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Abstrakt v češtině 

 

Projekt je zaměřen poznání souvislosti mitochondrialních 
patofyziologických procesů s psychopatologickými příznaky 
při bipolární afektivní poruše (BPD). Změny aktivity 
vybraných složek dýchacího řetězce a celková respirační 
rychlost byly měřeny u pacientů s bipolární afektivní poruchou 
v porovnání s kontrolní skupinou. byly použity diagnostické 
dotazníky, respirometrie s vysokým rozlišením a metody 
radiochemické a spektroskopické. Analýzy provedeny u 21 
zdravých kontrol a 37 osob s diagnózou bipolární afektivní 
poruchy (F31). Statistická analýza zahrnovala parametrické a 
neparametrické analýzy, faktorovou analýzu, jednocestnou 
analýzu rozptylu a lineární regresní analýzu. Získané výsledky 
ukázaly velkou roli buněčné energetiky v patofyziologii 
bipolární poruchy. Mírný rozdíl mezi různými aktivitami 
mitochondriálních enzymů byl získán u pacientů s manickou a 
depresivní epizodou onemocnění. Byly také prokázány změny 
mitochondriálního dýchání u pacientů s BPD ve srovnání se 
zdravými kontrolami. Mitochondriální respirační indexy u 
pacientů v remisi ve srovnání se zdravými kontrolními osobami 
byly změneny v souvislosti s předchozí fází onemocnění. Byla 
zjištěna souvislost mezi stavem onemocnění, 
psychopatologickými příznaky, klinickým zlepšením a 
mitochondriální patologií. Byla stanovena doba trvání mezi 
akutním manickým stavem a remisí a její závislost na 
indikátorech mitochondriální patologie. 
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Abstract v angličtině 

 

This study investigates the connection between different 
pathophysiological processes in mitochondria and 
psychopathological symptoms in patients with bipolar disorder. 
Changes in activity of selected components of the respiratory 
chain and overall respiratory rate of mitochondria were 
analyzed in patients with bipolar disorder when compared to 
healthy controls. Diagnostic scales and questionnaires, high-
resolution respirometry, radiochemical and spectroscopic 
methods were used. 37 patients with a diagnosis of bipolar 
disorder (F31) and 21 healthy volunteers were involved in the 
study. Statistical analysis included the methods of parametric 
and nonparametric analysis, factor analysis, one-way analysis 
of variance and linear regression analysis. Obtained results 
revealed that cellular energetics plays a great role in the 
pathophysiology of bipolar disorder. There was a mild 
difference between different mitochondrial enzymes activity in 
patients within manic phases and depressive phases of the 
disease. Changes in mitochondrial respiration in patients with 
BD as compared to healthy controls were also shown. 
Mitochondrial respiration indexes for patients with BD in 
remission as compared to healthy controls were altered in 
accordance with the previous phase of the disease. Association 
between the state of the disease, psychopathological symptoms, 
clinical improvement and mitochondrial pathology was 
established. The duration period between the acute manic state 
and remission and its dependence on the mitochondrial 
pathology indicators was established. 
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1. Úvod 

 

Mental disorders are a big group of complex and serious 

diseases affecting mainly the psychic sphere and are 

characterized by a high prevalence, difficulties with the 

diagnosis, high levels of disability and mortality, a significant 

societal cost and different serious risks for the patients.  

During the last decades many publications revealed an 

increasing need for further research on this topic because of 

characteristics such as frequent life-threatening conditions, 

urgent intervention requirement, clinical pathomorphosis, 

prolonged duration and a delayed treatment response postulate 

a problem of mental disorders as one of the central problems of 

modern psychiatry and general medical practice. 

Psychopathological symptoms also often cause a significant 

impairment of social functioning which may have an 

irreversible affect on patient’s life. 

Although research is ongoing many important questions 

still remain open. Questions of early diagnosis and prevention, 

clinical assessment of the symptoms, therapeutic approaches 

and pathomorphological mechanisms undermining the disease 

continue to be unanswered. One of these questions is a 

comprehensive study of typical pathogenetic features 
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associated with the psychopathological symptoms of the 

disease, including cell mechanisms.  

Cell respiration in psychiatric disorders had been a 

subject of large research interest for many years as the nerve 

tissue is highly dependent on oxidative metabolism because of 

a high energy demand and thus the brain is extremely 

vulnerable to an insufficient ATP production. Many researchers 

found evidence for mitochondrial dysfunction and oxidative 

stress in different mental disorders, although most of the 

patients do not have any ‘classical’ mitochondrial disease.   

Mood disorders are one of the main focuses in 

mitochondria-related research  since 2000 when Dr. Kato 

offered a mitochondrial hypothesis based on the findings that 

patients with bipolar disorder have an abnormal energy 

metabolism and abnormal mitochondrial DNA in the brain. 

Mood disorders (depressive, manic and bipolar 

disorders) are very common illnesses, often with recurrent or 

chronic courses. Their pathophysiology is not yet well known. 

There is currently no reliable biochemical, genetic, 

physiological or other biological test to diagnose bipolar 

affective disorder or to predict the success of pharmacotherapy.  

The etiology of mood disorders, including BPD, 

remains uncertain. Both genetic background and environmental 

factors, such as stressful life events or substance abuse, are 
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related to the risk of development of BPD (Uher R, 2014). 

Insights into the processes underlying neuroprogression in BPD 

have been provided by studies examining genetic and 

epigenetic changes, structural and functional changes in the 

brain, damage in neuronal circuits, disturbed circadian rhythms, 

changes in immune and endocrine systems, impairment in 

neuronal plasticity and resilience, increased apoptosis, 

disturbances of synaptic transmission and signal transduction, 

activation of neurotoxic mechanisms, and changes in 

neurogenesis (Berk M et al, 2014). Pathways underlying 

neuroprogression in BPD include the dopaminergic system, 

inflammatory cytokines, oxidative and nitrosative stress, 

mitochondrial dysfunction and endoplasmic reticulum stress, 

alterations in cAMP response element-binding protein (CREB) 

and neurotrophic system, dysregulation of calcium signaling, 

neuroin- flammation, autoimmune processes, tryptophan and 

tryptophan metabolites, and hypothalamic–pituitary–adrenal 

(HPA) axis dysregulation. (Berk M et al, 2011;  Anderson G, 

Maes M, 2015; Andreazza AC, Young LT, 2014) 

Research for biological markers of bipolar affective 

disorder is based on a current mood hypothesis that the activity 

of monoaminergic neurotransmitter systems, energy cell 

metabolism, growth factor and other components affecting 

neuronal plasticity.  Nerve cells need an extraordinarily large 
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amount of cellular energy to provide for the synthesis of 

molecules that allow them to receive, process and transmit 

information, develop axonal and dendritic branches, and create 

new synaptic connections. Therefore, the hypothesis of 

mitochondrial dysfunction is a prospective hypothesis for a 

number of diseases including bipolar affective disorder. 

The aim of the following research is to determine the 

connection between selected mitochondrial functions and 

psychopathological symptoms during the disease, i.e. in manic, 

depressive and remission episodes of the bipolar disorder. 
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2. Hypotézy a cíle práce 

 

The review was focused on the data revealing multiple 

connections between different signs and symptoms of mental 

disorders and various mitochondrial pathology. We can now 

see that the interpretation of all these data requires careful 

attention because it is partially controversial and some effects 

were observed in certain brain regions which can possibly 

indicate a result of other influences and not necessarily indicate 

a direct cause-and-effect relationship. Obviously the role of 

mitochondria in the pathogenesis of mental disorders is very 

complicated and might be different in different brain regions 

with maximum observed effects in the most vulnerable 

domains for each disease. 

Some promising results were obtained leading to 

perspective studies addressing deeper connections between 

mitochondrial functions and the pathology of mood disorders. 

A complex view of the pathology of mood disorders and the 

role of mitochondria in them is crucially important to develop 

new diagnostic tools and various therapeutic strategies for this 

group of devastating diseases. Mitochondrial parameters can be 

also evaluated as biological markers of bipolar disorder, one of 

the mood disorders. 
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Summarizing various connections between 

pathophysiological processes in bipolar disorder and 

mitochondrial dysfunctions, we state a purpose for the study: to 

explore how energy metabolism in mitochondria corresponds 

to clinical evaluation of psychopathological symptoms in 

patients with bipolar disorder.  

Hypotheses of the study:  

Hypothesis 1. There is a set of mitochondrial functional 

impairment indexes specific for the current phase of the 

disorder. 

Hypothesis 2. The severity of the symptoms of bipolar 

disorder is associated with the severity of the alteration of the 

mitochondrial function. 

Hypothesis 3. There is a difference in the levels of 

mitochondrial respiration and enzyme activity in manic state 

and depressive state. 

Hypothesis 4. There is a difference in the levels of 

mitochondrial respiration and enzyme activity in patients with 

BPD and healthy controls in both the acute state and remission. 
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3. Materiál a metodika 

 

3.1. Study design and participants 
 

37 patients with diagnosis of bipolar disorder (F31) 

according to ICD-10 were recruited from acute wards of the 

Department of Psychiatry of the First Faculty of Medicine, 

Charles University and General University Hospital in Prague 

and repeatedly tested using different psychopathology scales 

and blood platelets analysis methods (measurement 1 – acute 

phase, measurement 2 – remission). The control group 

consisted of 21 healthy volunteers matched by age and gender 

tested once using blood platelets analysis methods. 

Demographic data was collected for each person.  

The included criteria were as follows:  

• all in-patients and out-patients are already treated 

for BPD (at least second current episode); 

• acute state; 

• within one week upon hospitalization;  

• diagnosis of the BPD – F31 (phase manic, 

depressive, remission);  

• age 18-65.  

The excluded criteria were as follows:  
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• additional diagnosis of any listed in F10-F19, F20-

F29, F70-F79;  

• psychoactive substance abuse;  

• organic brain damage;  

• significant cognitive impairment;  

• history of medication abuse of any kind;  

• diagnosis of cancer or any neoplastic disease within 

the last 3 years;  

• a diagnosed mitochondrial disorder;  

• constantly taking medicines such as coenzyme Q, L-

carnitine, vitamin E, chloramphenicol, doxycycline, ofloxacin, 

ciprofloxacin, perofloxacin, azathioprine, cyclosporine, 

tacrolimus, everolimus, monoclonal antibodies, amiodarone, 

statins, levomepromazine, haloperidol;  

• participation in any study involving investigational 

drug within the last 3 months. 

The study was carried out according to the principles 

expressed in the Declaration of Helsinki and the study protocol 

was approved by the Ethical Review Board of the First Faculty 

of Medicine and General University Hospital in Prague, 

Czech Republic. Written informed consent was obtained from 

all participants. 
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3.2. Questionnaires and scales 
 

All patients included were screened for bipolar 

disorder using the mood disorder questionnaire (MDQ) 

(Hirschfeld RM et al, 2000).  

The Mood Disorder Questionnaire is a brief, self-report 

screening instrument for bipolar disorder with both good 

sensitivity and very good specificity which includes 13 

questions plus items assessing clustering of symptoms and 

functional impairment. 

Severity of current depression was tested using the 

MADRS (Montgomery–Åsberg Depression Rating Scale).  

MADRS is a ten-item diagnostic questionnaire which 

psychiatrists use to measure the severity of depressive episodes 

in patients with mood disorders. It was designed in 1979 by 

British and Swedish researchers as an adjunct to the Hamilton 

Rating Scale for Depression to be more sensitive to the changes 

brought on by antidepressants and other forms of treatment than 

the Hamilton Scale. 

A higher MADRS score indicates more severe 

depression, and each item yields a score of 0 to 6. The overall 

score ranges from 0 to 60. The questionnaire includes questions 

on the following symptoms 1. Apparent sadness 2. Reported 

sadness 3. Inner tension 4. Reduced sleep 5. Reduced appetite 
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6. Concentration difficulties 7. Lassitude 8. Inability to feel 9. 

Pessimistic thoughts 10. Suicidal thoughts. 

Severity of current mania was tested using the Young 

Scale of Mania (YMRS).  

YMRS is one of the most frequently utilized rating 

scales to assess manic symptoms. The scale has 11 items and is 

based on the patient’s subjective report of his or her clinical 

condition over the previous 48 hours. There are four items that 

are graded on a 0 to 8 scale (irritability, speech, thought 

content, and disruptive/aggressive behavior), while the 

remaining seven items are graded on a 0 to 4 scale. These four 

items are given twice the weight of the others to compensate for 

poor cooperation from severely ill patients. The scale is 

generally done by a clinician or trained rater with expertise of 

manic patients and takes 15–30 minutes to complete. 

Severity of illness 

General severity of illness was assessed using Clinical 

Global Impression - Improvement scale (CGI-I). CGI-I is a 7-

point scale that requires the clinician to rate the improvement of 

the patient's mental illness at the time of assessment, relative to 

the clinician's past experience with patients who have the same 

diagnosis. 

 

 97 

disorder patients. Prog. Neuropsychopharmacol. Biol. 
Psychiatry 2013; 44: 29–33.  
294. Pan W., Banks W.A. et al. Transport of brain-derived 
neurotrophic factor across the blood–brain barrier. 
Neuropharmacology 1998; 37: 1553–1561.  
295. Pan W., Banks W.A., Kastin A.J. Permeability of the 
blood– brain barrier to neurotrophins. Brain Res. 1998b; 788: 
87–94.  
296. Pan W., Kastin A.J. et al. Saturable entry of ciliary 
neurotrophic factor into brain. Neurosci. Lett. 1999; 263: 69–
71.  
297. Pan W., Kastin A.J. Interactions of IGF-1 with the blood– 
brain barrier in vivo and in situ. Neuroendocrinology 2000; 72: 
171–178.  
298. Patel T.B., Clark J.B. Synthesis of N-acetyl-L-aspartate 
by rat brain mitochondria and its involvement in 
mitochondrial/cytosolic carbon transport. Biochem J 1979; 184: 
539−546. 
299. Pereira A.C., McQuillin A. et al. Genetic association and 
sequencing of the insulin-like growth factor 1 gene in bipolar 
affective disorder. Am. J. Med. Genet. B Neuropsychiatr. 
Genet. 2011; 156: 177–187.  
300. Pérez V.I., Bokov A. et al. Is the oxidative stress theory of 
aging dead? Biochimica Et Biophysica Acta. 2009;1790(10) 
1005-14. 
301. Perry D.C., Sturm V.E. et al. Association of traumatic 
brain injury with subsequent neurological and psychiatric 
disease: A meta-analysis. J. Neurosurg. 2016; 124: 511–526.  
302. Picard M., Shirihai O.S. et al. Mitochondrial morphology 
transitions and functions: implications for retrograde signaling? 
Am J Physiol Regul Integr Comp Physiol. 2013 Mar 15; 
304(6): R393–R406. 
303. Pittenger C., Duman R.S. Stress, depression, and 
neuroplasticity: A convergence of mechanisms. 
Neuropsychopharmacology 2008; 33: 88–109.  



 

 96 

282. Neupert W., Herrmann J.M. Translocation of proteins into 
mitochondria. Annu. Rev. Biochem. 2007. 76, 723–749. 
283. Nonaka S., Hough C.J., Chuang D.M. Chronic lithium 
treatment robustly protects neurons in the central nervous 
system against excitotoxicity by inhibiting N-methyl-D-
aspartate receptor-mediated calcium influx. Proc Natl Acad Sci 
U S A. 1998;95:2642–7. 
284. Norby S., Lestienne P. et al. Juvenile Kearns-Sayre 
syndrome initially misdiagnosed as a psychosomatic disorder. J 
Med Genet 1994; 31: 45—50.  
285. Nouws J., Wibrand F. et al. A patient with complex I 
deficiency caused by a novel ACAD9 mutation not responding 
to riboflavin treatment. JIMD Rep., 12 (2014), pp. 37–45. 
286. Nunnari J., Suomalainen A. Mitochondria: in sickness 
and in health. Cell. 2012 Mar 16;148(6):1145-59.  
287. Ohara K., Isoda H. et al.. Proton magnetic resonance 
spectroscopy of the lenticular nuclei in bipolar I affective 
disorder. Psychiatry Res 1998; 84: 55−60. 
288. Olson W., Engel W.K. et al. Oculocraniosomatic 
neuromuscular disease with ‘ragged-red’ fibers. Arch Neurol. 
1972 Mar 26 (3): 193-211.  
289. Onishi H., Kawanishi C. et al. Depressive disorder due to 
mitochondrial transfer RNALeu(UUR) mutation. Biol Psychiat 
1997; 41: 1137—1139. 
290. Orrenius S., Gogvadze V., Zhivotovsky, B. Mitochondrial 
oxidative stress: implications for cell death. Annu. Rev. 
Pharmacol. Toxicol. 2006. 47, 143 – 183. 
291. Ozaki N., Chuang D.M. Lithium increases transcription 
factor binding to AP-1 and cyclic AMP-responsive element in 
cultured neurons and rat brain. J Neurochem. 1997;69:2336–44. 
292. Pagliarini D.J., Calvo S.E. et al. A mitochondrial protein 
compendium elucidates complex I disease biology. Cell, 134 
(2008), pp. 112–123. 
293. Palomino A., González-Pinto A. et al. Relationship 
between negative symptoms and plasma levels of insulin-like 
growth factor 1 in first-episode schizophrenia and bipolar 

 

 17 

Psychopathology symptoms were evaluated twice 

during the illness (before treatment, in acute state, and during 

treatment, in remission).  

 
3.3. Laboratory methods 

 

Peripheral blood samples were taken from the 

antecubital vein of each participant between 7:00 and 8:00 am, 

when all subjects were nicotine- and and coffee-free, before 

their morning medications. 24 milliliters of blood were drawn 

into BD Vacutainer® blood collection tubes with anticoagulant. 

Platelet rich plasma was separated by centrifugation at 200×g 

for 10 min at 25 °C. Platelets were counted by microscopy 

using a counting chamber and immediately used for measuring 

of mitochondrial parameters.  

The energy metabolism related to mitochondrial 

dysfunctions was analyzed in biochemical laboratories (First 

Faculty of Medicine). Selected mitochondrial parameters 

(citrate synthase and electron transport chain complexes 

activities, ATP production and mitochondrial respiratory rate) 

and functional changes in monoaminergic system (MAO 

activity, serotonin uptake) were measured in peripheral blood 

components. High-resolution respirometry, fluorescence, 

radiochemical and spectrophotometric methods were used. 
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Complexes of ETS – complex I, II, II+III and IV and 

citrate synthase were measured spectrophotometrically 

(Hroudová and Fišar, 2010). The relative activities of 

mitochondrial complexes were expressed as a ratio between 

specific enzyme activities and citrate synthase serving as the 

control mitochondrial matrix enzyme. 

Mitochondrial respiration was evaluated by both 

respiratory rate and respiratory control ratios (RCRs) using 

high resolution respirometry using (oxygraph) with Clark type 

oxygen electrodes (Fišar et al., 2016). Respiratory rate was 

determined as time derivation of oxygen concentration in the 

sample and RCRs was calculated as ratios of respiratory rates 

measured before and after substrates and/or inhibitors of 

OXPHOS. 

 

3.4. Statistical methods 
 

The study materials were statistically processed using 

the methods of parametric and nonparametric analysis in 

accordance with the results of testing the compared populations 

for normal distribution. Accumulation, corrections and 

systematization of the initial information and results 

visualization were performed in Microsoft Office Excel 2010. 
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The statistical analysis was performed using the IBM SPSS 

Statistics v.20 program. 

Each of the comparable sets of quantitative data was 

evaluated for compliance with the standard normal distribution 

law using the Shapiro-Wilk test which is recommended when a 

number of subjects are less than 60. The data distribution 

histogram, asymmetry and kurtosis parameters were also taken 

into account. 

If a normal distribution of quantitative data was 

confirmed, the obtained data was combined into a variation 

series, in which the arithmetic mean values (M) and the 

standard deviations (σ) were calculated. The analysis was 

performed using the parametrical statistics method. 

If the quantitative data distribution was non normal, the 

obtained data was described using the median (Me) and the 

lower and upper quartiles (Q1 and Q3). The analysis was 

performed using the nonparametric statistics method. 

To assess the statistical significance of the differences 

in the mean values of normally distributed populations, the 

Student t-test was calculated (1): 
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where: М1 and М2 – compared averages, m1 and m2 – 

standard errors of the average values. 
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When comparing the average values calculated for 

dependent populations (for example, before treatment and after 

treatment values), the paired Student t-test was calculated (2): 

,   (2) 

where: XD - the average, sD - standard deviation of those 

differences, µ0 - non-zero. The degree of freedom used is n − 1, 

where n represents the number of pairs. 

The obtained values of Student t-test were compared 

with critical values. Differences were considered statistically 

significant at a significance level of p<0.05. 

To compare independent sets of quantitative data with a 

non normal distribution the Mann-Whitney U test was used. 

First a single ranked series from both of the compared samples 

were formed, where elements were sorted according to the 

value increase. A smaller rank was attributed to a smaller value. 

Then a single ranked series was divided into two, consisting, 

respectively, of the first and second samples units. The rank 

amounts were counted separately for each of the series. The 

Mann-Whitney U test was calculated (3): 
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 where n1 – number of elements in sample 1, n2 – 
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number of elements in sample 2, nx – number of elements in the 

bigger sample, and Tx – ranks sum for the bigger sample. 

The calculated Mann-Whitney U test values were 

assessed by comparing them with the critical values: whether 

the calculated value was less or equal to the critical one, the 

statistical significance of the differences was accepted. 

To assess the differences between two compared pairs 

of samples with a non normal distribution the Wilcoxon W-test 

was used. The change value was calculated for each patient. All 

the changes were ordered according to the absolute value. Then 

the signs of change ("+" or "-") were assigned to ranks and the 

ranks were summed up for each sign. The smaller rank amount 

(W) was compared to the W test critical value: whether the 

calculated value was less or equal to the critical one, the 

statistical significance of the differences was accepted. 

To compare several groups of the patients (more than 

2), a one-way analysis of variance was used. To assess the 

statistical significance of the differences the Fisher F test was 

calculated (4): 
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where Q1 – sum of the sample means to overall average squared 

deviations, Q2 – sum of the observed values squared deviations, 

n – number of the elements, and m – number of the samples. 
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If the calculated value of Fisher's F test was less than 

critical, we made the conclusion that there was no statistically 

significant effect of the studied factor on the mean values of the 

trait. If the calculated value of Fisher's F test was larger than 

critical, the significant influence of the independent factor on 

the mean values for a certain level of statistical significance 

was recognized.  

If statistically significant differences between groups 

existed, an additional pair comparison of the populations using 

the a posteriori criterion of Scheffe was carried out. To check 

the tightness of the relationship of the quantitative indicators 

the linear correlation coefficient rxy of Pearson was calculated 

(5): 
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To evaluate the quality of the linear function selection, 

the square of the linear correlation coefficient R2 (the 

coefficient of determination) was calculated. The coefficient of 

determination shows the percent of factors considered in the 

model. 

For the evaluation of the statistical significance of the 

correlation coefficient t-test was calculated (6): 
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The obtained value was compared with the critical value 

for a certain level of significance and the number of degrees of 

freedom n-2. If the calculated value of tr was larger than tcrit, a 

certain level of statistical significance was recognized. 

The values of the correlation coefficient were 

interpreted in accordance with the Chaddock scale (Tab. 1) 

Tab. 1. The determination of the closeness of the correlation 

relationships, Chaddock scale 

Coefficient  Quality characteristic 

<0,1 no relationships 

0,1 – 0,3 weak 

0,3 – 0,5 moderate 

0,5 – 0,7 salient 

0,7 – 0,9 high 

0,9 – 0,99 very high 

 

To assess the dependence of one quantitative parameter 

to others, the linear regression method was used, and the 

reduced equation of the following kind was given (7): 

    y = a0 + a1x1 + … + anxn, 

   (7) 
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where y – quantitative trait, x1…xn – factor traits, a0 – constant, 

a1…an–  regression coefficients, showing the average change in 

the result y with a change in the factor x by one unit. 

The obtained regression model allows us to calculate the 

theoretical values of the effective sign y from the given values 

of the factor x. 

To compare the nominal scale values Pearson χ2 test 

was used. It allows us to assess the significance of the 

differences between the actual number of outcomes or 

qualitative characteristics of a sample falling into each 

category, and the theoretical amount that can be expected in the 

study groups when a null hypothesis is valid. 

First, the expected number of observations in each of 

the cells of the conjugacy table was calculated, provided that 

the null hypothesis of the absence of an interrelation was valid. 

For this purpose, the sums of rows and columns (marginal 

totals) were multiplied with the subsequent division of the 

obtained product by the total number of observations. 

Then the value of the χ2 was calculated (8): 
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where i – the row number (from 1 to r), j – the column number 

(from 1 to с) Oij – actual number of observations in the cell ij, 

and Eij – the expected number of observations in the cell ij.  
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Then the value of the Pearson χ2 test was compared to 

the critical values for (r-1) × (c-1) number of degrees of 

freedom. If the obtained value was larger than critical, a certain 

level of statistical significance was recognized and a statistical 

relationship between the studied risk factor and the outcome 

was confirmed. 

For the four-field table analysis, when the number of 

expected observations in any of the cells of the four-field table 

was less than 10, the χ2 test with the Yates correction was 

calculated. It reduces the risk of the first type error, i.e., 

detection of non-existent differences. The Yeats correction 

includes subtracting 0.5 from the absolute value of the 

difference between the actual and expected number of 

observations in each cell, which leads to a decrease in the χ2 

test value (9):. 
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To estimate the significance of the differences when 

the number of expected observations in any of the cells of the 

four-field table was less than 5, an accurate Fisher P test was 

calculated (10): 
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where A, B, C, D – actual numbers of observations in the cells 

of the contingency table, N – total number of the participants, 

and ! – a factorial, equal to the multiplication of a number by a 

sequence of numbers, each of which is less than previous by 1. 

An obtained value of Fisher's exact P test more than 

0.05 indicated the absence of statistically significant 

differences. An obtained value of Fisher's exact P test less than 

0.05 indicated their presence. 

To compare the relative values characterizing the 

associated populations (at the beginning and at the end of the 

observation) the McNemar test was used. It is used to 

determine whether any changes in the distribution structure 

values of two dependent variables occur (11): 

cb

)cb(
Q

2
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−=      (11) 

where Q – McNemar test, b – the number of patients with a 

negative result in the first observation and positive result in the 

second, and c – the number of patients with a positive result in 

the first observation and negative result in the second.  

The McNemar test values were interpreted by 

comparison with critical values. 

To identify factors that characterize the relationships 

between groups of characteristics and to reduce the number of 

analyzed variables, a four-stages factor analysis was used: 
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1) calculation of the correlation matrix for all variables 

participating in the analysis; 

2) extraction of factors by the principal component 

method; 

3) the rotation of factors to create a simplified structure 

using Varimax method; 

4) analysis of factor loads matrix and the interpretation 

of factors. 
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4. Výsledky 

 

4.1. Clinical evaluation of the BPD patients in manic or 
depressive episode  

 
All the subjects were divided into 2 groups: 

experimental group (37 patients with BPD) and control group 

(21 healthy individuals). The experimental group, in turn, 

consisted of 24 patients in manic episode of the disease 

(subgroup A) and 13 patients in depressive episode of the 

disease (subgroup B). Clinical evaluation and biochemical 

measurement of BAD in-patients were done both at the 

beginning of treatment and when released from hospital 

treatment (in remission or partial remission).  The average age 

within groups is shown in Table 1. 

Tab. 1. Age structure in the experimental group (patients with 

bipolar disorder) and control group 

Age (years) 
Group Subgroup 

min-max M±SD 
N 

- All 21 – 65 42.2±12.2 37 
- Subgroup А 21 – 65 39.5±13.2 24 

Experimental 
 
 - Subgroup B 30 – 59 46.9±8.7 13 
Control  25 – 61 40.3±10.3 21 

Subgroup A = manic episode; Subgroup B = depressive episode 
 

A one-way analysis of variance (ANOVA) did not show 

a statistically significant difference in age between control 
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group and experimental groups (all p=0.565, subgroup A 

p=0.156, and subgroup B p=0.147); it proves that groups are 

age-matched and no correction for age is necessary in data 

analysis. 

First stage of the research included the assessment of 

the mental state of the patients with BPD. The following tests 

were used for patients in the manic episode: Brief Psychiatric 

Rating Scale (BPRS), Young Mania Rating Scale (YMRS),  

Mood Disorder Questionnaire (MDQ). Tests for patients in the 

depressive episode included: BPRS, Montgomery-Asberg 

Depression Rating Scale (MADRS), MDQ. For patients in 

remission we added Clinical Global Impression – Improvement 

scale (CGI-I) to measure the clinical improvement. (Tab. 2) 

Tab. 2. Mental state assessment in the experimental group at 

the beginning of treatment and when released from treatment 

(measurements 1 and 2) 

State of the patient 
Test 

method 
Episode Disease (acute 

state), 
measurement 1 

Remission, 
measurement 

2 

p 

Depressive  55 (44.5-68.5) 30 (27-33) <0.001 
Manic  51.5 (41.5-66.5) 33 (29-41.5) 0.018 

BPRS 
 

p 0.952 0.177 - 
MADRS Depressive  26.5 (19-31) 4 (0-4) <0.001 
YMRS Manic  20 (13.5-26) 1.5 (0-5) <0.001 
CGI-I  - xx  

Mean (range); p – significance level 
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Data obtained from the Wilcoxon-Mann-Whitney test 

shows that the difference between the BPRS test scores in the 

acute state of the disease and in remission was significant 

within both A (p<0.001) and B (p=0.018) subgroups. In 

patients with mania the median BPRS score decreased from 

51.5 to 33 and in patients with depression it decreased from 55 

to 30. The decrease was comparable in both the subgroups. The 

difference in BPRS test scores between patients with mania and 

patients with depression were not significant in either the acute 

phase of the disease (p=0.952) or in remission (p=0.177) (Fig. 

1). 

 
Fig. 1. BPRS test score in patients with mania and depression at 
the beginning and at the end of the study. Subgroup A = manic 

episode, Subgroup B = depressive episode. BPRS – Brief 
Psychiatric Rating Scale 
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The Wilcoxon-Mann-Whitney test was also applied to 

establish the difference between the MADRS test score in the 

acute state of the disease and in remission.  The decrease after 

treatment was significant (p<0.001). The median MADRS 

assessment decreased from 26.5 to 4 (Fig. 2). 

 
Fig. 2. MADRS test results in patients with depression at the 

beginning and at the end of the study 
 

A significant decrease in the YMRS test score between 

patients in the manic episode and patients in remission was also 

established (p<0.001). The median in the acute phase was 20, 

in remission it decreased to 1.5. (Fig. 3)  
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Fig. 3. YMRS test results in patients with mania and depression 

at the beginning and at the end of the study 
 

The results of the CGI-I test were examined only at the 

end of the research as it is used to assess the quality of 

remission in mentally ill patients. (Tab. 3) 

Tab. 3.  CGI-I test results in patients with bipolar disorder in 

manic and depressive episode at the end of the study 

(remission) 

Subgroups 
А (mania) B (depression) CGI test 

Me Q1-Q3 Me Q1-Q3 
p 

Scale I 2 1-2 2 1-3 0.694 
Scale II 2 1-2 2 1-2 0.885 
Scale III 41 41-42 41 31,5-41,5 0.462 
p – significance level; Me = mean range; Q1- Quartile 1, Q3 - 

Quartile 3. 
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 The Wilcoxon-Mann-Whitney test did not reveal a 

significant difference between the CGI-I test results in either A 

or B subgroups (p>0.05 for all CGI-I scales). Median 

assessments for the scales I, II, III were 2, 2, 41 respectively. 

We can summarize that there was no difference in the quality of 

clinical improvement between patients with bipolar disorder in 

a manic episode and patients with bipolar disorder in a 

depressive episode.  

 
4.2. Mitochondrial functions in BPD patients and 

healthy controls 
 

The second stage of the research consisted of the 

comparison of the mitochondrial function in patients with BPD 

(in acute manic or depressive episodes) and healthy controls.  

Activities of mitochondrial enzymes, citrate synthase 

(CS), complexes I (CI), II (CII) and IV (COX) in patients with 

BPD are graphically presented in Fig. 4 and 5.  
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Fig. 4. Mitochondrial enzymes activity in the experimental 
group (patients with bipolar disorder in depressive episode, 

N=13). Min, Mean-SD, Mean+SD, Max, SD – standard 
deviation 
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After the post-hoc Scheffe test was performed, 

significant differences were not found between any of 

mitochondrial enzymes activity in patients with mania and 

depression (Tab. 4). The mitochondrial enzymes activity data 

from the group of healthy controls was not available; reference 

ranges of mitochondrial enzyme activities were obtained from 

mitochondrial laboratory of the Department of Pediatrics and 

Adolescent Medicine, First Faculty of Medicine, Charles 

University and General University Hospital in Prague. 

Tab. 4.  Mitochondrial enzymes in patients with bipolar 
disorder in a manic or depressive episode  

Group Mitochondrial 
enzyme Mania Depression p 

Reference 
range 

CS 
(nmol·min-

1·mg-1) 
68.9±11.8 64.0±19.6 0.397 

60-92 

CI (nmol·min-

1·mg-1) 
53.2±19.0 57.8±22.9 0.561 

21-55 

CII 
(nmol·min-

1·mg-1) 
8.07±3.96 7.87±3.41 0.89 

5-15 

COX 
(nmol·min-

1·mg-1) 
19.44±5.91 15.03±5.57 0.054 

16-40 

CS = citrate synthase; CI = Complex I; CII = Complex II; COX = Complex 
IV. Mean ± SD; p – significance level 

 
Complex I (CI) activity in BPD patients with mania was 

lower than in patients with depression; Complex II (CII) 

activity in BPD patients with mania was higher than in patients 
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with depression; citrate synthase (CS) activity in BPD patients 

with mania was higher than in patients with depression, though 

none of the above had reached statistical significance. When 

comparing a decrease in Complex IV (COX) activity in BPD 

patients with depression with BPD patients with mania, the 

significance level was close to 0.05 (Fig. 6). Complex IV 

activity in BPD patients in depressive episode was slightly 

below reference range. 
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Fig. 6. Complex IV (COX) activity in patients with bipolar 
disorder in manic episode and depressive episode, p=0.054. 

Min, Mean-SD, Mean+SD, Max, where SD – standard 
deviation 

Changes in mitochondrial respiration in the blood 

platelets isolated from patients with BPD and healthy controls 

were examined through the general linear model, one-way 

analysis of variance and post-hoc Scheffé test. The results are 

summarized in Tab. 5. 
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Tab 5. Mitochondrial respiration in the blood platelets from 

patients with bipolar disorder (measurement 1, manic or 

depressive episode) and healthy controls 

Pl
at

el
et

s 

Groups 

 

Respi-
ratory 
state Mania P  

(Mania vs 
Controls) 

Depression P  
(Depression 
vs Controls) 

Controls P  
(Mania vs 

Depression) 

PR 
0.105±0.0

17 
0.752 0.101±0.014 0.463 

0.106±0.02
3 

0.343 

LEAK 
0.00656±
0.00483 0.005 

0.00534± 
0.00241 0.267 

0.00169± 
0.00123 0.568 

ETSC 
0.124±0.0

22 
0.256 0.117±0.02 0.164 0.132±0.03 0.233 In

ta
ct

 

Rotenone 
0.00044±
0.00036 

0.148 
-0.00151± 
0.00109 

0.64 
0.00164± 
0.00119 

0.451 

IR (p) 
0.087±0.0

21 
0.32 0.082±0.026 0.24 

0.094±0.02
1 

0.678 

DMP (p) 
0.046±0.0

28 
0.188 0.034±0.014 0.564 

0.038±0.01
4 

0.355 

ADP (p) 
0.108±0.0

31 
0.418 0.097±0.032 0.873 0.112±0.03 0.823 

Glutamate 
(p) 

0.115±0.0
36 0.817 0.107±0.044 0.114 0.115±0.03 0.913 

Succinate 
(p) 

0.183±0.0
42 

0.485 0.166±0.059 0.424 
0.186±0.04

7 
0.418 

LEAK (p) 
0.03042±
0.00825 0.034 

0.02643± 
0.0104 

0.093 
0.02339± 
0.00745 

0.6872 

ETSC (p) 
0.177±0.0

54 
0.453 0.162±0.056 0.111 0.188±0.06 0.462 

Pe
rm

ea
bi

liz
ed

 
Rotenone 

(p) 
0.073±0.0

26 
0.941 0.075±0.025 0.723 

0.076±0.03
1 

0.338 

Mean ± SD; p – significance level in reference to controls. PR – 
physiological respiration, LEAK – nonphosphorylating respiration measured 
after the addition of oligomycin, ETSC – electron transport system capacity 

measured after titration with uncoupler (carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone, FCCP), IR – initial respiration in washed 
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platelets before permeabilization with digitonin, DMP – respiration 
measured after the addition of digitonin+malate+pyruvate, ADP – stage 3 
respiration supported through Complex I measured after the addition of 

ADP, Glutamate – stage 3 respiration measured after the addition of 
glutamate, Succinate – state 3 respiration supported through both Complex I 

and Complex II measured after the addition of the succinate, Rotenone – 
respiration after Complex I inhibition measured after the addition of 

rotenone. (p) indicate permeabilized platelets. 
 

In intact platelets, the nonphosphorylating respiration 

measured after the addition of oligomycin (LEAK) was 

significantly higher in BPD patients with mania than in controls 

(p=0.005). LEAK was also higher in patients with depression 

than in controls, and higher in patients with mania than in 

patients with depression, though the difference did not reach 

statistical validity. Other indexes such as electron transport 

system capacity (ETSC) and respiration after inhibiting 

complex I with rotenone (Rotenone) were lower in patients in 

both phases of BPD than in healthy controls, and lower in 

depression than in mania, though these differences were not 

significant. Physiological respiration (PR) appeared to be 

similar in all the subgroups (Fig 7, 8, 9). 
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Fig. 7. Mitochondrial respiration normalized for platelet 
concentration in intact platelets of patients with BPD in 

depressive episode. PR - physiological respiration, LEAK – 
nonphosphorylating respiration measured after the addition of 
oligomycin, ETSC – electron transport system capacity, Rot – 

respiration after complex I inhibition, measured after the 
addition of rotenone. 
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episode. PR - physiological respiration, LEAK – 
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oligomycin, ETSC – electron transport system capacity, Rot – 
respiration after complex I inhibition, measured after the 

addition of rotenone. 
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Fig. 9. Mitochondrial respiration normalized for platelet 
concentration in intact platelets of healthy controls. PR - 
physiological respiration, LEAK – nonphosphorylating 

respiration measured after the addition of oligomycin, ETSC – 
electron transport system capacity, Rot – respiration after 

complex I inhibition, measured after the addition of rotenone. 
 

After the normalization for CS activity, mitochondrial 

respiratory rate did not show any significant difference between 

the group of patients with BPD in a manic episode and control 

group or between the group of patients with BPD in a manic or 

depressive episode.   

We also measured a flux control ratio (the ratio of a 

respiratory rate at a specific respiratory state divided by ETSC); 

e.g. LEAK/ETSC ratio was significantly higher in patients with 
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BPD in a manic episode than in healthy controls (p=0.03) and 

in patients with BPD in a depressive episode than in healthy 

controls (p=0.042) (Fig. 10, 11) 

 
Fig. 10. The LEAK/ETSC index (flux control ratio) in intact 
platelets of patients with mania and healthy controls, p=0.03 

 

Fig. 11. The LEAK/ETSC index (flux control ratio) in intact 
platelets of patients with depression and healthy controls, 

p=0.042 
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The mean LEAK/ETSC in intact platelets of patients 

with BPD episode  was slightly higher in BPD patients in both 

manic and depressive episodes compared to controls, which 

may indicate a disturbance in the mitochondria coupling 

process and/or functional integrity in the inner mitochondrial 

membrane in BPD.  

In permeabilized platelets LEAK index 

(nonphoshorylating respiration after the addition of 

oligomycin) was also significantly higher in BPD patients with 

mania (p=0.034) than in healthy controls. LEAK was also 

lower in patients with depression than in patients with mania, 

though these changes did not reach statistical validity 

(p=0.058). Other respiratory rates such as ADP, Succinate did 

not reveal a significant difference between the groups.  

The results are summarized in Table 5 and Fig. 12. 
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Fig. 12. The LEAK/ETSC index (a part of the flux 

control ratio) in permeabilized platelets of patients with BPD 
with mania and healthy controls, p=0.042 

 
A comparable analysis for the mitochondrial enzymes 

activity and mitochondrial respiration in the group of BPD 

patients in remission and healthy controls was also performed. 

The comparability of the indexes in subgroups A and B was 

estimated through Student t-test. The results are summarized in 

Tab. 6.  
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Tab. 6. Mitochondrial respiration in the blood platelets from 

patients with bipolar disorder (measurement 2, remission) and 

healthy controls 

Groups  

Mitochon-
drial 

function 

Mania P  
(Mania 

vs 
Controls) 

Depression P  
(Depression 
vs Controls) 

Controls P  
(Mania vs 

Depression) 

PR  
0.106± 
0.029 

0.982 
0.106± 
0.024 

0.362 
0.106± 
0.023 

0.533 

LEAK 
0.00466± 
0.00088 0.049 

0.00356± 
0.00101 0.573 

0.00169± 
0.00123 

0.174 

ETSC 
0.127± 
0.039 

0.64 
0.129± 
0.031 

0.677 
0.132± 

0.03 
0.462 

In
ta

ct
 p

la
te

le
ts

 

Rotenone 
-0.0007± 
0.00045 

0.079 
0.00075± 

0.0006 
0.185 

0.00164± 
0.00119 

0.788 

IR (p) 
0.084± 
0.028 

0.158 
0.089± 
0.025 

0.663 
0.094± 
0.021 

0.211 

DMP (p) 
0.037± 
0.013 

0.856 
0.037± 
0.013 

0.56 
0.038± 
0.014 

0.33 

ADP (p) 
0.107± 
0.042 0.649 

0.0109± 
0.035 0.267 

0.112± 
0.03 0.583 

Glutamate 
(p) 

0.118± 
0.049 

0.788 
0.116± 
0.041 

0.145 
0.115± 

0.03 
0.672 

Succinate 
(p) 

0.188± 
0.065 

0.913 
0.187± 
0.053 

0.989 
0.186± 
0.047 

0.699 

LEAK (p) 
0.0283± 
0.01152 

0.068 
0.0256± 
0.00984 

0.164 
0.02339± 
0.00745 

0.13 

ETSC (p) 
0.185± 
0.071 

0.892 
0.186± 
0.065 

0.463 
0.188± 

0.06 
0.462 

Pe
rm

ea
bi

liz
ed

 p
la

te
le

ts
 

Rotenone 
(p) 

0.081± 
0.033 

0.601 
0.079± 
0.032 

0.555 
0.076± 
0.031 

0.54 

Mean ± SD; p – significance level in reference to controls . PR – 
physiological respiration, LEAK – nonphosphorylating respiration 

measured after the addition of oligomycin, ETSC – electron transport 
system capacity measured after titration with uncoupler (carbonyl cyanide-

p-trifluoromethoxyphenylhydrazone, FCCP), IR – initial respiration in 
washed platelets before permeabilization with digitonin, DMP –respiration 
measured after the addition of digitonin+malate+pyruvate, ADP – stage 3 
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the LEAK index was significantly higher in BPD patients with 

remission than in healthy controls.  

Additional results of the study include the exploration of 

the duration period between the acute state and remission and 

its dependence on the mitochondrial pathology indicators in 

patients with different phases of BPD. Indicators sensitive for 

the period length turned out to be: CS (positive values), COX 

(negative values), PR (positive values), ETS capacity (negative 

values), and respiration after the addition of glutamate (positive 

values).  

Taken together, the obtained data provide evidence for 

the connection between psychopathological symptoms and 

mitochondrial function in mental disorders through cellular 

mechanisms involved in the pathology of BPD explored in the 

current study.  

Results from this study provide information for 

clinicians and other researchers. This study also portrays 

mitochondria as a promising targets for the therapeutic 

modulation of cellular resilience and synapses in neuronal 

pathways involved in high-order functions of the brain in 

different mental disorders, including BPD.  

Further research focused on treatment of this disorder, 

therapeutic strategies and diagnostic tools is needed to acquire a 

better understanding of BPD pathophysiology. 
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Healthy controls do not show this type of mitochondrial 

alteration. Obtaining peripheral blood platelets from patients 

with mental disorders is an easy and quick procedure which 

may be useful for in vivo studies of mitochondrial respiration in 

psychiatric diseases; 

- support Hypothesis 2 that the severity of the symptoms 

of BPD is associated with the severity of the alteration of the 

mitochondrial function. A significant correlation was observed 

between Complex I and BPRS score in patients with manic 

symptoms; 

- do not support Hypothesis 3 that there is a difference 

in the levels of mitochondrial respiration and enzyme activity in 

manic state and depressive state. There was no significant 

difference in mitochondrial respiration and enzymes activity 

between subgroups of BPD patients in mania and depression. 

- support Hypothesis 4 that there is a difference in the 

levels of mitochondrial respiration and enzyme activity in 

patients with BPD and healthy controls both in acute state and 

remission. LEAK index both in intact and permeabilized 

platelets was significantly higher in BPD patients with mania 

than in controls; flux control ratio (the ratio of a respiratory rate 

at a specific respiratory state divided to ETSC) was 

significantly higher in patients with mania than in controls and 

in patients with depression than in controls; in intact platelets, 

 

 45 

respiration supported through Complex I measured after the addition of 
ADP, Glutamate – stage 3 respiration measured after the addition of 

glutamate, Succinate – state 3 respiration supported through both Complex 
I and Complex II measured after the addition of the succinate, , Rotenone – 

respiration after Complex I inhibition measured after the addition of 
rotenone. (p) indicate permeabilized platelets. 

 
 

In intact platelets, the LEAK was significantly higher in 

patients with bipolar disorder in remission after a manic 

episode (0.00466 pmol·sec-1·10-6 platelets) than in controls 

(0.00169 pmol·sec-1·10-6 platelets, p<0.05) (Fig. 13). Other 

indexes such as ETSC and respiration after inhibiting complex I 

with rotenone (Rotenone) were lower in patients with patients 

with bipolar disorder in remission after a manic episode than in 

healthy controls, however these differences were not 

significant. PR index was similar in both groups. After the 

normalization for CS activity, the mitochondrial respiratory rate 

had shown no significant difference between the group of 

patients with bipolar disorder in remission after a manic 

episode or a depressive episode and control group.  

In permeabilized platelets there was no significant 

difference in the mitochondrial respiration for all the 

respiratory states. 
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Fig. 13. The LEAK index in intact platelets of patients with 
bipolar disorder in remission after manic episode and healthy 

controls, p=0,042 
 
4.3. Changes in mitochondrial function of BPD patients 

during the research period 
 
An assessment of the changes in mitochondrial enzymes 

activity and mitochondrial respiration of BPD patients during 

the research period was also performed, i.e. values in the acute 

phase before treatment (manic or depressive episode) and after 

treatment (in remission) were compared (Tab. 7). 
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6. Závěry 

BPD is a complex disease that involves several 

biological pathways. Mitochondrial dysfunction was included 

when the mitochondrial hypothesis of BPD was firstly 

proposed by Kato in 2000. Since then it was supported by 

various data including decreased ATP production, upregulation 

of genes involved in apoptosis, downregulation of 

mitochondrial genes regulating OXPHOS, decreased 

antioxidant defences, abnormalities in the structure, and 

distribution of mitochondria and others. Some of the 

pathophysiological processes in BPD were discovered to be 

associated with certain clinical symptoms of the disease such as 

cognitive impairment, hyperactivity and others.  

The main research question in the conducted study was 

whether energy metabolism in mitochondria corresponds to 

clinical evaluation of the psychopathological symptoms in 

patients with bipolar disorder.  

The results obtained by the current study: 

- support Hypothesis 1 that there is a set of 

mitochondrial functional impairment indexes specific for the 

current phase of the disorder. For patients with BPD we can 

expect a decrease in ETSC and physiological respiration in 

intact platelets, and an increase in DMP, nonphosphorylation 

respiration and initial respiration in permeabilized platelets. 
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respiration rates easily obtained from peripheral blood platelets 

might become a useful clinical tool in the diagnostic process.  

A unique combination of the factors above in further studies 

may help to understand the effect of the certain mitochondrial 

function alteration on specific behaviors and 

psychopathological symptoms. Regardless of the rank of the 

certain index in the sequence of disease-causing events, an 

overall mitochondrial pathology is an important factor in the 

manifestation of clinical symptoms of BPD.  
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Tab. 7.  Activities of mitochondrial enzymes in platelets of 

BPD patients in acute phase of the disease compared with 

remission 

Disease state 
Mitochondrial enzymes 

Phase of the 
disease Acute Remission p 

Mania 68.9±11.8 63.9±9.7 0.063 
CS, nmol·min-1·mg-1 

Depression 64.0±19.6 65.3±19.3 0.687 

Mania 53.2±19.0 59.3±27.8 0.526 
CI, nmol·min-1·mg-1 

Depression 57.8±22.9 80.2±19.3 0.352 

Mania 8.07±3.96 7.62±3.33 0.467 
CII, nmol·min-1·mg-1 

Depression 7.87±3.41 8.09±3.41 0.799 

Mania 19.44±5.91 19.39±4.29 0.985 
COX, nmol·min-1·mg-1 

Depression 15.03±5.57 15.57±5.43 0.72 

Mean ± SD; p – significance level. CS – citrate synthase, CI – Complex I, 
CII – Complex II, COX – Complex IV. 

 
The CS activity in BPD patients with mania was higher 

than in healthy controls though the difference did not reach 

statistical validity (p=0,063). The difference between other 

enzymes activity such as CI, CII and COX for the groups of 

BPD patients and healthy controls also did not reach statistical 

validity. The results are summarized in Fig. 14. 
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Fig. 14. Activities of mitochondrial enzymes in patients with 
BPD in an acute phase of the disease (manic or depressive 

episode) compared with remission 
 

We have also compared the mitochondrial enzymes 

activity and respiration rates in the subgroups A and B: patients 

with mania vs patients with depression. The results obtained 

through paired test calculation are summarized in Tab. 9. 

Tab. 9. Mitochondrial respiration in blood platelets from 

patients with bipolar disorder in manic or depressive episodes 

before and after treatment 

 Disease state 
 

Respiratory 
state 

Episode of 
the disease Acute Remission p 

Mania 0.105±0.017 0.106±0.033 0.885 
PR 

Depression 0.101±0.014 0.106±0.022 0.538 

Mania 
0.00656±0.0048

3 
0.00548±0.0012

1 
0.431 

LEAK 
Depression 

0.00534±0.0024
1 

0.00301±0.0009
5 

0.079 

Mania 0.124±0.022 0.129±0.044 0.604 In
ta

ct
 p

la
te

le
ts

  

ETSC 
Depression 0.117±0.02 0.123±0.025 0.559 
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needs to be present in certain brain areas involved in certain 

clinical symptoms of the disease. Bioenergetic demand of the 

brain cells may vary in different brain areas and this demand is 

sensitive to different factors, which means that there is a certain 

threshold value of damaged mitochondria causing a symptom 

available for clinical measurement, and this value may be 

different for different neurons. These differences might enable 

some psychopathological symptoms to manifest while other 

symptoms remain hidden. 

Explored abnormalities in mitochondrial function may 

reduce the cell ability for the appropriate stress response to 

such stimuli as emotional outbursts (an increased glutamate 

release), starvation (decreased glucose levels) and other risk 

factors known for psychotic episodes in affective disorders 

such as in-utero and infant malnutrition, substance abuse, and 

traumatic experiences (Kroll JL, 2007). 

If we suggest that the obtained abnormalities in platelet 

mitochondrial respiration are similar to the abnormalities in 

brain mitochondrial respiration, it may further confirm the 

contribution of energy metabolism impairment to the 

pathophysiology of BPD. Given the lack of a reliable and 

clinically relevant biological markers for BPD and other mood 

disorders, a set of mitochondrial enzymes activity and 
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NAA/Creatine + Phosphocreatine or NAA levels and illness 

duration. However, later studies found that decreased NAA 

levels was restricted to the basal ganglia of the brain (Chang K 

et al, 2003). Berk proposed a general role of mitochondrial 

dysfunction in the disease progression (Berk M et al, 2011). 

Discemibly there is no suggested clinical test for a combination 

of the mitochondrial impairment indicators for the BPD, and 

therefore the data obtained from the current research may serve 

as an easily-accessible set of predictors for the episode duration 

in clinical practice. 

There are few research findings confirming the role of 

mitochondrial respiration in the severity of the clinical 

symptoms of BPD (Scaini G et al, 2016). A body of evidence 

for the increased mitochondrial respiration and ATP production 

in a manic phase and decreased mitochondrial function in 

patients in the euthymic or depressive phase of the BPD was 

found, though the research data are partially controversial 

(Hroudova J, Fisar Z, 2011). It has yet to be discovered whether 

the impairment in mitochondrial function contributes to the 

disease process or is an independent process. 

Various mitochondrial function alterations in patients 

with BPD do not indicate the same behavioral changes or 

psychopathological symptoms regardless of the tissue type or 

brain area. We suggest that the same mitochondrial impairment 
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Mania 
0.00044± 
0.00036 

-0.00044± 
0.00026 

0.207 
 

Rotenone 
Depression 

-0.00151± 
0.00109 

-0.00121± 
0.00074 

0.989 

Mania 0.087±0.021 0.083±0.028 0.349 
IR (p) 

Depression 0.082±0.026 0.088±0.029 0.629 
Mania 0.046±0.028 0.038±0.014 0.215 

DMP (p) 
Depression 0.034±0.014 0.036±0.012 0.555 

Mania 0.108±0.031 0.107±0.049 0.964 
ADP (p) 

Depression 0.097±0.032 0.108±0.029 0.547 
Mania 0.115±0.036 0.114±0.055 0.925 Glutamate 

(p) Depression 0.107±0.044 0.125±0.039 0.478 
Mania 0.183±0.042 0.186±0.072 0.945 Succinate 

(p) Depression 0.166±0.059 0.192±0.055 0.429 

Mania 
0.03042± 
0.00825 

0.02939± 
0.01298 

0.552 
LEAK (p) 

Depression 0.02643±0.0104
0.02647± 
0.00858 

0.66 

Mania 0.177±0.054 0.183±0.082 0.775 
ETSC (p) 

Depression 0.162±0.056 0.186±0.049 0.49 
Mania 0.073±0.026 0.077±0.031 0.799 

Pe
rm

ea
bi

liz
ed

 p
la

te
le

ts
, p

m
ol

*s
ec

-1
*1

0-6
  

Rotenone 
(p) Depression 0.075±0.025 0.089±0.039 0.448 

Mean ± SD; significance level. PR – physiological respiration, LEAK – 
nonphosphorylating respiration measured after the addition of oligomycin, 

ETSC – electron transport system capacity measured after titration with 
uncoupler (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, FCCP), 

IR – initial respiration in washed platelets before permeabilization with 
digitonin, DMP –respiration measured after the addition of 

digitonin+malate+pyruvate, ADP – stage 3 respiration supported through 
Complex I measured after the addition of ADP, Glutamate – stage 3 

respiration measured after the addition of glutamate, Succinate – state 3 
respiration supported through both Complex I and Complex II measured 

after the addition of the succinate, Rotenone – respiration after Complex I 
inhibition measured after the addition of rotenone. (p) indicate 

permeabilized platelets. 
  

There were no significant differences between an acute 

stage of illness and remission in BPD patients (p>0.05 for all 

the measurements). 
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4.4. Connections between mitochondrial function and 
psychopathological symptoms in BPD patients 

 
We also calculated correlation coefficients between the 

BPRS, YMRS, MADRS, MDQ and CGI-I tests and 

mitochondrial complexes activity to establish the association 

between the state of the disease, psychopathological symptoms, 

clinical improvement and mitochondrial pathology. A 

significant correlation was observed between Complex I and 

the BPRS score in the subgroup A (patients with mania, acute 

state – measurement 1) (p=0.001). The Pearson coefficient 

showed a high closeness of relationships according to 

Chaddock scale (rxy = 0.747), which is the evidence of the 

correlation validity. The paired linear regression equation 

shows the Complex I value dependence of BPRS score (1): 

BPRS = 18.66 + 0.7*CI    (1) 

where BPRS – Brief Psychiatric Rating Scale, mental state 

assessment scale in patients with BPD, manic episode, acute 

state (points), CI – Complex I activity (nmol·min-1·mg-1).  

 Based on the regression coefficient value, with the CI 

increase of 1 nmol·min-1·mg-1 we expect a BPRS score increase 

of 0.7 points. The coefficient of determination R2 was 0.558 

which indicates that 55.8% factors are taken into account in the 

regression model (1).  
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control ratio increase in patients with BPD seems to be mania-

specific, though we did not obtain any data confirming a 

decrease of the same indexes during the depressive phase. 

Factor analysis in our study showed that patients with 

BPD had significantly lower Factor 2 values than healthy 

controls (ETS capacity and physiological respiration in intact 

platelets) and significantly higher Factor 3 values than healthy 

controls (stage 3 respiration, nonphosphorylation respiration 

and initial respiration in permeabilized platelets).  

We speculate that a combination of those indexes with 

LEAK index and flux control ratio may serve as a clinical set of 

biological markers specific for the diagnosis of the bipolar 

disorder regardless of the phase of the disease.  

The current study also explores the duration period 

between the acute state and remission and its dependence on 

the mitochondrial pathology indicators in blood platelets of the 

patients with different phases of BPD. Indicators sensitive for 

the period length turned out to be: CS (positive values), COX 

(negative values), PR (positive values), ETS capacity (negative 

values), and respiration after the addition of glutamate (positive 

values).  

A possible connection between the illness duration and 

mitochondrial dysfunction in patients with BPD was also 

studied by Chang, who found a negative correlation between 
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to controls, though normalization for CS activity eliminated the 

difference. The LEAK respirations, as well as the flux control 

ratio LEAK/ETSC, are parameters characterizing mitochondrial 

damage. The flux control ratio LEAK/ETSC (i.e., oligomycin-

inhibited respiration divided by uncoupled respiration at 

optimum FCCP concentration) in intact platelets remained very 

low, which indicated well-coupled mitochondria and the 

functional integrity of the inner mitochondrial membrane.  

Flux control ratio for the intact platelets (the ratio of a 

respiratory rate at a specific respiratory state divided to ETS 

capacity) was also significantly higher both in patients with 

BPD in a manic state and in a depressive state than in healthy 

controls. This may indicate an increased intrinsic uncoupling in 

the platelets of BPD patients and the availability of these 

parameters as indicators of the platelet respiration. 

Morris et al. (2017) postulates that symptomatically 

BPD is a biphasic disorder of energy ability; increased in mania 

and decreased in depression; and mitochondrial dysfunction 

may serve as a state dependent marker of the disorder with an 

increased mitochondrial function during mania and a decreased 

mitochondrial function during depression. The author offers a 

model explaining the biphasic nature of the disorder (Morris G 

et al, 2017). Our data partially corresponds with this postulate 

as the obtained data for the LEAK index increase and flux 
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 The regression function diagram (1) is shown on the 

Fig. 15. 

 
Fig. 15. Linear dependence diagram for the mental state of 

BPD patients with mania and Complex I activity  
 

There were no significant correlation coefficients 

between other mental state assessment tests and mitochondrial 

pathology indicators in the other subgroups of the patients and 

in healthy controls. 

In order to identify relationships between a large 

numbers of mitochondrial pathology indicators in the research, 

a factor analysis was performed. We could distinguish four 

factors through principal component analysis with a Varimax 

rotation method. The characteristics of these factors are 

summarized in Tab. 9. 
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Tab. 9. The characteristics of the mitochondrial pathology 

assessment factors in patients with bipolar disorder  

Factor 
No. 

Meaning 

Total 
variance 

explained, 
%  

Cumulative 
% of the 

explained 
variance  

1 3.62 30.17 30.17 
2 2.66 22.19 52.36 
3 2.27 18.87 71.23 
4 1.28 10.67 81.9 

   
The eigenvalues of all the factors were >1. The factor 

load for each of the mitochondrial pathology indicators 

allowing the evaluation of the correlation between picked 

factors and other indicators is shown as a factor loadings matrix 

where the highest values are shown in bold (Tab. 10). 

Tab. 10. Factor loadings matrix 

Mitochondrial 
function 

Factor 
1 

Factor 
2 

Factor 
3 

Factor 
4 

Rotenone (p) .876 .015 -.063 .299 
Succinate (p) .860 .352 .288 .039 
ETSC (p) .821 .400 .237 .091 
ADP (p) .647 .507 .473 -.108 
Glutamate (p) .635 .380 .509 -.110 
ETSC .165 .938 .090 .068 
PR .228 .866 .175 .190 
DMP (p) .085 .175 .863 .141 
LEAK (p) .568 -.054 .602 .207 
IR (p) .389 .485 .586 .042 
Rotenone .238 .277 -.104 .730 

LEAK -.011 -.043 .373 .721 
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mitochondrial respiration in both diseases. Those alterations in 

energy metabolism may partially define or underlay 

psychopathology in a manic state or during the psychotic 

episode of the disease. Alterations may also vary according to 

the state of the disease, with the positive peak in manic states, 

which can be measured and proved statistically and negative 

peak in depressive states which is downplayed. Further studies 

are needed to verify this suggestion. 

Since Complexes I-IV play a key role in mitochondrial 

OXPHOS, their altered activity may reflect a mitochondrial 

dysfunction which, in turn, can result in impaired neuronal 

metabolism and neuronal plasticity expressed in certain 

psychopathological symptoms. Still there is not enough 

evidence whether this alteration is a causal or consequential 

effect of the disease. 

We found that there was no statistical difference in 

physiological respiration in all the subgroups (BPD patients 

with mania, BPD patients with depression, BPD patients in 

remission, healthy controls). Therefore PR index cannot be 

used as biological marker sensitive to BPD. 

In the respiration rates there was a significant increase 

of LEAK index (nonphosphorylating respiration measured after 

the addition of oligomycin) both in intact and permeabilized 

platelets in the subgroup of BPD patients with mania compared 
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participants and further research in this area will provide us 

with the necessary data. 

Research covering the association of mitochondrial 

enzymes activity and psychopathological symptoms of the BPD 

are limited while research exploring those connections in 

patients with other psychiatric diseases are widely present. Ben-

Shakhar repeatedly obtained results indicating the connection 

between the severity of the SZ symptoms and mitochondrial 

impairment (Ben-Shachar D et al, 1999, Ben-Shachar D et al, 

2008) though there were no significant changes in the activity 

of complexes I and IV in mitochondria isolated from blood 

platelets of BPD patients in the same study. Dror et al. (2002) 

also performed a study exploring Complex I activity in 

schizophrenic and BPD patients and found that a degree of 

increase in complex I activity correlated directly with the 

severity of positive symptoms in patients with SZ (a tendency 

towards a negative correlation between complex I activity and 

negative symptoms did not reach statistical significance) (Dror 

N et al, 2002).  

As many psychopathological symptoms and 

mitochondrial pathology found in patients with SZ and BPD 

overlap (Clay H et al, 2011), those findings may highlight a 

connection between the severity of psychopathological 

symptoms and a specific and selective alteration in 
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PR – physiological respiration, LEAK – nonphosphorylating respiration 
measured after the addition of oligomycin, ETSC – electron transport 

system capacity measured after titration with uncoupler (carbonyl cyanide-
p-trifluoromethoxyphenylhydrazone, FCCP), IR – initial respiration in 

washed platelets before permeabilization with digitonin, DMP –respiration 
measured after the addition of digitonin+malate+pyruvate, ADP – stage 3 
respiration supported through Complex I measured after the addition of 

ADP, Glutamate – stage 3 respiration measured after the addition of 
glutamate, Succinate – state 3 respiration supported through both Complex 
I and Complex II measured after the addition of the succinate,  Rotenone – 

respiration after Complex I inhibition measured after the addition of 
rotenone. (p) indicate permeabilized platelets. 

 
 According to the components distribution, Factor 1 is 

characterized by high values of: respiration after Complex I 

inhibition, stage 3 respiration supported through both Complex 

I and II, electron transport system capacity and stage 3 

respiration supported through Complex I, all in permeabilized 

platelets. Factor 2 is characterized by high values of: electron 

transport system capacity and physiological respiration in intact 

platelets. Factor 3 is characterized by high values of:  initial 

respiration, respiration after addition of malate and pyruvate, 

and nonphosphorylating respiration, all in permeabilized 

platelets. Factor 4 is characterized by high values of:  

respiration after Complex I inhibition and nonphosphorylating 

respiration in intact platelets. 

 We made the assessment of the differences between the 

experimental and control group based on the calculated values 

for each of the identified factors. The values of the four 



 

 54 

combined factors in the BPD patients and control groups were 

compared for that purpose (Tab. 11).  

Tab. 11.  The comparison of combined factors in patients with 

bipolar disorders and control group 

Groups 
Bipolar disorder Controls 

Combined 
factors 

 Me Q1; Q3 Me Q1; Q3 
p 

Factor 1 
(Rotenone (p), 
Succinate (p), 
ETSC (p), ADP 
(p), Glutamate 
(p)) 

-0.2 -0.95; 0.81 0.19 -0.56; 0.52 0.543 

Factor 2 (ETSC, 
PR) 

-0.13 -0.89; 0.28 0.34 -0.34; 1.19 0.024 

Factor 3 (DMP 
(p), Oligomycin 
(p), IR (p)) 

0.16 -0.59; 0.63 -0.32 -0.83; -0.06 0.023 

Factor 4 
(Rotenone, 
LEAK) 

0.15 -0.6; 1.05 -0.15 -0.7; 0.64 0.325 

Me – Mean; SD – Standard deviation; ; Q1 – Quartile 1; Q3 – Quartile 3; p – 
significance level. PR – physiological respiration, LEAK – 

nonphosphorylating respiration measured after the addition of oligomycin, 
ETSC – electron transport system capacity measured after titration with 

uncoupler (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, FCCP), 
IR – initial respiration in washed platelets before permeabilization with 

digitonin, DMP –respiration measured after the addition of 
digitonin+malate+pyruvate, ADP – stage 3 respiration supported through 

Complex I measured after the addition of ADP, Glutamate – stage 3 
respiration measured after the addition of glutamate, Succinate – state 3 
respiration supported through both Complex I and Complex II measured 

after the addition of the succinate, Rotenone – respiration after Complex I 
inhibition measured after the addition of rotenone. (p) indicate 

permeabilized platelets 
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with BPD (Aydemir O et al, 2014) and they are often present in 

the very first episode (Bora E, Pantelis C, 2015).  

Continuing the discussion of the changes in 

mitochondrial respiration in depressive phase of the disease we 

need to mention Gardner, who performed a research on 

mitochondrial enzymes activity and ATP production rate in 

patients with MDD and found an overall decrease in Complex 

I-IV in comparison with controls which correlated with the 

vulnerability to psychopathology in the following scales: 

‘Somatic Anxiety’. ‘Psychasthenia’ and ‘Suspition’ (Gardner A 

et al, 2003).  

Correa found a decreased level of ETS complexes in an 

animal model of mania associated with manic symptoms 

(Correa et al, 2007). Freitas discovered an association between 

manic-like hyperactivity in a rat brain and a decrease in the 

activity of CS (Freitas TP et al, 2010). 

As seen from the results of the conducted analyses, in 

our research we didn’t find any significant correlation between 

certain psychometric scales and mitochondrial respiration 

indexes except for the correlation between Complex I and 

BPRS score in patients with mania. Based on the regression 

coefficient value, with the CI increase of 1 nmol*min-1mg-1 we 

expect a BPRS score increase of 0,7 points. A low quantity of 

obtained correlations may be the result of the small amount of 
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complexes of mononuclear blood cells were examined in BPD 

patients in euthymic mood (Gubert C et al, 2013). No 

significant changes were found in complex I, complex II and 

complex II + III activities. The obtained results are also 

consistent with the data received by deSouza in 2014 which 

stated that mitochondrial complexes I-IV activity was not 

changed during the depressive episodes of BPD (deSouza RT et 

al, 2015). 

A decrease in COX activity was observed in BPD 

patients with depression and when compared with BPD patients 

with mania, the significance level was close to critical (Fig. 6). 

This data partially corresponds with the previous research made 

by Valla (Valla J et al, 2006) on the groups of patients with 

mild cognitive deficits (Alzheimer disease and other diseases), 

and data discovered by Fisar (Fisar Z et al, 2016) for the group 

of patients with Alzheimer’s disease, where COX activity was 

decreased and negatively correlated with the Mini Mental State 

Examination (MMSE) score. This may lead to a suggestion that 

a decreased complex IV activity indicates cognitive impairment 

which is more evident during a depressive phase of the disease. 

Prince found a decrease in COX activity in the frontal cortex 

and caudate nucleus and linked it to an increased emotional and 

cognitive impairment in patients with SZ. In general (Prince JA 

et al, 2000), neurocognitive deficits are commonly associated 
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 The Mann-Whitney test shows that patients with bipolar 

disorder had significantly lower Factor 2 values than healthy 

controls (p=0.024) and significantly higher Factor 3 values than 

healthy controls (p=0.023). For patients with bipolar disorder 

we can expect a decrease in ETSC and physiological respiration 

in intact platelets, and a decrease in DMP, nonphosphorylation 

respiration and initial respiration in permeabilized platelets.  

 We also explored the duration period between the acute 

state and remission and its dependence on the mitochondrial 

pathology indicators in patients within different phases of 

bipolar disorder.  

 We calculated multiple linear regression equation for 

the patients in manic state (2): 

Trem = -56,3 + 2,1*XCS – 4,8*XCIV + 1745,1*XPR – 

1475,4*XETSC + 386,5*XGlu
      (2) 

where  

Trem – time period between the measurements (days),  

XCS – citrate synthase (nmol·min-1·mg-1),  

XCIV – Complex IV (nmol·min-1·mg-1),  

XPR – physiological respiration (pmol·sec-1·10-6 platelets),  

XETSC – electron transport system capacity (pmol·sec-1·10-6 

platelets),  
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XGlu – respiration after the addition of glutamate (pmol·sec-1·10-

6 platelets). 

 The function was statistically valid (p=0.025), the 

Pearson correlation coefficient for the relationship between the 

mitochondrial function indicators and remission due date was 

rxy = 0.769, which shows a high closeness of relationships 

according to Chaddock scale. The regression model (2) 

explains 59.1% of the variance for the remission due date in 

patients with manic episode of the bipolar disorder.  

There was no valid model showing the remission due 

date dependence of the mitochondrial function indicators for 

patients with a depressive episode of the bipolar disorder.  
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5. Diskuse 

 

The current study contributes to the research on the 

connection between pathophysiological processes in 

mitochondria and psychopathological symptoms in different 

mental disorders.  

One study was focused on finding biological markers of 

mitochondrial dysfunction measurable in peripheral blood 

(Fisar Z, Raboch J, 2008). Elements isolated from the 

peripheral blood, especially platelets and lymphocytes, are used 

to study changes in biochemical processes caused by mental 

disorders. Though mitochondrial pathology may not be similar 

across all brain regions and cell types, nor a number of 

neurochemical parameters, this is an acceptable model 

reflecting changes in the CNS because isolating blood platelets 

doesn’t require a complicated and invasive procedure. Affected 

mechanisms of the cellular compensation can lead to an 

increased ETS activity in lymphocytes as they provide the 

energy for the cell, and, in turn, a low platelet sensitivity may 

be expected (Feldhaus P et al, 2011). 

We found that CI, CII and CS activity in BPD patients 

with mania and depression were not statistically different. 

These findings are in conjunction with results of previous 

investigations. Gubert made study where the activities of ETS 


