial Aneu-
rysms (CFD Challenge) was announced in 2013 as an open challenge for CFD groups. It
was organized by Die Otto-von-Guericke-Universität Magdeburg, see the website of the
project (Challenge, 2013). The goal was to compute the blood flow through the two cases
of the same type of aneurysms, one ruptured.

There were two phases of the CFD Challenge. In the first phase, the goal was to compute
flow for both cases with arbitrary model, boundary conditions and blood parameters.
According to the results, groups should compute WSS on the aneurysms and predict the
rupture case and rupture place. Only the two geometries were provided.
In the second phase, the input boundary conditions were provided and the goal was to
compare computed velocity and pressure firstly within the groups and secondly with the
results of PIV experiment to serve as a numerical benchmark. The results of two phases
were published in (Janiga et al., 2014) and (Berg et al., 2015).

In the first phase, participants were free to choose their own flow boundary conditions
and significant differences appeared regarding to the WSS prediction (Janiga et al., 2014).
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In the second phase, in the case of consistent boundary conditions, a good agreement
among the 26 groups (from 15 countries), was achieved. Additionally, steady-state CFD
results, provided on the prescribed planes, were successfully validated in a phantom model
experiment but the input data were different than that provided in CFD Challenge and
they were not published (Berg et al., 2015).

In this section we will compute the flow in the first geometry (case 1) under the pre-
scribed inflow velocity magnitude from the second phase and compare it with the results
from CFD Challenge.

Model

The geometry and inflow boundary condition were provided by the CFD Challenge. They
are shown in Fig. 2.6.

Figure 2.6: Geometry and velocity magnitude for inflow boundary condition, V (t), provided
by CFD Challenge.

The surface mesh was provided in stl format, we generated only the volumetric tetrahe-
dral mesh by iso2mesh software (Fang and Boas, 2009) with average edge length 0.4mm.

The numerical model was as described in section 2.2 using constant flow on the inlet,
vin = −V (t)n, where V (t) is shown in Fig. 2.6. Three cardiac cycles of a length 0.925 s
were computed and the last one was used to the result analysis. The time step length was
set to 0.00925 s. 8 CPUs were used for a computation using the Fstrin program (Hron
and Mádĺık, 2007). ParaView, an open-source, multi-platform data analysis and visualiza-
tion application, was used for post-processing computation and visualization (Hansen and
Johnson, 2011).
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Two inlet planes and a centerline were published for a comparison in CFD Challenge.
We will compare the ”CFD Challenge result” with the ”Fstrin result”. CFD results mostly
reflect the result using Ansys software (12 groups from 26) and constant flow velocity
profile (16 groups from 26). The Fstrin result was obtained from the computation at time
of maximal velocity in the last (third) cycle for both planes and a centerline. Also the
time averaged values (over the third cycle) were compared on a centerline. The results are
shown in Fig. 2.8, 2.9 and 2.7.

Figure 2.7: The CFD Challenge results (taken from (Berg et al., 2015)) and Fstrin results
on a prescribed line firstly as cycle-averaged values, secondly at the time of maximal
velocity.
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Figure 2.8: The CFD Challenge results (taken from (Berg et al., 2015)) and Fstrin results
on a prescribed plane A.

Figure 2.9: The CFD Challenge results (taken from (Berg et al., 2015)) and Fstrin results
on a prescribed plane B.

Fstrin program was already tested against numerical benchmark in (Hron and Mádĺık,
2007) and (Mádĺık, 2010). This comparison was provided against other numerical soft-
wares, mostly Fluent Ansys, on a geometry of intracranial aneurysm. The comparison
on the planes inside an aneurysm shows the similar velocity magnitude distribution using
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the same scale. Other comparison shows the velocity magnitude along the prescribed line
from the inlet to an oulet plane. This results show higher variability in CFD Challenge
results at the beginning of the line as different inlet velocity profiles were used. Groups in
CFD Challenge mostly used the constant inlet velocity profile (16 groups from 26). The
Fstrin result, using also constant velocity profile, shows the comparable values with the
most common curve showing velocity magnitude along the line, see Fig. 2.7.

In the next section, we will show the numerical simulation using Fstrin program and
parabolic velocity profile. There is a computation of flow and several hemodynamic pa-
rameters in a ruptured aneurysm. The correlation of the hemodynamic parameters and
the site of rupture is provided.

2.5 Numerical simulation performed on two inflow

aneurysm geometry

In this section we will show the numerical simulation on an aneurysm geometry representing
the case of a patient operated on for a ruptured anterior communicating artery (ACom)
aneurysm. The ACom is specified due to the two inflow vessels, see Fig. 1.3, so the two
inflow study was performed. The hemodynamic parameters were calculated and correlated
to the site of the rupture. This section takes parts from (Hejčl et al., 2017).

Mesh generation

The mesh was generated as was described in section 2.1. To avoid the influence of outflow
condition we set the length of both outlet vessels to be similar. The final mesh contained
195 000 elements with an average node spacing of 0.3mm. The mesh is shown in Fig. 2.12-
A.

Model parameters

CT angiography was performed with a pixel resolution of 0.6mm. The model was as de-
scribed in section 2.2. Four cardiac cycles of a length 1s were computed and the last one
was used to the result analysis. The time step length was set to 0.01 s. 8 CPUs were used
for a computation.
A program for computing 3D Navier-Stokes equations by a finite element method, Fstrin
(Hron and Mádĺık, 2007), developed at the Mathematical Institute of Charles University,
was used for the numerical calculation under the assumptions of rigid walls and an incom-
pressible Newtonian fluid with a constant kinematic viscosity ν∗, see Tab. 2.1.
All numerical experiments were computed on a 64-bit cluster Snhurka (Computational clus-
ter Snhurka, http://cluster.karlin.mff.cuni.cz). There are 180 computing hardware nodes
based on Intel Core i7 CPUs with 832 GB of RAM in total, running on a Linux Operating
System.
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Boundary conditions

The parabolic profile (2.5) was used at the both inlets. The patient-specific flow data
were not available so 1s cardiac cycle length was simulated with a time dependence of
the magnitude of the average inlet velocity V (t) shown in Fig. 2.11. The geometry of the
aneurysm had two different inputs, denoted here as A1 and A1 and two different outputs,
see Fig. 2.10. Zero surface-traction vectors were prescribed on the outlets and a no-slip
boundary condition on the walls.

Figure 2.10: The geometry with two in-
flow vessels - A1 and A1’.

Figure 2.11: Time dependence of a mean
inflow velocity, V (t), prescribed at A1
and A1’ in m

s
.

A two-inflow study

There were five different computations performed on the same mesh representing
an aneurysm with two input vessels. The first computation was prescribed with the same
flow on A1 and A1 with the velocity prescribed between 0.3 and 0.8 m

s
. The other four

computations had fixed curvature and fixed diastolic velocity 0.3 m
s
but different maximal

input velocities. While we prescribed 0.8 m
s
maximal input velocity for both, A1 and A1

planes for the first case, for the other cases we prescribed a 5% and a 10% (and vice versa
for both situations) change between the two inputs. The list of values of the maximal
inflow velocities in both input vessels is shown in Tab. 2.4.

Correlation of hemodynamic parameters to the site of the rupture

Four cardiac cycles were computed on two meshes to test the mesh dependency of the
results. The hemodynamic parameters WSS, time averaged WSS (TAWSS) and the oscil-
latory shear index (OSI) were computed on the last cardiac cycle. The streamlines showed
a concentrated inflow jet directed straight at the rupture point (Fig. 2.12-B). As seen on
the cutting plane, the velocity vectors at the peak velocity time step made a small vortex at
the small bleb of the aneurysm, but this location did not correspond with high pressure or
high WSS values (Fig. 2.12-C). OSI, a non-dimensional parameter with the values between
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inflow condition
max V (t)

for A1 (m/s)
max V (t)

for A1’ (m/s)
50-50 0.8 0.8
45-55 0.72 0.88
55-45 0.88 0.72
40-60 0.64 0.96
60-40 0.96 0.64

Table 2.4: A two-inflow study: The CFD for the case of a ruptured ACom aneurysm
was calculated under these 5 different inflow conditions.

0 and 0.5, was significant around the blebs but not on them (Fig. 2.12-D). The WSS on the
aneurysm sac was lower than the WSS on the anterior cerebral blood vessels with several
smaller regions of elevated WSS on the aneurysm dome (Fig. 2.12-E); one of the sites was
the point of rupture as identified during surgery. The point of rupture is within a larger
region of high pressure (normal stress on the wall) (Fig. 2.12-F).

A two-inflow study - results

Several hemodynamic parameters were computed for five cases with different inflow condi-
tions, defined in Tab. 2.4. The velocity field, WSS and normal pressure are shown at peak
systolic time where maximal input velocity is prescribed. Fig. 2.14 shows changes in the
WSS under the 5 different conditions. The distribution of the WSS is relatively stable on
the surface of the aneurysm sac, with some distortion in cases of decreased flow from the
left A1 artery. In all cases the site of rupture is in the region of increased WSS. Concerning
the TAWSS parameter, the similarity is even better. In terms of the character of flow, the
velocity vectors show minimal changes under the 5 different conditions (Fig. 2.13). The
changes in the values of pressure, stress in normal direction, are more obvious; not only in
the magnitude but also in the distribution on the aneurysm sac (Fig. 2.15). For all 5 cases
the site of high WSS and high pressure correspond to the site of rupture.
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Figure 2.12: Correlation of hemodynamic parameters to the site of the rupture for an
ACom aneurysm. A. - 3D mesh containing 195 000 element reconstructed from the CT
angiography. B. - The streamlines showed a concentrated inflow jet directed straight at
the rupture point. C. - The velocity vectors at the peak velocity time step made a small
vortex at the small bulb of the aneurysm, as we can see in the cutting plane (the plane
section is illustrated in the lower right corner). D. - The OSI was significant around the
blebs but not on them. E. - The site of rupture was in a region of increased WSS. F. - The
site of rupture was also in an area of increased wall pressure.

Figure 2.13: Distribution of blood flow under the 5 different situations specified in Tab. 2.4.
Left column: 50-50 case, middle column: up 45-55, down 55-45, right column: up 40-60,
down 60-40. All figures have the same scale in a range 0− 1.2 m

s
.
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Figure 2.14: Distribution of peak WSS under the 5 different situations specified in Tab. 2.4.
Left column: 50-50 case, middle column: up 45-55, down 55-45, right column: up 40-60,
down 60-40. All figures have the same scale in a range 0− 1.2Pa.

Figure 2.15: Distribution of normal pressure under the 5 different situations specified in
Tab. 2.4. Left column: 50-50 case, middle column: up 45-55, down 55-45, right column: up
40-60, down 60-40. The figures have the different scales but always with 100Pa difference
between the maximal and minimal value.
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Conclusion

In this chapter we showed the application of the patient specific modeling described in
sections 2.1 - 2.3 on a ruptured case of an ACom aneurysm. The ruptured point corresponds
to the point of inflow jet with a peak in WSS and high pressure. The aneurysm was located
in the branching of the vessels with two inflows and two outflows. The high WSS and high
pressure corresponded to the site of rupture also in the cases with different inflow conditions
when the flow was not the same for both inputs.

2.6 Numerical simulation of the wall shear stress on

20 middle cerebral aneurysms

Recent studies examined the hemodynamic factors on unruptured and ruptured aneurysms
to find a potential marker determining which unruptured aneurysm has tendency to rup-
ture (Shojima et al., 2004; Cebral et al., 2007; Jou et al., 2008; Cebral et al., 2010; Miura
et al., 2012; Meng et al., 2013). The most popular hemodynamic parameter is WSS. But
larger aneurysms are associated with lower WSS regardless the rupture status (Lauric et al.,
2013). Since this fact can lead to many misunderstandings, recent studies are focused not
only on one location in the brain but also on the similar size of the aneurysms. The purpose
of this work is to show the dependence of the WSS on the volume of the aneurysm and
to show the WSS association with rupture status in volume matched saccular aneurysms.
The result is the same as was obtained in (Lauric et al., 2013) in volume matched sidewall
aneurysms.

Aneurysm selection and image segmentation

Twenty aneurysms in twenty patients were chosen from the database. The criteria for in-
clusion of aneurysms were based on good quality 3D digital subtraction angiography image,
the location of the aneurysm and the rupture status. All cases were located in the mid-
dle cerebral artery (MCA), 10 of them were ruptured and 10 unruptured. The aneurysm
sizes differ from 2.41 to 7.48mm for ruptured aneurysms and from 2.67 to 6.49mm for
unruptured group. Aspect ratio, ratio between aneurysm height and neck diameter, was
between values 0.3 and 1.5 for ruptured group and between 0.5 and 1.43 for unruptured
group. Ten aneurysms were considered as smaller due to the size and volume, five of
them from ruptured group. Ten other aneurysms were considered as bigger. Volumetric
datasets, including aneurysm and parent vessel were then obtained and analyzed by the
software Mimics 16.0 (Materialise, Leuven, Belgium) while the triangular surface mesh was
obtained using ICEM CFD (ANSYS, Inc., Canonsburg, PA).
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Mesh generation

From segmented and smoothed geometry of the aneurysm, the aneurysm neck was de-
fined for better analysis and the mesh adaptivity. Meshes are constructed to be finer near
the aneurysm neck, on the aneurysm dome and also in the branching of the vessels, if
necessary. The surface meshes were used to create tetrahedral meshes for all cases with
the approximately five million cells. Two aneurysms, one ruptured and one unruptured,
were tested for grid independence. The importance of grid dependence test is described in
(Hodis et al., 2013). For both aneurysms, four meshes with maximal edge length 0.2, 0.25,
0.3 and 0.35mm were constructed. The average edge length was actually much lower. The
chosen maximal length of the edge was then set to 0.25mm. The results of mesh sensitivity
for the unruptured case are shown in Tab. 2.5.

variable amax = 0.35mm amax = 0.3mm amax = 0.25mm amax = 0.2mm
PWSS dome 0.9586 0.9583 0.9601 0.9589
TAWSS dome 0.5057 0.5057 0.5046 0.5046
TAWSS PA 1.1390 1.1390 1.1394 1.1397
TALSA 0.4266 0.4315 0.4441 0.4441

OSI dome 0.0147 0.0146 0.0145 0.0145

Table 2.5: Results of mesh sensitivity test provided on a geometry of an unruptured
aneurysm with different maximal edge length amax. The mesh with amax = 0.25mm was
chosen for a computation. P referrs to the results at maximal time velocity, TA to the
cycle averaged results. Results are averaged over the aneurysm dome (dome) or over the
parent artery (PA). WSS values are shown inPa.

The model and boundary conditions

The Newtonian model, described by Navier-Stokes equations, with constant dynamic vis-
cosity µ∗ = 0.0035Pa s, was applied to all aneurysms using Fluent 16.1 (ANSYS, Inc,
Canonsburg PA), with a second-order implicit solver in both time and space. The finite
volume method was applied with prescribed velocity inflow boundary condition and zero
pressure outflow boundary condition. The inlet branch was modified in the extension to
have a circular surface to Womersley velocity profile can be applied. The transient wave-
form, used also in (Hodis et al., 2013), is given by (Zamir, 2005). All the outlet branches
were extended such that their surfaces were almost perpendicular to the vessel. The for-
mula for Womersley profile is not trivial and its derivation can be found in (Womersley,
1955). Womersley number was assumed 3.7, blood density ρ∗ = 1050 kg

m3 .
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Visualization of the results and statistical analysis

Time step was chosen as 0.001 s to ensure that the maximum Courant number was under
20, every tenth time slice solution was saved to be analyzed. The unknowns in the Navier-
Stokes equations are velocity and the pressure. From velocity field, the velocity gradient
and WSS were computed. As the pressure can be thought as the normal component of
the stress performing on the vessel, the WSS is its tangential part and is thought to be
responsible for the potential degenerative forces acting on the endothelial cells in intima
part of the vessel (Cebral et al., 2010; Meng et al., 2013). The WSS was compared between
the ruptured and unruptured group as value spatially averaged over the dome, and also
over the parent vessel. Parent vessel was chosen as the part of the vessel between the
aneurysm and the last branching. This is showed i.e. in (Fukazawa et al., 2013). The
other variables computed for the purpose of this paper were oscillatory shear index (OSI)
and low shear area (LSA). Definitions of these parameters are provided in Tab. 2.3. For all
post-processing visualization software Tecplot was used (Tecplot 360, 2013 Tecplot, Inc.).
As not all morphological and hemodynamic parameters were normally distributed, the
Wilcoxon-Mann-Whitney U test was used to data analysis. Both groups were of the size
n=10, the values were taken as significantly different for P value lower than 0.05.

Results

The parameters distribution according to the rupture status

Three cardiac cycles with a period of 1 s were computed and the last one was used to
analyze the hemodynamic parameters. The results are shown either in the peak systole
2.43 s referred as the P (peak values), or averaged over the last cycle (from 2.0 s to 2.99 s
when 100 solutions with different time were saved) referred as TA (time averaged). The
TAWSS distribution on the dome is shown in Fig. 2.17.

We analyzed morphological parameters (size, volume, surface, nonsphericity index and
aspect ratio of the aneurysm) and the hemodynamic parameters (WSS, OSI and LSA)
according to the rupture status of the aneurysms. The results are shown in Tab. 2.6. The
aneurysm neck diameter in this sample was higher for the unruptured group (4.4 ± 1.4
vs. 5.4± 1.2mm) and this was the only parameter with statistical significant difference (P
< 0.05). The sizes for both groups were similar (8.43±5.20 for ruptured vs. 8.38±3.11mm
for unruptured), as aspect ratio (1.36± 0.77 for ruptured vs. 1.24± 0.45) but the volume
was higher in the ruptured group (352.5± 588.5mm3 vs. 214.9± 220.1mm3).

The parameters distribution according to the size

WSS is lower in larger aneurysms. Fig. 2.16 shows the TAWSS dependence on the volume
and size. In this case, the plot of TAWSS dependence on volume can be approximated as

TAWSS ≈ 1

volume0.274
.
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We analyzed the same group of parameters for all aneurysms according to their volume.
All twenty aneurysms were divided into two groups regardless their rupture status. They
were considered as bigger if the volume was greater than 100mm3 or as smaller otherwise.
More hemodynamic parameters were significantly different as is shown in Tab. 2.7. Both
peak and time averaged values for LSA were more than three times less for smaller group
than for bigger group. The P value was 0.0013 for PLSA and 0.0073 for TALSA. On the
other hand, the ratio between TAWSS on dome and one tenth of the TAWSS on parent
artery was higher in smaller group (322.7 ± 128.1% vs. 123.2 ± 69.5%, P = 0.0036). OSI
was significantly higher in bigger group. For maximal OSI over the dome the P value was
0.0091, for spatially averaged OSI on dome P = 0.0376. The computation did not show
the significantly higher WSS on dome for smaller aneurysms but the P values were closed
to 0.05, namely it was P = 0.064 for PWSS and P = 0.0539 for TAWSS.

The volume matched study

The volume dependence of the TAWSS can be avoided by studying the volume matched
aneurysms. In our selected aneurysms three pairs of saccular aneurysms located in MCA
were matched in the volume and shape. The aneurysms were chosen to have similar
volume, size and surface area, although the aspect ratio could be different. These six cases
are shown in Fig. 2.18.

The streamlines and WSS distribution were used to visualize the flow and the WSS
histograms were plotted in Fig. 2.18. Volume in the pairs was about 190mm3, 80mm3

and 12mm3. In all three pairs here we can observe the WSS histogram peak had a left
shift for ruptured aneurysms. Only in the smallest pair we can observe also the bimodal
distribution for ruptured case.

The discussion, summarizing the morphological and hemodynamic parameters used in
recent studies and thought to be involved in aneurysm formation, follows.
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Figure 2.16: TAWSS dependence (also spatially averaged over the dome) on size and
volume of the aneurysm. The figure shows no particular dependence on the dependence
on volume can be approximated by the relation TAWSS ≈ 1

volume0.274
with R2 = 0.2512,
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Figure 2.17: TAWSS distribution on the aneurysm dome. The first two rows show the
ruptured aneurysms, the last two rows show the unruptured aneurysms.
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Figure 2.18: Volume and shape matched pairs: The figure shows the streamlines, WSS
distribution and WSS histograms for the volume matched aneurysms, always ruptured
and unruptured case. For the biggest pair (volume 185 and 195mm3), the flow can be
described as vortex forming when the vortex is more visible in unruptured case. The flow
in the middle pair can be described as flow separated into two flow streamlines families.
Only the third pair has the different flow for ruptured and unruptured case where the
ruptured case has a rounded flow in aneurysm and unruptured case can be described as
flow separated.
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Parameter Ruptured(n=10) Unruptured(n=10) P Value
Size [mm] 8.433 ± 5.201 8.379 ± 3.108 0.6776
Aneurysm neck diameter [mm] 4.419 ± 1.430 5.370 ± 1.214 0.0452
Aspect ratio 1.362 ± 0.774 1.238 ± 0.445 0.9096
Aneurysm volume [mm3] 352.450 ± 588.478 214.860 ± 220.097 0.7913
Aneurysm surface [mm2] 193.040 ± 250.045 145.660 ± 114.270 0.9097
Nonsphericity index 0.164 ± 0.084 0.113 ± 0.064 0.1859
mean PWSS dome [Pa] 0.728 ± 0.802 0.885 ± 0.921 0.6232
mean PWSS parent artery [Pa] 3.483 ± 4.421 2.452 ± 2.712 0.5708
mean TAWSS dome [Pa] 0.388 ± 0.387 0.480 ± 0.506 0.5708
mean TAWSS parent artery [Pa] 2.325 ± 2.723 1.688 ± 1.678 0.6776
peak LSA [%] 48.615 ± 34.359 31.351 ± 31.405 0.3075
aver LSA [%] 52.815 ± 32.067 27.827 ± 30.967 0.0890

TAWSS dome
0.1·TAWSS parent artery

· 100% [%] 180.815 ± 146.161 265.062 ± 134.320 0.1212

max OSI dome 0.864 ± 0.158 0.727 ± 0.259 0.2123
mean OSI dome 0.045 ± 0.031 0.024 ± 0.009 0.0820

Table 2.6: Morphological and hemodynamic parameters for ruptured and unruptured
aneurysms.

Parameter bigger (n=10) smaller (n=10) P Value
Size [mm] 11.283 ± 3.766 5.529 ± 2.034 0.0010
Aneurysm neck diameter [mm] 5.787 ± 1.027 4.002 ± 1.093 0.0058
Aspect ratio 1.440 ± 0.763 1.160 ± 0.422 0.5449
Aneurysm volume [mm3] 521.640 ± 527.695 45.670 ± 30.724 0.0002
Aneurysm surface [mm2] 287.030 ± 212.734 51.670 ± 28.227 0.0002
Nonsphericity index 0.192 ± 0.053 0.085 ± 0.060 0.0017
mean PWSS dome [Pa] 0.467 ± 0.568 1.146 ± 0.962 0.0640
mean PWSS parent artery [Pa] 3.372 ± 4.432 2.564 ± 2.736 0.7913
mean TAWSS dome [Pa] 0.262 ± 0.308 0.605 ± 0.500 0.0539
mean TAWSS parent artery [Pa] 2.195 ± 2.753 1.819 ± 1.672 0.5205
peak LSA [%] 63.663 ± 24.877 16.303 ± 21.622 0.0013
aver LSA [%] 61.033 ± 26.548 19.609 ± 26.001 0.0073

TAWSS dome
0.1·TAWSS parent artery

· 100% [%] 123.217 ± 69.540 322.659 ± 128.116 0.0036

max OSI dome 0.889 ± 0.188 0.702 ± 0.218 0.0091
mean OSI dome 0.038 ± 0.015 0.031 ± 0.032 0.0376

Table 2.7: Morphological and hemodynamic parameters for bigger and smaller aneurysms.
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2.7 Discussion

Twenty intracranial aneurysms located at the middle cerebral artery were examined in
this study. The aneurysms were divided into two groups firstly according to their rupture
status to ruptured and unruptured, secondly according to their size to bigger and smaller.
Three pairs of volume matched aneurysms were compared. Several morphological and
hemodynamic parameters were computed.

It was shown that commonly used hemodynamic factors, WSS, LSA and OSI, are
closely associated with the volume of the aneurysm. The plot of the WSS as a function
of volume was performed. However, the WSS distribution, represented through the WSS
histograms, in volume matched aneurysms was different for the ruptured and unruptured
cases. The suggested approach is to compare volume matched pairs of ruptured and unrup-
tured aneurysms to avoid the confounding dependence of the WSS on the aneurysm volume.

Tab. 2.8 summarizes the parameters found to be statistically significant for the ruptured
and unruptured aneurysm in the discussed studies.

The morphological parameters should be prescribed to evaluate the size and shape of
the aneurysm. They are mentioned and discussed in (Dhar et al., 2008). The most com-
mon parameters are size and aspect ratio. However, aneurysm rupture status have been
found to correlate also with the undulation, nonsphericity and ellipticity indices and as-
pect ratio. (Duan et al., 2014; Dhar et al., 2008) Another potential rupture risk comes with
the irregularity of the aneurysm sac and bleb presence (Zhang et al., 2014; Liu et al., 2013).

Discussing the flow in aneurysms we try to have also a set of the hemodynamic parame-
teres. Recently, the flow complexity and concentration, combined with small impingement
zone were investigated with the rupture risk (Cebral et al., 2010). These parameters were
also found to correlate with the point of rupture compared to the rest of an aneurysm
sac (Hodis et al., 2013; Sejkorová et al., 2016; Hejčl et al., 2017). The classification of the
flow proposed in (Naito et al., 2012) was used in Fig. 2.18.

The most common hemodynamic parameter is wall shear stress (WSS), the tangential
part of the stress vector acting on the aneurysm sac. Recently, the hypothesis is that both
high and low wall shear stress can cause the pathogenesis of the aneurysm (Cebral et al.,
2010; Cebral and Meng, 2012; Meng et al., 2013). High flow, resulting in high wall shear
stress with positive wall shear stress gradient, can cause the endothelial injury and rupture,
and can also be responsible for the aneurysm initiation (Metaxa et al., 2009; Chien et al.,
2009). On the other hand, low flow with high oscillations, resulting in low WSS with high
OSI or high RRT, can cause the remodeling of the wall and plaque formation (Cebral et al.,
2010; Meng et al., 2013).

WSS was found to be significantly higher in ruptured aneurysms ((Cebral et al., 2010)
on 210 cases, (Shojima et al., 2004) on 20 MCA). On the other hand, the ruptured
aneurysms were found to be significantly bigger than the unruptured group with signifi-
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cantly lower WSS (Miura et al., 2012; Duan et al., 2014; Zhang et al., 2014).

(Jou et al., 2008) also showed that maximal and spatially averaged WSS is a function of
the aneurysm area. However, they also showed that low shear area (LSA) was significantly
lower in ruptured aneurysms. LSA combined the information of the WSS on dome with
the WSS on the parent artery, see Tab. 2.3.

Also the oscillatory shear index (OSI) was found to be significantly higher for ruptured
group (Lu et al., 2011). But according to the published data in (Lu et al., 2011), the P
value for the LSA was 0.15, not published 0.015, so the LSA was not statistically significant
in this case.

In several studies the WSS has not shown a significant difference between ruptured
and unruptured aneurysms. These studies suggested that other hemodynamic parameters
could play a role in the risk assessment of intracranial aneurysms. One such parameter is
the energy loss, which has shown difference between ruptured and unruptured ICA-PCom
and ICA aneurysms (Qian et al., 2011; Liu et al., 2013), or pressure loss coefficient on
MCA aneurysms (Takao et al., 2012).

Another effort was made to investigate the growing and ruptured aneurysms or the
aneurysms with atherosclerosis presence. WSS was found to decrease during the aneurysm
growth (Tanoue et al., 2011; Sejkorová et al., 2016) and to be significantly lower at the
ruptured points (Fukazawa et al., 2013). The significant evidence was shown between the
relative residence time (RRT) and atherosclerosis presence (Sugiyama et al., 2013). But
they also showed no significant evidence between the OSI and atherosclerosis.

As was discussed in (Lauric et al., 2013), the analysis on aneurysmal datasets which
do not compensate for difference in aneurysm size or volume is very likely to report low
WSS thresholds not sensitive for small aneurysms. One of the approaches to compensate
the volume difference among the aneurysms is to use the statistical WSS maps as in (Gou-
bergrits et al., 2011). Histograms for the whole aneurysms surface then showed a left
shift of the curve towards lower WSS for ruptured aneurysms. Histograms for the dome
region additionally reveal a bimodal distribution for ruptured aneurysms with the higher
first peak and the lower second peak. In unruptured aneurysms, the WSS distribution
was more likely to be uniform. In all three pairs studied here we can observe the WSS
histogram peak had a left shift for ruptured aneurysms. Only in the smallest pair we can
observe also the bimodal distribution for ruptured case.

The other approach to avoid the volume influence is to use the volume matched
aneurysms (Lauric et al., 2013). In this paper, we showed the wall shear stress was lower
with increasing volume. In three pairs of volume matched aneurysms we observed WSS
histograms shifted towards lower WSS for ruptured aneurysms. The same results was ob-
tained for sidewall ICA aneurysms in (Lauric et al., 2013). They also proposed the TAWSS
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dependence on volume to be as TAWSS ≈ 1
volumep

, p < 1. Best fitted curve for our data
was the same curve with p = 0.274, see Fig. 2.16.

Our study has several potential limitations that may affect the results. As with other
computational studies, we include the rigid walls and Newtonian flow assumptions that
differ from the in vivo state. The Newtonian fluid assumption may underestimated blebs
when blebs moved the WSS histograms to the left in non-Newtonian models (Hippelheuser
et al., 2014). Also the simplified outflow boundary condition and eliminating small branches
from the 3D segmented model should be mentioned. The study was performed on 20
cerebral aneurysms, 10 were ruptured. The changes of the size and the shape of the
aneurysm immediately before and after the rupture might affected the results. The results
of ruptured aneurysms might not characterize the aneurysm with high risk of rupture, but
may only document the feature of the aneurysm after rupture. Further work to validate
the model with in vivo data is needed.
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study # U R location parameter

Liu, 2013 110 84 26 - EL, irregularity

Miura, 2012 106 63 43 MCA
AR, WSS, WSSG, normalized WSS,
OSI, aneurysm formation index

Jou, 2008 26 18 8 ICA LSA

Chien, 2009 8 4 4 ICA (small)

inhomogeneous WSS distribution,
impingement size, high WSS,
impingement location,
flow direction

Takao, 2012 50 43 7 MCA PLc

Takao, 2012 50 44 6 ICA-PComA PLc

Duan, 2014 30 24 6 PComA
size, low normalized WSS, LSA
ellipticity and undulation index,
aspect ratio

Goubergrits, 2011 22 15 7 MCA
irregularity, WSS histograms
after shape analysis

Shojima, 2004 20 17 3 MCA
low WSS in tips,
location of max WSS

Cebral, 2010 210 127 83 -
larger inflow concentrations,
larger max WSS,
shear concentrations, VDR

Lauric, 2013 18 9 9 - WSS in volume matched pairs

Dhar, 2008 45 25 20 -
size ratio, undulation, nonsphericity
and ellipticity index, aspect ratio,
aneurysm angle

Qian, 2011 30 26 4 ICA-PcomA EL

Zhang, 2014 40 20 20 (mirror)
aspect ratio, LSA, WSSmin,
irregularity

Lu, 2011 18 9 9 (mirror) OSI

Table 2.8: Morphological and hemodynamic parameters found to be significantly different
for the ruptured and unruptured aneurysms. # - number of the aneurysm included in
the study, U - number of unruptured aneurysms, R - number of ruptured aneurysms.
Location is provided if the aneurysms in the study were at the same location of the brain.
Mirror aneurysms are the aneurysms not of the same location but the term mirror denotes
two aneurysms in a patient, always one of them ruptured and the second one remained
unruptured. The abbreviations are explained in Tab. 1.1 and 2.3, AR = aspect ratio,
WSSG = WSS gradient.
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3. Flow in highly narrowed domains
representing stenotic aortic valve

In this chapter we will show the computations of the flow within the geometry approxi-
mating the stenotic aortic valve. In the introductory part, section 3.1, we will provide the
medical background and current methods used for the stenosis severity evaluation. They
are based on Bernoulli equation. In section 3.2, we will present the assumptions which lead
to the Bernoulli equation and document that they are too simplifying and consequently
irrelevant to capture real situations.

Namely, these assumptions mean neglecting integrals containing viscosity and convec-
tive term of Navier-Stokes equations. In section 5.3, we will demonstrate that values of
these integrals are of the same magnitude as the pressure difference or energy dissipation
and thus the assumptions leading to the Bernoulli equation are too restrictive to be apply
to blood flow in stenotic valves.

Our numerical model is based on full continuum mechanics approach. The numerical
model, including construction of geometry and boundary conditions, is presented in the
section 3.3 with more detailed discussion of used backflow stabilization in section 3.4.
Finally, the numerical results provided on the domain representing the stenotic aortic valve
with symmetric obstruction up to 80% stenosis are shown and discussed in section 3.5. The
results presented here were published in (Švihlová et al., 2017).

3.1 Introduction

We will concern with an aortic valve which is located between the left ventricle and the
ascending aorta, as was shown in Fig. 1.1. The details of an aortic valve geometry are
provided in section 3.3.1 in Fig. 3.4.

A stenosis in the cardiovascular system is a reduction in cross-sectional area of a struc-
ture across which blood flows, see Fig. 3.1. Because of the stenosis in valve, the heart must
pump more to ensure the distribution of needed amount of blood. An anatomic steno-
sis, which is simply defined by its existence, may or may not result in a physiologically
important stenosis. On the other hand, stenoses are generally treated in this pathologic
case. The need of stenosis evaluation (whether this is physiologically important or not) is
obvious. In the rest of this section, we will look at the background leading to the current
stenosis evaluation based on the Bernoulli equation.
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Γwall

Γwall

Γin Γout

p1, |v1| p2, |v2| p3, |v3|

Real fluid: p1 > p3 > p2; |v1| = |v3| < |v2|

Ideal fluid (Bernoulli): p1 = p3 > p2; |v1| = |v3| < |v2|

Figure 3.1: Schematic of an valvular stenosis. The diagram depicts an idealized steno-
sis within an aortic valve; position 1 = upstream of the stenosis, 2 = within the stenosis,
3 = downstream of the stenosis, |v| and p describe the velocity magnitude and pressure av-
eraged over the cross-sectional area. For an ideal fluid, conservation of energy applies, and
p1 = p3 > p2, |v1| = |v3| < |v2|. The degree of p2 decrease and |v2| increase is determined
by conservation of energy, with conservation of mass satisfied as well. When the Bernoulli
equation is contrived to be used in the setting of energy dissipation, it is conveniently as-
sumed that the pressure within the stenosis is equal to the pressure downstream of/distal
to the stenosis, even though this lacks a rational basis. For the real case of flowing blood,
p1 > p3 [with (p1 − p3) quantifying the transvalvular pressure difference], typically p3 > p2
(but in principle p3 can be ≤ p2), and |v1| = |v3| < |v2|.

We will focus mainly on two hemodynamic indicators, maximal pressure difference
in aortic valve and aortic valve area as they are ”the primary hemodynamic parameters
recommended for clinical evaluation of AS (aortic stenosis) severity”, together with direct
measurement of aortic stenosis jet velocity, in the Echocardiographic assessment of valve
stenosis: EAE/ASE recommendations for clinical practice (Baumgartner et al., 2009).

Gorlin formula

While valve area is strictly an anatomical assessment of stenosis severity for cardiac valves,
physiological approaches have been employed to ascertain valve area. The archetype for
this approach was developed by (Gorlin and Gorlin, 1951), with subsequent simplifications
by (Hakki et al., 1981).

The basis for the Gorlin equation rests on Torricelli’s modification of the Bernoulli
equation:

h1ρ∗g +
1

2
ρ∗v

2
1 + p1 = h2ρ∗g +

1

2
ρ∗v

2
2 + p2 + Edis, (Bernoulli equation)

where 1 is used for the inflow part and 2 for the narrowed part (as they are labelled in
Fig. 3.2), h1ρ∗g and h2ρ∗g are hydrostatic pressures, Edis denotes the energy dissipation
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and

v1 =
1

|Γ1|

∫
Γ1
|v| dS,

v2 =
1

|Γ2|

∫
Γ2
|v| dS,

p1 =
1

|Γ1|

∫
Γ1
p dS,

p2 =
1

|Γ2|

∫
Γ2
p dS.

(3.1)

Torriceli’s assumptions, namely that the short length of a valve leads to p1 ∼ p2 = patm
and (v1 << v2) ⇒ v1 neglected together with neglecting the energy dissipation, lead to the

2g(h1 − h2) = v22. (Torriceli’s law)

Since the hydrostatic pressure is proportional to h, then the maximal pressure differ-
ence, or pressure drop, is defined as hdrop:= h1 − h2.

To include dissipation effects, (Gorlin and Gorlin, 1951) used an additional constant
for velocity

v2 = C
√
2g
√
hdrop

and conclude the final formula for aortic valve area (AVA) from the flow rate (Q) as

AVAGorlin =
Q

v2
=

Q

C · 44.5
√
hdrop

. (Gorlin equation)

Note that [v2] = cm
s
, [hdrop] = mm, [Q] = ml

s
, g ∼ 981 cm

s2
. Consequently

√
2g ∼

44.5
√

cm
s

and the unit remaining for constant C is
√

cm√
mm

. The ”constant” used in Gorlin’s

equation was supposed to be empirical but it was evaluated in (Gorlin and Gorlin, 1951)
by the mean value over an amount of patients. They suggested C to be equal 1 for aortic
stenosis.

But C is actually a variable, and its value is in fact what describes energy dissipation.
Moreover, the Bernoulli equation itself is an expression of conservation of energy, and thus
is incapable of quantifying energy dissipation. Modifications of the Bernoulli equation us-
ing additional energy dissipation factors such as those in the Gorlin equation are totally
empirical and in fact vary from condition to condition and, most importantly, from patient
to patient without a basis in mechanics or mathematics that is reproducible across ex-
perimental conditions. Consequently, such approaches lack accurate and precise predictive
capacity requisite of any sound theoretical model.

Gorlin/Hakki formula

Sometimes, a simplified Gorlin formula introduced by (Hakki et al., 1981) is used. It is
based on substituting Q to the (Gorlin equation), where

Q

[
ml

s

]
=

CO
[

l
min

]
∗ 1000

[
ml
l

]
HR

[
beats
min

]
· SET

[
s

beat

]
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with HR = heart rate, SET = systolic ejection time and CO = cardiac output. The cardiac
output is the amount of blood pumped by the heart per minute and can be measured. Then
the formula

AVAHakki =
CO

[
l

min

]
√
P1− P2

(Gorlin/Hakki equation)

was presented, i.e. HR · SET was set to 1000
44.5

= 22.47
[

s
min

]
. In the study on 60 patients,

(Hakki et al., 1981) showed HR · SET = 22.66 ± 2.88 (values between 15.08 and 28.5).
Setting this variable to be a constant is another considerable simplification.

Pressure difference derived from non-invasive Doppler techniques

The derivation for this approach was firstly used in (Hatle et al., 1978). The argumentation
used there is not clear. Starting with modified Bernoulli equation with additional viscous
term, they assumed it to be negligible. Neglecting also the energy dissipation they ended
with

pdrop: = p1 − p2 =
1

2
ρ∗(v

2
2 − v21).

The pressure difference used here is the difference between hydrostatic pressures, not only
the heights as in Gorlin formula. However, with v1 set to zero, the final formula is the
same as in (Torriceli’s law), namely

pdrop = C · v22. (Hatle equation)

Note that if [pdrop] = mmHg and [v2] =
m
s
, the ”constant” C ∼ 4 as it approximates ρ∗

2

(ρ∗ ∼ 1050 kg
m3 ) multiplied by the constant 1Pa

13534 kg

m3 ·9.81
m
s2

· 1000 mm
m

= 0.0075 mmHg
Pa

using the

density of the mercury. For comparison, Gorlin approach, using the same units, results in
pdrop = 5.05 · v22.

Non-invasive techniques have been used to calculate pressure differences, as opposed
to invasive direct measurements by catheterization. Nowadays, ”cardiac catheterization is
no longer recommended except in rare cases when echocardiography is non-diagnostic or
discrepant with clinical data” (Baumgartner et al., 2009) in behalf of the non-invasive tech-
niques, namely (Hatle equation) with C = 4. This approach also utilizes the Bernoulli
equation. However, it is unlike the Gorlin-type approach specifically applied to heart valves,
which at least incorporates an empirical constant to attempt to express energy dissipation
(which in reality is actually highly variable). Rather, the Bernoulli equation is manipu-
lated to allow determination of energy dissipation, even though it is an expression of energy
conservation. It is conveniently assumed that energy losses in the flowing blood all occur
at the outlet of a stenosis. As a consequence, the energy losses in the flowing blood can
be expressed exclusively as losses in kinetic energy, and the pressure within the stenosis is
equal to the pressure downstream of the stenosis. Further, the pressure difference across

50



the stenosis is thus equal to the loss in kinetic energy, which can be easily calculated based
on non-invasively measured flow velocities at different locations relative to the stenosis.

Tab. 3.1, shows the different results in evaluating pdrop obtained by the non-invasive
Doppler measurements, namely (Hatle equation) with C = 4 and those obtained by
catheterization measurements. Loose correlations between non-invasively derived and in-
vasively measured pressure gradients have been demonstrated. Moreover, other studies
have demonstrated poor correlation between echocardiography calculations and catheteri-
zation measurements, see (Berger et al., 1984) and (Fischer et al., 1995).

study N* result**

(Berger et al., 1984) 44
r = 0.79, underestimation within 25% for 20 patients,
more than 25% for 3 patients, failure for 1 patient

(Currie et al., 1985) 100

r = 0.92, SEE = 15, regression line:
catheter = 10.3 + 0.97 · Doppler; table with
data was not provided but the maximal difference
from the graph was more than 50mmHg

(Smith et al., 1986) 47

r = 0.92, SEE = 7.1, regression line:
Doppler = 2.8 + 0.87 · Doppler; table with
data was not provided but the maximal difference
from the graph was more than 15mmHg

(Burwash et al., 1993) 98 r=0.95, data not available

Table 3.1: Studies evaluating pdrop obtained by the non-invasive Doppler measurements
in comparison with the catheter measurements; *number of people included in the
study; **r=correlation coefficient, SEE = standard error in estimation computed as SEE

=

√∑N
1 (Y−Y ′)2

N
evaluating the values (Y )N1 and (Y ′)N1 .

Aortic valve area derived from the conservation of mass

The (Gorlin equation) was set to be a gold standard to compute aortic valve area (AVA)
with pressure drop measured by catheter and all Doppler diagnostic methods were than
correlated with its values, see (Berger et al., 1984; Kosturakis et al., 1984; Warth et al.,
1984; Currie et al., 1985; Smith et al., 1986; Burwash et al., 1993; Fischer et al., 1995).
Tab. 3.2 shows the different results in evaluating AVA obtained by the non-invasive Doppler
measurements and those obtained by the Gorlin formula. Three formulas are used, the AVA
obtained by (Kosturakis et al., 1984) is derived by modification of the (Gorlin equation).
The other two formulas are based only on the continuity equation without conceptual
error in the formula derivation - they are limited only by the measurement errors and the
”deviations may not always be due to inadequacies of the Doppler methods: they could
also be caused by limitations in the Gorlin formula”.(Fischer et al., 1995)
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study formula to be proven* N** result

(Kosturakis et al., 1984) AVA = Q
44.5·2v2 14

errors*** from 0 to 37.5%,
mean value 19.2%± 13.4%

(Warth et al., 1984) AVA = Q
v2

16
errors from 0% to 23.3%,
mean value 9.5%± 6.8%

(Fischer et al., 1995)

AVA = v1·area1
v2

v2
AVAKosturakis

AVAWarth

100

mean difference always
in 95% confidence interval;
differences in individual
patients’ measurements
of AVA by the three
Doppler techniques varied
by up to 0.56 cm2 compared
with values obtained
by heart catheterisation.
On average, values
obtained from Doppler
echocardiographic methods
lay up to 51% below and
78% above those
obtained by heart
catheterisation.

Table 3.2: Studies evaluating AVA obtained by the non-invasive Doppler measurements.
*formulas for AVA were compared with (Gorlin equation); **number of people included

in the study, the first one was performed on children; ***error =
abs(AVAGorlin−AVADoppler)

max(AVAGorlin,AVADoppler)
·

100%; ****r=correlation coefficient, SEE = standard error in estimation computed as SEE

=

√∑N
1 (Y−Y ′)2

N
evaluating the values (Y )N1 and (Y ′)N1 .

Calculation of AVA through the (Gorlin equation) or its modification based on other
simplifications is strongly limiting. In the next section, we will present the assumptions
leading to the Bernoulli equation.

3.2 Derivation of assumptions leading to the justifi-

cation of using the Bernoulli equation

In this section we will calculate the relation between the pressure drop and dissipative
and kinetic energy. We will then rigorously derive assumptions which lead to Bernoulli
equation, direct proportion between the pressure drop, kinetic energy and dissipation.

Let us assume oscillatory unsteady flow at two cross sections of the tube with stenosis.
The computational domain Ω is assumed to be a part of tube with stenosis limited by
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the cross-sections Γin and Γout. For the three sections in Fig. 3.2, labeled 1, 2, 3, we will
use the notation Γ1, Γ2, Γ3, respectively. Γin will be always the cross-section Γ1. We will
distinguish two situations according to the Γout:

• Situation 1: Γin = Γ1, Γout = Γ3, the resulting pressure difference will be as usually
called ”transvalvular pressure difference”,

• Situation 2: Γin = Γ1, Γout = Γ2, this results in maximal pressure difference, see
Fig. 3.1.

Figure 3.2: Schema of the computational domain representing the symmetric stenosis.

The flow is supposed to be described by the Navier-Stokes equations for incompressible
fluid in bulk, i.e.,

ρ∗

(
∂v

∂t
+ (∇v)v

)
− div

(
2µ∗D(v)

)
+∇p = 0

div v = 0

in Ω (3.2)

and is supposed to meet the following type of boundary conditions on the wall:
either

v = 0 on Γwall (3.3)

or

v · n = 0 and (Tn)τ = 0 on Γwall (3.4)
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where (z)τ is a tangential part of the vector z, namely

(z)τ = z− [z · n]n.

The equation (3.3) represents the no-slip boundary conditions, the equation (3.4) repre-
sents the fact that flows are (perfectly) slipping along the wall.

Taking the scalar product of the first equation in (3.2) and v, and using div v = 0 we
obtain

∂

∂t

(
ρ∗

|v|2

2

)
+ div

(
ρ∗

|v|2

2
v − 2µ∗D(v)v

)
+ 2µ∗|D(v)|2 + div (pv) = 0. (3.5)

Indeed, eq.(3.5) can be written as

ρ∗

(
∂v

∂t

)
· v + ρ∗ (∇v)v · v + ρ∗

|v|2

2
div v − div

(
2µ∗D(v)

)
· v+

− 2µ∗D(v) · ∇v + 2µ∗D(v) ·D(v) + p div v +∇p · v = 0.

(3.6)

We now conclude from (3.5), upon integrating it over Ω, and using the Gauss theorem,
that

d

dt
Ek(t) + Edis(t) = −

∫
∂Ω

ρ∗
|v|2

2
(v · n) + 2µ∗D(v) · (v ⊗ n) − p (v · n) dS , (3.7)

where Ek(t) and Edis(t) denote the total kinetic and dissipated energy over Ω, i.e.,

Ek(t): =

∫
Ω

ρ∗
|v|2

2
dx

Edis(t): =

∫
Ω

2µ∗|D(v)|2 dx.
(3.8)

The both boundary conditions on the wall (3.3) and (3.4), symmetry of D(v) and the
fact that D(v) · (v ⊗ n) = D(v) · (n⊗ v) = D(v)n · v gives us

−
∫
Γwall

ρ∗
|v|2

2
(v · n)− p (v · n)+

+ 2µ∗

[(
D(v)n

)
τ
+
(
D(v)n

)
n

]
·
(
(v · n)n+ vτ

)
dS = 0 ,

(3.9)

and thus the boundary integral on the right hand side of (3.7) is calculated only over the
input and output planes.
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Consequently, we obtain from conservation of mass that∫
Γin

v · n dS = −
∫
Γout

v · n dS. (3.10)

This is motivated by the fact that div v = 0 in Ω and v · n = 0 on Γwall. Then

div v = 0 ⇒ 0 =

∫
Ω

div v =

∫
∂Ω

v · n dS =

∫
Γin

v · n dS +

∫
Γout

v · n dS.

Recall that if the flow in a straight infinite pipe is supposed to fulfill the condition (3.4)
on Γwall, then the resulting velocity is of the form of flow constant in time, it means
v(x, y, z, t) =

(
0, 0, ω(t)

)
where ω(t) is constant for all x, y, z for given time t.

Equation (3.7) represents general balance of energy in part of the vessel, including inflow
and outflow, and can be used as a starting point for a discussion concerning conversion of
different form of energy, and can provide more rigorous derivation of simplifying equations
than this based on Bernoulli principle.

In the next section we will present the assumptions under which the right hand side of
eq. (3.7) is proportional to pressure drop. Then we will calculate the formula for kinetic
energy and dissipation under more realistic assumptions in the last section.

Assumptions leading to the proportional relationship between
pressure drop, dissipation and kinetic energy

Several assumptions will be made in what follows. We will specify them as clearly as
possible and label them (A1)-(A3).
Without loss of generality, we also can assume that valve is situated at the z-axis position
and the outward normal to the inlet and outlet sections are

nin = (0, 0, −1),

nout = (0, 0, 1).
(A0)

(A1): First of all, we assume that the pressure is uniform at Γin and Γout for given
time, i.e.

p(x, y, t) = pin(t)

p(x, y, t) = pout(t)

on Γin,

on Γout.
(A1)

Combining the assumptions (A0) and (A1) with eq. (3.9) and (3.10) we get∫
∂Ω

pv · n dS =

∫
Γin

pv · n dS +

∫
Γout

pv · n dS = pin
∫
Γin

v · n dS+

+ pout
∫
Γout

v · n dS = (pin − pout)

∫
Γin

v · n dS.

(3.11)
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The equation (3.7) now becomes to be of the form

−
∫
Γin

v · n dS(pin − pout) +
d

dt
Ek(t) + Edis(t) =

= −
∫
Γin∪Γout

ρ∗
|v|2

2
(v · n) + 2µ∗D(v) · (v ⊗ n) dS.

(3.12)

(A2): We assume that the flow velocity at the cross sections Γin and Γout is of the form

v = (0, 0, ω) (A2)

and the blood is supposed to flow in z coordinate direction. It corresponds to the assump-
tion of the Bernoulli principle that flow is laminar and streamlined. Note that for the
stenotic valve, specially for Situation 1 defined later, this is not the case, because there is
recirculation enforced by the pressure in aorta. The both cases are shown in the Fig. 3.3.

Figure 3.3: Streamlined flow and flow with recirculation in aortic root.

This assumption, incorporated in eq. (3.12) with respect to eq. (A0), yields to

(pin − pout)

∫
Γin

ω dS +
d

dt
Ek(t) + Edis(t) =

−
∫
Γout

ρ∗
(ω)3

2
dS +

∫
Γin

ρ∗
(ω)3

2
dS − 2

∫
Γout

µ∗
∂ω

∂z
ω dS + 2

∫
Γin

µ∗
∂ω

∂z
ω dS .

(3.13)

(A3): Finally, velocity ω is uniform in the neighborhood of Γin and Γout for given time,
i.e.
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ω(x, y, t) = ωin(t)

ω(x, y, t) = ωout(t)

&

&

∂ω

∂z
= 0

∂ω

∂z
= 0

on Γin,

on Γout.
(A3)

This leads to the fact that last two integrals in eq. (3.13) vanish. We can also take the
constants outside the remaining integrals of the right hand side of eq. (3.13) and get

ωin|Γin| (pin − pout) +
d

dt
Ek(t) + Edis(t) =

− ρ∗
(ωout)3

2
|Γout| + ρ∗

(ωin)3

2
|Γin|.

(3.14)

Note that this assumption is more simplifying than replacement of the integral by
the area of the input/output plane multiplied by mean value of the integrand. Defining
ωin(t) = 1

|Γin|

∫
Γin

ω dS does not lead to the vanishing of the integral over Γin containing
the function of ω.

Finally, we will distinguish between the Situation 1 and Situation 2.

Situation 1: Since the area of Γin and the area of Γout are similar, |Γ3| ∼ |Γ1|, we
conclude from (A3) and (3.10) that ωin(t) = ωout(t) and consequently we get the pressure
difference proportional to the energy loss, namely

pin − pout = − 1

ωin|Γin|

(
d

dt
Ek(t) + Edis(t)

)
. (3.15)

Situation 2: Since |Γ2| < |Γ1|, we will suppose that there is a constant C = |Γ1|
|Γ2| > 1.

Then from conservation of mass, eq. (3.10), we have also ωout = Cωin. Eq. (3.14) than
become

pin − pout = − 1

ωin|Γin|

(
d

dt
Ek(t) + Edis(t)

)
− ρ∗

2
(ωin)2(C2 − 1). (3.16)

This situation does not justify the use of Bernoulli equation. Let us assume the stenosis
with 80% narrowing, i.e. |Γ2| = 20%|Γ1|. Then C = 5. For ρ∗ ∼ 103 kg

m3 and ωin ∼ 0.5 m
s

the last term equals to the value 3000 kg
m s2

= 3000 Pa ∼ 22.5 mmHg. In such a severe
stenosis, the pressure difference pin − pout can be more than 40 mmHg and the last term
in eq. (3.16) should be its significant source.
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Derivation of relationship between pressure drop, dissipation and
kinetic energy under more realistic condition

Let us come back to the equations (3.7)-(3.9) and consider inflow and outflow boundary
conditions given in this thesis, namely in the section 3.3, without the backflow stabilization:

vref =
(
0, 0, ωin

)
Tn =− P (t)n

on Γin,

on Γout,
(3.17)

where ωin(x, y, t) : Γin × [0, T ] → R and P (t) : [0, T ] → R are prescribed functions.

Outflow condition in (3.17) results in

0 = −
∫
Γout

Tn · vref + P (t)n · vref dS =

= −
∫
Γout

(
−p (v · n) + 2µ∗D(v) · (v ⊗ n)

)
dS −

∫
Γout

P (t)n · vref dS.

(3.18)

Thus we have (compare with eq.(3.7))

−
∫
Γout

ρ∗
|v|2

2
(v · n) + 2µ∗D(v) · (v ⊗ n) − p (v · n) dS =

= −
∫
Γout

ρ∗
|v|2

2
(v · n) dS +

∫
Γout

P (t)n · vref dS

(3.19)

For inflow condition we know ∂ω
∂z

= 0. Inserting (3.19) into the (3.7) we then obtain

d

dt
Ek(t) + Edis(t) =−

∫
Γout

ρ∗
|v|2

2
(v · n) dS + P (t)

∫
Γout

vref · n dS

−
∫
Γin

ρ∗
|v|2

2
(v · n) dS +

∫
Γin

pv · n dS.

(3.20)

Assuming pin = pin(t) to be a constant on Γin for fixed time, denoting pout = P (t) and
using the conservation of mass, eq. (3.10), we get

pin − pout = − 1

ωin|Γin|

(
d

dt
Ek(t) + Edis(t) +

∫
Γin∪Γout

ρ∗
|v|2

2
(v · n)

)
. (3.21)

where Γout can be both, Γ2 or Γ3, in opposite to the eqations (3.15) or (3.16), respectively.

In the next two sections we will introduce the computational model. In section 3.5 the
pressure difference, kinetic energy and dissipated energy will be derived directly from the
computed v and p without using the relation (3.21). This relation will be compared with
the results obtained by continuum mechanics approach in section 5.3.
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3.3 Determination of dissipated energy using contin-

uum mechanics approach

In this section we will focus on aortic valve stenosis as a case example to apply the con-
tinuum mechanics approach. Specifically, for a pre-specified left ventricular outflow tract
velocity profile and ascending thoracic aortic pressure profile as inflow and outflow bound-
ary conditions we will determine pressure, velocity, kinetic energy and energy dissipation
as functions of the entire spatial field (left ventricular outflow tract, aortic valve/root, and
proximal ascending thoracic aorta) and time.

In this section we will derive the model for the flow of the incompressible Newtonian
fluid in the three-dimensional narrowed channel representing the geometry of the stenotic
valve under the assumption of rigid walls.

Even if the fluid were flowing in a vessel that has a rigid boundary, the problem is quite
challenging as we have to solve the problem wherein locally the Reynolds number could
be large, the geometry of the flow domain complex, and the flow unsteady. The flow can
be locally turbulent and it can also separate. Moreover, even if we were to simplify the
problem to that of the flow of a Navier-Stokes fluid in such geometry, the problem is quite
daunting. In the case of flow across a valve, the material in question is blood. While blood
is a complex mixture of plasma, red and white blood cells, platelets, lipoproteins, ions, etc.,
undergoing a big amount of biochemical reactions, fibrinolysis, coagulation and lysis, the
flow of blood under normal conditions in large vessels can be approximated reasonably well
as a flow of classical linearly viscous fluid, that is a fluid whose response is characterized by
the Navier-Stokes constitutive relation, though in small blood vessels, blood displays non-
Newtonian behavior by exhibiting shear-thinning (Chien et al., 1966; Yeleswarapu et al.,
1998), stress relaxation (Thurston, 1979), normal stress differences, etc. In very small
blood vessels such as capillaries as the diameter of the red blood cells are of comparable or
even larger than the diameter of the blood vessel, even using a continuum fluid model for
blood would be totally inappropriate. However, in the problem of flow across a diseased
valve, even in the case of acute stenosis, the flow of blood can be described by the classical
incompressible Navier-Stokes fluid as was discussed in chapter 1.

Let us assume oscillatory unsteady flow described by the Navier-Stokes equations for
an incompressible fluid, namely

ρ∗

(
∂v

∂t
+ (∇v)v

)
− div

(
2µ∗D(v)

)
+∇p = 0

div v = 0

T = −pI+ 2µ∗D

in Ω (3.22)

where T is the Cauchy stress tensor, p = −1
3
(trT) is the mean normal stress that is usually
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referred to as the mechanical pressure, v is the velocity of the fluid, D = 1
2

(
∇v +

(
∇v)T

))
,

µ∗ denotes the constant dynamic viscosity and ν∗ =
µ∗
ρ∗

is the kinematic viscosity. We will
use the subscript ∗ for constants. The list of constants and their values are shown in chap-
ter 2 in Tab. 2.1. The computational domain Ω ⊂ R3 will be specified later.

In the case of a fluid characterized by the Navier-Stokes constitutive relation, the dis-
sipation Edis is given by

Edis = T ·D, (3.23)

which in virtue of incompressibility and form of the stress relation (see (3.22)2 and (3.22)3)
simplifies to

Edis = 2µ∗D ·D. (3.24)

In this text, we focus on computations of the pressure difference, kinetic energy and
dissipation within/across the geometry representing the stenotic aortic valve. We depict
the computed velocity field in the region of the stenosis and distal to it, where secondary
flows and recirculation occur. Recirculation and unsteady flow are the major reasons why
Bernoulli principle cannot be applied in this kind of problems.

In principle, since we know the velocity field pointwise due to experimental measure-
ments, we can directly determine the rate of dissipation given by (3.24). In the case to
be studied here, i.e. flows in aortic valve stenosis, the minimum focus of the known ve-
locity field is the left ventricular outflow tract, i.e. we assume to know the reasonable
approximation of the inflow velocity profile.

The pressure difference, kinetic energy and dissipation will be shown in geometries
representing aortic valve with symmetric stenosis of severity 50%, 60%, 70% and 80% where
severity is given as the formula (3.25). The geometry is limited by the assumption that
aortic walls are non-deformable, but with reasonable approximations of the real geometry.
The formulation of the boundary conditions used in the model with physiologically relevant
pressure and flow profiles follows. Finally, in section 3.5, we will discuss the results achieved
from three-dimensional computations where Navier-Stokes equations are used.

3.3.1 Geometry

The geometry of the computational domain Ω should represent the aortic valve which is
highly deformable viscoelastic tissue located between the left ventricle and aorta.
The aortic valve, comprised of three leaflets, is shown in the diagram 3.4 as being attached
to the aortic root circumferentially, forming a circumferentially thickened ridge of fused
leaflet/aortic tissue termed the aortic valve annulus. The annulus is a three-dimensional
crown-like structure, as opposed to a planar structure. In addition, the diameter of the base
of the annulus (ventriculo-aortic junction) is smaller than the diameter of the aortic root-
ascending thoracic aortic junction (a.k.a. sinotubular junction), such that the annulus
is within a conic section. Two-point of view are shown in diagram 3.4, the geometry
approximation used for computations and located on the z axis is described and shown in
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Fig. 3.5, while the geometry dimensions are shown in Fig. 3.6. All these figures represent
the healthy (non-stenotic) valve.

Figure 3.4: Anatomy of the human aortic valve/root complex. The aortic valve
is a viscoelastic tissue composed of three leaflets which are opening and closing during a
cardiac cycle. A. Long-axis view. In this view, not all three leaflets can be seen. Rather,
cross sections of the right and left leaflet are shown. The view demonstrates the valve
during either systolic isovolumetric contraction, or either phase of diastole, i.e. opening
or closing phase. B. Short-axis view. In this view, all three leaflets can be visualized.
This view is an approximate representation of the surgeons view of the aortic valve/root
complex when the ascending thoracic aorta has been transected proximally. The view also
demonstrates the valve during opening or closing phase.

Figure 3.5: The description of the geometry. The aortic root is situated between
z = −12 and z = 12, where z = −12 corresponds to the ventriculo-aortic junction and
z = 12 to the sinotubular junction. z = 0 corresponds to a widest place of aortic root. The
part from z = −22 to z = −12 is supposed to be 1cm part of the left ventricular outflow
tract, the part between z = 12 and z = 22 is 1 cm part of ascending thoracic aorta.
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Figure 3.6: The geometry dimensions. Left ventricular outflow tract, aortic root and
proximal ascending thoracic aortic dimensions for the healthy case with a rigid wall as-
sumption: The length of the aortic root is 2.4 cm here, the part of the aortic root which
should be affected by the stenosis is set to 0.8 cm. The length of the part representing left
ventricle junction is 1cm, the length of the cylinder representing the part of the ascend-
ing aorta is 1cm. The diameter of the sinotubular junction is 2.6 cm, the diameter of the
ventriculo-aortic junction 2.4 cm. Finally the maximal diameter of the geometry is 3.6 cm.

In the following, we will be mostly interested in the stenotic/narrowed geometries.
The computational meshes are shown in Fig. 3.7. Firstly, there is a geometry represented
aortic valve with symmetric severity 50%, then 60%, 70% and finally 80%. The severity,
expressing the level of narrowing, is given as a relation between the area of the healthy
part, approximated here by a circle with radius R, and the area of the stenotic part,
approximated by a circle with radius r, i.e.,

severity = (1− arear
areaR

) · 100% (3.25)

such that the more narrowed/stenotic geometry has a higher severity.
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Figure 3.7: Geometry representing the stenotic valve with a different severity.
Severity is assumed to be equal 1− πd2

πD2 , where D = 2.4 cm is the original diameter of the
valve without stenosis and d represents the diameter of the narrowed geometry. For 50%
stenosis diameter d = 1.7 cm, for 60% stenosis d = 1.52 cm, for 70% stenosis d = 1.31 cm
and finally d = 1.07 cm for 80% stenosis.

3.3.2 Boundary conditions

In a given domain Ω ⊂ R3, representing the simplified aortic valve, the velocity v and
pressure p satisfy eq. (3.22). Let us consider the boundary of the domain ∂Ω, which
consists of three parts. Γwall denotes the walls and Γin, Γout are the inlet and outlet,
respectively. In order to be physiologically and clinically relevant, first we consider the
known pressure distal to the aortic valve, in the proximal ascending thoracic aorta, (as
a Neumann boundary condition on the outlet) and known velocity of blood ejected by,
and flowing out of, the left ventricle (as a Dirichlet boundary condition on the inlet). On
rigid walls, we consider the no-slip boundary conditions, as opposite to the slip boundary
condition studied in chapter 5. Hence,

v = 0

v = vin

Tn− 1

2
ρ∗(v · n)−v = −P (t)n

on Γwall,

on Γin,

on Γout

(3.26)

and initial condition for the velocity is set to

v(t = 0) = 0 in Ω. (3.27)

Here, n represents the unit normal vector to the boundary and (v · n)− denotes the
negative part of the function v · n, used as an outflow stabilization term, as was analyzed
in (Bertoglio and Caiazzo, 2014). The value for the constant parameters are given in Tab.
2.1.
The velocity vin is given as a parabolic profile with its magnitude scaled by a time depen-
dent factor, V (t), representing the velocity averaged over the inlet plane. The velocity time
dependent factor V (t) is a curve unique for an individual patient. Here, we used the curve
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displayed in Fig. 3.8, in which each cardiac cycle is of 1s length and the systolic ejection
period SEP with length 0.3 s is the time during which the aortic valve is considered open;
see Fig. 3.9. During the SEP, the velocity initially is 0 m

s
(no flow), increases to vmax, and

then decreases to 0 m
s
(at which part of the SEP ends). For the purpose of this work, we

set vmax = 0.7 m
s
for all geometries.

Figure 3.8: The prescribed outlet pressure and inlet velocity functions P (t) and V (t) as
functions of time.

Note that the time-averaged velocity vTA =
∫
SEP

v dt = 2
3
vmax = 0.45 m

s
, the systolic

ejection period SEP = 0.3 s, time for maximum velocity is at 0.15 s, and the area of input
cross-section Avalve = πD2

4
= 4.5 cm2. The diameter of the input plane is set as D = 2.4 cm.

The corresponding stroke volume SV (volume of the blood ejected by the left ventricle per
heart beat) can be then computed from the left ventricular ejection volumetric flow rate F
as

SV =

∫ 1

t=0

F dt =

∫ 1

t=0

Avalve ∗ V (t) dt = Avalve ∗ SEP ∗ vmean
.
= 61ml. (3.28)

At the outlet, i.e., the proximal ascending thoracic aorta, we prescribe the pressure
mean value P (t), which is based on information from measurements in the aorta as a func-
tion of time. At the output, recirculation may occur, and can lead to instabilities. We
assume that no aortic valve regurgitation is present, and use backflow stabilization used
at the outlet as studied in (Bertoglio and Caiazzo, 2014) and (Braack and Mucha, 2014).
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Figure 3.9: Systolic ejection period SEP.

The function P (t) can depend on the stenosis severity. As aortic valve stenosis pro-
gresses, if and when left ventricular intrinsic systolic function (contractility) decompensates
and cannot maintain (i.e., contractility is not high enough) adequate stroke volume in the
face of elevated afterload posed by the stenotic valve, systemic arterial hypotension may
occur. This occurs, but is uncommon. We have assumed adequate (which must actually
be supranormal) left ventricular contractility to maintain stroke volume and distal aortic
pressure. Thus, for the purposes of this work, we used the function P (t), see Fig. 3.9
(right), such that the peak systolic aortic pressure pmax = 110mmHg and the nadir di-
astolic aortic pressure pmin = 75mmHg in all geometries. For better illustration, we use
units of millimeters Hg for pressure (1Pa = 0, 0075mmHg).

3.4 Numerical model and outflow boundary

treatment for circulation

In this section we will shortly provide the weak formulation of the problem (3.22)&(3.26)
and subsequent discretization. Then we will provide the motivation for the stabilization
term when the circulation occurs on the outflow plane Γout.

Weak formulation

Let us multiply the eq. (3.22)1 by the test function vtest ∈ V and integrate the results over
the domain Ω and over the finite time interval I = [0,T]. We will also multiply eq. (3.22)2
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by the test function ptest ∈ P . The functional spaces are defined through

V : =

{
v ∈ L∞

(
I,
[
H1(Ω)

]3)
; v = 0 on Γin ∪ Γwall

}
,

P : =
{
p ∈ L2

(
I,L2 (Ω)

)}
.

(3.29)

Using the per-partes method, we get the weak formulation of the problem. For simplicity
we will identify v with its part having homogeneous Dirichlet boundary condition on Γin,
namely v : = v−vin ∈ V . Then the weak formulation of (3.22)&(3.26) can be formulated
as follows.

Find (v, p) in V × P satisfying for all (vtest, ptest) ∈ V × P :∫ T

0

[(
ρ∗

∂v

∂t
,vtest

)
Ω

+
(
ρ∗ (∇v)v,vtest

)
Ω
+ (T,∇vtest)Ω

]
dt +

−
∫ T

0

(
1

2
ρ∗ (v · n)− v,vtest

)
Γout

dt = −
∫ T

0

(
P (t)n,vtest

)
Γout

dt

−
∫ T

0

(div v, ptest)Ω dt =0

(3.30)

Finite element discretization

We will identify the domain Ω with its discretization into finite elements. All elements will
be tetrahedra.
Then the formulation of (3.30) can be discretized by Taylor-Hood element. The function
spaces are

vh,v
test
h ∈ Vh : = {vh ∈

[
C(Ω)

]3
, vh |K∈

[
P2(K)

]3 ∀K ∈ Ω;

vh |E= 0 ∀E ∈ Γin ∪ Γwall},
ph, p

test
h ∈ Ph : =

{
ph ∈ C(Ω), ph |K∈ P1(K) ∀K ∈ Ω

}
.

(3.31)

According to the weak formulation (3.30) we will define variational forms

B(v, p,vtest, ptest) =
(
ρ∗ (∇v)v,vtest

)
Ω
+ (T,∇vtest)Ω +

−
(
1

2
ρ∗ (v · n)− v,vtest

)
Γout

− (div v, ptest)Ω ,

F (vtest) =−
(
P (t)n,vtest

)
Γout

.

(3.32)

Then the finite element formulation of (3.30) is to look for (vh, ph) ∈ Vh×Ph such that∫ T

0

(
ρ∗

∂v

∂t
,vtest

)
Ω

+B(vh, ph,v
test
h , ptesth ) dt =

∫ T

0

F (vtest
h ) dt (3.33)

holds for all (vtest
h , ptesth ) ∈ Vh × Ph with respect to the definitions (3.31) and (3.32).
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Time discretization

Time discretization of the problem (3.33) can be treated by the Crank-Nicholson scheme
as defined in chapter 2. Form L(t) from eq. (2.16) then equals to

L(t) = B − F (3.34)

and the forms B and F are defined in (3.32).

Outflow boundary stabilization term

Due to the stenosis, the recirculation distal to the aortic valve may occur as it is shown
in Fig. 3.10. This leads to the backflow occurring on the outflow boundary condition in
the short geometry representing the aortic valve. ”Backflow instabilities might result in
the arise of large nonphysical oscillations near the open boundary, which compromise the
feasibility and the reliability of the numerical simulations.” (Bertoglio and Caiazzo, 2014)
Moreover, the backflow on the boundary condition leads to the v ·n < 0 on Γwall. We recall
the eq. (3.21), the equality between the energy source (inflow) and energy losses (including
outflow): ∫

Γin

ρ∗
|v|2

2
(v · n) = −ωin(t)|Γin|

(
pin(t)− pout(t)

)
− d

dt
Ek(t)− Edis(t)−

∫
Γout

ρ∗
|v|2

2
(v · n) .

(3.35)

The v · n < 0 on Γout in eq. (3.35) can lead to an uncontrolled energy increase during
backflow, since this contribution cannot be bounded a priori.

Figure 3.10: Recirculation inside the domain and following backflow on the outflow bound-
ary.
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This stabilization term was also analyzed in (Braack and Mucha, 2014). As opposite to
the do-nothing condition,

(∇v − pI)n = 0 (do-nothing)

with a constant viscosity coefficient ν > 0, a directional do-nothing condition

(ν∇v − pI)n− 1

2
(v · n)− v = 0 (directional do-nothing)

was introduced. The additional term guarantees construction of the energy estimate for
large data for Navier-Stokes equations. (Braack and Mucha, 2014)

3.5 Numerical computations of the pressure drop and

dissipated energy on geometries representing

stenotic valve with different narrowing levels

FEniCS software for solving partial differential equations (Logg et al., 2012) was used to
compute the problem eq.(3.22) and (3.26) by the finite element method. The time deriva-
tives in the equations were approximated by the Crank-Nicholson scheme. Time interval
of systolic ejection period length 0.3s was computed, and an adaptive time step was used.
The time step length varies from 1E-2 to 2E-3 for mild stenotic cases with 50% and 60%
severity. Because of high velocities in the narrowed part, the length of time step had to
be finer in more severe cases. The time step length varies from 1E-3 to 2E-4 for 70% case
and from 1E-3 to 5E-5 for 80% .

To show the results, we plot the pressure pΓ defined in (3.37), dissipation EdisΓ speci-
fied in (3.38) and kinetic energy EkΓ defined as (3.39) along the centerline for meshes with
different severities, see (3.25), namely 50%, 60%, 70% and 80%. The centerline is an axis
passing through the vessel; Γ denotes cross-sectional area along the centerline, see Fig. 3.11.

Graphs of pressure, kinetic energy and energy dissipation, at time at maximum veloc-
ity, but varying as functions of position, are shown in Fig. 3.13. Similar graphs of time
averaged values over the systolic ejection period, but again varying as functions of position,
are displayed in Fig. 3.14.

Time averaged value of pressure is calculated over the SEP as

pΓaver =
1

0.3

∫ 0.3

0

pΓ dt. (3.36)

Kinetic energy and energy dissipation are calculated similarly.
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Figure 3.11: Cross-section areas Γ along
the centerline, which corresponds to the
z axis.

pΓ =

∫
Γ
p dS

area(Γ)
(3.37)

EdisΓ =
2µ∗

∫
Γ
D ·D dS

area(Γ)
(3.38)

EkΓ =
0.5ρ∗

∫
Γ
v · v dS

area(Γ)
(3.39)

Figure 3.12 depicts transvalvular pressure drop as a function of time over a range of
stenosis severities. Tables 3.3 and 3.4 display maximum and mean SEP transvalvular pres-
sure drops over the range of stenosis severities. These data are consistent with measured
data in (Garcia et al., 2006). Classically, stenoses are thought to cause adverse hemody-
namic and other sequelal once stenosis severity is in the range of 70 − 80%. Our findings
are consistent with this clinical experience.

sev
input
pressure
[mmHg]

pressure
drop
[mmHg]

50% 115.6 5.6
60% 124.3 14.3
70% 141.7 31.7
80% 183.3 73.3

Table 3.3: Computed input integral pres-
sure (i.e. averaged over the input cross-
sectional area) and the pressure drop at
time at maximum velocity. Output inte-
gral pressure was fixed (prescribed as a
boundary condition) to 110mmHg.

sev
input
pressure
[mmHg]

pressure
drop
[mmHg]

50% 101.6 3.0
60% 106.1 7.5
70% 115.1 16.5
80% 135.0 36.4

Table 3.4: Computed input integral pres-
sure (i.e. averaged over the input cross-
sectional area) and the pressure drop as
an average value over the SEP. Output
integral pressure was fixed (prescribed as
a boundary condition) to 98.6mmHg.
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Figure 3.12: Pressure drop across the aortic valve during the SEP, for different degrees of
of stenosis. Pressure drop is defined as a difference between the pressure averaged over
cross-sectional area of output and pressure averaged over cross-sectional area of input, i.e.
the difference between pΓ at z = −22 and pΓ at z = 22.

Figures 3.13 and 3.14 show the variables averaged over cross-sectional area Γ as func-
tions of the z coordinate (see Fig. 3.11), at time t = 0.15 s, and averaged over the SEP,
respectively. Graphs of the time evolution of variables (i.e., as time-varying functions)
during the SEP at specified z coordinates are shown in Fig. 3.15. Velocity distribution on
a valvular geometry with the severity up to 50% will be shown in section 5.3 in Fig. 5.4-5.9.

70



−20 −10 0 10 20
0

1

2

3

z coordinate [mm]

v
e
lo
ci
ty

[m
/
s]

severity 50%

severity 60%

severity 70%

severity 80%

−20 −10 0 10 20

120

140

160

180

z coordinate [mm]

p
re
ss
u
re

[m
m
H
g
]

severity 50%

severity 60%

severity 70%

severity 80%

−20 −10 0 10 20

102

104

106

z coordinate [mm]

e
n
e
rg

y
d
is
si
p
a
ti
o
n

[P
a
/
s]

severity 50%

severity 60%

severity 70%

severity 80%

−20 −10 0 10 20

103

104

105

z coordinate [mm]

k
in
e
ti
c
e
n
e
rg

y
[P

a
] severity 50%

severity 60%

severity 70%

severity 80%

Figure 3.13: Velocity, pressure, kinetic energy and energy dissipation averaged over cross-
sectional area Γ, varying as functions of the z coordinate (length), set at the time of
maximum velocity (t = 0.15 s).
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Figure 3.14: Velocity, pressure, kinetic energy and energy dissipation averaged over space
(cross-sectional area Γ) and time (SEP), varying as functions of the z coordinate (length).
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Figure 3.15: Pressure, kinetic energy and energy dissipation averaged over cross sectional
area Γ, varying as functions of time; at z = −12, −6, 0, 12.
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3.6 Conclusion

The existing body of literature and extant work on modeling of cardiovascular blood flow
generally is limited by important oversimplifications and frank conceptual errors - both
mathematical and mechanical. A need for rigorous mathematical/mechanical modeling of
cardiac and vascular function and blood flow thus is required. This work is a substantial
shift in modeling approaches to cardiovascular system function from which further progress
may be made.

It was shown that the assumptions currently used in medical practice and leading to the
Bernoulli equation, which is in fact an expression of energy conservation, are too restrictive
with respect to the flow in stenotic valves. Moreover, the surface integrals arised from the
Navier-Stokes equations are neglected. In chapter 5, we will show that the values of these
integrals are not negligible next to the values of dissipated energy and pressure drop.

The presented model is based on full time dependent Newtonian model using realis-
tic three-dimensional geometry and physiologically relevant boundary conditions. It was
shown that the model is capable to compute the relevant hemodynamic parameters such
as pressure difference and amount of the dissipated energy, and it gives the values of
transvalvular pressure difference consistent with the measured data.

With respect to limitations, there are two oversimplifications. The first oversimplifi-
cation is principally geometric, and is the specification of valve structure and stenosis in
the absence of actual valve leaflets, with stenosis modeled as a reduction in housing/wall
diameter. The absence of valve leaflets necessitates up-front specification of the absence
of regurgitation via a backstop. Thus, further work incorporating moving actual valve
leaflets, and modeling stenosis as a reduction in leaflet motion and systolic (for the aortic
valve) ejection orifice expansion and subsequent contraction is necessary. Nonetheless, the
current model can yet be applied to arterial blood flow in its current form. The second
limitation is that a rigid aorta is assumed. Many previous studies have incorporated aortic
wall mechanics, but using simplified lumped parameter approaches. Further work would
address this oversimplification as well.

A variety of mechanisms contribute to energy losses, see (Akins et al., 2008): so called
”viscous losses”, ”turbulent losses”, ”flow separation losses”, etc. However, these losses
are not independent or additive. More importantly, Bernoullis equation is absolutely mute
with regard to all three of these losses, or for that matter, any energy losses. The physical
basis and blood property understanding for all of these types of energy losses is viscosity.
However, the Bernoulli equation based approach assumes an inviscid fluid. Finally, with
regards to turbulence, no current model is capable of describing the relevant phenomena.
Consequently, it has remained one of the most important unsolved problems in mechan-
ics. Thus, to merely appeal to an ad hoc modification of Bernoullis equation incorrectly
suggests that a more rigorous approach is being employed than that which is actually used.
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4. Computation of the pressure data
directly from velocity data including
the potential error in measurements

The ability to non-invasively determine the pressure in a flowing fluid has wide ranging
technological relevance and import, an example being problems in medicine concerning the
flow of biological fluids. The cardiovascular system presents several situations wherein the
non-invasive determination of pressure would significantly reduce serious risks, including
fatality, associated with invasive procedures. This study is concerned with the determina-
tion of the pressure field from non-invasive velocity data with a view towards determining
the pressure drop across a diseased valve as a consequence of the dissipation in the fluid
as it flows through the valve, the loss of pressure bearing a direct relation to the extent
of the disease. While there have been some careful mathematical attempts at determining
the pressure field from information for the velocity field, with regard to the Navier-Stokes
fluid (see the references below), most of the studies concerning the determination of pres-
sure from the velocity data with regard to flow across diseased valves and other related
cardiovascular flow problems are based on an appeal to inappropriate governing equations,
namely the Bernoulli equation, which are grossly inadequate to describe the dissipation
that takes place in a flowing fluid, see section 3.1, namely (Hatle equation), as it is used
in clinical practice, although it is derived from the simplified Bernoulli equation, i.e. under
the law of conservation of energy.

What is however required is a much more careful consideration of the viscous dissipation
that takes place during the fluid flow and the resulting pressure drop. We discuss in detail
the inverse problem of determining the pressure field from data for the velocity field which
might or might not be known precisely. The study does not appeal to the Bernoulli
equation but considers in full the Navier-Stokes equations for an incompressible linearly
viscous fluid.

While blood in small vessels exhibits shear-thinning characteristics, in a vessel of the
size under consideration it can be modeled as a Newtonian fluid.

We idealize the geometry of the flow to a flow in a rigid pipe with an obstruction
knowing full well that the real flow domain is far more complicated and the walls being
highly deformable.

The methods for the pressure determination are introduced in section 4.1 and applied
to the geometry representing the stenotic aortic valve with symmetric and non-symmetric
obstruction in section 4.2. This approaches are also tested in patient-specific geometries
representing cerebral vessels affected by an aneurysm. This is done in section 4.3. The
results presented here were published in (Švihlová et al., 2016).
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4.1 Determining the pressure for the flow of the

Navier-Stokes fluid

Instead of trying to get some sort of an estimate on the loss of pressure as a consequence
of the dissipation, we will introduce in this section how to directly obtain the pressure field
once the velocity field is known. The velocity field is assumed to have been determined
by either echocardiography or 4D Magnetic Resonance Imaging, and we will consider both
knowledge of the velocity field at a limited amount of the points and the possibility of
uncertainty of the values for the velocity field. This will be discussed in sec. 4.2.

Two methods of the pressure determination can be expressed in two different ways, one
as a Poisson equation for the pressure field and the other based on the Stokes equation
with additional stabilization/correction term. We will refer to them as Pressure Poisson
Equation method (PPE method) and Stokes Equation method (STE method). They are
described in sections 4.1.2 and 4.1.3.

We will use the velocity and pressure coming from the Navier-Stokes equations as a
reference values and call them vref and pref , respectively. The velocity vref will be used as
a starting point for two methods for pressure determination (instead of taking data from
measurements). The reference pressure pref will be then used for the comparison of two
methods which can directly compute the pressure field from the velocity field.

4.1.1 Reference flow

In a given domain Ω ⊂ R3, representing the simplified aortic valve, the velocity vref and
pressure pref satisfy

ρ∗

(
∂vref

∂t
+
(
∇vref

)
vref

)
+∇ pref − div

(
2µ∗D(vref )

)
= 0,

div vref = 0

(4.1)

with the boundary conditions

vref = 0

vref = vin

Tn− 1

2
ρ∗(vref · n)−vref = −P (t)n

on Γwall,

on Γin,

on Γout,

(4.2)

where T = −pref I + 2µ∗D(vref ). The vector n is the unit normal vector to the boundary
∂Ω which consists of three parts: Γwall denotes the walls and Γin, Γout are the inlet and
outlet, respectively. The list of constants and their values is shown in Tab. 2.1. The
subscript ∗ is always used for constants. The boundary data vin and P (t) are the same as
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used in section 3.3.2, namely the input velocity profile is parabolic with time-dependent
magnitude given by the curve 3.8 (left) and the output pressure is prescribed as a time-
dependent variable, but constant on the output plane for given time, given by the curve 3.8
(right). One cardiac cycle lasts 1s, the time when the aortic valve is considered open is from
0 s to 0.25 s (in opposite to 0.3 s used in the section 3.3.2). Initial condition for velocity is
set to

vref (t = 0) = 0 in Ω. (4.3)

The computational meshes for the reference flow are shown in Fig. 4.1. The first one
represents an aortic valve with 55% symmetric severity where the severity is given by
formula (3.25) as a relation between the area of the healthy part and the area of the
stenotic part. The length of the valve L = 2.4 cm and the radius of the healthy part
R = 1.2 cm. For the stenotic part the length l = 1.2 cm and the radius r = 0.805 cm. The
second mesh with the same L, l and R represents an aortic valve with 50% non-symmetric
severity.

Figure 4.1: The first row: three-dimensional mesh for reference flow representing the valve
with the symmetric stenosis with 55% severity, for illustration also the slices of the com-
putational mesh. Grey parts represent the domain of valve, black parts represent the
tissue causing the stenosis. The second row: three-dimensional mesh for reference flow
representing the valve with the 50% non-symmetric stenosis, then a slice of a domain and
another view to the mesh. The sizes of the meshes: L = 2.4 cm, l = 1.2 cm, R = 1.2 cm,
rsym = 0.805 cm.
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4.1.2 Determination of the pressure by the PPE method

We now start with a discussion of the PPE method. We can derive from (4.1) for qppe ≈ p
that

−∇qppe = f(vref ), (4.4)

where we define the quantity

f(vref ) = ρ∗

(
∂vref

∂t
+
(
∇vref

)
vref

)
− div(2µ∗D(vref )) (4.5)

which depends only on the given velocity field v.

On taking the divergence of the Navier-Stokes equations (4.1) we obtain, in virtue of
the incompressibility condition (4.1)2, that

−∆p = ρ∗∇vref ·
(
∇vref

)T
. (4.6)

Since the real problem takes place in a complex geometry, we will have to solve the
Laplaces equation (4.6) numerically. For a given velocity field vref , which may not be
necessarily divergence free and consequently div f(vref ) differs from the right hand side of
(4.6), we want to solve the problem for qppe ≈ p, where qppe meets

−∆ qppe = div f(vref )

∂qppe
∂n

= −f(vref ) · n
in Ω,

on ∂Ω
(4.7)

with f(vref ) given by (4.5). We approximate ∂v
∂t

in (4.5) by vk+1−vk

tk+1−tk
where vk+1 is a given

velocity field at current time step tk+1 and vk is (also given) velocity field at previous time
step tk.

Since this problem admits unique solution up to a constant we need to supply some
additional condition to have uniquely defined solution. We will provide a priori knowledge
of the pressure mean value over the outlet of the domain.

We refer to the problem of finding a numerical solution of (4.7) with (4.5) and this
additional condition fixing the value of pressure as the PPE method.

This method is described for example in (Heys et al., 2010; Gurka et al., 1999; Yang
et al., 1996; Krittian et al., 2012; Bolin and Raguin, 2008; Charonko et al., 2010; Song
et al., 1994; Dabiri et al., 2014; Shirokoff and Rosales, 2011) and is closely connected to a
projection step in the projection methods used to decouple the velocity-pressure compu-
tation when solving the Navier-Stokes equations, see for example (Liu et al., 2010; Prohl,
2008; Guermond et al., 2006). In (Song et al., 1994) it is shown that the PPE method is
equivalent to finding pressure p such that the functional ||∇p− f(vref )||2Ω is minimized.

In order to solve (4.7) for qppe, we need to know the appropriate boundary conditions for
qppe. Boundary conditions are determined by the physics of the problem. However, when
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one is unable to determine the appropriate boundary conditions based on an understanding
of the physics of the problem, one can take recourse to a mathematical procedure that is
reasonable and expected of the solution to the problem, provided one is assured of a solution
that is sufficiently smooth. One can obtain conditions by evaluation the governing partial
differential equation on the boundary.

This method leads to a scalar linear problem. However, even in the weak form it
requires computation of first or even second derivatives of the velocity field, depending
how many derivatives we can move to the test functions, which can be problematic if the
velocity field is measured.

4.1.3 Determination of the pressure using the STE method

In this approach, based on the idea from (Cayco and Nicolaides, 1986), we want to directly
determine a pressure as a function qste such that −∇ qste = f(vref ) in a weak sense, where
f(vref ) is given by (4.5).

This is done by solving a Stokes problem for the unknowns w and qste ≈ p such that

−∆w −∇ qste = f(vref )

divw = 0

w = 0

in Ω,

in Ω,

on ∂Ω.

(4.8)

It is important to recognize that w is considered here as an unknown and has nothing
common with the given velocity vref . In fact, w is expected to be almost zero. Again we
need to provide a priori knowledge of the pressure at one point, or pressure mean value
over some part of the domain or its boundary, to get a unique solution.

The solution of (4.8) with the right hand side of (4.5) and the prescribed mean pressure
value over the outlet is referred to as the STE method. This method leads to a larger linear
saddle-point type system of equations. However it requires less regularity on the data than
the PPE method introduced in the previous section since no additional derivative of the
data vector f(vref ) is needed.

4.1.4 Weak formulation of the problems

The subsequent computations are run using the FEniCS, automated finite element solver
(Logg et al., 2012) which allows for an easy employment of the standard finite element
method to a wide class of variational problems. First, the Navier-Stokes problem (4.1) is
written in variational form as (3.30).

The time discretization is done by an implicit one step difference method and with
regard to spatial discretization, the function spaces V, P are approximated by standard
piece-wise polynomial spaces, i.e. Taylor-Hood P2/P1 elements.

Standard FEM discretization is used to find the approximate solution to PPE and STE
problems. The space PS is approximated by piece-wise P1 functions and the spaces PP and
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V by piece-wise P2 functions. The space R is one dimensional space of constants on the
computational domain and is used to enforce the additional condition on the mean value
of the pressure over the Γout part of the boundary by means of global Lagrange multiplier.

Namely the PPE and STE problems are cast in weak forms as follows:

PPE: Find (qppe, r) ∈ PP ×R such that for all (qtest, rtest) ∈ PP ×R∫
Ω
∇ qppe · ∇ qtest dx =

∫
Ω

f(vref ) · ∇ qtest +

∫
Γout

r qtest ds,∫
Γout

(qppe − p) rtest ds = 0. (PPE)

STE: Find (w, qste, r) ∈ V × PS ×R such that for all (wtest, qtest, rtest) ∈ V × PS ×R∫
Ω
∇w · ∇wtest dx−

∫
Ω

qste divw
test dx =

∫
Ω

f(vref ) ·wtest dx,∫
Γout

r qtest ds+

∫
Ω

qtest divw dx = 0,∫
Γout

(qste − p) rtest ds = 0. (STE)

4.2 Numerical results

In sections 4.1.2 and 4.1.3 we introduced two approaches to ascertain the pressure directly
from the velocity field. In order to compute the results achieved by these two methods we
introduced the reference velocity vref and reference pressure pref in section 4.1.1. They are
plotted, on slices of the meshes, in Fig. 4.2. The maximal local Reynolds numbers for these
two problems, in symmetric and non-symmetric domains, are 560 and 765, respectively.

We will compare the pressures qppe and qste obtained by the two methods proposed in
sec. 4.1.2 and 4.1.3 with this reference pressure pref . To do that, we will compute the
pressure as an integral over the slices along the centerline as in eq. (4.9).

pREF =

∫
Γ
pref dS

area(Γ)
(4.9)

The centerline is an axis passing through the vessel, Γ denotes the cross-section area
perpendicular to the centerline, see Fig. 4.3. The resulting curves presenting the pressure
drop within the domain, computed through the formula (4.9), are shown in the Fig. 4.4.
The centerline here passes through the z axis so we will use the term ”z coordinate” for
the figures, not ”cross-section area along the centerline”.

We define qPPE and qSTE for qppe and qste similarly as in eq. (4.9). While we will ascer-
tain pressure only in a systolic time step t = 0.125 s as a steady flow, we will consider the
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functions pREF, qPPE and qSTE depend only on the z coordinate.

In order to ascertain the efficiency of the two methods we compute the pressure field
corresponding to three types of velocity data, the first which we refer to as fine data wherein
we have full information for the velocity field on a very fine grid, the second type of data
which we refer to as coarse data wherein the information is available only on a rough grids
with different level of the coarseness, and finally the third type of data, ”data with a noise”,
wherein the first two types are combined with added random modification in its values.

The reference velocity vref will serve as the input data for the pressure determination
by PPE and STE methods, i.e. to find qppe and qste, respectively. The computed pressure
pref will be used as the reference pressure to compare the accuracy of these two methods.

4.2.1 Fine data

We will start with the velocity field given on the same very fine mesh as that for which
we know the velocity field exactly, i.e. velocity field known at every vertex of the mesh
and with the velocity field measured exactly without noise. The meshes for symmetric
and non-symmetric stenoses are shown in Fig. 4.7 and 4.8. Computation on the fine data
corresponds to the computation on L0 mesh, i.e. the finest mesh.

For both cases, symmetric and non-symmetric, we compute the relative errors

errppe =
∥qppe − pref∥L2

∥pref∥L2

,

errste =
∥qste − pref∥L2

∥pref∥L2

,

(4.10)

where obtained pressures qppe and qste were linearly interpolated to the finer mesh where
pref was computed. The relative errors are shown in Tab. 4.1 and the point-wise errors are
plotted in Fig. 4.5 for better illustration.
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Figure 4.2: The first two rows depict the distribution of the reference pressure pref and
the reference velocity vref for symmetric (left column) and non-symmetric (right column)
domains; the third row contains the detail of the velocity field vref on slice near the outlet
to show the recirculation in flow.
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Figure 4.3: Cross-section areas Γ along
the centerline.
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Figure 4.4: The reference pressure pREF

(4.9) computed over cross-sections as a
function of the position along the center-
line for two different geometries during a
systolic time step.

∥qppe−pref∥L2

∥pref∥L2

∥qste−pref∥L2

∥pref∥L2

symmetric 6.40e-04 1.50e-14
non-symmetric 3.50e-03 1.16e-14

Table 4.1: Relative errors for fine data.

While we are fixing the pressures pREF = qPPE = qSTE on Γout, computed through the
formula (4.9), we are interested in comparison of the pressure differences or pressure drops
qdropPPE and qdropSTE compared to the reference pressure drop pdropREF. Their definitions are as
follows:

qdropPPE: = qPPE(inlet)− qPPE(outlet),

qdropSTE : = qSTE(inlet)− qSTE(outlet),

pdropREF: = pREF(inlet)− pREF(outlet).

(4.11)

The differences between the qdropPPE and qdropSTE in comparison with pdropREF are shown in
Tab. 4.2, the pressures pREF, qPPE and qSTE are shown in Fig. 4.6.
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Figure 4.5: Absolute values of point-wise errors
⏐⏐qppe − pref

⏐⏐ (left column) and
⏐⏐qste − pref

⏐⏐
(right column) in mmHg on a slice of the symmetric domain (the first row) and non-
symmetric domain (the second row).

⏐⏐⏐pdropREF − qdropPPE

⏐⏐⏐ ⏐⏐⏐pdropREF − qdropSTE

⏐⏐⏐
symmetric 8.42e-02 1.42e-14

non-symmetric 9.44e-01 1.00e-08

Table 4.2: Errors in the pressure drops for fine data.
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L0 mesh for symmetric case without noise
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L0 mesh for non-symmetric case without noise
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Figure 4.6: Results on L0 mesh without noise. First column: The reference and obtained
pressure computed through the formula (4.9). Second column: The absolute value of
difference between the reference and obtained pressure.
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4.2.2 Coarse data

In this section we will do more tests with less accurate velocity fields with fewer points
where we pretend to know the velocity exactly. This means computations on the coarser
meshes. All of these meshes, referred here as a level L0 for the finest mesh and L4 for the
coarsest mesh, are shown in Fig. 4.7 and 4.8.

L0 mesh: 19.861
nodes

L1 mesh: 9.883
nodes

L2 mesh: 4.856
nodes

L3 mesh: 2.405
nodes

L4 mesh: 1.138
nodes

Figure 4.7: The computational mesh L0 for the reference flow and the coarser meshes for
ascertaining pressure for symmetric case.

L0 mesh: 22.427
nodes

L1 mesh: 11.883
nodes

L2 mesh: 6.255
nodes

L3 mesh: 3.085
nodes

L4 mesh: 1.479
nodes

Figure 4.8: The computational mesh L0 for the reference flow and the coarser meshes for
ascertaining pressure for non-symmetric case.

Pressures pREF, qPPE and qSTE, computed as in (4.9), and also the errors |qPPE − pREF|
are plotted for L0, L2 and L4 meshes in Fig. 4.9 for symmetric case and in Fig. 4.10 for
non-symmetric case. The convergence curves of relative errors are shown in Fig. 4.11.
1/h here is taken as cube root of the number of nodes of the mesh. The relative errors,
eq. (4.10), and the errors in pressure drop estimation are shown in the next section in
Tab. 4.3 and Tab. 4.4, respectively.
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L0 mesh for symmetric case without noise
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L2 mesh for symmetric case without noise
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L4 mesh for symmetric case without noise
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Figure 4.9: Reference and obtained pressure computed through the formula (4.9) in the first
column and the absolute value of difference between the reference and obtained pressure
in a second column for both methods.
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L0 mesh for non-symmetric case without noise
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L2 mesh for non-symmetric case without noise
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L4 mesh for non-symmetric case without noise
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Figure 4.10: Reference and obtained pressure computed through the formula (4.9) in the
first column and the absolute value of difference between the reference and obtained pres-
sure in a second column for both methods.
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Figure 4.11: Convergence curves of relative errors for coarse data without noise.

4.2.3 Data with the noise

Here we want to simulate the fact that velocity is measured with the error or noise. While
there is an interpolation error due to the limited amount of points where we know the
velocity, we will also include the error of the measurement which can be as much as
5% or 10%. This means that the velocity vref (x) in the point x is replaced by the
vmeas(x) = (1 ± ε(x))vref (x) where ε(x) ∈ [0, 0.05] for maximal 5% error, ε(x) ∈ [0, 0.1]
for maximal 10% error respectively. That is the vector of the reference (exact) velocity
is (due to the measurement) lessened or increased in magnitude by the error 5% or 10%.
This is numerically simulated by adding a random number ε ∈ [−0.05, 0.05], ε ∈ [−0.1, 0.1]
respectively, to each point where we know the velocity.

We can combine these two errors (error due to information at a limited amount of
points and error due to the deviations of measured and exact vectors). We will distinguish
the meshes for computation as levels L0-L4, as they are labeled in Fig. 4.7 - 4.8, and the
error due to the deviation as N0, N5 and N10 for including noise 0%, 5% or 10%.

The relative errors between the reference and obtained pressure are shown for both
geometries (symmetric and non-symmetric) and for all computational meshes L0-L4 in
Tab. 4.3. Tab. 4.4 shows the errors in pressure drop estimations.

The convergence curves of relative errors are shown in Fig. 4.12 and Fig. 4.13. 1/h here
is taken as cube root of the number of nodes of the mesh.
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symmetric case non-symmetric case

errppe errste
errppe
errste

errppe errste
errppe
errste

L0N0 6.40e-04 1.50e-14 - 3.50e-03 1.16e-14 -
L1N0 1.49e-03 1.03e-03 1.44 2.53e-03 1.68e-03 1.51
L2N0 2.24e-03 1.46e-03 1.54 3.33e-03 2.20e-03 1.51
L3N0 6.52e-03 2.15e-03 3.04 5.82e-03 3.05e-03 1.91
L4N0 9.37e-03 3.14e-03 2.99 8.46e-03 4.05e-03 2.09

L0N5 9.03e-04 6.66e-04 1.36 4.91e-03 2.81e-03 1.75
L1N5 1.82e-03 1.26e-03 1.45 4.94e-03 3.34e-03 1.48
L2N5 2.40e-03 1.52e-03 1.58 4.84e-03 3.83e-03 1.27
L3N5 7.10e-03 2.49e-03 2.85 8.07e-03 6.46e-03 1.25
L4N5 9.15e-03 3.18e-03 2.88 9.87e-03 8.46e-03 1.17

L0N10 1.45e-03 1.33e-03 1.09 6.89e-03 5.63e-03 1.22
L1N10 2.37e-03 1.75e-03 1.36 8.13e-03 6.09e-03 1.34
L2N10 2.86e-03 1.84e-03 1.56 7.76e-03 6.70e-03 1.16
L3N10 7.82e-03 3.13e-03 2.50 1.19e-02 1.20e-02 0.99
L4N10 9.06e-03 3.44e-03 2.63 1.56e-02 1.57e-02 0.99

Table 4.3: Relative errors for PPE and STE methods, see eq. (4.10).

symmetric case non-symmetric case

|pdrop
REF − q

drop
PPE | |pdrop

REF − q
drop
STE |

|pdrop
REF

−q
drop
PPE

|

|pdrop
REF

−q
drop
STE

|
|pdropREF − q

drop
PPE | |pdropREF − q

drop
STE |

|pdrop
REF

−q
drop
PPE

|

|pdrop
REF

−q
drop
STE

|

L0N0 0.08 0.00 - 0.94 0.00 -
L1N0 0.23 0.05 4.841 0.44 0.12 3.772
L2N0 0.32 0.04 7.576 0.50 0.10 5.206
L3N0 1.19 0.14 8.770 1.01 0.03 30.697
L4N0 1.86 0.27 6.938 1.42 0.15 9.779

L0N5 0.04 0.10 0.418 1.17 0.29 4.024
L1N5 0.33 0.06 5.281 1.00 0.18 5.595
L2N5 0.23 0.14 1.688 0.71 0.02 43.149
L3N5 1.35 0.28 4.896 1.64 1.19 1.381
L4N5 1.90 0.36 5.342 0.22 1.44 0.153

L0N10 0.00 0.20 0.017 1.39 0.58 2.387
L1N10 0.43 0.17 2.554 1.55 0.47 3.314
L2N10 0.14 0.24 0.601 0.92 0.06 15.805
L3N10 1.51 0.41 3.673 2.27 2.40 0.945
L4N10 1.92 0.44 4.402 1.86 3.03 0.616

Table 4.4: Error in the pressure drop for PPE and STE methods, see eq. (4.11).
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Figure 4.12: Convergence curves of relative errors for coarse data with 5% noise.
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Figure 4.13: Convergence curves of relative errors for coarse data with 10% noise.
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4.3 Computation of the pressure from the velocity

field in patient specific geometry

In this section we will demonstrate the fact the methods can be used for patient specific
geometry obtained from imaging methods. The geometry used here will be the geometry
of the cerebral artery (namely basilar artery, see Fig. 1.3) affected by an aneurysm, shown
in Fig. 4.14. The geometry was derived by the process described in section 2.1.

Figure 4.14: Geometry of the cerebral aneurysm.

Fig. 4.15 shows absolute values of point-wise errors
⏐⏐qppe − pref

⏐⏐ and ⏐⏐qste − pref
⏐⏐ in Pa

for PPE method and STE method, respectively. The error distributions are shown on the
whole domain, specially on the aneurysm sac, and on the slice. These point-wise plots show
the error for ”fine data” as they were introduced in section 4.2.1, i.e. the computation with
the knowledge of the exact velocity field in all points of the geometry. There is a uniformly
distributed error for STE method, the same results as was obtained in section 4.2 for
simplified domains, see Fig. 4.2.

The methods were tested also in the ”coarser data”, as they were described in sec-
tion 4.2.2, i.e. the computations were performed with the knowledge of the exact velocity
field but only in the smaller amount of points of the geometry. This was simulated by
using the coarser meshes. The number of nodes and the average node distances are shown
in Tab. 4.5.

The relative errors

erelppe =
∥qppe − pref∥L2

∥pref∥L2

, erelste =
∥qste − pref∥L2

∥pref∥L2

(4.12)
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are plotted in Fig. 4.16 against the 1/h which is taken as cube root of the number of nodes
of the mesh. The errors were more than thirty times higher. However, H1 errors were only
about 1.5 times higher. The relative errors are shown in L2 norm in Tab. 4.6 and in H1

norm in Tab. 4.7.

c0 c1 c2 c3
# points 38763 28591 24891 23690

node distance 0.295 0.328 0.338 0.337

Table 4.5: Number of points and average node distance in mm in the computational
mesh. The c0 refers to the ”fine data” - the computation was performed with the whole
information of the velocity, i.e. in all points. The c1-c3 refer to the ”coarser data” - the
computations with the limited information of the velocity. i.e. known in less amount of
points.

PPE method STE method

Figure 4.15: Absolute values of point-wise errors
⏐⏐qppe − pref

⏐⏐ (left column) and
⏐⏐qste − pref

⏐⏐
(right column) inmmHg on the surface of the mesh (the first row) and on a slice of the
domain (the second row) for fine data in the case of patient-specific geometries.
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Figure 4.16: Convergence curves of relative errors for coarse data in patient-specific ge-
ometries.

case 1 - PPE case 1 - STE case 2 - PPE case 2 - STE
c0 0.092 0.017 0.109 0.0018
c1 0.113 0.022 0.126 0.0033
c2 0.126 0.023 0.140 0.0040
c3 0.136 0.025 0.142 0.0044

Table 4.6: Relative errors in L2 norm for pressure determination in patient-specific geome-
tries.

case 1 - PPE case 1 - STE case 2 - PPE case 2 - STE
c0 0.328 0.067 0.382 1.41e-13
c1 0.387 0.266 0.483 0.295
c2 0.397 0.292 0.510 0.341
c3 0.406 0.350 0.524 0.356

Table 4.7: Relative errors in H1 norm for pressure determination in patient-specific geome-
tries.

4.4 Conclusion

In this study, we have developed a mathematically rigorous methodology for the deter-
mination of the pressure field from a knowledge of the velocity field in the case of the
Navier-Stokes fluid, with a view towards the determination of the pressure loss across a
diseased valve. Two methods were tested firstly for idealized geometries in section 4.2,
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then for patient-specific cerebral aneurysm geometries in section 4.3. In all of the cited ref-
erences, the Pressure Poisson equation, referred here as PPE method, was used to compute
the pressure. We compared the PPE method, as described in section 4.1.2, with a new
approach, namely the STE method as presented in section 4.1.3. The STE method is based
on the Helmholtz decomposition theorem (see for example (Maria Denaro, 2003) for its
application in the context of projection methods), and it allows us to compute the pressure
under lower regularity requirements on the given velocity. In Cayco and Nicolaides (1986)
this approach is used to recover pressure for two-dimensional flows that allows the authors
to use the stream function formulation. However we have not found any publication using
this method to recover the pressure for given velocity field in general three dimensional
flows. In sections 4.2 and 4.3 we show that the STE method provides more accurate pres-
sure approximation than PPE method for the same velocity data. Of course, in the STE
method we solve a system of four partial differential equations in three dimensions, while
the PPE method requires solving just one scalar equation.

The study captures some of the salient features concerning the flow of blood in car-
diovascular systems, such as the mechanical properties of blood and the spatiotemporal
characteristics of ventricular, trans-valvular, and arterial blood flow. Also, we incorporated
the normal physiological mechanical properties of the conduit. However, fully integrating
the deformable conduit with moving fluid/solid boundary into the existing model, in order
to develop a comprehensive mathematical model, is considerably more difficult and will
be the focus of future endeavors. Testing a more refined model against clinically relevant
datasets then may be undertaken.
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5. Flow with slip boundary condition
on the wall applied to the highly
narrowed domain

In fluid dynamics, the influence of the material surrounding the domain enters the compu-
tation via boundary conditions. No-slip and slip boundary conditions can be considered as
two limiting cases for boundary conditions prescribed on the walls whereas the Navier’s slip
and various stick-slip boundary conditions can capture some regimes between the limits.

Blood flow experiments (Bennett, 1967), (Bugliarello and Hayden, 1963) report the
existence of slip of red cells in contact with the wall in small glass capillaries. It was
suggested that the existence of slip can cause the flow dependence of the viscosity (Nubar,
1971). It was shown that changes of the Navier’s slip parameter can change the flow more
markedly than the change of the constitutive equation for the fluid (Hron et al., 2008).

From this perspective, it is of interest to see how the macroscopic properties, such that
transvalvular pressure difference and energy dissipation across the stenotic valve, differ in
the two limiting cases of the boundary condition on the walls, no-slip and free-slip.

In this chapter we will compute the fluid flow described by the non-stationary incom-
pressible Navier-Stokes equations in bounded fixed domain Ω ⊂ R3 with free-slip boundary
condition prescribed on the walls. Computational model will be the same as used in chap-
ter 3, except the free-slip prescribed on the walls and constant velocity profile prescribed
on the inflow. Schema of the computational domain, representing the symmetric stenosis
of aortic valve with 50% severity, is shown in Fig. 5.1.

Γwall

Γwall

Γin Γout

Figure 5.1: Schema of the computational domain.

The Dirichlet boundary condition for velocity will be prescribed on the inlet, the pressure
and stabilization term, discussed in chapter 3, will be prescribed on the outlet. The free-
slip boundary condition on the wall will be formulated and then treated by the Nitsche’s
method.
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5.1 Problem formulation

Let the unknowns (v, p) satisfy the following system:

∂v
∂t

+ (∇v)v − divT = 0 in Ω,

T = −pI+ ν∗
(
∇v +∇vT

)
in Ω,

div v = 0 in Ω,

v = vin on Γin,

Tn = −poutn+ 1
2
(v · n)− v on Γout,

v · n = 0 on Γwall,

(Tn)τ = 0 on Γwall

(5.1)

where Ω ⊂ R3 is a fixed domain with the boundary ∂Ω consisting of three non-overlapping
parts Γin, Γout and Γwall, n is the unit outward normal vector to the boundary and ν∗ is a
constant kinematic viscosity. The list of constants and their values are shown in chapter 2
in Tab. 2.1. There are two prescribed functions, vin = vin(x, y, t): Γin × [0,T] → R3 and

pout =
P (t)
ρ∗

: [0,T] → R with T = 1.0 s. Interval [0,T] represents a cardiac cycle. In this
formulation, we identify p with p

ρ∗
, where ρ∗ is a constant density of the fluid.

Initial condition for velocity is set to

v(t = 0) = 0 in Ω. (5.2)

We would like to highlight three things. Firstly, inlet velocity profile suitable for slip
boundary condition is constant flow, namely

vin = −V (t)n, (5.3)

where V (t): [0,T] → R is a function depended only on time and n is the unit outward
normal vector on Γin. Functions V (t) and P (t) are shown in chapter 3 in Fig. 3.8 with
systolic ejection time (SEP) equal to 0.3 s.

Secondly, slip boundary condition is prescribed only for the tangential part of the
surface-traction vector Tn which was already defined as wss = (Tn)τ in chapter 2 and
computed as (2.23). Tangential part for a vector z is defined as

(z)τ = z− [z · n]n. (5.4)

Finally, the outflow boundary condition (5.1)4 is the same as presented in section 3.4.
It consists of the prescribed pressure and backflow stabilization term.
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Weak formulation

In the considered case, the suitable functional spaces are

V : =

{
v ∈ L∞

(
I,
[
H1(Ω)

]3)
; v = 0 on Γin, v · n = 0 on Γwall

}
, (5.5)

P : =
{
p ∈ L2

(
I,L2 (Ω)

)}
(5.6)

where I = [0,T] is a finite time interval.
Multiplying the first equation in (5.1) by the test function vtest ∈ V and integrating

over the domain Ω and over the finite time interval [0,T] we get∫ T

0

[(
∂v

∂t
,vtest

)
Ω

+
(
(∇v)v,vtest

)
Ω
− (divT,vtest)Ω

]
dt = 0. (5.7)

We will also multiply the third equation in (5.1) by the test function ptest ∈ P .
Using the per-partes method and imposing the boundary conditions (5.1)4-(5.1)7 we get
the weak formulation of the problem. For simplicity we will identify v with its part having
homogeneous Dirichlet boundary condition on Γin, namely v : = v − vin ∈ V . Then the
weak formulation of (5.1) can be formulated as follows.
Find (v, p) in V × P satisfying for all (vtest, ptest) ∈ V × P∫ T

0

[(
∂v

∂t
,vtest

)
Ω

+
(
(∇v)v,vtest

)
Ω
+ (T,∇vtest)Ω

]
dt+

−
∫ T

0

(
1

2
(v · n)− v,vtest

)
Γout

dt = −
∫ T

0

(poutn,vtest)Γout
dt,

(5.8)

−
∫ T

0

(div v, ptest)Ω dt = 0. (5.9)

5.2 Nitsche’s method

Nitsche’s method was introduced by (Nitsche, 1971) to handle the Dirichlet boundary
conditions and put them into the weak formulation. It is type of a penalty method. The
Nitsche’s method can be connected to the stabilized Lagrange multiplier method (Babuška,
1973; Barbosa and Hughes, 1991), as discussed in (Stenberg, 1995). The range of method’s
applications covers domain decomposition (Juntunen, 2015) or fluid structure interaction
problems (Benk et al., 2012).

In this section we will show the Nitsche’s method applied to the boundary conditions
on the wall (5.1)6 and (5.1)7. Then the finite element discretization will be formulated.
The equations used in this section was presented in (Freund and Stenberg, 1995) for Stokes
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equations and in (Mekhlouf et al., 2016) for the Navier-Stokes equations with slip bound-
ary condition on the whole boundary. Both papers also shown the numerical results on 2D
geometry.

According to the weak formulation (5.8)-(5.9) we will define variational forms

B(v, p,vtest, ptest) =
(
(∇v)v,vtest

)
Ω
+ (T,∇vtest)Ω +

−
(
1

2
(v · n)− v,vtest

)
Γout

− (div v, ptest)Ω ,
(5.10)

F (vtest) =− (poutn,vtest)Γout
. (5.11)

Then the Nitsche’s formulation of the problem

B(v, p,vtest, ptest) = F (vtest) (5.12)

is then defined as finding (v, p) in V × P satisfying ∀(vtest, ptest) ∈ V × P(
∂v

∂t
,vtest

)
Ω

+B(v, p,vtest, ptest) + C(v, p,vtest, ptest) =F (vtest) (5.13)

with

C(v, p,vtest, ptest) =
∑

E∈Γwall

βν∗
hE

(v · n,vtest · n)E +

− (Tn · n,vtest · n)Γwall
−
(
v · n,Ttestn · n

)
Γwall

(5.14)

where β ∈ R is a stabilization parameter, in computation set to 10000, ν∗ is a constant
kinematic viscosity and hE is the diameter of the triangle E on Γwall. In the computation,
we set hE as the maximal triangle diameter on Γwall to be the same for all triangles,
hE = 0.0031m. The value of the ratio βν∗

hE
is equal to 104·3.71·10−6

3.1·10−3 ≈ 12. Ttest is formulated
similarly as a Cauchy stress tensor (5.1)2 with test functions vtest, ptest, namely

Ttest = −ptestI+ ν∗

(
∇vtest + (∇vtest)

T
)
. (5.15)

Finite element discretization

Let us for simplicity assume that the domain Ω is given as a union of tetrahedra forming
regular tetrahedralization.
We will use Taylor-Hood elements represented by the function spaces

vh,v
test
h ∈ Vh : =

{
vh ∈

[
C(Ω)

]3
, vh |K∈

[
P2(K)

]3 ∀K ∈ Ω; vh |E= 0 ∀E ∈ Γin

}
,

ph, p
test
h ∈ Ph : =

{
ph ∈ C(Ω), ph |K∈ P1(K) ∀K ∈ Ω

}
.
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Then the eq. (5.13)-(5.14) can be discretized. We look for (vh, ph) ∈ Vh × Ph such that
or all (vtest

h , ptesth ) ∈ Vh × Ph holds(
∂v

∂t
,vtest

)
Ω

+B(vh, ph,v
test
h , ptesth ) + C(vh, ph,v

test
h , ptesth ) =F (vtest

h ) (5.16)

and the forms B,C, F are defined in eq. (5.10), (5.11) and (5.14).

Time discretization

Time discretization of the problem (5.16) will be treated by the Crank-Nicholson scheme
as defined in chapter 2. For Nitsche’s formulation, form L(t) from eq. (2.16) is

L(t) = B(vh(t), ph(t),v
test
h , ptesth ) + C(vh(t), ph(t),v

test
h , ptesth )+

− F (vh(t), ph(t),v
test
h , ptesth )

(5.17)

with B,C, F defined in eq. (5.10), (5.11) and (5.14).

5.3 Numerical simulations

In sections 5.1-5.2 we introduced the model of the flow with free-slip boundary condition
on the wall treated by the Nitsche’s method. In this section, we will compare the results
obtained by this model with the results using no-slip boundary condition on walls. This
problem was studied in chapter 3, see the eq. (3.22) and (3.26).

Results in cylindrical geometry

Firstly, the problem was tested in the cylinder. The diameter of the cylinder was set to
24mm and its height to 44mm to has similar sizes as the geometries representing the aortic
valve (see below). Due to the flow distribution, shown in Fig. 5.2, dissipated energy in the
cylinder with slip boundary condition and constant velocity profile was zero opposite to
the nonzero dissipated energy in the no-slip case, concretely

1

|SEP|

∫
SEP

∫
Ω
2µ∗D:D dx

volume
dt = 92.2

Pa

s

in no-slip case.
Pressure drop or pressure difference averaged over SEP,

1

|SEP|

∫
SEP

∫
Γin

p dS

areaΓin

−
∫
Γout

p dS

areaΓout

dt,

was 0.3mmHg in no-slip case and 0.18mmHg in slip case. Length of the systolic ejection
period, |SEP|, is equal to 0.3 s.
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NOSLIP SLIP

Figure 5.2: Velocity distribution on a slice of the cylindrical domain.

Results in valvular geometry

Both problems, called here as slip case and no slip case, represented by equations (5.1)
and (3.22)&(3.26), was then computed on 6 different geometries. The geometries represent
aortic valves, firstly without stenosis (or with 0% severity) and secondly with stenosis of
10%, 20%, 30%, 40% and 50% severity. Severity is given as a relation between the area of
the stenotic and healthy part of the valve, see eq. (3.25). The meshes are shown in Fig. 5.3.
Flow in these geometries, plotted as a velocity vectors on a slice of the domain, are shown
in Fig. 5.4-5.9 at time of maximal velocity. Maximal velocity was set at time t = 0.15 s
to 0.65 m

s
, see Fig. 3.8. Testing how the Nitsche’s method satisfy the boundary condition

v · n = 0 on the walls, the integral
∫
Γwall

(v · n)2 dS was computed as an average over the

SEP against the SEP-averaged integral
∫
Γwall

v · v dS. This ratio was in order of 10−4 for

all six valvular geometries and 10−6 for cylinder as it is shown in Tab. 5.1.

∫
SEP

∫
Γwall

(v·n)2 dS dt∫
SEP

∫
Γwall

v·v dS dt
cylinder 0% 10% 20% 30% 40% 50%

SLIP 3.5e-06 2.1e-04 2.7e-04 3.2e-04 3.6e-04 4.1e-04 4.0e-04

Table 5.1: For slip case the satisfaction of the boundary condition v · n = 0 was tested
with respect to the flow magnitude on the walls.
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Figure 5.3: Computational meshes with 0%, 10%, 20%, 30%, 40% and 50% severity and
their sizes.

NOSLIP 0% severity SLIP 0% severity

Figure 5.4: Velocity distribution on a slice of the valvular geometry without severity in
time of maximal velocity (t = 0.15 s).

102



NOSLIP 10% severity SLIP 10% severity

Figure 5.5: Velocity distribution on a slice of the valvular geometry with 10% severity in
time of maximal velocity (t = 0.15 s).

NOSLIP 20% severity SLIP 20% severity

Figure 5.6: Velocity distribution on a slice of the valvular geometry with 20% severity in
time of maximal velocity (t = 0.15 s).
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NOSLIP 30% severity SLIP 30% severity

Figure 5.7: Velocity distribution on a slice of the valvular geometry with 30% severity in
time of maximal velocity (t = 0.15 s).

NOSLIP 40% severity SLIP 40% severity

Figure 5.8: Velocity distribution on a slice of the valvular geometry with 40% severity in
time of maximal velocity (t = 0.15 s).
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NOSLIP 50% severity SLIP 50% severity

Figure 5.9: Velocity distribution on a slice of the valvular geometry with 50% severity in
time of maximal velocity (t = 0.15 s).

As can be seen in Fig. 5.4-5.9, flow with slip boundary condition (and constant velocity
profile) is highly different from that with no slip boundary condition (and parabolic inlet
velocity profile). We would like to highlight that he computational geometry is short
compared to the velocity magnitude (max |vin| = 0.65 m

s
, length = 0.044m, see Fig. 5.3).

The slip boundary condition leads to bigger vortices accompanied with higher velocity. On
the other hand, noslip boundary condition leads to more straightforward flow and vortices
are smaller with lower velocities. This results to the fact, that dissipation starts to be
higher in slip case for stenotic cases. We summarize the dissipation, kinetic energy and
pressure drop in Tab. 5.2 and plot them in Fig. 5.10. All variables are computed in Pascal
to be easily compared, so the kinetic energy and pressure drop are computed as time
averaged over the SEP and the rate of dissipation, 2µ∗D:D, is computed as an integral
over the SEP. The conversion for pressure drop in mmHg is 1Pa ≈ −0.0075mmHg.
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∫
SEP

∫
Ω 2µ∗|D(v)|2 dx

volume
dt [ Pa] 0% 10% 20% 30% 40% 50%

NOSLIP 20.11 22.05 27.79 41.94 81.75 130.84

SLIP 11.67 24.21 63.38 138.84 194.75 257.95

1
|SEP|

∫
SEP

∫
Ω 0.5ρ∗|v|2 dx

volume
dt [ Pa] 0% 10% 20% 30% 40% 50%

NOSLIP 118.97 122.35 129.36 142.53 166.38 176.47

SLIP 75.17 86.41 108.57 139.28 178.20 191.32

1
|SEP|

∫
SEP

∫
Γin

p dS∫
Γin

dS
−

∫
Γin

p dS∫
Γin

dS
dt [ Pa] 0% 10% 20% 30% 40% 50%

NOSLIP 8.61 17.16 33.01 84.18 204.29 384.07

SLIP -4.61 17.72 46.72 119.87 320.44 527.75

Table 5.2: Dissipation, integrated over the SEP, and SEP-averaged kinetic energy and
pressure drop in Pascal for prescribed slip and noslip boundary condition for 6 geometries
with different level of severity.
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Figure 5.10: Plotted data according to the Tab. 5.2. The x-axis reffers to the severity (0%
severity means no stenosis), y-axis is always in Pascal.

Fig. 5.11 and 5.12 show the velocity magnitude, pressure, kinetic energy and energy
dissipation in geometry of the valve with 50% stenosis averaged over the cross-sectional
planes Γ, firstly at the time of maximum velocity (t = 0.15 s), then averaged over the SEP
(time interval between 0 and 0.3 s). Cross-sectional planes are planes perpendicular to the
centerline with different z coordinate as can be seen in Fig. 3.11. The biggest difference
between the two models can be seen in pressure drop and energy dissipation when the peak
of energy dissipation in slip case is twice higher than in the noslip case.
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Figure 5.11: Velocity, pressure, kinetic energy and energy dissipation averaged over cross-
sectional plane Γ for geometry representing 50% stenosis for prescribed slip and noslip
boundary condition, varying as functions of the z coordinate (length), set at the time of
maximum velocity (t = 0.15 s).
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Figure 5.12: Velocity, pressure, kinetic energy and energy dissipation averaged over space
(cross-sectional plane Γ and time (SEP) for geometry representing 50% stenosis for pre-
scribed slip and noslip boundary condition, varying as functions of the z coordinate
(length).

Integrals on boundary

Is section 3.2 we presented the set of assumptions leading to the Bernoulli relation (3.15)
in case of similar |Γin| ∼ |Γout|, namely

pin − pout = − 1

ωin|Γin|

(
d

dt
Ek(t) + Edis(t)

)
. (5.18)
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These assumptions were following:

nin = (0, 0, −1),

nout = (0, 0, 1),
(A0)

p(x, y, t) = pin(t) on Γin,

p(x, y, t) = pout(t) on Γout,
(A1)

v = (0, 0, ω) , (A2)

ω(x, y, t) = ωin(t)

ω(x, y, t) = ωout(t)

&

&

∂ω

∂z
= 0

∂ω

∂z
= 0

on Γin,

on Γout.
(A3)

Due to the recirculation, the assumptions (A2) and (A3) are not satisfied on the Γout.
Incorporating only the first two assumptions, we ended with the relation (3.12), namely

−(pin − pout)

∫
Γin

v · n dS +
d

dt
Ek(t) + Edis(t) =

= −
∫
∂Ω

ρ∗
|v|2

2
(v · n) dS −

∫
∂Ω

2µ∗Dv · n dS.

(5.19)

There is a question how big are the integrals on the right hand side (RHS) in comparison
with the values on the left hand side (LHS) appearing in Bernoulli equation (5.18). The
integrals of RHS in all 6 valvular meshes are computed in Tab. 5.3.
Bernoulli equation would be satisfied if the values of the RHS would be zero. But in fact,
the first term of the RHS is comparable with the values of the LHS. For example, for 50%
stenosis in NOSLIP case,

−
∫
SEP

∫
∂Ω

ρ∗
|v|2

2
(v · n) dS dt ≈ −|SEP| · 0.065 = −0.0195

and ∫
SEP

Edis(t) dt =

∫
SEP

∫
Ω

2µ∗|D (v) |2 dx dt ≈ volume · 130.84 = 0.0035

using the definition of Edis(t), namely eq. (3.8), Tab. 5.2 and 5.3 and the fact that |SEP| =
0.3 s and volume = 2.7 · 10−5m3.
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∫
SEP

∫
∂Ω 2µ∗Dv·n dS dt

SEP
cyl 0% 10% 20% 30% 40% 50%

NOSLIP -3.8e-6 -5.6e-6 -6.6e-6 -9.9e-6 -1.7e-5 -2.2e-5 -2.6e-5

SLIP -5.8e-15 -4.1e-4 -6.2e-4 -6.4e-4 -5.1e-4 -4.9e-4 -5.1e-4

∫
SEP

∫
∂Ω

ρ∗
2
|v|2(v·n) dS dt

SEP
cyl 0% 10% 20% 30% 40% 50%

NOSLIP -7e-3 -1.3e-2 -1.2e-2 -9.0e-3 1.2e-3 2.9e-2 6.5e-2

SLIP -1.2e-14 -9.0e-3 -9.5e-3 -7.5e-3 4.7e-3 5.0e-2 8.5e-2

Table 5.3: SEP-averaged values of the surface integrals.

5.4 Conclusion

We presented the model describing the flow of Newtonian fluid in three-dimensional domain
with free-slip boundary condition prescribed on the walls and treated by Nitsche’s method.
The problem was more challenging due to the geometry of the domain and high pressure
prescribed on the outlet part of boundary. The domain represents the stenotic aortic
valve where the flow starts at the circular inlet of diameter 0.024m, then it is narrowed
up to the diameter 0.012m and extended to the diameter 0.036m. This results in the
recirculation within the domain and, due to the short length of the geometry (0.044m),
the recirculation on the outlet. This was solved using the backflow stabilization to prevent
numerical instabilities. It was shown than the flow was highly different in slip case than in
no-slip case, namely vortices were bigger with higher velocity in slip case. This can be also
due to the velocity profile (constant flow in slip case in opposite to the parabolic profile in
noslip case) and the shape of the domain. Then the energy dissipation was higher in slip
case in stenotic valve geometry (but not in non-stenotic valve geometry).
The other contribution of this chapter was the computation of the surface integrals arising
from the reformulation of Navier-Stokes equations in section 3.2. The conclusion was
that the integral

∫
∂Ω

ρ∗
2
|v|2 (v · n) dS is not negligible next to the integrals appearing in

Bernoulli equation (5.18).
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Conclusion

We have studied the flows of incompressible Newtonian fluid in geometries relevant to
biomechanical applications. All computations provided in the thesis were time-dependent
and three-dimensional. The specification of the biomechanical modelling is patient-specific
geometry, high velocity magnitudes in opposite to small diameters of the tubes, non-
symmetry of the problems and inaccuracies in the data. The thesis incorporates all these
topics in context of two biomechanical applications, flow in cerebral aneurysms and flow
in stenotic valves.

The thesis can be divided in two bigger parts. The first part, presented in chapters 1
and 2, provides the introduction to the modelling flow in cerebral arteries, forming in Willis
circles, affected by the aneurysm. The process of obtaining the computational meshes from
medical imaging techniques was described and the meshes were used to get the distribution
of velocity field, normal pressure and wall shear stress (WSS). The numerical model using
the finite element method and Crank-Nicholson time discretization scheme was presented
and tested against numerical benchmark. The study concerning a ruptured aneurysm with
two inflows were also presented and the hemodynamic parameters were compared in the
point of rupture. The main result of the chapter was concerned to the computation of
hemodynamic parameters in twenty aneurysms located in middle cerebral artery. It was
shown that the size of the aneurysm has more important role in WSS distribution than the
aneurysm rupture status. The suggested approach was to compare volume matched pairs
of ruptured and unruptured aneurysms.

There are three softwares used in the thesis, namely Fstrin, academic software devel-
oped by M. Mádĺık in Charles University (Hron and Mádĺık, 2007; Mádĺık, 2010) and used
in sections 2.4 and 2.5, Fluent 16.1 (ANSYS, Inc, Canonsburg PA), commercial software
used in section 2.6 and FEniCS (Logg et al., 2012), opensource software for solving partial
differential equations by finite element method, used in chapters 3-5.

The attention was also paid to the current methods of treatment for both applications,
diagnostic of the aneurysm rupture potential and the stenosis evaluation. In the thesis
we tried to have mathematical notation consistent in all chapters and to explain all the
medical terms and abbreviations by providing schemes and figures. Sometimes using the
non-medical terminology was inevitable. To obtain more medical background with more
precise medical terms, we refer to the articles mentioned in the Introduction where doctors
provided medical background.

In the second part of the thesis we studied the flow in stenotic valves as presented
in chapters 3−5. In chapter 3, the focus is on the flow in highly narrowed tubes. We
briefly recalled the models currently used in clinical practice and show their limitations by
presenting the assumptions involved in the derivation of Bernoulli’s type equations. We
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documented that these approaches are in fact very limited and provided minimal piece
of information to real flow in aortic valves. We then presented the full time-dependent
Newtonian model, using realistic three-dimensional geometry and physiologically relevant
boundary conditions. The problem is challenging due to the high pressure on the outlet
changing in time and short geometry resulting in the recirculation on the outflow boundary.
The major improvement consists of boundary condition controling the recirculation of the
flow on the outlet as analyzed in (Braack and Mucha, 2014) in theoretical study and used
in (Bertoglio and Caiazzo, 2014). In this chapter it was shown that the methods based
on Bernoulli equation give totally different pressure difference values than full continuum
mechanics model. This was shown in section 3.2 and approved by numerical results in
section 3.5 and also in section 5.3.

The chapter 4 is devoted to the backward problem, obtaining the pressure data directly
from the velocity field. We presented the method which provides more accurate pressure
approximation than commonly used Pressure Poisson Equation. This was tested in ide-
alized geometries with symmetric and non-symmetric stenosis and also on patient-specific
geometry of cerebral aneurysm. The velocity field was considered to be known in limited
amount of points in geometry and all velocity vectors were modified to be affected by the er-
ror up to 10%. The fact that data are measured with error should be more precisely treated
by stochastic methods, i.e. stochastic finite element method, where measured quantity is
represented as a random field. But these approaches lead to much more complicated and
larger problems than the one solved in the thesis.

Finally, we have presented the Nitsche’s method for treating free-slip boundary condi-
tion on time dependent three-dimensional flow in narrowed pipe in chapter 5. The main
result is concerned to comparison of no-slip boundary condition prescribed on the walls
with free-slip boundary condition, which is provided on the geometries representing stenotic
valves up to 50% narrowing. We have shown that differences between the no-slip and free-
slip boundary condition prescribed on the walls might be remarkable. We would like to
say that for blood flow in arteries it is common to suppose no-slip boundary condition on
the wall. The study provided in chapter 5 should just provide warning that the different
boundary conditions can lead to very different results.
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Hron, J., Roux, C. L., Málek, J., and Rajagopal, K. (2008). Flows of Incompressible Fluids
subject to Navier’s slip on the boundary. Computers & Mathematics with Applications,
56(8):2128–2143.

Janiga, G., Berg, P., Sugiyama, S., Kono, K., and Steinman, D. A. (2014). The compu-
tational fluid dynamics rupture challenge 2013–phase i: Prediction of rupture status in
intracranial aneurysms. American Journal of Neuroradiology, 36(3):530–536.

Jou, L.-D., Lee, D., Morsi, H., and Mawad, M. (2008). Wall Shear Stress on Ruptured and
Unruptured Intracranial Aneurysms at the Internal Carotid Artery. American Journal
of Neuroradiology, 29(9):1761–1767.
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