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Part 1

What is the height of Gentzen’s
reduction trees?

In his consistency proof of 1935 [4], Gentzen constructs reduction procedures
for sequents that are derivable in Peano arithmetic, whereas contradictory
sequents have no reduction procedures. Reduction procedures generate re-
duction trees which we interpret as cut-free infinitary derivations. A cut
elimination theorem is used to build reduction trees; Gentzen calls it Hilfs-
satz in this particular proof. Hilfssatz is interesting because of two reasons:
(1) The cut elimination strategy applied there eliminates always an upper-
most cut, regardless of its complexity. (2) The proof of Hilfssatz makes use
of transfinite induction on the height of reduction trees that have been con-
structed so far. In this part, we analyse Gentzen’s proof and particularly
the cut elimination strategy of Hilfssatz to quantify the transfinite induction
implicitly applied in the consistency proof. We determine an upper bound
for the heights of reduction trees that belong to sequents which are derivable
in Peano arithmetic. Namely, the heights of these reduction trees are less
than Φω(0) where Φω is the ω-th Veblen function. The question stays open
what the lower bound is, but this seems to be quite difficult. If Gentzen
had applied Tait’s cut elimination strategy, which reduces the cut-rank, the
heights of reduction trees for sequents derivable in PA would be bounded
by ε0.

The second half deals with the question whether the transfinite induction
mentioned above is the only tool in the consistency proof that exceeds PA. We
shall show that this is the case by formalizing the proof in IΠ3 plus transfinite
induction on the height of reduction trees for sequents derivable in PA. The
transfinite induction uses at most ∆3 induction formulas. One can view it as
an improvement of Gentzen’s original formulation where he implicitly uses
induction formulas that contain the notion of well-foundedness, which is a
second order property.
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1.1 Gentzen’s proof and his cut elimination

strategy in Hilfssatz

Now, we explain Gentzen’s method of the proof in [4]. First, he defines
reduction rules that generate reduction trees for sequents that are valid in the
standard model of PA. The leaves of reduction trees are sequents in endform
whose validity is easy to see. Reduction rules decompose a sequent S into,
let us say, simpler sequents. If we consider these simpler sequents, we can
get countably many of them, to be premises and the sequent S to be a
conclusion, we can interpret reduction rules as deduction (inference) rules.
Then, reduction trees are understood as deduction trees, cut-free infinitary
derivations. We will stick to this terminology, even if Gentzen does not use
the notion of deduction trees. The first person who interpreted Gentzen’s
reduction rules in this way was probably Schütte [10].

Second, Gentzen takes a sequent calculus for PA and shows that every
sequent derivable in PA has a deduction tree. He does it by induction on the
complexity of the derivation in PA. Deduction trees for initial sequents of
PA have a finite height. Then, he assumes that there already exist deduction
trees for premises and he shows how to obtain a deduction tree for the con-
clusion. To find deduction trees for the conclusions of the rules of negation
and the induction rule, he uses Hilfssatz. Gentzen’s formulation of Hilfssatz
is that one has a deduction tree for Γ,∆ → C when Γ → D and D,∆ → C
have deduction trees ([4], p. 108). The proof of Hilfssatz proceeds by induc-
tion on the number of logical operations in the cut formula and an embedded
transfinite induction on the height of the deduction tree for the second cut
premise. The elimination strategy eliminates always an uppermost cut.

Assume that we have cut ϑ. The cut formula is A&B and both premises of
the cut have deduction trees, cut-free infinitary derivations. The rules of &R
and &L2 are Gentzen’s reduction rules. Then, the elimination transforms ϑ
into ϑ1 and ϑ2:

...
Γ→A

...
Γ→B

&R
Γ→A&B

...
A&B,A,∆→0=1

&L2
A&B,∆→0=1

ϑ
Γ,∆→0=1

;
...

Γ→A

...
Γ→A&B

...
A&B,A,∆→0=1

ϑ1
Γ,A,∆→0=1

ϑ2
Γ,Γ,∆→0=1

Cut ϑ1 is removed since the deduction tree for the second cut premise
of ϑ1 has a smaller height in comparison to ϑ. Cut ϑ2 is removed since
cut formula A contains less logical operations than A&B. Contraction is
admissible in the calculus and does not change the height of the derivation.
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Although Gentzen’s Hilfssatz proves that the cut elimination works in
his infinitary calculus, the proof mentions no bounds on heights of cut-free
derivations and exactly these bounds are necessary to quantify the transfi-
nite induction implicitly used in the consistency proof. We applied Veblen
hierarchy, which is excellently explained in ([11], pp. 73–84), to estimate
the heights of cut-free infinitary derivations, deduction trees, constructed in
Hilfssatz.

1.2 An upper bound on the height of deduc-

tion trees for sequents that are derivable

in PA

In Theorem 1, we proved an upper bound on heights of deduction trees that
are constructed in Hilfssatz. To obtain an accurate answer to the question
stated in the title of this part, we would need to prove the lower bound on
the heights of these deduction trees, too. Unfortunately, this seems to be
difficult.

The numbers of the theorems and the definitions correspond to the the-
orems and definitions in the thesis.

Theorem 1. Assume that sequents Γ → D and D,∆ → C have deduction
trees T1 and T2 with heights α1 and α2, respectively, and |D| = n. Then,
sequent Γ,∆→ C has a deduction tree whose height is at most Φn−1(α1+α2),
where Φ−1 = Id.

The proof of Theorem 1 applies induction on the number of the logical
operations in cut formula D and induction on the height of T2. Function Φn−1

is the (n− 1)-th Veblen function.

So far, we have investigated Gentzen’s infinitary calculus. Now, we move
on to PA. All mathematical initial sequents of PA have deduction trees whose
heights are finite. Furthermore, PA includes logical initial sequents of the
form of D → D. Gentzen defines an algorithm that constructs deduction
trees of finite height for them. Then, he continues by induction on the
complexity of the derivation in PA and shows how to construct a deduction
tree for the conclusion of a rule when its premises have deduction trees. We
took his construction and, with the help of Theorem 1, we estimated the
height of the deduction trees for sequents that are derivable in PA:

Theorem 2. Following Gentzen’s procedure, we can construct for every se-
quent that is derivable in PA a deduction tree whose height is less than Φω(0).
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1.3 Formalization of Gentzen’s proof of 1935

We showed that Gentzen’s consistency proof of 1935 can be formalized in IΠ3

plus transfinite induction up to Φω(0). The induction formulas of the trans-
finite induction are at most ∆3.

To formalize the proof, we need some finite representation of deduction
trees. The only interesting case is when the last derivation rule in the chosen
tree T is an ω-rule, the rule that has countably many premises. Assume that
the last inference rule in T is of the form:

Γ→F (0) Γ→F (1̄) Γ→F (2̄) ...
∀R

Γ→∀xF (x)

The code of T has the following form:

〈 pαq, pΓ→ ∀xF (x)q, p∀Rq, pϕ1(n, y)q 〉

where α is an upper bound on the height of T , ∀R is the derivation rule by
which the endsequent Γ → ∀xF (x) is derived and ϕ1(n, y) is a Σ1-formula
that holds true when y is a code of a deduction tree for the premise Γ→ F (n̄)
of the rule of ∀R. This is a variant of the idea suggested by Schwichtenberg
in ([12], p. 886). He uses codes of primitive recursive functions to enumerate
codes of deduction trees for premises of the ω-rules. If the last inference rule
in T has finitely many premises, we enumerate the codes for their deduction
trees explicitly.

With the help of our finite representation, we defined the following for-
mulas:

• DedTreeAxiom(x, z, y) that holds true when x is a code of a logical
initial sequent D → D, z is a code of a list of decisions that were made
during the decomposition of the succedent formula D and y is a code
of a deduction tree for D → D.

• Wk(x, z, y) that holds true when x is a code of a deduction tree with
the endsequent Γ → C, z is a code of a multiset ∆ and y is a code of
a deduction tree with the endsequent Γ,∆→ C.

• Ct(x, z, y) that holds true when x is a code of a deduction tree with
the endsequent Γ, A,A→ C, z is a code of a formula A and y is a code
of a deduction tree with the endsequent Γ, A→ C.

• MultiCt(x, z, y) that holds true when x is a code of a deduction tree
with the endsequent Γ,∆,∆→ C, z is a code of a multiset ∆ and y is
a code of a deduction tree with the endsequent Γ,∆→ C.
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• Elim(x1, x2, z, y) that holds true when x1 is a code of a deduction tree
with the endsequent Γ→ D, x2 is a code of a deduction tree with the
endsequent D,∆→ C, z is a code of the cut formula D and y is a code
of a deduction tree with the endsequent Γ,∆→ C.

• DedTree(x, y) that holds true when x is a code of a derivation in PA
and y is a code of a deduction tree for the endsequent of x.

We proved in IΠ3 plus TI up to Φω(0) that these formulas are total and
correct. A total formula gives us some y for all possible input values x, z
or x1, x2, z. If the input is corrupt, the formula holds true for an arbitrary y.
A formula is correct when it yields a code of a proper deduction tree y for
a proper input. What we mean by a proper deduction tree is defined by
predicate DT (x) that expresses that x is a code of a proper deduction tree.
Roughly speaking, x is a code of a proper deduction tree when it fulfills some
local conditions and all its subtrees are also proper deduction trees. We
constructed the predicate DT (x) using the partial truth predicates and the
Fixed-point theorem.

At a metalevel, formula DT (x) contains the information that deduction
trees are well-founded; recall that deduction trees are in fact cut-free in-
finitary derivations. Since every node is assigned an ordinal number that
represents the height of the particular subtree and these numbers decrease
towards the leaves, we know that x such that DT (x) is well-founded. Never-
theless, this cannot be proved in PA because the proof theoretic ordinal of PA
is ε0 and our upper bound on heights of deduction trees is Φω(0). Numbers
below Φω(0) can be compared in IΣ1, but IΣ1 does not prove that they do
not build infinite decreasing sequences.

The main reason for not requiring that formula DT (x) speaks about well-
foundedness explicitly is that well-foundedness is a second order property and
a consistency proof of PA is trivial when second order properties are allowed.
Formula DT (x) appears in the induction formulas that we use to prove the
totality and the correctness of the formulas above and we want to use only
arithmetic induction formulas in the proof. We do not mind applying trans-
finite induction on the height of deduction trees, but the induction formulas
are always arithmetic and of a bounded complexity.

Eventually, the assertion that gives us the consistency of PA is that for
every sequent S derivable in PA we can construct T such that S is the
endsequent of T and DT (T ). The point is that sequent → 0 = 1 has no
deduction tree even if we allowed deduction trees with infinite branches. This
reasoning is an important improvement of Gentzen’s original proof in [4] in
which he implicitly uses transfinite induction on the height of deduction trees
with induction formulas that explicitly speak about well-foundedness.
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Part 2

Comparison between Tait’s and
Gentzen’s cut elimination
strategy in classical
propositional logic

The most problematic part of Gentzen’s consistency proof of 1935 is Hilfssatz,
the cut elimination theorem, that eliminates uppermost cuts regardless of the
complexity. The analysis of the cut elimination strategy of Hilfssatz, which
is described in the previous part, showed that Gentzen implicitly applied
transfinite induction up to α, ε0 ≤ α ≤ Φω(0), in the consistency proof. It
must be stressed that Gentzen himself does not speak about any transfinite
induction in connection with this proof. We know that if he had applied
Tait’s cut elimination strategy, the one that decreases the cut-rank of the
derivation, he would obtain transfinite induction up to ε0.

In this part, we deal with the question to what extent cut-free derivations
differ when they are produced by distinct cut elimination strategies, partic-
ularly we are interested in Gentzen’s strategy and Tait’s strategy. We show
that both strategies yield the same cut-free derivations in classical proposi-
tional logic. Hence, not only are the heights of cut-free derivations the same
but also their structures.

Our proof applies an elimination algorithm of a single cut inspired by the
method of Buss ([3], pp. 37–40) that makes global changes to the derivations.
This algorithm is deterministic. A cut elimination strategy is a list of pro-
perties that a cut must have to be eliminated in a particular state. We
will use only strategies that are nondeterministic in the sense that any cut
with suitable properties can be chosen for elimination. We define a strategy,
which we call general cut elimination strategy, that includes both investigated
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strategies, the one of Gentzen and the one of Tait. We prove that general
cut elimination strategy has the weak Church-Rosser property in classical
propositional logic. It can be seen that it also has the strong normalization
property. The weak Church-Rosser property and strong normalization yield
the Church-Rosser property that ensures that normal forms, in our case cut-
free propositional derivations, are given unambiguously.

Below, we will use the following standard notions. The principal formula
of a rule is the one that is derived by the rule. The principal formula is derived
from auxiliary formulas. The formulas of the rule that are not auxiliary nor
principal are the side formulas of the rule.

Perhaps the most important notion that we use in this part is the notion
of a thread. To define this, we need the notion of an ancestor of a formula in
a derivation. Roughly speaking, ancestors of a formula B that is in the lower
sequent of an inference rule are formulas from the upper sequent of that rule
that are logically connected to B from the lower sequent. Hence, if B is the
principal formula of the rule, then the auxiliary formulas are ancestors of B.
If B is a side formula of the rule, then the corresponding occurrences of B
among the side formulas in the upper sequent are ancestors of B.

Definition 31. Assume that we have a derivation P in classical proposi-
tional logic. We choose an occurrence of formula B in P . A thread for this
occurrence of formula B are all occurrences of B in P that are ancestors of
the chosen occurrence of B.

The elimination of a single cut is defined in the way that it replaces the
thread for the cut formula by threads for its immediate subformulas and
these subformulas become then cut formulas of the new cuts. Hence, the cut
on A ∨ B is replaced by a cut on A and by a cut on B. The cut on ¬B is
replaced by a cut on B and the cut on a propositional variable A disappears.
We do not use other logical operations since we work in classical propositional
logic. We are able to arrange the cut elimination in the way that we always
obtain at most two simpler cuts instead of the eliminated cut. Moreover, the
new cuts are situated exactly at the position of the original cut. The crucial
point is that they are not distributed throughout the whole derivation and
we know what is above and below them.

Next, we need to define a cut elimination strategy that covers both inves-
tigated strategies, the one of Gentzen and the one of Tait. It is called general
cut elimination strategy.
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Definition 37. Tait’s elimination strategy selects one of the most complex
cuts such that there are only cuts of smaller complexity above it if any and
this one is then eliminated.

Definition 38. Gentzen’s elimination strategy selects an uppermost cut such
that there are no other cuts above it and this one is then eliminated.

Definition 39. General cut elimination strategy selects an arbitrary cut such
that there are only cuts of smaller complexity above it if any and this one is
then eliminated.

The cut chosen by the general cut elimination strategy does not have to
be one of the most complex cuts in the derivation, but it may be, and it does
not have to be an uppermost cut, but it may be. This strategy is considered
to be nondeterministic in the same sense as Tait’s strategy and Gentzen’s
strategy.

Since only cuts of smaller complexity than the eliminated one are created
and reproduced during the elimination based on the general cut elimination
strategy, general cut elimination strategy always terminates. This means
that general cut elimination has the strong normalization property.

We focus on the weak Church-Rosser property of general cut elimination.
Objects that are going to be rewritten are the whole derivations and the
only rewriting rule is the elimination of a single cut. We proved that general
cut elimination has the weak Church-Rosser property that says that if we
have a derivation and we apply two different elimination steps, we reach two
different states that can be both further rewritten so that, in a finite number
of steps, the derivations will be the same again. Strong normalization and
the weak Church-Rosser property give us that the normal forms (cut-free
derivations) are given unambiguously. This means that Tait’s and Gentzen’s
cut elimination strategy, respectively, yield cut-free derivations not only of
the same height, but also of the same form.

Theorem 4. General cut elimination in classical propositional logic has the
weak Church-Rosser property.

To be more precise, the theorem must be considered relative to the cal-
culus and the cut elimination algorithm that we used.

The proof of Theorem 4 consists in the fact that the elimination of a
single cut, let us denote the cut by ϑ, changes principal formulas only of
such inference rules whose principal formulas belong to the thread for the
cut formula. Other rules have only their side formulas changed in the way
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that threads for other cut formulas are not violated. Thus, from the point
of view of the other cuts, the elimination of ϑ did not change any important
property of the derivation.
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