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Abstract  
 
 

Projekt je zaměřen poznání souvislosti mitochondrialních patofyziologických 

procesů s psychopatologickými příznaky při bipolární afektivní poruše (BPD). 

Změny aktivity vybraných složek dýchacího řetězce a celková respirační rychlost 

byly měřeny u pacientů s bipolární afektivní poruchou v porovnání s kontrolní 

skupinou. byly použity diagnostické dotazníky, respirometrie s vysokým 

rozlišením a metody radiochemické a spektroskopické. Analýzy provedeny u 21 

zdravých kontrol a 37 osob s diagnózou bipolární afektivní poruchy (F31). 

Statistická analýza zahrnovala parametrické a neparametrické analýzy, faktorovou 

analýzu, jednocestnou analýzu rozptylu a lineární regresní analýzu. Získané 

výsledky ukázaly velkou roli buněčné energetiky v patofyziologii bipolární 

poruchy. Mírný rozdíl mezi různými aktivitami mitochondriálních enzymů byl 

získán u pacientů s manickou a depresivní epizodou onemocnění. Byly také 

prokázány změny mitochondriálního dýchání u pacientů s BPD ve srovnání se 

zdravými kontrolami. Mitochondriální respirační indexy u pacientů v remisi ve 

srovnání se zdravými kontrolními osobami byly změneny v souvislosti s předchozí 

fází onemocnění. Byla zjištěna souvislost mezi stavem onemocnění, 

psychopatologickými příznaky, klinickým zlepšením a mitochondriální patologií. 

Byla stanovena doba trvání mezi akutním manickým stavem a remisí a její 

závislost na indikátorech mitochondriální patologie. 
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Annotation 
 
 

This study investigates the connection between different pathophysiological 

processes in mitochondria and psychopathological symptoms in patients with 

bipolar disorder. Changes in activity of selected components of the respiratory 

chain and overall respiratory rate of mitochondria were analyzed in patients with 

bipolar disorder when compared to healthy controls. Diagnostic scales and 

questionnaires, high-resolution respirometry, radiochemical and spectroscopic 

methods were used. 37 patients with a diagnosis of bipolar disorder (F31) and 21 

healthy volunteers were involved in the study. Statistical analysis included the 

methods of parametric and nonparametric analysis, factor analysis, one-way 

analysis of variance and linear regression analysis. Obtained results revealed that 

cellular energetics plays a great role in the pathophysiology of bipolar disorder. 

There was a mild difference between different mitochondrial enzymes activity in 

patients within manic phases and depressive phases of the disease. Changes in 

mitochondrial respiration in patients with BD as compared to healthy controls were 

also shown. Mitochondrial respiration indexes for patients with BD in remission as 

compared to healthy controls were altered in accordance with the previous phase of 

the disease. Association between the state of the disease, psychopathological 

symptoms, clinical improvement and mitochondrial pathology was established. 

The duration period between the acute manic state and remission and its 

dependence on the mitochondrial pathology indicators was established. 
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1. Introduction 

 

Mental disorders are a big group of complex and serious diseases affecting 

mainly the psychic sphere and are characterized by a high prevalence, difficulties 

with the diagnosis, high levels of disability and mortality, a significant societal cost 

and different serious risks for the patients.  

During the last decades many publications revealed an increasing need for 

further research on this topic because of characteristics such as frequent life-

threatening conditions, urgent intervention requirement, clinical pathomorphosis, 

prolonged duration and a delayed treatment response postulate a problem of mental 

disorders as one of the central problems of modern psychiatry and general medical 

practice. Psychopathological symptoms also often cause a significant impairment 

of social functioning which may have an irreversible affect on patient’s life. 

Although research is ongoing many important questions still remain open. 

Questions of early diagnosis and prevention, clinical assessment of the symptoms, 

therapeutic approaches and pathomorphological mechanisms undermining the 

disease continue to be unanswered. One of these questions is a comprehensive 

study of typical pathogenetic features associated with the psychopathological 

symptoms of the disease, including cell mechanisms.  

Cell respiration in psychiatric disorders had been a subject of large research 

interest for many years as the nerve tissue is highly dependent on oxidative 

metabolism because of a high energy demand and thus the brain is extremely 

vulnerable to an insufficient ATP production. Many researchers found evidence for 

mitochondrial dysfunction and oxidative stress in different mental disorders, 

although most of the patients do not have any ‘classical’ mitochondrial disease.   

Mood disorders are one of the main focuses in mitochondria-related research  

since 2000 when Dr. Kato offered a mitochondrial hypothesis based on the 

findings that patients with bipolar disorder have an abnormal energy metabolism 

and abnormal mitochondrial DNA in the brain. 

Mood disorders (depressive, manic and bipolar disorders) are very common 

illnesses, often with recurrent or chronic courses. Their pathophysiology is not yet 
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well known. There is currently no reliable biochemical, genetic, physiological or 

other biological test to diagnose bipolar affective disorder or to predict the success 

of pharmacotherapy.  

The etiology of mood disorders, including BPD, remains uncertain. Both 

genetic background and environmental factors, such as stressful life events or 

substance abuse, are related to the risk of development of BPD (Uher R, 2014). 

Insights into the processes underlying neuroprogression in BPD have been 

provided by studies examining genetic and epigenetic changes, structural and 

functional changes in the brain, damage in neuronal circuits, disturbed circadian 

rhythms, changes in immune and endocrine systems, impairment in neuronal 

plasticity and resilience, increased apoptosis, disturbances of synaptic transmission 

and signal transduction, activation of neurotoxic mechanisms, and changes in 

neurogenesis (Berk M et al, 2014). Pathways underlying neuroprogression in BPD 

include the dopaminergic system, inflammatory cytokines, oxidative and 

nitrosative stress, mitochondrial dysfunction and endoplasmic reticulum stress, 

alterations in cAMP response element-binding protein (CREB) and neurotrophic 

system, dysregulation of calcium signaling, neuroin- flammation, autoimmune 

processes, tryptophan and tryptophan metabolites, and hypothalamic–pituitary–

adrenal (HPA) axis dysregulation. (Berk M et al, 2011;  Anderson G, Maes M, 

2015; Andreazza AC, Young LT, 2014) 

Research for biological markers of bipolar affective disorder is based on a 

current mood hypothesis that the activity of monoaminergic neurotransmitter 

systems, energy cell metabolism, growth factor and other components affecting 

neuronal plasticity.  Nerve cells need an extraordinarily large amount of cellular 

energy to provide for the synthesis of molecules that allow them to receive, process 

and transmit information, develop axonal and dendritic branches, and create new 

synaptic connections. Therefore, the hypothesis of mitochondrial dysfunction is a 

prospective hypothesis for a number of diseases including bipolar affective 

disorder. 
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The aim of the following research is to determine the connection between 

selected mitochondrial functions and psychopathological symptoms during the 

disease, i.e. in manic, depressive and remission episodes of the bipolar disorder. 
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2. Literature review 

 

2.1. Mitochondria, its structure, role and functions 

 

Mitochondria were discovered more than 100 years ago and were then 

viewed as a cytoplasmic element with undetermined functions. Between discovery 

and the 1950s, some observations of mitochondria in ultra thin sections were made 

via the development of the electron microscopy. In the following decades the 

mitochondria structure and biochemical processes taking part in it were thoroughly 

explored. Most research was reduced to the energy production and to different 

changes of mitochondrial structure during the respiration cycle.  

During the last decades we have wintessed a change in the approach to 

mitochondria. An old idea from our textbooks, postulating mitochondria as an 

‘energetic station‘ of the cell is now changing to a kind of ‘Pandora’s box‘ 

hypotheses, which gently suggests that mitochondria take part in various processes 

through various mechanisms. Some components of mitochondria and their impact 

on men’s health are still to be investigated (DiMauro S, Andreu AL, 2000).  

According to the previous paradigm, the role of mitochondria in different 

pathologies and diseases was limited by the description of energy supply 

dysregulation of cell respiration, either in terms of hypoxic and toxic damage or in 

genetic impairment (DiMauro S, Hirano M, 2009). Now so-called ‘side processes‘ 

of mitochondria are coming to the stage. Many studies of mitochondria and its role 

in the pathogenesis of various diseases are being done. Such terms as 

‘mitochondrial pathology‘ and ‘mitochondrial disease‘, having appeared not long 

ago (Luft R, 1994), are also changing their meaning to include a broader range of 

disturbances and lesions. One thing still seems unarguable - mitochondria 

dysfunction is causing diverse effects within the cell and in whole organism 

(Nunnari J, Suomalainen A, 2012).  

Mitochondria are a small cell organelles with two membranes, mostly not 

contacting each other. The outer membrane of mitochondria (7 nm thickness) is 
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smooth, built of proteins and two layers of lipids. It separates mitochondria from 

the cell cytoplasm and provides the transport of small molecules and ions; it also 

has such enzymes as monoaminoxidase, monooxygenase, acyl-CoA (coenzyme A) 

synthase and phospholipase A.  

The inner membrane is plicated and forms numerous folds (cristae), which 

significantly increases the surface area. It contains cardiolipine and proteins, and 

does not have any transport pores. ATP-synthase molecules are located on its 

matrix side. There are also some respiratory chain components in this membrane, 

filling the membrane space.  

Between outer and inner membrane there is an intermembrane space (10-20 

nm thickness). One protein is located in it is cytochrome c, a respiratory chain 

component. 

The internal space of the mitochondria is called matrix. Located in matrix 

enzyme systems of pyruvate and fatty acids oxidation are enzymes of tricarboxylic 

oxid cycle (Krebs cycle), DNA, RNA and protein-synthetizing systems.  

 
Fig. 1. Structure of the mitochondria 
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Mitochondria serve many functions, but their primary goal is participation in 

biochemical cycles of cell respiration. The main processes taking place in 

mitochondria are: the tricarboxylic acid cycle, fatty acids oxidation, carnitine 

cycle, electron transport in the respiratory chain (via I-IV enzyme complexes) and 

oxidative phosphorylation (V enzyme complex). 

  

 
Fig. 2. Mitochondrial function is at the nexus of several pathways that regulate 

synaptic plasticity and cellular resilience.  (Manji H.K. et al, 2012) 

 

2.2. Tricarboxylic acid cycle 

 

Tricarboxylic acid cycle (TCA, Krebs cycle) is the key stage of cell 

respiration; a crossway of several metabolic pathways and an intermediate point 

between glycolysis and respiratory chain. Its role is not only energetic, it is a 

significant source of the precursors’ molecules for synthesis of many important 

compounds. 

A cyclical biochemical process takes place in mitochondria, in which one 

molecule of acetyl-CoA is completely oxidized into two molecules of carbon 
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dioxide (CO2) with reduced form of nicotinamide adenine dinucleotide (NADH) 

(from nicotinamide adenine dinucleotide, NAD+), reduced form of flavin adenine 

dinucleotide (FADH2) (from flavine adenine dinucleotide, FAD) and guanosine-5'-

triphosphate (GTP) production (from guanosine diphosphate, GDP, and inorganic 

phosphate, Pi) (Krebs HA, Weitzman PDJ, 1987). Electrons from NADH and 

FADH2 are transported to the respiratory chain where ATP is formed. 

 

 

Fig. 3. Tricarboxylic acid cycle 

 

Acetyl-CoA, a substrate for the Krebs cycle, is derived from carbohydrates, 

fats, and proteins; in the brain it comes mostly from the glycolysis reaction, where 

glucose is converted to pyruvate, followed by pyruvate decarboxylation by 

pyruvate dehydrogenase complex. The second resource of acetyl-CoA in the brain 

is fatty acids oxidation. 

The cycle consists of several basic reactions. First, two-carbon acetyl group 

of the acetyl-CoA is transferred to a four-carbon acceptor (oxaloacetate) and a six-

carbon compound (citrate) is formed. Two carboxyl groups from oxaloacetate are 

later being lost as CO2, and the missing parts are being donated by acetyl-CoA. 

The loss of donated carbons requires several turns of the cycle, as it is continuously 

supplied by the new acetyl-CoA as a carbon donator (Jones RC  et al, 2000).  The 

energy of the reactions is transferred as electrons to form NADH and FADH2, or to 

other metabolic processes. 

Steps  
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1) Aldol condensation reaction catalyzed by a citrate synthase enzyme 

 

Fig. 4. Tricarboxylic acid cycle, step 1 

 

A methyl group of the acetyl-CoA is attached to the carbonyl group of the 

oxaloacetate. During this reaction an intermediate compound is formed. It is 

quickly hydrolyzed and splits into a free CoA and citrate, which is eliminated from 

the enzyme active point. This reaction is highly exergonic because of hydrolysis of 

the thioether compound, and this negative energy change is necessary for the cycle 

management, because oxaloacetate concentration in the cell is quite low. CoA from 

this reaction takes part in the oxidative decarboxylation of the next pyruvate 

molecule. 

2) Dehydration-hydration reaction catalyzed by aconitase 

Aconitase is an enzyme that contains of FeS-claster and catalyzes a 

reversible dehydration of citrate into an intermediate compound, a tricarbozylic 

acid named cis-Aconitate, which does not leave the active point of the enzyme 

normally. The enzyme attaches a water molecule to the olefinic link of cis-

Aconitate and the reaction goes in two different ways, with a citrate (app. 90%) 

and isocitrate (app. 10%) as its main products. 
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Fig. 5. Tricarboxylic acid cycle, step 2 

 

3) Isocitrate oxidation and decarboxylation reaction 

This step contains of two stages. The first stage is oxidative decarboxylation 

of isocitrate catalyzed by isocitrate dehydrogenase which requires proton transfer 

from NAD+ (or NADP+). At the end of this stage oxalosuccinate is formed. It is 

an intermediate compound and it does not leave active point of the enzyme. The 

second stage involves an interaction between carbonyl group of oxalosuccinate and 

Mn2+ (or Mg2+) ion of the enzyme which pulls the electron density so that α-

Ketoglutarate can be formed. Isocitrate dehydrogenase exists as two izoenzymes, 

eukaryotic cells that have mostly NAD+ dependent izoenzyme. 

 

Fig. 5. Tricarboxylic acid cycle, step 3 

 

4) α-Ketoglutarate oxidative decarboxylation reaction 

This reaction is catalyzed by α-ketoglutarate dehydrogenase which is a 

complex enzyme containing 3 sub-enzymes with several co-factors. This enzyme is 

largely similar to pyruvate dehydrogenase and the whole reaction is almost 

identical to pyruvate oxidative decarboxylation.  
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During the oxidative decarboxylation succinyl-CoA is formed. NAD+ 

behaves as an electron acceptor and CoA transports the succinyl group. 

 

Fig. 6. Tricarboxylic acid cycle, step 4 

 

5) Substrate-level phosphorylation reaction 

Succinyl-CoA has a thioesher bond with a big negative energy which is 

released in hydrolysis reaction (∆G′о ≈ −36 KJ/mol). This energy is useful for 

phosphoanhydride bonding of GTP/ATP and thus succinate can be formed. The 

reaction is catalyzed by Succinyl-CoA synthetase which gets phosphorylated (by 

the histidine residue) itself during the intermediate steps of the reaction. It has two 

subunits, α-subunit carries a phposphoryl group with a high potential for transfer, 

and β-subunit determines the specificity of the izoenzyme (GDP/ADP). The active 

point of the enzyme is located between subunits.  

ATP/GTP formation is a substrate-level phosphorylation because of energy 

saved during α-Ketoglutarate decarboxylation. If GDP is formed, it can donate its 

end phosphoryl group to ADP, so we can say the final point of every Succinyl-

CoA synthetase izoenzyme activity is ATP formation. 

 

Fig. 7. Tricarboxylic acid cycle, step 5 
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Fig. 7a. Tricarboxylic acid cycle, step 5 

 

6) Succinate oxidation 

An enzyme succinate dehydrogenase catalyses the succinate oxidation 

reaction in which fumarate is formed. This enzyme is located on the inner 

mitochondrial membrane and contains of three FeS subunits and one FAD 

molecule (a prosthetic group).   

 

Fig. 8. Tricarboxylic acid cycle, step 6 

 

Electrons are transferred from succinate through FAD and FeS subunits. 

Electrons then get into the respiratory chain, where FAD is reducted to FADH2, 

and the acceptor role is taken by the ubuquinone. An electronic transfer through all 

these carriers to oxygen is connected with the ATP synthesis (1,5 molecule ATP 

per one electron pair).  

7) Fumarate hydration 
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Fig. 9. Tricarboxylic acid cycle, step 7 

 

 

Fig. 9a. Tricarboxylic acid cycle, step 7 

 

Fumarate is reversibly hydrated into L-Malate. During this reaction a 

carbanion (an intermediate compound of the hydration reaction) is formed. The 

enzyme engaged in this step is called fumarase. It is a stereospecific enzyme 

because it catalyzes a fumarate (trans-isomeride) olefinic linkage hydration. 

Maleate (cis-isomeride) hydration is not catalyzed by the enzyme. 

8) L-Malate oxidation 

 

Fig. 10. Tricarboxylic acid cycle, step 8 

 

This reaction is catalyzed by L-Malate dehydrogenase, which is a NAD-

dependent enzyme. L-Malate is oxidized into oxaloacetate. In vitro this reaction 
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balance is displaced to the left, although in the cell oxaloacetate is constantly 

engaged in high-exergonic citrate-synthase reaction (step 1). That’s why 

cincentration of the oxaloacetate in cell is quite low, and the reaction balance of the 

last step displaces it to the right. 

All enzymes of the Krebs cycle exist within the cell as multienzyme 

systems, which provide an effective transfer of the rections compounds from one 

step to another. These systems are called metabolones. 

The cycle is regulated by substrate availability, enzyme down-regulation and 

inhibition of the end products, which provides a stable concentration of all 

compounds. For instance, all exergonic reactions can be rate-limiting; substrate 

availability depends on the cell state; NADH/NAD+ rate can inhibit or slow down 

dehydration reactions; end products also can inhibit reactions so that carbon flow is 

enough for optimal ATP and NADH concentrations. The glycolysis rate and TCA 

cycle rate are interconnected, and other biochemical reactions also regulate this 

rate in several ways. 

 

2.3. Fatty acids oxidation and carnitine cycle 

 

A hypothesis of β-oxidation was first introduced by F. Knoop in 1904. 

Modern view of fatty acids oxidation is widely based on this theory.  

For now there are known at least 25 known enzymes and specific transport 

proteins in the β-oxidation pathway. 18 of them have been associated with human 

disease (Tein I, 2013). The oxidation contains of the following: 

1)  Fatty acids activation 

Free fatty acids are non-reactive regardless the hydrocarbon chain length. 

They pass the cell membrane through specific transport proteins such as the SLC27 

family fatty acid transport protein (Stahl A, 2004). For oxidation reaction they 

need to be activated.  Activation takes place on the outer mitochondrial membrane 

and involves ATP, HS-CoA and. Mg2+. It is catalyzed by long fatty acyl-CoA 

synthase and is driven to completion by inorganic pyrophosphatase. First ATP and 
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fatty acid form acyl adenilate, a fatty acid and AMP ether; then a sulfhydryl group 

attacks acyl adenilate; the end product of the reaction is acyl-CoA. This compound 

is an active form of fatty acid and can be oxidized. 

 

Fig. 11. Fatty acids activation 

 

2) Fatty acids transport 

Acyl-CoA is not able to reach the oxidation point which is located inside the 

mitochondria, so carnitine acts as a carrier for fatty acids with a long chain and 

transports it through the inner membrane. Acyl group is transferred from S atom to 

a hydroxyl group of carnitine. The cytoplasmic enzyme catalyzing the reaction is 

palmitoyl transferase. The end product of the reaction is acylcarnitine. This 

compound can diffuse through the inner membrane of the mitochondria with the 

help of carnitine-acylcarnitine translocase. If the fatty acyl-CoA contains a short 

chain (less than 10 carbons) it can simply diffuse through the inner mitochondrial 

membrane. 

 

Fig. 12. Fatty acids transport 

After the diffusion the acyl group is transferred back to СoA in a counter 

reaction of breakage of the acyl carnitine with a HS-СoA and mitochondrial 

palmitoyl transferase engaged. 
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3) Fatty acids oxidation 

The oxidation itself contains of several consistent steps.  

A. Dehydrogenation phase 1 

In mitochondria acyl-KoA undergoes an enzymatic dehydration and loses 

two hydrogen atoms in α- and β-positions. The end product of the dehydration is a 

CoA ether of the unsaturated acid with a double bond between C2 and C3 (trans-

delta2-enoyl CoA). The enzyme catalyzing this reaction (fatty acyl CoA 

dehydrogenase) has the specificity for the length of the hydrocarbon chain. FAD is 

an electron acceptor and it is reduced to FADH2. 

 

Fig. 13. Fatty acids oxidation, dehydrogenation phase 1 

 

B. Hydration 

The trans-delta2-enoyl CoA adds a molecule of water and forms L-β-

hydroxyacyl-CoA (3-hydroxyacyl-CoA). This reaction is catalyzed by enoyl-CoA-

hydratase which is stereospecific, similar to fumarate and aconitate hydration 

reactions. 

 

Fig. 14. Fatty acids oxidation, hydration 

 

C. Dehydrogenation phase 2 
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In this step β-oxyacyl-CoA is dehydrogenated again to get β-ketoacyl-CoA. 

This reaction is catalyzed by NAD+ dependent β-hydroxyacyl CoA dehydrogenase. 

NAD acts as an electron acceptor. 

 

Fig. 15. Fatty acids oxidation, dehydrogenation phase 2 

 

D. Thiolysis 

This is a reaction of  C2 and C3 carbons of the β-ketoacyl-CoA and is a 

degradation reaction. It is catalyzed by Acetyl CoA acyl transferase. The 

intermediate compounds are the acyl-CoA which is shorter by two carbon atoms 

and a dicarbone segment (acetyl-CoA).  

 

Fig. 16. Fatty acids oxidation, thiolysis 

 

Acetyl-CoA goes into the TCA cycle for oxidation. Acyl-CoA goes further 

into the fatty acids β-oxidation cycle again and again until the tetracarbon 

compound (butyryl-CoA) is formed. Butyryl-CoA is also oxidized and 2 molecules 

of acetyl CoA are formed. So, we can see that an oxidation of the fatty acid 

containing of N carbon atoms requires N/2–1 β-oxidation cycles, and the end 

quantity of acetyl CoA is N/2. 

Approximately 990 kcal or 42% of the reaction energy is used for the ATP 

resynthesis, and the rest of it is lost as heat. So the energy yield is about 40%, 

which is close to TCA energy yield, glycolysis energy yield and oxidative 

phosphorylation energy yield. 



 24 

2.4. Electronic transport in the respiratory chain 

 
During the pyruvate dehydrogenase reaction and Krebs cycle, substrates 

(pyruvate, isocitrate, α-ketoglutarate, succinate, malate) are being metabolized, and 

NADH and FADH2 are formed. These coenzymes take part in the mitochondrial 

respiratory chain, which involves ATP synthesis and together it is called oxidative 

phosphorylation.   

The respiratory chain is a pathway of enzymes, providing hydrogen ions and 

electron transport from the substrate to the molecular oxygen – the final hydrogen 

acceptor. Energy in these reactions releases gradually and can be accumulated as 

an ATP molecule. Enzymes of the respiratory chain are located on the inner 

mitochondrial membrane. The chain consists of five multi-enzyme complexes, two 

electron carriers, a quinone (coenzyme Q), and a small hem-containing protein 

(cytochrome c) (Kang D, Hamasaki N, 2006). 

I. NADH-ubiquinone oxidoreductase (contains seven subunits which are 

encoded by the mtDNA and at least 39 nuclear-encoded subunits of complex I). 

II. Succinate-ubiquinone oxidoreductase (composed of four subunits, all 

encoded by the nuclear genome). 

III. Ubiquinol-ferricytochrome c oxidoreductase (holds one subunit, 

cytochrome b, encoded by the mitochondrial genome and 10 subunits encoded by 

the nuclear genome). 

IV. Cytochrome c oxidase (COX) (composed of 13 subunits, three of 

which are encoded by mtDNA and the other 10 by nuclear DNA). 

V.  ATP synthase (composed of two mtDNA-encoded subunits, and at least 

13 nuclear DNA-encoded subunits) 

Coenzyme Q (a lipoidal quinone) and cytochrome c are also involved in 

mitochondrial respiration, serving as ‘electron shuttles’ between the complexes 

(Wallace DC, 1999). 

Coenzyme Q is a fat-soluble vitamin-like molecule, able to easily diffuse in 

hydrophobic phase of inner mitochondrial membrane. Its biological role is 
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electronic transport in the respiratory chain, from flavoproteins (complexes I-II) to 

cytochromes (III). 

Cytochrome c is a chromoprotein with a hem as a prosthetic group, which 

holds ferrum with variable valence (Fe3+ and Fe2+). It is water-soluble and 

located at the periphery of the inner mitochondrial membrane in hydrophilic phase. 

Its biological role is electron transport in the respiratory chain, from complex III to 

complex IV. 

All intermediate electron carriers in the respiratory chain are arranged 

according to their redox potential. In this line the electron donating capacity 

(oxidating) decreases, and the electron attaching capacity (recovering) increases. 

The largest electron donating capacity carrier is NADH, and the largest electron 

attaching capacity is a molecular oxygen. 

Electrons enter the respiratory chain in various ways. From the NADH+ 

complex I transports electrons through FMN and Fe/S-points to ubiquinone. From 

the succinate, electrons are transported to ubiquinone by complex II or by some 

other mitochondrial dehydrogenase through FADH2 or flavoprotein linked to an 

enzyme. Oxidized coenzyme Q is reduced to an aromatic ubihydroquinone, which 

transports electrons to complex III through two haems b, one Fe/S point and one 

haem c1 – to the haem-containing protein, cytochrome c. Cytochrome c transports 

electrons to complex IV, cytochrome c oxidase.  

Cytochrome c oxidase contains two cuprum-bearing points (CuA, CuB) and 

two haems (a, a3), which help with transporting electrons to the oxygen. During 

the O2 reduction a strong anion O2- takes two protons and forms molecule of water. 

The flow of electrons is connected to a proton gradient (complexes I, III, IV).  

Thus, the respiratory chain is actually a proton pump generating a membrane 

potential of about 180 mV with a negative polarity at the matrix side of the 

membrane. ATP synthase uses this potential for matrix ADP phosphorylation, and 

causes proton gradient decrease and electron transport activation (Saraste M, 

1999). 
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2.5. Oxidative phosphorylation and regulation of the ATP synthesis 

 
Protons transfer provided by complexes I, III and IV happens in a vector 

way from the matrix to the intermembranous space. During the electron transport a 

concentration of H+ in respiratory chain increases, and pH decreases. The outer 

part of the inner membrane gets +, inner part gets -, which results in a proton 

gradient with acidic pH outside. This is called proton transmembranous potential 

(∆µН+, a chemosmotic theory by P. Mitchell). In mitochondria, the ATP-synthase 

can provide reverse proton transport to the matrix. That’s why the connection of 

electron transport and ATP production is a regulating connection. 

 

Fig. 17. ATP synthesis 

All complexes are located in the inner mitochondrial membrane and they 

can form supercomplexes; electron transport is provided by cytochrome c and 

ubiquinone mainly. Ubiquinone has a nonpolar side chain and due to this chain it 

can move within the membrane. 

Cytochrome c is located on the outer side of the inner membrane. NADH 

oxidation is happening on the inner side and in the matrix, where the citrate cycle 

and β-oxidation (sources of NADH) also occur (Fig. 17).  

ATP synthesis is the fundamental reaction of the mitochondrial respiratory 

chain, in which complex V (ATP synthase) is involved. ATP is being transported 
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with an antiport mechanism (opposite to ADP) into the intermembranous space, 

and then through porins to go to the cytoplasm.  

We can see that in the respiratory chain electrons are going from NADH or 

FADH2 to O2. Released energy is used for proton gradient on an inner 

mitochondrial membrane. ATP synthesis is connected with a reverse proton flow – 

from the intermembranous space to the matrix: when H+ goes from an area with a 

high concentration to an area with a low concentration, there is an energy release, 

and this energy is used for ATP synthesis.  

Electrons given by NADH are not going directly to oxygen. They take part 

in at least 10 redox systems, most of them are interlinked prosthetic groups of 

complexes I, III, IV. The quantity of coenzymes taking part in electron transport is 

outstanding. The total energy release is divided into small packages; each package 

size depends on the redox potential difference of the transitional products. This 

division provides decreased energy loss (app. 60% energy output).  

H+-translocating ATP-synthase is composed of two parts: protons channel 

(F0) is inserted into the membrane and is composed of at least 13 subunits; and 

catalytic subunit (F1) protruding into the matrix. The head of the catalytic part is 

formed by three α-subunits and three β-subunits, holding three active points 

between them. Body of this structure is formed by polypeptides of F0-part and γ-, 

δ- and ε-subunits of the head.  

Catalytic cycle is divided into three phases; each phase takes place in each 

active point. At first, ADP is being linked with Pi, then pyrophosphate link is 

formed and finally the end product is released. Three catalytic points catalyze the 

reaction phase during every proton transport through the protein channel F0 into 

the matrix. It is supposed that the energy of the proton transport is primarily spent 

to the γ-subunit rotation, which results in some cyclic transformation of the α- and 

β-subunits. 

The biochemical process of ATP production always depends on the cell 

energy demand. This need of harmonizing ATP production and ATP consumption 

is connected with the small concentration of enzymes: every ATP/ADP molecule is 
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to be phosphorylated and dephosphorylated many times. A simple mechanism of 

ATP production/consumption is called respiratory control and based on the 

connection with processes mentioned above. If the cell does not consume ATP at 

the moment, it hardly has any ADP. In the absence of ADP no proton gradient on 

the inner membrane can be used by ATP-synthase, which leads to inhibition of the 

electron transfer in the respiratory chain, and thus NADH can’t be re-oxidize into 

NAD+. A high ratio of NADH/NAD+ slows down the citrate cycle. This 

mechanism can work in a reverse way in case of high ATP consumption rate. If 

proton gradient creation is suppressed, substrate oxidation and electron transport 

go faster than usual, and end up with a heat, not ATP. 

There are also substances functionally dividing oxidation and 

phosphorylation, the so-called ‘dissociating agents’ or ‘uncouplers’. They 

contribute to the proton transfer from the intermembranous space to the matrix 

without any ATP-synthase involved. This kind of dissociation can occur as a result 

of mechanical damage of inner membrane, or as a result of exposure to some 

substances (uncoupling proteins), which transport protons through the membrane. 

For instance, a natural dissotiating agent is thermogenin, an uncoupling protein 

found in the mitochondria of brown adipose tissue.  

The most important cycle regulation factor is NADH/NAD+ ratio. Along 

with the pyruvate dehydrogenase and oxoglutarate dehydrogenase, NADH also 

inhibits citrate synthase and isocitrate dehydrogenase. All of these enzymes (excl. 

isocitrate dehydrogenase) can also be inhibited by the end product of acetyl-CoA 

and succinyl-CoA. Enzyne activity is also regulated by the interconversion 

process.  
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2.6. Mitochondrial DNA and proteins 

 

As mentioned above, energy production must be adjusted to the energy 

demand. This requires a bidirectional flow of information between the nuclear 

genome and the mitochondrial genome (Poyton RO, McEwen JE, 1996). 

Moreover, almost all subunits of complexes (e.g. complex II) are encoded by both 

mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) (Calvo S et al, 2006). 

The 13 genes encode seven subunits of NADH-ubiquinone reductase, three 

subunits of COX (complex IV), subunits 6 and 8 of ATPsynthase (complex V), 

and apocytochrome b, which is part of ubiquinol-cytochrome c reductase (complex 

III) (Zeviani M, Di Donato S, 2004). Complex II is encoded by only nDNA. 

 

 

 

 

Fig. 18. Mitochondrial DNA (Wikipedia, 2017). 

The following proteins and enzymes taking part in respiratory chain and are 

encoded by human mtDNA: 
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Encoded Genes 

NADH dehydrogenase 

(complex I) 

MT-ND1, MT-ND2, MT-ND3, MT-ND4, 

MT-ND4L, MT-ND5, MT-ND6 

coenzyme Q – cytochrome c 

reductase /cytochrome b 

(complex III) 

MT-CYB 

cytochrome c oxidase 

(complex IV) 
MT-CO1, MT-CO2, MT-CO3 

ATP synthase MT-ATP6, MT-ATP8 

 

MtDNA is a circular double-stranded DNA molecule 16569 bps long that 

encodes 37 genes, comprising 13 proteins, 22 mitochondrial tRNAs, and 2 rRNAs 

(Zeviani M, Di Donato S, 2004). All mtDNAs are presented as multiple copies 

collected in groups or clasters. The total quantity of the mtDNA in one cell is about 

1%. mtDNA synthesis isn’t coupled with nDNA synthesis.  The inheritance of 

mtDNA is almost exclusively maternal, although some exceptions (a few sperm 

mitochondria entering the egg) have been reported (Schwartz M, Vissing J, 2003). 

Most of the information is encoded in the heavy (purine-rich) strand (two rRNAs, 

14 tRNAs and 12 polypeptides) (Alexeyev MF et al, 2004). Both strands have no 

introns (Anderson  S et al, 1981). mtDNA has a small region called displacement-

loop (D-loop) which is non-coding and contains some promoters for two strand 

transcription (Zeviani M, Di Donato S, 2004).  

Human mtDNA contains protein-encoding and protein synthesis genes. Two 

novel transcriptional factors (TFB1M and TFB2M) cooperate with mitochondrial 

RNA polymerase and mitochondrial transcription factor A to carry out basal 

transcription of mammalian mtDNA (Falkenberg M et al, 2002). 

Replication of mtDNA continues throughout the lifespan of an organism in 

both proliferating and post-mitotic cells. It was believed that replication proceeds 

bidirectionally, asynchronously andasymmetrically, initiated at two spatially and 
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temporally distinct origins of replication, OH and OL, for the heavy and light 

strand origins of replication respectively (Clayton model) (Taanman JW, 1999). In 

recent decades an experimental evidence supporting the existence of conventional, 

strand-coupled replication of mammalian mtDNA has come out (Holt IJ et al, 

2000; Yang MY et al, 2002). 

As mtDNA is essential for the aerobic ATP synthesis system, alterations 

cause various effects on the respiratory chain itself and on the cells.  

The mitochondrial genotype is composed of a single mtDNA species 

(homoplasmy). Recently it has been found that wild-type (normal) and mutated 

mtDNA may coexist in the same cell (so-called heteroplasmy) (Wallace DC, 

1992). Due to mitochondrial polyploidy, the two mtDNA species are stochastically 

distributed to daughter cells during mitosis (Jenuth JP et al, 1996), which can 

contribute to mutation loads observed in different generations of families carrying 

heteroplasmic mtDNA. This results in a wide variety of phenotypes and diseases 

caused by mitochondrial pathology. 

Phenotypic expression of this pathology depends on the threshold effect: at 

some point the accumulated quantity of mutated gene copies are no longer 

balanced by the wild-type mtDNA, a cellular dysfunction that expresses 

phenotypically (Thorburn DR, Dahl HH, 2001).  

Despite the fact that human mtDNA is fully deciphered and many mutations 

had been discovered, the molecular mechanisms for maintenance and clinical 

presentation of mtDNA changes are much less elucidated (Zeviani M, Carelli V, 

2003; Uehara N et al, 2014). There is an evidence that these clinical presentations 

are influenced by a diverse range of factors, i.e. the mutation itself, its point and 

pathogenicity, and the affected organ energy demands. Thus, the most sensitive 

organs to mitochondrial pathology are nervous system, muscles, liver, kidney and 

heart.  

It is known that mitochondria contains >1500 different proteins in mammals 

and >1000 different proteins in yeast (Sickmann A et al, 2003; Sickmann, J et al, 

2003; Reinders J et al, 2006; Pagliarini DJ et al, 2008).  
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Mitochondria have all the needments for protein synthesis, including 

ribosomes, tRNA and mRNA. But as the 13 proteins synthesized in mitochondria 

are mostly insoluble, they substantially form the subunits of respiratory chain 

complexes and the F1Fo-ATPase synthase. Nearly all soluble mitochondrial 

proteins are coded in the nucleus and synthesized in cytoplasmic ribisomes, and are 

then transported into mitochondria (Fox TD, 2012). Some proteins including 

electron carriers, mitochondrial translocase, components of proteins transport in 

mitochondria and specific factors necessary for transcription, translation and 

replication of mDNA are synthesized this way.  

 

 

Fig. 19. Classification of identified mitochondrial proteins according to 

function (Schmidt O et al, 2010). 

 

These proteins have signal peptides on their ends ranging in size from 12 to 

80 aminoacid residues. Peptides form amphiphilic curls and provide a special 

contact of proteins and binding domains of mitochondrial receptors which are 

localized on the outer membrane. Proteins are transported to the outer membrane in 

a partially unfolded state connected to chaperones (i.e., hsp70). After being 

transported through the outer and inner membrane, the protein binds to a new 

chaperone of mitochondrial origin, which picks up the protein, is drawn into the 
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mitochondria and controls the folding process of the polypeptide chain. Most 

chaperones have ATPase activity, so that mitochondrial proteins are transported 

into mitochondria and the formation of their functionally active forms are energy-

dependent (Neupert W, Herrmann JM et al, 2007; Schmidt O et al, 2010). 

Mitochondrial ribosomes are of smaller size than 80S cytoplasmic 

ribosomes, and the initiating aminoacid for mitochondrial protein synthesis is not a 

free methionine like in cytoplasm but a bonded methionine, like N-formyl-

methionine. This suggests that mitochondrial protein synthesis mechanism is close 

to a prokaryotic one. 

 
2.7. Reactive oxygen species, apoptosis and mitochondrial theory of 

aging 

 
One of the causes for the mutations is that mtDNA is more vulnerable to 

various factors than nuclear DNA. For instance, about 95% of the all oxygen 

consumption in mitocnondria is reducted to water during the oxidative 

phosphorylation. The obligatory stage of this phosphorylation is a formation of two 

OH-groups with the participation of the cytochrome c oxidase. The remaining 5% 

of oxygen undergoes various reactions (mostly enzymatic) and becomes a reactive 

oxygen species (ROS), an unevitable byproducts of the oxidative phosphorylation.  

ROS include oxygen ions, free radicals and peroxides both of organic and 

non-organic origin. Free radicals are molecules of a small or medium size with an 

outstanding reactivity due to a presence of the unpaired electron on the outer 

electron level (Turrens JF, 2003). As we said previously, ROS are constantly 

formed in the cell as byproducts of normal oxygen metabolism. Some of them can 

appear after an ionizing radiation exposure. 

ROS carry various functions including mediation of some important 

intercellular processes, immune system induction, ionic transport mobilization and 

contribution to the programmed cell death (apoptosis). An increased ROS 

production leads to the so-known oxidative stress. 
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Oxidative stress is a balance disruption between the free radicals production 

and the mechanisms of antioxidant control in the cell. This disruption is 

accompanied by the increased free radicals formation and the antioxidant system 

failure, which leads to the cell death (Richter C., 1998; Orrenius S et al, 2006). The 

main cause of the oxidative stress is not considered to be ROS production itself but 

rather the imbalance between their generation and removal. 

Standard inhibitory analysis has shown that the generation of ROS is 

basically located within complexes I and III. Studies revealed that ROS-generating 

center must be located between flavine and rotenone-binding site, and that there 

can be more than one ROS-generating domain (Herrero A, Baria G, 2000). Within 

complex I a flavine or its union with NAD can be ROS-generating and this releases 

ROS into matrix; within complex III it is considered that ROS-generating is an 

unstable compound of semiquinone (Ku HH et al, 1993) and this releases ROS to 

both sides of the inner membrane. 

There are a few antioxidant protection systems in the mitochondria:  

1) enzymes – glutathione peroxidase, superoxide dismutase, cytochrome c, 

coenzyme Q;  

2) natural antioxidants in food – ascorbate, alpha-tocopherol, rutin, 

cerupoplasmin, etc.;  

3) low-molecular antioxidants which are synthesized in the organism itself – 

glutathione, uric acid, melatonin, lipoic acid, etc. 

During the last few decades, there has been a large amount of research data 

proving the role of mitochondria in the intracellular signal pathways leading to 

apoptosis (Zoratti M, Szabo J, 1995; Skulachev VP, 2000). There are several 

interrelated pathways for this.  

There are several mitochondrial proteins located in the intermembranous 

space such as caspase activators, cytochrome c, AIF, endonuclease G, etc. After 

they are released into the cytoplasm, they launch apoptosis and induce the cell 

death (Liu X et al, 1996; DU C et al, 2000). For instance, cytochrome c is one of 

the key elements of the respiratory chain in mitochondria and at the same time, it is 
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one of the most important proteins in the mitochondrial apoptosis pathway. 

Normally it is held in mitochondria by cardiolipine. After the free-radical oxidation 

in mitochondria is activated, acardiolipine is also oxidized, cytochrome c is freed 

and can move to the cytoplasm. There it formes a complex with apoptosis 

activation factor Apaf-1 and procaspase 9 (apoptosome), which causes a caspase 

activation downstream and launches the apoptotic cell death (Susin SA et al, 1999; 

Diehl NL, 2000). 

Increased ROS production in mitochondria and lack of antioxidants can lead 

to the damage of the electron transport chain and to a decrease of both ATP 

synthesis and activity of the ATP-dependent enzymes, including Na, K-ATPase, 

which is responsible for the cell membrane potential maintenance. As a result, a 

depolarization of the cell membrane occurs and ions flow intensivity through 

membrane increases; Ca2+ massively enters mitochondria, triggering a cascade of 

intracellular catabolic reactions (Aronis A et al, 2003). Because of the lack of ATP, 

the capacities of Ca-pump are also broken and Ca2+ cannot be removed from the 

cell (Ichas F et al, 1997; Boudreault F, Grygorczyk R, 2004). Intracellular Ca2+ 

accumulation uncouples oxidative phosphorylation and leads to a swelling of the 

mitochondria. ROS and Ca2+ leads to phospholipases activation, which cleave 

fatty acids from phospholipids.  

Fatty acids also contribute to the oxidative phosphorylation uncoupling and 

the mitochondria swelling with a change in membrane permeability known as the 

mitochondrial permeability transition (MPT) (Marchetti P et al, 1996). As MPT 

allows the entrance of the substances with molecular weight <1,5kDa, it allows the 

nucleotides to leave the matrix (Crompton M, 1999). When that happens, NAD-

dependent substrates breathing is inhibited and the mitochondria start swelling. We 

can see that MPT is enhanced by a variety of conditions, causing the elimination of 

the proton electrochemical potential and the membrane potential decrease, which is 

often used as a cell death indicator (Vercesi J et al, 2007). 

In 1972 Denham Harman, the author of the free radical theory of aging 

(FRTA), modified the theory into a mitochondrial one. It was known that there is a 
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chemical mechanism for ROS production in the mitochondria and the modified 

theory proposed that ROS cause damage to proteins, other molecules and mtDNA, 

because it is not as well protected as nuclear DNA. This in turn causes mutations 

and increases ROS production in mitochondria so that free radicals are 

accumulated in the cell, which in the long-term leads to the deterioration of cells 

and organs in the entire body (Harman D, 1972; Harman D, 1983). 

The theory has been widely debated (Poovathingal SK et al, 2009) and there 

were several hypotheses suggesting how can ROS induce mtDNA mutations 

(Conte D et al, 1996; Perez VI et al, 2009; Afanas'ev I, 2010). There were also 

some contra arguments to the association between ROS damage and aging (Yee S 

et al, 2014), suggesting that this evidence of this association is not cause-and-

effect, but may only be an indicator of some changes in the existing signal 

transduction pathways as a part of a cellular response to the aging process. 

 

2.8. Mitochondrial pathology and mitochondrial disease 

 

Mitochondrial diseases are a heterogeneous group of maladies associated 

with various disorders in the functioning of mitochondria which lead to energy 

metabolism violation. They can be caused by mutations in either mtDNA or 

nuclear genes (Koopman WI et al, 2012) or by structural or biochemical defects of 

mitochondria, resulting in a disruption of various units of the Krebs cycle, 

respiratory chain, beta-oxidation processes, etc.  

There are two main groups of these diseases:  

- a group of well-known mitochondrial syndromes, caused by mutations 

(Leber hereditary optic neuropathy (LHON), Leigh syndrome (LS), myoclonic 

epilepsy with ragged-red fibers (MERRF) syndrome, mitochondrial 

encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS) syndrome, 

neuropathy, ataxia, and retinitis pigmentosa (NAPR) syndrome, Kearns-Sayre 

syndrome, Pearson syndrome, etc.);  
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- a group of diseases or syndromes which include mitochondrial pathology 

as an important pathogenetic element (Poulton J, Tumbull DM, 2000) (diseases of 

the connective tissue, chronic fatigue syndrome, cardiomyopathy, migraine, liver 

failure, pancytopenia, different genetic disorders, including ethylmalonic aciduria 

(Rimoldi M et al, 2009), Friedreich ataxia (Rötig A et al, 1997), hereditary spastic 

paraplegia (Zeviani M et al, 1998), and Wilson disease (Lutsenko S, Cooper MJ, 

1998)). These are not strictly mitochondrial diseases. 

The concept of ‘mitochondrial disease’ was first postulated in the twentieth 

century, after several studies of the normal mitochondrial structure and function 

and the development of dye and staining techniques were published. In 1959-62 

Luft et al. studied the enzymic activities of human skeletal muscle mitochondria, 

and found an association of metabolic dysfunction with a defect in the maintenance 

of mitochondrial respiratory control and loose coupling between respiration and 

phosphorylation of ADP (Ernster L et al, 1959; Luft R et al, 1962). Later only one 

more patient with this pathology was described (Luft R, 1992). In 1964 Shy and 

Gonatas described ultrastructural changes in muscle mitochondria in children with 

myopathies (Shy GM, Gonatas NK, 1964). In 1958-68 Drachman, Kearns and 

Sayre described a syndrome of chronic progressive external ophtalmoplegia 

(CPEO) accompanied by mitochondrial changes (Kearns TP, Sayre GP, 1958; 

Drachman DB, 1968). In 1972 Olson used a modified three-color stain for muscle 

fibers of patients with CPEO and found several with an abnormally increased 

number of mitochondria of an unusual shape with crystalloid inclusions (the so-

called ‘ragged-red’ fibers) (Olson et al, 1972; Engel WK, Cinningham GG, 1963). 

Later it was evident that all these syndromes varied widely and included many 

signs and symptoms (Shapira et al, 1977).  

In 1970s-1980s, two research groups (DiMauro group, Columbia University; 

Morgan-Hughes group, UK) independently identified defects of different units in 

the respiratory chain (cytochrome c oxidase deficiency) which provided new 

knowledge about the mitochondrial pathology (Byrne E et al, 1985). Various 

mitochondrial enzyme deficiencies were described (Blass JP et al, 1970; DiMauro 
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S, DiMauro PM, 1973; Engel AG, Angelini C, 1973) and the first classification of 

the mitochondrial disorders appeared (substrate transport defects into the 

mitochondrial matrix; substrate utilization defect in the mitochondrial matrix; 

Kreb’s cycle defects; electron transport system (ETS) defects; 

oxidation/phosphorylation coupling defects) (Lombes A1 et al, 1989). 

Modern laboratory techniques allowed researchers to know more about the 

disease allowing, for instance, protein levels to be determined with the use of 

special antibodies for respiratory chain complexes, etc. In some cases a general 

suppression of all units can be detected, but sometimes only a few subunits of 

deficiency are discovered. The cause of this variability remained unclear until 1963 

when Nass and Nass had discovered a mammalian mitochondrial DNA (a full 

primary structure of human mtDNA was published in 1981 by Anderson) 

(Anderson et al, 1981) and described the phenomenon of heteroplasmy. In the 

following decade there was a breakthrough in mitochondrial pathology studies: 

Egger and Wilson postulated mitochondrial genetic inheritance (Egger J, Wilson J, 

1983; Hutchison CA, 1974); the mitochondrial genome and its abnormalities had 

been recognized; a specific point mutation of mtDNA in LHON (Shuster RC et al, 

1988) and large-scale deletions in muscle mtDNA in patients with myopathies 

(Holt IJ et al, 1988) were found; mtDNA deletions were associated with the 

phenotype of CPEO (Moraes CT et al, 1989) and genotype-phenotype correlation 

of many syndromes followed. 

We already know that during the division process of the mitochondria DNA 

copies are randomly distributed among their offspring and each cell contains 

thousands of copies. They can be all identical (homoplasmy) or they can be mixed, 

mutated copies with normal ones (heteroplasmy). If only one DNA molecule 

contains a mutated fragment, during this random distribution they can accumulate 

in different mitochondria (Wonnapinij P et al, 2008). When a certain amount of 

mitochondria in many cells of the tissue get these mutated copies, talk of 

mitochondrial disease (a threshold effect) begins (Schon EA et al, 1997). 
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As the distribution of mutated DNA in different organs and tissues differs, 

two patients with the same mutation can have different organs affected; a level of 

function impairment can also differ and change within years. In general, 

mitochondrial diseases affect organs and tissues with the highest energy demand 

most: muscles, brain, nervous tissue, etc. (Finsterer J, 2007) 

As stated previously, mtDNA mutates approximately 17 times more often 

than nDNA (Wallace DC et al, 1987) due to many different reasons, meaning that 

mitochondrial diseases can appear ‘de novo’ (Thorburn DR, 2004). Sometimes 

mtDNA mutation rate increases because of nuclear genes mutations encoding 

enzymes that control mtDNA replication. 

The way from the mutation to the clinical symptom of the disease is still not 

clearly understood. There are several hypotheses on this: mutations lead to the 

ROS accumulation, Ca2+ metabolism change and MPT activation, which cause 

apoptosis in summary (this scenario is probably more common for the 

neurodegenerative diseases) (Abramov A.Y. et al, 2010; Turnbull HE et al, 2010).  

The classification of the mitochondrial diseases is challenging because a 

purely clinical classification can not be applied, as many individuals do not fall 

into a specific category. Moreover, there is a poor correlation between phenotype 

and genotype: several individuals with the same clinical features can have different 

genetic variants (mtDNA mutation, mtDNA deletion, nuclear gene mutation etc.); 

and in addition, the research is still ongoing with changes being made all the time 

(Mancuso M et al, 2015). The only applicable classification is based on the 

molecular genetic basis of mitochondrial disease and consists of two groups: 

mtDNA mutations and nuclear DNA mutations. It is also arguable that the 

pathogenic allelic variant in a significant number of affected patients is not 

identified; moreover, there is still no comprehensive list of all genes known to 

impair mitochondrial function.  

A classification of mtDNA mutations is based on the mutated domain of the 

mtDNA and consists of the three groups: 

- Mutations of the structural genes. 
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These mutations alter a nucleotide sequence of the structural mtDNA genes. 

There are several subgroups of syndromes depending on the oxidative 

phosphorylation (OXPHOS) complex involved. 

1) Complex I genes mutations group is the largest group (LS, Leber 

syndrome, etc.) (Rotig A, 2010). 

2) Complex III genes mutations group consists of over 30 mutations so far, 

which cause myopathy as a rule (Wong LJ, 2007). They are associated 

with encephalopathy, cardiomyopathy, tubulopathy and LHON (Johns 

DR, Neufeld MJ, 1991; Valnot I. et al, 1999; Abu-Amero KK, Bosley 

TM, 2006) 

3) Complex IV genes mutations group is a large group of mutations, which 

is mostly associated with neuromuscular syndromes (Facts about genetics 

and neuromuscular diseases. Genetic and neuromuscular diseases, MDA, 

2011). 

4) The Complex V genes mutations group consists of several mutations 

associated with different symptoms, for instance, maternally inherited 

diabetes and deafness  (MIDD) (Desnuelle C et al, 2000). 

- Mutations of the rRNA and tRNA genes. 

Some mutations in the ribosome RNA and transport RNA that take part in 

mitochondrial protein synthesis can cause mitochondrial syndromes. 

Approximately 2/3 of the all mtDNA mutations are located in tRNA genes. For 

instance, a mutation A3243G from this group is diagnosed in 80% of MELAS 

syndrome patients, chronic progressive external ophtalmoplegia (CPEO) patients, 

Kearns–Sayre syndrome (KSS) patients, sensorineural hearing loss (SNHL) 

patients and in some MERRF syndrome patients (Silvestri G. et al, 1993; Sue CM 

et al, 1998; Finsterer J, 2007; Ma Y. et al, 2009), though it is essential to have high 

levels of heteroplasmy for the disease to appear in a clinical picture (Shoffner JM 

et al, 1990). 

- Structural changes of the large DNA segments 
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mtDNA deletions undermine many mitochondrial diseases and may play a 

key role in the aging process. There are two models of mtDNA deletions: an 

asynchronous mtDNA replication mechanism model and the double-strand 

mtDNA ruptures reparation model (Krishnan KJ et al, 2008). Most deletions are 

sporadic and are not transferred to the offspring (Chinnery PF et al, 2004). A big 

deletion of the domain 8488-13460 is known to be the most common cause of KSS 

syndrome (Maceluch JA, Niedziela M, 2006); the most common cause of CPEO is 

one or several deletions (van Goethem G et al, 2003; López-Gallardo E et al, 

2009); Pearson syndrome is also attributed to multiple mtDNA deletions (Rötig A 

et al, 1990). 

Nuclear DNA mutations also can cause mitochondrial disease because of the 

many genes encoding mitochondrial protein synthesis (Dimmer KS, Rapaport D, 

2008). Mitochondrial dysfunctions associated with these gene mutations are 

studied to a lesser extent. In 1989 Moraes showed dominant inheritance of multiple 

mtDNA deletions (Moraes CT et al, 1989)). In 1995 Bourgeron described a 

mutation of the flavoprotein subunit of the complex II (nucleus encoded) 

(Bourgeron T et al, 1995). In 1995 Suomalainen showed linkage to the 

chromosome 10q in autosomal dominant CPEO pedigrees with multiple mtDNA 

deletions (Suomalainen A et al, 1995). In 1996 Kaukonen showed that patients 

with autosomal dominant progressive external ophthalmoplegia had multiple 

deletions of mtDNA and a mild deficiency of one or more respiratory-chain 

enzymes carrying mtDNA-encoded subunits (Kaukonen JA et al, 1996). 

Nuclear DNA defects are more highly variable than mtDNA defects. The 

mutations of the genes can affect the oxidative phosphorylation system, protein 

synthesis, protein transport system, mitochondria movement and division, mtDNA 

transcription and replication and different enzymatic cycles and pathways in 

mitochondria (Zhu X et al, 2009). Symptoms of the mitochondrial diseases may 

vary considerably and this variety is mediated by threshold effect (Kmiec B et al, 

2006), heteroplasmy (Gilkerson RW, 2009) and the bottle-neck effect (Lightowlers 

R.N et al, 1997; Shoubridge EA, Wai T, 2007). 
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A classification of nuclear DNA mutations associated with mitochondrial 

diseases is also based on the mutated domain and consists of several groups: 

1. Mutations causing disorders of the mitochondrial respiratory chain  

A. Mutated genes encoding structural subunits (LS with complex I  

deficiency, leukodystrophy with complex II deficiency, etc.) 

B. Mutated genes encoding assembly factors (LS, hepatopathy and 

ketoacidosis, etc.) 

C. Mutated genes encoding translation factors (lactic acidosis, 

developmental failure, and dysmorphism; leukodystrophy and 

polymicrogyria, etc.) 

2. Disorders associated with multiple mtDNA deletions or mtDNA 

depletion (autosomal progressive external ophthalmoplegia, 

mitochondrial neurogastrointestinal encephalomyopathy, Alpers-

Huttenlocher syndrome, etc.) 

3. Other disorders (Coenzyme Q10 deficiency, Barth syndrome, 

mitochondrial phosphate carrier deficiency) (Chinnery PF, 2000). 

It can be assumed that the number of the syndromes of this group should be 

much higher as genes encoding 98% of mitochondrial proteins are located in the 

nucleus (Scarpulla RC, 2006). Elucidation of the molecular basis for these 

disorders is limited because only half of the estimated 1,500 mitochondrial proteins 

have been identified. 

We can see that a leading role of mtDNA mutations or nuclear genes 

mutations responsible for mitochondrial protein synthesis in many diseases has 

become evident. The number of known syndromes is increasing year by year. It 

was believed before that the cumulative incidence of all hereditary diseases 

associated with mitochondrial pathology is 1:5000 – 1:8000 in the total population 

(Chinnery PF, 2000), but some later studies proposed that at least one in 200 

healthy humans harbors a pathogenic mutation can potentially cause a 

mitochondrial disease in the offspring (Elliott et al, 2008).  
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Because of the remarkable expansion of knowledge on the molecular 

characterization of human disorders associated with the energy pathways of 

mitochondria, the term ‘mitochondrial disorders’ is currently restricted to indicate 

the clinical syndromes associated with abnormalities of OXPHOS only (Calvo S et 

al, 2006). OXPHOS disorders can be regarded as the most common group of 

inborn errors of metabolism and perhaps the most challenging to diagnose and 

manage because of their clinical and genetic variability. Initial symptoms are often 

nonspecic as respiratory-chain deficiency can theoretically give rise to any 

symptom, in any organ or tissue, at any age and with any mode of inheritance 

(Munnich A et al, 1996). A family history suggesting maternal inheritance is not 

common for children with OXPHOS disorders caused by mtDNA mutations; many 

of them have de novo mutations and many are likely to have nuclear-encoded 

disorders (Thorburn DR, 2004).  

Establishing the diagnosis of a mitochondrial disease can be difficult in 

many cases because some patients display a cluster of clinical features that fall into 

a discrete clinical syndrome (LHON, NARP, maternally inherited LS), but many 

do not. A diagnosis can be confirmed by molecular genetic testing of DNA 

extracted from a blood or muscle sample (a serial testing of single genes, a multi-

gene panel testing, and a genomic testing). A collection of the family history (3-

generation) can be useful in the detection of the inheritance mode, though many 

diseases appear as de novo mutations. There are also other methods of clinical 

investigation including plasma and/or CSF lactate concentration, ketone bodies, 

neuroimaging, cardiac evaluation, urinary organic acids, muscle biopsy, etc. They 

can be applied when the clinical picture is non-specific but there is a strong 

suspicion of the mitochondrial origin of the disorder. 

There is no effective treatment for the mitochondrial diseases so far, though 

many researchers work on this problem (Kanabus M et al, 2014). Some therapies 

are effective in animal disease models. There are also generalist (applicable to a 

wide spectrum of different disease conditions) and tailored (applicable to a single 
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condition) therapies emerging at the pre-clinical level, however, most of the 

approaches warrant more work (Zeviani M et al, 2015).  

Modern clinical practice for treatment of the various mitochondrial 

syndromes include early diagnosis and a prevention of the morbidity and mortality 

in certain conditions. Supportive pharmacological methods are being applied, 

special diets, physical exercises, surgery for some pathology, etc (Chinnery P et al, 

2006; DiMauro S, Rustin P, 2009; Finsterer J, 2010). Pharmacological treatment is 

focused on the mitochondrial functions reparation: increasing the respiratory chain 

enzymes activity, coenzymes predictors, electron carriers substitutes, antioxidants, 

etc., however not all patients respond to this treatment (Lopez LC et al, 2014; 

Nouws J et al, 2014). There are also some experimental methods based on 

interaction with the genetic system of mitochondria. Recently genetic engineering 

was employed into the clinical practice of reproductive medicine in UK, allowing 

women with mitochondrial diseases to have healthy children after their DNA was  

transplantated to the egg cell of the healthy woman with normal mitochondria (a 

three-person IVF procedure) (Knapton S, 2014). 

All these studies have made a revolution in the understanding of medical 

aspects of human energy metabolism. In addition to contributing to the theoretical 

pathology and medical taxonomy, one of the main achievements of these studies 

will be a set of effective diagnostic tools (clinical, biochemical, genetic, etc.) and 

maybe a treatment for mitochondrial pathology and mitochondrial disease. 

 

2.9. Mental disorders and mitochondrial pathology 

 

A hypothesis of a ‘lack of psychic energy as a result of the cell energy 

metabolism impairment’ in patients with mental disorders such as schizophrenia 

(SZ) was first postulated in the early 1950s (Easterday OD et al, 1952). This 

hypothesis seemed too revolutionary for the time period and did not accrue many 

followers even though further studies revealed a wide range of evidence for energy 

metabolism violation in different mental illnesses.  
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These lines of evidence can be divided into two groups. First group includes 

psychiatric signs and symptoms of mitochondrial diseases and syndromes. 

As neurons spend 40 to 60% ATP energy on maintaining the ion gradient on 

the membrane and transmitting the impulse, the OXPHOS impairment in 

mitochondrial diseases takes a key place in the clinical picture of ‘mitochondrial 

encephalomyopathy’ (Sukhorukov VS, 2008). Main neurological symptoms are 

mental retardation, seizures and stroke-like episodes. The high intensity of their 

severity often causes psychiatric symptoms to fall outside of the doctors’ attention. 

There are four main psychiatric symptoms in mitochondrial diseases: 

cognitive impairment, affective symptoms and anxiety, psychotic symptoms, 

personality disorders. Sometimes they manifest before the other classical 

symptoms of the mitochondrial disease appear and patients initiate treatment for 

psychosomatic condition (Norby S et al, 1994). The main difficulty of the 

differential diagnosis in those cases is the origin of the psychiatric symptoms: 

whether they act as the reaction to the disease (for instance, a lifetime major 

depressive disorder, MDD) or they can be assigned in the structure of the general 

mitochondrial condition. 

In 2000 Dr. Kato proposed a mitochondrial hypothesis of the mood disorders 

(Kato T, Kato N, 2000), which based on the findings that patients with BPD have 

an abnormal energy metabolism and abnormal mitochondrial DNA in the brain 

(Deicken RF et al, 1995; Kato T et al, 1997).  

The hypothesis suggests an impairment of cell metabolism associated with 

the mood disorders pathology, especially in the function of mitochondrial 

respiratory chain complexes (Rezin GT et al, 2009). Today there are several lines 

of evidence for different mitochondrial dysfunctions being an important 

component of BPD (Kato T, 2007; Kato T, 2008; Frey BN et al, 2007) and MDD 

(Erkan OM et al, 2004; Sarandol A et al, 2007). The evidence includes the results 

of magnetic resonance spectroscopy, electron microscopy, co-morbidity with 

mitochondrial diseases, the effects of psychotropics on mitochondrial functions, 

increased mtDNA deletion in the brain, and association with mtDNA 



 46 

mutations/polymorphisms or nuclear-encoded mitochondrial genes (Jou SH et al, 

2009).  

Dr. Kato and his research team found an altered brain energy metabolism 

resembling that of CPEO (Kato T, 2005) and discovered a decrease of intracellular 

pH and phosphocreatinine in frontal and temporal lobe in non-treated and lithium-

resistant patients with BPD. This data was then confirmed by other researches. Van 

Goethem discovered a causative gene for CPEO, comorbid with depression (Van 

Goethem G et al, 2001). Siciliano reported a linkage between CPEO and BPD 

(Siciliano G et al, 2003). Konradi discovered a specific mtDNA alteration in 

postmortem brains of patients with BPD (Konradi C et al, 2004) and Dager et al 

revealed a lactate accumulation in those brains (Dager SR et al, 2004). Gardner 

detected an ATP production decrease in frontal lobe, basal ganglia and skeleton 

muscles of patients with MDD and showed a correlation between ATP production 

decrease and clinical symptoms of the disorder (Gardner A et al, 2003). Stork and 

Renshaw proposed the existence of a mitochondrial dysfunction in the pathology 

of the BPD that involves impaired OXPHOS, a resultant shift toward glycolytic 

energy production, a decrease in total energy production and/or substrate 

availability, and an altered phospholipid metabolism (Stork C, Renshaw PF, 2005). 

Second group includes mitochondria dysfunction in different mental 

disorders. 

 

2.10. Mitochondria dysfunction in mood disorders 

 

Data from multiple studies covering the mitochondria function alteration in 

mood disorders can be accumulated in the following groups: 

1) Glycolytic shift: increased lactate levels and decreased potential of 

hydrogen  (pH) 

There is data providing information of the shift away from oxidative 

phosphorylation toward glycolysis. Regarding the altered pH, it was confirmed that 

patients with BPD have an increased/decreased pH in all three states of the disease: 
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euthymic, depressed and manic state. There is evidence for the pH decrease in the 

euthymic state and in the manic or depressed state it is increased (Kato T et al, 

1998; Hamakawa H et al, 2004). 

Some of these research indicates not only a pH increase but a lactate 

elevation in the brains of the patients with BPD (Dager SR et al, 2004) and in other 

sources (Regenold WT et al, 2009). The only energy production pathway in the 

cell with altered mitochondrial function that doesn’t meet the energy demand is 

anaerobic glycolysis in which pyruvate is converted into lactate. That’s why lactate 

levels are used worldwide to confirm a diagnosis of mitochondrial disorder. 

Research suggests that decreased pH observed in previous studies may somehow 

act as a result of the increased lactate levels (Clausen T et al, 2001). 

The glutamate-glutamine cycle alteration is also known to take part in the 

pathophysiology of the glycolytic shift in bipolar disorder (Castillo M et al, 2000; 

Michael N et al, 2003; Dager SR et al, 2004) through increasing the brain cells 

energy demand (which normally elevates along with the levels of 

glutamate/glutamine). As mentioned above if the cell energy production doesn’t 

meet the current demand the only energetic pathway is to increase the glycolysis 

rate, which manifestly increases lactate levels and decreases the pH (Rudkin TM, 

Arnold DL, 1999). 

Phosphocreatine levels also appear to be altered in patients with BPD (Kato 

T et al, 1995). This compound acts as a reservoir of ATP and, in case of high 

neuronal activity, its level decreases to maintain the ATP concentration (Erecinska 

M, Silver IA, 1989; Sauter A, Rudin M, 1993). A massive and long-term decrease 

can be a sign of insufficient energy supply in the cell (Rothman DL, 1994; Kato T 

et al, 1996) and was found in a number of studies investigating the 

pathophysiology of mitochondrial diseases (Eleff SM et al, 1990; Barbioli B et al, 

1992; Barbioli B et al, 1993; Welch KM et al, 1993).  

These findings contribute to the hypotheses of a glycolytic shift in the 

pathophysiological mechanism of mood disorders. 

2) Disrupted phospholipid metabolism in the cell 
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Normal cell metabolism includes cell membrane synthesis and maintenance 

which takes 10 to 15% of the verall ATP produced in the cell. Consequently when 

cell energy supply is reduced due to mitochondrial dysfunction or other reasons it 

is likely that phospholipid metabolism also gets broken. There are several studies, 

indicating this process in patients with BPD, for instance, investigating total 

choline levels (Sharma R et al, 1992), myo-inositol levels (Allison JH, Stewart 

MA, 1971; Manji HK et al, 1996; Silverstone PH et al, 2002), 

phosphoethanolamine and other phosphomonoethers levels (Kato T et al, 1993; 

Yildiz A et al, 2001) and proposing other hypotheses regarding the phospholipid 

metabolism that can potentially bring understanding to a complex pathogenetic 

mechanism of mood disorders.  

3) Oxidative stress 

As said previously, oxidative stress leads to various consequences within the 

cell, especially in mitochondria and DNA, which has now been established beyond 

reasonable doubt (Morris G, Berk M, 2015). Some of the consequences were found 

to be associated with symptom severity in mood disorders. They include decreased 

antioxidant response, increased calcium influx, lipid peroxidation, enzymes 

imbalance, nuclear DNA and mtDNA damage and others (Erkan OM et al, 2004; 

Forlenza M, Miller E, 2006; Andreazza AC et al, 2007; Machado-Vieira R et al, 

2007; Sarandol A et al, 2007; Soeiro-de-Souza MG et al, 2013; Brown MC et al, 

2014). Some of these findings were studied in further detail and were found 

responsive to mood stabilizers such as lithium and others (Machado-Vieira R et al, 

2014). 

4) Structural and morphological changes of the mitochondria 

Mitochondrial shape and intracellular distribution of mitochondria are 

believed to be closely linked to the normal energy metabolism in the cell (Escobar-

Henriques M, Langer T, 2006; Logan DC, 2006; McBride HM et al, 2006) and 

consequently any change in the size or shape or quantity of mitochondria  or 

mitochondrial reticulum in different cell types can cause diverse effects including 

normal aging and apoptosis (Bossy-Wetzel E et al, 2003), ROS production and cell 
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respiration (Picard M et al, 2013) and also some pathological events (Hermann GJ 

et al, 1998; Koopman WJ et al, 2005; Mannella CA, 2006). There are several 

mitochondrial structural abnormalities reported in patients with BPD and MDD. 

They include abnormal size, increased/decreased quantity in the cell or distribution 

within cell regions, abnormal shape, location/movement, and different changes in 

the morphology of mitochondria (Cataldo AM et al, 2010). 

5) Impairment of the OXPHOS and respiratory chain activity 

Research data confirms an impaired activity of different respiratory chain 

complexes and OXPHOS components. For instance, a decreased complex I activity 

and increased protein oxidation and nitration was found in the prefrontal cortex of 

patients with BPD (Andreazza AC et al, 2010). In animal models of mania a 

decreased activity of Krebs cycle enzymes, mitochondrial respiratory chain 

complexes, and creatine kinase in different brain structures were observed 

(Valvassori SS et al, 2010; Rezin OT et al, 2014) and all these dysfunctions were 

later reversed by mood stabilizers (Feier G et al, 2013). There are also studies 

linking OXPHOS of tubulin and actin, mitochondria movement, and synaptic 

function in bipolar disorder, suggesting that mood stabilizers may have different 

influences on OXPHOS and ETS and consequently on the direction and extent of 

mitochondrial movement (Corena-McLeod M et al, 2013). Impaired activity of 

ETS complexes of different cell types of patients with mood disorders is also 

reported by many researchers (Rezin GT et al, 2009; Gubert C et al, 2013; 

Andreazza AC et al, 2013). Vulnerability to depression in animal models is also 

linked to the impaired oxidative metabolism in mitochondria (Harro J et al, 2014). 

There are also studies suggesting alterations in levels of protein oxidation and 

nitration in dopamine-rich regions of the prefrontal cortex (Kim NK et al, 2014) 

and mitochondrial dysfunction and decreased expression of genes of the electron 

transport chain, particularly that of complex I (Andreazza AC et al, 2010; Scola G 

et al, 2012) in patients with BPD. 

6) Impaired metabolic activity in general 
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Different energy metabolism abnormalities are widespread in the brains of 

patients with mood disorders. For instance, lower metabolic rates were observed in 

different brain regions of patients with BPD and MDD (prefrontal cortex, anterior 

cingulate cortex, caudate nucleus) (Videbech P, 2000). In patients with BPD this 

rate is reported to be increased during manic episode (frontal lobe and medial 

temporal lobe, thalamus, occipital lobe) (Strakowski SM et al, 2008). There is also 

research reporting a decrease of various metabolic compounds in the brain 

involved in different processes in mitochondria as well as an altered mitochondrial 

response to stimulation in patients with SZ, BPD and MDD (Frey BN et al, 2007; 

Naydenov AV et al, 2007; Shao I et al, 2008). 

A decrease of cerebral N-acetyl-aspartate, a compound strongly connected 

with the mitochondria metabolism, was also found in the brain of patients with 

BPD. Normally N-acetyl-aspartate is present at concentrations of 8-10 mmol/l 

(Urenjak J et al, 1993) and is synthesized in mitochondria. This synthesis is energy 

dependent and stimulated by ADP (Patel TB, Clark JB, 1979). Though the exact 

function of this substance remains unclear, it is hypothesized to play an integral 

role in the energetics of neuronal mitochondria (Stork C, Renshaw PF, 2005), and 

its rates are strongly related to mitochondrial energy metabolism (Truckenmiller 

ME et al, 1985; Clark JB, 1998). Several researchers revealed a decreased N-

acetyl-aspartate levels in patients with BPD, with a correlation of illness duration 

(Winsberg ME et al, 2000; Cecil KM et al, 2002; Bertolino A et al, 2003; Deicken 

RF et al, 2003) or the effect of mood stabilizers on N-acetyl-aspartate levels. Other 

studies did not find any alteration on these levels (Ohara K et al, 1998; Hamakawa 

H et al, 1999; Castillo M et al, 2000) perhaps because of the specific treatment. 

7) Other findings 

There are several studies proposing other causes of mitochondrial pathology 

associated with mental disorders: Ca 2+ homeostasis (Dubovsky SL et al, 1992; 

Kusumi I et al, 1992; Kato T et al, 2003); dopamine and other neurotransmitters 

dysregulation (Brenner-Lavie H et al, 2009; Chen S et al, 2008); environmental 

factors (Kyle UG et al, 2006; Kroll JL, 2007) and other impacts and risk factors 
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known to affect mitochondria and/or cell respiration. There is a strong research 

trend regarding the studies for the genetic cause of mood disorders among these 

impacts. 

 

2.11. Genetic research for a mitochondrial-associated cause of mood 

disorders 

 

Searches for a genetic cause of mood disorders have yielded massive but 

inconclusive results. There is a suggestion that mitochondrial genetic variations 

and mtDNA mutations may play an important role in psychopathological 

symptoms of mood disorders, but the evidence is still limited and inconsistent 

(Anglin RE et al, 2012).  

As mentioned above, Dr. Kato and colleagues found an increased ratio of 

deletions in the postmortem brains of the patients with BPD (Kato T, Kato N, 

2000) and later reported a significantly higher rate of the 5178C mtDNA genotype 

accompanied by a lowered pH levels in similar groups of patients (Kato T et al, 

2000). In 2004 Konradi and colleagues found 'a pronounced and extensive 

decrease in the expression of genes regulating oxidative phosphorylation and the 

ATP-dependent process of proteasome degradation’ in patients with BPD (Konradi 

et al, 2004). Iwamoto and colleagues have reported a differential expression of 

mitochondria-related genes between controls and subjects with BPD (Iwamoto et 

al, 2005). Sun et al found that expression of 23 mitochondria-related genes, 

including downregulated components of the mitochondrial ETS, were altered in 

subjects with BPD (Sun X et al, 2006). Washizuka et al reported a downregulation 

of a complex I gene in lymphoblastoid cell lines (Washizuka S et al, 2009) and 

Naydenov found similar abnormalities in peripheral blood mononuclear cells of 

patients with BPD (Naydenov et al, 2007). MacDonald et al found a 

downregulation of creatine kinase mRNA levels in the hippocampus and prefrontal 

cortex of patients with BPD (MacDonald ML et al, 2006). 
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McMahon demonstrated that there is a disproportion in several mtDNA 

positions (incl. 10398A) between family members affected by maternally 

transmitted bipolar disorder and healthy ones (McMahon FJ, 2000). Kato et al 

found an increased level of mtDNA deletions in the brains of patients with BPD 

(Kato T et al, 1997; Kato T et al, 1997a) and also suggested that mtDNA 10398A 

position mutation is a risk factor for bipolar disorder (Kato T, 2001). Turecki et al 

studied families of patients with a good response to lithium treatment and found 

some locuses on different chromosomes possibly implicated in the pathogenesis of 

BPD (Turecki G et al, 2001).  

Altered mitochondrial genome expression has also been suggested, 

particularly on the gene encoding complex I (Iwamoto K et al, 2005). Later a 

mitochondrial DNA 3644 mutation was associated with bipolar disorder 

(Munakata K et al, 2004), and an accumulation of mtDNA 3243 mutation in the 

brains of bipolar patients was found (Munakata T et al, 2005). Munakata also 

discovered a linkage between the polymorphism in the mt-ND1 gene 3644T>C 

(associated with BPD) and a decreased mitochondrial membrane potential and 

complex I activity (Munakata K et al, 2004). Later 10398A>G polymorphism has 

been linked to decreased mitochondrial matrix pH, and higher baseline and post-

stimulation mitochondrial Ca2+ levels in patients with BPD and those effects  

observed mostly in patients who did not respond to lithium treatment were 

modulated by valproic acid (Kazuno AA et al, 2008). Konradi suggests that 

observed mtDNA mutations in BPD ‘might be somatic rather than inherited, 

indicating either an overall increased vulnerability of mtDNA, or a higher exposure 

to DNA-damaging factors’ (Konradi et al, 2004). 

There is also increased incidences of maternal inheritance in some mood 

disorders which can also be an indirect implication of genetic mitochondrial 

pathology involved in the pathogenesis of the disease.  

Several researchers did not find any evidence for mtDNA deletions or 

mutations taking part in the development of  BPD (Stine OC et al, 1993; Iwamoto 

K et al, 2005) or, in contrast to the previously mentioned studies, discovered the 
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increased mRNA levels of complex I genes in BPD (Ben-Shachar D, Karry R, 

2008). Other researchers discovered mutations typical for patients with BPD 

compared with healthy individuals (5178, 10398 positions in complex I zone) and 

the difference in mtDNA haplotypes between these two groups (Kirk R et al, 

1999).  

There is also data confirming not only the complex I mtDNA genes mutation 

but also nDNA (Washizuka S et al, 2003; Munakata K et al, 2004; Iwamoto K et 

al, 2005). As mentioned above, Konradi et al explored respiratory chain genes and 

found molecular-genetic pathology in both the prefrontal cortex and gyppocampus 

of the patients with BPD (Konradi C, 2004). Later this and other research found 

affected by the pH (an observed downregulation can be an artifact of sample pH 

rather than indicative of disease characteristics) (Vawter MP et al, 2006). But later 

there was a repeated data regarding the decreased expression of a cluster of genes 

in components of the mitochondrial ETS in postmortem BPD samples even with 

contriolled pH (Iwamoto K et al, 2005). 

Research on the apoptosis as the possible pathogenetic mechanism of 

affective disorders revealed an upregulation of 19 apoptotic genes (out of 44) in 

postmortem brains of patients with BPD although antioxidant genes were found to 

be markedly downregulated (Benes FM et al, 2006). Other research showed a 

significant downregulation of ubiquitin cycle genes and intracellular transport in 

patients with BPD (Ryan MM et al, 2006); an amount of shared suicide candidate 

genes in patients with MDD, BPD and SZ (Kim S et al, 2007); genes of the ETS, 

phosphatidylinositol-signalling system (Harwood AJ, 2005) and glycolysis/ 

gluconeogenesis (Sun X et al, 2006); and a global down-regulation of 

mitochondrial genes, such as those encoding respiratory chain components, in BPD 

patients (though the first result is supposed to be affected by drug treatment) 

(Bezchlibnyk YB, 2001; Iwamoto K et al, 2004). 

Symptoms of mood disorders may also be the first psychiatric manifestation 

of the MD or are somehow comorbid. Fattal reported 19 cases of mitochondrial 

diseases accompanied by different psychopathological symptoms (Fattal O et al, 
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2006). Di Mauro provided a lot of data on depression as a common symptom of the 

well-known mitochondrial disease CPEO (DiMauro S, Moraes CT, 1993). 

Siciliano suggested an association between MELAS (another mitochondrial 

disease) and BPD (Siciliano et al, 2003) and Grover reported a case of MELAS 

misdiagnosed as mania (Groover S et al, 2006). 

There are several other studies indicating that kind of comorbidity, including 

animal models (Fattal O et al, 2006; Kato T, 2006; Anglin RE et al, 2012). 

Moreover, genealogical studies have shown an increased prevalence of mood 

disorders symptoms among the maternal relatives of the patient with mitochondrial 

disease. For instance, Boles revealed a high predisposition to affective disorders in 

mothers and other relatives on maternal line of patients with mitochondrial 

diseases (Boles RG, 2005). Shoffner measured depression levels in relatives of the 

proband with mitochondrial disease on the maternal line and found an increase of 

three fold in comparison with healthy relatives (Shoffner JM, Wallace DC, 1995). 

Burnet conducted an anonymous survey in the group of patients with 

mitochondrial diseases and their family members and detected an increased 

frequency of depression symptoms in relatives on the maternal side (Burnet BB et 

al, 2005). 

This research data contributes to the hypothesis of mitochondria dysfunction 

playing a significant role in the pathogenesis of depression and bipolar disorder 

although we still can’t conclude that certain symptoms of mood disorders have a 

causal relationship with certain mitochondrial pathology. 

 

2.12. Other biological hypotheses of the bipolar disorder 

 

Current knowledge provides the background for formulation of several 

biological hypotheses of BPD based on the identification of biomarkers for 

vulnerability, disease expression and course, and treatment response. Biomarkers 

for BPD are still being researched: structural brain changes are searched for using 

neuroimaging methods; polymorphisms in a number of susceptibility genes have 
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been discovered in genetic studies; and neurochemical biomarkers are studied in 

periphery above all. (Doung A et al, 2015; Scola G, Andreazza AC, 2014) 

Neuroimaging 

Structural imaging studies in patients with BPD have identified anatomical 

and neuropathological abnormalities, which are associated with a 

neuroprogression. Moreover, previous mild traumatic brain injury has been 

identified as a risk factor for development of heterogeneous neuropsychiatric 

diseases, including BPD. (Perry DC et al, 2016)  

Disruptions to cortico–striatal–limbic circuits are the most straightforward 

method of describing the pathophysiology and symptomatology of affective 

disorders. (Mayberg HS, 2003; Savitz J, Drevets WC, 2009; Licznerski P, Duman 

RS, 2013) Morphometric measurements discover in BD patients enlargement of 

lateral and third ventricles after several manic episodes (Strakowski SM et al, 

2002)), progressive decline in hippocampal, fusiform, and cerebellar gray matter 

density after repeated episodes (Moorhead TW et al, 2007), subregion-specific 

gray matter volume reductions in the prefrontal cortex (López-Larson MP et al, 

2002), and increased rates of deep white matter hyperintensities (Kempton MJ et 

al, 2008). Neuroimaging studies have consistently demonstrated association of 

grey matter reduction in left rostral anterior cingulate cortex and right frontoinsular 

cortex thickness; that is, the most robust grey matter reductions in BPD occur in 

anterior limbic regions, which may be related to executive control and emotional 

processing abnormalities (Bora E et al, 2010). In a large study of 1710 BPD 

patients and 2594 healthy controls, the volumes of the nucleus accumbens, 

amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, and lateral 

ventricles were measured. BPD patients have been found to have volumetric 

reductions for the mean hippocampus and thalamus and enlarged lateral ventricles 

(Hibar DP et al, 2016). However, brain volume may be altered by environmental 

factors, including medication.  

Imaging data suggest that decreased activity in prefrontal cortical areas may 

result in inadequate modulation of limbic/subcortical areas, which contributes to 
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depressed mood and inadequate cognitive coping. Both regional gray-matter and 

white-matter changes appear to be present relatively early in BPD development 

(Maletic V, Raison C, 2014). Functional magnetic resonance imaging (fMRI) 

confirmed that excessive activation in brain regions associated with emotional 

regulation may contribute to the affective symptoms of BPD. Altered brain 

activation was identified in various regions in the cortico-limbic pathways; the 

most consistent findings were overactivation of the amygdala, striatum, and 

thalamus (Cerullo MA et al, 2009). All studies using fMRI in BPD supported the 

cortico-limbic hypothesis and suggest that connectivity can be more complex and 

that intra-regional disturbances should also be studied (Vargas C et al, 2013).  

Neurotransmitters  

The biological hypotheses of mood disorders are under development (Fišar 

Z, 2013). The monoamine hypothesis was initially formulated as catecholamine 

(Schildkraut JJ, 1965) and/or indolamine (Coppen A, 1967) deficiencies in the 

brain; that is, as the neurotransmitter hypothesis. Later, the monoamine hypothesis 

was revised to include the role of neurotransmitter receptors, transporters, 

catabolizing enzymes (monoamine oxidase [MAO], and COMT), and other brain 

neurobiological systems (Savitz J, Drevets WC, 2009; Heninger GR et al, 1996; 

aan het Rot M et al, 2009; Hamon M, Blier P, 2013).  

The monoamine hypothesis of mood disorder posits that an imbalance in 

monoaminergic neurotransmission in the central nervous system is causally related 

to the clinical features of depression or mania. This hypothesis has been supported 

by mechanisms of action of antidepressants (Fišar Z, 2013; Hillhouse TM, Porter 

JH, 2015; Fišar Z, 2016). Moreover, many candidate genes associated with BPD 

encode compounds influencing directly the monoamine neurotransmitter systems, 

for example, SLC6A4 (encoding serotonin transporter), TPH2, DRD4, SLC6A3 

(encoding dopamine transporter), MAO-A (encoding MAO type A, MAO-A), and 

COMT (Craddock N et al, 2001; Serretti A, Mandelli L, 2008; Rivera M, 2009).  

The advanced monoamine hypothesis46 supposes that serotonin or 

norepinephrine concentrations in the brain are regulated by MAO-A activity, and 
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that the severity of symptoms of depression is linked to changes in the activity of 

monoamine transporters in specific brain regions. The hypothesis has been 

supported by observation of elevated MAO-A density and reduced 5-HTT density 

during depressive episode. (Meyer JH et al, 2006; Meyer JH et al, 2009; Selvaraj S 

et al, 2011)  

Hyperdopaminergic function has been reported in BPD. A dopamine 

hypothesis of BPD was formulated that suggests a role of increased dopaminergic 

transmission in mania and the converse in depression (Berk M et al, 2007; Dunpol 

BW, Nemeroff CB, 2007). The hypothesis is supported by the fact that altered 

availability of dopamine transporter has been accepted as a biomarker for BD 

(Anand A et al, 2011).  

Monoamine depletion studies, genetic association studies, PET studies, and 

mechanism of action of antidepressants supported an important role of disturbed 

monoamine neurotransmission in the pathophysiology of mood disorders but have 

not evidenced the primary role of monoaminergic system in development of the 

disorder. The molecular changes underlying imbalances of neurotransmission in 

BD are not agreed upon; it is hypothesized that alterations in excitatory amino acid 

transporters, 5-HTT, and dopamine transporter contribute to altered glutamatergic 

and monoaminergic function in BD patients (Rao JS et al, 2012).  

The hypothesis that the dysfunctional muscarinic acetylcholine system is 

involved in the pathophysiology of BPD has been supported by the finding that 

there is reduced muscarinic acetylcholine M2 receptor binding in subjects with 

BPD (Cannon DM et al, 2006), which could be accounted for by a reduction in M2 

receptor affinity caused by genetic variation in the gene for M2 receptor (Cannon 

DM et al, 2011).  

Glutamate and GABA systems are posited in the pathophysiology of major 

depression and BD that extends beyond monoaminergic dysfunction (Lener MS et 

al, 2016). Glutamate levels were increased in the post-mortem brains of subjects 

with BD, while the glutamate/glutamine ratio was decreased following valproate 

treatment, and GABA levels were increased after lithium treatment. The balance of 
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excitatory/inhibitory neurotransmission seems to be central to the BPD (Lan MJ et 

al, 2009). A meta-analysis confirmed that brain glutamate + glutamine levels are 

elevated in BPD patients (Gigante AD et al, 2012),  which supported an important 

role of glutamate in the pathophysiology of BD. Due to the role of glutamate in 

neurotransmission, brain energy metabolism, astrocyte function, neurotoxicity, 

neuroplasticity, and learning, the glutamate hypothesis of mood disorders is 

expected to complement and improve the prevailing monoamine hypothesis 

(Sanacora G et al, 2008; Jun C et al, 2014). The hypothesis is supported by the 

observation that antagonists of glutamate N-methyl-D-aspartate (NMDA) receptor 

produce rapid antidepressant effect (Gerhard DM et al, 2016; Machado-Vieira R et 

al, 2015). 

Neurotrophic factors 

Neurotrophic factors are growth factors that promote neuroplasticity, 

neurogenesis, survival, differentiation, and maintenance in healthy and 

regenerating brain cells. They include nerve growth factor (NGF), BDNF, 

neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), glial cell line-derived neurotrophic 

factor (GDNF), and ciliary neurotrophic factor (CNTF). They are two classes of 

neurotrophic receptors: low-affinity nerve growth factor receptor (LNGFR, p75 

neurotrophin receptor) and a family of high-affinity tropomyosin receptor kinase 

(Trk, also tyrosine receptor kinase; types TrkA, TrkB, and TrkC). Activation of 

LNGFR by neurotrophins (NGF, BDNF, NT-3, and NT-4) may induce apoptosis; 

activation of Trk receptors support cell growth and may be antiapoptotic (pro-

survival). TrkA binds NGF, TrkB binds BDNF, NT-3, and NT-4, and TrkC binds 

NT-3.  

Intracellular signaling pathways of growth factors include: (i) Ras/mitogen 

activated protein kinase (MAPK) pathway; (ii) phosphatidylinositol-4,5- 

bisphosphate 3-kinase (PI-3K)/protein kinase B (Akt)/glycogen synthase kinase 3 

(GSK-3) pathway; and (iii) phosphoinositide pathway (phospholipase Cγ 

[PLCγ]/protein kinase C [PKC]) linked to MAPK, Akt, and/or Ca2+/calmodulin-

dependent protein kinase (CaMK) (Kaplan DR, Miller FD, 2000; Jones DM et al, 
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2003; Miller FD, Kaplan DR, 2003; Skaper SD, 2008; Fišar Z, Hroudová J, 2010). 

An important intracellular regulator of apoptosis and cell survival in the 

developing, adult, and injured nerve cells is the p53 protein family (Jacobs WB et 

al, 2006). Neurotrophin signaling and vesicular transport is linked; disturbances of 

vesicular transport lead to disturbed neurotrophin signaling and to diseases of the 

nervous system (Bronfman FC et al, 2014).  

Disturbances in activities of neurotrophic factors and related impairment in 

plasticity and resilience in brain cells has been reported in BPD. Attention is paid 

to neurotrophins and other growth factors that regulate function of brain cells, such 

as BDNF, GDNF, insulin-like growth factor 1 (IGF-1), and vascular endothelial 

growth factor (VEGF). (Einat H, Manji HK, 2006; Scola G, Andreazza AC, 2015) 

Brain-derived neurotrophic factor  

Post-mortem brains of BPD patients have shown significantly decreased 

protein and mRNA levels of BDNF in the frontal cortex, which indicates that 

decreased BDNF is part of the pathophysiology of BPD (Kim HW et al, 2010). 

Several meta-analyses have shown that there may be a correlation between low 

BDNF levels and the emergence of BPD (Fernandes BS et al, 2011; Fernandes BS 

et al, 2014; Lin PY, 2009). A systematic review and meta-analysis confirmed that 

peripheral BDNF levels in BPD are consistently reduced during manic and 

depressive episodes and plasma levels of BDNF are recovered after treatment for 

acute mania, that is, the BDNF plasma or serum levels are not different in 

euthymia when compared to controls (Fernandes BS et al, 2015; Polyakova M et 

al, 2015; Fernandes BS et al, 2011).  

Thus, reduction in serum BDNF may be a potential biomarker of acute 

episodes and could differentiate patients in a manic or depressive episode from 

those in the euthymic phase. Moreover, serum BDNF may distinguish BPD from 

unipolar depression (Fernandes BS et al, 2009), may be a biomarker of MD 

progression and severity (Fernandes BS et al, 2011; Fernandes BS et al, 2015; 

Grande I et al, 2010), may discriminate initial and advanced BD episodes 

(Karamustafalioglu N, 2015), and may reflect response to treatment (Tramontina 
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JF et al, 2009; Fernandes BS et al, 2015). The role of BDNF in the 

pathophysiology of BPD has been supported by findings that BDNF mRNA is 

decreased in cingulate and temporal cortices and in the hippocampus (Thompson 

Ray M et al, 2011; Ray MT et al, 2014) and that precursor protein proBDNF 

encoded by the BDNF gene has been suggested as a biomarker of mood disorders 

(Hashimoto K, 2010).  

Note that BDNF levels in the blood could be derived from its production by 

both brain and peripheral tissues, such as skeletal muscle, liver, and the 

cardiovascular system, and BDNF in the blood is stored predominantly in platelets 

(Pláteník J et al, 2014). Nevertheless, intact BDNF in the peripheral circulation 

crosses the blood–brain barrier (BBB) by a high-capacity saturable transport 

system (Pan W et al, 1998) and blood and plasma BDNF concentrations reflect 

brain-tissue BDNF levels (Klein AB et al, 2011).  

BDNF plays a key role in the pathophysiology of stress-related mood 

disorders. Acute stress, such as partial sleep deprivation, induced a fast increase in 

BDNF serum levels, whereas long-term stress led to sleep disturbance and 

depression as well as decreased BDNF levels (Schmitt K et al, 2016). The role of 

BDNF in the pathophysiology of BD has been evidenced by elevation of serum 

and brain BDNF levels by antidepressant, mood stabilizers, and antipsychotics 

(Sen S et al, 2008; Björkholm C, Monteggia LM, 2016), including lithium 

(Rybakowski JK, 2014).  

The Val66Met polymorphism (refSNP Cluster Report: rs6265) of the BDNF 

gene is a functionally relevant SNP affecting the secretion of BDNF and is 

implicated in differences in hippocampal volumes. The hippocampal volumes were 

reduced signifi- cantly in association with the presence of the BDNF met allele and 

with BPD diagnosis (Chepenik LG et al, 2009). However, a systematic meta-

analytical review of findings on the impact of the rs6265 SNP on hippocampal 

volumes in patients with BD suggested that there is no association between this 

BDNF polymorphism and hippocampal volumes (Harrisberger F et al, 2015). 

Another meta-analysis was performed to determine the overall strength of 
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associations between BDNF genetic polymorphism Val66Met and susceptibility to 

BD. It was concluded that there is no compelling evidence to support Val66Met 

polymorphism in the BDNF gene playing an important role in the susceptibility to 

BPD (Wang Z et al, 2014). However, plasma BDNF levels were significantly 

negatively correlated with depression scores in patients with BD. It was supposed 

that plasma BDNF in BD is not affected by BDNF Val66Met gene variants, but by 

progression of the illness itself (Chen SL et al, 2014).  

Other growth factors  

There are few studies that evaluate the role of NGF in the pathophysiology 

of BPD and the results are inconsistent (Scola G, Andreazza AC, 2015). For 

example, decreased plasma NGF was reported in BPD in the manic episode 

(Barbosa IG et al, 2011), but another study stated significantly higher IGF-1 in 

patients with bipolar I disorder and no changes in NGF (Kim YK et al, 2013).  

Effects of NT-3 and NT-4 also require more research. Serum NT-3 levels in 

drug-free and medicated patients were found to be increased when compared with 

controls and serum NT-3 levels did not differ between drug-free and medicated 

patients (Fernandes BS et al, 2010). Serum concentrations of NT-4 were reported 

to be significantly higher in BD patients than in controls (Walz JC et al, 2009). At 

baseline, in bipolar depressed patients, there were no differences between 

responders and non-responders to treatment with ketamine in serum BDNF, NGF, 

NT-3, NT-4, or GDNF (Rybakowski JK et al, 2013).  

A study of GDNF in BPD revealed that different stages of the disorder and 

drug treatment can alter activity of GDNF (Scola G, Andreazza AC, 2015). Lower 

GDNF concentrations might be involved in the pathophysiology of BD and drug 

treatment increases the GDNF (Zhang X et al, 2010).  

The evidence has been provided that IGF-1 plays a role in the 

pathophysiology of BPD (Scola G, Andreazza AC, 2015). The IGF1 gene has been 

identified as a candidate gene for susceptibility to BPD (Pereira AC et al, 2011). 

Peripheral levels of IGF-1 were found to be unchanged in patients with BPD 

compared to controls (Palomino A et al, 2013); however, it seems that lithium may 
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regulate IGF-1 levels (Squassina A et al, 2013). Low expression of IGF1 has been 

suggested as a putative biomarker for lithium unresponsiveness (Milanesi E et al, 

2015).  

Plasma VEGF levels were elevated in patients with a manic episode of BD, 

which may be associated with a neuroprotective role for VEGF (Lee BH, Kim YK, 

2012). Increased expression of the VEGF gene was also found in a depressive 

episode of BD compared to healthy control subjects (Shibata T et al, 2013). 

Lithium treatment led to decrease of VEGF mRNA levels (Kikuchi K et al, 2011). 

These results indicate that VEGF may vary with the episode of the disease and 

may be associated with the pathophysiology of BPD (Scola G, Andreazza AC, 

2015).  

It was reported that some members of the neurotrophin family, such as NGF, 

NT-3, and NT-4, can cross the BBB; NGF had the fastest influx rate and NT-3 the 

slowest (Pan W et al, 1998b). CNTF is saturably transported across the BBB from 

blood to brain (Pan W et al, 1999). IGF-1 enters the CNS by a saturable transport 

system at the BBB, which functions in synchrony with IGF-binding proteins in the 

periphery to regulate the availability of IGF-1 to the CNS (Pan W et al, 2000). It 

indicates that peripheral administration of some neurotrophins could have 

therapeutic effects within the CNS. In contrast, GDNF and VEGF do not cross the 

BBB (Boado RJ, Pardridge WM, 2009); VEGF enhances angiogenesis and 

promotes BBB leakage in the ischemic brain (Zhang ZG et al, 2000).  

Neurotrophic hypothesis  

Neurotrophic, neuroplasticity, and neurogenesis hypotheses were 

formulated, supposing a key role of post-receptor and intracellular processes 

(regulating intercellular and intracellular signaling) in the development of mood 

disorders. These hypotheses emphasize the role of stress, growth factors and 

neurogenesis in the pathophysiology of BPD (Einat H, Manji HK, 2006; Duric V, 

Duman RS, 2013; Zarate CA et al, 2006; Duman RS, 2014; Duman RS et al, 1997) 

and they are supported by neurotrophic effects of various antidepressants and 

mood stabilizers. Wnt signaling pathway and GSK-3 activity have been implicated 
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in both regulating neuroplasticity and neuroprotection (Gould TD et al, 2002; 

Gould TD et al, 2006).  

The neurogenesis hypothesis of depression proposes that depression can 

arise from impaired hippocampal neurogenesis and that antidepressants stimulate 

neurogenesis. Coupling of hippocampal neurogenesis to pathophysiology of 

depression requires further research to be confirmed (Berk M et al, 2014; Santarelli 

L et al, 2003; Sapolsky RM, 2004; Gass P, Riva MA, 2007).  

Neuroprogression is an important mechanism of BPD, and neurotrophins are 

key regulators of neurogenesis and neuroplasticity (Berk M et al, 2014; Scola G, 

Andreazza AC, 2015; Pittenger C, Duman RS, 2008). The neurotrophic hypothesis 

(Einat H, Manji HK, 2006; Duman RS et al, 1997; Duman RS, 2002; Zarate CA et 

al, 2006) postulates that mood disorders, such as BPD, are associated with a lower 

activity of neurotrophic factors, such as BDNF. Vulnerability to depression can 

arise as a result of neuronal damage (e.g., after chronic stress, long-term increased 

levels of glucocorticoids, ischemia, hypoglycemia, viral infections, and action of 

neurotoxins) and therapeutic effects of antidepressants may consist in activation of 

higher expression of neurotrophin BDNF and its receptor TrkB (e.g., through 

activation signaling pathways linked to monoaminergic systems) leading to 

increased neuronal plasticity, reactivation of cortical plasticity, and resumption of 

neuronal functions (Castrén E, Rantamäki T, 2010).  

 

2.13. Mood disorders treatment and its effect on mitochondrial function 

 

The mood stabilizing effect of drugs was discovered by chance in many 

cases and so consequently the mechanism responsible for stabilizing moods is still 

not clearly understood. It is known that several of the drugs are metabolized in 

mitochondria and take part in various mitochondrial processes, pointing to why it 

is very important to study their effects on mitochondrial metabolism. Moreover, 

the research data regarding the effects of different psychotropic drugs on 

mitochondria function is also for mitochondria dysfunction involved in the 

pathogenesis of the psychiatric diseases.  
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The observed effects cover different aspects of the possible impairment. 

Most patients with mood disorders receive drug treatment with mood stabilizers, 

antidepressants and/or antipsychotics. There is data reflecting different effects of 

psychotropic drugs on mitochondria, and they are reported to normalize the 

number of mitochondria in the brain (Iniwa IM et al, 2005), reduce the oxidative 

stress (Moylan S et al, 2014), modulate the expression of the antiapoptotic genes 

(Zarate CA et al, 2006)), increase energy metabolism and decrease oxidative 

damage under specific pathological conditions such as excitotoxicity and oxidative 

stress (Nonaka S et al, 1998; Wang JF et al, 2004; Shao L et al, 2005; Cui J et al, 

2007; Machado-Vieira R et al, 2007; Khairova R et al, 2012), inhibite some 

enzymes pathologically involved in mitochondrial energy metabolic processes 

(Chen G et al, 1999; Jope RS, Roh MS, 2006) and processes themselves 

(Burkhardt C et al, 1993; Prince JA et al, 1997; Prince JA et al, 1998; Banerjee U 

et al, 2012), down- or up-regulate gene expression (Ozaki N, Chuang DM, 1997; 

Bosetti F et al, 2002; Sun X et al, 2006), inhibit mitochondrial functions and 

expression of mitochonria-related genes in the brain (Weinbach BC et al, 1986; 

Keller BJ et al, 1992; Curti C et al, 1999; Modica-Napolitano JS et al, 2003), 

modulate calcium levels (Wasserman MJ et al, 2004) and some other activities 

(Moretti AI et al, 2003) though some of the first-generation antipsychotic drugs 

might have negative effects on mitochondrial respiration (Maurer I, Moller HJ, 

1997; Sagara Y, 1998).  

Lithium is known to enhance mitochondrial function in many ways 

including increase in cell respiration rate (Quiroz JA et al, 2008), modulation of the 

apoptosis through increasing the Bcl-2 level and reduction of the levels of some 

pre-apoptotic genes (Chen G et al, 1999; Michaelis M et al, 2006); protection of 

some genes involved in the functional damage to mitochondria against the 

alteration (Bachmann RF et al, 2009) and enhancement of their expression 

(Washizuka S et al, 2003b); desensitizing brain mitochondria to calcium, 

antagonizing permeability transition, diminishing cytochrome c release 

(Shalbuyeva N et al, 2007); increasing the activity of ETS complexes I, II and III 
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(Maurer IC et al, 2009); regulation of the intracellular Ca2+ (Kazuno AA et al, 

2008), raising the expression of glutathione-S-transferase (Wang JF et al, 2004); 

increasing N-acetylaspartate (NAA) levels (Hajek T et al, 2012) etc.  

Valproate effects are the inhibition of the substrate-specific oxygen 

consumption and mitochondrial ATP synthesis (Chiu CT et al, 2013), an 

interference with mitochondrial β-oxidation (Silva MF et al, 2008), neuroprotective 

effects on different types of cells in nervous tissue (Lai JS et al, 2006), a histone 

deacetylase inhibition (Gavin DP et al, 2009) and some are also the same as 

lithium effects, although there are differences between these two drugs (Gupta A et 

al, 2012; Kostrouchova M et al, 2007; Bielecka AM, Obuchowicz E, 2008). Its 

metabolites also inhibit dihydrolipoyl dehydrogenase activity and stabilize the 

oxidative phosphorylation (Luis PB et al, 2007). 

Antipsychotic drugs of the first generation are known to affect the electronic 

transport chain (Prince JA et al, 1997a) and inhibit complex I activity or have 

neurotoxic effects (Ukai W et al, 2004) even though atypical antipsychotics do not. 

Both of the groups increase complex IV activity in different brain regions (Shao L 

et al, 2008).  Thioridazine is reported to interact with the inner membrane of 

mitochondria and show a significant antioxidant activity (Rodrigues T et al, 2002). 

Antipsychotics also have an anti-apoptotic activity, for instance, they modulate the 

antiapoptosis genes Bcl-2 and Bcl-xL expression, inhibit the release of 

proapoptotic compounds (Saldona M et al, 2007), inhibit MPT (Kowaltovski AJ et 

al, 2001) and attenuate neurotoxicity (Wei Z et al, 2003). Some research suggests 

that these effects are a part of complex effects of antipsychotic drugs on the cell 

(Dean CE, 2006). 

Evidence for the antidepressant-induced positive effects in mitochondrial 

functions is relatively low. In general, antidepressants were known to impair 

mitochondrial function and induce toxicity (Mattson MP et al, 2008; Dykens JA et 

al, 2008). Fluvoxamine is reported to alter energy metabolism by decreasing the 

activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and 

IV; and increasing the activities of complex II, succinate dehydrogenase, and 
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creatine kinase in different dose and different brain regions (Ferreira GK et al, 

2014). Goncalves showed that citalopram and escitalopram decreased the activity 

of respiratory chain complexes (Goncalves CL et al, 2012). Hwang discovered an 

indirect modulation of mitochondrial function by tricyclic antidepressants through 

a decrease in nitric oxide production (Hwang J et al, 2008). Hroudova and Fisar 

showed that amitriptyline, fluoxetine, and tianeptine might be potent partial 

inhibitors of energized mitochondrial respiration (Hroudova J, Fisar Z, 2012). 

Ferreira suggested that antidepressant-induced mitochondrial dysfunction could be 

involved in early biochemical processes leading to changes in neuroplasticity 

(Ferreira GK et al, 2014) and Abdel-Razaq suggested that ‘the weak 

antimitochondrial actions of antidepressants could provide a potentially protective 

preconditioning effect, in which antidepressant-induced mitochondrial dysfunction 

below the threshold of injury results in subsequent protection’ (Abdel-RazaqW et 

al, 2011). 

In some research reports, the effect of the so-called metabolic drugs on 

different psychiatric symptoms of mitochondrial diseases. Researchers report the 

positive effect on mutism, hallucinations, psychotic symptoms and aggressive 

behavior in patients with MELAS after coenzyme Q treatment (Suzuki T el al, 

1990; Inagaki T et al, 1997; Kiejna A et al, 2002). Another case report describes a 

positive effect of dichloroacetat (a medicine which is used to reduce the lactate 

levels) on delirium and productive symptoms in patient with MELAS (Thomeer 

EC et al, 1998). These effects of coenzyme Q and other medications treatment such 

as carnitine and nicotinic acid were observed also in patients with the diagnosed 

mental disorder only (without any mitochondrial disease) (Onishi H et al, 1997; 

Gardner A et al, 2003; Filipek PA et al, 2003). 
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3. Statement of purpose and hypotheses 
 

 

The review was focused on the data revealing multiple connections between 

different signs and symptoms of mental disorders and various mitochondrial 

pathology. We can now see that the interpretation of all these data requires careful 

attention because it is partially controversial and some effects were observed in 

certain brain regions which can possibly indicate a result of other influences and 

not necessarily indicate a direct cause-and-effect relationship. Obviously the role 

of mitochondria in the pathogenesis of mental disorders is very complicated and 

might be different in different brain regions with maximum observed effects in the 

most vulnerable domains for each disease. 

Some promising results were obtained leading to perspective studies 

addressing deeper connections between mitochondrial functions and the pathology 

of mood disorders. A complex view of the pathology of mood disorders and the 

role of mitochondria in them is crucially important to develop new diagnostic tools 

and various therapeutic strategies for this group of devastating diseases. 

Mitochondrial parameters can be also evaluated as biological markers of bipolar 

disorder, one of the mood disorders. 

Summarizing various connections between pathophysiological processes in 

bipolar disorder and mitochondrial dysfunctions, we state a purpose for the study: 

to explore how energy metabolism in mitochondria corresponds to clinical 

evaluation of psychopathological symptoms in patients with bipolar disorder.  

Hypotheses of the study:  

Hypothesis 1. There is a set of mitochondrial functional impairment indexes 

specific for the current phase of the disorder. 

Hypothesis 2. The severity of the symptoms of bipolar disorder is associated 

with the severity of the alteration of the mitochondrial function. 

Hypothesis 3. There is a difference in the levels of mitochondrial respiration 

and enzyme activity in manic state and depressive state. 
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Hypothesis 4. There is a difference in the levels of mitochondrial respiration 

and enzyme activity in patients with BPD and healthy controls in both the acute 

state and remission. 
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4. Material and methods 

 

4.1. Study design and participants 
 

37 patients with diagnosis of bipolar disorder (F31) according to ICD-10 

were recruited from acute wards of the Department of Psychiatry of the First 

Faculty of Medicine, Charles University and General University Hospital in Prague 

and repeatedly tested using different psychopathology scales and blood platelets 

analysis methods (measurement 1 – acute phase, measurement 2 – remission). The 

control group consisted of 21 healthy volunteers matched by age and gender 

tested once using blood platelets analysis methods. Demographic data was 

collected for each person.  

The included criteria were as follows:  

• all in-patients and out-patients are already treated for BPD (at least 

second current episode); 

• acute state; 

• within one week upon hospitalization;  

• diagnosis of the BPD – F31 (phase manic, depressive, remission);  

• age 18-65.  

The excluded criteria were as follows:  

• additional diagnosis of any listed in F10-F19, F20-F29, F70-F79;  

• psychoactive substance abuse;  

• organic brain damage;  

• significant cognitive impairment;  

• history of medication abuse of any kind;  

• diagnosis of cancer or any neoplastic disease within the last 3 years;  

• a diagnosed mitochondrial disorder;  

• constantly taking medicines such as coenzyme Q, L-carnitine, vitamin 

E, chloramphenicol, doxycycline, ofloxacin, ciprofloxacin, 

perofloxacin, azathioprine, cyclosporine, tacrolimus, everolimus, 
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monoclonal antibodies, amiodarone, statins, levomepromazine, 

haloperidol;  

• participation in any study involving investigational drug within the 

last 3 months. 

The study was carried out according to the principles expressed in the 

Declaration of Helsinki and the study protocol was approved by the Ethical 

Review Board of the First Faculty of Medicine and General University Hospital in 

Prague, Czech Republic. Written informed consent was obtained from all 

participants. 

 

4.2. Questionnaires and scales 
 

All patients included were screened for bipolar disorder using the mood 

disorder questionnaire (MDQ) (Hirschfeld RM et al, 2000).  

The Mood Disorder Questionnaire is a brief, self-report screening instrument 

for bipolar disorder with both good sensitivity and very good specificity which 

includes 13 questions plus items assessing clustering of symptoms and functional 

impairment. 

Severity of current depression was tested using the MADRS 

(Montgomery–Åsberg Depression Rating Scale).  

MADRS is a ten-item diagnostic questionnaire which psychiatrists use to 

measure the severity of depressive episodes in patients with mood disorders. It was 

designed in 1979 by British and Swedish researchers as an adjunct to the Hamilton 

Rating Scale for Depression to be more sensitive to the changes brought on by 

antidepressants and other forms of treatment than the Hamilton Scale. 

A higher MADRS score indicates more severe depression, and each item 

yields a score of 0 to 6. The overall score ranges from 0 to 60. The questionnaire 

includes questions on the following symptoms 1. Apparent sadness 2. Reported 

sadness 3. Inner tension 4. Reduced sleep 5. Reduced appetite 6. Concentration 
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difficulties 7. Lassitude 8. Inability to feel 9. Pessimistic thoughts 10. Suicidal 

thoughts. 

Severity of current mania was tested using the Young Scale of Mania 

(YMRS).  

YMRS is one of the most frequently utilized rating scales to assess manic 

symptoms. The scale has 11 items and is based on the patient’s subjective report of 

his or her clinical condition over the previous 48 hours. There are four items that 

are graded on a 0 to 8 scale (irritability, speech, thought content, and 

disruptive/aggressive behavior), while the remaining seven items are graded on a 0 

to 4 scale. These four items are given twice the weight of the others to compensate 

for poor cooperation from severely ill patients. The scale is generally done by a 

clinician or trained rater with expertise of manic patients and takes 15–30 minutes 

to complete. 

Severity of illness 

General severity of illness was assessed using Clinical Global Impression - 

Improvement scale (CGI-I). CGI-I is a 7-point scale that requires the clinician to 

rate the improvement of the patient's mental illness at the time of assessment, 

relative to the clinician's past experience with patients who have the same 

diagnosis. 

Psychopathology symptoms were evaluated twice during the illness (before 

treatment, in acute state, and during treatment, in remission).  

 

4.3. Laboratory methods 
 

Peripheral blood samples were taken from the antecubital vein of each 

participant between 7:00 and 8:00 am, when all subjects were nicotine- and and 

coffee-free, before their morning medications. 24 milliliters of blood were drawn 

into BD Vacutainer® blood collection tubes with anticoagulant. Platelet rich 

plasma was separated by centrifugation at 200×g for 10 min at 25 °C. Platelets 
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were counted by microscopy using a counting chamber and immediately used for 

measuring of mitochondrial parameters.  

The energy metabolism related to mitochondrial dysfunctions was analyzed 

in biochemical laboratories (First Faculty of Medicine). Selected mitochondrial 

parameters (citrate synthase and electron transport chain complexes activities, ATP 

production and mitochondrial respiratory rate) and functional changes in 

monoaminergic system (MAO activity, serotonin uptake) were measured in 

peripheral blood components. High-resolution respirometry, fluorescence, 

radiochemical and spectrophotometric methods were used. 

Complexes of ETS – complex I, II, II+III and IV and citrate synthase were 

measured spectrophotometrically (Hroudová and Fišar, 2010). The relative 

activities of mitochondrial complexes were expressed as a ratio between specific 

enzyme activities and citrate synthase serving as the control mitochondrial matrix 

enzyme. 

Mitochondrial respiration was evaluated by both respiratory rate and 

respiratory control ratios (RCRs) using high resolution respirometry using 

(oxygraph) with Clark type oxygen electrodes (Fišar et al., 2016). Respiratory rate 

was determined as time derivation of oxygen concentration in the sample and 

RCRs was calculated as ratios of respiratory rates measured before and after 

substrates and/or inhibitors of OXPHOS. 

 

4.4. Statistical methods 
 

The study materials were statistically processed using the methods of 

parametric and nonparametric analysis in accordance with the results of testing the 

compared populations for normal distribution. Accumulation, corrections and 

systematization of the initial information and results visualization were performed 

in Microsoft Office Excel 2010. The statistical analysis was performed using the 

IBM SPSS Statistics v.20 program. 
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Each of the comparable sets of quantitative data was evaluated for 

compliance with the standard normal distribution law using the Shapiro-Wilk test 

which is recommended when a number of subjects are less than 60. The data 

distribution histogram, asymmetry and kurtosis parameters were also taken into 

account. 

If a normal distribution of quantitative data was confirmed, the obtained data 

was combined into a variation series, in which the arithmetic mean values (M) and 

the standard deviations (σ) were calculated. The analysis was performed using the 

parametrical statistics method. 

If the quantitative data distribution was non normal, the obtained data was 

described using the median (Me) and the lower and upper quartiles (Q1 and Q3). 

The analysis was performed using the nonparametric statistics method. 

To assess the statistical significance of the differences in the mean values of 

normally distributed populations, the Student t-test was calculated (1): 
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where: М1 and М2 – compared averages, m1 and m2 – standard errors of the 

average values. 

When comparing the average values calculated for dependent populations 

(for example, before treatment and after treatment values), the paired Student t-test 

was calculated (2): 

      ,   (2) 

where: XD - the average, sD - standard deviation of those differences, µ0 - 

non-zero. The degree of freedom used is n − 1, where n represents the number of 

pairs. 

The obtained values of Student t-test were compared with critical values. 

Differences were considered statistically significant at a significance level of 

p<0.05. 
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To compare independent sets of quantitative data with a non normal 

distribution the Mann-Whitney U test was used. First a single ranked series from 

both of the compared samples were formed, where elements were sorted according 

to the value increase. A smaller rank was attributed to a smaller value. Then a 

single ranked series was divided into two, consisting, respectively, of the first and 

second samples units. The rank amounts were counted separately for each of the 

series. The Mann-Whitney U test was calculated (3): 
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where n1 – number of elements in sample 1, n2 – number of elements in 

sample 2, nx – number of elements in the bigger sample, and Tx – ranks sum for the 

bigger sample. 

The calculated Mann-Whitney U test values were assessed by comparing 

them with the critical values: whether the calculated value was less or equal to the 

critical one, the statistical significance of the differences was accepted. 

To assess the differences between two compared pairs of samples with a non 

normal distribution the Wilcoxon W-test was used. The change value was 

calculated for each patient. All the changes were ordered according to the absolute 

value. Then the signs of change ("+" or "-") were assigned to ranks and the ranks 

were summed up for each sign. The smaller rank amount (W) was compared to the 

W test critical value: whether the calculated value was less or equal to the critical 

one, the statistical significance of the differences was accepted. 

To compare several groups of the patients (more than 2), a one-way analysis 

of variance was used. To assess the statistical significance of the differences the 

Fisher F test was calculated (4): 
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where Q1 – sum of the sample means to overall average squared deviations, Q2 – 

sum of the observed values squared deviations, n – number of the elements, and m 

– number of the samples. 

If the calculated value of Fisher's F test was less than critical, we made the 

conclusion that there was no statistically significant effect of the studied factor on 

the mean values of the trait. If the calculated value of Fisher's F test was larger 

than critical, the significant influence of the independent factor on the mean values 

for a certain level of statistical significance was recognized.  

If statistically significant differences between groups existed, an additional 

pair comparison of the populations using the a posteriori criterion of Scheffe was 

carried out. To check the tightness of the relationship of the quantitative indicators 

the linear correlation coefficient rxy of Pearson was calculated (5): 
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To evaluate the quality of the linear function selection, the square of the 

linear correlation coefficient R2 (the coefficient of determination) was calculated. 

The coefficient of determination shows the percent of factors considered in the 

model. 

For the evaluation of the statistical significance of the correlation coefficient 

t-test was calculated (6): 

2
1 2

−⋅
−

= n
r

r
t

xy

xy

r
    (6) 

The obtained value was compared with the critical value for a certain level 

of significance and the number of degrees of freedom n-2. If the calculated value 

of tr was larger than tcrit, a certain level of statistical significance was recognized. 

The values of the correlation coefficient were interpreted in accordance with 

the Chaddock scale (Tab. 1) 
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Tab. 1. The determination of the closeness of the correlation relationships, 

Chaddock scale 

Coefficient  Quality characteristic 
<0,1 No relationships 

0,1 – 0,3 weak 
0,3 – 0,5 moderate 
0,5 – 0,7 salient 
0,7 – 0,9 high 

0,9 – 0,99 Very high 
 

To assess the dependence of one quantitative parameter to others, the linear 

regression method was used, and the reduced equation of the following kind was 

given (7): 

    y = a0 + a1x1 + … + anxn,    (7) 

where y – quantitative trait, x1…xn – factor traits, a0 – constant, a1…an–  regression 

coefficients, showing the average change in the result y with a change in the factor 

x by one unit. 

The obtained regression model allows us to calculate the theoretical values 

of the effective sign y from the given values of the factor x. 

To compare the nominal scale values Pearson χ2 test was used. It allows us 

to assess the significance of the differences between the actual number of 

outcomes or qualitative characteristics of a sample falling into each category, and 

the theoretical amount that can be expected in the study groups when a null 

hypothesis is valid. 

First, the expected number of observations in each of the cells of the 

conjugacy table was calculated, provided that the null hypothesis of the absence of 

an interrelation was valid. For this purpose, the sums of rows and columns 

(marginal totals) were multiplied with the subsequent division of the obtained 

product by the total number of observations. 

Then the value of the χ2 was calculated (8): 

∑∑
= =

−
=

r

1i

c

1j
ij

2

ijij2

E

)EO(
χ     (8) 
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where i – the row number (from 1 to r), j – the column number (from 1 to с) Oij – 

actual number of observations in the cell ij, and Eij – the expected number of 

observations in the cell ij.  

Then the value of the Pearson χ2 test was compared to the critical values for 

(r-1) × (c-1) number of degrees of freedom. If the obtained value was larger than 

critical, a certain level of statistical significance was recognized and a statistical 

relationship between the studied risk factor and the outcome was confirmed. 

For the four-field table analysis, when the number of expected observations 

in any of the cells of the four-field table was less than 10, the χ2 test with the Yates 

correction was calculated. It reduces the risk of the first type error, i.e., detection of 

non-existent differences. The Yeats correction includes subtracting 0.5 from the 

absolute value of the difference between the actual and expected number of 

observations in each cell, which leads to a decrease in the χ2 test value (9):. 

    ∑∑
= =

−−
=

r

1i

c

1j
ij

2

ijij2

E

)5,0EO(
χ     (9) 

To estimate the significance of the differences when the number of 

expected observations in any of the cells of the four-field table was less than 5, an 

accurate Fisher P test was calculated (10): 

,
!N!D!C!B!A

)!DB()!CA()!DC()!BA(
Р

++++=    (10) 

where A, B, C, D – actual numbers of observations in the cells of the contingency 

table, N – total number of the participants, and ! – a factorial, equal to the 

multiplication of a number by a sequence of numbers, each of which is less than 

previous by 1. 

An obtained value of Fisher's exact P test more than 0.05 indicated the 

absence of statistically significant differences. An obtained value of Fisher's exact 

P test less than 0.05 indicated their presence. 

To compare the relative values characterizing the associated populations (at 

the beginning and at the end of the observation) the McNemar test was used. It is 
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used to determine whether any changes in the distribution structure values of two 

dependent variables occur (11): 

     
cb

)cb(
Q

2

+
−=      (11) 

where Q – McNemar test, b – the number of patients with a negative result in the 

first observation and positive result in the second, and c – the number of patients 

with a positive result in the first observation and negative result in the second.  

The McNemar test values were interpreted by comparison with critical 

values. 

To identify factors that characterize the relationships between groups of 

characteristics and to reduce the number of analyzed variables, a four-stages factor 

analysis was used: 

1) calculation of the correlation matrix for all variables participating in the 

analysis; 

2) extraction of factors by the principal component method; 

3) the rotation of factors to create a simplified structure using Varimax 

method; 

4) analysis of factor loads matrix and the interpretation of factors. 
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5. Results 
 

5.1. Clinical evaluation of the BPD patients in manic or depressive 

episode  

 

All the subjects were divided into 2 groups: experimental group (37 patients 

with BPD) and control group (21 healthy individuals). The experimental group, in 

turn, consisted of 24 patients in manic episode of the disease (subgroup A) and 13 

patients in depressive episode of the disease (subgroup B). Clinical evaluation and 

biochemical measurement of BAD in-patients were done both at the beginning of 

treatment and when released from hospital treatment (in remission or partial 

remission).  The average age within groups is shown in Table 2. 

Tab. 2. Age structure in the experimental group (patients with bipolar 

disorder) and control group 

Age (years) 
Group Subgroup 

min-max M±SD 
N 

- All 21 – 65 42.2±12.2 37 

- Subgroup А 21 – 65 39.5±13.2 24 

Experimental 

 

 - Subgroup B 30 – 59 46.9±8.7 13 

Control  25 – 61 40.3±10.3 21 

Subgroup A = manic episode; Subgroup B = depressive episode 

 

A one-way analysis of variance (ANOVA) did not show a statistically 

significant difference in age between control group and experimental groups (all 

p=0.565, subgroup A p=0.156, and subgroup B p=0.147); it proves that groups are 

age-matched and no correction for age is necessary in data analysis. 

First stage of the research included the assessment of the mental state of the 

patients with BPD. The following tests were used for patients in the manic episode: 

Brief Psychiatric Rating Scale (BPRS), Young Mania Rating Scale (YMRS),  

Mood Disorder Questionnaire (MDQ). Tests for patients in the depressive episode 
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included: BPRS, Montgomery-Asberg Depression Rating Scale (MADRS), MDQ. 

For patients in remission we added Clinical Global Impression – Improvement 

scale (CGI-I) to measure the clinical improvement. (Tab. 3) 

Tab. 3. Mental state assessment in the experimental group at the beginning 

of treatment and when released from treatment (measurements 1 and 2) 

 

State of the patient 

Test method Episode Disease (acute state), 

measurement 1 

Remission, 

measurement 2 

p 

Depressive  55 (44.5-68.5) 30 (27-33) <0.001 

Manic  51.5 (41.5-66.5) 33 (29-41.5) 0.018 
BPRS 

 
p 0.952 0.177 - 

MADRS Depressive  26.5 (19-31) 4 (0-4) <0.001 

YMRS Manic  20 (13.5-26) 1.5 (0-5) <0.001 

CGI-I  - xx  

Mean (range); p – significance level 

Data obtained from the Wilcoxon-Mann-Whitney test shows that the 

difference between the BPRS test scores in the acute state of the disease and in 

remission was significant within both A (p<0.001) and B (p=0.018) subgroups. In 

patients with mania the median BPRS score decreased from 51.5 to 33 and in 

patients with depression it decreased from 55 to 30. The decrease was comparable 

in both the subgroups. The difference in BPRS test scores between patients with 

mania and patients with depression were not significant in either the acute phase of 

the disease (p=0.952) or in remission (p=0.177) (Fig. 20). 
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Fig. 20. BPRS test score in patients with mania and depression at the beginning 

and at the end of the study. Subgroup A = manic episode, Subgroup B = depressive 

episode. BPRS – Brief Psychiatric Rating Scale 

The Wilcoxon-Mann-Whitney test was also applied to establish the difference 

between the MADRS test score in the acute state of the disease and in remission.  

The decrease after treatment was significant (p<0.001). The median MADRS 

assessment decreased from 26.5 to 4 (Fig. 21). 
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Fig. 21. MADRS test results in patients with depression at the beginning and at the 

end of the study 

 

A significant decrease in the YMRS test score between patients in the manic 

episode and patients in remission was also established (p<0.001). The median in 

the acute phase was 20, in remission it decreased to 1.5. (Fig. 22)  
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Fig. 22. YMRS test results in patients with mania and depression at the 

beginning and at the end of the study 

  

 The results of the CGI-I test were examined only at the end of the research 

as it is used to assess the quality of remission in mentally ill patients. (Tab. 4) 

 

Tab. 4.  CGI-I test results in patients with bipolar disorder in manic and depressive 

episode at the end of the study (remission) 

 

Subgroups 

А (mania) B (depression) CGI test 

Me Q1-Q3 Me Q1-Q3 

p 

Scale I 2 1-2 2 1-3 0.694 

Scale II 2 1-2 2 1-2 0.885 

Scale III 41 41-42 41 31,5-41,5 0.462 

p – significance level; Me = mean range; Q1- Quartile 1, Q3 - Quartile 3. 
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 The Wilcoxon-Mann-Whitney test did not reveal a significant difference 

between the CGI-I test results in either A or B subgroups (p>0.05 for all CGI-I 

scales). Median assessments for the scales I, II, III were 2, 2, 41 respectively. We 

can summarize that there was no difference in the quality of clinical improvement 

between patients with bipolar disorder in a manic episode and patients with bipolar 

disorder in a depressive episode.  

 

5.2. Mitochondrial functions in BPD patients and healthy controls 

 

The second stage of the research consisted of the comparison of the 

mitochondrial function in patients with BPD (in acute manic or depressive 

episodes) and healthy controls.  

Activities of mitochondrial enzymes, citrate synthase (CS), complexes I 

(CI), II (CII) and IV (COX) in patients with BPD are graphically presented in Fig. 

23 and 24.  
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Fig. 23. Mitochondrial enzymes activity in the experimental group (patients 

with bipolar disorder in depressive episode, N=13). Min, Mean-SD, Mean+SD, 

Max, where SD – standard deviation 
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Fig. 24. Mitochondrial enzymes activity in the experimental group (patients 

with bipolar disorder in manic episode, N=24). Min, Mean-SD, Mean+SD, Max, 

where SD – standard deviation 

After the post-hoc Scheffe test was performed, significant differences were 

not found between any of mitochondrial enzymes activity in patients with mania 

and depression (Tab. 5). The mitochondrial enzymes activity data from the group 

of healthy controls was not available; reference ranges of mitochondrial enzyme 

activities were obtained from mitochondrial laboratory of the Department of 

Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University 

and General University Hospital in Prague. 

 

Tab. 5.  Mitochondrial enzymes in patients with bipolar disorder in a manic or 

depressive episode  

Group 
Mitochondrial enzyme 

Mania Depression 
p 

Reference 

range 

CS (nmol·min-1
·mg-1) 68.9±11.8 64.0±19.6 0.397 60-92 

CI (nmol·min-1
·mg-1) 53.2±19.0 57.8±22.9 0.561 21-55 

CII (nmol·min-1
·mg-1) 8.07±3.96 7.87±3.41 0.89 5-15 
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COX (nmol·min-1
·mg-1) 19.44±5.91 15.03±5.57 0.054 16-40 

CS = citrate synthase; CI = Complex I; CII = Complex II; COX = Complex IV 

Mean ± SD; p – significance level 

 

Complex I (CI) activity in BPD patients with mania was lower than in 

patients with depression; Complex II (CII) activity in BPD patients with mania was 

higher than in patients with depression; citrate synthase (CS) activity in BPD 

patients with mania was higher than in patients with depression, though none of the 

above had reached statistical significance. When comparing a decrease in Complex 

IV (COX) activity in BPD patients with depression with BPD patients with mania, 

the significance level was close to 0.05 (Fig. 25). Complex IV activity in BPD 

patients in depressive episode was slightly below reference range. 
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Fig. 25. Complex IV (COX) activity in patients with bipolar disorder in 

manic episode and depressive episode, p=0.054. Min, Mean-SD, Mean+SD, Max, 

where SD – standard deviation 

 

Changes in mitochondrial respiration in the blood platelets isolated from 

patients with BPD and healthy controls were examined through the general linear 

model, one-way analysis of variance and post-hoc Scheffé test. The results are 

summarized in Tab. 6. 
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Tab 6. Mitochondrial respiration in the blood platelets from patients with bipolar 

disorder (measurement 1, manic or depressive episode) and healthy controls 
Pl

at
el

et
s 

Groups 

 

Respi-

ratory 

state 
Mania P  

(Mania vs 

Controls) 

Depres-

sion 

P  

(Depres-

sion vs 

Controls) 

Controls P  

(Mania vs 

Depression) 

PR  
0.105±0.01

7 
0.752 

0.101±0.01

4 
0.463 0.106±0.023 0.343 

LEAK 
0.00656± 

0.00483 
0.005 

0.00534± 

0.00241 
0.267 

0.00169± 

0.00123 
0.568 

ETSC 
0.124±0.02

2 
0.256 0.117±0.02 0.164 0.132±0.03 0.233 

In
ta

ct
  

Rotenone 
0.00044± 

0.00036 
0.148 

-0.00151± 

0.00109 
0.64 

0.00164± 

0.00119 
0.451 

IR (p) 
0.087±0.02

1 
0.32 

0.082±0.02

6 
0.24 0.094±0.021 0.678 

DMP (p) 
0.046±0.02

8 
0.188 

0.034±0.01

4 
0.564 0.038±0.014 0.355 

ADP (p) 
0.108±0.03

1 
0.418 

0.097±0.03

2 
0.873 0.112±0.03 0.823 

Glutamate 

(p) 

0.115±0.03

6 
0.817 

0.107±0.04

4 
0.114 0.115±0.03 0.913 

Succinate 

(p) 

0.183±0.04

2 
0.485 

0.166±0.05

9 
0.424 0.186±0.047 0.418 

LEAK (p) 
0.03042± 

0.00825 
0.034 

0.02643± 

0.0104 
0.093 

0.02339± 

0.00745 
0.6872 

ETSC (p) 
0.177±0.05

4 
0.453 

0.162±0.05

6 
0.111 0.188±0.06 0.462 

Pe
rm

ea
bi

liz
ed

 

Rotenone 

(p) 

0.073±0.02

6 
0.941 

0.075±0.02

5 
0.723 0.076±0.031 0.338 

Mean ± SD; p – significance level in reference to controls.  
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PR – physiological respiration, LEAK – nonphosphorylating respiration measured after the 
addition of oligomycin, ETSC – electron transport system capacity measured after titration with 
uncoupler (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, FCCP), IR – initial 
respiration in washed platelets before permeabilization with digitonin, DMP – respiration 
measured after the addition of digitonin+malate+pyruvate, ADP – stage 3 respiration supported 
through Complex I measured after the addition of ADP, Glutamate – stage 3 respiration 
measured after the addition of glutamate, Succinate – state 3 respiration supported through both 
Complex I and Complex II measured after the addition of the succinate, Rotenone – respiration 
after Complex I inhibition measured after the addition of rotenone. (p) indicate permeabilized 
platelets. 
 

In intact platelets, the nonphosphorylating respiration measured after the 

addition of oligomycin (LEAK) was significantly higher in BPD patients with 

mania than in controls (p=0.005). LEAK was also higher in patients with 

depression than in controls, and higher in patients with mania than in patients with 

depression, though the difference did not reach statistical validity. Other indexes 

such as electron transport system capacity (ETSC) and respiration after inhibiting 

complex I with rotenone (Rotenone) were lower in patients in both phases of BPD 

than in healthy controls, and lower in depression than in mania, though these 

differences were not significant. Physiological respiration (PR) appeared to be 

similar in all the subgroups (Fig 26, 27, 28). 
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Fig. 26. Mitochondrial respiration normalized for platelet concentration in 

intact platelets of patients with BPD in depressive episode. PR - physiological 

respiration, LEAK – nonphosphorylating respiration measured after the addition of oligomycin, 

ETSC – electron transport system capacity, Rot – respiration after complex I inhibition, 

measured after the addition of rotenone. 
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Fig. 27. Mitochondrial respiration normalized for platelet concentration in 

intact platelets of patients with BPD in manic episode. PR - physiological respiration, 

LEAK – nonphosphorylating respiration measured after the addition of oligomycin, ETSC – 

electron transport system capacity, Rot – respiration after complex I inhibition, measured after 

the addition of rotenone. 
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Fig. 28. Mitochondrial respiration normalized for platelet concentration in 

intact platelets of healthy controls. PR - physiological respiration, LEAK – 

nonphosphorylating respiration measured after the addition of oligomycin, ETSC – electron 

transport system capacity, Rot – respiration after complex I inhibition, measured after the 

addition of rotenone. 
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After the normalization for CS activity, mitochondrial respiratory rate did 

not show any significant difference between the group of patients with BPD in a 

manic episode and control group or between the group of patients with BPD in a 

manic or depressive episode.   

We also measured a flux control ratio (the ratio of a respiratory rate at a 

specific respiratory state divided by ETSC); e.g. LEAK/ETSC ratio was 

significantly higher in patients with BPD in a manic episode than in healthy 

controls (p=0.03) and in patients with BPD in a depressive episode than in healthy 

controls (p=0.042) (Fig. 29, 30) 

 

 

Fig. 29. The LEAK/ETSC index (flux control ratio) in intact platelets of 

patients with BPD with mania and healthy controls, p=0.03 



 91 

 

 

Fig. 30. The LEAK/ETSC index (flux control ratio) in intact platelets of 

patients with BPD with depression and healthy controls, p=0.042 

 

The mean LEAK/ETSC in intact platelets of patients with BPD episode  was 

slightly higher in BPD patients in both manic and depressive episodes compared to 

controls, which may indicate a disturbance in the mitochondria coupling process 

and/or functional integrity in the inner mitochondrial membrane in BPD.  

In permeabilized platelets LEAK index (nonphoshorylating respiration after 

the addition of oligomycin) was also significantly higher in BPD patients with 

mania (p=0.034) than in healthy controls. LEAK was also lower in patients with 

depression than in patients with mania, though these changes did not reach 

statistical validity (p=0.058). Other respiratory rates such as ADP, Succinate did 

not reveal a significant difference between the groups. The results are summarized 

in Table 6 and Fig. 31. 
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Fig. 31. The LEAK/ETSC index (a part of the flux control ratio) in 

permeabilized platelets of patients with BPD with mania and healthy controls, 

p=0.042 

 

A comparable analysis for the mitochondrial enzymes activity and 

mitochondrial respiration in the group of BPD patients in remission and healthy 

controls was also performed. The comparability of the indexes in subgroups A and 

B was estimated through Student t-test. The results are summarized in Tab. 7.  

  

Tab. 7. Mitochondrial respiration in the blood platelets from patients with bipolar 

disorder (measurement 2, remission) and healthy controls 

Groups 
 

Mitochon-

drial 

function 

Mania P  

(Mania 

vs 

Controls) 

Depression P  

(Depression 

vs 

Controls) 

Controls P  

(Mania vs 

Depression) 

PR  
0.106± 

0.029 
0.982 

0.106± 

0.024 
0.362 

0.106± 

0.023 
0.533 

In
ta

ct
 

pl
at

el
et

s 

LEAK 0.00466± 0.049 

0.00356± 
0.00101 0.573 0.00169± 

0.00123 

0.174 
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0.00088 

ETSC 
0.127± 

0.039 
0.64 

0.129± 

0.031 
0.677 

0.132± 

0.03 
0.462 

 

Rotenone 
-0.0007± 

0.00045 
0.079 

0.00075± 

0.0006 
0.185 

0.00164± 

0.00119 
0.788 

IR (p) 
0.084± 

0.028 
0.158 

0.089± 

0.025 
0.663 

0.094± 

0.021 
0.211 

DMP (p) 
0.037± 

0.013 
0.856 

0.037± 

0.013 
0.56 

0.038± 

0.014 
0.33 

ADP (p) 
0.107± 

0.042 
0.649 

0.0109± 

0.035 
0.267 

0.112± 

0.03 
0.583 

Glutamate 

(p) 

0.118± 

0.049 
0.788 

0.116± 

0.041 
0.145 

0.115± 

0.03 
0.672 

Succinate 

(p) 

0.188± 

0.065 
0.913 

0.187± 

0.053 
0.989 

0.186± 

0.047 
0.699 

LEAK (p) 
0.0283± 

0.01152 
0.068 

0.0256± 

0.00984 
0.164 

0.02339± 

0.00745 
0.13 

ETSC (p) 
0.185± 

0.071 
0.892 

0.186± 

0.065 
0.463 

0.188± 

0.06 
0.462 

Pe
rm

ea
bi

liz
ed

 p
la

te
le

ts
 

Rotenone 

(p) 

0.081± 

0.033 
0.601 

0.079± 

0.032 
0.555 

0.076± 

0.031 
0.54 

 
Mean ± SD; p – significance level in reference to controls . PR – physiological respiration, 
LEAK – nonphosphorylating respiration measured after the addition of oligomycin, ETSC – 
electron transport system capacity measured after titration with uncoupler (carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone, FCCP), IR – initial respiration in washed platelets before 
permeabilization with digitonin, DMP –respiration measured after the addition of 
digitonin+malate+pyruvate, ADP – stage 3 respiration supported through Complex I measured 
after the addition of ADP, Glutamate – stage 3 respiration measured after the addition of 
glutamate, Succinate – state 3 respiration supported through both Complex I and Complex II 
measured after the addition of the succinate, , Rotenone – respiration after Complex I inhibition 
measured after the addition of rotenone. (p) indicate permeabilized platelets. 
 
 

In intact platelets, the LEAK was significantly higher in patients with 

bipolar disorder in remission after a manic episode (0.00466 pmol·sec-1
·10-6 

platelets) than in controls (0.00169 pmol·sec-1
·10-6 platelets, p<0.05) (Fig. 32). 

Other indexes such as ETSC and respiration after inhibiting complex I with 
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rotenone (Rotenone) were lower in patients with patients with bipolar disorder in 

remission after a manic episode than in healthy controls, however these differences 

were not significant. PR index was similar in both groups. After the normalization 

for CS activity, the mitochondrial respiratory rate had shown no significant 

difference between the group of patients with bipolar disorder in remission after a 

manic episode or a depressive episode and control group.  

In permeabilized platelets there was no significant difference in the 

mitochondrial respiration for all the respiratory states. 
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Fig. 32. The LEAK index in intact platelets of patients with bipolar disorder in 

remission after manic episode and healthy controls, p=0,042 
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5.3. Changes in mitochondrial function of BPD patients during the 

research period 

 

An assessment of the changes in mitochondrial enzymes activity and 

mitochondrial respiration of BPD patients during the research period was also 

performed, i.e. values in the acute phase before treatment (manic or depressive 

episode) and after treatment (in remission) were compared (Tab. 8). 

  

Tab. 8.  Activities of mitochondrial enzymes in platelets of BPD patients in acute 

phase of the disease compared with remission 

Disease state 

Mitochondrial enzymes 

Phase of 

the 

disease 

Acute Remission p 

Mania 68.9±11.8 63.9±9.7 0.063 
CS, nmol·min-1

·mg-1 
Depression 64.0±19.6 65.3±19.3 0.687 

Mania 53.2±19.0 59.3±27.8 0.526 
CI, nmol·min-1

·mg-1 
Depression 57.8±22.9 80.2±19.3 0.352 

Mania 8.07±3.96 7.62±3.33 0.467 
CII, nmol·min-1

·mg-1 
Depression 7.87±3.41 8.09±3.41 0.799 

Mania 19.44±5.91 19.39±4.29 0.985 
COX, nmol·min-1

·mg-1 
Depression 15.03±5.57 15.57±5.43 0.72 

Mean ± SD; p – significance level. CS – citrate synthase, CI – Complex I, CII – Complex II, 

COX – Complex IV. 

 

The CS activity in BPD patients with mania was higher than in healthy 

controls though the difference did not reach statistical validity (p=0,063). The 

difference between other enzymes activity such as CI, CII and COX for the groups 

of BPD patients and healthy controls also did not reach statistical validity. The 

results are summarized in Fig. 33. 
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Fig. 33. Activities of mitochondrial enzymes in patients with BPD in an 

acute phase of the disease (manic or depressive episode) compared with remission 

 

We have also compared the mitochondrial enzymes activity and respiration 

rates in the subgroups A and B: patients with mania vs patients with depression. 

The results obtained through paired test calculation are summarized in Tab. 9. 

 

Tab. 9. Mitochondrial respiration in blood platelets from patients with bipolar 

disorder in manic or depressive episodes before and after treatment 

 Disease state 

 Respiratory state 

Episode 

of the 

disease 

Acute Remission p 

Mania 0.105±0.017 0.106±0.033 0.885 
PR 

Depression 0.101±0.014 0.106±0.022 0.538 

Mania 0.00656±0.00483 0.00548±0.00121 0.431 
LEAK 

Depression 0.00534±0.00241 0.00301±0.00095 0.079 

Mania 0.124±0.022 0.129±0.044 0.604 
ETSC 

Depression 0.117±0.02 0.123±0.025 0.559 In
ta

ct
 p

la
te

le
ts

  

Rotenone Mania 
0.00044± 

0.00036 

-0.00044± 

0.00026 
0.207 



 97 

  
Depression 

-0.00151± 

0.00109 

-0.00121± 

0.00074 
0.989 

Mania 0.087±0.021 0.083±0.028 0.349 
IR (p) 

Depression 0.082±0.026 0.088±0.029 0.629 

Mania 0.046±0.028 0.038±0.014 0.215 
DMP (p) 

Depression 0.034±0.014 0.036±0.012 0.555 

Mania 0.108±0.031 0.107±0.049 0.964 
ADP (p) 

Depression 0.097±0.032 0.108±0.029 0.547 

Mania 0.115±0.036 0.114±0.055 0.925 
Glutamate (p) 

Depression 0.107±0.044 0.125±0.039 0.478 

Mania 0.183±0.042 0.186±0.072 0.945 
Succinate (p) 

Depression 0.166±0.059 0.192±0.055 0.429 

Mania 0.03042±0.00825 0.02939±0.01298 0.552 
LEAK (p) 

Depression 0.02643±0.0104 0.02647±0.00858 0.66 

Mania 0.177±0.054 0.183±0.082 0.775 
ETSC (p) 

Depression 0.162±0.056 0.186±0.049 0.49 

Mania 0.073±0.026 0.077±0.031 0.799 

Pe
rm

ea
bi

liz
ed

 p
la

te
le

ts
, p
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ol

*s
ec

-1
*1

0-6
  

Rotenone (p) 
Depression 0.075±0.025 0.089±0.039 0.448 

Mean ± SD; significance level. PR – physiological respiration, LEAK – nonphosphorylating 
respiration measured after the addition of oligomycin, ETSC – electron transport system 
capacity measured after titration with uncoupler (carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone, FCCP), IR – initial respiration in washed platelets before 
permeabilization with digitonin, DMP –respiration measured after the addition of 
digitonin+malate+pyruvate, ADP – stage 3 respiration supported through Complex I measured 
after the addition of ADP, Glutamate – stage 3 respiration measured after the addition of 
glutamate, Succinate – state 3 respiration supported through both Complex I and Complex II 
measured after the addition of the succinate, Rotenone – respiration after Complex I inhibition 
measured after the addition of rotenone. (p) indicate permeabilized platelets. 

  

There were no significant differences between an acute stage of illness and 

remission in BPD patients (p>0.05 for all the measurements). 
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5.4. Connections between mitochondrial function and psychopatholo-

gical symptoms in BPD patients 

 

We also calculated correlation coefficients between the BPRS, YMRS, 

MADRS, MDQ and CGI-I tests and mitochondrial complexes activity to establish 

the association between the state of the disease, psychopathological symptoms, 

clinical improvement and mitochondrial pathology. A significant correlation was 

observed between Complex I and the BPRS score in the subgroup A (patients with 

mania, acute state – measurement 1) (p=0.001). The Pearson coefficient showed a 

high closeness of relationships according to Chaddock scale (rxy = 0.747), which is 

the evidence of the correlation validity. The paired linear regression equation 

shows the Complex I value dependence of BPRS score (1): 

BPRS = 18.66 + 0.7*CI    (1) 

where BPRS – Brief Psychiatric Rating Scale, mental state assessment scale in 

patients with BPD, manic episode, acute state (points), CI – Complex I activity 

(nmol·min-1
·mg-1).  

 Based on the regression coefficient value, with the CI increase of 1 

nmol·min-1
·mg-1 we expect a BPRS score increase of 0.7 points. The coefficient of 

determination R2 was 0.558 which indicates that 55.8% factors are taken into 

account in the regression model (1).  

 The regression function diagram (1) is shown on the Fig. 34. 
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Fig. 34. Linear dependence diagram for the mental state of BPD patients with 

mania and Complex I activity  

 

There were no significant correlation coefficients between other mental state 

assessment tests and mitochondrial pathology indicators in the other subgroups of 

the patients and in healthy controls. 

In order to identify relationships between a large numbers of mitochondrial 

pathology indicators in the research, a factor analysis was performed. We could 

distinguish four factors through principal component analysis with a Varimax 

rotation method. The characteristics of these factors are summarized in Tab. 10. 

Tab. 10. The characteristics of the mitochondrial pathology assessment factors in 

patients with bipolar disorder  

Factor No. Meaning 
Total variance 

explained, %  

Cumulative % of the 

explained variance  

1 3.62 30.17 30.17 

2 2.66 22.19 52.36 

3 2.27 18.87 71.23 

4 1.28 10.67 81.9 
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  The eigenvalues of all the factors were >1. The factor load for each of the 

mitochondrial pathology indicators allowing the evaluation of the correlation 

between picked factors and other indicators is shown as a factor loadings matrix 

where the highest values are shown in bold (Tab. 11). 

 

Tab. 11. Factor loadings matrix 

Mitochondrial 

function 

Factor 1 Factor 2 Factor 3 Factor 4 

Rotenone (p) .876 .015 -.063 .299 

Succinate (p) .860 .352 .288 .039 

ETSC (p) .821 .400 .237 .091 

ADP (p) .647 .507 .473 -.108 

Glutamate (p) .635 .380 .509 -.110 

ETSC .165 .938 .090 .068 

PR .228 .866 .175 .190 

DMP (p) .085 .175 .863 .141 

LEAK (p) .568 -.054 .602 .207 

IR (p) .389 .485 .586 .042 

Rotenone .238 .277 -.104 .730 

LEAK -.011 -.043 .373 .721 

PR – physiological respiration, LEAK – nonphosphorylating respiration measured after the 
addition of oligomycin, ETSC – electron transport system capacity measured after titration with 
uncoupler (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, FCCP), IR – initial 
respiration in washed platelets before permeabilization with digitonin, DMP –respiration 
measured after the addition of digitonin+malate+pyruvate, ADP – stage 3 respiration supported 
through Complex I measured after the addition of ADP, Glutamate – stage 3 respiration 
measured after the addition of glutamate, Succinate – state 3 respiration supported through both 
Complex I and Complex II measured after the addition of the succinate,  Rotenone – respiration 
after Complex I inhibition measured after the addition of rotenone. (p) indicate permeabilized 
platelets. 

 

 According to the components distribution, Factor 1 is characterized by high 

values of: respiration after Complex I inhibition, stage 3 respiration supported 

through both Complex I and II, electron transport system capacity and stage 3 
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respiration supported through Complex I, all in permeabilized platelets. Factor 2 is 

characterized by high values of: electron transport system capacity and 

physiological respiration in intact platelets. Factor 3 is characterized by high values 

of:  initial respiration, respiration after addition of malate and pyruvate, and 

nonphosphorylating respiration, all in permeabilized platelets. Factor 4 is 

characterized by high values of:  respiration after Complex I inhibition and 

nonphosphorylating respiration in intact platelets. 

 We made the assessment of the differences between the experimental and 

control group based on the calculated values for each of the identified factors. The 

values of the four combined factors in the BPD patients and control groups were 

compared for that purpose (Tab. 12).  

Tab. 12.  The comparison of combined factors in patients with bipolar disorders 

and control group 

Groups 

Bipolar disorder Controls 
Combined factors 

 
Me Q1; Q3 Me Q1; Q3 

p 

Factor 1 (Rotenone (p), 

Succinate (p), ETSC (p), ADP 

(p), Glutamate (p)) 

-0.2 -0.95; 0.81 0.19 -0.56; 0.52 0.543 

Factor 2 (ETSC, PR) -0.13 -0.89; 0.28 0.34 -0.34; 1.19 0.024 

Factor 3 (DMP (p), Oligomycin 

(p), IR (p)) 
0.16 -0.59; 0.63 -0.32 -0.83; -0.06 0.023 

Factor 4 (Rotenone, LEAK) 0.15 -0.6; 1.05 -0.15 -0.7; 0.64 0.325 

Me – Mean; SD – Standard deviation; ; Q1 – Quartile 1; Q3 – Quartile 3; p – significance level . 
PR – physiological respiration, LEAK – nonphosphorylating respiration measured after the 
addition of oligomycin, ETSC – electron transport system capacity measured after titration with 
uncoupler (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, FCCP), IR – initial 
respiration in washed platelets before permeabilization with digitonin, DMP –respiration 
measured after the addition of digitonin+malate+pyruvate, ADP – stage 3 respiration supported 
through Complex I measured after the addition of ADP, Glutamate – stage 3 respiration 
measured after the addition of glutamate, Succinate – state 3 respiration supported through both 
Complex I and Complex II measured after the addition of the succinate, Rotenone – respiration 
after Complex I inhibition measured after the addition of rotenone. (p) indicate permeabilized 
platelets 
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 The Mann-Whitney test shows that patients with bipolar disorder had 

significantly lower Factor 2 values than healthy controls (p=0.024) and 

significantly higher Factor 3 values than healthy controls (p=0.023). For patients 

with bipolar disorder we can expect a decrease in ETSC and physiological 

respiration in intact platelets, and a decrease in DMP, nonphosphorylation 

respiration and initial respiration in permeabilized platelets.  

 We also explored the duration period between the acute state and remission 

and its dependence on the mitochondrial pathology indicators in patients within 

different phases of bipolar disorder.  

 We calculated multiple linear regression equation for the patients in manic 

state (2): 

 

Trem = -56,3 + 2,1*XCS – 4,8*XCIV + 1745,1*XPR – 1475,4*XETSC + 386,5*XGlu
      

(2) 

 

where  

Trem – time period between the measurements (days),  

XCS – citrate synthase (nmol·min-1
·mg-1),  

XCIV – Complex IV (nmol·min-1
·mg-1),  

XPR – physiological respiration (pmol·sec-1
·10-6 platelets),  

XETSC – electron transport system capacity (pmol·sec-1
·10-6 platelets),  

XGlu – respiration after the addition of glutamate (pmol·sec-1
·10-6 platelets). 

  

The function was statistically valid (p=0.025), the Pearson correlation coefficient 

for the relationship between the mitochondrial function indicators and remission 

due date was rxy = 0.769, which shows a high closeness of relationships according 

to Chaddock scale. The regression model (2) explains 59.1% of the variance for the 

remission due date in patients with manic episode of the bipolar disorder.  
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There was no valid model showing the remission due date dependence of the 

mitochondrial function indicators for patients with a depressive episode of the 

bipolar disorder.  
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6. Discussion 
 

The current study contributes to the research on the connection between 

pathophysiological processes in mitochondria and psychopathological symptoms 

in different mental disorders.  

One study was focused on finding biological markers of mitochondrial 

dysfunction measurable in peripheral blood (Fisar Z, Raboch J, 2008). Elements 

isolated from the peripheral blood, especially platelets and lymphocytes, are used 

to study changes in biochemical processes caused by mental disorders. Though 

mitochondrial pathology may not be similar across all brain regions and cell types, 

nor a number of neurochemical parameters, this is an acceptable model reflecting 

changes in the CNS because isolating blood platelets doesn’t require a complicated 

and invasive procedure. Affected mechanisms of the cellular compensation can 

lead to an increased ETS activity in lymphocytes as they provide the energy for the 

cell, and, in turn, a low platelet sensitivity may be expected (Feldhaus P et al, 

2011). 

We found that CI, CII and CS activity in BPD patients with mania and 

depression were not statistically different. These findings are in conjunction with 

results of previous investigations. Gubert made study where the activities of ETS 

complexes of mononuclear blood cells were examined in BPD patients in euthymic 

mood (Gubert C et al, 2013). No significant changes were found in complex I, 

complex II and complex II + III activities. The obtained results are also consistent 

with the data received by deSouza in 2014 which stated that mitochondrial 

complexes I-IV activity was not changed during the depressive episodes of BPD 

(deSouza RT et al, 2015). 

A decrease in COX activity was observed in BPD patients with depression 

and when compared with BPD patients with mania, the significance level was 

close to critical (Fig. 6). This data partially corresponds with the previous research 

made by Valla (Valla J et al, 2006) on the groups of patients with mild cognitive 

deficits (Alzheimer disease and other diseases), and data discovered by Fisar (Fisar 
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Z et al, 2016) for the group of patients with Alzheimer’s disease, where COX 

activity was decreased and negatively correlated with the Mini Mental State 

Examination (MMSE) score. This may lead to a suggestion that a decreased 

complex IV activity indicates cognitive impairment which is more evident during a 

depressive phase of the disease. Prince found a decrease in COX activity in the 

frontal cortex and caudate nucleus and linked it to an increased emotional and 

cognitive impairment in patients with SZ. In general (Prince JA et al, 2000), 

neurocognitive deficits are commonly associated with BPD (Aydemir O et al, 

2014) and they are often present in the very first episode (Bora E, Pantelis C, 

2015).  

Continuing the discussion of the changes in mitochondrial respiration in 

depressive phase of the disease we need to mention Gardner, who performed a 

research on mitochondrial enzymes activity and ATP production rate in patients 

with MDD and found an overall decrease in Complex I-IV in comparison with 

controls which correlated with the vulnerability to psychopathology in the 

following scales: ‘Somatic Anxiety’. ‘Psychasthenia’ and ‘Suspition’ (Gardner A 

et al, 2003).  

Correa found a decreased level of ETS complexes in an animal model of 

mania associated with manic symptoms (Correa et al, 2007). Freitas discovered an 

association between manic-like hyperactivity in a rat brain and a decrease in the 

activity of CS (Freitas TP et al, 2010). 

As seen from the results of the conducted analyses, in our research we didn’t 

find any significant correlation between certain psychometric scales and 

mitochondrial respiration indexes except for the correlation between Complex I 

and BPRS score in patients with mania. Based on the regression coefficient value, 

with the CI increase of 1 nmol*min-1mg-1 we expect a BPRS score increase of 0,7 

points. A low quantity of obtained correlations may be the result of the small 

amount of participants and further research in this area will provide us with the 

necessary data. 
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Research covering the association of mitochondrial enzymes activity and 

psychopathological symptoms of the BPD are limited while research exploring 

those connections in patients with other psychiatric diseases are widely present. 

Ben-Shakhar repeatedly obtained results indicating the connection between the 

severity of the SZ symptoms and mitochondrial impairment (Ben-Shachar D et al, 

1999, Ben-Shachar D et al, 2008) though there were no significant changes in the 

activity of complexes I and IV in mitochondria isolated from blood platelets of 

BPD patients in the same study. Dror et al. (2002) also performed a study 

exploring Complex I activity in schizophrenic and BPD patients and found that a 

degree of increase in complex I activity correlated directly with the severity of 

positive symptoms in patients with SZ (a tendency towards a negative correlation 

between complex I activity and negative symptoms did not reach statistical 

significance) (Dror N et al, 2002).  

As many psychopathological symptoms and mitochondrial pathology found 

in patients with SZ and BPD overlap (Clay H et al, 2011), those findings may 

highlight a connection between the severity of psychopathological symptoms and a 

specific and selective alteration in mitochondrial respiration in both diseases. 

Those alterations in energy metabolism may partially define or underlay 

psychopathology in a manic state or during the psychotic episode of the disease. 

Alterations may also vary according to the state of the disease, with the positive 

peak in manic states, which can be measured and proved statistically and negative 

peak in depressive states which is downplayed. Further studies are needed to verify 

this suggestion. 

Since Complexes I-IV play a key role in mitochondrial OXPHOS, their 

altered activity may reflect a mitochondrial dysfunction which, in turn, can result 

in impaired neuronal metabolism and neuronal plasticity expressed in certain 

psychopathological symptoms. Still there is not enough evidence whether this 

alteration is a causal or consequential effect of the disease. 

We found that there was no statistical difference in physiological respiration 

in all the subgroups (BPD patients with mania, BPD patients with depression, BPD 
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patients in remission, healthy controls). Therefore PR index cannot be used as 

biological marker sensitive to BPD. 

In the respiration rates there was a significant increase of LEAK index 

(nonphosphorylating respiration measured after the addition of oligomycin) both in 

intact and permeabilized platelets in the subgroup of BPD patients with mania 

compared to controls, though normalization for CS activity eliminated the 

difference. The LEAK respirations, as well as the flux control ratio LEAK/ETSC, 

are parameters characterizing mitochondrial damage. The flux control ratio 

LEAK/ETSC (i.e., oligomycin-inhibited respiration divided by uncoupled 

respiration at optimum FCCP concentration) in intact platelets remained very low, 

which indicated well-coupled mitochondria and the functional integrity of the inner 

mitochondrial membrane.  

Flux control ratio for the intact platelets (the ratio of a respiratory rate at a 

specific respiratory state divided to ETS capacity) was also significantly higher 

both in patients with BPD in a manic state and in a depressive state than in healthy 

controls. This may indicate an increased intrinsic uncoupling in the platelets of 

BPD patients and the availability of these parameters as indicators of the platelet 

respiration. 

Morris et al. (2017) postulates that symptomatically BPD is a biphasic 

disorder of energy ability; increased in mania and decreased in depression; and 

mitochondrial dysfunction may serve as a state dependent marker of the disorder 

with an increased mitochondrial function during mania and a decreased 

mitochondrial function during depression. The author offers a model explaining the 

biphasic nature of the disorder (Morris G et al, 2017). Our data partially 

corresponds with this postulate as the obtained data for the LEAK index increase 

and flux control ratio increase in patients with BPD seems to be mania-specific, 

though we did not obtain any data confirming a decrease of the same indexes 

during the depressive phase. 

Factor analysis in our study showed that patients with BPD had significantly 

lower Factor 2 values than healthy controls (ETS capacity and physiological 
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respiration in intact platelets) and significantly higher Factor 3 values than healthy 

controls (stage 3 respiration, nonphosphorylation respiration and initial respiration 

in permeabilized platelets).  

We speculate that a combination of those indexes with LEAK index and flux 

control ratio may serve as a clinical set of biological markers specific for the 

diagnosis of the bipolar disorder regardless of the phase of the disease.  

The current study also explores the duration period between the acute state 

and remission and its dependence on the mitochondrial pathology indicators in 

blood platelets of the patients with different phases of BPD. Indicators sensitive for 

the period length turned out to be: CS (positive values), COX (negative values), PR 

(positive values), ETS capacity (negative values), and respiration after the addition 

of glutamate (positive values).  

A possible connection between the illness duration and mitochondrial 

dysfunction in patients with BPD was also studied by Chang, who found a negative 

correlation between NAA/Creatine + Phosphocreatine or NAA levels and illness 

duration. However, later studies found that decreased NAA levels was restricted to 

the basal ganglia of the brain (Chang K et al, 2003). Berk proposed a general role 

of mitochondrial dysfunction in the disease progression (Berk M et al, 2011). 

Discemibly there is no suggested clinical test for a combination of the 

mitochondrial impairment indicators for the BPD, and therefore the data obtained 

from the current research may serve as an easily-accessible set of predictors for the 

episode duration in clinical practice. 

There are few research findings confirming the role of mitochondrial 

respiration in the severity of the clinical symptoms of BPD (Scaini G et al, 2016). 

A body of evidence for the increased mitochondrial respiration and ATP 

production in a manic phase and decreased mitochondrial function in patients in 

the euthymic or depressive phase of the BPD was found, though the research data 

are partially controversial (Hroudova J, Fisar Z, 2011). It has yet to be discovered 

whether the impairment in mitochondrial function contributes to the disease 

process or is an independent process. 
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Various mitochondrial function alterations in patients with BPD do not 

indicate the same behavioral changes or psychopathological symptoms regardless 

of the tissue type or brain area. We suggest that the same mitochondrial 

impairment needs to be present in certain brain areas involved in certain clinical 

symptoms of the disease. Bioenergetic demand of the brain cells may vary in 

different brain areas and this demand is sensitive to different factors, which means 

that there is a certain threshold value of damaged mitochondria causing a symptom 

available for clinical measurement, and this value may be different for different 

neurons. These differences might enable some psychopathological symptoms to 

manifest while other symptoms remain hidden. 

Explored abnormalities in mitochondrial function may reduce the cell ability 

for the appropriate stress response to such stimuli as emotional outbursts (an 

increased glutamate release), starvation (decreased glucose levels) and other risk 

factors known for psychotic episodes in affective disorders such as in-utero and 

infant malnutrition, substance abuse, and traumatic experiences (Kroll JL, 2007). 

If we suggest that the obtained abnormalities in platelet mitochondrial 

respiration are similar to the abnormalities in brain mitochondrial respiration, it 

may further confirm the contribution of energy metabolism impairment to the 

pathophysiology of BPD. Given the lack of a reliable and clinically relevant 

biological markers for BPD and other mood disorders, a set of mitochondrial 

enzymes activity and respiration rates easily obtained from peripheral blood 

platelets might become a useful clinical tool in the diagnostic process.  

A unique combination of the factors above in further studies may help to 

understand the effect of the certain mitochondrial function alteration on specific 

behaviors and psychopathological symptoms. Regardless of the rank of the certain 

index in the sequence of disease-causing events, an overall mitochondrial 

pathology is an important factor in the manifestation of clinical symptoms of BPD.  

 



 110 

7. Conclusion 
 

 

BPD is a complex disease that involves several biological pathways. 

Mitochondrial dysfunction was included when the mitochondrial hypothesis of 

BPD was firstly proposed by Kato in 2000. Since then it was supported by various 

data including decreased ATP production, upregulation of genes involved in 

apoptosis, downregulation of mitochondrial genes regulating OXPHOS, decreased 

antioxidant defences, abnormalities in the structure, and distribution of 

mitochondria and others. Some of the pathophysiological processes in BPD were 

discovered to be associated with certain clinical symptoms of the disease such as 

cognitive impairment, hyperactivity and others.  

The main research question in the conducted study was whether energy 

metabolism in mitochondria corresponds to clinical evaluation of the 

psychopathological symptoms in patients with bipolar disorder.  

The results obtained by the current study: 

- support Hypothesis 1 that there is a set of mitochondrial functional 

impairment indexes specific for the current phase of the disorder. For patients with 

BPD we can expect a decrease in ETSC and physiological respiration in intact 

platelets, and an increase in DMP, nonphosphorylation respiration and initial 

respiration in permeabilized platelets. Healthy controls do not show this type of 

mitochondrial alteration. Obtaining peripheral blood platelets from patients with 

mental disorders is an easy and quick procedure which may be useful for in vivo 

studies of mitochondrial respiration in psychiatric diseases; 

- support Hypothesis 2 that the severity of the symptoms of BPD is 

associated with the severity of the alteration of the mitochondrial function. A 

significant correlation was observed between Complex I and BPRS score in 

patients with manic symptoms; 

- do not support Hypothesis 3 that there is a difference in the levels of 

mitochondrial respiration and enzyme activity in manic state and depressive state. 
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There was no significant difference in mitochondrial respiration and enzymes 

activity between subgroups of BPD patients in mania and depression. 

- support Hypothesis 4 that there is a difference in the levels of 

mitochondrial respiration and enzyme activity in patients with BPD and healthy 

controls both in acute state and remission. LEAK index both in intact and 

permeabilized platelets was significantly higher in BPD patients with mania than in 

controls; flux control ratio (the ratio of a respiratory rate at a specific respiratory 

state divided to ETSC) was significantly higher in patients with mania than in 

controls and in patients with depression than in controls; in intact platelets, the 

LEAK index was significantly higher in BPD patients with remission than in 

healthy controls.  

Additional results of the study include the exploration of the duration period 

between the acute state and remission and its dependence on the mitochondrial 

pathology indicators in patients with different phases of BPD. Indicators sensitive 

for the period length turned out to be: CS (positive values), COX (negative values), 

PR (positive values), ETS capacity (negative values), and respiration after the 

addition of glutamate (positive values).  

Taken together, the obtained data provide evidence for the connection 

between psychopathological symptoms and mitochondrial function in mental 

disorders through cellular mechanisms involved in the pathology of BPD explored 

in the current study.  

Results from this study provide information for clinicians and other 

researchers. This study also portrays mitochondria as a promising targets for the 

therapeutic modulation of cellular resilience and synapses in neuronal pathways 

involved in high-order functions of the brain in different mental disorders, 

including BPD.  

Further research focused on treatment of this disorder, therapeutic strategies 

and diagnostic tools is needed to acquire a better understanding of BPD 

pathophysiology. 
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Abbreviations 
 

ADP - adenosine diphosphate 

AIF – apoptose inducing factor 

AMP - adenosine monophosphate 

ANOVA - one-way analysis of variance 

ATP – adenosine triphosphate 

BBB - blood–brain barrier 

BDNF – brain-derived neurotrophic factor 

BPD – bipolar disorder 

BPRS – Brief Psychiatric Rating Scale 

CGI-I - Clinical Global Impression - Improvement scale 

CNS – central nervous system 

CNTF - ciliary neurotrophic factor  

CoA – coenzyme A 

COX – cytochrome c oxidase or complex IV 

CPEO - chronic progressive external ophtalmoplegia 

CREB – cyclic AMP response element-binding protein  

CS – citrate synthase 

CSF - cerebrospinal fluid 

DMP – digitonin+malate+pyruvate 

DNA - deoxyribonucleic acid 

ER - endoplasmic reticulum  

ETS – electron transport system 

ETSC – electron transport system capacity 

FAD - flavin adenine dinucleotide 

FADH2 - flavin adenine dinucleotide, reduced form 

FCCP - carbonylcyanide p-triflouromethoxyphenylhydrazone 

FMN - flavinmononukleoktid 

fMRI - Functional magnetic resonance imaging  
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FRTA - free radical theory of aging 

GDNF - glial cell line-derived neurotrophic factor ( 

GTP - guanosine-5'-triphosphate 

HPA - hypothalamic–pituitary–adrenal  

IGF-1 - insulin-like growth factor 1  

IR – initial respiration 

IVF – in vitro fertilization 

KSS - Kearns–Sayre syndrome 

LHON - Leber hereditary optic neuropathy 

LNGFR - low-affinity nerve growth factor receptor  

LS - Leigh syndrome 

MADRS - Montgomery–Åsberg Depression Rating Scale 

MAO – monoamine oxidase 

MD - mitochondrial disease 

MDD – major depressive disorder 

MDQ – Mood Disorder Questionnaire 

MELAS - mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes 

MERRF - myoclonic epilepsy with ragged-red fibers 

MIDD - maternally inherited diabetes and deafness 

MMSE – Mini Mental State Examination 

MPT - mitochondria permeability transition 

mtDNA - mitochondrial DNA 

NAA -  N-acetylaspartate 

NAD+ - nicotinamide adenine dinucleotide, oxidized form 

NADH - nicotinamide adenine dinucleotide, reduced form 

NADP+ - nicotinamide adenine dinucleotide phosphate 

NAPR - neuropathy, ataxia, and retinitis pigmentosa 

nDNA - nuclear DNA 

NGF - nerve growth factor  

NT-3 - neurotrophin-3  
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NT-4 - neurotrophin-4 

OXPHOS - oxidative phosphorylation 

pH - potential of hydrogen 

PR – physiological respiration 

RCR - respiratory control ratio 

RNA - ribonucleic acid 

ROS – reactive oxygen species 

SNHL - sensorineural hearing loss 

SZ - schizophrenia 

TCA – tricarboxylic acid cycle 

Trk -  tropomyosin receptor kinase  

UK – United Kingdom 

VEGF - vascular endothelial growth factor  

YMRS - Young Scale of Mania 
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Annexes 
 

Annex 1. Mood Disorder Questionnaire (MDQ). 
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Annex 2. Montgomery–Åsberg Depression Rating Scale (MADRS) 
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Annex 3. Young Mania Rating Scale (YMRS) 
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Annex 4. Clinical Global Impression – Improvement Scale (CGI-I) 
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