
Charles University, Faculty of Arts

Department of Logic

Anna Horská

DÔKAZY BEZESPORNOSTI ARITMETIKY

CUT ELIMINATION AND CONSISTENCY PROOFS

Doctoral thesis

Supervisor: prof. RNDr. Pavel Pudlák, DrSc.

2017

Prohlašuji, že jsem disertačńı práci napsala samostatně s využit́ım pouze
uvedených a řádně citovaných pramen̊u a literatury a že práce nebyla využita
v rámci jiného vysokoškolského studia či k źıskáńı jiného nebo stejného titulu.

I declare that I carried out this doctoral thesis independently only with the
cited sources, literature and other professional sources. The thesis was not
used during any other study program to obtain the same or any equivalent
degree.

Prague, September 10, 2017

Anna Horská

Acknowledgements Most of all, I would like to thank my supervisor
Pavel Pudlák for advice, suggestions, patience and support. I want to thank
Matthias Baaz for consultations and discussions during my stay in Vienna.
I am also grateful to my fellow PhD students Raheleh, Amir and my post-
doctoral colleague Navid for friendly atmosphere in the Institute. Finally, I
want to thank my mom for encouragement through the whole studies and
Martin for motivation.

Abstrakt Táto práca pozostáva z dvoch čast́ı. Prvá čast sa zaoberá Gentze-
novým dôkazom bezespornosti Peanovej aritmetiky (PA), ktorý pochádza
z roku 1935. Skúmame hlavne Gentzenovu stratégiu eliminácie rezu, ktorá
eliminuje rezy, ktorých premisy majú bezrezové odvodenia. Neberie sa pritom
ohl’ad na zložitost’ eliminovaného rezu. Naša analýza Gentzenovej stratégie
ukázala, že Gentzen vo svojom dôkaze implicitne využ́ıva transfinitnú induk-
ciu po Φω(0), kde Φω je Veblenova funkcia s poradovým č́ıslom ω. Jedná
sa o horný odhad a hodnota Φω(0) je horný odhad na výšku nekonečných
bezrezových odvodeńı, ktoré Gentzen konštruuje pre sekventy dokazatel’né
v PA. V súčasnosti nemáme výsledky o spodnom odhade. Prvá čast’ d’alej
obsahuje formalizáciu tohto Gentzenovho dôkazu. Na základe nej vid́ıme,
že hore spomı́naná transfinitná indukcia je jediný prinćıp použitý v dôkaze,
ktorý nejde formalizovat’ v PA.

Druhá čast’ porovnáva Gentzenovu a Taitovu stratégiu eliminácie rezu
v klasickej výrokovej logike. Taitova stratégia znižuje tzv. cut-rank odvo-
denia. Ked’že výroková logika nepouž́ıva odvodzovacie pravidlá s vlastnými
premennými, s tzv. eigenvariables, podarilo sa nám nadefinovat’ elimináciu
rezu tak, že obe stratégie dávajú v klasickej výrokovej logike identické bezre-
zové odvodenia.

Kl’účové slová: eliminácia rezu, bezespornost’ Peanovej aritmetiky, Ger-
hard Gentzen, Veblenova hierarchia, nekonečné kalkuly

Abstract The thesis consists of two parts. The first one deals with Gentzen’s
consistency proof of 1935, especially with the impact of his cut elimination
strategy on the complexity of the proof. Our analysis of Gentzen’s cut elimi-
nation strategy, which eliminates uppermost cuts regardless of their comple-
xity, yields that, in his proof, Gentzen implicitly applies transfinite induction
up to Φω(0) where Φω is the ω-th Veblen function. This is an upper bound
and Φω(0) represents an upper bound on heights of cut-free infinitary deriva-
tions which Gentzen constructs for sequents derivable in Peano arithmetic
(PA). We currently do not know whether this is a lower bound too. The first
part also contains a formalization of Gentzen’s proof of 1935. Based on the
formalization, we see that the transfinite induction mentioned above is the
only principle used in the proof that exceeds PA.

The second part compares the performance of Gentzen’s and Tait’s cut
elimination strategy in classical propositional logic. Tait’s strategy reduces
the cut-rank of the derivation. Since the propositional logic does not use in-
ference rules with eigenvariables, we managed to organize the cut elimination
in the way that both strategies yield identical cut-free derivations in classical
propositional logic.

Keywords: cut elimination, consistency of Peano arithmetic, Gerhard Gentzen,
Veblen hierarchy, infinitary calculus

Contents

Outline of the thesis 1

1 What is the height of Gentzen’s reduction trees? 3
1.1 Introduction . 4

1.1.1 Gentzen’s proof . 5
1.2 Preliminaries . 7

1.2.1 Gentzen’s elimination strategy in Hilfssatz 11
1.2.2 Veblen hierarchy . 13

1.3 Cut elimination . 21
1.4 An upper bound on the height of deduction trees for sequents

that are derivable in PA . 24
1.4.1 Peano arithmetic . 25
1.4.2 Deduction trees for initial sequents of PA 26
1.4.3 Deduction trees for derivable sequents of PA 29

1.5 Formalization of Gentzen’s proof 31
1.5.1 Notation system for ordinals represented by Veblen

functions . 31
1.5.2 Formalization of the proof - Preliminaries 41
1.5.3 Formula DedTree(x, y) 64

2 Comparison between Tait’s and Gentzen’s cut elimination
strategy in classical propositional logic 77
2.1 Introduction . 78
2.2 Preliminaries . 80
2.3 Elimination of a single cut . 83
2.4 Propositional logic: Comparison of Tait’s and Gentzen’s cut

elimination strategy . 92

Bibliography 113

Outline of the thesis

This thesis consists of two parts. Each part is preceded by an abstract that
summarizes the topic and the results of the part. Since both parts can be read
independently, each of them contains its own comprehensive introduction and
a common introduction is redundant.

The first part is called ”What is the height of Gentzen’s reduction trees?”.
It deals with Gentzen’s consistency proof of 1935 [4] and, especially, with his
cut elimination strategy that chooses uppermost cuts for elimination. The
aim of Gentzen’s proof is to show that reduction trees, cut-free infinitary
derivations, can be constructed for all sequents that are derivable in Peano
arithmetic (PA). Since a contradictory sequent → 0 = 1 has no reduction
tree by definition, Gentzen concludes that PA is consistent.

This part is divided into five sections. The first section, called ”Introducti-
on”, mentions the history of the proof and explains doubts that led Gentzen
to withdraw the proof from publishing in the 1930s. Furthermore, it describes
the method of the original Gentzen’s proof.

The second section, called ”Preliminaries”, contains basic definitions, and
in particular, it introduces Veblen hierarchy that is used to measure heights
of cut-free derivations. It also presents Gentzen’s cut elimination strategy in
detail. The strategy is later applied to construct reduction trees.

The third section is called ”Cut elimination” and it analyzes Gentzen’s
cut elimination strategy. In particular, we added upper bounds on heights
of cut-free derivations to his cut elimination theorem denoted by Hilfssatz.

From the fourth section on, we start to use a sequent calculus for PA
besides the infinitary one. We state Gentzen’s algorithm that constructs
reduction trees for initial sequents of PA. These reduction trees always have
a finite height. Second, we present Gentzen’s way to construct reduction
trees for sequents that are derivable in PA and, with the help of results of
the third section, we show that the upper bound on heights of these reduction
trees is Φω(0).

The last section of the first part contains the formalization of Gentzen’s

1

proof of 1935. We show that it can be formalized in IΠ3 plus transfinite
induction on the height of reduction trees for sequents that are derivable
in PA. The transfinite induction uses at most ∆3 induction formulas.

The second part is called ”Comparison between Tait’s and Gentzen’s
cut elimination strategy in classical propositional logic”. Gentzen’s strategy
always chooses a cut for elimination whose premises have cut-free derivations.
Tait’s strategy reduces the cut-rank by choosing one of the most complex
cuts. We know that if Gentzen had applied Tait’s strategy in his proof of
1935 [4], the height of reduction trees for sequents derivable in PA would
be bounded by ε0. This fact and the analysis in the previous part raise
the question whether both strategies yield different cut-free derivations. We
show that this is not the case in classical propositional logic where we are
able to organize the cut elimination in such a way that we obtain the same
cut-free derivations regardless of the strategy. It must be mentioned that
methods which we have used for propositional logic do not apply to both the
predicate logic and the infinitary calculus, hence, the question is still open
for these systems.

The second part is divided into four sections. The first section is called
”Introduction”and it clarifies what we mean by a comparison of cut elimina-
tion strategies. We discuss aspects that affect the cut elimination and how
we want to handle them.

The second section has the usual title ”Preliminaries”. It contains techni-
cal definitions that allow us to speak about particular formulas, sequents etc.

The third section is called ”Elimination of a single cut”. It introduces an
algorithm for elimination of a single cut that is inspired by the algorithm of
Buss ([3], pp. 37-40) that makes global changes to the derivation. Further-
more, we discuss some properties of this cut elimination, especially, which
parts of the derivation are made redundant during the elimination and why
the algorithm does not work in predicate logic.

The last section of the second part defines a cut elimination strategy,
called general cut elimination, that includes both strategies under consider-
ation, the one of Gentzen and the one of Tait. This strategy has the strong
normalization property and we also prove that it has the weak Church-Rosser
property. It follows that normals forms, cut-free derivations in classical
propositional logic, are given unambiguously.

2

Part 1

What is the height of Gentzen’s
reduction trees?

Abstract In his consistency proof of 1935, Gentzen constructs reduction
procedures for sequents that are derivable in Peano arithmetic, whereas con-
tradictory sequents have no reduction procedures. Reduction procedures
generate reduction trees which we interpret as cut-free infinitary derivations.
A cut elimination theorem is used to build reduction trees; Gentzen calls
it Hilfssatz in this particular proof. Hilfssatz is interesting because of two
reasons: (1) The cut elimination strategy applied there eliminates always an
uppermost cut, regardless of its complexity. (2) The proof of Hilfssatz makes
use of transfinite induction on the height of reduction trees that have been
constructed so far. In this part, we analyse Gentzen’s proof and particularly
the cut elimination strategy of Hilfssatz to quantify the transfinite induction
implicitly applied in the consistency proof. We determine an upper bound
for the heights of reduction trees that belong to sequents which are derivable
in Peano arithmetic. Namely, the heights of these reduction trees are less
than Φω(0) where Φω is the ω-th Veblen function. The question stays open
what the lower bound is, but this seems to be quite difficult. If Gentzen
had applied Tait’s cut elimination strategy, which reduces the cut-rank, the
heights of reduction trees for sequents derivable in PA would be bounded
by ε0.

The second half deals with the question whether the transfinite induction
mentioned above is the only tool in the consistency proof that exceeds PA. We
shall show that this is the case by formalizing the proof in IΠ3 plus transfinite
induction on the height of reduction trees for sequents derivable in PA. The
transfinite induction uses at most ∆3 induction formulas. One can view it as
an improvement of Gentzen’s original formulation where he implicitly uses
induction formulas that contain the notion of well-foundedness, which is a
second order property.

3

1.1 Introduction

In 1935, Gentzen planned to publish the consistency proof for PA for the first
time, but he withdrew it later because of the criticism of his contemporaries.
Gentzen, who was in Göttingen at that time, had a vigorous correspondence
about the proof with Bernays, who was in Princeton. As Bernays later
wrote in the introduction to the original Gentzen’s paper [4] published not
until 1974, the main objection was that Gentzen had used the Fan Theorem
implicitly to show the termination of a certain reduction procedure. At the
same time, Bernays admitted in the introduction that the objections were
false. It is almost certain that Weyl, Gödel and von Neumann read Gentzen’s
manuscript, too. Whereas we know that Bernays and Weyl criticized the idea
of the proof, it is not sure what the opinion of Gödel and von Neumann was.
However, it is sure that the opinions among mathematicians were different.
For example, in a letter to Kneser dated October 27, 1935 ([8], p. 54), Gentzen
mentioned that Van der Waerden had praised his proof.

Gentzen discussed the technical aspects of his proof mainly with Bernays.
In a letter dated November 4, 1935 ([8], p. 52), Gentzen was explaining to
him why the worries about his proof are groundless. Nevertheless, Bernays
obviously had more powerful arguments because Gentzen gave up in Decem-
ber 1935. He decided to remake the proof completely. This resulted in [5], the
first published consistency proof. More on history of Gentzen’s consistency
proofs and his life, but no mathematics, can be found in [8].

From the classical point of view, the Fan Theorem is the contrapositive of
König’s lemma for binary trees and, in 1987, Kreisel noted that this principle
is not sufficient for proving the consistency of PA [14]. Indeed, the principle
used in the proof is bar induction [9]. Bar induction operates on (infinitely
branching) trees. It uses two predicates, let us call them B and S. The
predicate B must be decidable and it stands for ”bar” because one of the
three assumptions of bar induction is that (1) every branch has a vertex
which can be reached from the root within a finite number of steps and
which fulfills B. This assumption ensures that we have a well-founded tree
whose leaves have the property B. Vertices which follow the nodes with
property B in the original tree can be forgotten. Further assumptions are
that (2) if a vertex fulfills B, then it must fulfill S and (3) if all children of
a vertex v fulfill S, then S is inherited by v, too. As a result, we obtain
that the root satisfies S. Such an induction can be replaced by transfinite
induction on the height of well-founded trees. When we consider countably
branching well-founded trees, as we will do below, this leads, in general, to
transfinite induction up to any countable ordinal number.

4

Gentzen does not explicitly speak about countably branching well-founded
trees in [4]. He uses certain reduction rules that generate such a tree, reduc-
tion tree, for every sequent that is valid in the standard model of PA. The
intuition behind this is, as Gentzen writes ([4], p. 100), that reduction rules
are a syntactic representation of the semantic correctness. If we can con-
struct a reduction tree for every sequent that is derivable in PA, we obtain
the consistency of PA because it is easy to see that the contradictory se-
quent → 0 = 1 has no reduction tree. The question is, of course, what
kind of mathematical principles we apply during the construction. If we, for
example, use the predicate of truth, then we are able to construct a reduction
tree with a finite height for every sequent that is derivable in PA. But this
is not exactly what we want.

A reduction procedure for a sequent is a nondeterministic procedure that
uses reduction rules to decompose this sequent into, let us say, simpler se-
quents. One path of this procedure represents one branch of the reduction
tree and it must end in a finite number of steps with a sequent that is ob-
viously valid. Hence, reduction rules generate a reduction tree for a sequent
from the root to the leaves. However, it is more convenient to consider the
reduction rules ”upside down”, i.e., as a set of derivation rules that proceed
from the leaves (axioms) to the root. The sequent to reduce represents the
conclusion of such a derivation rule and when we apply a single reduction
rule to this sequent, we obtain sequents that represent premises. It is possible
to get countably many of them. Under these circumstances, reduction trees
can be understood as deduction trees and the inductive definition of these
deduction trees is in accordance with the transfinite induction on the height
of trees that Gentzen implicitly uses in his proof of 1935 [17].

In the analysis below, we shall consider two calculi: (1) The calculus of
first order number theory with the ω-rule that is obtained by considering
Gentzen’s reduction rules as derivation rules. Derivations in this calculus
will be called deduction trees. (2) A first order calculus for PA that derives
sequents for which we need to construct deduction trees. One can easily see
that the contradictory sequent → 0 = 1 cannot have a deduction tree and
since all sequents derivable in PA have one, this gives us the consistency
of PA.

1.1.1 Gentzen’s proof

Now, we explain Gentzen’s method of the proof in [4]. First, he defines
reduction rules that generate reduction trees for sequents that are valid in

5

the standard model of PA. The leaves of reduction trees are sequents in
endform. The crucial property of sequents in endform is that their validity is
easy to see. As we intend to use deduction trees instead of reduction trees,
sequents in endform will be our initial sequents (axioms).

Second, Gentzen takes a sequent calculus for PA and shows that every
sequent derivable in PA has a reduction tree. He does not actually use
the notion reduction tree. He tries to avoid using trees, which are well-
founded yet infinite, by using reduction procedures, where one path of the
procedure conducts only a finite number of steps. Nevertheless, his treatment
of reduction procedures would be more appropriate for trees and thus the use
of reduction procedures seems to be artificial. Hence, we shall speak about
reduction trees in connection with Gentzen too, even if it is not completely
exact.

So, we can say that he constructs reduction trees for sequents deriv-
able in PA and he does it by induction on the complexity of the derivation
in PA. In the base step, he shows how to construct reduction trees for ini-
tial sequents. The height of these reduction trees is always finite. Then, he
assumes that there already exist reduction trees for premises and he shows
how to obtain a reduction tree for the conclusion. To find reduction trees
for the conclusions of the rules of negation and the induction rule, he uses
Hilfssatz. Hilfssatz is a statement essential for the proof. It shows that cut
is an admissible rule in the calculus of first order number theory with the
ω-rule, i.e., the calculus that we obtain by turning the reduction rules upside
down. Gentzen’s formulation of Hilfssatz is that one has a reduction tree for
Γ,∆ → C when Γ → D and D,∆ → C have reduction trees ([4], p. 108).
The proof of Hilfssatz proceeds by induction on the number of logical ope-
rations in the cut formula. When we want to prove the statement for cut
formula D with n logical operations, we must know that it holds for simpler
cut formulas and, furthermore, we must use induction on the height of the
reduction tree for the second cut premise. This is the transfinite induction
or, if you like, the bar induction discussed above.

Although Gentzen’s Hilfssatz proves that the cut elimination works in the
calculus of first order number theory with the ω-rule, the proof mentions no
bounds on heights of reduction trees. Exactly these bounds are necessary
to quantify the transfinite induction used in the consistency proof. The
transfinite induction is hidden in Gentzen’s proof; it is believed that his
motive for this was that he wanted to reason ”finitistically”. But in fact,
the transfinite induction is a part of the proof and it plays a significant role
because it is the only principle of the proof that cannot be formalized in PA

6

unless it would be a transfinite induction up to some ordinal α < ε0 (see
Section 1.5).

We know today that a successive decrease of the cut-rank during the
cut elimination leads to a superexponential increase of the height of the
derivation. If Gentzen had applied such a cut elimination strategy in his
Hilfssatz, he would have obtained reduction trees for sequents derivable in PA
with heights bounded by ε0 [10, 12]. But the point is that his cut elimination
strategy is different. He always eliminates an uppermost cut regardless of its
complexity. When one tries to do a natural analysis of such a cut elimination
strategy, one has to employ Veblen hierarchy and obtains reduction trees for
sequents derivable in PA whose heights are less than Φω(0), where Φω is the
ω-th Veblen function. This is much greater than ε0, the optimal ordinal for
PA, and it is not clear whether Gentzen’s elimination strategy is really so
inefficient or the analysis can be done better.

In the following text, we prove that Φω(0) is an upper bound on the
heights of reduction trees for sequents derivable in PA that are constructed
with Hilfssatz. We would need to prove the lower bound on the heights of
reduction trees to obtain an accurate answer to the question stated in the
title of this part. Unfortunately, this seems to be difficult. A possible way
to study this is to first analyse Gentzen’s cut elimination strategy in finite
calculi that do not contain arithmetic, especially classical first order logic.

Let us stress that our aim is not to do some kind of ordinal analysis
for PA, but rather investigate the tools that Gentzen’s consistency proof
of 1935 applies, even if they are implicit in the proof or can be inefficient
from the point of view of the current knowledge.

1.2 Preliminaries

In this section, we introduce necessary definitions and describe Gentzen’s cut
elimination strategy in more detail.

We shall use the language L = {+, ·, S,=, 0} of PA, where + and · are
binary functional symbols, S is a unary functional symbol, = is a binary
relational symbol and 0 is a constant symbol. The symbols have their usual
meaning. For now, we will not use free variables. The treatment of them is
covered in Section 1.4.

Definition 1. A sequent is an expression of the form Γ → B where Γ =
{A1, . . . , An} are antecedent formulas and B is a succedent formula. There
must always be exactly one succedent formula in every sequent. We view
antecedent formulas as a multiset and it can be empty.

7

Definition 2. A sequent is said to be in endform when the following condi-
tions are met: (1) It does not contain any free variables. (2a) Its succedent
formula is a true equation, or (2b) its succedent formula is a false equation
and there is at least one false equation among the antecedent formulas.

Since we do not use free variables, the first condition is satisfied auto-
matically. Sequents in endform will be treated as axioms because they are
obviously valid. For the purpose of seeing the validity of a sequent, it would
be enough to say that its succedent is a true equation or there is a false
equation among the antecedent formulas. Nevertheless, Gentzen’s definition
of endform is as above. It probably resulted from his definition of reduction
rules that start by reducing the succedent formula and go on to look for
a false equation among the antecedent formulas only if the reduction rules
applied to the succedent have turned it into a false equation.

Definition 3. A deduction tree is a well-founded tree that consists of se-
quents. Each sequent is in endform or is derived from previous ones using
one of the following derivation rules:

Γ→F (0) Γ→F (1̄) Γ→F (2̄) ...
∀R

Γ→∀xF (x)

Γ→A Γ→B
&R

Γ→A&B

Γ,A→0=1
¬R

Γ→¬A

Γ,F (n̄)→0=1
∀L1

Γ,∀xF (x)→0=1

Γ,∀xF (x),F (n̄)→0=1
∀L2

Γ,∀xF (x)→0=1

Γ,Ai→0=1
&L1

Γ,A1&A2→0=1

Γ,A1&A2,Ai→0=1
&L2

Γ,A1&A2→0=1

Γ→A ¬L1
Γ,¬A→0=1

Γ,¬A→A
¬L2

Γ,¬A→0=1

Equation 0 = 1 stands for an arbitrary false equation. Similarly, we
denote a true equation by 0 = 0. The root of a deduction tree is called
endsequent and the leaves are called initial sequents. We have i = 1 or i = 2
in the rules of &L1 and &L2.

Deduction trees are derivations in a formalization of first order number
theory in the sequent calculus with the ω-rule. The derivation rules of this
calculus turned upside down are Gentzen’s reduction rules. For example,
a sequent of the form Γ → A&B must be reduced to Γ → A or Γ → B,
but, viewed as a game, this choice is made by our opponent, so, we must be
able to reduce both to endform if necessary. On the other hand, we need
to find one right possibility that we are able to reduce to endform when
applying reduction rules to the antecedent formulas. So, for example, we

8

can reduce a sequent of the form Γ, A1&A2 → 0 = 1 to Γ, A1 → 0 = 1,
but if we are not sure that A1 is really the right choice, we can reduce it to
Γ, A1&A2, A1 → 0 = 1. This allows us to change our mind and choose A2

later. Formally, the L-rules have two variants so that there is no need to
introduce the rule of contraction. See [9] for more on the reduction rules.
We do not use the explicit rule of cut.

Definition 4. We define the height of a tree as follows: Every leaf has
height 0. If the children of a node have heights α0, α1, . . ., then the node has
height α = sup{α0 + 1, α1 + 1, . . .}. The height of a tree is the ordinal of its
root.

We write as `α Γ → B to mean that we have a deduction tree with
endsequent Γ→ B whose height is at most α.

Definition 5. We denote by |C| the number of logical operations in for-
mula C.

Lemma 1. If we have a deduction tree T with the endsequent ∆ → C
whose height is α, then we also have a deduction tree S with the endsequent
A,∆→ C whose height is α too.

Proof. The deduction tree S for A,∆ → C is essentially the same as the
deduction tree T for ∆ → C. We simply add A to the antecedent of every
sequent in T .

Lemma 2. If we have a deduction tree T with the endsequent A,A,Γ → C
whose height is α, then we also have a deduction tree S with the endsequent
A,Γ→ C whose height is α too.

Proof. The deduction tree S with the endsequent A,Γ → C conducts the
same derivation rules as T with one exception. The first rule of L1 in every
branch of T that operates on an antecedent formula A and that we meet
when we proceed from the endsequent A,A,Γ → C towards the leaves is
replaced by the rule of L2 that operates on A too, so that the particular
occurrence of A stays preserved in S.

Lemma 3. If we have a deduction tree T with the endsequent 0 = 0,∆→ C
whose height is α, then we also have a deduction tree S with the endsequent
∆→ C whose height is α too.

Proof. The deduction tree S is constructed from T by deleting the antecedent
formulas 0 = 0 from every sequent. Formula 0 = 0 is redundant in the
antecedent because no rule is able to operate on 0 = 0 and it does not
influence whether a sequent is in endform.

9

Definition 6. A structure tree for an atom A is the tree whose only node
is its root called A. Let us denote an arbitrary logical operation by ◦. The
context makes it clear whether it stands for a binary or a unary operation. As-
sume that we already have structure trees T1 and T2 for formulas A1 and A2,
respectively. Then, the structure trees for A1 ◦ A2 and ◦A1 are of the form:

◦
�

T1
@

T2

and
◦

T1

respectively.

Definition 7. Assume that D is a formula. We denote by rk(D) the height
of the structure tree for D. Assume that S is a sequent A1, A2, . . . , An → B.
We set

rk(S) = rk(A1) + · · ·+ rk(An) + rk(B)

Lemma 4. If T is a deduction tree with the endsequent S where S contains
no free variables and no L2 rules are used in T , then T has height at most
rk(S).

Proof. Assume that sequent S is of the form A1, . . . , An → B. We proceed
by induction on rk(S). If rk(S) = 0, then all formulas A1, . . . , An, B are
atomic and since T is a deduction tree for S, sequent S must be in endform.
Hence, the height of T is 0 ≤ rk(S).

Assume that rk(S) > 0. Then, there is at least one formula in S, for
example Ai, that is not atomic. Assume that B is of the form 0 = 1 and the
rule of L1 has been applied in T to obtain S:

...
A1, . . . , A

′
i, . . . , An → 0 = 1

L1
A1, . . . , Ai, . . . , An → 0 = 1

We have rk(A
′
i) < rk(Ai), thus,

rk(A1, . . . , A
′

i, . . . , An → 0 = 1)+1 ≤ rk(A1, . . . , Ai, . . . , An → 0 = 1) = rk(S)

Since the induction hypothesis gives us that the left hand side of the inequali-
ty is the bound on the height of T , we obtain the required result. Other
derivation rules are treated similarly.

10

1.2.1 Gentzen’s elimination strategy in Hilfssatz

In this section, we want to present our interpretation of the proof of Gentzen’s
Hilfssatz. In order to do this, we temporarily add an explicit rule of cut to
the calculus from Definition 3, whereas cut-free derivations in this calculus
are still called deduction trees. To distinguish between cut-free derivations
and derivations with cuts, we will denote the cut-free derivability of sequent
Γ→ A by `0 Γ→ A.

Hilfssatz says: If Γ → D and D,∆ → C are sequents without free vari-
ables that have deduction trees T1 and T2, respectively, then Γ,∆ → C has
a deduction tree, too. Hence we have a derivation of the form

`0

... T1
Γ→D `0

... T2
D,∆→C

ϑ
Γ,∆→C

and we need to eliminate cut ϑ. We apply two induction arguments: (1)
Induction on the number of the logical operations in the cut formula and
(2) induction on the height of the deduction tree for the second cut premise.
Hence, we need two bases of induction: First basis is for the case when the
cut formula is an atom. Second basis is for the case when the height of
the deduction tree for the second cut premise is 0, i.e., when the second cut
premise is in endform. Cuts on atomic sentences can be eliminated without
difficulty (Lemma 16). On the other hand, when the second cut premise is
in endform and the cut formula is not an atom, the conclusion of the cut is
in endform too and no cut is needed anymore (Lemma 17).

Next, we take a cut with an arbitrary cut formula D and distinguish
cases according to the last derivation rule in T2. If this rule operates on the
succedent formula or on an antecedent formula other than the cut formula D,
we easily move the cut up along T2, the deduction tree for the second cut
premise:

`0

...
Γ→D

`0

...
D,∆→A `0

...
D,∆→B

&R`0 D,∆→A&B
ϑ

Γ,∆→A&B

; `0

...
Γ→D `0

...
D,∆→A

cut
Γ,∆→A

`0

...
Γ→D `0

...
D,∆→B

cut
Γ,∆→B

&R
Γ,∆→A&B

This can lead to several new cuts of the same complexity as the old one.
But since the heights of the deduction trees for the second cut premises got
smaller, we remove these cuts completely by applying the induction hypo-
thesis.

11

The situation is different when the last derivation rule in T2 works on
the cut formula D. The cases for cut formulas D with a conjunction or
a universal quantifier as an outermost logical operation are essentially the
same, hence, let us take D of the form A&B and ¬A. When the rule in
question is the rule of L1, we obtain one new cut with simpler cut formula:

`0

...
Γ→A `0

...
Γ→B

&R `0 Γ→A&B

`0

...
A,∆→0=1

&L1`0 A&B,∆→0=1
ϑ

Γ,∆→0=1

; `0

...
Γ→A `0

...
A,∆→0=1

cut
Γ,∆→0=1

`0

...
A,Γ→0=1

¬R `0 Γ→¬A

`0

...
∆→A

¬L1`0 ¬A,∆→0=1
ϑ

Γ,∆→0=1

; `0

...
∆→A `0

...
A,Γ→0=1

cut
Γ,∆→0=1

The definition of derivation rules ensures that the last rule in T1 must
be the rule of &R or ¬R, respectively. One of the premises of this R-rule
becomes one of the premises of the new cut. As expected, we now apply the
induction hypothesis for simpler cut formulas. This removes the cut on A.

Finally, assume that the last derivation rule in T2 is the rule of L2 that
operates on the cut formula A&B or ¬A, respectively. Now we obtain two
new cuts and both induction hypotheses are needed:

`0

...
Γ→A `0

...
Γ→B

&R `0 Γ→A&B

`0

...
A&B,A,∆→0=1

&L2`0 A&B,∆→0=1
ϑ

Γ,∆→0=1

;
`0

...
Γ→A

`0

...
Γ→A&B `0

...
A&B,A,∆→0=1

cut
Γ,A,∆→0=1

cut
Γ,Γ,∆→0=1

`0

...
A,Γ→0=1

¬R `0 Γ→¬A

`0

...
¬A,∆→A

¬L2`0 ¬A,∆→0=1
ϑ

Γ,∆→0=1

; `0

...
Γ→¬A `0

...
¬A,∆→A

cut
Γ,∆→A `0

...
A,Γ→0=1

cut
Γ,Γ,∆→0=1

The new cuts on A&B and ¬A, respectively, are removed because the
deduction tree of the second cut premise has a smaller height. Thus, we
obtain `0 Γ, A,∆ → 0 = 1 and `0 Γ,∆ → A, respectively. Since both
premises of the new cut on A have deduction trees and the cut formula A is
simpler than A&B and ¬A, we can use the induction hypothesis for simpler
cut formulas. The result is `0 Γ,Γ,∆ → 0 = 1. Lemma 2 changes it to a
deduction tree for Γ,∆→ 0 = 1.

Assume now that we do not apply the induction hypotheses to say that

12

there exist deduction trees for certain sequents, but we rather unfold the
induction and construct the deduction trees explicitly. This means that we
have to move the original cut ϑ up along the deduction tree T2. Every time
when we encounter the rule of L2 that operates on the cut formula D, the
algorithm produces two cuts above each other. The cut at the lower position
is simpler than ϑ. The cut above this simpler one is of the same complexity
as ϑ. Since our cut elimination algorithm knows only how to eliminate cuts
whose premises have deduction trees, we go on to eliminate the cut of the
same complexity as ϑ. Hence, we continue moving it up along the deduction
tree for the second cut premise, whereas the simpler cut stays in the place
where it was created. It waits there until it is its turn to be eliminated,
i.e., until there are no other cuts above it. Since there can be an arbitrary
finite number of the rules of L2 that work on the cut formula D above each
other in every branch of T2 and all these rules are transformed into cuts on
subformulas of D during the elimination of ϑ, we can obtain an arbitrary
finite number of simpler cuts above each other in every branch of T2. All
these cuts have to be eliminated in the same way as ϑ, i.e., when any of
these cuts becomes an uppermost cut, we move it up and every rule of L2

that works on the cut formula gives us a new simpler cut.

As we know how to eliminate cuts with atomic cut formulas and cuts
with the sequent in endform as the second cut premise, the process described
above must give us a deduction tree with the endsequent Γ,∆ → C in the
end, possibly with the use of Lemma 2.

1.2.2 Veblen hierarchy

In this section, we introduce Veblen functions that were originally developed
by Oswald Veblen in [18]. Our elaboration is based on ([11], pp. 73–84) that
contains a very good explanation of this topic. We shall work only with
countable ordinals whose union will be denoted by O. It follows that O itself
is not countable.

Definition 8. We say that A ⊆ O is an O-segment if the following holds:

∀ξ < η (η ∈ A ⊃ ξ ∈ A)

Definition 9. We say that f : A → B is an ordering function of a set
B ⊆ O if the following holds:

1. Set A is an O-segment.

2. Function f is strictly monotone: ∀η, ξ ∈ A we have η < ξ ⊃ f(η) < f(ξ).

13

3. The image of f is the whole set B.

Note that an ordering function f : A → B is a bijection. It is onto by
property 3 and it is also one-to-one since otherwise we obtain a contradiction
with property 2. It is easy to see that every set B ⊆ O has exactly one
ordering function. If B = ∅, then the empty function ∅→ ∅ is the ordering
function of B.

Lemma 5. If f : A → B is an ordering function of B, then α ≤ f(α) for
all α ∈ A.

Proof. Assume that there exists α ∈ A such that f(α) < α. All numbers
β < α belong to A because A is an O-segment. Set C = {α, f(α) < α} is
non-empty by assumption and it has the smallest member α0 ∈ A. Assump-
tion f(α0) < α0 together with monotonicity give us (1) f(f(α0)) < f(α0).
Since α0 is the smallest in C and f(α0) < α0, value f(α0) is not in C and
we have (2) f(α0) ≤ f(f(α0)). Transitivity applied to (1) and (2) gives us
f(α0) < f(α0). This is a contradiction.

Definition 10. We say that B ⊆ O is unbounded when for every α ∈ O
there exists β ∈ B such that α < β.

Definition 11. We say that B ⊆ O is closed when for every non-empty
countable set M ⊆ B we also have sup M ∈ B.

Definition 12. We say that an ordering function f : A → B is continu-
ous if A is closed and for every non-empty countable set U ⊆ A we have
f(sup U) = sup f(U).

Set A has to be closed so that f can make the image of sup U .

Definition 13. We say that an ordering function f : A→ B is normal if it
is continuous and A = O.

Lemma 6. The ordering function f : A→ B of a set B ⊆ O is continuous
if and only if B is closed.

Proof. Assume that f is continuous. We want to prove that B is closed.
Hence, let M ⊆ B be non-empty and countable. We want to show that
sup M ∈ B. Function f is bijective, so, for set M there exists U ⊆ A
non-empty and countable such that f(U) = M . We have

sup M = sup f(U) = f(sup U)

The second equality holds because f is continuous. We see that sup M ∈
Rng (f) = B.

14

On the other hand, assume that B is closed. We aim to prove that f
is continuous. Assume that U ⊆ A is non-empty and countable. There are
two properties that have to be shown: (1) sup U ∈ A and (2) f(sup U) =
sup f(U).

Set U has the image f(U) ⊆ B that is non-empty and countable. Since B
is closed, we have sup f(U) ∈ B. Then, there is α ∈ A such that f(α) =
sup f(U). It follows that ∀ξ ∈ U : f(ξ) ≤ f(α). Function f is strictly
monotone, hence, ∀ξ ∈ U : ξ ≤ α. Clearly, sup U ≤ α. Since α ∈ A and A
is an O-segment, sup U ∈ A.

Inequality sup U ≤ α gives us f(sup U) ≤ f(α). By definition, f(α) =
sup f(U), thus, (i) f(sup U) ≤ sup f(U). Further, ∀ξ ∈ U : ξ ≤ sup U
and strict monotonicity yields f(ξ) ≤ f(sup U). Hence, (ii) sup f(U) ≤
f(sup U). Observations (i) and (ii) give us f(sup U) = sup f(U).

Lemma 7. The ordering function f : A → B of a set B ⊆ O is normal if
and only if B is closed and unbounded.

Proof. Assume that f is continuous and A = O. Lemma 6 gives us that B
is closed. We proceed to prove that it is also unbounded. Assume that it is
not the case and we have α ∈ O such that ∀ξ ∈ B : ξ < α. Since f is the
ordering function of B, it follows that A ⊂ O and we obtain a contradiction.

Assume now that B is closed and unbounded. According to Lemma 6,
it suffices to show that A = O. Since B is unbounded, it is not countable
because a countable set cannot be cofinal in O. As f is a bijection, it follows
that A must be equal to O.

Lemma 8. Every ordinal number β 6= 0 can be written in Cantor normal
form

β =
n∑
i=1

ωδi ·mi,

where n,mi 6= 0; n,mi ∈ N; δ1 > δ2 > . . . > δn.

Proof. We proceed by induction on β. Assume that all γ < β have their Can-
tor normal forms. We want to find one for β. Since the function F (α) = ωα

is strictly monotone, set {α, β < ωα} is non-empty and it has the smallest
member. Let us denote it by α0. Ordinal α0 cannot be limit. If it was limit,
then the definition of exponentiation gives us ωα0 = sup {ωη, η < α0} and
there would exist η < α0 such that β < ωη < ωα0 . This contradicts the choice
of α0. Hence, α0 is a successor ordinal. There exists β0 such that α0 = β0 +1
and ωβ0 ≤ β. If β = ωβ0 , we have the required form. Thus, assume ωβ0 < β.
We are able to divide ordinals

∃!µ∃!ν (β = ωβ0 · µ+ ν & ν < ωβ0)

15

where ν is the remainder and µ must be a natural number. If it was not,
then β ≥ ωβ0 · ω + ν = ωβ0+1 + ν = ωα0 + ν and this contradicts the choice
of α0. Hence,

β = ωβ0 ·m+ ν

where m ∈ N. Since ν < β, the induction hypothesis gives us Cantor normal
form for ν. The construction reveals that the greatest exponent in Cantor
normal form for ν is smaller than β0.

Cantor normal form for any ordinal β 6= 0 is given unambiguously, but it
can also be expressed as

β =
n∑
i=1

ωδi ,

where n 6= 0; n ∈ N; δ1 ≥ δ2 ≥ . . . ≥ δn. This is obviously equivalent to
the form above. Nevertheless, the current form has an advantage over that
one from Lemma 8 when we compare ordinals in Cantor normal form: α is
greater than β when the first exponent from the left in which α and β differ
is greater in α.

Definition 14. We say that ordinal α is an additive principal number if
α 6= 0 and ∀ξ < α : (ξ + α = α).

The smallest additive principal number is 1 immediately followed by ω.

Lemma 9. If α is an additive principal number, then

∀ξ, χ < α : (ξ + χ < α)

Proof. Our assumption χ < α yields ξ+χ < ξ+α. Further, the assumption
that α is an additive principal number gives us ξ + χ < ξ + α = α.

Lemma 10. The set of additive principal numbers is closed and unbounded.

Proof. First, we prove the unboundedness and then the closure.

(1) Assume that α ∈ O. We want to find an additive principal number
greater than α. Let us define the following sequence of ordinals:

β0 = α + 1
βn+1 = βn + βn
M = {βn; n ∈ N}
β = sup M

We show that β 6= 0 is an additive principal number greater than α. Choose
an arbitrary ξ < β. Then, there exists n ∈ N such that ξ < βn. It follows for

16

all m ≥ n : (ξ + βm ≤ βm + βm = βm+1 < β). Hence sup (ξ +M) ≤ β. This
observation and the properties of addition give us: β ≤ ξ+β = sup (ξ+M) ≤
β. We obtain that ξ + β = β for all ξ < β.

(2) Let U be a non-empty and countable set of additive principal numbers.
We want to show that sup U is an additive principal number. By now, we
know that 0 6= sup U . Choose an arbitrary ξ < sup U . Then, there exists
α ∈ U such that ξ < α. If we take β ∈ U with β ≥ α, we obtain ξ + β = β
because β is an additive principal number by assumption. Hence, we have
ξ + sup U = sup {ξ + β; β ∈ U} = sup U . Clearly, sup U is an additive
principal number.

Lemmas 7 and 10 give us that the ordering function of the set of all
additive principal numbers is normal. We shall investigate now what these
numbers look like.

Lemma 11. For all δ < α we have ωδ + ωα = ωα.

Proof. We proceed by induction on α. Assume that α = γ + 1 is a successor
ordinal and δ ≤ γ. Then

ωδ + ωγ+1 ≤ ωγ + ωγ+1 = ωγ + ωγ · ω = ωγ(1 + ω) = ωγ · ω = ωγ+1

Since we know that ωγ+1 ≤ ωδ + ωγ+1, we obtain the required equality.

Assume that α = λ is a limit ordinal and ωδ < ωλ = sup {ωξ, ξ < λ}.
Hence, there exists ξ0 < λ such that ωδ < ωξ0 . The induction hypothesis
gives us then for all χ < λ such that χ ≥ ξ0: (ωδ + ωχ = ωχ). We can now
calculate:

ωδ+ωλ = ωδ+sup{ωξ, ξ < λ} = sup{ωδ+ωξ, ξ < λ} = sup{ωξ, ξ < λ} = ωλ

Lemma 12. Ordinal β is an additive principal number if and only if there
exists α such that β = ωα.

Proof. Assume that β has more than one summand in its Cantor normal
form, i.e., β = ωδ1 + · · · + ωδn where δ1 ≥ · · · ≥ δn and n ∈ N. Now, it is
easy to find ordinal ξ < β which witnesses that β is not an additive principal
number. We can take for example ξ = ωδ1 .

Assume that β = ωα and ξ < β. Ordinal ξ has its Cantor normal form
ξ = ωχ1 + · · ·+ ωχk ; χ1 ≥ · · · ≥ χk. Since ξ < β, we have χ1 < α and, thus,
χ1, . . . , χk < α. Now, we are ready to calculate:

ξ + β = ωχ1 + · · ·+ ωχk + ωα = ωα = β

We used associativity of addition and Lemma 11.

17

Definition 15. We define a set Cr (α) ⊂ O and a function Φα for each
α ∈ O inductively as follows:

1. Cr (0) is the set of all additive principal numbers.

2. Function Φα : Aα → Cr (α) is the ordering function of Cr (α).

3. If α 6= 0, then it holds that η ∈ Cr (α) if and only if ∀ξ < α :
(η ∈ Aξ & Φξ(η) = η).

We call the members of Cr (α) the α-critical ordinals and the ordering func-
tions Φα of sets Cr (α) are called Veblen functions.

The third item says that Cr (α) is the set of all common fixed points of
all functions Φξ where ξ < α. The following properties of α-critical ordinals
and Veblen functions can be easily seen:

• α < β ⊃ Cr (β) ⊆ Cr (α)

• Every ordinal Φα(β) is an additive principal number.

• Φ0(α) = ωα

Lemma 13. The set Cr (α) is closed and unbounded.

Proof. We proceed by transfinite induction on α. Set Cr (0) of all additive
principal numbers is closed and unbounded according to Lemma 10. Assume
that ξ < α. Set Cr (ξ) is closed and unbounded by the induction hypothe-
sis. Hence, the ordering function Φξ : Aξ → Cr (ξ) is normal according to
Lemma 7 and particularly Aξ = O. First, we show that Cr (α) is unbounded
and then that it is also closed.

Assume that β ∈ O. We need to find an element in Cr (α) that is greater
than β. Let us define:

γ0 = β + 1
γn+1 = sup {Φξ(γn); ξ < α}
U = {γn; n ∈ N}
γ = sup U

We want to argue that γ > β is an α-critical ordinal. This means that for
all ξ < α, we need Φξ(γ) = γ. Choose an arbitrary ξ < α. We have:

Φξ(γn) ≤ γn+1 ≤ γ

18

Therefore, γ ≥ sup {Φξ(γn); γn ∈ U}. Since Φξ is continuous by the induc-
tion hypothesis, it holds:

γ ≥ sup {Φξ(γn); γn ∈ U} = Φξ(γ)

The second inequality γ ≤ Φξ(γ) follows from Lemma 5.

Assume now that M ⊆ Cr (α) is non-empty and countable. We want to
show that sup M ∈ Cr (α). For this, sup M must be a fixed point of all Φξ,
ξ < α. Choose an arbitrary ξ < α. The domain Aξ of Φξ is equal to O, hence
we can calculate:

Φξ(sup M) = sup{Φξ(µ); µ ∈M} = sup{µ; µ ∈M} = sup M

We obtain this because Φξ is continuous by the induction hypothesis and M
contains only fixed points of functions Φξ, ξ < α.

Lemmas 7 and 13 yield that every Veblen function is normal. The last
issue is to investigate how numbers represented by Veblen functions can be
compared.

Lemma 14. We have Φα1(β1) = Φα2(β2) if and only if one of the following
conditions is met:

• α1 < α2 and β1 = Φα2(β2)

• α1 = α2 and β1 = β2

• α2 < α1 and Φα1(β1) = β2

Proof. By definition, Φα2(β2) is an element of Cr (α2), i.e., it is a fixed point
of all Φξ, ξ < α2. Since α1, α2 are ordinal numbers, exactly one of the
following must occur: α1 < α2, α1 = α2, α2 < α1. If α1 < α2, then
Φα1(Φα2(β2)) = Φα2(β2) and we have that Φα1(β1) = Φα2(β2) if and only if
β1 = Φα2(β2). The case for α2 < α1 is similar and the case for α1 = α2 is
obvious.

19

Lemma 15. We have Φα1(β1) < Φα2(β2) if and only if one of the following
conditions is met:

• α1 < α2 and β1 < Φα2(β2)

• α1 = α2 and β1 < β2

• α2 < α1 and Φα1(β1) < β2

Proof. By definition, Φα2(β2) is an element of Cr (α2) and one of these pos-
sibilities must occur: α1 < α2, α1 = α2, α2 < α1. If α1 < α2, then
Φα1(Φα2(β2)) = Φα2(β2) and we obtain that Φα1(β1) < Φα2(β2) if and only if
β1 < Φα2(β2) since Φα1 is strictly monotone. The case for α2 < α1 is similar
and the case for α1 = α2 follows again from the monotonicity.

As an example, we show that ω < Φω(0). We use obvious equalities
ω = Φ0(1) and 1 = Φ0(0):

Φ0(1) < Φω(0) ≡
0 < ω & Φ0(0) < Φω(0) ≡

0 < ω & 0 < Φω(0)

This holds true because any additive principal number is greater than 0.

Let us summarize the properties of Veblen functions that we have shown
in this section and that we will use below:

(V1) β1 < β2 ⊃ Φα(β1) < Φα(β2)

(V2) β1, β2 < Φα(β) ⊃ β1 + β2 < Φα(β)

(V3) α1 < α2 ⊃ Φα1(Φα2(β)) = Φα2(β)

(V4) α1 < α2 & β1 < Φα2(β2) ⊃ Φα1(β1) < Φα2(β2)

(V5) Φ0(β) = ωβ

(V6) ω < Φω(0)

(V7) sup{Φα(β1),Φα(β2),Φα(β3), . . .} = Φα(sup{β1, β2, β3, . . .})

(V8) β ≤ Φα(β)

20

1.3 Cut elimination

Lemma 16. Assume that sequents Γ → D and D,∆ → C have deduction
trees T1 and T2 with heights α1 and α2, respectively. Further assume that D
is an atomic sentence. Then, sequent Γ,∆ → C has a deduction tree whose
height is at most α1 + α2.

Proof. If D is a true atomic sentence, then Γ→ D is in endform and α1 = 0.
Deduction tree T2 and Lemma 3 give us a deduction tree with the endsequent
∆→ C whose height is α2. When we apply Lemma 1, we obtain a deduction
tree with the endsequent Γ,∆→ C whose height is α2 = α1 + α2.

If D is a false atomic sentence, we decompose the succedent formula C
from Γ,∆ → C the same way as deduction tree T2 does. This turns the
succedent formula either into a true atomic sentence or into a false atomic
sentence:

`0
Γ,∆→ 0=0

...

`α1

... T1
Γ,∆→ 0=1

...

`α1

... T1
Γ,∆, E→ 0=1

¬R`Γ,∆→¬E

...
R-rules

`α1+α2 Γ,∆→C

Lemma 1 allows us to attach T1 to the nodes where C has turned into a false
atomic sentence. Hence, the deduction tree for Γ,∆→ C can be viewed as T2

whose leaves are assigned α1 instead of 0. It is easy to prove by induction
on α2 that the deduction tree for Γ,∆→ C has height at most α1 + α2.

Lemma 17. Assume that sequent D,∆ → C is in endform and D is not
atomic. Then, sequent Γ,∆→ C is in endform too.

Proof. If D,∆ → C is in endform and D is not atomic, then C is either of
the form 0 = 0 or C is of the form 0 = 1 and there must be a false atomic
sentence in ∆. Hence, sequent Γ,∆→ C is obviously in endform.

It is easy to see that if we take monotone cut formula D, i.e., the one
that contains only conjunctions and universal quantifiers but no negations,
then Gentzen’s elimination procedure gives us a deduction tree for Γ,∆→ C
whose height is at most α1 +α2. However, things are more complicated when
we include negation.

Theorem 1. Assume that sequents Γ → D and D,∆ → C have deduction
trees T1 and T2 with heights α1 and α2, respectively, and |D| = n. Then,
sequent Γ,∆→ C has a deduction tree whose height is at most Φn−1(α1+α2),
where Φ−1 = Id.

21

Proof. We apply induction on the number of the logical operations in cut
formula D and induction on the height of the deduction tree T2. The base
steps are accomplished in Lemmas 16 and 17.

Assume that n > 0. Now, we examine the last derivation rule in T2, i.e.,
the rule that was used to obtain the sequent D,∆→ C. If this rule operates
on any formula except cut formula D, for example:

`γ<α2

... T ′2
D,A&B,A,∆

′→ 0=1
&L2`α2 D,A&B,∆

′→ 0=1

where ∆ = (A&B,∆
′
) and C = (0 = 1), then, by the induction hypothesis,

we obtain `Φn−1(α1+γ) Γ, A&B,A,∆
′ → 0 = 1. When we apply the last rule

from T2 to this sequent, the rule of &L2 in this case, we have

`Φn−1(α1+γ)+1 Γ, A&B,∆
′ → 0 = 1

Properties (V1) and (V2) of Veblen hierarchy give us

Φn−1(α1 + γ) + 1 < Φn−1(α1 + α2)

The other cases are similar. When C is of the form ∀xF (x) and the last
derivation rule in T2 is the rule of ∀R, use (V7).

Assume now that the last derivation rule in T2 operates on formula D.
This rule is either the rule of L1 or L2. If it is L1, we have:

... T ′2
`γ1<α2A,∆→0=1

&L1`α2A&B,∆→0=1

... T ′2
`δ2<α2∆→A

¬L1`α2¬A,∆→0=1

where the formula D is of the form A&B or ¬A, respectively. The case
when D is of the form ∀xF (x) is treated the same way. Since Definition 3
gives us that deduction trees T1 are of the form

...
`δ1<α1Γ→A

...
Γ→B

&R`α1Γ→A&B

...
`γ2<α1A,Γ→0=1

¬R`α1Γ→¬A

respectively, the induction hypothesis for simpler cut formulas gives us

`Φn−2(δi+γi) Γ,∆→ 0 = 1

22

for both i = 1 or i = 2. Property (V8) yields that δi, γi < Φn−1(α1 + α2).
Further, property (V2) gives us δi + γi < Φn−1(α1 + α2). When we now
apply (V4), we have our desired result:

Φn−2(δi + γi) < Φn−1(α1 + α2)

If the last derivation rule in T2 is the rule of L2 and it operates on cut
formula D, we have the following:

... T ′2
`γ<α2A&B,A,∆→0=1

&L2`α2A&B,∆→0=1

... T ′2
`γ<α2¬A,∆→A

¬L2`α2¬A,∆→0=1

Since Γ → A&B and A&B,A,∆ → 0 = 1 have deduction trees T1 and T
′
2,

respectively, and the height of T
′
2 is less than α2, we can use the induction

hypothesis and we obtain

`Φn−1(α1+γ) Γ, A,∆→ 0 = 1

Similarly for ¬L2:
`Φn−1(α1+γ) Γ,∆→ A

Now, we have to remove the formula A. For D = A&B, we have `Φn−1(α1+γ)

Γ, A,∆ → 0 = 1 and `%<α1 Γ → A as a subtree of T1. Hence, we apply the
induction hypothesis for simpler cut formulas and we obtain

`Φn−2(%+Φn−1(α1+γ)) Γ,Γ,∆→ 0 = 1

For D = ¬A, we have `Φn−1(α1+γ) Γ,∆ → A and `%<α1 A,Γ → 0 = 1 as a
subtree of T1. Thus, the induction hypothesis gives us

`Φn−2(Φn−1(α1+γ)+%) Γ,Γ,∆→ 0 = 1

The last step is to show that both numbers Φn−2(% + Φn−1(α1 + γ)) and
Φn−2(Φn−1(α1 + γ) + %) can be bounded by Φn−1(α1 + α2). When we apply
(V8), we obtain % < Φn−1(α1 + α2). Property (V1) gives us Φn−1(α1 + γ) <
Φn−1(α1 + α2). These two observations and property (V2) give us

%+ Φn−1(α1 + γ) < Φn−1(α1 + α2)
Φn−1(α1 + γ) + % < Φn−1(α1 + α2)

Next, we use (V1) again and we have

Φn−2(%+ Φn−1(α1 + γ)) < Φn−2(Φn−1(α1 + α2))
Φn−2(Φn−1(α1 + γ) + %) < Φn−2(Φn−1(α1 + α2))

23

According to (V3), value Φn−1(α1 +α2) is a fixed point of Φn−2. Hence there
is the value Φn−1(α1 + α2) itself on the right hand side of the inequalities.
Finally, we use Lemma 2. This gives us our desired result.

1.4 An upper bound on the height of deduc-

tion trees for sequents that are derivable

in PA

We have analysed Gentzen’s reduction rules that are viewed as a calculus
with the ω-rule. Now, we move on to PA. Unlike in the previous sections,
here we will use free variables and, therefore, we add two new rules to the
calculus with the ω-rule:

(1) Γ(x/0)→C(x/0) Γ(x/1̄)→C(x/1̄) Γ(x/2̄)→C(x/2̄) . . .
var

Γ→C

Variable x is a free variable somewhere in Γ or C and the rule replaces all
occurrences of x in Γ → C by every possible numeral. We do not want to
apply this rule consecutively, so, let us assume that we are able to replace
all free variables x1, . . . , xn in Γ → C by all possible n-tuples of numerals
as a result of a single application. This preserves countable branching. The
second new rule is of the form:

(2) Γ(t1,..,tk/n̄1,..,n̄k)→C(t1,..,tk/n̄1,..,n̄k)
term

Γ→C

Symbols t1, . . . , tk are terms without free variables so that their values can
be calculated and the rule replaces them by their corresponding values. The
use of this rule will be implicit.

We allow these rules to occur in a deduction tree only immediately before
the endsequent, hence, they do not harm our previous result: We take a
sequent whose deduction tree we want to find, for example D(x, y)→ C(x, y)
where x, y are free variables, and we replace all free variables in this sequent
by all possible n-tuples of numerals. Then, we are interested in deduction
trees for all instances of the sequent and when we find them, we say that the
original sequent has a deduction tree too:

...
`αD(0,0)→C(0,0)

...
`βD(1,0)→C(1,0)

...
`γD(0,1)→C(0,1)

...
`δD(0,2)→C(0,2)

...
`µD(1,1)→C(1,1)

...
`νD(2,0)→C(2,0)...

D(x,y)→C(x,y)
var

The height of the deduction tree for D(x, y)→ C(x, y) is
sup{α + 1, β + 1, γ + 1, δ + 1, µ+ 1, ν + 1, . . .}.

24

1.4.1 Peano arithmetic

We will now introduce the calculus for PA – natural deduction in sequent
calculus style. Our sequents are defined as above (Definition 1). The calculus
includes two kinds of initial sequents: logical and mathematical. Logical
initial sequents are of the form D → D, where D is an arbitrary formula in L
(Section 1.2). Mathematical initial sequents are of the form→ C, where C is
an equality axiom or a Robinson arithmetic axiom. Just to remind the reader,
we provide the list of these axioms. The scheme of induction is implemented
as a rule.

Equality axioms:

• ∀x(x = x)

• ∀x∀y(x = y ⊃ y = x)

• ∀x∀y∀z(x = y & y = z ⊃ x = z)

• ∀x1..∀xn∀y1..∀yn(x1 = y1 & .. & xn = yn ⊃ F (x1, .., xn) = F (y1, .., yn))
where F is a n-ary functional symbol in L.

• We do not need the general axiom for n-ary relational symbols because the only relational symbol
that we have is equation.

Robinson arithmetic axioms:

• ∀x∀y(S(x) = S(y) ⊃ x = y)

• ∀x¬(S(x) = 0)

• ∀x(¬x = 0 ⊃ ∃y(S(y) = x))

• ∀x(x+ 0 = x)

• ∀x∀y(x+ S(y) = S(x+ y))

• ∀x(x · 0 = 0)

• ∀x∀y(x · S(y) = x · y + x)

The calculus includes tree kinds of inference rules: structural, logical and
an induction rule.

Structural rules:

Γ, A,A→ B
Ct

Γ, A→ B

Γ→ B
Wk

Γ, A→ B

Gentzen allows to rename bound variables at any time and counts it as
an additional structural rule. He also uses the rule of exchange, but we do
not need it, since we work with multisets.

25

Logical rules:

Γ→ F (a)
∀I

Γ→ ∀xF (x)

Γ→ ∀xF (x)
∀E

Γ→ F (t)

Γ→ A1 Σ→ A2
&I

Γ,Σ→ A1&A2

Γ→ A1&A2
&E

Γ→ Ai

A,Γ→ B A,Σ→ ¬B
¬I

Γ,Σ→ ¬A
Γ→ ¬¬A ¬E

Γ→ A

Induction rule:

Γ→ F (0) F (a),Σ→ F (S(a))
Ind

Γ,Σ→ F (t)

The variable a is an eigenvariable and must, therefore, not occur in Γ,
∀xF (x) and Γ, Σ, F (0), F (t), respectively. The symbol t stands for a term
in L that can be substituted for x in F (x). In the rule of &E we have i = 1 or
i = 2. We do not need rules for all logical operations as we work in classical
predicate logic. There is no problem to replace the mathematical initial
sequents with formulas that are equivalent to them and that use only ∀,&,¬.

Definition 16. A derivation in PA is a finite tree that consists of sequents.
Each sequent is either a logical or a mathematical initial sequent or is derived
from previous ones using one of the inference rules that are described in this
section.

1.4.2 Deduction trees for initial sequents of PA

We will show that every initial sequent of PA has a deduction tree. Gentzen
assumes this for the mathematical initial sequents and there is no problem
indeed. Hence, we concentrate on the logical initial sequents. Gentzen’s
argument is as follows.

Consider a sequent D → D in which we have replaced all free variables
by numerals according to var and term. The following scheme explains how
to construct a deduction tree for D → D:

26

↑ var, term
D → D

∀R,&R
↖ ↑ ↗

endform D → 0 = 0
D → 0 = 1 D,C → 0 = 1

¬R
D → ¬C

↑
endform 0 = 1→ 0 = 1

↑
∀L1,&L1∀L1,&L1

C → C ¬L1¬C,C → 0 = 1

↑ IH, |C| < |D|

We start by decomposing the succedent formulaD with the help of ∀R,&R
until it turns into an atomic sentence or a negated sentence. Branches
where D has turned into a true atomic sentence are in endform. If D has
turned into a negated formula, we apply ¬R to obtain 0 = 1 in the succedent.
Then, we apply ∀L1,&L1 to the antecedent formula D in all branches which
are not in endform yet. We have to follow the choices that were made along
every particular branch while the succedent formula D was reduced. This
ensures that the antecedent formula D acquires the same form as the succe-
dent formula D has acquired after steps ∀R,&R had been applied. Either we
reach endform, or we obtain a simpler logical initial sequent C → C to which
we can apply the induction hypothesis that tells us that C → C already has a
deduction tree. Note that no L2 rules are used. For more detailed discussion
of deduction trees for initial sequents see ([5], §13) or [7].

We provide now an example of a deduction tree for the initial sequent of
the form

¬(∀xE1(x)&E2)→ ¬(∀xE1(x)&E2)

where E2 is an atomic sentence and E1 is also atomic and does not contain
free variables other than x. The application of the rules marked by (?) is
unnecessary when the succedent formula is a true atomic sentence. The
deduction tree is the following:

E1(0) → E1(0)
∀L1(?)

∀xE1(x) → E1(0)
&L1(?)

∀xE1(x)&E2 → E1(0)

E1(1̄) → E1(1̄)
∀L1(?)

∀xE1(x) → E1(1̄)
&L1(?)

∀xE1(x)&E2 → E1(1̄) . . .
∀R ∀xE1(x)&E2 → ∀xE1(x)

E2 → E2
&L1(?)

∀xE1(x)&E2 → E2
&R ∀xE1(x)&E2 → ∀xE1(x)&E2 ¬L1¬(∀xE1(x)&E2), ∀xE1(x)&E2 → 0=1

¬R
¬(∀xE1(x)&E2) → ¬(∀xE1(x)&E2)

27

After we apply the rule of ¬R to the initial sequent, we reach the state
denoted by ¬C,C → 0 = 1 in the general scheme where D = ¬C. The
next step is to apply the rule of ¬L1. This creates a simpler initial sequent
for which we build a deduction tree according to the same algorithm. So,
we apply &R, which is the only rule that is allowed, and we obtain finite
branching. The right hand branch may be in endform depending on E2. If
it is not in endform, we have to apply the L1-variant of &R and choose E2

because this is the branch where the rule of &R has placed E2 into the
succedent.

The left hand branch has ∀xE1(x) in the succedent. We apply the rule
of ∀R and obtain countable branching. Sequents that are not in endform are
transformed further. There were the rules of &R and ∀R applied to our initial
sequent ∀xE1(x)&E2 → ∀xE1(x)&E2, hence, &L1 and ∀L1 must follow.
Since &R has placed ∀xE1(x) into the succedent, the rule of &L1 chooses
the same formula from the conjunction ∀xE1(x)&E2. Every branch created
by ∀R is characterized by the numeral that the rule of ∀R has substituted
for x in E1(x). The rule of ∀L1 chooses now the same numeral in every
particular branch. Thus, all branches are in endform by now.

The most important property of deduction trees for the logical as well
as the mathematical initial sequents follows from Lemma 4: We can always
build deduction trees for them that make no use of L2-rules and, therefore,
they have a finite height.

Lemma 18. Sequent ¬¬A→ A has a deduction tree with a finite height.

Proof. We can assume that A contains no free variables. Furthermore, we
know that sequent A→ A has a deduction tree with a finite height at most
n = rk(A→ A) that can be schematically represented as follows:

`nA→A

A→0=0

A→0=1

...
A,C→0=1
A→¬C

...

↑↖ ↗

The deduction tree for ¬¬A → A is similar to the one above except for
the length of the branches which may be at most two vertices longer:

28

¬¬A→A

¬¬A→0=0

...
A→0=1
→¬A

¬¬A→0=1

...
A,C→0=1

C→¬A
¬¬A,C→0=1

¬¬A→¬C

↑↖ ↗

Anyway, no L2-rules are used and Lemma 4 gives us that the deduction tree
for ¬¬A→ A has a finite height bounded by n+ 2 = rk(¬¬A→ A).

1.4.3 Deduction trees for derivable sequents of PA

We will now construct a deduction tree for an arbitrary sequent that is deriv-
able in PA and estimate the height of such a tree.

Theorem 2. Following Gentzen’s procedure, we can construct for every se-
quent that is derivable in PA a deduction tree whose height is less than Φω(0).

Proof. Assume that we have a derivation ϑ in PA. We proceed by induction
on the complexity of ϑ. If ϑ is just one initial sequent, then it has a deduction
tree with a finite height (even if there are free variables in the sequent and
we have to use the rule of var).

Conclusions of the rules of weakening and contraction have deduction
trees with heights bounded by Φω(0) when the premises have one. This is
handled in Lemmas 1 and 2, respectively.

The most important case is when we need to construct a deduction tree for
the conclusion Γ,Σ→ F (t) of the induction rule. Assume that the premises
Γ→ F (0) and F (a),Σ→ F (S(a)) of the induction rule have deduction trees
with heights α, β < Φω(0), respectively, and α ≤ β. Formulas and multisets
with superscripts denote themselves after the replacement of free variables:

...
Γ
′→F (0)

′

...
Γ
′′→F (0)

′′

...
Γ
′′′→F (0)

′′′
...

var
`α Γ→F (0)

...
F (0)

′
,Σ
′→F (1̄)

′

...
F (1̄)

′
,Σ
′→F (2̄)

′
...

...
F (0)

′′
,Σ
′′→F (1̄)

′′

...
F (1̄)

′′
,Σ
′′→F (2̄)

′′
...

var

`β F (a),Σ→F (S(a))

29

The first step in finding the deduction tree for Γ,Σ→ F (t) must be var
which replaces all free variables by all possible n-tuples of numerals. Term t
may contain free variables, too:

`α Γ
′
,Σ
′→F (0)

′
Γ
′
,Σ
′→F (1̄)

′
Γ
′
,Σ
′→F (2̄)

′
Γ
′
,Σ
′→F (3̄)

′
...

var
Γ,Σ→F (t)

Sequents Γ
′
,Σ
′ → F (n̄)

′
and Γ

′′
,Σ
′′ → F (n̄)

′′
with different n-tuple of

numerals instead of free variables but with the same value of term t will have
deduction trees whose heights will be bounded by the same number. Now,
we need to find deduction trees for sequents of the form Γ

′
,Σ
′ → F (m̄)

′

where m is a natural number. We apply an easy induction on m to show the
following:

`Φ|F (0)|(β+m) Γ
′
,Σ
′ → F (m̄)

′

When this is accomplished, property (V7) gives us the following estimate of
the height of the deduction tree with the endsequent Γ,Σ→ F (t):

sup{Φ|F (0)|(β),Φ|F (0)|(β + 1),Φ|F (0)|(β + 2), . . .} = Φ|F (0)|(β + ω)

If we had β < α, then we would obtain Φ|F (0)|(α+ω). Values α, β are strictly
less than Φω(0) by assumption and ω is less than Φω(0) by (V6). Hence, the
sums α + ω and β + ω are, according to (V2), also less than Φω(0). Finally,
(V4) gives us that both values Φ|F (0)|(α + ω) and Φ|F (0)|(β + ω) are strictly
less than Φω(0).

Let us return to the embedded induction on m. Assume that m = 0. The
deduction tree `α Γ

′
,Σ
′ → F (0)

′
exists according to the induction hypothesis

of the superior induction on the complexity of ϑ. Moreover, assumption
α ≤ β and property (V8) claim α ≤ Φ|F (0)|(β). Assume now that m > 0.
The induction hypothesis gives us the deduction tree

`Φ|F (0)|(β+m−1) Γ
′
,Σ
′ → F (m− 1)

′

and since we also have

`β F (m− 1)
′
,Σ
′ → F (m̄)

′

Theorem 1 gives us

`Φ|F (0)|−1(Φ|F (0)|(β+m−1)+β) Γ
′
,Σ
′
,Σ
′ → F (m̄)

′

Properties (V1) and (V8) imply that both values β and Φ|F (0)|(β + m − 1)
are strictly less than Φ|F (0)|(β + m). Further, this observation and property
(V2) give us

Φ|F (0)|(β +m− 1) + β < Φ|F (0)|(β +m)

30

An application of (V1) to the inequality above yields

Φ|F (0)|−1(Φ|F (0)|(β +m− 1) + β) < Φ|F (0)|−1(Φ|F (0)|(β +m))

Since the property (V3) tells us that Φ|F (0)|(β+m) is a fixed point of Φ|F (0)|−1,
we obtain

`Φ|F (0)|(β+m) Γ
′
,Σ
′
,Σ
′ → F (m̄)

′

The deduction tree with the endsequent Γ
′
,Σ
′ → F (m̄)

′
and with the same

height is obtained by Lemma 2.

Hilfssatz is also applied to obtain deduction trees for conclusions of the
rules of negation. The deduction tree for the conclusion Γ → A of the rule
of ¬E is built by combining the deduction tree for ¬¬A→ A, whose height
is finite according to Lemma 18, with the deduction tree for the premise
Γ → ¬¬A of ¬E that exists by the induction hypothesis and whose height
is α < Φω(0).

Finally, it is straightforward to find deduction trees with heights strictly
less than Φω(0) for the conclusions of the rules of ∀I, ∀E, &I, &E, ¬I when
their premises have deduction trees with heights strictly less than Φω(0).

1.5 Formalization of Gentzen’s proof

We want to show in this section that Gentzen’s consistency proof of 1935
can be formulated in the way that the only tool that exceeds PA and that is
used in the proof is the transfinite induction on the height of deduction trees
applied to ∆3 formulas. Roughly speaking, Gentzen himself applies trans-
finite induction on the height of deduction trees in [4]. Moreover, he uses
the notion of well-foundedness in induction formulas, namely, the notion of
deduction tree appears in his induction formulas and we know that a deduc-
tion tree must be well-founded by definition. This is not very convenient for
a consistency proof of PA since well-foundedness is a second order property.
Here, we will see that we can do without the general well-foundedness of
deduction trees.

1.5.1 Notation system for ordinals represented by Veb-
len functions

We continue to follow Schütte ([11], pp. 83–92) and introduce a notation
system that represents ordinals less than a particular ordinal denoted by Γ0.

31

First, we define strongly critical ordinals the least of which is Γ0. Second,
we define maximal α-critical ordinals whose ordering function called Ψα is
needed to establish the notation system. The properties of strongly critical
ordinals and ordering functions Ψα make clear why our notation system will
work only for ordinals that are strictly less than Γ0.

We saw at the end of Section 1.2.2 that there exist ordinals α such that
α < Φα(0). For example, ordinal ω is one of them. A natural question is
whether there are ordinals α too such that α > Φα(0) or α = Φα(0).

The assumption α > Φα(0) leads to a contradiction: If there were some
ordinals with this property, then we would take β, the least of them. Hence,
∀ξ < β: ξ ≤ Φξ(0) and further

ξ ≤ Φξ(0) < Φξ(Φβ(0)) = Φβ(0)

This yields ∀ξ < β: ξ < Φβ(0). Since Φβ(0) < β by assumption, we have
Φβ(0) < Φβ(0). Thus, there are no ordinals α > Φα(0).

Lemma 19. We always have α ≤ Φα(0).

Nevertheless, ordinals α such that α = Φα(0) do exist and they will be
called strongly critical.

Definition 17. We say that α is strongly critical if α ∈ Cr (α).

Lemma 20. Ordinal α is strongly critical if and only if α = Φα(0).

Proof. If α = Φα(0), then α belongs to Cr (α), the range of Φα. If α ∈ Cr (α),
then there is β such that α = Φα(β). Now, we know that α ≤ Φα(0).
Since Φα is strictly monotone, Φα(0) is the least element of Cr (α) and we
obtain β = 0.

Strongly critical ordinals exist because one can prove that the set of them
is closed and unbounded ([11], p. 83–84).

Definition 18. The least strongly critical ordinal is Γ0.

Definition 19. We say that ordinal γ is maximal α-critical when the fol-
lowing conditions are met:

1. γ ∈ Cr (α)

2. ∀ξ > α : γ 6∈ Cr (ξ)

32

A maximal α-critical ordinal γ belongs to Cr (α), hence, we have Φν(γ) = γ
for all ν < α. Further, there must exist β such that Φα(β) = γ and since γ
does not belong to the range of any Φξ where ξ > α, it follows that β 6= γ.
Moreover, β < γ because Φα is strictly monotone. Let us show that for every
additive principal number γ there exists α such that γ is maximal α-critical:

Lemma 21. For every additive principal number γ there exist unique α and
unique β < γ such that γ = Φα(β).

Proof. The least additive principal number is 1, hence, γ ≤ Φγ(0) < Φγ(γ).
The inequality γ < Φγ(γ) tells us that there must exist the least α such that
γ 6= Φα(γ). If α > 0, the choice of α gives us γ = Φξ(γ) for ξ < α and thus,
γ ∈ Cr (α). If α = 0, γ ∈ Cr (α) since γ is an additive principal number.
Anyway, γ ∈ Cr (α). Therefore, there is β such that γ = Φα(β). We obtain:

γ ≤ Φα(γ) & γ 6= Φα(γ) ⊃ γ < Φα(γ) ⊃ Φα(β) < Φα(γ) ⊃ β < γ

The uniqueness of α and β follows from Lemma 14.

We know that additive principal numbers can be expressed as values of
Veblen functions. Unfortunately, this representation is not unambiguous. On
the other hand, Lemma 21 tells us that for every additive principal number
there is a unique stage where it leaves the hierarchy in the sense that it
will not belong to the range of any further Veblen function. In other words,
the stage α at which an additive principal number γ becomes a maximal α-
critical ordinal is given unambiguously. It is convenient to have an ordering
function Ψα of maximal α-critical ordinals:

Definition 20. The ordering function Ψα of maximal α-critical ordinals is
defined as follows:

1. If there is β0 and n ∈ N such that Φα(β0) = β0 and β = β0 + n, we set
Ψα(β) := Φα(β + 1).

2. Otherwise, we set Ψα(β) := Φα(β).

The intuition behind this definition is that if we encounter a fixed point
of Φα, function Ψα skips it and continues enumerating values that follow.

Now, let us prove that Ψα is really the ordering function of the maximal
α-critical ordinals. According to Definition 9, the domain of Ψα must be
an O-segment. The function must be strictly monotone and the range must
cover all maximal α-critical ordinals. There is no problem with the domain
since we see that Ψα is defined for any β ∈ O.

33

Lemma 22. We have Ψα(β1) < Ψα(β2) for every β1 < β2.

Proof. Assume that β1 < β2. We only show that the possibility

β1 + 1 = β2

Ψα(β1) = Φα(β1 + 1)
Ψα(β2) = Φα(β2)

cannot occur. Other possibilities give us trivially the required result be-
cause Φα is strictly monotone. When Ψα(β1) = Φα(β1 + 1), there must be β0

and n ∈ N such that Φα(β0) = β0 and β1 = β0 + n. Then β2 = β1 + 1 =
β0 + n+ 1 and, hence, we must have Ψα(β2) = Φα(β2 + 1).

Lemma 23. The value of Ψα(β) is a maximal α-critical ordinal.

Proof. By definition, it is clear that Ψα(β) ∈ Cr (α). Assume that we have
Ψα(β) = Φα(β+1). Then β ≤ Φα(β) < Φα(β+1) and 1 ≤ Φα(β) < Φα(β+1).
Since Φα(β+1) is an additive principal number, it holds β+1 < Φα(β+1) =
Ψα(β).

Assume now that we have Ψα(β) = Φα(β). In general β ≤ Φα(β), but in
this situation it must be β < Φα(β) because, otherwise, the other case of the
definition of Ψα(β) would apply.

Hence, we obtained that Ψα(β) is not a fixed point of Φα and, therefore,
Ψα(β) 6∈ Cr (ξ) where ξ > α.

Lemma 24. If γ is maximal α-critical, then there exists β such that γ =
Ψα(β).

Proof. Assume that γ ∈ Cr (α) and γ 6∈ Cr (ξ) where ξ > α, thus, there
exists β1 < γ such that γ = Φα(β1). Let us investigate the value of Ψα(β1).
If Ψα(β1) = Φα(β1) = γ, then the assertion is proved by taking β := β1.

Assume now that Ψα(β1) = Φα(β1 + 1). This means that we have β0

and n ∈ N such that β0 = Φα(β0) and β1 = β0 + n. The assumption
β1 < γ = Φα(β1) yields that n 6= 0 and we can consider n − 1. If we set
β := β0 + (n− 1), we obtain Ψα(β) = Φα(β + 1) = Φα(β1) = γ.

We have shown that Ψα, as introduced in Definition 20, satisfies the
properties of the ordering function for maximal α-critical ordinals. If we
combine the results of Lemmas 21 and 24, we obtain the following important
observation:

Lemma 25. For every additive principal number γ there exists unique α and
unique β such that γ = Ψα(β).

34

Proof. Lemma 21 gives us α such that γ is maximal α-critical and this α is
given unambiguously. Further, Lemma 24 gives us β such that γ = Ψα(β).
Since Ψα is strictly monotone, β is unique too.

Now, we would appreciate if we can express additive principal numbers γ
with the help of Ψα(β) where α, β are strictly less than γ itself. This will
succeed only for additive principal ordinals that are not strongly critical:

Lemma 26. (1) Assume that γ = Ψα(β). Then, α < γ if and only if γ is
not a strongly critical ordinal.
(2) We have β < Ψα(β) for all β ∈ O.

Proof. (1) First, assume that γ ∈ Cr (γ). Therefore γ = Φγ(0). We further
have

Ψα(β) = γ = Φγ(0) = Ψγ(0)

because there is no fixed point β0 of Φγ such that 0 = β0 + n where n ∈ N.
Ordinal γ is additive principal, thus, Lemma 25 claims that α and γ denote
the same ordinal: α = γ.

Second, assume that γ 6∈ Cr (γ). It follows that γ < Φγ(0). Hence, we
have

Φα(β?) = Ψα(β) = γ < Φγ(0)

where β? = β or β? = β+1. According to Lemma 15, there are three options
that imply Φα(β?) < Φγ(0), but two of them require β? < 0 or Φα(β?) < 0.
Hence, the only possible option is α < γ and β? < Φγ(0).

(2) Either we have β < β + 1 ≤ Φα(β + 1) = Ψα(β) or we have β ≤
Φα(β) = Ψα(β). The first case is clear. The second case actually rules out
that β = Φα(β) since otherwise there would be a fixed point of Φα from
which we can reach β within a finite number of steps. Consequently, the
other branch of the definition of Ψα(β) would apply.

Note that functions Ψα do not have any fixed points. This means that
they are either not continuous or they are not strictly monotone. Lemma 22
yields that they are not continuous.

Before we move on to the definition of the notation system, let us explain
how numbers represented by functions Ψα can be compared.

Lemma 27. We have Ψα1(β1) < Ψα2(β2) if and only if one of the following
conditions is met:

• α1 < α2 and β1 < Ψα2(β2)

• α1 = α2 and β1 < β2

35

• α1 > α2 and Ψα1(β1) ≤ β2

Proof. Assume that α1 < α2 and β1 < Ψα2(β2). Hence, β1 + 1 < Ψα2(β2)
because Ψα2(β2) is a limit ordinal. Altogether, we have

Ψα1(β1) ≤ Φα1(β1 + 1) < Φα1(Ψα2(β2)) = Ψα2(β2)

where the first inequality follows from the definition of Ψα1 and the last
equality holds since Ψα2(β2) ∈ Cr (α2) and α1 < α2.

The second possibility is clear, so, we can proceed to the third one. As-
sume that Ψα1(β1) ≤ β2. Lemma 26 claims β2 < Ψα2(β2). The required
result is obtained by transitivity.

The other direction is proved by assuming that none of the three possi-
bilities is met. Then, the analysis of all available cases leads to Ψα2(β2) ≤
Ψα1(β1).

Let us now summarize the main knowledge that the current stage of this
exposition gives us. We know that every ordinal γ 6= 0 has the Cantor normal
form (Lemma 8):

γ = ωδ1 + · · ·+ ωδn n ∈ N; δ1 ≥ · · · ≥ δn

that is the sum of additive principal numbers ωδi . For every additive principal
number ωδi , there exist unique αi and βi such that Ψαi(βi) = ωδi (Lemma 25).
If we take γ < Γ0, which means that γ is not strongly critical, then all
summands ωδi , where i ≤ n, are below Γ0 too and Lemma 26 guarantees
that αi, βi < ωδi ≤ γ. Hence, γ 6= 0 has the normal form:

γ = Ψα1(β1) + · · ·+ Ψαn(βn) n ∈ N; Ψα1(β1) ≥ · · · ≥ Ψαn(βn)

with parameters αi, βi < γ and these parameters have normal forms with yet
again smaller parameters and so on. As this process must terminate, ordinal
numbers < Γ0 can be coded by natural numbers. (We assume that we are
able to code and decode finite sequences primitive recursively.) Further, we
see that any γ ∈ O can be expressed with the help of 0, + and Ψ.

We will now define ordinal terms that correspond to ordinal numbers
below Γ0. They will be composed of ”simpler” ordinal terms and since
Γ0 = ΦΓ0(0) = ΨΓ0(0), it is clear the we cannot reach Γ0 in this way. Be-
sides the ordinal terms themselves, we also define their length and <-relation
which allows us to compare them. Further, we will need the addition of or-
dinal terms and we introduce term Φαβ which, as expected, stands for the
ordinal denoted by Φα(β).

36

Definition 21. We define the set OT of ordinal terms as follows:

• The symbol 0 is an ordinal term of length 0.

• If α, β are ordinal terms of lengths |α|, |β|, then (α, β) is an ordinal
term of length

2 ·max { |α|, |β| }+ 1

• If α1, . . . , αn, β1, . . . , βn where n ≥ 2 are ordinal terms of lengths
|α1|, . . . , |αn|, |β1|, . . . , |βn| respectively and (α1, β1) ≥ · · · ≥ (αn, βn),
then (α1, β1) . . . (αn, βn) is an ordinal term of length

2 ·max { |α1|, . . . , |αn|, |β1|, . . . , |βn| }+ n

The <-relation on OT is defined as follows:

• If α ∈ OT, then α < 0 is never valid.

• If β ∈ OT, then 0 < β if and only if β 6= 0.

• If (α1, β1) and (α2, β2) ∈ OT, then (α1, β1) < (α2, β2) if and only if one
of the following conditions is met:

• α1 < α2 and β1 < (α2, β2)

• α1 = α2 and β1 < β2

• α1 > α2 and (α1, β1) ≤ β2

• If γ = (µ1, ν1) . . . (µm, νm) and δ = (σ1, τ1) . . . (σk, τk) ∈ OT where
m, k ≥ 1 and m+ k > 2, then γ < δ if and only if one of the following
conditions is met:

• m < k and (µi, νi) = (σi, τi) for all 1 ≤ i ≤ m

• There is j ≤ min {m, k} such that (µj, νj) < (σj, τj) and (µi, νi) =
(σi, τi) for all 1 ≤ i < j.

The equality α = β between terms α and β means that we deal with identical
terms.

Even though we cannot use the intuitive interpretation of ordinal terms
while proving statements about them, it is useful to keep the interpretation
in mind. The term 0 stands for the ordinal 0. If terms αt and βt stand
for ordinals α and β, then the term (αt, βt) stands for the ordinal denoted
by Ψα(β). Since we know that Ψα(β) is an additive principal number, we

37

will call terms of the form (αt, βt) principal terms. If terms αt1 , .., αtn and
βt1 , .., βtn stand for ordinals α1, .., αn and β1, .., βn respectively, then the term
(αt1 , βt1) . . . (αtn , βtn), which is a term only if (αti , βti) ≥ (αti+1

, βti+1
), stands

for the ordinal denoted by Ψα1(β1) + · · ·+ Ψαn(βn).
All ordinal terms are composed only of brackets and zeros. For example,

ordinal terms that denote natural numbers are of the form (0, 0) . . . (0, 0).
The supremum of them is ω denoted by (0, (0, 0)).

The <-relation on OT is obviously defined according to the analogous
relation on O. Nevertheless, the ordinal terms must be understood as formal
sequences of symbols without the reference to the interpretation and their
properties must be proved using only the inductive definition above.

Lemma 28. There is a primitive recursive function that tells us whether
α = β, α < β or α > β for all α, β ∈ OT.

Proof. The construction of the function proceeds by induction on the sum
|α| + |β| where α, β ∈ OT and it pursues the inductive definition of the
<-relation introduced in Definition 21.

It can be further shown in IΣ1 by induction on the lengths of ordinal
terms that they are linearly ordered by the <-relation ([11], p. 88).

Lemma 29. We have (i) β < (α, β) and (ii) α < (α, β).

Proof. (i) We proceed by induction on |β|. If β = 0, then the assertion holds.
Assume that β = (β1, β2). We have:

β2 < (α, β2) < (α, (β1, β2)) = (α, β)

The first inequality is valid according to the induction hypothesis. The second
inequality also used the induction hypothesis and, moreover, the definition
of <-relation. Now, we consider three cases. (1) If β1 < α, we obtain
β = (β1, β2) < (α, β) since we also have β2 < (α, β). (2) If β1 = α, we have:

β = (β1, β2) < (β1, (β1, β2)) = (α, β)

(3) If β1 > α, we use the following equivalence:

β = (β1, β2) < (α, β) ≡ β1 > α & β ≤ β

Clearly, the right hand side of the equivalence is valid.
Finally, assume that β = β1 . . . βn where β1, .., βn are principal terms and

n ≥ 2. We have:

β1 < (α, β1) < (α, β1 . . . βn) = (α, β)

38

Since β1 < (α, β), we also obtain β = β1 . . . βn < (α, β) because terms β and
(α, β) differ already in the first principal term.

(ii) We proceed by induction on |α|. Assume that α = (α1, α2). It
suffices to show α1 < α and α2 < (α, β). The first inequality is handled
by the induction hypothesis. To show the second one, we apply (i): α2 <
(α1, α2) = α and β < (α, β). These two inequalities and the definition of <-
relation yield (α2, β) < (α, β). When we use the induction hypothesis again,
we obtain α2 < (α2, β) < (α, β) and this yields the required result.

Finally, assume that α = α1 . . . αn where α1, .., αn are principal terms and
n ≥ 2. We have:

α1 < (α1, β) < (α1 . . . αn, β) = (α, β)

The first inequality holds according to the induction hypothesis. The second
one holds according to the definition of <-relation and claim (i). Since α and
(α, β) differ in the first principal term, the assertion is established.

Definition 22. The operation α + β of ordinal terms α, β ∈ OT is defined
as follows:

• α + 0 = 0 + α = α

• If α = (µ1, ν1) . . . (µm, νm) and β = (σ1, τ1) . . . (σk, τk) where m, k ≥ 1,
then

α + β = (µ1, ν1) . . . (µj, νj)(σ1, τ1) . . . (σk, τk)

where j is the largest index less than or equal to m such that (µj, νj) ≥
(σ1, τ1).

The successor α + 1 of ordinal term α ∈ OT is defined as follows:

• α + 1 = α + (0, 0)

Basic properties of this addition of the ordinal terms are provable in IΣ1

by induction on the length of the ordinal terms ([11], p. 90). Note that the
principal terms β = (β1, β2) have the property of additive principal numbers.
If α = (µ1, ν1) . . . (µm, νm) < (β1, β2), then we must have (µ1, ν1) < (β1, β2)
and the definition of addition yields α + β = β.

Definition 23. We define the term Φαβ where α, β ∈ OT as follows:

• If β = (β1, β2) where α < β1, then Φαβ := β.

• If β = (β1, β2) + (γ+ 1) where γ denotes a natural number and α < β1,
then Φαβ := (α, (β1, β2) + γ).

39

• We set Φαβ := (α, β) in every other case.

It is clear that Φαβ is a principal term.

Lemma 30. If β < γ, then Φαβ < Φαγ.

Proof. (i) Assume that Φαβ = β. Then, by assumption β < γ, it suffices to
show γ ≤ Φαγ. Let us consider all possible values of Φαγ. If Φαγ = γ, we
are done. If Φαγ is equal to (α, γ), Lemma 29 gives us the required result.
If Φαγ is (α, γ0) where γ = γ0 + 1, we use Lemma 29 again and we obtain
γ = γ0 + 1 ≤ (α, γ0) = Φαγ.

(ii) Assume now that Φαβ = (α, β0) where β = β0 or β = β0 + 1 and
Φαγ = γ = (γ1, γ2) where α < γ1. The assumption β < γ gives us β0 < γ.
Altogether, using the definition of the <-relation, we obtain:

Φαβ = (α, β0) < (γ1, γ2) = γ = Φαγ

(iii) Assume that Φαβ = (α, β0) where β = β0 or β = β0 + 1 and Φαγ =
(α, γ0) where γ = γ0 or γ = γ0 + 1. It suffices to show β0 < γ0 to obtain
(α, β0) < (α, γ0). The only case when this cannot be trivially seen is β = β0,
γ = γ0 + 1 and β = γ0. We show that this case, in fact, cannot occur: By
definition, Φαγ must be (α, γ0) = (α, (γ1, γ2) + δ) where δ denotes a natural
number not equal to 0 since otherwise β = γ0 would give us Φαβ = β and
this is not the case. It follows that β must be equal to β0 + 1 and we obtain
the required result β0 < γ0.

Lemma 31. We have Φα1β1 = Φα2β2 if and only if one of the following
conditions is met:

• α1 < α2 and β1 = Φα2β2

• α1 = α2 and β1 = β2

• α1 > α2 and Φα1β1 = β2

Lemma 32. We have Φα1β1 < Φα2β2 if and only if one of the following
conditions is met:

• α1 < α2 and β1 < Φα2β2

• α1 = α2 and β1 < β2

• α1 > α2 and Φα1β1 < β2

40

Proof. We prove Lemmas 31 and 32 simultaneously. By definition, Φα2β2 is
a principal term of the form (γ1, γ2) where α2 ≤ γ1. We know that one of
these possibilities must be valid: α1 < α2, α1 = α2, α1 > α2. Assume that
α1 < α2. We want:

Φα1β1 = Φα2β2 ≡ β1 = Φα2β2

Φα1β1 < Φα2β2 ≡ β1 < Φα2β2

Since Φα2β2 is a principal term (γ1, γ2) and transitivity yields α1 < γ1,
we obtain Φα1(Φα2β2) = Φα2β2 by Definition 23. This observation and
Lemma 30 establish the assertions. The other two cases are similar.

To finish the demonstration that term Φαβ represents the ordinal denoted
by Φα(β), we show the following lemma that corresponds to Lemma 21.

Lemma 33. For every principal term γ there exists unique term α and
unique term β < γ such that γ = Φαβ.

Proof. Term γ is a principal term, hence γ = (α, β0). Assume first that β0

is of the form (β1, β2) + δ where α < β1 and δ denotes a natural number. If
α < β1, then β1 ≥ (0, 0) and, thus β0 > (0, 0). We have:

Φα(β0 + 1) = Φα((β1, β2) + (δ + 1)) = (α, (β1, β2) + δ) = (α, β0) = γ

If we show β0 + 1 < γ, then β0 + 1 is our desired term. The definition of
Φαβ0 reveals that β0 ≤ Φαβ0 < Φα(β0 + 1). As (0, 0) < β0 < Φα(β0 + 1)
and principal terms have the property of the additive principal numbers, we
obtain β0 + (0, 0) = β0 + 1 < Φα(β0 + 1).

If β0 has any form except the one above, we have Φαβ0 = (α, β0) by
definition and this equals to γ. It follows from Lemma 29 that β0 < γ.

The uniqueness of α and β follows from Lemma 31.

1.5.2 Formalization of the proof - Preliminaries

We want to show that Gentzen’s consistency proof of 1935 can be formalized
in IΠ3 plus transfinite induction up to the supremum of heights of deduc-
tion trees that are constructed for sequents that are derivable in PA. The
induction formulas of the transfinite induction are at most ∆3.

Notation: We will use an additional functional symbol p·q that represents
a primitive recursive function p·q : ϕ → pϕq. This one gives us Gödel
numbers for syntactic objects as formulas, sequents, notations for ordinal
numbers, deduction trees and similar. We write ϕ̄ instead of pϕq.

41

The substitution of free variables x1, . . . , xk by numerals n̄1, . . . , n̄k in
sequent S or term t is denoted by S(xi/n̄i) or t(xi/n̄i), respectively. For
instance, if S is of the form D → D, then D → D(xi/n̄i) means that we have
replaced free variables x1, . . . , xk by n̄1, . . . , n̄k in the antecedent as well as
in the succedent occurrence of D. If there is a multiset ∆ in the antecedent,
then ∆ → D(xi/n̄i) means that we have replaced free variables x1, . . . , xk
by n̄1, . . . , n̄k in D and in all formulas contained in ∆.

First, we need some finite representation of deduction trees. If we have
a deduction tree T that consists only of one sequent in endform, then the
code pTq of T is

〈 pαq, pΓ→ 0 = 0q, pendformq, p∅q 〉
or

〈 pαq, pΓ, 0 = 1→ 0 = 1q, pendformq, p∅q 〉

where 0 = 0 stands for an arbitrary true atomic sentence, 0 = 1 stands
for an arbitrary false atomic sentence, α is an upper bound on the height
of T , sequents Γ → 0 = 0 and Γ, 0 = 1 → 0 = 1, respectively, denote the
endsequent of T and the empty set ∅ means that no premises were used to
derive the endsequent. The angle brackets 〈 . . . 〉, as expected, code finite
sequences.

If we have a deduction tree T with the endsequent Γ → A&B, then the
code pTq of T is

〈 pαq, pΓ→ A&Bq, p&Rq, pT1q, pT2q 〉

where α is an upper bound on the height of T , &R is the derivation rule by
which the endsequent Γ→ A&B is derived, variables T1, T2 denote deduction
trees for the premises of &R. Unary rules are treated similarly.

If the last derivation rule in T is the rule of ∀R or var, let us call them
ω-rules, we are not able to enumerate deduction trees for all the premises
explicitly. Instead, we adopt a variant of the idea suggested in [12]. Schwich-
tenberg uses primitive recursive functions in ([12], p. 886) to enumerate
codes of deduction trees for premises of the ω-rules. Codes of these primi-
tive recursive functions are then applied to construct a code of the whole
deduction tree. We decided to use codes of formulas instead of the codes of
functions and since we would not get by with primitive recursive functions
here, we will use codes of Σ1-formulas. Hence, the code of a deduction tree T
whose last derivation rule is an ω-rule has the following form:

〈 pαq, pΓ→ ∀xF (x)q, p∀Rq, pϕ1(x, y)q 〉

or

〈 pαq, p∆→ Cq, pvarq, pϕ2(x1, . . . , xk, y)q 〉

where sequent ∆ → C has k free variables and ϕ1, ϕ2 are Σ1-formulas.
Roughly speaking, ϕ1(x, y) represents a function in the way that y is a code
of a deduction tree for the premise Γ→ F (n̄) when ϕ1(n̄, y) holds. Similarly
for ϕ2(x1, . . . , xk, y): We have a code y of a deduction tree for ∆→ C(xi/n̄i)
when ϕ2(n̄1, . . . , n̄k, y) holds. We will define below a predicate DT (x) that
exactly describes which properties x must have to be a code of a proper
deduction tree (Definition 24).

There is also a different approach to representation of infinite derivations
which was used by Buchholz in his article [2]. He denotes infinite deriva-
tions by finite terms. These terms are generated from finite derivations by
functional symbols whose implementation performs cut elimination. Finite
derivations are viewed as constants, the simplest terms.

With the help of our finite representation, we aim to construct a for-
mula that represents function DedTree(pϑq) whose inputs are codes pϑq of
derivations ϑ in PA and output is a code pTq of a deduction tree T for the
endsequent of ϑ. Function DedTree(pϑq) knows deduction trees for all ma-
thematical initial sequents. Furthermore, it calls itself recursively and the
following auxiliary functions:

1. DedTreeAxiom(pSq, pLq) that accepts codes of a sequent S and of an
auxiliary variable L that stores a list of decisions that the function has
made during the decomposition of the succedent formula in S. The call

DedTreeAxiom(pD → Dq, p∅q)

where D is a sentence in L and ∅ is an empty list yields a code of a
deduction tree for the logical initial sequent D → D.

2. Wk(pTq, p∆q) that accepts a code of a deduction tree T and a code of a
multiset of formulas ∆ and yields a code of tree T where ∆ was added
to the antecedent of every sequent in T .

3. Ct(pTq,pAq) that accepts a code of a deduction tree T with the end-
sequent of the form Γ, A,A→ C and yields a code of a deduction tree
with the endsequent Γ, A→ C.

4. Elim(pT1q, pT2q, pDq) that accepts codes of deduction trees T1 and T2

whose endsequents are of the form Γ→ D and D,∆→ C, respectively,
and yields a code of a deduction tree with the endsequent Γ,∆→ C.

The goal is to find out what assumptions are needed to show that DedTree
is total and correct. For this purpose, we will analyse circumstances under

43

which the auxiliary functions are total and correct. A total function is defined
for all possible input values, in our case, for all natural numbers. We are
mostly interested in outputs for inputs that code proper derivations of PA or
proper deduction trees, depending on the function. If the input is corrupt,
we can just tell the function to return 0. A function is correct when it yields
a proper deduction tree for a proper input.

Intuitively, we like to think of functions, but, since PA contains no such
functions and we do not want to extend the theory, we use, in the end, arith-
metic formulas DedTree(x, y), DedTreeAxiom(x, z, y), Wk(x, z, y), Ct(x, z, y)
and Elim(x1, x2, z, y) that represent the functions above. So, we will, in fact,
construct these formulas and prove their properties instead of the properties
of the functions. We even do not insist on having exactly one y for the given
input. The crucial point is that we have some y with the required properties.

Now, we would like to construct an arithmetic formula DT (x) that cap-
tures properties of deduction trees and expresses that x is a code of a proper
deduction tree. It is natural to define DT (x) in the following way. Rules
denoted by P range over derivation rules from Definition 3.

Definition 24.

DT (x) ≡ x = 〈 pαq, pΓ→ 0 = 0q, pendformq, p∅q 〉
∨

x = 〈 pαq, pΓ, 0 = 1→ 0 = 1q, pendformq, p∅q 〉
∨

x = 〈 pαq, pΓ→ Cq, punary rule Pq, y 〉 and

DT (y), y = 〈 pβq, p∆→ Dq, . . . 〉, β < α and
∆→D
Γ→C

is an instance of the rule of P

∨
x = 〈 pαq, pΓ→ Cq, pbinary rule Pq, y, z 〉 and

DT (y), DT (z), β < α, γ < α,

y = 〈 pβq, p∆→ Dq, . . . 〉 and

z = 〈 pγq, pΣ→ Eq, . . . 〉 and
∆→D Σ→E

Γ→C
is an instance of the rule of P

∨
x = 〈 pαq, pΓ→ ∀wF (w)q, p∀Rq, pϕ1(n, y)q 〉 and

∀n∃y ϕ1(n, y) and

∀n∀y [ϕ1(n, y) ⊃ DT (y), y = 〈 pαnq, pΓ→ F (n̄)q, . . . 〉, αn < α]

∨
x = 〈 pαq, pΓ→ C(x1, . . . , xk)q, pvarq, pϕ2(n1, . . . , nk, y)q 〉 and

∀n1 . . . ∀nk ∃y ϕ2(n1, . . . , nk, y) and

∀n1 . . . ∀nk ∀y [ϕ2(n1, . . . , nk, y) ⊃ DT (y), β < α,

y = 〈 pβq, pΓ→ C(xi/n̄i)q, . . . 〉]

All variables that appear inside the angle brackets x = 〈. . .〉, y = 〈. . .〉 or
z = 〈. . .〉 are existentially quantified and bounded by x, y or z, respectively.
Hence, more precisely, we should write:

∃x1∃x2∃x3∃x4 ≤ x [x = 〈x1, x2, x3, x4〉 & OrdNum(x1) &

& Sequent(x2) & Rule(x3) & Sigma1Fle(x4) . . .]

At the same time, we see that we implicitly use some predicates that tell
us that these bound variables have required properties, i.e., they are codes
of ordinal numbers, sequents, derivation rules and Σ1-formulas, respectively.
These predicates are ∆1 in IΣ1 and the same holds for the relation that
compares (codes of) ordinals. In the sequel, we will use only the intuitive
notation of Definition 24 to increase the readability. Note that the only case
where free variables are allowed in the endsequent of x is the case when the
last derivation rule in x is var.

We see that formula DT (x) defined in this way refers to itself. To avoid
this, we apply the Fixed-point theorem ([6], pp. 158–160 or [16], p. 348):

For every arithmetic formula ψ(v, x1, .. , xk) there is an arithmetic for-
mula ϕ(x1, .. , xk) such that Q ` ϕ(x1, .. , xk) ≡ ψ(ϕ(x1, .. , xk), x1, .. , xk).

We believe that formula DT (x) will be Π2 in the end, hence, we choose
the following formula ψ(v, x):

ψ(v, x) = x = 〈 pαq, pΓ→ 0 = 0q, pendformq, p∅q 〉
∨

x = 〈 pαq, pΓ, 0 = 1→ 0 = 1q, pendformq, p∅q 〉
∨

x = 〈 pαq, pΓ→ Cq, punary rule Pq, y 〉, SatΠ,2(v, y),

y = 〈 pβq, p∆→ Dq, . . . 〉, β < α and
∆→D
Γ→C

is an instance of the rule of P

∨
x = 〈 pαq, pΓ→ Cq, pbinary rule Pq, y, z 〉, SatΠ,2(v, y), SatΠ,2(v, z),

y = 〈 pβq, p∆→ Dq, . . . 〉, β < α,

z = 〈 pγq, pΣ→ Eq, . . . 〉, γ < α and
∆→D Σ→E

Γ→C
is an instance of the rule of P

∨
x = 〈 pαq, pΓ→ ∀wF (w)q, p∀Rq, pϕ1(n, y)q 〉 and

∀n ∃y ϕ1(n, y) and

∀n ∀y [ϕ1(n, y) ⊃ SatΠ,2(v, y), y = 〈 pαnq, pΓ→ F (n̄)q, . . . 〉, αn < α]

∨
x = 〈 pαq, pΓ→ C(x1, . . . , xk)q, pvarq, pϕ2(n1, . . . , nk, y)q 〉 and

∀n1 . . . ∀nk ∃y ϕ2(n1, . . . , nk, y) and

∀n1 . . . ∀nk ∀y [ϕ2(n1, . . . , nk, y) ⊃ SatΠ,2(v, y), β < α,

y = 〈 pβq, pΓ→ C(xi/n̄i)q, . . . 〉]

The predicate SatΠ,2(v, y) is the partial truth predicate for Π2-formulas
and it is Π2 itself ([6], pp. 50–59 or [16], pp. 337–343). Such a predicate can
be formalized in IΣ1. The variable v stands for a code of a Π2-formula with
one free variable x. The variable y is the evaluation of x in the sense that
the value of x should be the y-th numeral. If we recall that formulas ϕ1, ϕ2

are Σ1 and bounded quantifiers, which we implicitly use, do not affect the
complexity of formulas, we see that ψ(v, x) is Π2.

Let us apply the Fixed-point theorem for ψ(v, x). We obtain that there
exists an arithmetic formula ϑ(x) with the following property:

Q ` ϑ(x) ≡ ψ(ϑ(x), x)

Since we know that ϑ(x) is Π2 (in IΣ1), we have

IΣ1 ` ϑ(y) ≡ SatΠ,2(ϑ(x), y)

Now, when we observe the formula ψ(ϑ(x), x), we see that it is the same
as ψ(v, x) except for the variables v in SatΠ,2(v, y) and SatΠ,2(v, z) that

are replaced by ϑ(x). Hence, SatΠ,2(ϑ(x), y) and SatΠ,2(ϑ(x), z) appear in

ψ(ϑ(x), x) and these are further equivalent to ϑ(y) and ϑ(z) respectively.
Since ψ(ϑ(x), x) itself is equivalent to ϑ(x), we will denote ϑ(x) by DT (x)
and we obtain:

Lemma 34. The equivalence from Definition 24 that defines formula DT (x),
which says that x is a code of a proper deduction tree, is provable in IΣ1.
Formula DT (x) is Π2 in IΣ1.

At a metalevel, formula DT (x) contains the information that deduction
trees are well-founded. Since every node is assigned an ordinal number that
represents the height of the particular subtree and these numbers decrease
towards the leaves, we know that x such that DT (x) is well-founded. Ne-
vertheless, this cannot be proved in PA because the proof theoretic ordinal
of PA is ε0 and our upper bound on heights of deduction trees is Φω(0).
Numbers below Φω(0) can be compared in IΣ1, see Lemma 28, but IΣ1 does
not prove that they do not build infinite decreasing sequences.

The main reason for not requiring that formula DT (x) speaks about well-
foundedness explicitly is that well-foundedness is a second order property and
a consistency proof of PA is trivial when second order properties are allowed.
Formula DT (x) appears in the induction formulas that we use below and
we want to use only arithmetic induction formulas in the proof. We do not
mind applying transfinite induction on the height of deduction trees, but the
induction formulas will always be arithmetic and of a bounded complexity.

46

Eventually, the assertion that gives us the consistency of PA is that for
every sequent S derivable in PA we can construct T such that S is the
endsequent of T and DT (T). The point is that sequent → 0 = 1 has no
deduction tree even if we allowed deduction trees with infinite branches. This
reasoning is an important improvement of Gentzen’s original proof in [4] in
which he implicitly uses transfinite induction on the height of deduction trees
with induction formulas that explicitly speak about well-foundedness.

In the sequel, we will need the following definition:

Definition 25. Assume that A is a formula and n is a natural number.
Then, one-step subformula of A is defined as follows:

• If A is of the form B&C, then B,C are one-step subformulas of A.

• If A is of the form ∀xF (x), then F (n̄) is an one-step subformula of A.

• If A is of the form ¬C, then C is an one-step subformula of A.

The subformula relation is reflexive and transitive closure of the one-step
subformula relation.

We will use relation One Step Subfle(x, y) that expresses that y is an
one-step subformula of x. Furthermore, we use Subfle(x, y) that expresses
that y is a subformula of x. They are both ∆1 in IΣ1.

Formula DedTreeAxiom(s, l, y)

Notation: We write as l = l
′ ∗ 〈pEq〉 to mean that l is a code of a sequence

that is built by concatenation of sequences whose codes are l
′

and 〈pEq〉,
respectively. The second sequence contains only one member, namely, the
code of a formula E.

We must introduce an additional relation Rank(s, r) that accepts a code s
of a sequent S and holds true if r is a code of the rank of S (Definition 7).
The relation is ∆1 in IΣ1.

The definition of DedTreeAxiom formalizes the construction of deduction
trees for the logical initial sequents of PA. The construction is described in
Section 1.4.2. We add formulas to the left hand side of the list, whose code
is l, during the decomposition of the succedent formula. We pick them out
from the right hand side of the list when the formula from the antecedent is
decomposed. Formula DedTreeAxiom(s, l, y) has the following definition:

DedTreeAxiom(s, l, y) ≡ φ1(s, l, y) & φ2(s, l, y)

47

φ1(s, l, y) ≡

if s is pA→ Bq
if B is a true atomic sentence, then y = 〈 p0q, s, pendformq, p∅q 〉
&
if B is a false atomic sentence

if A is a false atomic sentence, then y = 〈 p0q, s, pendformq, p∅q 〉
&
if A is of the form E&F , then

if l = l
′ ∗ 〈pEq〉, then

∃r, z ≤ y ∃w ≤ s (Rank(s, r) &w = pE → 0 = 1q& DedTreeAxiom(w, l
′
, z)

& y = 〈 r, s, p&L1q, z 〉)
&
if l = l

′ ∗ 〈pFq〉, then
∃r, z ≤ y ∃w ≤ s (Rank(s, r) &w = pF → 0 = 1q& DedTreeAxiom(w, l

′
, z)

& y = 〈 r, s, p&L1q, z 〉)
&
if A is of the form ∀xE(x)

if l = l
′ ∗ 〈pE(n̄)q〉, then

∃r, z ≤ y ∃w ≤ l∗〈p0 = 1q〉 (Rank(s, r) &w = pE(n̄)→ 0 = 1q&
DedTreeAxiom(w, l

′
, z) &

y = 〈 r, s, p∀L1q, z 〉)
&
if B is a compound formula

if B is of the form C&D, then
∃r, z1, z2 ≤ y ∃w1, w2 ≤ s (Rank(s, r) &w1 = pA→ Cq&w2 = pA→ Dq&

DedTreeAxiom(w1, 〈pCq〉 ∗ l, z1) &
DedTreeAxiom(w2, 〈pDq〉 ∗ l, z2) &
y = 〈 r, s, p&Rq, z1, z2 〉)

&
if B is of the form ∀xF (x), then
∃r ≤ y (Rank(s, r) & y = 〈 r, s, p∀Rq,

pDedTreeAxiom(pA→ F (n̄)q, 〈pF (n̄)q〉 ∗ l, y′)q 〉)
&
if B is of the form ¬C, then
∃r, z ≤ y ∃w ≤ s∗〈p0 = 1q〉 (Rank(s, r) &w = pA,C → 0 = 1q&

DedTreeAxiom(w, l, z) &
y = 〈 r, s, p¬Rq, z 〉)

Note that we have used the code of the formula DedTreeAxiom in the case
where B is of the form ∀xF (x). The formula has two free variables n and y

′
.

48

We will discuss below that DedTreeAxiom is ∆1 in IΣ1 and, thus, it satisfies
our requirements on the complexity. We require Σ1-formulas to produce
codes of deduction trees for the premises of the ω-rules.

φ2(s, l, y) ≡

if s is pA,B → 0 = 1q
if l is a code of a nonempty sequence

if |B| < |A|
if A is of the form E&F

if l = l
′ ∗ 〈pEq〉, then

∃r, z ≤ y ∃w ≤ s (Rank(s, r) &w = pE,B → 0 = 1q&
DedTreeAxiom(w, l

′
, z) &

y = 〈 r, s, p&L1q, z 〉)
&
if l = l

′ ∗ 〈pFq〉, then
∃r, z ≤ y ∃w ≤ s (Rank(s, r) &w = pF,B → 0 = 1q&

DedTreeAxiom(w, l
′
, z) &

y = 〈 r, s, p&L1q, z 〉)
&
if A is of the form ∀xE(x)

if l = l
′ ∗ 〈pE(n̄)q〉, then

∃r, z ≤ y ∃w ≤ l∗〈 pBq, p0 = 1q 〉 (Rank(s, r) &w = pE(n̄), B → 0 = 1q
& DedTreeAxiom(w, l

′
, z) &

y = 〈 r, s, p∀L1q, z 〉)
&
if |A| < |B|

the same as above, just change A for B
&
if l is a code of an empty sequence

if A = ¬B, then
∃r, z ≤ y ∃w ≤ s (Rank(s, r) &w = pB → Bq& DedTreeAxiom(w, p∅q, z) &

y = 〈 r, s, p¬L1q, z 〉)
&
if B = ¬A, then
∃r, z ≤ y ∃w ≤ s (Rank(s, r) &w = pA→ Aq& DedTreeAxiom(w, p∅q, z) &

y = 〈 r, s, p¬L1q, z 〉)

Formula DedTreeAxiom(s, l, y) can be constructed, exactly the same way
as formula DT (x) from Definition 24, with the help of the Fixed-point the-
orem and the partial truth predicates. It does not matter whether we use

49

SatΣ,1 or SatΠ,1 during the construction. In either case, we obtain a formula
that corresponds to DedTreeAxiom(s, l, y) as defined above. The difference is
that the application of SatΣ,1 gives us a Σ1-formula, whereas the application
of SatΠ,1 gives us a Π1-formula. The conclusion is that DedTreeAxiom(s, l, y)
is ∆1 in IΣ1.

It can be shown that DedTreeAxiom(s, l, y) is total by which we mean:

∀s∀l ∃y DedTreeAxiom(s, l, y)

This is shown by induction on rk(S) where S is a sequent with code s.
Induction formula ∀l ∃y DedTreeAxiom(s, l, y) is Π2. If s or l does not satisfy
the antecedent of some implication that is a subformula of DedTreeAxiom,
the implication returns ”true”. Hence, if s or l is not of the form that the
antecedents require, DedTreeAxiom(s, l, y) holds for an arbitrary y. If s and l
are both of the required form, we can find y such that DedTreeAxiom(s, l, y)
by the induction hypothesis because the rank of the sequent with code w is
less than the rank of the sequent with code s.

Let us now move on to the correctness. If we set

• Sentence(s) ≡ s is a code of a sequent that does not contain free
variables

• Sub(s) ≡ s is a code of a sequent of the form A → B where B is
a subformula of A such that B is not within the scope of a negation

• NegSub(s) ≡ s is a code of a sequent of the form A,B → 0 = 1
where ¬B is a subformula of A such that ¬B is not within the scope
of a negation

• Choices(l, s) ≡ ∃n ≤ l (l = 〈 i0, . . . , in 〉 &

(s = pA→ Bq ∨ s = pA,B → 0 = 1q) &

∀j ≤ n (ij is a code of a formula) &

∀j < n (ij+1 is not a negated formula) &

∀j < n One Step Subfle(ij+1, ij) &

One Step Subfle(pAq, in) &

[(Sub(s) & i0 = pBq) ∨ (NegSub(s) & i0 = p¬Bq)]

)

∨ (l = p∅q& (s = pB → Bq ∨ s = p¬B,B → 0 = 1q))

50

then we can prove

∀s∀ l [Sentence(s) & (Sub(s) ∨NegSub(s)) & Choices(l, s)
⊃
∀y (DedTreeAxiom(s, l, y)

⊃
DT (y) & endsequent of y has code s &
height of y ≤ rank of sequent with code s

)
]

(1)

by induction on rk(S) where S is a sequent with code s. Since predicates
Sentence(s), Sub(s), NegSub(s) and Choices(l, s) are ∆1 in IΣ1, the induc-
tion formula is Π2 in IΣ1. The antecedent of the formula specifies correct
inputs. The input s1 = pD → Dq and l1 = p∅q, where D is a sentence in L,
happens to be correct. Since we already know that DedTreeAxiom is total,
it follows that we have at least one y such that it is a proper deduction tree
for the logical initial sequent D → D.

The following lemma is the conclusion of the analysis of DedTreeAxiom:

Lemma 35. The totality of DedTreeAxiom(s, l, y) can be proved in IΠ2. The
correctness of DedTreeAxiom(s, l, y) represented by formula (1) can be proved
in IΠ2. The heights of deduction trees for logical initial sequents are always
finite.

Formulas Wk(x, z, y), Ct(x, z, y) and MultiCt(x, z, y)

Let us move on to formulas Wk(x, z, y) and Ct(x, z, y) that represent structural
modifications of deduction trees; namely, y is a code of a deduction tree that
was built by modification of every sequent, node, in x with respect to z.
Variable z stands for a code of a multiset ∆ or a formula A, respectively, and
the modification either adds ∆ to the antecedent of every sequent in x or it
replaces A,A by A in the antecedent of every sequent in x.

First, we state the definitions of the formulas. Rules denoted by P range
over derivation rules from Definition 3.

51

Wk(x, z, y) ≡

if x = 〈 pαq, pΓ→ Cq, pendformq, p∅q 〉
if z = p∆q, then

y = 〈 pαq, pΓ,∆→ Cq, pendformq, p∅q 〉
&
if x = 〈 pαq, pΓ→ Cq, punary rule Pq, x1 〉

if z = p∆q, then
y = 〈 pαq, pΓ,∆→ Cq, punary rule Pq, y1 〉 & Wk(x1, z, y1)

&
if x = 〈 pαq, pΓ→ Cq, pbinary rule Pq, x1, x2 〉

if z = p∆q, then
y = 〈 pαq, pΓ,∆→ Cq, pbinary rule Pq, y1, y2 〉& Wk(x1, z, y1) & Wk(x2, z, y2)

&
if x = 〈 pαq, pΓ→ ∀wF (w)q, p∀Rq, pϕ(n, u)q 〉, then

if z = p∆q, then
y = 〈 pαq, pΓ,∆→ ∀wF (w)q, p∀Rq, p∃u (ϕ(n, u) & Wk(u, z, y

′
))q 〉

Formula Wk can be constructed the same way as formula DedTreeAxiom

with the help of the Fixed-point theorem and the partial truth predicates.
We are able to construct it as Σ1 or Π1, hence, it is ∆1 in IΣ1. Note that
we use the code of Wk in the case when the last derivation rule in x is ∀R.
There, we always take the Σ1-variant of Wk since formulas that give us codes
of deduction trees for premises of the ω-rules have to be Σ1 by definition.

Ct(x, z, y) ≡

if z = pB&Cq, then
if x = 〈 pαq, pΓ, B&C,B&C → Dq, pendformq, p∅q 〉, then

y = 〈 pαq, pΓ, B&C → Dq, pendformq, p∅q 〉
&
if x = 〈 pαq, pΓ, B&C,B&C → Dq, punary rule Pq, x1 〉, then

if x1 = 〈 pβq, pΓ, B&C,B → Dq, . . . 〉, then
y = 〈 pαq, pΓ, B&C → Dq, p&L2q, x1 〉

&
if x1 = 〈 pβq, pΓ

′
, B&C,B&C → D

′q, . . . 〉, then
y = 〈 pαq, pΓ, B&C → Dq, punary rule Pq, y1 〉 & Ct(x1, z, y1)

&
if x = 〈 pαq, pΓ, B&C,B&C → E&Fq, p&Rq, x1, x2 〉, then

y = 〈 pαq, pΓ, B&C → E&Fq, p&Rq, y1, y2 〉& Ct(x1, z, y1) & Ct(x2, z, y2)
&
if x = 〈 pαq, pΓ, B&C,B&C → ∀wF (w)q, p∀Rq, pϕ(n, u)q 〉, then

y = 〈 pαq, pΓ, B&C → ∀wF (w)q, p∀Rq, p∃u (ϕ(n, u) & Ct(u, z, y
′
))q 〉

&
if z = p∀wF (w)q, then

. . .
&
if z = p¬Cq, then

. . .
&
if (z = pAq and A is atom), then

. . .

The cases for z = p∀wF (w)q, z = p¬Cq and z = pAq, where A is an
atom, are completely analogous to the case for z = pB&Cq. The usual
construction gives us that formula Ct(x, z, y) is ∆1 in IΣ1.

Now we want to argue that both formulas Wk and Ct are total. When an
arbitrary z is fixed, this can be proved by induction on x, the code of the
input deduction tree. The induction formulas are Σ1:

∃y Wk(x, z, y) ∃y Ct(x, z, y)

Note the case in the definition of both formulas when the endsequent
of x is derived by the rule of ∀R. The formula that gives us codes of de-
duction trees for the premises of ∀R in x is ϕ(n, u). To set up some y such
that Wk(x, z, y) or Ct(x, z, y) in this case, we need to establish the code of
∃u (ϕ(n, u) & Wk(u, z, y

′
)) and ∃u (ϕ(n, u) & Ct(u, z, y

′
)), respectively. We

do not even care about the properties of ϕ(n, u); we just need some number
that will be included in y. That is why it is sufficient to use the induction
on x to prove the totality of both formulas.

The requirements on ϕ(n, u) change essentially when we want to prove
the correctness. The correctness of Wk is expressed in the following way:

∀x ∀z [DT (x) & x = 〈 pαq, pΓ→ Cq, . . . 〉 & z = p∆q
⊃
∀y (Wk(x, z, y)

⊃
DT (y) & height of y is α &
endsequent of y is Γ,∆→ C

)
]

(2)

53

The correctness of Ct is analogous:

∀x ∀z [DT (x) & x = 〈 pαq, pΓ, D,D → Cq, . . . 〉 & z = pDq
⊃
∀y (Ct(x, z, y)

⊃
DT (y) & height of y is α &
endsequent of y is Γ, D → C

)
]

(3)

To prove the correctness of both formulas, we choose an arbitrary z, and
then, we continue by transfinite induction on the height of the input tree x.
The induction formulas are ∆3.

Why do we have to use transfinite induction on the heights of deduction
trees instead of the induction on their codes? Recall the case when the last
derivation rule in x is the rule of ∀R:

x = 〈 pαq, pΣ→ ∀wF (w)q, p∀Rq, pϕ(n, u)q 〉

During the proof of the correctness, we need to assume that the induction
hypothesis holds for un such that ϕ(n, un). This un denotes a subtree of x,
thus, it has a smaller height than x. On the other hand, since x contains
only the code of ϕ(n, u) but no codes un of its subtrees, in general, it can
occur that x < un for some n. Hence, the induction on the codes of input
trees does not work for us in this case.

The following lemma is the conclusion of the analysis of Wk and Ct:

Lemma 36. Assume that the height of x is strictly less than Φω(0). The
totality of Wk(x, z, y) and Ct(x, z, y) can be proved in IΣ1. The correctness
of both formulas is represented by (2) and (3), respectively, and it is proved
in IΣ1+TI up to Φω(0). The induction formulas of the transfinite induction
are ∆3. Structural modification of deduction trees do not change their heights.

In the sequel, we will mostly use formula MultiCt(x, z, y) instead of
Ct(x, z, y). Variables x, z, y in MultiCt(x, z, y) have almost the same mean-
ing as in Ct(x, z, y) with the only exception that z denotes a multiset instead
of a single formula. Hence, formula MultiCt(x, z, y) represents contraction
of several formulas at once.

54

MultiCt(x, z, y) ≡

if (z = pΓq & Γ = {A1, . . . , Ak}), then
if k ≥ 1, then

if x = 〈 pαq, pΓ,Γ,∆→ Cq, pendformq, p∅q 〉, then
y = 〈 pαq, pΓ,∆→ Cq, pendformq, p∅q 〉

&
if x = 〈 pαq, pΓ,Γ,∆→ Cq, punary rule Pq, x1 〉, then

if P is the rule of L1 applied to Ai from Γ, then
y = 〈 pαq, pΓ,∆→ Cq, psuitable rule of L2q, y1 〉 &
MultiCt(x1, p{A1, .., Ai−1, Ai+1, .., Ak}q, y1)

&
if P is not the rule of L1 applied to Ai from Γ, then

y = 〈 pαq, pΓ,∆→ Cq, punary rule Pq, y1 〉& MultiCt(x1, z, y1)
&
if x = 〈 pαq, pΓ,Γ,∆→ E&Fq, p&Rq, x1, x2 〉, then

y = 〈 pαq, pΓ,∆→ E&Fq, p&Rq, y1, y2 〉 &
MultiCt(x1, z, y1) & MultiCt(x2, z, y2)

&
if x = 〈 pαq, pΓ,Γ,∆→ ∀wF (w)q, p∀Rq, pϕ(n, u)q 〉, then

y = 〈 pαq, pΓ,∆→ ∀wF (w)q, p∀Rq, p∃u (ϕ(n, u) & MultiCt(u, z, y
′
))q 〉

&
if k = 0, then

y = x

Formula MultiCt(x, z, y) is ∆1 in IΣ1. The totality of MultiCt is expressed
as ∀x∀z∃y MultiCt(x, z, y). The correctness of MultiCt is the following:

∀x ∀z [DT (x) & x = 〈 pαq, pΓ,Γ,∆→ Cq, . . . 〉 & z = pΓq
⊃
∀y (MultiCt(x, z, y)

⊃
DT (y) & height of y is α &
endsequent of y is Γ,∆→ C

)
]

(4)

The totality of MultiCt(x, z, y) is shown by induction on x, the code of the
input tree. The induction formula to prove the totality is Π2. To prove the
correctness of MultiCt(x, z, y), we first prove (5) where z is bounded by x:

55

∀x ∀z ≤ x [DT (x) & x = 〈 pαq, pΓ,Γ,∆→ Cq, . . . 〉 & z = pΓq
⊃
∀y (MultiCt(x, z, y)

⊃
DT (y) & height of y is α &
endsequent of y is Γ,∆→ C

)
]

(5)

This is proved by transfinite induction on the height of x. The induction
formula of the transfinite induction is ∆3. We also use the fact that MultiCt
is total. If we take some z that is not bounded by x, the antecedent is trivially
false. Hence, altogether, we obtain that (4) holds.

A similar ”trick” can be used while proving the totality and the correct-
ness of DedTreeAxiom as well as the totality of MultiCt. Nevertheless, the
correctness of MultiCt is the only case that would spoilt the overall result
if we did not use the bounded quantifier: The transfinite induction applied
here would require a more complex induction formula than the proof of the
correctness of Elim requires.

The following lemma is the conclusion of the analysis of MultiCt:

Lemma 37. Assume that the height of x is strictly less than Φω(0). The
totality of MultiCt(x, z, y) can be proved in IΠ2. Formula (4) represents the
correctness of MultiCt(x, z, y) and it can be proved in IΠ2+TI up to Φω(0).
The induction formula of the transfinite induction is ∆3. Structural modifi-
cation of deduction trees do not change their heights.

Formula Elim(x1, x2, z, y)

We go on to investigate the formula Elim(x1, x2, z, y). Variables x1 and x2

are codes of deduction trees whose endsequents Γ → D and D,∆ → C are
premises of the cut to eliminate. Variable z is a code of the cut formula D
and y stands for a code of a deduction tree for Γ,∆→ C after the cut elimi-
nation. First, we define the formula. Then, we take a look at its totality and
the correctness. We denote by P a unary derivation rule from Definition 3.

Elim(x1, x2, z, y) ≡ φatom(x1, x2, z, y) & φconj(x1, x2, z, y) &
φforall(x1, x2, z, y) & φneg(x1, x2, z, y)

where

56

φatom(x1, x2, z, y) ≡

if z = pAq & A is an atom
if x1 = 〈 pα1q, pΓ→ Aq, . . . 〉

if x2 = 〈 pα2q, pA,∆→ Cq, pendformq, p∅q 〉
if Γ,∆→ C is in endform, then

y = 〈 p0q, pΓ,∆→ Cq, pendformq, p∅q 〉
&
if Γ,∆→ C is not in endform, then

Wk(x1, z1, y) & z1 = p∆q
&
if x2 = 〈 pα2q, pA,∆→ Cq, punary rule Pq, x

′
2 〉, then

y = 〈 pα1 + α2q, pΓ,∆→ Cq, punary rule Pq, y
′ 〉& Elim(x1, x

′
2, z, y

′
)

&
if x2 = 〈 pα2q, pA,∆→ C1&C2q, p&Rq, x

′
2, x

′′
2 〉, then

y = 〈 pα1 + α2q, pΓ,∆→ C1&C2q, p&Rq, y
′
, y
′′ 〉 &

Elim(x1, x
′
2, z, y

′
) & Elim(x1, x

′′
2 , z, y

′′
)

&
if x2 = 〈 pα2q, pA,∆→ ∀xC(x)q, p∀Rq, pϕ(n, u)q 〉, then

y = 〈 pα1 + α2q, pΓ,∆→ ∀xC(x)q, p∀Rq, p∃u (ϕ(n, u) & Elim(x1, u, z, y
′
))q 〉

Since the cut formula is an atom, there are no derivation rules that can
modify it. Hence, the elimination of an atomic cut consists in moving the
cut upwards along x2 until a sequent in endform is reached.

φconj(x1, x2, z, y) ≡

if z = pE&Fq
if x1 = 〈 pα1q, pΓ→ E&Fq, p&Rq, x

′
1, x

′′
1 〉

if x2 = 〈 pα2q, pE&F,∆→ Cq, pendformq, p∅q 〉
y = 〈 p0q, pΓ,∆→ Cq, pendformq, p∅q 〉

&
if x2 = 〈 pα2q, pE&F,∆→ Cq, punary rule P (not applied to the cut formula)q, x

′
2 〉

y = 〈 pΦ|E&F |−1(α1 + α2)q, pΓ,∆→ Cq, punary rule Pq, y
′ 〉 &

Elim(x1, x
′
2, z, y

′
)

&
if x2 = 〈 pα2q, pE&F,∆→ C1&C2q, p&Rq, x

′
2, x

′′
2 〉

y = 〈 pΦ|E&F |−1(α1 + α2)q, pΓ,∆→ C1&C2q, p&Rq, y
′
, y
′′ 〉 &

Elim(x1, x
′
2, z, y

′
) & Elim(x1, x

′′
2 , z, y

′′
)

&
if x2 = 〈 pα2q, pE&F,∆→ ∀xC(x)q, p∀Rq, pϕ(n, u)q 〉

y = 〈 pΦ|E&F |−1(α1 + α2)q, pΓ,∆→ ∀xC(x)q, p∀Rq,
p∃u (ϕ(n, u) & Elim(x1, u, z, y

′
))q 〉

&
if x2 = 〈 pα2q, pE&F,∆→ 0 = 1q, p&L1q, x

′
2 〉

if x
′
2 = 〈 pγq, pE,∆→ 0 = 1q, . . . 〉
Elim(x

′
1, x

′
2, z1, y) & z1 = pEq

&
if x2 = 〈 pα2q, pE&F,∆→ 0 = 1q, p&L2q, x

′
2 〉

if x
′
2 = 〈 pγq, pE,E&F,∆→ 0 = 1q, . . . 〉
∃y1, y2 (Elim(x1, x

′
2, z, y1) & Elim(x

′
1, y1, z1, y2) & z1 = pEq &

MultiCt(y2, z2, y) & z2 = pΓq)

φforall(x1, x2, z, y) ≡

if z = p∀xF (x)q
if x1 = 〈 pα1q, pΓ→ ∀xF (x)q, p∀Rq, pρ(n, u)q 〉

If the endsequent of x2 is in endform or the last derivation rule in x2

is a unary rule not applied to the cut formula or it is the rule
of &R or ∀R, then the cases are similar to the analogous cases above.
&
if x2 = 〈 pα2q, p∀xF (x),∆→ 0 = 1q, p∀L1q, x

′
2 〉

if x
′
2 = 〈 pγq, pF (m̄),∆→ 0 = 1q, . . . 〉
∃u (ρ(m,u) & Elim(u, x

′
2, z1, y) & z1 = pF (m̄)q)

&
if x2 = 〈 pα2q, p∀xF (x),∆→ 0 = 1q, p∀L2q, x

′
2 〉

if x
′
2 = 〈 pγq, pF (m̄),∀xF (x),∆→ 0 = 1q, . . . 〉
∃y1, y2, u (Elim(x1, x

′
2, z, y1) & ρ(m,u) &

Elim(u, y1, z1, y2) & z1 = pF (m̄)q &
MultiCt(y2, z2, y) & z2 = pΓq)

φneg(x1, x2, z, y) ≡

if z = p¬Eq
if x1 = 〈 pα1q, pΓ→ ¬Eq, p¬Rq, x′1 〉

If the endsequent of x2 is in endform or the last derivation rule in x2

is a unary rule not applied to the cut formula or it is the rule
of &R or ∀R, then the cases are similar to the analogous cases above.
&
if x2 = 〈 pα2q, p¬E,∆→ 0 = 1q, p¬L1q, x

′
2 〉

if x
′
2 = 〈 pγq, p∆→ Eq, . . . 〉
Elim(x

′
2, x

′
1, z1, y) & z1 = pEq

&

58

if x2 = 〈 pα2q, p¬E,∆→ 0 = 1q, p¬L2q, x
′
2 〉

if x
′
2 = 〈 pγq, p¬E,∆→ Eq, . . . 〉
∃y1, y2 (Elim(x1, x

′
2, z, y1) & Elim(y1, x

′
1, z1, y2) & z1 = pEq &

MultiCt(y2, z2, y) & z2 = pΓq)

The usual construction with the help of the Fixed-point theorem and the
partial truth predicates gives us that formula Elim(x1, x2, z, y) is Σ1 in IΣ1.

Now, we move on to the properties of the formula. It is not possible
to prove the totality in the form ∀x1 ∀x2 ∀z ∃y Elim(x1, x2, z, y) because, in
the case when the cut formula is ∀xF (x), deduction tree x1 contains for-
mula ρ(n, u) which may not be total. This causes problems when the last
derivation rule in x2 is ∀L1 or ∀L2 that affects the cut formula ∀xF (x) and
transforms it into F (m̄) or F (m̄),∀xF (x), respectively. If there is no u such
that ρ(m,u), formula Elim(x1, x2, z, y) returns false for an arbitrary y. Hence,
we will require y-s such that Elim(x1, x2, z, y) only for proper inputs x1, x2, z
and we will prove the totality and the correctness in the following form:

∀x1∀x2∀z (DT (x1) & x1 = 〈 pα1q, pΓ→ Dq, . . . 〉 &
DT (x2) & x2 = 〈 pα2q, pD,∆→ Cq, . . . 〉 & z = pDq
⊃
∃y Elim(x1, x2, z, y) & ∀y (Elim(x1, x2, z, y) (6)

⊃
DT (y) &
endsequent of y is Γ,∆→ C &
height of y is ≤ Φ|D|−1(α1 + α2)

)
)

To prove this, we apply three induction arguments of which the second
one and the third one are embedded in the first one. We start with induction
on the number of the logical operations in the cut formula denoted by z. The
induction formula θ(z) is Π3:

θ(z) ≡
∀x1 ∀x2 (DT (x1) & x1 = 〈 pα1q, pΓ→ Dq, . . . 〉 &

DT (x2) & x2 = 〈 pα2q, pD,∆→ Cq, . . . 〉 & z = pDq
⊃
∃y Elim(x1, x2, z, y) & ∀y (Elim(x1, x2, z, y)

⊃
DT (y) &
endsequent of y is Γ,∆→ C &
height of y is ≤ Φ|D|−1(α1 + α2)

)
)

Assume that z denotes an atomA. We choose an arbitrary x1 such thatDT (x1)
and x1 = 〈 pα1q, pΓ→ Aq, . . . 〉. At this point, we apply the transfinite in-
duction on the height of x2. The induction formula ξ(x1, x2, z) is ∆3:

ξ(x1, x2, z) ≡

DT (x1) & x1 = 〈 pα1q, pΓ→ Aq, . . . 〉&
DT (x2) & x2 = 〈 pα2q, pA,∆→ Cq, . . . 〉& z = pAq
⊃
∃y Elim(x1, x2, z, y) & ∀y (Elim(x1, x2, z, y)

⊃
DT (y) &
endsequent of y is Γ,∆→ C &
height of y is ≤ α1 + α2

)

If x2 is in endform, we consider two cases: (i) The conclusion Γ,∆ → C of
the cut is in endform too or (ii) it is not in endform.

(i) If sequent Γ,∆ → C is in endform, then there exists y such that
Elim(x1, x2, z, y) and every y for which Elim(x1, x2, z, y) holds is of
the form y = 〈 p0q, pΓ,∆→ Cq, pendformq, p∅q 〉. This is clearly a
deduction tree with the required endsequent and the required height.

(ii) Assume that Γ,∆→ C is not in endform. On the other hand, we know
that the endsequent of x2 is in endform. The only possibility how this
can occur is that both formulas A and C are false atomic sentences.
Then, the endsequent of x1 is Γ → 0 = 1 and, to obtain a deduction
tree for Γ,∆→ 0 = 1, it suffices to apply weakening to x1: Wk(x1, z1, y)
and z1 = p∆q. Since Wk is total, we know that there exists y such that
Wk(x1, z1, y) and, for every y of this kind, the correctness of Wk gives
us DT (y) and y = 〈 pα1q, pΓ,∆→ 0 = 1q, . . . 〉.

Now, we can state the induction hypothesis: For every x
′
2 such that the

height of x
′
2 is less than the height of x2 we have ξ(x1, x

′
2, z) where x1 is of

the form 〈 pα1q, pΓ→ Aq, . . . 〉, DT (x1) and z denotes an atom A.

Assume that the last derivation rule in x2 is a unary rule or the rule
of &R. The unary rule cannot be applied to the cut formula since this one
is an atom. As an example, we show the case when the last derivation rule
in x2 is the rule of ¬R. The other cases are similar.

60

Assume that x2 is of the form 〈 pα2q, pA,∆→ ¬Cq, p¬Rq, x
′
2 〉 and x

′
2 =

〈 pγq, pA,C,∆→ 0 = 1q, . . . 〉. Since we have DT (x2), we also have DT (x
′
2)

and γ < α2. Since the height of x
′
2 is strictly less than the height of x2,

we can apply the induction hypothesis. The induction hypothesis gives
us y

′
such that Elim(x1, x

′
2, z, y

′
). Moreover, for every y

′
of this kind we

have DT (y
′
) and y

′
= 〈 pα1 + γq, pΓ, C,∆→ 0 = 1q, . . . 〉. The definition

of φatom gives us now y such that Elim(x1, x2, z, y), namely, it is of the form
y = 〈 pα1 + α2q, pΓ,∆→ ¬Cq, p¬Rq, y′ 〉. Furthermore, we also have DT (y)
because every possible y

′
that may be contained in y has the properties re-

quired by Definition 24.

Assume that the last derivation rule in x2 is ∀R. Then, x2 is of the
form 〈 pα2q, pA,∆→ ∀xC(x)q, p∀Rq, pϕ(n, u)q 〉. Obviously, y such that
Elim(x1, x2, z, y) exists and it has the form

〈 pα1 + α2q, pΓ,∆→ ∀xC(x)q, p∀Rq, p∃u (ϕ(n, u) & Elim(x1, u, z, y
′
))q 〉

We want to prove DT (y) for every y of this kind. This requires two things:

(i) ∀n∃y′ ∃u (ϕ(n, u) & Elim(x1, u, z, y
′
))

Choose an arbitrary n. We have u such that ϕ(n, u) because DT (x2)
and this also gives us DT (u) and u = 〈 pδq, pA,∆→ C(n̄)q, . . . 〉 where
δ < α2. Since the height of u is strictly less than the height of x2, the
induction hypothesis yields y

′
such that Elim(x1, u, z, y

′
).

(ii) ∀n∀y′ (∃u (ϕ(n, u) & Elim(x1, u, z, y
′
))

⊃
DT (y

′
) & endsequent of y

′
is Γ,∆→ C(n̄) &

height of y
′
< α1 + α2

)

Choose an arbitrary n and y
′
such that ∃u (ϕ(n, u) & Elim(x1, u, z, y

′
)).

As we knowDT (x2), we haveDT (u) and u = 〈 pδq, pA,∆→ C(n̄)q, . . . 〉
where δ < α2 for any u such that ϕ(n, u). Since u has smaller height
than x2, the induction hypothesis and Elim(x1, u, z, y

′
) give us DT (y

′
)

and y
′
= 〈 pα1 + δq, pΓ,∆→ C(n̄)q, . . . 〉.

This finishes the first embedded induction whose result is that we have θ(z)
for an atomic cut formula z. Let us state the induction hypothesis of the
superior induction: For every cut formula z

′
that has less logical operations

than the cut formula z we have θ(z
′
). Assume now that z contains at least one

61

logical operation. To prove θ(z), we choose an arbitrary x1 and apply trans-
finite induction on the height of x2 again. The induction formula χ(x1, x2, z)
is ∆3:

χ(x1, x2, z) ≡

DT (x1) & x1 = 〈 pα1q, pΓ→ Dq, . . . 〉 &
DT (x2) & x2 = 〈 pα2q, pD,∆→ Cq, . . . 〉 & z = pDq
⊃
∃y Elim(x1, x2, z, y) & ∀y (Elim(x1, x2, z, y)

⊃
DT (y) &
endsequent of y is Γ,∆→ C &
height of y is ≤ Φ|D|−1(α1 + α2)

)

If the last derivation rule in x2 does not transform the cut formula D, the
argument is the same as for atomic cut formulas. Hence, we will investigate
only the six cases when the cut formula is affected.

(i) Assume that the last derivation rule in x2 is the rule of &L1. Then,
x1 and x2 are of the form

x1 = 〈 pα1q, pΓ→ E&Fq, p&Rq, x
′
1, x

′′
1 〉

x
′
1 = 〈 pδq, pΓ→ Eq, . . . 〉
x2 = 〈 pα2q, pE&F,∆→ 0 = 1q, p&L1q, x

′
2 〉

x
′
2 = 〈 pγq, pE,∆→ 0 = 1q, . . . 〉
z = pE&Fq

Since DT (x1) and DT (x2) by assumption, we also have DT (x
′
1) and DT (x

′
2).

As every y such that Elim(x1, x2, z, y) must satisfy Elim(x
′
1, x2

′, z1, y) where
z1 = pEq, we can apply the induction hypothesis θ(z1). We obtain that y-s
such that Elim(x

′
1, x2

′, z1, y) exist and for each of them we also have DT (y)
and y = 〈 pΦ|E|−1(δ + γ)q, pΓ,∆→ 0 = 1q, . . . 〉.

(ii) Assume that the last derivation rule in x2 is the rule of &L2. Then,
x1 and x2 are of the form

x1 = 〈 pα1q, pΓ→ E&Fq, p&Rq, x
′
1, x

′′
1 〉

x
′
1 = 〈 pδq, pΓ→ Eq, . . . 〉
x2 = 〈 pα2q, pE&F,∆→ 0 = 1q, p&L2q, x

′
2 〉

x
′
2 = 〈 pγq, pE,E&F,∆→ 0 = 1q, . . . 〉
z = pE&Fq

62

We are looking for y such that Elim(x1, x2, z, y) and for every y of this kind
we want DT (y) and y = 〈 pΦ|E&F |−1(α1 + α2)q, pΓ,∆→ 0 = 1q, . . . 〉. To
find y such that Elim(x1, x2, z, y), we have to find y1 and y2 such that

Elim(x1, x
′
2, z, y1) &

Elim(x
′
1, y1, z1, y2) & z1 = pEq &

MultiCt(y2, z2, y) & z2 = pΓq

 (?)

The induction hypothesis χ(x1, x
′
2, z) gives us the required y1 and we also

have DT (y1) and y1 = 〈 pΦ|E&F |−1(α1 + γ)q, pΓ, E,∆→ 0 = 1q, . . . 〉. The
induction hypothesis θ(z1) where z1 = pEq gives us y2. Since MultiCt is
total, there exists some y such that MultiCt(y2, z2, y) where z2 = pΓq.

We concentrate now on the properties of y that we have found in the para-
graph above. If we have y such that Elim(x1, x2, z, y), it means that we have
y1 and y2 such that (?). The induction hypotheses χ(x1, x

′
2, z) and θ(z1) give

usDT (y2) and y2 = 〈 pΦ|E|−1(δ + Φ|E&F |−1(α1 + γ))q, pΓ,Γ,∆→ 0 = 1q, . . . 〉.
The correctness of MultiCt reveals that for every y such that Elim(x1, x2, z, y)
we have y = 〈 pΦ|E&F |−1(α1 + α2)q, pΓ,∆→ 0 = 1q, . . . 〉 and DT (y).

(iii), (iv) When the last derivation rule in x2 is the rule of ¬L1 or ¬L2

that modifies the cut formula ¬E, the argument is analogous to (i) and (ii),
respectively.

(v) Assume that the last derivation rule in x2 is the rule of ∀L1. Then,
x1 and x2 are of the form

x1 = 〈 pα1q, pΓ→ ∀xF (x)q, p∀Rq, pρ(n, u)q 〉
x2 = 〈 pα2q, p∀xF (x),∆→ 0 = 1q, p∀L1q, x

′
2 〉

x
′
2 = 〈 pγq, pF (m̄),∆→ 0 = 1q, . . . 〉
z = p∀xF (x)q

We need to find y such that ∃u (ρ(m,u) & Elim(u, x
′
2, z1, y)) where z1 =

pF (m̄)q. At the same time, we need to show that for every y of this kind
we also have DT (y) and y = 〈 pΦ|∀xF (x)|−1(α1 + α2)q, pΓ,∆→ 0 = 1q, . . . 〉.
SinceDT (x1), there is some u such that ρ(m,u), u = 〈 pδq, pΓ→ F (m̄)q, . . . 〉,
δ < α1 and DT (u). When we use the induction hypothesis θ(z1), z1 =
pF (m̄)q, we obtain that the required y exists and for any such y we have
DT (y) and y = 〈 pΦ|F (m̄)|−1(δ + γ)q, pΓ,∆→ 0 = 1q, . . . 〉.

(vi) Assume that the last derivation rule in x2 is the rule of ∀L2. Then,
x1 and x2 are of the form:

63

x1 = 〈 pα1q, pΓ→ ∀xF (x)q, p∀Rq, pρ(n, u)q 〉
x2 = 〈 pα2q, p∀xF (x),∆→ 0 = 1q, p∀L2q, x

′
2 〉

x
′
2 = 〈 pγq, pF (m̄),∀xF (x),∆→ 0 = 1q, . . . 〉
z = p∀xF (x)q

We want to prove χ(x1, x2, z), hence, we are looking for y such that
Elim(x1, x2, z, y). Further, for any such y we must show DT (y) and y =
〈 pΦ|∀xF (x)|−1(α1 + α2)q, pΓ,∆→ 0 = 1q, . . . 〉. To find this y, we need y1, y2, u
such that

Elim(x1, x
′
2, z, y1) & ρ(m,u) &

Elim(u, y1, z1, y2) & z1 = pF (m̄)q &

MultiCt(y2, z2, y) & z2 = pΓq

 (◦)

The assumption DT (x1) gives us u such that ρ(m,u), DT (u) and u =
〈 pδq, pΓ→ F (m̄)q, . . . 〉. Induction hypotheses χ(x1, x

′
2, z) and θ(z1) yield

y1, y2 and the totality of MultiCt gives us some y such that Elim(x1, x2, z, y).
On the other hand, if we have y such that Elim(x1, x2, z, y), we want to

show DT (y) and that it has the required endsequent and the required height.
If we have y such that Elim(x1, x2, z, y), it means that we have u, y1, y2

such that (◦) is valid. The induction hypothesis χ(x1, x
′
2, z) tells us y1 =

〈 pΦ|∀xF (x)|−1(α1 + γ)q, pΓ, F (m̄),∆→ 0 = 1q, . . . 〉 and DT (y1). The induc-
tion hypothesis θ(z1) tells us DT (y2). The endsequent of y2 is Γ,Γ,∆ →
0 = 1 and the height of y2 is bounded by Φ|F (m̄)|−1(δ + Φ|∀xF (x)|−1(α1 + γ))
where δ is the height of u. Now, the correctness of MultiCt yields DT (y)
and y = 〈 pΦ|∀xF (x)|−1(α1 + α2)q, pΓ,∆→ 0 = 1q, . . . 〉.

Altogether, we have obtained θ(z) for any cut formula z. This finishes
the proof of the correctness of Elim(x1, x2, z, y).

Lemma 38. Assume that the heights of x1 and x2 are strictly less than Φω(0).
The totality and the correctness of Elim(x1, x2, z, y) represented by formula (6)
can be proved in IΠ3 + TI up to Φω(0). The induction formulas of the trans-
finite induction are ∆3. The height of y, a deduction tree for the conclusion
of the cut, is strictly less than Φω(0).

1.5.3 Formula DedTree(x, y)

Finally, we are ready to study formula DedTree(x, y) where x denotes a
code of a derivation in PA and y denotes a code of a deduction tree for
the endsequent of x. The definition of DedTree(x, y) investigates the cases
according to the last derivation rule in x:

64

DedTree(x, y) ≡ φinitial(x, y) & φ ∀I(x, y) & φ ∀E(x, y) &
φ&I(x, y) & φ&E(x, y) & φ¬I(x, y) & φ¬E(x, y) &
φInd(x, y) & φWk(x, y) & φCt(x, y)

where

φinitial(x, y) ≡

if the endsequent of x is an initial sequent
if it is a mathematical initial sequent, then

y is a code of the deduction tree for this mathematical initial
sequent that exists and is defined unambiguously

&
if it is a logical initial sequent of the form D → D

if D → D contains no free variables, then
DedTreeAxiom(s, l, y) & s = pD → Dq & l = p∅q

&
if D → D contains free variables x1, . . . , xk, then

y = 〈 p2 · rk(D) + 1q, pD → Dq, pvarq, pϕ(n1, . . . , nk, y
′
)q 〉

Formula ϕ(n1, . . . , nk, y
′
), which contains free variables n1, . . . , nk, y

′
, and

whose code we use in the definition of φinitial(x, y) is an abbreviation for

DedTreeAxiom(pD → D(xi/n̄i)q, p∅q, y
′
)

Let us continue:

φ ∀I(x, y) ≡

if the last derivation rule in x is ∀I of the form

... x′
Γ→F (a)

Γ→∀wF (w)

if Γ→ ∀wF (w) contains no free variables, then
∃z (DedTree(x

′
, z) & z = 〈 pαq, pΓ→ F (a)q, pvarq, pυ(n, u)q 〉 &

y = 〈 pαq, pΓ→ ∀wF (w)q, p∀Rq, pυ(n, u)q 〉)
&
if Γ→ ∀wF (w) contains free variables x1, . . . , xk, then
∃z (DedTree(x

′
, z) & z = 〈 pαq, pΓ→ F (a)q, pvarq, pρ(a, x1, .. , xk, z

′
)q 〉&

y = 〈 pα + 1q, pΓ→ ∀wF (w)q, pvarq, pϕ(n1, . . . , nk, y
′
)q 〉)

Formula ϕ(n1, . . . , nk, y
′
) whose code we use in the definition of φ ∀I(x, y) is

an abbreviation for:

y
′
= 〈 pαq, pΓ→ ∀wF (w)(xi/n̄i)q, p∀Rq, pρ(a, x1, .. , xk, z

′
)(xi/n̄i)q 〉

65

In this case, we do not use codes of deduction trees for the premises of
the ω-rules; we mean codes u and z

′
such that υ(n, u) and ρ(a, x1, . . . , xk, z

′
)

respectively. We just work with the codes of υ(n, u) and ρ(a, x1, . . . , xk, z
′
),

thus, we do not require right now that the formulas yield correct deduction
trees u and z

′
. The next case, however, is different.

φ ∀E(x, y) ≡

if the last derivation rule in x is ∀E of the form

... x′
Γ→∀wF (w)

Γ→F (t)

if Γ→ F (t) contains no free variables, then
∃ z ∃m (DedTree(x

′
, z) & z = 〈 pαq, pΓ→ ∀wF (w)q, p∀Rq, pυ(n, u)q 〉 &

value of t is m & υ(m, y))
&
if Γ→ F (t) contains free variables x1, . . . , xk, then
∃z (DedTree(x

′
, z) & z = 〈 pαq, pΓ→ ∀wF (w)q, pvarq, pρ(x1, . . . , xk, z

′
)q 〉&

y = 〈 pαq, pΓ→ F (t)q, pvarq, pϕ(n1, . . . , nk, y
′
)q 〉)

Formula ϕ(n1, . . . , nk, y
′
) whose code we use in the definition of φ ∀E(x, y) is

an abbreviation for:

∃z′ (ρ(n1, . . . , nk, z
′
) &

z
′
= 〈 pβq, pΓ→ ∀wF (w)(xi/n̄i)q, p∀Rq, pσ(n, u)q 〉 &

value of t(xi/n̄i) is m &
σ(m, y

′
)

)

In general, we do not require that there exist some y, z
′
, y
′

such that
υ(m, y), ρ(n1, . . . , nk, z

′
) and σ(m, y

′
), respectively. Hence, we are not able

to prove the totality of DedTree(x, y) without knowing that we deal with
proper deduction trees. It follows that, after the definition of the formula,
we will prove the totality and the correctness at once in a similar way as we
did by Elim(x1, x2, z, y).

φ&I(x, y) ≡

if the last derivation rule in x is &I of the form

... x′
Γ→A

... x′′
∆→B

Γ,∆→A&B

if Γ,∆→ A&B contains no free variables, then

66

∃z′ ∃z′′ (y = 〈 pmax{α, β}+ 1q, pΓ,∆→ A&Bq, p&Rq, y
′
, y
′′ 〉 &

DedTree(x
′
, z
′
) & z

′
= 〈 pαq, pΓ→ Aq, . . . 〉 &

DedTree(x
′′
, z
′′
) & z

′′
= 〈 pβq, p∆→ Bq, . . . 〉 &

Wk(z
′
, w
′
, y
′
) & w

′
= p∆q &

Wk(z
′′
, w
′′
, y
′′
) & w

′′
= pΓq

)
&
if Γ,∆→ A&B contains free variables x1, . . . , xk, then
∃z′ ∃z′′ (DedTree(x

′
, z
′
) & z

′
= 〈 pαq, pΓ→ Aq, pvarq, pρ

′
(x1, . . . , xk, u)q 〉 &

DedTree(x
′′
, z
′′
) & z

′′
= 〈 pβq, p∆→ Bq, pvarq, pρ

′′
(x1, . . . , xk, v)q 〉 &

y = 〈 pmax{α, β}+ 1q, pΓ,∆→ A&Bq, pvarq, pϕ(n1, . . . , nk, y
′
)q 〉

)

Formula ϕ(n1, . . . , nk, y
′
) whose code we need in the definition of φ&I(x, y)

is an abbreviation for:

∃u∃v (ρ
′
(n1, . . . , nk, u) & ρ

′′
(n1, . . . , nk, v) &

Wk(u, p, u
′
) & p = p∆(xi/n̄i)q &

Wk(v, q, v
′
) & q = pΓ(xi/n̄i)q &

y
′
= 〈 pmax{α, β}q, pΓ,∆→ A&B(xi/n̄i)q, p&Rq, u

′
, v
′ 〉

)

Let us continue with constructing a deduction tree for the conclusion of
the rule of &E.

φ&E(x, y) ≡

if the last derivation rule in x is &E of the form

... x′
Γ→A&B

Γ→A
if Γ→ A contains no free variables, then

if B contains no free variables, then
∃z (DedTree(x

′
, z) & z = 〈 pαq, pΓ→ A&Bq, p&Rq, y, z

′ 〉)
&
if B contains free variables y1, . . . , yl, then
∃z ∃u (DedTree(x

′
, z) &

z = 〈 pαq, pΓ→ A&Bq, pvarq, pυ(y1, . . . , yl, u)q 〉 &
υ(0, . . . , 0, u) &
u = 〈 pδq, pΓ→ A&B(yi/0)q, p&Rq, y, u

′ 〉
)

&
if Γ→ A contains free variables x1, . . . , xk, then

if B contains free variables y1, . . . , yl, then
∃z (DedTree(x

′
, z) &

z = 〈 pαq, pΓ→ A&Bq, pvarq, pρ(x1, .. , xk, y1, .. , yl, u)q 〉&
y = 〈 pαq, pΓ→ Aq, pvarq, pϕ(n1, . . . , nk, y

′
)q 〉

)

Formula ϕ(n1, . . . , nk, y
′
) whose code is needed in the definition of φ&E(x, y)

is an abbreviation for:

∃u (ρ(n1, . . . , nk, 0, . . . , 0, u) &
u = 〈 pβq, pΓ→ A&B(xi/n̄i)(yi/0)q, p&Rq, y

′
, y
′′ 〉

)

Now, we move on to the cases that make use of Elim(x1, x2, z, y). These
are the cases when the last derivation rule in x is one of the rules of negation
or the induction rule.

φ¬I(x, y) ≡

if the last derivation rule in x is ¬I of the form

... x′
A,Γ→B

... x′′
A,∆→¬B

Γ,∆→¬A
if Γ,∆→ ¬A contains no free variables

if B contains no free variables, then
∃z′ ∃z′′ ∃u (y = 〈 pΦ|B|−1(α + β)q, pΓ,∆→ ¬Aq, p¬Rq, y′ 〉 &

DedTree(x
′
, z
′
) & z

′
= 〈 pαq, pA,Γ→ Bq, . . . 〉 &

DedTree(x
′′
, z
′′
) & z

′′
= 〈 pβq, pA,∆→ ¬Bq, p¬Rq, z′′′ 〉 &

Elim(z
′
, z
′′′
, v, u) & v = pBq &

Ct(u,w, y
′
) & w = pAq

)
&
if B contains free variables y1, . . . , yl, then
∃z′∃z′′∃u∃v ∃q (y = 〈 pΦ|B|−1(α + β)q, pΓ,∆→ ¬Aq, p¬Rq, y′ 〉 &

DedTree(x
′
, z
′
) &

z
′
= 〈 pαq, pA,Γ→ Bq, pvarq, pσ

′
(y1, . . . , yl, u)q 〉 &

DedTree(x
′′
, z
′′
) &

z
′′

= 〈 pβq, pA,∆→ ¬Bq, pvarq, pσ
′′
(y1, . . . , yl, v)q 〉 &

σ
′
(0, . . . , 0, u) & σ

′′
(0, . . . , 0, v) &

v = 〈 pγq, pA,∆→ ¬B(yi/0)q, p¬Rq, v′ 〉 &
Elim(u, v

′
, w
′
, q) & w

′
= pB(yi/0)q &

Ct(q, w
′′
, y
′
) & w

′′
= pAq

)
&
if Γ,∆→ ¬A contains free variables x1, . . . , xk

if B contains free variables y1, . . . , yl, then
∃z′ ∃z′′ (DedTree(x

′
, z
′
) &

z
′
= 〈 pαq, pA,Γ→ Bq, pvarq, pρ

′
(x1, . . . , xk, y1, . . . , yl, u)q 〉 &

DedTree(x
′′
, z
′′
) &

z
′′

= 〈 pβq, pA,∆→ ¬Bq, pvarq, pρ
′′
(x1, . . . , xk, y1, . . . , yl, v)q 〉 &

y = 〈 pΦ|B|−1(α + β) + 1q, pΓ,∆→ ¬Aq, pvarq, pϕ(n1, . . . , nk, y
′
)q 〉

)
68

Formula ϕ(n1, . . . , nk, y
′
) whose code is needed in the definition of φ¬I(x, y)

is an abbreviation for:

∃u∃v ∃q (y
′
= 〈 pΦ|B|−1(α + β)q, pΓ,∆→ ¬A(xi/n̄i)q, p¬Rq, y

′′ 〉 &
ρ
′
(n1, . . . , nk, 0, . . . , 0, u) & ρ

′′
(n1, . . . , nk, 0, . . . , 0, v) &

v = 〈 pγq, pA,∆→ ¬B(xi/n̄i)(yi/0)q, p¬Rq, v′ 〉 &
Elim(u, v

′
, w
′
, q) & w

′
= pB(yi/0)q &

Ct(q, w
′′
, y
′′
) & w

′′
= pA(xi/n̄i)q

)

We will use an auxiliary formula DedTreeNeg(s, l, y) in the following for-
mula denoted by φ¬E(x, y). Formula DedTreeNeg(s, l, y) holds true when y
is a code of a deduction tree for a sequent of the form ¬¬D → D whose code
is s. Variable l denotes a list with a similar meaning as in DedTreeAxiom

and D is a sentence.

φ¬E(x, y) ≡

if the last derivation rule in x is ¬E of the form

... x′
Γ→¬¬A
Γ→A

if Γ→ A contains no free variables, then
∃z ∃u (DedTree(x

′
, z) &

DedTreeNeg(s, l, u) & s = p¬¬A→ Aq & l = p∅q &
Elim(z, u, w, y) & w = p¬¬Aq

)
&
if Γ→ A contains free variables x1, . . . , xk, then
∃z (DedTree(x

′
, z) &

z = 〈 pαq, pΓ→ ¬¬Aq, pvarq, pρ(x1, . . . , xk, u)q 〉 &
y = 〈 pΦ|¬¬A|−1(α + 2 · rk(A) + 2)q, pΓ→ Aq, pvarq, pϕ(n1, . . . , nk, y

′
)q 〉

)

Formula ϕ(n1, . . . , nk, y
′
) whose code we use in the definition of φ¬E(x, y) is

an abbreviation for:

∃u∃v (ρ(n1, . . . , nk, u) &
DedTreeNeg(s, l, v) & s = p¬¬A→ A(xi/n̄i)q& l = p∅q &
Elim(u, v, w, y

′
) &w = p¬¬A(xi/n̄i)q

)

Note that the deduction tree y
′

for sequent Γ → A(xi/n̄i) that formula
ϕ(n1, . . . , nk, y

′
) gives us has height at most Φ|¬¬A|−1(α

′
+ 2 · rk(A) + 2)

69

where α
′
< α. Since α

′
< α and 2 · rk(A) + 2 is a natural number, we have

α
′
+ 2 · rk(A) + 2 < α+ 2 · rk(A) + 2 and the height of y can be bounded by

Φ|¬¬A|−1(α + 2 · rk(A) + 2).

Let us state the definition of DedTreeNeg(s, l, y). The formula formalizes
the construction of a deduction tree for a sequent of the form ¬¬D → D
described in Lemma 18.

DedTreeNeg(s, l, y) ≡

if s is p¬¬D → Bq
if B is a true atomic sentence, then y = 〈 p0q, s, pendformq, p∅q 〉
&
if B is a false atomic sentence, then

y = 〈 prk(¬¬D → 0 = 1)q, s, p¬L1q, y
′ 〉 &

y
′
= 〈 prk(→ ¬D)q, p→ ¬Dq, p¬Rq, y′′ 〉 &

DedTreeAxiom(s
′
, l, y

′′
) & s

′
= pD → 0 = 1q

&
if B is a compound formula

if B is of the form E&F , then
y = 〈 prk(¬¬D → E&F)q, s, p&Rq, y

′
, y
′′ 〉 &

DedTreeNeg(w
′
, 〈 pEq 〉 ∗ l, y′) & w

′
= p¬¬D → Eq &

DedTreeNeg(w
′′
, 〈 pFq 〉 ∗ l, y′′) & w

′′
= p¬¬D → Fq

&
if B is of the form ∀xF (x), then

y = 〈 prk(¬¬D → ∀xF (x))q, s, p∀Rq,
pDedTreeNeg(p¬¬D → F (n̄)q, 〈 pF (n̄)q 〉 ∗ l, y′)q 〉

&
if B is of the form ¬C, then

y = 〈 prk(¬¬D → ¬C)q, s, p¬Rq, y′ 〉 &
y
′
= 〈 prk(¬¬D,C → 0 = 1)q, p¬¬D,C → 0 = 1q, p¬L1q, y

′′ 〉&
y
′′

= 〈 prk(C → ¬D)q, pC → ¬Dq, p¬Rq, y′′′ 〉 &
DedTreeAxiom(s

′
, l, y

′′′
) & s

′
= pD,C → 0 = 1q

Formula DedTreeNeg(s, l, y) is ∆1 in IΣ1. Its totality, which is denoted
by ∀s ∀l ∃y DedTreeNeg(s, l, y), can be proved in IΠ2. If we set

• Sentence(s) ≡ s is a code of a sequent that does not contain free
variables

• SubNeg(s) ≡ s is a code of a sequent of the form ¬¬D → B where B
is a subformula of D such that B is not within the scope of a negation in D

70

• ChoicesNeg(l, s) ≡ ∃n ≤ l (l = 〈 i0, . . . , in 〉 &

∀j ≤ n (ij is a code of a formula) &

∀j < n (ij+1 is not a negation) &

∀j < n One Step Subfle(ij+1, ij) &

s = p¬¬D → Bq &

i0 = pBq and One Step Subfle(pDq, in)

)

∨ (l = p∅q & s = p¬¬D → Dq)

the correctness of DedTreeNeg(s, l, y) is expressed as

∀s ∀ l [Sentence(s) & SubNeg(s) & ChoicesNeg(l, s)
⊃
∀y (DedTreeNeg(s, l, y)

⊃
DT (y) & endsequent of y has code s &
height of y ≤ rank of sequent with code s

)
]

(7)

This is shown by induction on rk(S) where S is a sequent whose code
is s. Since predicates Sentence(s), SubNeg(s) and ChoicesNeg(l, s) are ∆1

in IΣ1, the induction formula is Π2. The correctness of DedTreeAxiom(s, l, y)
is also used in the proof of the correctness of DedTreeNeg(s, l, y). This does
not affect the complexity of the proof since it is proved in IΠ2 too.

We go on to define the case when the last derivation rule in x is the
induction rule.

φ Ind(x, y) ≡

if the last derivation rule in x is the induction rule of the form

... x′
Γ→F (0)

... x′′
F (a),∆→F (a+1)

Γ,∆→F (t)

if Γ,∆→ F (t) contains no free variables, then
∃z′∃z′′∃m (DedTree(x

′
, z
′
) & DedTree(x

′′
, z
′′
) &

z
′′

= 〈 pβq, pF (a),∆→ F (a+ 1)q, pvarq, pρ(n, u)q 〉 &
value of t is m & ψ Ind(z

′
, pρ(n, u)q,m, y)

)
&
if Γ,∆→ F (t) contains free variables x1, . . . , xk, then
∃z′∃z′′ (DedTree(x

′
, z
′
) &

z
′
= 〈 pαq, pΓ→ F (0)q, pvarq, pρ

′
(x1, . . . , xk, u)q 〉 &

DedTree(x
′′
, z
′′
) &

z
′′

= 〈 pβq, pF (a),∆→ F (a+ 1)q, pvarq, pρ
′′
(a, x1, . . . , xk, v)q 〉 &

y = 〈 pΦ|F (x)|(max{α, β}+ ω)q, pΓ,∆→ F (t)q, pvarq,
p∃m (t(xi/n̄i) = m & ϑInd (pρ

′q, pρ
′′q,m, n1, . . . , nk, y

′
))q 〉

)

Now, the task is to define formulas

ψ Ind(z
′
, pρ(n, u)q,m, y)

ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
)

Let us begin with the first one. Formula ψ Ind(z
′
, pρ(n, u)q,m, y) is defined

as follows:

ψ Ind(z
′
, pρ(n, u)q,m, y) ≡

∃u∃v ∃w [m = 0 ⊃ (Wk(z
′
, q, y) & q = p∆q)

&
m 6= 0 ⊃ (ρ(m− 1, u) & ψ Ind(z

′
, pρ(n, u)q,m− 1, v) &

Elim(v, u, p, w) & p = pF (m− 1)q &
MultiCt(w, r, y) & r = p∆q

)
]

The second formula ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
) is of the form:

ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
) ≡

∃u∃v ∃w ∃y′′ [m = 0 ⊃ (ρ
′
(n1, . . . , nk, u) &

Wk(u, q, y
′
) & q = p∆(xi/n̄i)q

)
&
m 6= 0 ⊃ (ϑInd (pρ

′q, pρ
′′q,m− 1, n1, . . . , nk, y

′′
) &

ρ
′′
(m− 1, n1, . . . , nk, v) &

Elim(y
′′
, v, p, w) & p = pF (m− 1)(xi/n̄i)q &

MultiCt(w, r, y
′
) & r = p∆(xi/n̄i)q

)
]

72

To complete the definition of DedTree(x, y), we state the cases for the
rules of contraction and weakening.

φWk(x, y) ≡

if the last derivation rule in x is Wk of the form

... x′
Γ→C

A,Γ→C

if A,Γ→ C contains no free variables, then
∃z (DedTree(x

′
, z) & Wk(z, w, y) & w = pAq)

&
if A,Γ→ C contains free variables x1, . . . , xk, then
∃z (DedTree(x

′
, z) & z = 〈 pαq, pΓ→ Cq, pvarq, pρ(x1, . . . , xk, u)q 〉&

y = 〈 pαq, pA,Γ→ Cq, pvarq, pϕ(n1, . . . , nk, y
′
)q 〉)

Formula ϕ(n1, . . . , nk, y
′
) that we use in the definition of φWk(x, y) is an

abbreviation for:

∃u (ρ(n1, . . . , nk, u) & Wk(u,w, y
′
) & w = pA(xi/n̄i)q)

φCt(x, y) ≡

if the last derivation rule in x is Ct of the form

... x′
A,A,Γ→C

A,Γ→C

if A,Γ→ C contains no free variables, then
∃z (DedTree(x

′
, z) & Ct(z, w, y) & w = pAq)

&
if A,Γ→ C contains free variables x1, . . . , xk, then
∃z (DedTree(x

′
, z) & z = 〈 pαq, pA,A,Γ→ Cq, pvarq, pρ(x1, . . . , xk, u)q 〉&

y = 〈 pαq, pA,Γ→ Cq, pvarq, pϕ(n1, . . . , nk, y
′
)q 〉)

Formula ϕ(n1, . . . , nk, y
′
) that we use in the definition of φCt(x, y) is an

abbreviation for:

∃u (ρ(n1, . . . , nk, u) & Ct(u,w, y
′
) & w = pA(xi/n̄i)q)

The construction of DedTree(x, y) requires two applications of the Fixed-
point theorem. First, we have to build formulas ψ Ind(z

′
, pρ(n, u)q,m, y)

and ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
) that are part of the definition of φ Ind.

We see that the definition of ψ Ind(z
′
, pρ(n, u)q,m, y) refers to ψ Ind itself and

the definition of ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
) refers to ϑInd . These two

formulas are built in the usual way by applying the Fixed-point theorem and
the partial truth predicates for Σ1-formulas. The second step is to repeat an
analogous process to obtain DedTree(x, y) that is Σ1 too.

73

We proceed to prove the correctness of DedTree(x, y) that is expressed
by the following formula:

∀x [x is a derivation of PA
⊃
∃y DedTree(x, y) & ∀y (DedTree(x, y)

⊃
DT (y) & height of y < Φω(0) &
the endsequent of y is the same
as the endsequent of x

)
]

(8)

This is proved by induction on the height of x, which is a natural number,
and the complexity of the induction formula is Π2. This proof makes use
of the totality and the correctness of all formulas that have been analy-
sed so far: DedTreeAxiom(s, l, y), Wk(x, z, y), Ct(x, z, y), MultiCt(x, z, y),
Elim(x1, x2, z, y). Since the proof of the correctness of Elim has the highest
complexity, we obtain eventually that the whole consistency proof of 1935
can be formalized in the theory where the correctness of Elim can be proved.

Let us present the correctness proof for the case when the last derivation
rule in x is the induction rule of the form

... x′
Γ→F (0)

... x′′
F (a),∆→F (a+1)

Γ,∆→F (t)

Assume that the endsequent Γ,∆ → F (t) contains free variables x1, . . . , xk.
Our aim is to prove that (1) there exists some y such that DedTree(x, y) and
(2) for any such y we have DT (y), the height of y is strictly less than Φω(0)
and its endsequent is Γ,∆→ F (t).

We will work with the definition of φInd on page 71. To find y such
that DedTree(x, y), we need to find z

′
and z

′′
of the required form such

that DedTree(x
′
, z
′
) and DedTree(x

′′
, z
′′
). These deduction trees z

′
and z

′′

are obtained by the induction hypothesis applied to x
′

and x
′′

respectively.
Then, the y that we are looking for exists. Namely, it is built of the heights
of z

′
and z

′′
, of the endsequent of x, of a code of the rule of var and of a code

of the formula

∃m (t(xi/n̄i) = m & ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
))

74

that can be constructed as above.

Assume now that we have an arbitrary y such that DedTree(x, y). This
means that we also have z

′
and z

′′
such that DedTree(x

′
, z
′
), DedTree(x

′′
, z
′′
)

and

z
′

= 〈 pαq, pΓ→ F (0)q, pvarq, pρ
′
(x1, . . . , xk, u)q 〉

z
′′

= 〈 pβq, pF (a),∆→ F (a+ 1)q, pvarq, pρ
′′
(a, x1, . . . , xk, v)q 〉

When we use the induction hypothesis for x
′
and x

′′
, we further obtain DT (z

′
)

and DT (z
′′
) which imply that formulas ρ

′
and ρ

′′
are total and yield proper

deduction trees. The induction hypothesis also gives us α, β < Φω(0).
It is easy to see that the height of y is less than Φω(0) and the endsequent

of y is Γ,∆→ F (t). The important part to show is DT (y). This entails two
items:

(2a) ∀n1 . . . nk ∃y
′∃m (t(xi/n̄i) = m & ϑInd (pρ

′q, pρ
′′q,m, n1, . . . , nk, y

′
))

(2b) ∀n1 . . . nk ∀y
′

[∃m (t(xi/n̄i) = m & ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
))

⊃
DT (y

′
) & endsequent of y

′
is Γ,∆→ F (t)(xi/n̄i) &

height of y
′
< Φ|F (x)|(max{α, β}+ ω)

]

The definition of ϑInd is on page 72. Both items are easily obtained from
the auxiliary statement below. Recall that deduction trees are allowed to
use the rule of term (p. 24) implicitly that replaces closed terms by their
corresponding values. The statement to prove is the following:

∀m∀n1 . . . nk [∃y′ ϑInd (pρ
′q, pρ

′′q,m, n1 . . . nk, y
′
) &

∀y′ (ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
)

⊃
DT (y

′
) &

endsequent of y
′

is Γ,∆→ F (m̄)(xi/n̄i) &
height of y

′
is < Φ|F (x)|(max{α, β}+m)

)
]

(9)

To prove (9), we choose arbitrary natural numbers n1, . . . , nk and then we
proceed by induction on m. The induction formula is Π2, but the complexity
of the whole proof is affected by the fact that we use the correctness of Elim.

Assume that m = 0. The totality of ρ
′
, which follows from DT (z′), gives

us u such that ρ
′
(n1, . . . , nk, u). Since Wk is total, we obtain y

′
such that

75

ϑInd (pρ
′q, pρ

′′q, 0, n1, . . . , nk, y
′
). On the other hand, assume now that we

have y
′

with exactly this property. Since DT (z
′
), we also have DT (u) for

any u such that ρ
′
(n1, . . . , nk, u). The endsequent of u is Γ → F (0)(xi/n̄i)

and the height of u is strictly less than α. The correctness of Wk yields the
following properties of y

′
: DT (y

′
), the endsequent of y

′
is Γ,∆→ F (0)(xi/n̄i)

and the height of y
′

is the same as the height of u.
Assume that m 6= 0. The induction hypothesis for m− 1 gives us y

′′
such

that DT (y
′′
). Its endsequent is Γ,∆ → F (m− 1)(xi/n̄i) and the height is

less than Φ|F (x)|(max{α, β}+m− 1). Formula ρ
′′

is total and this gives us v
such that ρ

′′
(m−1, n1, . . . , nk, v). DT (z

′′
) yields DT (v). The endsequent of v

is F (m− 1),∆→ F (m̄)(xi/n̄i) and its height is δ < β. Furthermore, the cor-
rectness of Elim yields w such that DT (w). The endsequent of w is Γ,∆,∆→
F (m̄)(xi/n̄i) and the height is at most Φ|F (x)|−1(Φ|F (x)|(max{α, β}+m−1)+δ)
that is strictly less than Φ|F (x)|(max{α, β}+m). Since MultiCt is total, we
obtain y

′
such that ϑInd (pρ

′q, pρ
′′q,m, n1, . . . , nk, y

′
). On the other hand,

if we take y
′

such that ϑInd (pρ
′q, pρ

′′q,m, n1, . . . , nk, y
′
), the correctness

of MultiCt yields DT (y
′
). The endsequent of y

′
is Γ,∆ → F (m̄)(xi/n̄i)

and its height is the same as the height of w, we mean, strictly less than
Φ|F (x)|(max{α, β}+m).

At the end, we want to state the following theorem that summarizes the
result of this section.

Theorem 3. Gentzen’s consistency proof of 1935 can be formalized in IΠ3+TI
up to Φω(0). The induction formulas of the transfinite induction are ∆3.

We do not rule out that the analysis of Gentzen’s cut elimination strategy
may be done better, but this seems to be quite difficult.

76

Part 2

Comparison between Tait’s and
Gentzen’s cut elimination
strategy in classical
propositional logic

Abstract The most problematic part of Gentzen’s consistency proof of 1935 is
Hilfssatz, the cut elimination theorem, that eliminates uppermost cuts regardless
of the complexity. The analysis of the cut elimination strategy of Hilfssatz, which is
described in the previous part, showed that Gentzen implicitly applied transfinite
induction up to α, ε0 ≤ α ≤ Φω(0), in the consistency proof. It must be stressed
that Gentzen himself does not speak about any transfinite induction in connection
with this proof. We know that if he had applied Tait’s cut elimination strategy,
the one that decreases the cut-rank of the derivation, he would obtain transfinite
induction up to ε0.

In this part, we will deal with the question to what extent cut-free derivations
differ when they are produced by distinct cut elimination strategies, particularly
we are interested in Gentzen’s strategy and Tait’s strategy. We show that both
strategies yield the same cut-free derivations in classical propositional logic. Hence,
not only are the heights of cut-free derivations the same but also their structures.

Our proof applies an elimination algorithm of a single cut inspired by the
method of Buss that makes global changes to the derivations. This algorithm is
deterministic. A cut elimination strategy is a list of properties that a cut must
have to be eliminated in a particular state. We will use only strategies that are
nondeterministic in the sense that any cut with suitable properties can be chosen
for elimination. We define a strategy, which we will call general cut elimination
strategy, that includes both investigated strategies, the one of Gentzen and the
one of Tait. We prove that general cut elimination strategy has the weak Church-
Rosser property in classical propositional logic. It can be seen that it also has the
strong normalization property. Weak Church-Rosser property and strong norma-
lization yield the Church-Rosser property that ensures that normal forms, in our
case cut-free propositional derivations, are given unambiguously.

2.1 Introduction

We have analysed Gentzen’s consistency proof of 1935 in the previous text.
The most problematic part of the proof is Hilfssatz that represents cut eli-
mination in an infinitary calculus. Hilfssatz is remarkable because of the cut
elimination strategy that Gentzen had applied there. He always eliminates
an uppermost cut, i.e., a cut whose premises have cut-free derivations. The
usual cut elimination strategy, known as Tait’s strategy, is the one that eli-
minates one of the most complex cuts such that there are only simpler cuts
above it. We say that Tait’s strategy decreases the cut-rank, i.e., the com-
plexity of cut formulas in the derivation. Our attempts to analyse Gentzen’s
cut elimination strategy in the infinitary calculus reveal that there may be
differences between both strategies. Whereas the application of Gentzen’s
strategy in Hilfssatz gave us Φω(0) as an upper bound on heights of deduc-
tion trees for sequents derivable in PA, Tait’s strategy yields ε0. It is not
ruled out that some more sophisticated analysis of Gentzen’s strategy would
give us ε0 too. The question is whether and how both strategies differ, espe-
cially whether it is possible that Gentzen’s strategy is really less efficient in
the sense that it yields cut-free derivations whose heights cannot be bounded
by iterated exponentiation of ω.

Since the infinitary calculus is more abstract than finite calculi in which
the performance of both strategies was unknown to us either, we decided to
study the cut elimination strategies in classical propositional and classical
predicate logic. In this part, we switch to classical propositional logic and
show that both strategies yield the same cut-free derivations. Not only is
the height of the cut-free derivations the same but they also have the same
structure. Our proof uses the fact that we are able to organize the cut
elimination procedure in classical propositional logic in the way that there
arise one or two simpler cuts instead of the eliminated cut. Moreover, they are
situated exactly at the position of the original cut that was eliminated. The
crucial point is that they are not distributed throughout the whole derivation
and we know what is above and below them.

However, one cannot use the same approach in predicate logic because of
eigenvariables that may occur in the derivation. We will explain this in detail
after the elimination of a single cut is defined. The algorithm for elimination
of a single cut, which we will use, is inspired by the method of Buss in ([3],
pp. 37-40). It plays an important role because, for the most part, the proof
is based on it.

Baaz and Leitsch ([1], pp. 93-104) deal with the comparison of Tait’s

78

and Gentzen’s cut elimination strategies in finite calculi too. In contrast to
us, they investigate the number of elimination steps that are necessary to
construct a cut-free derivation in predicate logic. They found out that none
of the strategies is faster than the other. The strategies are incomparable
in the sense that there exist derivations on which they differ significantly:
one can find a sequence of derivations where Tait’s strategy eliminates all
cuts by taking a number of steps that is elementary in terms of the original
derivation and, on the other hand, Gentzen’s strategy needs a number of
steps that is nonelementary. There exists an example too where this works
the other way around.

It must be mentioned that Baaz and Leitsch use nondeterministic elimi-
nation of a single cut, i.e., there are more different treatments of one cut and
they are allowed to select from them arbitrarily. This fact itself has influence
on the length of the cut elimination procedure. We are of the opinion that
when we want to compare the influence of cut elimination strategies on the
cut elimination process, we have to suppress all other aspects that can also
affect the result. That is why we insist on a deterministic elimination of a
single cut. Besides, it is easy to see that a nondeterministic elimination of
a single cut can lead to different cut-free derivations regardless of the cut
elimination strategy.

Let us summarize main aspects that effect the cut elimination proce-
dure. These aspects are contained in answers to the three following questions:
(1) According to which property do we choose a cut that will be eliminated
in the particular state? There may be, of course, more cuts with the suitable
property in our derivation. This leads to the second question. (2) Which
particular cut of those with the suitable property do we choose? Finally,
after we have chosen a cut, we can proceed to the last question. (3) What
is the algorithm for elimination of the chosen cut? The elimination of the
chosen cut removes the cut and we possibly obtain new cuts with simpler cut
formulas.

The first question is answered by the cut elimination strategy. We ob-
serve two strategies: Gentzen’s strategy that chooses one of the uppermost
cuts and Tait’s strategy that chooses one of the most complex cuts such that
there are only simpler cuts above them. As far as the second question is
concerned, we postulate that both our strategies are nondeterministic, i.e.,
any random cut from cuts with the suitable property may be picked. This
nondeterminism is a part of the strategy. The third question, which asks for
an algorithm for elimination of a single cut, permits two solutions. We can
either define a deterministic algorithm that allows only one way of elimina-

79

tion, or we can define a nondeterministic one that suggests more different
treatments of the chosen cut. As stated above, we are interested only in
differences caused by the application of distinct strategies. This convinced
us to define a deterministic algorithm for elimination of a single cut and use
it independently of the strategy.

2.2 Preliminaries

For the purpose of the following investigation, we allow sequents to have a
multiset in the antecedent as well as in the succedent:

Definition 26. A sequent is an expression of the form Γ → ∆ where Γ =
{A1, . . . , An} are antecedent formulas and ∆ = {B1, . . . , Bk} are succedent
formulas. We view Γ and ∆ as multisets and they can be empty.

Since we work in classical propositional logic, we do not need all logical
operations. We will use only disjunction and negation. Hence, our language
is {∨,¬} and we define the following calculus:

Definition 27. A derivation of Γ → ∆ in classical propositional logic is a
tree that consists of sequents from Definition 26. Each sequent is either an
initial sequent of the form A → A where A is a propositional variable or it
is derived from previous sequents using one of the following inference rules:

Structural rules: Logical rules:

Σ,Σ,Γ→∆,Θ,Θ
Ct

Σ,Γ→∆,Θ

Γ→∆, A
¬L¬A,Γ→∆

A,Γ→∆
¬R

Γ→∆,¬A

Γ→∆
Wk

Σ,Γ→∆,Θ

A,Γ→∆ B,Γ→∆
∨L

A∨B,Γ→∆

Γ→∆, A,B
∨R

Γ→∆, A∨B

Γ→∆, A A,Γ→∆
cut

Γ→∆

The rules of Ct and Wk are called weak inference rules. The rule of cut and
logical inference rules are collectively called strong inference rules. Sequent
Γ→ ∆ is called the endsequent and it is situated in the root of the derivation.

We do not need the rule of Exchange since we use multisets of formulas.

Definition 28. Formula ¬A or A∨B in the lower sequent of a logical infe-
rence rule is called principal formula of that rule. Formulas in Σ, Θ in the
lower sequent of the weak inference rules are also called principal formulas.
The rule of cut has no principal formula.

80

Formulas A,B in the upper sequent of a logical inference rule are called
auxiliary formulas of that rule. Formulas in Σ, Θ and formula A in the upper
sequent of the structural rules are also called auxiliary formulas. The rule
of Wk has no auxiliary formulas.

Formulas in multisets Γ,∆ are called side formulas.

Now, we will define the height of a derivation from Definition 27. In
principle, the definition is the same as for an infinitary derivation. The only
difference is that we used no weak inference rules in infinitary derivations and
here, we have some. We postulate that weak inference rules do not increase
the height of the derivation.

Definition 29. The height of a derivation from Definition 27 is defined
inductively as follows: Each initial sequent is assigned the value 0. If the
premise of a unary strong inference rule has n, then the conclusion of this
rule has n+1. If the premises of a binary strong inference rule have n and m,
respectively, then the conclusion is assigned max {n+1,m+1}. If the premise
of a weak inference rule has n, then the conclusion of this rule has n again.
The height of a derivation is the natural number of its endsequent.

We write as `n Γ→ ∆ to mean that we have a derivation with endsequent
Γ→ ∆ whose height is at most n.

Definition 30. If an occurrence of C in the lower sequent of an inference
rule is a side formula of this rule, then the corresponding occurrences of C in
the upper sequent of this rule are called its immediate ancestors. If C belongs
to principal formulas of Ct, then the corresponding occurrences of C among
auxiliary formulas are called its immediate ancestors. If C is the principal
formula of a logical inference rule, then the auxiliary formulas of this rule
are called its immediate ancestors.

The ancestor relation is reflexive and transitive closure of the immediate
ancestor relation.

Definition 31. Assume that we have a derivation P in the calculus from
Definition 27. We choose an occurrence of formula B in P . A thread for
this occurrence of formula B are all occurrences of B in P that are ancestors
of the chosen occurrence of B. The chosen occurrence of B is called the root
of the thread.

Every thread has the form of a tree. It can branch either in the rules of
contraction or in the rules with two premises. If B is a propositional variable,
the leaves of every thread for B must be either in initial sequents or they

81

must be in conclusions of weakenings. Otherwise, if B is not a propositional
variable, the leaves are in conclusions of weakenings or in conclusions of
logical inference rules.

Since the notion of thread is crucial and there are different versions of its
definition in the literature, we want to provide an example:

A→ A
Wk

A→ A,C
C → C

Wk
C → C,A

∨L
A ∨ C → A, C

¬L
A ∨ C ,¬A→ C

nn nn

Here, we have marked two different threads. The first one starts in the
endsequent with formula A ∨ C. Then, we go one inference rule up and we
reach the leaf because A ∨ C is decomposed by the rule of ∨L.

The second example is a thread for the propositional variable A. It starts
in the premise of the rule of ¬L and it has two branches. The right hand
side branch ends when A is inferred by the rule of weakening. The left hand
side branch ends in the initial sequent A→ A.

Definition 32. The cut-rank of a derivation P is defined as

sup { |C|+ 1, C is a cut formula in P }

where |C| is the number of logical operations in formula C. The complexity
of a cut with cut formula C is |C|+ 1.

Definition 33. (i) Assume that B is a formula and k ≥ 0. We denote by Bk

exactly k occurrences of B.

(ii) Assume that Θ is a multiset of formulas, B is a formula and k ≥ 0.
Assume that Θ contains at least k occurrences of B. We denote by Θ−(B)k

the multiset Θ from which k occurrences of B are deleted.

82

2.3 Elimination of a single cut

Now we introduce an algorithm to eliminate a single cut. The algorithm is
inspired by the cut elimination procedure described in [3]. It makes global
changes to the derivations: The thread for the cut formula is replaced by
threads for some of its subformulas and these subformulas become then cut
formulas of new cuts.

The elimination of a single cut will be defined by cases according to the
outermost logical operation in the cut formula.

Definition 34. Assume that k, h are natural numbers and we have a cut of
the following form: ... Q

Γ→∆,¬B

... R
¬B,Γ→∆

cut
Γ→∆

Then, this cut is eliminated as follows:

Every sequent Θ → Λ in Q where Λ contains exactly k occurrences of
formula ¬B that belong to the thread for the cut formula ¬B is changed to
Bk,Θ→ Λ−(¬B)k where all k thread members ¬B are removed from Λ.

The rules of ¬R whose principal formulas ¬B belong to the thread for the
cut formula ¬B become redundant:

B,Θ→ Λ
¬R

Θ→ Λ,¬B
;

Bk, B,Θ→ Λ−(¬B)k

Bk+1,Θ→ Λ−(¬B)k
; Bk+1,Θ→ Λ−(¬B)k

Every sequent Θ → Λ in R where Θ contains exactly h occurrences of
formula ¬B that belong to the thread for the cut formula ¬B is changed to
Θ−(¬B)h → Λ, Bh where all h thread members ¬B are removed from Θ.

The rules of ¬L whose principal formulas ¬B belong to the thread for the
cut formula ¬B become redundant:

Θ→ Λ, B
¬L¬B,Θ→ Λ

;
Θ−(¬B)h → Λ, B,Bh

Θ−(¬B)h → Λ, Bh+1
; Θ−(¬B)h → Λ, Bh+1

The rules of contraction and weakening in both derivations Q,R applied
to formulas ¬B that belong to the thread for the cut formula ¬B change to
contractions and weakenings applied to B. Initial sequents are not violated
since they contain only propositional variables.

In this way, we obtain a derivation Q
′
of B,Γ → ∆ and a derivation R

′

of Γ → ∆, B. The original cut on ¬B is replaced by the following cut with
smaller complexity:

... R
′

Γ→∆, B

... Q
′

B,Γ→∆
cut

Γ→∆

Definition 35. Assume that k, h are natural numbers and we have a cut of
the following form:

... Q

Γ→∆, B∨C

... R
B∨C,Γ→∆

cut
Γ→∆

Then, this cut is eliminated as follows:

Every sequent Θ → Λ in Q where Λ contains exactly k occurrences of
formula B∨C that belong to the thread for the cut formula B∨C is changed
to Θ → Λ−(B∨C)k , Bk, Ck where all k thread members B ∨ C are removed
from Λ.

The rules of ∨R whose principal formulas B ∨C belong to the thread for
the cut formula B ∨ C become redundant:

Θ→ Λ, B, C
∨R

Θ→ Λ, B ∨ C
;

Θ→ Λ−(B∨C)kBk, B, Ck, C

Θ→ Λ−(B∨C)k , Bk+1, Ck+1
; Θ→ Λ−(B∨C)k , Bk+1, Ck+1

We modify R in two ways. Every sequent Θ→ Λ in R where Θ contains
exactly h occurrences of formula B ∨ C that belong to the thread for the cut
formula B ∨ C is changed to Bh,Θ−(B∨C)h → Λ and Ch,Θ−(B∨C)h → Λ,
respectively, where all h thread members B ∨ C are removed from Θ.

The rules of ∨L whose principal formulas B ∨ C belong to the thread for
the cut formula B ∨ C become redundant together with the derivation of one
of their premises:

(1) The right hand side premise of ∨L whose principal formula B∨C belongs
to the thread for the cut formula and the whole derivation of this premise
become redundant during the construction of R

′
, the derivation of B,Γ→ ∆:

B,Θ→Λ C,Θ→Λ
∨L

B∨C,Θ→Λ
;

B,Bh,Θ−(B∨C)h→Λ C,Bh,Θ−(B∨C)h→Λ

Bh+1,Θ−(B∨C)h→Λ
; Bh+1,Θ−(B∨C)h→Λ

(2) The left hand side premise of ∨L whose principal formula B∨C belongs to
the thread for the cut formula and the whole derivation of this premise become
redundant during the construction of R

′′
, the derivation of C,Γ→ ∆:

B,Θ→Λ C,Θ→Λ
∨L

B∨C,Θ→Λ
;

B,Ch,Θ−(B∨C)h→Λ C,Ch,Θ−(B∨C)h→Λ

Ch+1,Θ−(B∨C)h→Λ
; Ch+1,Θ−(B∨C)h→Λ

The rules of contraction and weakening in both derivations Q,R applied
to formulas B∨C that belong to the thread for the cut formula B∨C change

84

to contractions and weakenings applied to B and C. Initial sequents are not
violated since they contain only propositional variables.

In this way, we obtain three derivations: Q
′
of Γ→ ∆, B, C, derivation R

′

of B,Γ → ∆ and derivation R
′′
of C,Γ → ∆. The original cut on B ∨ C is

replaced by two simpler cuts:

...Q′

Γ→∆,B,C

...R′
B,Γ→∆

Wk
B,Γ→∆,C

Γ→∆,C

...R′′
C,Γ→∆

Γ→∆

Definition 36. Assume that k is a natural number and we have a cut of the
following form:

...Q
Γ→∆, A

...R
A,Γ→∆

cut
Γ→∆

where A is a propositional variable. Then, this cut is eliminated as follows:

Every sequent Θ → Λ in R where Θ contains exactly k occurrences
of formula A that belong to the thread for the cut formula A is changed
to Γ,Θ−(A)k → Λ,∆ where all k thread members A are removed from Θ.
Multisets Γ,∆ are side formulas of the cut.

This modification violates the initial sequents, the endsequent of R and
possibly weak inference rules that contain ancestors of the cut formula A
among their principal formulas. This is fixed by the following adjustments:

Weak inference rules that contain ancestors of the cut formula A among
their principal formulas either remain weak inference rules or, if multisets Σ,Π
are empty, they become redundant:

Al, Al, Σ, Σ, Θ→ Λ, Π, Π
Ct

Al, Σ, Θ→ Λ, Π
;

Γ, Σ, Σ, Θ−(A)k → Λ, Π, Π,∆
Ct

Γ, Σ, Θ−(A)k → Λ, Π,∆

Θ→ Λ
Wk

Al, Σ, Θ→ Λ, Π
;

Γ, Θ−(A)k → Λ, ∆
Wk

Γ, Σ, Θ−(A)k → Λ, Π, ∆

The endsequent A,Γ→ ∆ of R is changed to Γ,Γ→ ∆,∆ and the required
endsequent Γ→ ∆ is obtained by contraction.

Initial sequents of the form B → B where B is different from A are
changed to Γ, B → B,∆ and this is derived from B → B by weakening.

85

Initial sequents of the form A → A where the antecedent formula A is
an ancestor of the cut formula A are changed to Γ → ∆, A. This is the
endsequent of Q.

The result of the elimination described above can be schematically rep-
resented as follows. The antecedent formula A in the displayed initial se-
quent A→ A is an ancestor of the cut formula A:

...Q
Γ→∆, A

A→A

...

B→B

...
... R

A,Γ→∆
cut

Γ→∆

;

...Q
Γ→∆, A

...

B→B
Wk

Γ, B→B,∆

...
...

Γ,Γ→∆,∆
Ct

Γ→∆

This definition completes the sequence of definitions that deal with the
elimination of a single cut.

We shall now explain why a similar elimination of a single cut is not
possible in predicate logic. Assume that we have a cut of the form

...Q
Γ→∆, ∃xB(x)

...R
∃xB(x),Γ→∆

cut
Γ→∆

and the rules of ∃R and ∃L have the following definition:

Γ→∆, B(t)
∃R

Γ→∆, ∃xB(x)

B(a),Γ→∆
∃L∃xB(x),Γ→∆

Variable a is an eigenvariable and, therefore, it must not occur in the conclu-
sion of the rule of ∃L. Formula ∃xB(x) can be viewed as an abbreviation for a
disjunction, possibly infinite, hence, the idea could be to try to eliminate the
cut as if the cut formula was a disjunction. The first task is to find all formu-
las B(t1), . . . , B(tk) in Q that are auxiliary formulas of the rules of ∃R whose
principal formulas ∃xB(x) belong to the thread for the cut formula ∃xB(x).
We wish to build derivation Q

′
of Γ → ∆, B(t1), . . . , B(tk) by transforming

every sequent Θ→ Λ in Q into Θ→ Λ−(∃xB(x))n , B(t1)n, . . . , B(tk)
n where Λ

contains exactly n ancestors ∃xB(x) of the cut formula ∃xB(x). Now, the
problem is that terms t1, . . . , tk may contain eigenvariables of some rules
of ∃L in Q. Assume that we have the following rule in Q:

C(a), Σ → Π
∃L

∃xC(x), Σ → Π

86

Further assume that term t1 contains a, the eigenvariable of this rule. We
denote it by t1(a). Our intended transformation would clearly break the
eigenvariable condition, according to which a must not occur in the conclu-
sion of ∃L. Hence, we would not obtain a correct derivation:

C(a), Σ → Π
∃L

∃xC(x), Σ → Π
;

C(a), Σ → Π−(∃xB(x))n , B(t1(a))n, . . . , B(tk)
n

∃xC(x), Σ → Π−(∃xB(x))n , B(t1(a))n, . . . , B(tk)
n

Note that if we maintain the derivation in the eigenvariable normal form, i.e.,
all eigenvariables are distinct and occur only above the rules in which they
serve as eigenvariables, there is no problem to transform R into derivations
with endsequents B(ti),Γ → ∆, 1 ≤ i ≤ k, which would be the right hand
side premises of cuts on formulas B(t1), . . . , B(tk).

The above example shows intuitively why the upper bound on heights of
cut-free derivations is much bigger in predicate logic than in propositional
logic. Cut formulas can be inferred at different positions in the derivation. In
predicate logic, we cannot contract auxiliary formulas of the rules that infer
different occurrences of the cut formula to a single occurrence and make this
occurrence the cut formula of a new simpler cut. New simpler cuts must
be introduced exactly at the positions where different occurrences of the cut
formula are inferred. Thus, we may obtain any finite number of new cuts.
This is in contrast to propositional logic where we are able to arrange the
cut elimination in the way that we always obtain at most two simpler cuts.

Let us get back to the propositional calculus.

Lemma 39. Assume that we have a derivation P whose last inference rule
is a cut ϑ of the form:

...Q
`n1Γ→∆, B

...R
`n2B,Γ→∆

ϑ
`ni+1

Γ→∆

where max {n1, n2} = ni. The elimination of ϑ according to Definitions 34,35,36
does not increase the cut-rank of P . Moreover:

• If |B| > 0, then we obtain `ni+2 Γ → ∆ after the elimination of ϑ
and ϑ is replaced by at most two simpler cuts above each other.

• If |B| = 0, then we obtain `2·ni Γ→ ∆ after the elimination of ϑ and ϑ
disappears.

87

Proof. (i) Assume that the cut formula is ¬B:
...Q

`n1Γ→∆,¬B

...R
`n2¬B,Γ→∆

ϑ
`ni+1

Γ→∆

The elimination replaces the thread for the cut formula ¬B by a thread for
a simpler formula B that is placed on the other side of the sequent arrow. In
this way, we obtain derivation Q

′
of B,Γ→ ∆ and derivation R

′
of Γ→ ∆, B.

The construction of Q
′
and R

′
reveals that their heights are bounded by the

heights of Q and R, respectively. They also contain no new cuts. Hence we
have:

...R′

`n2Γ→∆, B

...Q′

`n1B,Γ→∆
cut

`ni+1
Γ→∆

(ii) Assume that the cut formula is B ∨ C:
...Q

`n1Γ→∆, B∨C

...R
`n2B∨C,Γ→∆

ϑ
`ni+1

Γ→∆

Every formula B ∨ C in Q that is an ancestor of the cut formula B ∨ C
is replaced by B,C during the elimination. Derivation R is modified in
two different ways: The thread for the cut formula B ∨ C is first replaced
by a thread for B and then by a thread for C. This procedure gives us
derivation Q

′
of Γ→ ∆, B, C, derivation R

′
of B,Γ→ ∆ and derivation R

′′

of C,Γ→ ∆. These three derivations are applied to build two simpler cuts:

...Q′

`n1Γ→∆,B,C

...R′

`n2B,Γ→∆
Wk`n2B,Γ→∆,C
cut

`max{n1+1,n2+1}=ni+1 Γ→∆, C

...R′′

`n2C,Γ→∆
cut

`max{ni+2,n2+1}=ni+2 Γ→∆

No new cuts except for the displayed ones are built during the elimination.
The height of the derivation after the elimination is at most ni+2 where ni+1
is the bound on the height of the original derivation before the elimination
step.

(iii) Assume that the cut formula is a propositional variable A:

...Q
`n1 Γ→∆, A

A→A

...

B→B

...
... R

`n2 A,Γ→∆
ϑ

`ni+1
Γ→∆

88

where the whole derivation of the right hand side premise is denoted by R
and the antecedent formula A in the displayed initial sequent is an ancestor
of the cut formula A. The elimination of ϑ consists in deleting the thread for
the cut formula A in R and adjusting the initial sequents and the endsequent
of R with the help of weak inference rules.

The result of the elimination is:
...Q

`n1 Γ→∆, A

...

B→B
Wk

Γ,B→B,∆

...
...

Γ,Γ→∆,∆
Ct

Γ→∆

Now, we estimate the height of this derivation. The derivation is made of R
where some initial sequents are replaced by a derivation whose height is at
most n1. Hence, the initial sequents in R obtain n1 instead of 0 and it is
easy to prove by induction on the height of R that the height of the resulted
derivation is at most n1 + n2 ≤ 2 · ni.
Lemma 40. Assume that we have a derivation `n Γ → ∆ whose cut-
rank is d > 1. Then, using Tait’s cut elimination strategy and Defini-
tions 34, 35, 36, we can build a derivation `2n Γ→ ∆ whose cut-rank is d−1.

Proof. Proceed by induction on the structure of `n Γ → ∆ and apply
Lemma 39.

Lemma 41. Assume that we have a derivation `n Γ → ∆ whose cut-rank
is 1, i.e., it contains only cuts on propositional variables. Then, using Tait’s
cut elimination strategy and Definitions 34, 35, 36, we can build a derivation
`2n Γ→ ∆ whose cut-rank is 0, i.e., it contains no cuts.

Proof. Proceed by induction on the structure of `n Γ → ∆ and apply
Lemma 39.

Previous lemmas give us that we have an elementary upper bound for
the height of cut-free derivations in classical propositional logic that are con-
structed with the help of Tait’s strategy and the cut elimination method
from Definitions 34, 35, 36. Namely, the bound is 22d−1n where n is the
height and d is the cut-rank of the original derivation with cuts.

The rest of this section deals with the circumstances under which the
elimination of a single cut makes some sequents or subderivations of the
original derivation redundant. We have four kinds of this redundancy:

89

(1) The premise and the conclusion of the rule whose principal formula
belongs to the thread for the cut formula acquire the same form during
the elimination. Since we do not use the rule of repetition, one of these
sequents is redundant and we keep only one copy of it.

The second and the third case are relevant only to the elimination of a cut

...Q
Γ→∆, B∨C

...
Σ→Π

...β
B,Θ→Λ

... γ
C,Θ→Λ

∨L
B∨C,Θ→Λ

...R
B∨C,Γ→∆

cut
Γ→∆

where the cut formula is a disjunction. The whole derivation of B∨C,Γ→ ∆
is denoted by R. The derivations of B,Θ → Λ and C,Θ → Λ are denoted
by β and γ respectively. Assume that the principal formula of the displayed
rule of ∨L in R is an ancestor of the cut formula B ∨C and there is no rule
of ∨L in R below this one whose principal formula B∨C is an ancestor of the
cut formula too. Furthermore, we use the same notation as in Definition 35.

For the purposes of this explanation, we use sequent Σ→ Π from β. The
sequent is certainly missing in derivation R

′′
of C,Γ→ ∆; we say that Σ→ Π

is not included in R
′′
. As far as the derivation R

′
of B,Γ→ ∆ is concerned,

two possibilities may occur:

(2) Sequent Σ→ Π, to be more precise, its modified formBk,Σ−(B∨C)k→ Π,
is included in R

′
. Since the derivation after the elimination step is built

of R
′
, among others, sequent Σ→ Π does not get lost. By means of R

′
,

its modified form is part of the derivation after the elimination step.
The redundancy in this particular case consists in being excluded from
exactly one of the derivations R

′
, R
′′
.

(3) Sequent Σ → Π or any of its modified forms is not in R
′
. Hence, the

elimination step makes this occurrence of Σ→ Π disappear. It is com-
pletely excluded from the derivation after the elimination. Lemma 42
tells us when this is the case.

The fourth item is relevant only to the elimination of cuts on propositional
variables. This case is rather unimportant for us, but we state it to make
the enumeration complete. We use the notation of Definition 36:

90

(4) If the cut formula is a propositional variable A and there is no initial
sequent A→ A in R whose antecedent formula A is an ancestor of the
cut formula A, then the whole derivation Q is not part of the derivation
after the elimination step.

Lemma 42. Assume that we have a derivation P whose last inference rule
is a cut of the form ...Q

Γ→∆, B1∨B2

...R
B1∨B2,Γ→∆

ϑ
Γ→∆

where the cut formula is a disjunction. Then, an occurrence of an arbitrary
sequent Σ→ Π from R disappears after the elimination step, i.e., this parti-
cular occurrence of the sequent in the original or modified form is not present
in the derivation after the elimination step, if and only if R contains one of
the following patterns:

...
B1,Φ

′→Ψ
′

...
Σ→Π

...
B2,Φ

′→Ψ
′

∨L
S2: B1∨B2,Φ

′→Ψ
′

...
B1,Φ→Ψ

...
B2,Φ→Ψ

∨L
S1: B1∨B2,Φ→Ψ

...
B1∨B2,Γ→∆

or
...

B1,Φ→Ψ

...
Σ→Π

...
B1,Φ

′→Ψ
′

...
B2,Φ

′→Ψ
′

∨L
S4: B1∨B2,Φ

′→Ψ
′

...
B2,Φ→Ψ

∨L
S3: B1∨B2,Φ→Ψ

...
B1∨B2,Γ→∆

where the principal formulas B1 ∨ B2 of the displayed rules of ∨L belong to
the thread for the cut formula and there are no other inference rules of ∨L
that derive an ancestor B1∨B2 of the cut formula between the displayed rules
of ∨L.

Proof. Assume that there is in R one of the above patterns, let us say the
left one, and we want to eliminate cut ϑ. We need to transform R into
derivations R

′
of B1,Γ → ∆ and R

′′
of B2,Γ → ∆. The modification of R

to R
′

and R
′′

is achieved by replacing the thread for the cut formula B1∨B2

by threads for B1 and B2, respectively. Assume that we encounter sequent S1

during this process. If we change B1 ∨ B2 to B2, the derivation of the left
hand side premise is redundant and we do not include it into R

′′
. If we

change B1 ∨B2 to B1, we continue doing this along the derivation of the left
hand side premise until we encounter S2. Now, we must choose the derivation
of the left hand side premise again. Since Σ→ Π does not get into R

′
nor R

′′
,

91

it is not in P after the elimination of ϑ. The case with sequents S3 and S4 is
similar.

On the other hand, assume that P does not contain an occurrence of
Σ → Π after the elimination of ϑ. We want to show that this particular
occurrence is a part of the structure as displayed above.

Since the transformation of Q does not delete any subderivation of P ,
sequent Σ → Π must belong to R. Moreover, it must be in the derivation
of a premise of the rule of ∨L that introduces an ancestor B1 ∨ B2 of the
cut formula. If there was only one rule of ∨L in R that introduces an an-
cestor B1 ∨ B2 of the cut formula, no sequent would disappear because the
derivation of the left hand side premise of this rule ends up as a part of R

′

and, similarly, the derivation of the right hand side premise ends up in R
′′
.

Thus, there must be at least two such rules in R above each other.
When we transform R into derivations of Bi,Γ → ∆, i = 1 or i = 2, we

replace the whole thread for the cut formula B1 ∨ B2 by Bi and we always
follow the path that contains Bi when we run across the rule of ∨L that
derives an ancestor B1 ∨B2 of the cut formula. This means that there must
be at least two applications of the rule of ∨L that derive an ancestor B1∨B2

of the cut formula under the occurrence of Σ → Π. When we check the
auxiliary formulas of these rules, we mean the auxiliary formulas that lie
directly on the path leading to Σ→ Π, at least one of them must differ from
the others. Hence, we are able to find the required pattern in R.

2.4 Propositional logic: Comparison of Tait’s

and Gentzen’s cut elimination strategy

We have already introduced the cut elimination strategies of Tait and Gent-
zen, respectively:

Definition 37. Tait’s elimination strategy selects one of the most complex
cuts such that there are only cuts of smaller complexity above it if any and
this one is then eliminated according to Definitions 34, 35, 36.

Definition 38. Gentzen’s elimination strategy selects an uppermost cut such
that there are no other cuts above it and this one is then eliminated according
to Definitions 34, 35, 36.

The only difference between them is in the decision which cut to eliminate
in a particular state. Each strategy is nondeterministic in the sense that it

92

selects an arbitrary cut from those that satisfy the required property for
elimination.

In fact, we will examine a more general cut elimination strategy below
that covers both strategies mentioned above. Baaz and Leitsch mention this
strategy in ([1], p. 104); the author has also invented it independently of
them. This strategy is called general cut elimination. It allows to choose an
arbitrary cut such that there are only simpler cuts above it if any. Hence, the
chosen cut does not have to be one of the most complex cuts in the derivation,
but it may be, and it does not have to be an uppermost cut, but it may be.
This strategy is also considered to be nondeterministic. When the algorithm
has chosen the cut which is going to be eliminated, Definitions 34, 35, 36 are
applied again.

Definition 39. General cut elimination strategy selects an arbitrary cut such
that there are only cuts of smaller complexity above it if any and this one is
then eliminated according to Definitions 34, 35, 36.

Since only cuts of smaller complexity than the eliminated one are created
and reproduced during the elimination based on the general cut elimination
strategy, general cut elimination strategy always terminates. This means
that general cut elimination has the strong normalization property.

We will focus on the weak Church-Rosser property of general cut elimi-
nation. Objects that are going to be rewritten are the whole derivations
and the only rewriting rules are the elimination steps described in Defini-
tions 34, 35, 36. We aim to prove that general cut elimination has the weak
Church-Rosser property that says that if we have a derivation and we apply
two different elimination steps, we reach two different states that can be both
further rewritten so that, in a finite number of steps, the derivations will be
the same again. Strong normalization and the weak Church-Rosser property
give us that the normal forms (cut-free derivations) are given unambiguously.
This means that Tait’s and Gentzen’s cut elimination strategy, respectively,
yield cut-free derivations not only of the same height, but also of the same
form.

Theorem 4. General cut elimination in the classical propositional logic cal-
culus from Definition 27 has the weak Church-Rosser property when the cut
elimination algorithm from Definitions 34, 35, 36 is applied.

Proof. Assume that we have a derivation P . We choose two different cuts
ϑ1 and ϑ2 from P such that there are only simpler cuts above each of them
if any. If ϑ1 and ϑ2 are not above each other, we obtain the same derivation
regardless of which one is eliminated first.

93

If they are above each other, cut ϑ1 will always be above ϑ2, we go on
to prove the assertion by cases, based on the outermost logical operations in
cut formulas of ϑ1 and ϑ2. Note that the cut formula of ϑ1 must contain less
logical operations than the cut formula of ϑ2.

Furthermore, we distinguish two parts of P, the black one and the blue
one, in every investigated case. Sequents in the black part are modified only
when ϑ2 is eliminated and the elimination of ϑ1 does not modify them. On
the other hand, sequents in the blue part are modified whenever ϑ1 or ϑ2 is
eliminated.

Note that the modification of P during the elimination of ϑ1 and ϑ2 has
two aspects: (i) First, the form of sequents is changed and, (ii) second,
subderivations of P, possibly built of modified sequents, may be moved and
interconnected again or they may become redundant. We are interested in the
transformation of sequents in the blue part since these are the only sequents
in P whose form is modified twice. The first time by the elimination of ϑ1

and the second time by the elimination of ϑ2 or the other way around. We
will also pay attention to the transformation of the overall structure of P .

The notation for transformation of sequents is in Definition 33. The
following scheme

Si;
ϑ

Sj

means that sequent Si is transformed into sequent Sj after the elimination
of cut ϑ. Similarly for derivations.

(1) Assume that the cut formula of ϑ1 is a propositional variable A and
the cut formula of ϑ2 is ¬B:

...
Σ→Π, A

A→A
...

C→C
...

...
A,Σ→Π

ϑ1
Σ→Π

...Q
Γ→∆,¬B

...R
¬B,Γ→∆

ϑ2
Γ→∆

or

...Q
Γ→∆,¬B

...
Σ→Π, A

A→A
...

C→C
...

...
A,Σ→Π

ϑ1
Σ→Π

...R
¬B,Γ→∆

ϑ2
Γ→∆

Propositional variables A in the antecedents of the displayed initial sequents
A→ A are ancestors of the cut formula A. There can be any finite number
of these initial sequents in the derivation. The derivation of the first premise
of ϑ2 is denoted by Q and the derivation of the second premise of ϑ2 is
denoted by R.

94

Let us focus on the case where ϑ1 is in Q. The other case is treated
in an analogous way. Assume that Θ → Λ is an arbitrary sequent from
the blue part. When we first eliminate ϑ2, sequent Θ → Λ is changed to
Bi,Θ → Λ−(¬B)i where all i formulas ¬B ∈ Λ that belong to the thread
for the cut formula ¬B are deleted. This means that the first premise of ϑ1

is changed to Bj,Σ → A,Π−(¬B)j and the second premise is changed to
Bj, A,Σ → Π−(¬B)j where Π contains exactly j occurrences of ¬B that be-
long to the thread for the cut formula ¬B. Cut ϑ1 modified in this way is
denoted by ϑ

′
1. Since the elimination of ϑ2 makes Q

′
, derivation Q after the

elimination, the derivation of the right hand side premise of the simpler cut
and, further, it makes R

′
, derivation R after the elimination, the derivation

of the left hand side premise of the simpler cut, cut ϑ1, in the form of ϑ
′
1, is

in the derivation of the right hand side premise of the simpler cut. The cut
formula A of ϑ

′
1 is the same as the cut formula of ϑ1. The elimination of ϑ2

did not change the thread for A. Derivation P after the elimination of ϑ2

has the form as displayed on the left hand side below:

...
Bj ,Σ→A,Π−(¬B)j

A→A
...

C→C
...

...
Bj , A,Σ→Π−(¬B)j

ϑ
′
1

Bj ,Σ→Π−(¬B)j

...Q′

B,Γ→∆

Γ→∆

...
Bj ,Σ→A,Π−(¬B)j

...

C→C
Wk

Bj ,Σ, C→C,Π−(¬B)j

...
...

Bj , Bj ,Σ,Σ→Π−(¬B)j ,Π−(¬B)j

Ct
Bj ,Σ→Π−(¬B)j

...
B,Γ→∆

Γ→∆

...R′
Γ→∆, B

ϑ
′
1

;

...R′
Γ→∆, B

The elimination of ϑ2 is followed by the elimination of ϑ
′
1. The whole thread

for the cut formula A in the blue part is deleted and this violates all ini-
tial sequents A → A whose antecedent formulas are ancestors of the cut
formula A. Since the side formulas of ϑ

′
1 are added to all sequents in the

blue part, the violated initial sequents are transformed into the left hand
side premise of ϑ

′
1 for which we have a derivation by assumption. If there

are no initial sequents A → A in the blue part whose antecedent formulas
are ancestors of the cut formula A, the left hand side premise of ϑ

′
1 and its

whole derivation are redundant and excluded from the derivation after the
elimination.

An arbitrary sequent Θ→ Λ from the blue part is modified in the follow-
ing way:

Θ→ Λ
;
ϑ2

Bi,Θ→ Λ−(¬B)i

;
ϑ
′
1

Σ, Bj, Bi,Θ−(A)n → Λ−(¬B)i ,Π−(¬B)j

where Σ, Bj,Π−(¬B)j are side formulas of ϑ
′
1 and multiset Θ contains exact-

ly n occurrences of A that are ancestors of the cut formula A. Although i
occurrences of B in the antecedent can be in fact i occurrences of A, these
occurrences of B and the ancestors of the cut formula A belong to different
threads, and thus, we are sure that formulas Bi are not removed. The thread
for B’s starts in the cut on B that we obtain after the elimination of ϑ2,
whereas the thread for the ancestors of the cut formula A starts in ϑ

′
1.

The second possibility is to begin with the elimination of ϑ1. The elimi-
nation of ϑ1 deletes the same thread for the cut formula A as the elimination
of ϑ

′
1 and the same initial sequents A → A are changed. Only the side for-

mulas of ϑ1, which are add to all sequents in the blue part, differ from the
side formulas of ϑ

′
1. The modified initial sequents A→ A are changed to the

left hand side premise of ϑ1 for which we have a derivation that is changed
only once, namely, when ϑ2 is eliminated. This derivation is attached to all
modified initial sequents. Derivation P after the elimination of ϑ1 has the
form as displayed on the left hand side below:

...
Σ→Π, A

...

C→C
Wk

Σ, C→C,Π

...
...

Σ,Σ→Π,Π
Ct

Σ→Π

...
Γ→∆,¬B

ϑ2
Γ→∆

...
Bj ,Σ→A,Π−(¬B)j

...

C→C
Wk

Bj ,Σ, C→C,Π−(¬B)j

...
...

Bj , Bj ,Σ,Σ→Π−(¬B)j ,Π−(¬B)j

Ct
Bj ,Σ→Π−(¬B)j

...
B,Γ→∆

Γ→∆

...R
¬B,Γ→∆

ϑ2
;

...R′
Γ→∆, B

The elimination of ϑ1 is followed by the elimination of ϑ2. The elimination
of ϑ2 changes now the side formulas of ϑ1 that we have added to all sequents
in the blue part during the elimination of ϑ1 from Σ,Π to Bj,Σ,Π−(¬B)j .
Furthermore, the derivation of the left hand side premise of ϑ2 becomes the
derivation of the right hand side premise of the new simpler cut and vice
versa because the threads for the cut formulas ¬B are replaced by threads
for simper formulas B that are placed on the other side of the sequent arrow.
Hence, the blue part is in the derivation of the right hand side premise of the
cut on B again.

An arbitrary sequent Θ→ Λ form the blue part is modified in the follow-
ing way which is exactly the same result as above:

Θ→ Λ
;
ϑ1

Σ,Θ−(A)n → Λ,Π
;
ϑ2

Σ, Bj, Bi,Θ−(A)n → Λ−(¬B)i ,Π−(¬B)j

(2) The case when the cut formula of ϑ1 is a propositional variable A,
the cut formula of ϑ2 is B ∨ C and ϑ1 is in the derivation of the left hand
side premise of ϑ2 is analogous to (1):

...
Σ→Π, A

A→A
...

D→D
...

...
A,Σ→Π

ϑ1
Σ→Π

...Q
Γ→∆, B∨C

...R
B∨C,Γ→∆

ϑ2
Γ→∆

Variable A in the antecedent of the displayed initial sequent A → A is an
ancestor of the cut formula A.

(3) Assume that the cut formula of ϑ1 is a propositional variable A and
the cut formula of ϑ2 is B ∨ C. This time, cut ϑ1 is in R:

...Q
Γ→∆, B∨C

...
Σ→Π, A

A→A

...

D→D

...
...

A,Σ→Π
ϑ1

Σ→Π

...R
B∨C,Γ→∆

ϑ2
Γ→∆

Variable A in the antecedent of the displayed initial sequent A → A is an
ancestor of the cut formula A. There can be any finite number of these initial
sequents in the derivation. The derivation of the first premise of ϑ2 is denoted
by Q and the derivation of the second premise of ϑ2 is denoted by R.

We already know that the elimination of ϑ2 modifies R in two ways: First,
it replaces formulas of the form B ∨ C that belong to the thread for the cut
formula B ∨ C by B. Second, the same formulas are replaced by C. In this
way, we obtain a derivation R

′
of B,Γ→ ∆ and a derivation R

′′
of C,Γ→ ∆.

Some parts of R, including cut ϑ1 itself, may be missing from R
′
or R

′′
or

both.
We focus only on the modification of R that replaces B ∨ C by B, i.e.,

the construction of R
′
. The investigation of R

′′
is completely analogous and

independent of R
′
. We want to show that if we first eliminate ϑ2 and then

possibly two cuts of the form of ϑ1, one in R
′

and the second one in R
′′
, we

97

obtain the same derivation as if we started with the elimination of ϑ1 and
then continued with the elimination of ϑ2.

There may be the rules of ∨L in R of the following form:

B,Φ→ Ψ C,Φ→ Ψ
∨L

B ∨ C,Φ→ Ψ
(∗)

whose principal formulas B ∨ C are ancestors of the cut formula B ∨ C.
When we say that a rule is of the form as described in (∗), we mean that it
is the rule of ∨L whose principal formula belongs to the thread for the cut
formula B∨C. All sequents in R that are in the derivation of the right hand
side premise C,Φ → Ψ of these rules are, by definition, not included in R

′
.

We consider three cases:

(3a) There is a rule of ∨L in R as described in (∗) such that cut ϑ1 is in the
derivation of its right hand side premise C,Φ→ Ψ.

(3b) There is no rule of ∨L in R as described in (∗) such that cut ϑ1 is in the
derivation of its right hand side premise C,Φ→ Ψ. Assume that there
are rules of ∨L as described in (∗) in the blue part. We consider an
arbitrary initial sequent A → A from the blue part whose antecedent
formula A is an ancestor of the cut formula A such that it is in the
derivation of C,Φ→ Ψ, the right hand side premise of ∨L as described
in (∗).

(3c) There is no rule of ∨L in R as described in (∗) such that cut ϑ1 is in
the derivation of its right hand side premise C,Φ→ Ψ. We consider an
arbitrary initial sequent A → A from the blue part whose antecedent
formula A is an ancestor of the cut formula A such that it is not in the
derivation of C,Φ→ Ψ, the right hand side premise of ∨L as described
in (∗). The derivation of the left hand side premise Σ → Π, A of ϑ1,
however, may contain the rules of ∨L as described in (∗). This case is
analogous to (1) and (2).

(3a) Assume that cut ϑ1 is in the derivation of C,Φ → Ψ, the right
hand side premise of ∨L as described in (∗). The situation is schematically
represented as follows:

...Q
Γ→∆, B∨C

...
B,Φ→Ψ

...
Σ→Π, A

...
A,Σ→Π

ϑ1
Σ→Π

...
C,Φ→Ψ

∨L
B∨C,Φ→Ψ

...R
B∨C,Γ→∆

ϑ2
Γ→∆

The elimination of ϑ2 does not include the derivations of premises C,Φ→ Ψ
as described in (∗) to R

′
, hence, we obtain:

...Q′

Γ→∆, B, C

...
Ba+1,Φ−(B∨C)a→Ψ

...R′

B,Γ→∆
Wk

B,Γ→∆, C

Γ→∆, C

...R′′

C,Γ→∆

Γ→∆

Multiset Φ contains exactly a occurrences of B ∨C that are ancestors of the
cut formula B ∨C. Since C,Ba,Φ−(B∨C)a→ Ψ, the modified right hand side
premise of ∨L, and its whole derivation are redundant, cut ϑ1 is excluded
from R

′
.

Now, when we begin with the elimination of ϑ1, we know that only the
part above the conclusion Σ→ Π of ϑ1 is modified. Nevertheless, the modi-
fied part is still in the derivation of C,Φ→ Ψ as described in (∗). Since the
subsequent elimination of ϑ2 makes the derivation of C,Φ → Ψ redundant
in R

′
, the modified part does not get into R

′
either. This is our desired result.

(3b) Assume that there is no rule of ∨L in R as described in (∗) such
that ϑ1 is in the derivation of its right hand side premise C,Φ→ Ψ. Assume
that we have an initial sequent A → A in the blue part whose antecedent
formula is an ancestor of the cut formula A. This initial sequent is in the
derivation of C,Φ→ Ψ as described in (∗):

...Q
Γ→∆, B∨C

...
Σ→Π, A

E→E
...

B,Φ→Ψ

A→A
...

C,Φ→Ψ
∨L

B∨C,Φ→Ψ

...
A,Σ→Π

ϑ1
Σ→Π

...R
B∨C,Γ→∆

ϑ2
Γ→∆

We start with the elimination of ϑ2. The elimination of ϑ2 and the con-
struction of R

′
change the left hand side premise of ϑ1 from Σ → Π, A to

Bk,Σ−(B∨C)k → Π, A and the right hand side premise A,Σ → Π is changed
to A,Bk,Σ−(B∨C)k → Π where multiset Σ contains exactly k occurrences
of B ∨C that are ancestors of the cut formula B ∨C. Cut ϑ1 after the elimi-
nation of ϑ2 is denoted by ϑ

′
1. We know that the derivations of sequents of

99

the form C,Φ→ Π as described in (∗) do not get into R
′
, hence, the chosen

initial sequent A→ A does not get into R
′

either. The only modification of
the thread for the cut formula A that the elimination of ϑ2 has made is that
some branches of the thread are shortened. No new members were added
and all members that were not deleted during the elimination of ϑ2 are still
in the thread.

The subsequent elimination of ϑ
′
1 attaches now the derivation of the left

hand side premise of ϑ
′
1 to all initial sequents A→ A that were not excluded

from R
′
and that are changed to Bk,Σ−(B∨C)k → Π, A by the elimination

of ϑ
′
1. There is on the left hand side the derivation after the elimination

of ϑ2. The elimination of ϑ2 is followed by the elimination of ϑ
′
1:

...
Bk,Σ−(B∨C)k→Π, A

E→E
...

Ba+1,Φ−(B∨C)a→Ψ

...
A,Bk,Σ−(B∨C)k→Π

ϑ
′
1

Bk,Σ−(B∨C)k→Π

...R′

B,Γ→∆
Wk

B,Γ→∆, C

...Q′

Γ→∆, B, C

Γ→∆, C

...R′′

C,Γ→∆

Γ→∆

ϑ
′
1

;

E→E
Wk

Bk,Σ−(B∨C)k , E→E,Π

...
Bk,Σ−(B∨C)k , Ba+1,Φ−(B∨C)a,−(A)h→Ψ,Π

...
Bk, Bk,Σ−(B∨C)k ,Σ−(B∨C)k→Π,Π

Ct
Bk,Σ−(B∨C)k→Π

...
B,Γ→∆

Wk
B,Γ→∆, C

...Q′

Γ→∆, B, C

Γ→∆, C

...R′′

C,Γ→∆

Γ→∆

Multiset Φ contains exactly a occurrences of B∨C that belong to the thread
for the cut formula B∨C and, furthermore, it contains exactly h occurrences
of A that belong to the thread for the cut formula A. Note that cut formula A
and cut formula B belong to different threads.

The second possibility is to start with the elimination of ϑ1. The elimina-
tion of ϑ1 attaches the derivation of the left hand side premise Σ→ Π, A of ϑ1

to all initial sequents A→ A that are transformed into Σ→ Π, A during the
elimination of ϑ1. This includes the investigated initial sequent A→ A too.
At the same time, the elimination of ϑ1 does not affect the thread for the cut
formula B ∨ C and no rules of ∨L whose principal formulas belong to the
thread for the cut formula B∨C are violated. The elimination of ϑ1 modifies
only the side formulas of inference rules except for the rules whose principal
formula is an ancestor of the cut formula A. All rules of ∨L from the blue

100

part are preserved at the positions where they were before the elimination
of ϑ1.

Now, we can continue with the elimination of ϑ2. The derivation of
Σ, C,Φ−(A)h → Ψ,Π, the right hand side premise C,Φ → Ψ as described
in (∗) modified after the elimination of ϑ1, does not get into R

′
. This means

that the modified sequent A→ A and its derivation do not get into R
′
either.

There is on the left hand side the derivation after the elimination of ϑ1. The
elimination of ϑ1 is followed by the elimination of ϑ2:

E→E
Wk

Σ, E→E,Π

...
Σ, B,Φ−(A)h→Ψ,Π

...
Σ→Π, A

...
Σ, C,Φ−(A)h→Ψ,Π

∨L
Σ, B∨C,Φ−(A)h→Ψ,Π

...
Σ,Σ→Π,Π

Ct
Σ→Π

...
B∨C,Γ→∆

...Q
Γ→∆, B∨C

Γ→∆
ϑ2

ϑ2
;

E→E
Wk

Bk,Σ−(B∨C)k , E→E,Π

...
Bk,Σ−(B∨C)k , Ba+1,Φ−(A)h,−(B∨C)a→Ψ,Π

...
Bk, Bk,Σ−(B∨C)k ,Σ−(B∨C)k→Π,Π

Ct
Bk,Σ−(B∨C)k→Π

...
B,Γ→∆

Wk
B,Γ→∆, C

...Q′

Γ→∆, B, C

Γ→∆, C

...
C,Γ→∆

Γ→∆

Let us now look at the form of sequents that are not made redundant
during the elimination of ϑ2. An arbitrary sequent Θ → Λ from the blue
part that is included in R

′
is transformed in the following way:

Θ→ Λ
;
ϑ2

Bi,Θ−(B∨C)i → Λ
;
ϑ
′
1

Bi,Θ−(B∨C)i,−(A)j , Bk,Σ−(B∨C)k → Λ,Π

Multisets Σ−(B∨C)k , Bk, Π are the side formulas of ϑ
′
1. Multiset Θ contains

exactly j occurrences of A that are ancestors of the cut formula A and i
occurrences of B ∨ C that are ancestors of the cut formula B ∨ C. The
antecedent formulas Bi and the ancestors of the cut formula A belong to
different threads. This is why the elimination of ϑ

′
1 cannot remove Bi from

the antecedent, even if formulas A and B had the same form.

101

When we begin with the elimination of ϑ1, the chosen arbitrary sequent
Θ→ Λ is transformed in the following way:

Θ→ Λ
;
ϑ1

Σ,Θ−(A)j → Λ,Π
;
ϑ2

Bi,Θ−(A)j ,−(B∨C)i , Bk,Σ−(B∨C)k → Λ,Π

Multisets Σ,Π are side formulas of ϑ1. Since there is no difference whether
we first remove j occurrences of A and then i occurrences of B ∨ C from Θ
or the other way around, we obtain the required result.

(4) Assume that the cut formula of ϑ1 is D∨E and the cut formula of ϑ2

is B ∨ C: ... α
Σ→Π, D∨E

... β
D∨E,Σ→Π

ϑ1
Σ→Π

...Q
Γ→∆, B∨C

...R
B∨C,Γ→∆

ϑ2
Γ→∆

We have |D ∨ E| < |B ∨ C|. The derivation of the first premise of ϑ1 is
denoted by α and the derivation of the second premise of ϑ1 is denoted by β.
Similarly, the derivation of the first premise of ϑ2 is denoted by Q and the
derivation of the second premise of ϑ2 is denoted by R.

Neither the elimination of ϑ2 nor the elimination of ϑ1 can exclude any
sequent S that belongs to α from the derivation after the elimination. There
will always be in the derivation after the elimination some modified form
of S. On the other hand, the elimination of ϑ1 may make some sequents
from β redundant because there may be the rules of ∨L of the form

D,Φ→ Ψ E,Φ→ Ψ
∨L

D ∨ E,Φ→ Ψ
(�)

in β whose principal formulas D∨E are ancestors of the cut formula D∨E.
When we say that a rule is of the form as described in (�), we mean that it
is the rule of ∨L whose principal formula belongs to the thread for the cut
formula D ∨ E. The derivation can be schematically represented as follows:

... α
Σ→Π, D∨E

...
Θ1→Λ1

...
D,Φ→Ψ

...
Θ2→Λ2

...
E,Φ→Ψ

∨L
D∨E,Φ→Ψ

... β
D∨E,Σ→Π

ϑ1
Σ→Π

...Q
Γ→∆, B∨C

...R
B∨C,Γ→∆

ϑ2
Γ→∆

Let us start with the elimination of ϑ1. It builds three new derivations:
the first one is α

′
of Σ → Π, D,E, the second one is β

′
of D,Σ → Π and

the third one is β
′′
of E,Σ → Π. All sequents that are in the derivations of

premises of the form of E,Φ→ Ψ as described in (�) are redundant in β
′
and,

on the other hand, all sequents that are in the derivations of premises of the
form of D,Φ → Ψ as described in (�) are redundant in β

′′
. The subsequent

elimination of ϑ2 does not exclude anything else from the blue part. It only
modifies sequents that are still available after the elimination of ϑ1. The
derivation after the elimination of ϑ1 is shown in the figure below. It is
the part above the vertical arrow. The elimination of ϑ1 is followed by the
elimination of ϑ2:

... α′
Σ→Π, D,E

...
Da,Θ

−(D∨E)a

1 →Λ1

...
Dj+1,Φ−(D∨E)j →Ψ

... β′

D,Σ→Π
Wk

D,Σ→Π, E

Σ→Π, E

...
Eb,Θ

−(D∨E)b

2 →Λ2

...
Ej+1,Φ−(D∨E)j →Ψ

... β′′

E,Σ→Π

Σ→Π

...
Γ→∆, B∨C

...R
B∨C,Γ→∆

ϑ2
Γ→∆

;
ϑ2

...
Σ→Π−(B∨C)h , Bh, Ch, D,E

...
Da,Θ

−(D∨E)a

1 →Λ
−(B∨C)c

1 , Bc, Cc

...
Dj+1,Φ−(D∨E)j→Ψ−(B∨C)i , Bi, Ci

...
D,Σ→Π−(B∨C)h , Bh, Ch

Wk
D,Σ→Π−(B∨C)h , Bh, Ch, E

Σ→Π−(B∨C)h , Bh, Ch, E

...
Eb,Θ

−(D∨E)b

2 →Λ
−(B∨C)d

2 , Bd, Cd

...
Ej+1,Φ−(D∨E)j→Ψ−(B∨C)i , Bi, Ci

...
E,Σ→Π−(B∨C)h , Bh, Ch

Σ→Π−(B∨C)h , Bh, Ch

...

Γ→∆, B, C

...R′
B,Γ→∆

Wk
B,Γ→∆, C

Γ→∆, C

...R′′
C,Γ→∆

Γ→∆

All ancestors of the cut formulas in the multisets in the figure above are
processed according to Definition 35.

103

The second possibility is to begin with the elimination of ϑ2. The eli-
mination of ϑ2 changes derivation Q of Γ → ∆, B ∨ C to derivation Q

′

of Γ → ∆, B, C. All modified versions of sequents from the blue part
are included in Q

′
. Cut ϑ1 is transformed into ϑ

′
1 whose left hand side

premise is Σ → Π−(B∨C)h , Bh, Ch, D ∨ E and the right hand side premise
is D ∨ E,Σ → Π−(B∨C)h , Bh, Ch. Multiset Π contains exactly h occurrences
of B ∨ C that belong to the thread for the cut formula B ∨ C. Only the
thread for the cut formula B ∨ C is replaced by the elimination of ϑ2. This
means that principal formulas of only such inference rules are changed whose
principal formulas belonged to the thread for the cut formula B ∨ C before
the elimination. The other rules remain essentially the same because only
their side formulas are modified - some formulas are added to their side for-
mulas and members of the thread for the cut formula B∨C are deleted. The
derivation of the left hand side premise of ϑ

′
1 is denoted by α1 and the deriva-

tion of the right hand side premise of ϑ
′
1 is denoted by β1. The derivation

after the elimination of ϑ2 has the following form:

... α1

Σ→Π−(B∨C)h , Bh, Ch, D∨E

...
Θ1→Λ

−(B∨C)c

1 , Bc, Cc

...
D,Φ→Ψ−(B∨C)i , Bi, Ci

...
Θ2→Λ

−(B∨C)d

2 , Bd, Cd

...
E,Φ→Ψ−(B∨C)i , Bi, Ci

∨L
D∨E,Φ→Ψ−(B∨C)i , Bi, Ci

... β1
D∨E,Σ→Π−(B∨C)h , Bh, Ch

ϑ
′
1

Σ→Π−(B∨C)h , Bh, Ch

...Q′

Γ→∆, B, C

...R′
B,Γ→∆

Wk
B,Γ→∆, C

Γ→∆, C

...R′′
C,Γ→∆

Γ→∆

The subsequent elimination of ϑ
′
1 makes derivations of the premises of

the form of E,Φ → Ψ as described in (�) redundant in β
′
1, the derivation

of D,Σ → Π−(B∨C)h , Bh, Ch. Similarly for β
′′
1, the derivation of E,Σ →

Π−(B∨C)h , Bh, Ch, where derivations of the premises of the form of D,Φ→ Ψ
as described in (�) are redundant. Since the elimination of ϑ2 did not affect
the thread for the cut formula D∨E, the modified versions of the rules of ∨L
that were in P before any elimination and whose principal formulas D ∨ E
are ancestors of the cut formula D ∨E fulfill this condition. The subsequent
elimination of ϑ

′
1 yields:

104

... α′1
Σ→Π−(B∨C)h , Bh, Ch, D,E

...
Da,Θ

−(D∨E)a

1 →Λ
−(B∨C)c

1 , Bc, Cc

...
Dj+1,Φ−(D∨E)j→Ψ−(B∨C)i , Bi, Ci

... β′1
D,Σ→Π−(B∨C)h , Bh, Ch

Wk
D,Σ→Π−(B∨C)h , Bh, Ch, E

Σ→Π−(B∨C)h , Bh, Ch, E

...
Eb,Θ

−(D∨E)b

2 →Λ
−(B∨C)d

2 , Bd, Cd

...
Ej+1,Φ−(D∨E)j→Ψ−(B∨C)i , Bi, Ci

... β′′1
E,Σ→Π−(B∨C)h , Bh, Ch

Σ→Π−(B∨C)h , Bh, Ch

...
Γ→∆, B, C

...R′
B,Γ→∆

Wk
B,Γ→∆, C

Γ→∆, C

...R′′
C,Γ→∆

Γ→∆

Let us take an arbitrary sequent Θ → Λ from α. The elimination of ϑ1

and ϑ2 changes the form of the sequent in the following way:

Θ→ Λ
;
ϑ2

Θ→ Λ−(B∨C)k , Bk, Ck

;
ϑ
′
1

Θ→ Λ−(B∨C)k,−(D∨E)l , Bk, Ck, Dl, El

Θ→ Λ
;
ϑ1

Θ→ Λ−(D∨E)l , Dl, El

;
ϑ2

Θ→ Λ−(D∨E)l,−(B∨C)k , Dl, El, Bk, Ck

Multiset Λ contains exactly k occurrences of B∨C that belong to the thread
for the cut formula B∨C and it also contains exactly l occurrences of D∨E
that belong to the thread for the cut formula D ∨E. Succedent occurrences
of B,C are not removed during the elimination of ϑ

′
1 because they belong to

threads different from the one for D∨E. Since |D|, |E| < |D∨E| < |B∨C|,
the succedent occurrences of D,E are not removed during the elimination
of ϑ2. Hence, the sequents in α acquire the same form regardless of the order
of elimination.

Let us now deal with the form of an arbitrary sequent Θ → Λ in β that
is not excluded from β

′
, the derivation of D,Σ→ Π:

105

Θ→ Λ
;
ϑ1

Du,Θ−(D∨E)u → Λ
;
ϑ2

Du,Θ−(D∨E)u → Λ−(B∨C)v , Bv, Cv

Θ→ Λ
;
ϑ2

Θ→ Λ−(B∨C)v , Bv, Cv

;
ϑ
′
1

Du,Θ−(D∨E)u → Λ−(B∨C)v , Bv, Cv

Multiset Θ contains exactly u occurrences of D∨E that belong to the thread
for the cut formula D ∨ E and multiset Λ contains exactly v occurrences
of B ∨C that belong to the thread for the cut formula B ∨C. It is sufficient
to investigate only sequents in β

′
since β

′′
is completely analogous.

(5) Assume that the cut formula of ϑ1 is D∨E and the cut formula of ϑ2

is B ∨ C:

...Q
Γ→∆, B∨C

... γ
Σ→Π, D∨E

... δ
D∨E,Σ→Π

ϑ1
Σ→Π

...R
B∨C,Γ→∆

ϑ2
Γ→∆

We have |D ∨ E| < |B ∨ C|. The derivation of the left hand side premise
of ϑ2 is denoted by Q and the derivation of the right hand side premise of ϑ2

is denoted by R. The derivations of the premises of ϑ1 are γ, δ respectively.
Cut ϑ1 is in R.

In comparison to the other cases, the elimination of each cut ϑ1, ϑ2 is
now able to make some sequents redundant. The elimination of ϑ1 makes
such sequents redundant in δ

′
, the derivation of D,Σ → Π, that are in the

derivations of the right hand side premises E,Ω→ Υ of the rules of ∨L in δ.
The rules of ∨L must have the form

D,Ω→ Υ E,Ω→ Υ
∨L

D ∨ E,Ω→ Υ
(†)

and their principal formulas D ∨ E are ancestors of the cut formula D ∨ E.
This is analogous for δ

′′
, the derivation of E,Σ → Π. The elimination of ϑ1

makes such sequents redundant in δ
′′

that are in the derivations of the left
hand side premises D,Ω→ Υ of the rules of ∨L in δ whose principal formu-
las D ∨ E are ancestors of the cut formula D ∨ E. When we say that a rule
is of the form as described in (†), we mean that it is the rule of ∨L whose
principal formula belongs to the thread for the cut formula D ∨ E.

106

Furthermore, there may be in the black part as well as in the blue part
of R the rules of ∨L of the form

B,Φ→ Ψ C,Φ→ Ψ
∨L

B ∨ C,Φ→ Ψ
(/)

whose principal formulas B ∨ C are ancestors of the cut formula B ∨ C.
Again, when we say that a rule is of the form as described in (/), we mean
that it is the rule of ∨L whose principal formula belongs to the thread for
the cut formula B ∨ C.

The elimination of ϑ2 makes such sequents redundant in R
′
, the derivation

of B,Γ → ∆, that are in the derivations of the right hand side premises
C,Φ → Ψ of the rules of ∨L as described in (/). On the other hand, the
sequents from the derivations of the left hand side premises B,Φ → Ψ of
the rules of ∨L as described in (/) are redundant in R

′′
, the derivation of

C,Γ→ ∆.
Now, the rules of ∨L of both kinds (†) and (/) may be above each other.

We want to argue that, regardless of the order of elimination, the same
sequents are made redundant. Let us focus only on the constructions of δ

′

and R
′
. The constructions of δ

′′
and R

′′
are treated in an analogous way.

(5a) Assume that cut ϑ1 is in the derivation of C,Φ → Ψ, the right
hand side premise of ∨L as described in (/). The situation is schematically
represented as follows:

...Q
Γ→∆, B∨C

...
B,Φ→Ψ

... γ
Σ→Π, D∨E

... δ
D∨E,Σ→Π

ϑ1
Σ→Π

...
C,Φ→Ψ

∨L
B∨C,Φ→Ψ

...R
B∨C,Γ→∆

ϑ2
Γ→∆

The elimination of ϑ2 does not include the derivations of the premises of the
form of C,Φ → Ψ as described in (/) in R

′
and, hence, cut ϑ1 or any of its

modified forms do not get into R
′
.

When we begin with the elimination of ϑ1, only derivations γ, δ are modi-
fied. Since the black part is not affected by the elimination of ϑ1, the simpler
cuts that we obtain after the elimination of ϑ1 are still in the derivation of
C,Φ → Ψ as described in (/). The subsequent elimination of ϑ2 makes the
derivations of the premises of the form of C,Φ → Ψ as described in (/),
including the blue part, redundant in R

′
again.

107

(5b) Assume that there is no rule of ∨L in R as described in (/) such
that ϑ1 is in the derivation of its right hand side premise C,Φ → Ψ. This
means that a modified form of ϑ1 is included in R

′
after the elimination of ϑ2.

However, there may be some rules of ∨L that derive an ancestor B ∨ C of
the cut formula B ∨ C in γ, δ. We can schematically represent it as follows:

...Q
Γ→∆, B∨C

...
B,Φ→Ψ

...
C,Φ→Ψ

∨L
B∨C,Φ→Ψ

... γ
Σ→Π, D∨E

...
B,Ω→Υ

...
C,Ω→Υ

∨L
B∨C,Ω→Υ

... δ
D∨E,Σ→Π

ϑ1
Σ→Π

...R
B∨C,Γ→∆

ϑ2
Γ→∆

The most interesting case is when we take a branch in R such that it contains
D ∨ E,Σ → Π, the right hand side premise of ϑ1, and some rules of ∨L of
the form of (†) and (/) at the same time. Let us choose such a branch and
let us fix the rule of the form of (/) such that it is at the lowest position
among the rules of the form of (/) in the chosen branch. We will denote the
rule by ∨Lϑ2 .

Furthermore, assume that there is a rule of the form of (†) in the chosen
branch that is below ∨Lϑ2 . Let us denote it by ∨Lϑ1 . Assume that ∨Lϑ2
is in the derivation of the right hand side premise of ∨Lϑ1 . Other layouts,
however, are treated in an analogous way. We can schematically represent it
as follows:

...Q
Γ→∆, B∨C

...
B,Φ→Ψ

...
C,Φ→Ψ

∨L
B∨C,Φ→Ψ

... γ
Σ→Π, D∨E

...
D,Φ1→Ψ1

...
B,Φ2→Ψ2

...
C,Φ2→Ψ2 ∨Lϑ2

B∨C,Φ2→Ψ2

...
E,Φ1→Ψ1 ∨Lϑ1

D∨E,Φ1→Ψ1

... δ
D∨E,Σ→Π

ϑ1
Σ→Π

...R
B∨C,Γ→∆

ϑ2
Γ→∆

Let us begin with the elimination of ϑ1. The construction of δ
′
replaces the

thread for the cut formula D ∨ E by the thread for D. This process always
follows the premise of the rule of ∨L of the form as described in (†) that

108

contains the auxiliary formula D. The other premise and its derivation are
excluded from δ

′
. This means that ∨Lϑ2 does not get into δ

′
either. There

may be in δ some other rules of ∨L as described in (/) whose modified
variants, i.e., side formulas have been changed but the principal formulas
remained untouched, are included in δ

′
. The subsequent elimination of ϑ2

makes derivations of their premises of the form of C,Φ → Ψ redundant in
the derivation of B,Γ→ ∆.

The derivation after the elimination of ϑ1 is shown in the figure below.
It is the part above the vertical arrow. The elimination of ϑ1 is followed by
the elimination of ϑ2:

...
B,Φ→Ψ−(D∨E)i , Di, Ei

...
C,Φ→Ψ−(D∨E)i , Di, Ei

∨L
B∨C,Φ→Ψ−(D∨E)i , Di, Ei

... γ′

Σ→Π, D,E

...
Da+1,Φ

−(D∨E)a

1 →Ψ1

... δ′
D,Σ→Π

Wk
D,Σ→Π, E

Σ→Π, E

... δ′′
E,Σ→Π

Σ→Π

...R
B∨C,Γ→∆

...Q
Γ→∆, B∨C

Γ→∆
ϑ2

;
ϑ2

...
Bj+1,Φ−(B∨C)j →Ψ−(D∨E)i , Di, Ei

...
Bk,Σ−(B∨C)k→Π, D,E

...
Da+1, Bb,Φ

−(D∨E)a,−(B∨C)b

1 →Ψ1

...
D,Bk,Σ−(B∨C)k→Π

Wk
D,Bk,Σ−(B∨C)k→Π, E

Bk,Σ−(B∨C)k→Π, E

...
E,Bk,Σ−(B∨C)k→Π

Bk,Σ−(B∨C)k→Π

...
B,Γ→∆

Wk
B,Γ→∆, C

...Q′

Γ→∆, B, C

Γ→∆, C

...
C,Γ→∆

Γ→∆

Multisets Ψ and Φ1 contain exactly i, a occurrences of D∨E that belong
to the thread for the cut formula D ∨ E, respectively. Multisets Σ,Φ,Φ1

contain exactly k, j, b occurrences of B ∨C that belong to the thread for the
cut formula B ∨ C, respectively.

109

Let us now begin with the elimination of ϑ2. The construction of R
′

transforms cut ϑ1 into ϑ
′
1 whose left hand side premise is Bk,Σ−(B∨C)k →

Π, D ∨ E and the right hand side premise is D ∨ E,Bk,Σ−(B∨C)k → Π. The
construction of R

′
also changes the side formulas of all inference rules whose

principal formulas do not belong to the thread for the cut formula B ∨ C.
The thread for the cut formula D ∨ E is not affected by the construction
of R

′
and the rule of ∨Lϑ′1 , rule ∨Lϑ1 after the elimination of ϑ2, has a

principal formula D ∨ E that is still an ancestor of the cut formula D ∨ E.
The derivation after the elimination of ϑ2 has the following form:

...
Bj+1,Φ−(B∨C)j→Ψ

...
Bk,Σ−(B∨C)k→Π, D∨E

...
D,Bb,Φ

−(B∨C)b

1 →Ψ1

...
Bh+1,Φ

−(B∨C)h

2 →Ψ2

...
E,Bb,Φ

−(B∨C)b

1 →Ψ1 ∨L
ϑ
′
1

D∨E,Bb,Φ−(B∨C)b

1 →Ψ1

...
D∨E,Bk,Σ−(B∨C)k→Π

ϑ
′
1

Bk,Σ−(B∨C)k→Π

...R′
B,Γ→∆

Wk
B,Γ→∆, C

...Q′

Γ→∆, B, C

Γ→∆, C

...R′′
C,Γ→∆

Γ→∆

Multiset Φ2 contains exactly h occurrences of B ∨ C that belong to the
thread for the cut formula B ∨ C.

The subsequent elimination of ϑ
′
1 makes now derivations of all premises

E,Ω → Υ of the rules of ∨L as displayed in (†) redundant during the con-
struction of the derivation for D,Bk,Σ−(B∨C)k → Π. Since the elimination
of ϑ2 did not violate the thread for the cut formula D∨E, the modified forms
of the same derivations are redundant as in the case when we started with
the elimination of ϑ1. The derivation after the elimination of ϑ

′
1 is shown in

the figure below:

...
Bj+1,Φ−(B∨C)j →Ψ−(D∨E)i , Di, Ei

...
Bk,Σ−(B∨C)k→Π, D,E

...
Da+1, Bb,Φ

−(B∨C)b,−(D∨E)a

1 →Ψ1

...
D,Bk,Σ−(B∨C)k→Π

Wk
D,Bk,Σ−(B∨C)k→Π, E

Bk,Σ−(B∨C)k→Π, E

...
E,Bk,Σ−(B∨C)k→Π

Bk,Σ−(B∨C)k→Π

...
B,Γ→∆

Wk
B,Γ→∆, C

...Q′

Γ→∆, B, C

Γ→∆, C

...
C,Γ→∆

Γ→∆

Assume now that Θ → Λ is an arbitrary sequent from γ that is not
excluded from R

′
. The modification of this sequent during the elimination

of both cuts proceeds as follows:

Θ→ Λ
;
ϑ1

Θ→ Λ−(D∨E)p , Dp, Ep

;
ϑ2

Bq,Θ−(B∨C)q → Λ−(D∨E)p , Dp, Ep

Θ→ Λ
;
ϑ2

Bq,Θ−(B∨C)q → Λ
;
ϑ
′
1

Bq,Θ−(B∨C)q → Λ−(D∨E)p , Dp, Ep

Multiset Θ contains exactly q occurrences of B∨C that belong to the thread
for the cut formula B∨C. Multiset Λ contains exactly p occurrences of D∨E
that belong to the thread for the cut formula D ∨ E.

Furthermore, assume that Φ → Ψ is an arbitrary sequent from δ that is
made redundant neither during the construction of R

′
nor during the con-

struction of δ
′
. The modification of this sequent proceeds as follows:

Φ→ Ψ
;
ϑ1

Dc,Φ−(D∨E)c → Ψ
;
ϑ2

Bd, Dc,Φ−(D∨E)c,−(B∨C)d → Ψ

Φ→ Ψ
;
ϑ2

Bd,Φ−(B∨C)d → Ψ
;
ϑ
′
1

Bd, Dc,Φ−(B∨C)d,−(D∨E)c → Ψ

Multiset Φ contains exactly c occurrences of D∨E that belong to the thread
for the cut formula D ∨ E and it also contains d occurrences of B ∨ C that
belong to the thread for the cut formula B ∨ C. On the left hand side, the
elimination of ϑ2 does not delete the antecedent occurrences of D because
|D| < |B ∨ C|. There is a similar situation on the right hand side, too. We
are not able to compare the number of logical operations in B and D ∨ E.
However, we know that the antecedent occurrences of B belong to the thread
different from the thread for the cut formula D ∨ E.

(6) The case when the cut formula of ϑ1 is ¬C and the cut formula
of ϑ2 is ¬B is easy since no part of P can be made redundant. We have
|¬C| < |¬B|:

111

... α
Σ→Π,¬C

... β
¬C,Σ→Π

ϑ1
Σ→Π

...Q
Γ→∆,¬B

...R
¬B,Γ→∆

ϑ2
Γ→∆

or
...Q

Γ→∆,¬B

... γ
Σ→Π,¬C

... δ
¬C,Σ→Π

ϑ1
Σ→Π

...R
¬B,Γ→∆

ϑ2
Γ→∆

(7) The case when the cut formula of ϑ1 is C ∨ D and the cut formula
of ϑ2 is ¬B is analogous to (4). We have |C ∨D| < |¬B|:

... α
Σ→Π, C∨D

... β
C∨D,Σ→Π

ϑ1
Σ→Π

...Q
Γ→∆,¬B

...R
¬B,Γ→∆

ϑ2
Γ→∆

or
...Q

Γ→∆,¬B

... γ
Σ→Π, C∨D

... δ
C∨D,Σ→Π

ϑ1
Σ→Π

...R
¬B,Γ→∆

ϑ2
Γ→∆

(8) The case when the cut formula of ϑ1 is ¬B and the cut formula of ϑ2

is C ∨ D is easy since no blue sequents can be made redundant. We have
|¬B| < |C ∨D|: ... α

Σ→Π,¬B

... β
¬B,Σ→Π

ϑ1
Σ→Π

...Q
Γ→∆, C∨D

...R
C∨D,Γ→∆

ϑ2
Γ→∆

(9) The case when the cut formula of ϑ1 is ¬B, the cut formula of ϑ2

is C ∨ D and ϑ1 is in the derivation of the right hand side premise of ϑ2 is
analogous to (5). We have |¬B| < |C ∨D|:

...Q
Γ→∆, C∨D

... α
Σ→Π,¬B

... β
¬B,Σ→Π

ϑ1
Σ→Π

...R
C∨D,Γ→∆

ϑ2
Γ→∆

112

Bibliography

[1] Baaz, M., Leitsch, A.: Methods of Cut-Elimination. Springer (2011)

[2] Buchholz, W.: Notation systems for infinitary derivations. Archive for
Mathematical Logic 30, 277–296 (1991)

[3] Buss, S.: An Introduction to Proof Theory. In: Buss, S., Abramsky,
S., Artemov, S. (eds.) Handbook of Proof Theory. Elsevier, Amsterdam
(1998)

[4] Gentzen, G.: Der erste Widerspruchsfreiheitsbeweis für die klassis-
che Zahlentheorie. Archiv für mathematische Logik und Grundlagen-
forschung 16, 97–118 (1974)

[5] Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Math-
ematische Annalen 112, 493–565 (1936)

[6] Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic.
Springer (1993)

[7] Horská, A.: Where is the Gödel-Point hiding: Gentzen’s consistency
proof of 1936 and his representation of constructive ordinals. Springer
(2014)

[8] Menzler-Trott, E.: Gentzen’s Problem. Mathematische Logik im na-
tionalsozialistischen Deutschland. Birkhäuser Verlag (2001)

[9] von Plato, J.: From Hauptsatz to Hilfssatz. In: Kahle, R., Rathjen,
M. (eds.) Gentzen’s Centenary - The Quest for consistency. Springer
(2015)

[10] Schütte, K.: Beweistheoretische Erfassung der unendlichen Induktion
in der Zahlentheorie. Mathematische Annalen 122, 369–389 (1951)

[11] Schütte, K.: Proof Theory. Springer (1977)

113

[12] Schwichtenberg, H.: Some applications of cut-elimination. In: Barwise,
J. (eds.) Handbook of Mathematical Logic. North-Holland, Amsterdam
(1977)

[13] Schwichtenberg, H.: Normalization. In: Bauer, F.L. (ed.) Logic, Alge-
bra and Computation. Springer (1991)

[14] Siders Kanckos, A.: Gentzen’s Consistency Proofs for Arithmetic. In:
Pelǐs, M. (eds.) The Logica Yearbook 2009, pp. 109–119. College Pub-
lications, London (2010)

[15] Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomor-
phism. Elsevier, Amsterdam (2006)

[16] Švejdar, V.: Logika, neúplnost, složitost a nutnost. Academia, Prague
(2002)

[17] Tait, W.: Gentzen’s original consistency proof and the Bar Theorem.
In: Kahle, R., Rathjen, M. (eds.) Gentzen’s Centenary - The Quest for
consistency. Springer (2015)

[18] Veblen, O.: Continuous Increasing Functions of Finite and Transfinite
Ordinals. Transactions of the American Mathematical Society 9, 280–
292 (1908)

114

