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Abstract 

Název práce: Váhové nerovnosti pro operátory Hardyova typu a jejich ap
likace v teorii interpolací 
Autor: David Pražák 
Katedra: Katedra matematické analýzy 
Vedoucí diplomové práce: Doc. RNDr. Luboš Pick, DSc. 
e-mail vedoucího: pick©karlin.mff. cuni. cz 
Abstrakt: Studujeme reálné interpolační prostory (Xo, X1)g,q, kde g je obec
ný funkční parametr (nikoli nutně mocninná váha). Použitím diskretizační 
metody diskretizujeme normu v (Xo, X1)g,q· Výsledná norma je dána pomocí 
odpovídající kvazikonkávní funkce h a její dikretizační posloupnosti, pros
tor s touto normou značíme (Xo, X1)h,q' Podáme přímý důkaz věty V. I. 
Ovchinnikova a A. S. Titenkovova, která charakterizuje prostor (Lp0 , LPJh,q 
v jazyce nerostoucího přerovnání. Dále najdeme vztah mezi dilatačními in
dexy kvazikonkávní funkce h a její diskretizační posloupností. Pokud jsou 
dilatační indexy funkce h nelimitní, prostor (Lp0 , Lp1 )h,q splývá s nějakým 
klasickým Lorentzovým prostorem Aq(r.p). V případě limitního dilatačního 
indexu ukážeme, že prostor (Lp0 , LPJh,q může být reprezentovaný jako ex
trapolační prostor. 
Klíčová slova: diskretizační posloupnost, dilatační indexy, reálné inter
polační prostory, extrapolační prostory. 

Title: Weighted inequalities for Hardy-type operators and their application 
in the Interpolation Theory 
Author: David Pražák 
Department: Department of Mathematical Analysis 
Supervisor: Doc. RNDr. Luboš Pick, DSc. 
Supervisor's e-mail address: pick©karlin. mf f. cuni. cz 
Abstract: We study real interpolation spaces (Xo, X1) 12,q, where {} is a para
meter function, not necessarily a power weight. Using a discretization method 
we "discretize" the norm in (Xo, X1) 12,q. The resulting norm is given by the 
corresponding quasiconcave function h and its discretizing sequence, we de
note the space endowed with this norm by (Xo, X1)h,q· We give a direct proof 
of a theorem dueto V. I. Ovchinnikov and A. S. Titenkov, which characterizes 
the space (Lp0 , Lp1 )h,q in terms of the non-increasing rearrangement. Further, 
we find a relation between the dilation indices of a quasiconcave function h 
and its discretizing sequence. In the case when the dilation indices of h are not 
limiting, the space ( Lp0 , Lp1 ) h,q coincides wi th some classical Lorentz space 
A q ( r.p). If the dilation indices are limiting, then we characterize the space 
(Lp0 , Lp1 )h,q as an extrapolation space. 
Keywords: discretizing sequence, dilation indices, real interpolation spaces, 
extrapolation spaces. 
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Preface 

The real interpolation spaces (X0 , X 1) 0,q, where (} is a para1neter function, are a 
generalization of interpolation spaces by Lions and Peetre, where only a function of 
the form g(t) = t8 , () E [O, 1], is admitted. In particular, the nonn in this space is 
given by 

11 ! 11 

= ( {
00 (K(f,t;Xo,X1))q dt)l/q. 

(Xo,X1)e,q Jo g(t) t 

The space (X0 , X 1) 0,q was in detail studied in [9], [6] and [12]. In these papers, the 
equivalence theorem, the duality of this space and also the reiteration theorem are 
given. In this thesis we introduce a different approach to this space. 

In Section 1, we establish the notation and the definitions of some co1nmonly 
used function spaces such as Lp, Lp,q, Lp,q(Iog L ),. 

Section 2 contains a discretization method introduced in [5] and [4]. We define 
a quasiconcave function, its discretizing sequence and a fundamental function, then 
we bring in a discretization theorem. We use this powerful method in sections 5-7 
to obtain our results. 

In Section 3 we discuss the connection of the dilation indices of a quasiconcave 
function and its discretizing sequence. It turns out that if the dilation indices are not 
limiting, then, roughly speaking, the discretizing sequence behaves like a geometrie 
one. 

Section 4 presents some embeddings between classical Lorentz spaces, which are 
a counterpart of Holder's inequality and we will use them as a very helpful technical 
tool. 

Section 5 contains the real interpolation method, that is the definition of a com
patible couple, the Peetre K-functional and the interpolation spaces (X0 , X 1) 0,q and 
(X0 , X 1 )h,,q· The space (X0 , X 1)h,,q is the discrete version of (X0 , X 1)0 ,q and the norm 
is given by 

li li (~ (K(f,tk;Xo,X1))q)
1

/q 
f (Xo,X1)h,q = ~ h(tk) ' 

where h is a quasiconcave function and {tk} is a discretizing sequence for h. This 
definition was firstly used by S. Jansson in [8]. He showed the equivalence and duality 
theorems for this space. We use the discretization method to make the connection 
between (X0 , X 1) 0,q and (X0 , X 1)h,,q· However, if the dilation indices of h are not 
limiting, then these two spaces coincide. Finally, we show the basic properties of 
these spaces. 

We consider the interpolation space ( Lp0 , Lp1 ) 0 ,q and using the discretization 
method we characterize this space in terms of the non-increasing rearrangement. 
Further, we give the direct proof of the theorem, which was obtained by V. I. Ovchin-
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nikov and A. S. Titenkov in [11]. At the end of Section 6, we identify (X0 , X 1) 0,q 

as a classical Lorentz space A q ( rp), under the assun1ption that (} is a quasiconcave 
function with non-limiting dilation indices. 

In Section 7, we describe the space (X0 , X 1 )h,q' where h is a quasiconcave func
tion with limiting dilation indices, a.s an extrapolation space. As an application of 
this result, we obtain a description of the grand Lebesgue space in the fonn of an 
interpolation space. 
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1 Introd uction 

This section is intended for the introductio11 of so111e basic definitions and notation, 
which we will use in the sequel. 

Let (R,µ) be a totally a-finite measure space with a 11011-atomic 1neasure µ, and 
let M(R, µ) be the set of all extended complex-valued µ-measurable functions on 
R. For f E M(R,µ), let f*(t) = µ({x ER: lf(x)I > t}), t >O be the distribution 
function of f. The non-increasing rearrangement of f is defined by 

f*(t) = inf{s >O: f*(s) < t}, t E [O, oo). 

We further denote 
1 rt 

f**(t) = t Jo f*(s) ds, t E (O, oo). 

Let 1 < p < oo, then the Lebesgue space Lp = Lp(R) = Lp(µ) = Lp(R, µ) is the 
set of all p-integrable functions in M(R, µ). The norm is defined by 

llJllLp = (L lf(x)IPdµ(x)) l/p, 1 < p < oo, 

llJllLoo = esssup lf(x)I, p = oo. 
xER 

As usual, functions which differ only on a set of measure zero are identified. 
If moreover 1 < q < oo, then the Lorentz space Lp,q is defined as follows. We 

have f E Lp,q, if and only if 

llJllLv,q = ([
0

(t 1IPf*(tW~t) l/q < oo, 1 < q < oo, 

Ilf llLp,oo =sup tl/p f*(t) < oo, q = oo. 
t>O 

Assume in addition that µ(R) = 1 and 1 E JR. Then the Lorentz-Zygmund space 
Lp,q(log L), consists of all µ-measurable functions f on R for which 

is finite. 

Ilf llLv,q(logL)-y = (11 

(t11P(l - logt)'Y f*(t))q~t) l/q, 1 < q < oo, 

Ilf llLp,oo(logL)-y = sup t 11P(l - log t)' f*(t), q = oo, 
O<t<l 
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If L CZ then the space l~ consists of all sequences a= {ak}kEZ for which is the 
pseudonorm 

llallz~ = (L laklq) l/q, 
kEL 

1 < q < oo, 

llallzL =sup lakl, q = oo, 
00 

kEL 

finite. In the case when L =Z, we write l~ = lq. 
Let 1 < p, q < oo and let Lk C Z for k E Z. Then lq(l;k) is the space of sequences 

generated by pseudonorm 

If X and Y are two (pseudo )normed linear spaces, then the space X EB Y is 

generated by (pseudo)norm llallxmY = llallx + llallY· 
If we write A ;S B, it will mean that there exists some positive constant C 

independent of appropriate quantities such that A< CB. If simultaneously A ;SB 
and B ;S A, then we write A~ B. We say that two functions f, g are equivalent on 
(O, oo) if there exists a positive constant C such that 

c-1 f (t) < g(t) < Cf (t) for all t E (O, oo ). 
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2 The Discretization Method 

The discretization method was firstly introduced in [5]. Then it was further studied 
e.g. in [4], which we will mainly follow. 

Definition 2.1. Let {ak}kEZ be a sequence of positive real nu1nbers. We say that 
{ak} is strongly increasing or strongly decreasing and write {ak} nor {ak} li when 

respectively. 

inf ak+l > 1 
kEZ ak 

or 
ak+1 

sup--< 1, 
kEZ ak 

For the proof of the first lemma, see (5, Proposition 2.1]. 

Lemma 2.2. Let { ak}kEZ, { ak}kEZ and { Tk}kEZ be sequences oj nonnegative num
bers. Let p E (O, oo). 

(i) Ij ak TI, then 

(ii) Ij Tk li, then 

The following lemma can be proved by a similar argument as Lemma 2.2. 

Lemma 2.3. Let {ak}kEZ, {ak}kEZ and {Tk}kEZ be sequences oj nonnegative num
bers. Let p E (O, oo). 

(i) Ij ak TI, then 

(ii) Ij Tk li, then 
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Definition 2.4. Let r..p be a continuous strictly increasing function on [O, oo) such 
that r..p(O) = O and limt-.oo r..p(t) = oo. Then we say that r..p is admissible. 

Given such r..p, we say that a function h is r..p-quasiconcave if h is equivalent to a 
non-decreasing function on [O, oo) and h/ r..p is equivalent to a 11011-increasing function 
on (O, oo). If moreover 

1. h() l' 1 i· h(t) i· r..p(t) o 
im t = im h ( ) = im -( ) = nn h ( ) = , t-.o+ t-+oo t t-+oo r..p t t-.o+ t 

(1) 

then h is non-degenerate. The set of all non-degenerate r..p-quasiconcave functions 
will be denoted by n'P. 

We say that h is quasiconcave when h is r..p-quasiconcave with c.p(t) = t. If h is 
moreover non-degenerate, we write h E 0 0,1 . 

Remark 2.5. It will be useful to note that 

r..p 
h E ncp ~ h E ncp. 

Definition 2.6. Assume that r..p is admissible and h E n'P. We say that {µk}kEZ is 
a discretizing sequence for h with respect to r..p if 

(i) µo = 1 and r..p(µk) n' 
(ii) h(µk) n and ~~~:~ il, 

(iii) there is a decomposition Z = Z1 U Z2 such that Z1 n Z2 = 0 and for every 
t E [µk, µk+1] 

h(µk) ~ h(t) 
h(µk) h(t) 
1.p(µk) :::::i cp(t) 

if k E Z1, 

if k E Z2, 

where the constants of equivalence are independent of k E Z. 

We say that {µk}kEZ is a discretizing sequence for h when {µk}kEZ is a discretizing 
sequence for h with respect to r..p(t) = t. 

The following lemma and its proof can be found in [4, Lemma 2.7], but because 
of its importance for us, the proof is brought in. 

Lemma 2. 7. Let r..p be an admissible function and assume that h E O'P. Then for 
arbitrary a > 4 we can define the sequence {µk} by µ0 = 1 and 

. { . { h(t) h(µk) r..p(t)} } 
µk+ 1 = mf t : mm h(µk), 1.p(µk) h(t) = a when k> O, 
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. { . { h(µk) h(t) 'P(µk)} } 
µk-1 =mf t : mm h(t) , tp(t) h(µk) =a when k< O. 

Then {µk} is a discretizing sequence for h with respect to ((). 

Proof. We should verify the properties (i), (ii) and (iii) fron1 Definition 2.6. Set 

Z1 ={k E Z: ah(µk) = h(µk+1)}, Z2 =Z\ Z1. 

Then 
h(µk) _ h(µk+1) f k E z 
'P(µk) - a 'P(µk+l) or 2. 

Since h E Ocp, it follows from the definition of the sequence {µk} that µk+l > µk for 
every k E Z. Hence, we get for every k E Z, 

h(µk) > a h(µk+i) > a2 h(µk) 
'P(µk) - ({J(µk+l) - ({J(µk+l) 

and therefore, for k E Z, 

(2) 

This shows that 'P(µk) n. Moreover, by the definition of {µk}, we have for k E Z, 

h(µk+1) > a > 1 and h(µk+1) tp(µk) < ~ < 1 (3) 
h(µk) - ' 'P(µk+l) h(µk) - a ' 

so h(µk) n and h((µk)) il. cp µk 
Finally, h E Ocp, whence for t E [µk, µk+1], 

h(µk) < h(t) < h(µk+1) = ah(µk), 

~ h(µk) = h(µk+1) < h(t) < h(µk) 
a 'P(µk) 'P(µk+1) - 'P(t) - 'P(µk)' 

which shows (iii). o 
Definition 2.8. Let 'P be an admissible function and suppose that v is a non
negative Borel measure on [O, oo). We say that the function 'ljJ defined as 

'ljJ ( t) = { dv (s) + 'P ( t) { dv? j , t E ( 0, oo) , 
Í[o,t] J[t,oo) 'P S 

(4) 

is the fundamental function oj the measure v with respect to rp. 
The measure v is non-degenerate if the following conditions are satisfied for every 

tE(O,oo): 

r dv(s) + <p(t) r dv?i < oo, 
J[o,t] Í[t,oo) 'P s 

r dv(s) = r dv(s) = 00. 

Í[o,1) 'P( S) Í[1,oo) 

10 



Remark 2.9. If vis a non-negative non-degenerate Borel 1neasure on [O, oo) and if 'l/J 
is the fundamental function of v with respect to son1e ad1nissible function 'P then 'z/; 
is (;?-quasiconcave and moreover 'i/; E O"'. This follows fron1 the another expression 
of 'i/;: 

1 'P(s) 
'ljJ ( t) :::::: ( ) ( ) dv( s), 

[0,oo) 'P t + 'P S 
tE(O,oo), 

and from standard limiting theorems. For details see [4, Re1nark 2.10 (i)]. 

Remark 2.10. Conversely, if 'P is an admissible function and h E O"', then there 
exists a representation measure v, see [4, Lemma 2.8]. 

The next theorem is proved in [4, Corollary 2.13]. 

Theorem 2.11. Let q E (O, oo), let u be an admissible function, let w be u
quasiconcave function, let v be a non-negative non-degenerate Borel measure on 
[O, oo) and let 'i/; be the fundamental function oj v with respect to uq. Let { tk} be a 
discretizing sequence for 'i/; with respect to uq. Then 

( 
f (w(t))q )l/q ( (w(t ))q )I/q 

Í[o,oo) u(t) · dv(t) :::::: ~ u(t:) 7/J(tk) · 

11 
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3 Dilation lndices 

In this section we will study the dilation indices of a quasiconcave function, say h, 
and their connection to a discretizing sequence for h. 

Definition 3.1. Let h be a quasiconcave function, then we denote 

- h(ts) . h(ts) 
h(t) =sup h( ) , h(t) =mf h( ) , for t >O, 

s>O S s>O S 

and we define the dilation indices of h by 

log h(t) 
ah= sup , f3h =inf log h(t). 

t>l log t O<t<l log t 

Example 3.2. Let h(t) = t8 , where O<()< 1. Then h(t) = t8 and so ah= f3h = 0. 

Proposition 3.3. Let h be a quasiconcave function, then 

(i) h and h are non-decreasing, h < h, and h(l) = h(l) = 1; 

(ii) h(st) < h(s)h(t), s, t >O, in other words, h is submultipl'icative; 

( iii) h (st) > h (s) h ( t) , s, t > O; 

(iv) O< h(s)h(t) < h(st) < h(s)h(t), s, t >O; 

(v) h(t) < max(l, t), h(t) > min(t, 1), t > O; 

( vi) h ( t) h ( 1 / t) = i. 

Proof. The statements in (i) and (iv) are quite trivial. 
Let t, T > O then 

- h(trs) h(rs) h(trs) h(rs) - -
h(tT) =sup h( ) h( ) <sup h( ) sup h( ) = h(t)h(T), 

s>O S TS s>O TS s>O S 

which proves the submultiplicativity of h. The assertion in (iii) is analogous. 
From (i) it is clear that h(t) < 1 for t E (O, 1), and h(t) > 1 for t > 1. Since h is 

quasiconcave and hence h(t)/t is non-increasing, we have for t > 1 

- h(ts) ts h(s) ts 
h(t) =sup h( ) <sup -h( ) = t, 

s>O ts S s>O S S 

and for t E (O, 1) 

h(t) =inf h(ts) _!_!__ >inf h(s) _!_!__ = t 
- s>O ts h( s) - s>O s h( s) ' 

12 



so (v) is proved. 
If we take t > O, then 

- h(ts) h(s) 
h(t) =sup h( ) =sup h( / ) 

s>O S s>O · S t 

1 1 
. f h(s/t) h( 1/t) ' 
111 s>O --;i(s) -

which is ( vi). D 

Proposition 3.4. The dilation indices a = ah and f3 = f3h oj the quasiconcave 
function h are given by the limits 

a = lim _lo_g h_(_t) 
t~oo log t ' 

and they satisfy O < a < (3 < 1. 

Proof. By Proposition 3.3 (vi), we get 

{3 = lim log h(t) 
t~oo log t ' 

log h(t) - log h(l/t) log h(t) 
a = sup = sup = sup . 

O<t<l log t O<t<l - log 1/t t>l log t 

(5) 

Let c > O, then there exists t > 1 such that a - c < log h( t) /log t < a. Chaose a 
positive integer N satisfying 

N log_G(t) < 
a - c < N 1 1 - a. + ogt 

Then for every s > tN, we find an integer n > N such that tn < s < tn+ 1. Using 
Proposition 3.3 (iii), we have 

log_á(s) > log.á(tn) > log_án(t) = n log_á(t) > N log.á(t) >a_ c. 
log s - log tn+l - log tn+l n + 1 log t - N + 1 log t 

This proves that lim8~00 logh(s)/logs =a, which is the first identity in (5). The 
second one could be proved in the similar way and it is even simpler. 

The inequalities O< a< f3 < 1 follow from (5) and Proposition 3.3 (i), (v). D 

Remark 3.5. Let a = ah and f3 = f3h be the dilation indices of a quasiconcave 
function h, and let c > O. We define functions fe and 9e by 

Je ( t) = { tf3+e' O < t < 1; 

tQ-é t > 1 · 
' - ' 

and 9c(t) = { tcx-c, O< t < l; 

tf3+e, t > 1. 

If O < a < (3 < 1, then fe(t) ~ h(t) ~ 9e(t) for t > O. 
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Theorem 3.6. Let h E 0 0,1 and assume that { tk} is a discretizing sequence for h. 
Let ah and f3h be the dilation indices oj h. Then 

Proof. Let us assume that t~: 1 < b < oo for all k in Z 1. It is clear fro1n (2) that 

a2 < b. If we take such k that tk+I < b tk, then by (3) we have 

On the other hand, the inequality b tk < tk+I implies that k is in the set Z2, and so 

Altogether we get h(btk) > ah(tk) for each k in Z. 
Now, our aim is to prove the following inequality: 

h(b2) = . f h(b2s) > 
_ in h( ) _a. 

s>O S 
(6) 

Let us assume that s lies in some [tk, tk+1). Then we distinguish several possibilities. 
If tkbi < s < tk+I, then 

Otherwise tk < tkbi, and so k E Z2 . At first, we take such s that t~t 1 < s < tk: 1
, 

then 
h(b2s) > h(tk+l) = h(tk+1) ~ > b h(tk+1) tk = ~ >a 
h(s) - hCkt1 ) tkt 1 hek:1

) - tk+1 h(tk) a - . 

Secondly, let tk < s < t~! 1 
, then 

Taking the infimum over all positive s we obtain (6). 
Let (b2)n-l < t < (b2)n, where n is a natural number. Also by Proposition 3.3 

(iii), we have 

logh.(t) > (n-l)log.á(b2
) > n-1 loga~ loga 

log t - n log b2 - n log b2 log b2 ' 
n ~ oo. 
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Proposition 3.4 gives us that ah = i~~gab > O, as we wanted to prove. 
Now, let us assume that supkEZi {tk+i/tk} = oo, then for each n in N there exists 

k(n) in Z1 such that an+ltk(n) < tk(n)+l· If we take an < t < an+l, then 

h( ) 
. f h( ts) h( an+ltk(n)) h( tk(n)+l) 

t =in < < =a 
- s>O h( S) - h( tk(n)) - h( tk(n)) ' 

and therefore 
log h(t) < log a = ]:_ __i. 

0 -----r , n --t oo. 
log t - log an n 

And again Proposition 3.4 yields ah = O. This concludes the proof of the first 
equivalence. 

We now turn our attention to the second equivalence. Assume that tk+i/tk < 
b < oo for all k in Z2 . We will first look at such k for which tk+l < b tk. For these, 
we have also by (3) that 

h(btk) = b h(btk) tk < b h(tk+l) tk < b. 
h(tk) btk h(tk) - tk+1 h(tk) - a 

If we take k for which btk < tk+i, then this k has to belong to the set Z1, and we 
obtain 

h(btk) < h(tk+l) = a < ~. 
h(tk) - h(tk) - a 

The conclusion is that for every k in Z holds h~~t:k-/ < ~. 
We are going to prove the following inequality 

h(b2) h( b2 s) b2 

=sup < -. 
s>O h(s) - a 

(7) 

Let s be a positive real number, then we can find the interval [tk, tk+i) in which s 
lies. Furthermore, if tkbi < s < tk+i, then 

h(b2s) = b2 h(b2s)_s_ < b2 h(btk+i) tk+l = bh(btk+i) < b2
. 

h(s) b2s h(s) - btk+1 h(tk+1) h(tk+1) - a 

Otherwise tk < tkbi, which implies that k lies in Z1 . At first, we assume that 
tk+i < s < tk+1 then 

b2 - b ' 

h(b
2
s) = b2 h(b

2
s) _s_< b2 h(tk+i) ~ < bh(tk+1) =ba= ba

2 < b
2

. 

h(s) b2s h(s) - tk+l hCk:1
) - h(tk) a a 

Finally, if tk < s < t~! 1 , then 

h(b2 s) h( tk+1) b b2 

--< =a<-<-
h(s) - h(tk) - a a' 

15 



and by taking the supremu1n over all positive s we obtain (7). Let (b2 )n < t < 
(b2)n+1, where n is a natural number. Since h is subrnultiplicative, we have 

log h(t) < (n + 1) log h(b2
) < n + llog .t;i- -----+ log~ 

log t n log b2 n log b2 log b2 ' 
n~ oo. 

b2 

By Proposition 3.4 we get the desired inequality f3h = ~~~b".i < 1, so one direction of 
the second equivalence is proved. 

In order to prove the reverse direction, let supkEz
2
{tk+1/tk} = oo, which ineans 

that for every natural number n there exists k(n) in Z 2 such that antk(n) < tk(n)+I· 

Let us consider such t that an < t < an+1, then 

Moreover, 
log h(t) > (n - 1) log a = n - 1 -----+ 

1 
log t - ( n + 1) log a n + 1 ' 

n ~ oo. 

Using once again Proposition 3.4, we obtain f3h = 1. 
The proof is complete. D 
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4 Embeddings between Classical Lorentz Spéices 

In this section we will recall some well-known en1beddings between classical Lorentz 
spaces. The weight is a non-negative measurable function on (O, oo). 

Definition 4.1. Let 1 < p < oo and let v be a weight. We define the classical 
Lorentz space AP (v) by 

AP(v) = {f E M(R,µ): llJllAP(v) = ([
0 

f*(t)Pv(t)dt) l/p < oo}. 
Theorem 4.2 (embedding AP( v) '--t Aq(w)). Let 1 < p < q < oo and let v, w be 
weights. Then the inequality 

( 
roo ) 1/q ( roo ) l/p lo f*(t)qw(t) dt < C1 lo f*(t)Pv(t) dt (8) 

holds with some constant O < C1 < oo if and only if there exists constant O < C2 < oo 
such that 

([ w(s) ds f q < C2 ([ v(s) ds) l/p, t >o. 

This constant C2 , if it exists, can be used in (8) as C1 . 

This result can be found in [13, Remark (i), p. 148]. 

Corollary 4.3. Let O < p < q < oo, O < a < b < oo and T E (O, 1). Then the 
following inequality holds: 

(t f*(W dt) l/q < ((1 - T) a)~-i (1: f*(t)P dt) l/p. 

Proof. If we use Theorem 4.2 with the weights w(t) = X(a,b)(s) and v(s) = X( 7 a,b)(s), 
it suffices to show 

( 
t )1/q (ft )1/p 1 X(a,b)(s) ds < ((1 - T) a)~-i lo X(ra,b)(s) ds , t >o. 

Since 1 - 1 < O we have q p -

(t - a) 1/q (t - Ta) 1/q 1 1 1 1 

sup ( )I/ <sup( )l/ =sup(t-rn)q-p <(a-rn)q-p' 
a<t<b t - Ta P a<t t - Ta P a<t 

which gives us the desired inequality. D 

17 



5 The Real Interpolation Method 

We will construct the real interpolation spaces (X0 , X 1)g,q with the function para
meter g. These spaces are a generalization of the interpolation spaces by Lions and 
Peetre, and they were studied in [9], [6] and [12]. We take into account the discrete 
definition, which was introduced by S. Jansson in [8]. We shall n1ake a connection 
between these two definitions and give some properties of these spaces. 

Definition 5.1. A pair (X0 , X1) of Banach spaces X 0 and X1 is called a compatible 
couple if there is some Hausdorff topological vector space H in which each of X 0 

and X 1 is continuously embedded. 
If (X0 , X1) is given we denote the intersection of X 0 and X 1 by X 0 n X 1 , and it 

consists of all elements h in H that are in both X 0 and X 1. For h in X 0 n X 1 we 
define 

llhllxonX1 = max(llhllxo, llhllx1)· 

Further we denote the sum of X 0 and X 1 by X 0 +X1, that is, the set of elements 
h in H that are representable in the form h = x0 + x1 for some x0 in X 0 and x1 in 
X 1. For each h in X 0 + X 1 we. define 

The next proposition is standard, see for example [1, Theorem III.1.3]. 

Proposition 5.2. Suppose that (X0 , X1) is a compatible couple oj Banach spaces. 
Then X 0 n X1 and X 0 + X1 are also Banach spaces. 

We will now define the Peetre K-functional. 

Definition 5.3. Let (X0 , X 1) be a compatible couple of Banach spaces. The K
functional is defined for each f E X 0 + X 1 and t > O by 

K(f, t; Xo, X1) = inf{llfollxo + t ll/1 llx1 : f =fo+ !1}, 

where the infimum extends over all representations f = fo + f 1 of f with f 0 E X 0 

and !1 E X1. 

The following lemma is an easy consequence of the definition of the K-functional. 

Lemma 5.4. For every f in Xo +X1, the K-functional K(f, t; Xo, X1) is a positive, 
increasing and concave function oj t > O, and 

(9) 

In particular, t-1 K(f, t; X 0 , X1) is decreasing on (O, oo). 

18 



Moreover 

K(f, t; Xo, X1) < max(l, t/s)K(f, s; X 0 , X 1), s, t >O, (10) 

and 
min(l, t/ s)K(f, s; X 0 , X1) < K(f, t; X 0 , X1), s, t > O. (11) 

Definition 5.5. The function g : (O, oo) ~ (O, oo) belongs to the function class 
Vq, 1 < q < oo, if g is measurable and satisfies for all positive t: 

(

00 

(min(s,t))q ds < oo, q < oo, 
lo g(s) s 

min( s, t) 
sup ( ) < oo, q = oo. 
s>O Q S 

Definition 5.6. Let (X0 , X1) be a compatible couple of Banach spaces and let 
g E Vq· Then we define the functional 

sup K(f,t;Xo,X1) 
t>O g(t) ' 

q = oo, 

for all measurable functions on (R, µ) and we denote 

Remark 5.7. These spaces are the generalization of well-known interpolation spaces 
(Xo,X1)e,q, i.e. let Qe(t) = t8

, where O< B < 1, then 

1 < q < 00. 

We will work with discrete Definition 5.8 in the following sections, but one could 
say that Definition 5.6 is more natural, so we are going to show that they are in 
some sense equivalent, see Corollary 5.12. 

Definition 5.8. Let (X0 , X1) be a compatible couple of Banach spaces and let 
h E no,1· Assume that {tk}kEZ is a discretizing sequence for h. Then we define 

1 < q < oo, 

q = oo, 
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for all measurable functions on (R, µ) and we denote 

(Xo, X1)h,q = { f E M(R, µ) : Ilf ll(xo,X1)h,q < oo} · 

Proposition 5.9. Let (X0 , X 1) be a given compatible couple oj Banach spaces, let 
{! E Vq and let h E 0 0,1 . Assume that {tk}kEZ is a discretizing seqttence for h. If 
1 < q < oo, then (X0 , X 1 )g,q and (X0 , X 1 )h,q are Banach spaces. 

Proof. Let <I> g,q, respective <I>h,q, be the functional defined by 

( ( )) 
'P(t) 'P(tk) 

<I> g,q 'P t = f)(t) , resp. <Ph q ( <p( t)) = h( tk) 
~ L q ( dt I t) ' lq 

where 'P is a non-negative function and { tk} is the discretizing sequence for h. Since 
K(f, t; X 0 , X 1) is a norm on X 0 + X 1 and since <I>g,q, resp. <I>h,q' has all three 
properties of a norm, it is easy to see that (X0 , X 1 )g,q and (X0 , X 1 )i;,,q are no'rmed 
vector spaces. To establish con1pleteness, suppose that {! n}~=l is a sequence in 
Xo + X1 with L:~=l llfnll(xo,Xi)e,q < oo, resp. L~=l llfnll(x0 ,X1)h,q < oo. Since 
Lq(dt/t), resp. lq, is complete, the series 

converges in Lq(dt/t), resp. lq, and hence it is finite for all t > O, resp. tk. Now 
X 0 + X 1 is also complete, and K(f, t; X 0 , X 1) is an equivalent norm, so this im
plies that K(L fn, t; Xo, X1) < L K(fn, t; Xo, X1), resp. K(L fn, tk; Xo, X1) < 
L K(fn, tk; Xo, X1). Applying <I>g,q, resp. <I>h,q' we obtain 

00 00 

li L fnll(xo,X1)M < L llfnll(Xo,X1)e,q < oo, 
n=l n=l 

respectively with the norm of (X0 , X 1)h,q' and this establishes the completeness of 
(Xo, X1)g,q, resp. (Xo, X1)h,q· D 

Proposition 5.10. Let (X0 , X1) be a given compatible couple and suppose that h E 

0 0,1 . Let ah and f3h be the dilation indices oj h satisfying O < ah < f3h < 1. 
Assume that { tk} is a discretizing sequence for h. If 1 < q < oo, then (Xo, X1)h,q = 

(Xo, X1)h,q with equivalence of norms. 

Proof. Since O < ah < f3h < 1, then, using Remark 3.5, it is easy to see that h E Vq· 
By Definition 2.6 (i) and Theorem 3.6, there are real numbers a and b such that 
1 < a < b < oo and a < t~: 1 < b for all k in Z. 
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Using also (10), we obtain 

Ilf llq , = '"""1.t, k+1 ( f{ (J, t; Xo, X I))'' d,,'t 
(Xo,X1)h.q L..-t h (t) f 

k:EZ tk 

< Llogtk+I (I<(f,tk·+1;)(0,.)(1))l/ 
kEZ ik h( tk) 

< log b L (max (i, tk+1) I<(J, tk; Xo, X1)) <J 

- kEZ tk h( tkJ 

< bq log b Ilf ll{x0 ,x1J;,,,, · 

On the other hand, we have also by ( 11), 

Therefore the norms in (X0 , X 1 )h,q and (X0 , X 1 )h,q are equivalent. 

In the following proposition, the case q = oo is treated. 

D 

Proposition 5.11. Let (X0,X1) be a compatible couple and suppose that h E 0 0,1 . 

Let { tk} be a discretizing sequence for h. Then (Xo, X1)h,oo = (Xo, X1)h,oo with 
equivalence oj norms. 

Proof. We shall prove the following equivalence 

(12) 

Clearly, the righthand side is less or equal to the lefthand side, so it is remaining to 
show the converse inequality. Since { tk} is the discretizing sequence for h, there is 
a decomposition Z= Z1 U Z2 such that for every t E [tk, tk+i] and k E Z 1, 

K(f,t;Xo,X1) K(f,tk+1;Xo,X1) ~ K(f,tk+1;Xo,X1) 
h(t) < h(tk) ,..., h(tk+l) , 
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and for t E [tk, tk+1] and k E Z2, 

K(f, t; Xo, X1) _t_ < K(f, tk; Xo, Xi) tk+1 ~ J\(f, ti.:; X 0 , X 1) tk· 

t h ( t) - t h~ h ( t k·+ 1 ) t k h (t d " 

From this the desired converse inequality in (12) follows. o 
In the sequel, we will use na1nely the follo\ving general discretization nH~tho<l. 

Corollary 5.12. Let (X0 , X1) be a cornpatible couple oj Banach spaces and suppose 
that q E [1, oo). Let (] E Vq and let v be the measure defined by dv( s) = ~~(.,\ ds. Let 
'l/; be the fundamental function oj the rneasure v with respect to 'P( t) = ť1 . Let h be 
defined by 

h(t) = (__!!__) 1/q = (rq t sq-1ds + 100 ds )-1/q, t > O. 
'ljJ ( t) Jo Qq (s ) t s g<J ( s ) 

then h E Do,1 and (Xo, X1)g,q = (Xo, X1)h,q with the equivalence oj rwr1n8. 

( ) 

l/q 
Proof. By Remark 2.9, we have 'l/; E O'P, and so h(t) = 

11
;·tt) is increasing, 

( ) 

1/q 
and h~t) = 1/J(t) is decreasing. It is clear that h also satisfies the non-degeneracy 

conditions (1), hence h E 0 0,1. Now, we prove that we can take the sa1ne discretizing 
sequence for h and 'ljJ. Let {tk} be a discretizing sequence for h, which can be 
obtained from Lemma 2.7, then by (2) and (3), we have 

tk+l > h(tk+1) > a h( tk+l) tk 1 
k E Z. - a <-

tk - ' h(tk) - ' tk+l h(tk) - a' 

Therefore 

tq 'l/J( tk+l) > q 'i/;(tk+1) tq 1 
k+l > aq k < - k E Z. tq - ' 'ij;(tk) - a ' t%+1 'i/;(tk) - aq' k 

This shows that t% iT, 'ij;(tk) 11 and 1P~~k) lL hence the properties (i) and (ii) in 
k 

Definition 2.6 are fulfilled. To establish the condition (iii), we take k E Z 2 , then 
h(tk) = a h(tk+1) and 80 

tk tk+l 

aq?j;(tk) = (ah~;k)r = (h~;:;1)r = ?j;(tk+i)· 

On the other hand, when k E Z 1, then ah(tk) = h(tk+1) and we have 
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and the condition (iii) in Definition 2.6 is also verified. h<.\nce { tk·} is a discrPtization 
seq uence for 'ljJ wi th respect to <.p. 

We should use Theore1n 2.11 with u(t) = t~ tu(t) = f\"(I t~ „\"'lh „\1 ). q = q and 
the measure v defined by 

tq-1 

dv(t) = -(-) dt. gq t 

By Lemma 5.4, the K-functional is quasiconcave, the ineasure z; is 11011-degenerate, 
since g E Vq, and { tk} is the discretizing sequence for 4, with respect to <.p, so all 
assumptions in Theorem 2.11 are satisfied. Therefore 

as we wanted to prove. D 

Remark 5.13. From Proposition 5.11 and Corollary 5.12 we also obtain that the defi-
. nition of (X0 , X 1)h,q does not depend on the choice of the discretizing sequence { tk}· 

Remark 5.14. If we consider the special case (X0 , X 1)e,q = (X0 , X 1 )g8 ,q, where 
g8 ( t) = t8 , then the fundament al function of the measure v, which is defined by 
dv(t) = tq(l-B)- 1dt, is 'l/;(t) = qe(i-e)tq(l-e). Corollary 5.12 yields 

(Xo, X1)e,q = (Xo, X1)~,q' where h(t) = t8
. 

Theorem 5.15 (The interpolation theorem). Let (X0 , X 1) and (Y0 , Y1) be two com
patible couples. Suppose that T is a bounded linear operator jrom Xi to Yi with the 
norm Mi, i= O, 1. Let g E Vq and 1 < q < oo. Then 

Proof. Let f = fo+ / 1, where Íi E Xi, i =O, 1, then 
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By taking the infimun1 over all representations f = fo + f 1 we obtain 

Therefore 

''

Tf li K(Tf, t; Yo, Y1) 
(Yo,Y1)e,q = g( t) 

J·„(r &t··· ·v v) \ · ' A/o . ' „t'\ (h . .-'\ 1 

< Aio 
o( t) 

L,1 (dt/t) 

The substitution s = ~t and Proposition 3.3 ( iv), ( vi) yield 

Lq(ds/s) 

as we wanted to prove. D 

We collect a number of important properties of the interpolation spaces (X0 , X 1 )(},q 

and (Xo, X 1)h,q· 

Proposition 5.16. Let (X0 , X1) be a given compatible couple oj Banach spaces and 
let g E Vq, where 1 < q < oo. Then 

(i) Xo n X1 ~ (Xo, X1)(},q ~ Xo + X1; 

(ii) If {};S w, then (Xo, X1)(},q ~ (Xo, X1)w,q; 

(iii) (Xo, X1)(},q = (X1, Xo)w,q, where w(t) = t g(l/t); 

(iv) If X 0 = X 1 with equal norms, then (Xo, X1)(},q = Xo = X1 with equivalent 
norms. 

Proof. Let <I> (},q be the functional defined by 

( 

{
00 ('<p(t)l)q dt)l/q 

qi g,q( rp(t)) = lo e(t) T ' 1 < q < oo, 

and with the usual modification when q = oo. Frorn (11) in Lemma 5.4 we have 

min(l, t) Ilf llxo+x1 = min(l, t) K(f, l; Xo, X1) < K(f, t; Xo, X1), 
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and applying <I>g,q, we obtain 

Since g E Vq, we have 

I (1 1
( t )qdt 100

( 1 )qdt)l/q C = <I>g,q(m1n(l, t)) = -(, ) - + ,, -( ') - < oo, 
o gt t l gt t 

and so we obtain (X0 , X1)g,q '--t Xo + X1. 
In order to proof X 0 n X1 c..-.+ (X0 , X 1 )g,q, we write 

K(f, t; Xo, X1) < rnin(l, t) Ilf llx0nx1 , 

which is an easy consequence of the definition of the K-functional. Again, we apply 
<I> g,q to this inequality to obtain 

Ilf ll(xo,X1)e,q < <I>g,q(1nin(l, t)) Ilf llxonX1 = C Ilf llxonX1 · 

This completes the proof of (i). 
Let {} < cw, then <l>w,q < c<Pg,q and so llfll(xo,Xi)w,q < c llJll(xo,Xi)"·'I' which 

pr oves ( ii) . 
Let q < oo, then by (9) we obtain 

llfllq = {00 
(K(f,t;Xo,X1))q dt = 100 

(tK(f, l/t;X1,X0 ))q dt. 
(Xo,X1)e,q )

0 
g(t) t 

0 
g(t) t 

Using the substitution s= 1/t, we achieve 

Since the case q = oo is analogous, (iii) is proved. 
Let X 0 = X 1 with equal norms, then it is easy to see that 

K(f, t; Xo, X1) = min(l, t)llfllxo· 

Applying <I> g,q, we obtain 

which shows (iv). D 

Proposition 5.17. Let (X0 , X 1) be a given compatible couple oj Banach spaces and 
let h E 0 0,1 . If 1 < q < oo, then 
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(i) Xo n X1 ~ (Xo, X1)h,q ~ .1Yo + „\1: 

( ii) (X o, X 1) h,q = (X 1, X o); ,q, w here g (t) = t h ( 1 / t) : 

(iii) lf Xo = X1 with equal namis, then („\'"0 ~ „\1)i,,q = „\0 = „\1 tuith <·vuivalent 
norms. 

Proof. Again, we denote 

where { tk} is the discretizing sequence for h. In the case q = oo, we should replace 
the sum by the supremum. 

Directly from the definition of K-functional, we get 

min(t, 1) llfllxa+x1 =min(t,1) K(f, 1; Xo, X1) < I<(f, t; .1'io, „\'"1), 

and applying <Ph,q' we obtain 

Since h~:k) il and h(tk) n, we have for some a> 1 that 

tk 1 tk+l 1 1 1 -- < - and < - , for k E Z. 
h(tk) - a h(tk+1)' h(tk+1) - a h(tk) 

This implies 

o ( t )q 00 

( 1 )q cq = <I>~.q(min(t, i))q = L h(;k) + L h(tk) 
k=-00 k=l 

o ( ( 1 )-k 1 ) q 

00 

( ( 1) k 1 ) q 

< k~oo a h(l) + ~ a h(l) < 
00

' 

and so we have (Xo, X1)h,q ~ Xo + X1. 
In order to prove X 0 n X1 ~ (Xo, X1)h,q' we write 

and again, we apply <I>h,q to this inequality 
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This completes the proof of (i). 
By (9) we have 

Ilf li * = K(f, tk; „)(o, )\1) 
(Xo,X1)h,q h(tk.) 

tk J((.r 1/tk: .x l · „\'"o) 
h(t:k) 

Since h is quasiconcave, the function g(t) = h~Jit) is increasing an<l !J;tl = h(l/t) is 

decreasing. It is easy to see that g satisfies also the 11011-degenerate co11ditions ( 1), 
so g E 0 0,1. By the substitution sk = 1/t-k for k E Z, we obtaiI1 

To make the last equation clear, we show that { .Sk:} is a discretizing seque11ce for g: 

So = 1, 

For such k that -k - 1 lies in Z2, we have 

( ) ( I ) h(t-k) h(t_k-1) ( I ) ) 
a g sk = ask h 1 sk =a = = sk+l h 1 sk+I = g(sk+1 , 

t_k t-k-1 

on the other hand, when -k - 1 is in Z1: 

g(sk) = h(l/sk) = h(t_k) = ah(Lk-1) = ah(l/sk+1) =a g(sk+i). 
Sk Sk+l 

Since g is quasiconcave, all the three properties of Definition 2.6 are verified and (ii) 
follows. 

Let X 0 = X 1 with equal norms, then we can express the K-functional as follows 

K(f, t; Xo, X1) = min(t, l)llfllx0 • 

Applying <Ph,q' we obtain 

llfll(xo,X1)h,q = <I>~,q(min(t, l))llfllxo, 

which shows (iii). D 

One can notice that in Proposition 5.17 there is missing a counterpart of Propo
sition 5.16 (ii). The following theorem fills in this gap. 

Theorem 5.18. Let (X0 , X 1) be a given compatible couple oj Banach spaces and let 
g, h E 0 0,1 . Suppose that { sz} is -the discretizing sequence for g. Then (Xo, X1)h,q c:..-+ 

(X0 , X1);,p if one oj the following conditions holds.· 
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(i) 1 < q < p < oo and 
g(81) 

( ) 
< 00. 

h 8/ l„ 

where r is given by l/r = l/q - l/p. 

(ii) 1 < p < q < oo and 
' ' g(t) 

sup -1. ( ) < oo. 
t>O 1, t 

Proof. Since there is no other c01npatible couple than (_.,\"0 , „\'"1 ), we can denote 
K(f,t;Xo,X1) by K(f,t). Let {tk} be the discretizing sequence for h, then we 
ha ve 

where Z 1 and Z 2 are defined in Definition 2.6 with discretizing sequence {sz} for 
the quasiconcave function g. By Definition 2.6, h(tk) TI and so 1 (t

1 
) < l, (1t ) for 

'· 'k+ 1 a i k 

k E Z. Hence, we have for fixed l E Z 1, 

( 1 ) q ( 1 ) q ( ( 1) q ( 1) 2q ) Q,q ( 1 ) <J < 1+ - + - +·„ = . 
h(tk) - h(sl) a a a,<J - 1 h(sl) 

St~tk<St+l 

where we used the fact that ag(sz) = g(sl+1) for l E Z1. 
If 1 < q < p < oo and r is given by 1/r = l/q - l/p, we can use the Holder 

inequality with exponents p / q and r / q to obtain 

J < (~ (K(f,sl+1))P)q/p (~ (g(sl))r)q/r < llfllq • g(si) q 
l rv ~ g(sl 1) L.J h(sl) (Xo,Xi)g,p h(sl) l 

lEZ1 + lEZ1 r 

We can estimate J2 in the similar way. By Definition 2.6, h~:k) 11 and so h(ťk) < 
~ h~:k~i) and we obtain for any l E Z 2 

k < l+l 1 + - + - + ... 
( 

t ) q ( s ) q ( ( 1 ) q ( 1 ) 
2

q ) 

81 :=;~l+i h(tk) - h(si+i) a a · 

28 



Hence 

12=L L (I<(f.tk))<J( t •. )q 
lEZ2 St9k<s1+1 t~. hu~.)' 

< aq L(I\(f~s1))<J( s1+ 1 )<J 
- aq - 1 lEZ2 sl h(s1+1) 

= a
2
q L(I<(J,sL))<J(g(s1+ 1))'' 

aq - 1 lEZ2 g(s1) h(s1+1) , 

where we used that g(sl) = a g(st+i) for l E z.2 . Ag·ain we a1)J)lv the Hólder inec1uality 
Sl Bl+l '· ' 

with exponents p/q and r/q and we obtain 

J2 ~ (L (K(f,sz))P)q/p (L (g(sz+1))r)q/r < 11111'1, ' •. g(s1) <J 

g(sz) h(sl+1) U<<h„~i)y.„ h(sl) l 
lEZ2 lEZ2 1r 

Altogether, we ha ve for 1 < q < p < oo that 

li li < g(sz) 
f (Xo,X1)h,q "' h(si) lr llflltxo,X1)~.r>' 

w hich proves (i). 
If 1 < p < q < oo, then we should use instead of the Holder inequality above the 

following fact: Let { an} be a non-negative sequence of real nu1nbers and O < a < 1, 
then 

(Lan) a< La~. 
nEZ nEZ 

This is actually true, if we denote bk = L: ak , then each bk is less or equal to 1, so 
nezan 

bk < bk, and we have 

which shows (ii). o 
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6 A Characterization of ( Lp0 , Lp
1

) 0.q 

In this section we shall characterize the space ( Lp
0 

~ L„
1

) ;,,CJ in tPrn1s nf the 11011-

increasing rearrangement. We will further identit\· tlw space (L,>
0 

~ L„
1

) v.<J with sorne 
classical Lorentz space A q ( <p). 

We now consider (Lp0 , Lpi), where 1 < p0 < p 1 < oo, the special case of a 
compatible couple. Then we have the characterization of the K-functional due to 
T. Holmstedt, see also [1, Theoren1 V.2.1]. 

Theorem 6.1. Let 1 <Po <PI < oo and let a be given by l/ a = l/p0 - l/p1 . Ther1, 

K(f, t; Lpo, Lpi) ~ (fot" f**(s)Pods) 1/po + t (Loo j**(s)Pt<fs) I/111 , 

for all f in Lp0 + Lp1 and all t > O. 

Now, we are going to show that the double star in Theoren1 6.1 can lw replaced 
by the single star. 

Corollary 6.2. Let 1 <Po< PI < oo and let a be g'iven by I/a= 1/p0 - l/p1 . 

Then 

( 
rt<7 ) I/po ( ;·oo ) l/p1 

K(f, t; Lp0 , Lpi) ~ Jo f*(s)P0 ds + t t" f*(s)P 1ds , 

Proof. Clearly by Theorem 6.1 and by f * ~ f **, we get one inequality. We turn 
now our attention to show the converse one. Since p0 > 1, we can use the Hardy 
inequality and we get 

([" G [ J*(y)dy r ds) l/po ;S ([" f*(s)P0 ds) l/po. (13) 

But also PI > 1 and again by the Hardy inequality and the Holder inequality we 
obtain 

t(Loo G [ f*(y)dyr ds) 1/pi 

= t ( [" J*(y)dy) ( Loo s~i ds) 1/pi + t ( Loo G J: J*(y)dy r ds f PI 

;S tl+"(i~v1) [" J*(y)dy + t( Loo f*(s)Pids) l/p1 (14) 

< tl+ "(1P~P1) ( [" J* (y )Pody) 1/Po ( * + t ( Loo J* (s )P1 ds) l/p1 

([" J*(y)POdyf Po +t(L00 

f*(s)PidsrPI. 
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Combining (13) and (14) we get the desired con\'erse iuPqua.lity. o 
Remark 6.3. When we are working with thc 11orn1 of (.X0. „\1)i,.<

1
, we will con~ider 

that a discretizing sequence { tk} for h is given by LP11n11a 2. 7. T'herefore. there 
exists a > 4 such that 

Theorem 6.4. Let 1 < Po < p1 < oo and 1 < q < oo. Let: h E f'2 011 and assu1ne that 
{ tk} is a discretizing sequence for h. Let a be given by l/ a = l/J10 - 1/p1 . Then 

Ilf ll(Lpo,LP1li.,q ;::::; 1 ( tk+1f*(s)Pods)1/po 
h(tk) ltC! 

k ll1 
q 

+ tk ( (k+1 f*(s)llids) l/p1 

h(tk) lt<! 
k lZ2 

C/ 

Proof. By the definition of (Lp0 , Lp1 )h,q and Corollary 6.2, we obtain 

K(J, tk; Lpo, Lpi) 
h(tk) zq 

(J;k f*(s)POds r/po + tk (ft~ j*(s)Plds) l/p1 

h(tk) 
zq 

If a, b E zq, we have llallzq + llbllzq ~ lla + bllzq. In fact, the following inequalities hold: 
llallzq + llbllzq < 21la + bllzq < 2(11allzq + llbllzq). It follows that 

1 ( (I, f* (s )P° ds) 1/po 

h(tk) lo zq 

+ tk ( rxi j* (S )Pl ds) l/p1 

h( tk) ltk zq 
(15) 

Let us denote the interval [ tk, tk+i) as Ik· For a while, let q < oo. Since h(~k) il and 

h(lk) Ti, then by Lemma 2.2, 
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In the case q = oo, it works in the sin1ilar way, but we should use Le1nma 2.3 in 
place of Lemma 2.2. Altogether, we have 

Now, our aim is to prove the following equivalence: 

It is obvious that the following inequality holds: 

and we have also 
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< 21/Po(l +a) 1 (j f*(s)Pods) 1/po 

h(tk+1) h lq 

because ah( tk) = h( tk+i) for k E Z1, so we obtain one half of the desired equivalence. 
Since llallzq < C(llallzz1 + llallzz2 ), a E lq, for the proof of the second half of the 

q q 

equivalence it suffices to show two esthnates 

(16) 

and 

We start with proving (16). Using the Hčlder inequality with exponents 2.1.. and 
Po 

_Ei_ we get 
P1-Po 

By this and the equality a h~tk+i) = h(ttk) for k E Z2 we finally obtain 
k+l k 

1 (j f * (s )Po ds) 1/po 

h(tk+1) h 

which is (16). 
We now turn aur attention to the estimate (17). If we use Corollary 4.3 with the 

parameter T = a-a, we get 
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And because of that [ a-crtk,tk+l) C [ tk"_ 1, tk+l) which follows fron1 (2), and the fact 
that 1.. - 1.. = _ l we have also 

Pi Po cr' 

and we consequently obtain the estirnate ( 1 7). 
The last step in the proof is the following equivalence 

1 ( { f*(s)Pods) 1/po + tk (/, f*(s)P1ds) l/p1 

h(tk) l1k-1U h z h( tk) · h zZ2 l 1 q 
q 

~ 1 (/, f* (s )Pods) 1/po + tk ( { f* (s )Pi ds) l/p1 

h(tk) h zz1 h(tk) Jh zi2 
q q 

Since the lefthand side is greater than the righthand one, this direction of the equiv
alence is clear. In order to prove the converse one, we will distinguish two cases. 
When (k - 1) E Z 1, we have h(tk) = ah(tk-l) and so 

h(~k) (fh-1 f*(s)Pods) 1/po ! h(L1) (J,k-1 f*(s)Po) 1/po 

On the other hand, when (k - 1) E Z2 , Holder's inequality with exponents E.1. and Po 
--E1- yields 
pi-po 
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This completes the proof. o 

We show as a corollary of Theorein 6.4 another characterization of (LJ>(>' Lpi )h,q' 
which was also given by V. I. Ovchinnikov and A. S. Titenkov in (11]. However, 
they considered the subset of the set of all quasiconcave functions, so called linear 
step functions. These are functions on (O, oo) which are in parts either constant, or 
homogenously linear. We give a new direct proof of this theoreni. In particular, we 
give an elementary proof which does not 111ake use of the Brudnyi-Krugljak theory. 

Definition 6.5. Let Mk = {j E Z : 2í/u E [tk, tk+i)}, then we denote A1L = Mk 
when k E Zi and M~ = 0 when k ~ Zi, where i = 1, 2. We shall assu1ne that a 
discretization parameter a for the sequence { tk} is greater than 21/u, therefore each 
set Mk is nonempty. 

( Ml M2) Remark 6.6. There appears the space lq lp0 k EB lp 1 k in the next theoren1. We recall 

that the norm in this space is given by 

Theorem 6. 7. Let 1 < p0 < p1 < oo and 1 < q < oo. Let h E Oa, 1, and assume 
that { tk} is a discretizing sequence for h. Let a be given by 1/ a = l/po - l/p1. Then 

2Í /po J* (2í) 
Ilf ll(Lva,Lv1lh,q ~ h(2ilu) 

Proof. It will be useful to define {Ak}kez, {Ák}kez, {Bk}kez, {Ck}kez and {Dk}keZ 
as follows: 

(18) 

(19) 
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where the equivalence in (18) holds for k in Z1 and the one in (19) holds for k in Z2 . 

It is actually true, according to Definition 2.6 (iii), we have for each k in Z 1 tl1_at 

1 1 

( ) 
~ I , j E Ah, 

h tk~ h(2J a) 

and for k in Z2 we have 

tk 2j/a 
--~--
h ( t k) ~ h ( 2í I a ) ' 

j E Ah. 

The proof will be complete when we show that 

llAkllzz1 + llBkllzz2 ;S llCkllzz1 + llDkllzz2 ;S llÁklk, + llBklllq' (20) 
q q q q 

When (k - 1) E Z 1, the situation is simple: 

1 (1 2jk ) l/po (2ík-1 J*(2ík-1 )Po) 1/Po 1 
I= f*(s)P 0 ds < < - ck-l· 

a h(tk-1) tk - a h(tk-1) - a 

If (k- l) E Z2 , then by the Holder inequality and the fact that (2ík -tk) < 2ík-1 < tk, 
we obtain 
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In the same fashion as above we first assu1ne that (k - 1) is in the sl't Z2, then 

Secondly, we take such a k that (k ·-1) lies in Z 1, then using Corollary 4.3 we r>l)tain 

where Ek stands for Ck when k lies in Z 1, and for Dk when k lies in Z2 . The last 
inequality follows from the case above. Altogether, it is 

so the first estimate in (20) is proved. 
For the second one we take k from the set Z 1 . Then 

On the other hand, if we take k which belongs to the set Z 2, we have 
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and if (k - 1) lies in Z1, then using Corollary 4.3 and tz_ 1 < a-atrz. < 1tZ < 12Jk·~ 
we obtain 

III < h~k ) ( tk j*( s )P1 ds) l/p1 < 1 ( '.·tf. .. f* ( 8 )Pod s) I/po < Ak- I· 

- tk Í~tk "'h(tk) Ía-"tk 

Thus, finally 

li ck 111~1 + li DA· 11 1!2 :s li Ak lki + li Bk· lk. 
which is the second estimate in (20). The proof is con1plete. D 

In order to simplify the characterization of (L„<„ Lp 1 )ii,q' we will n1ake restrictions 
on the dilation indices of h. 

Proposition 6.8. Let 1 <Po < p1 < oo, 1 < q < oo, let h E no,1 and let {tkJ be 
the discretizing sequence for h. Let ah and f3h be the dilatfon, ind'ice.s oj h. Let a be 
given by l/ a= l/po - l/p1. 

(i) If ah > O, then 

''!'I 
~ tk ( {oo f*(s)Pids) I/v1 

(Lpo,LPl)h,q ~ h(tk) lt'! 
k lq 

(ii) If f3h < 1, then 

Proof. By Theorem 6.4, we have 

where Ik = [tk, tk+ 1). 

Let ah > O, then, by Theorem 3.6, we have tk ~ tk+l for k E Z 1. Using the 
Holder inequality with exponents El and _.El_, we obtain PO p1-po 

1 ( r f*(s)POds) I/po < 1 ( r f*(s)Plds) l/p1 IIkl p~ _Pll. 
h(tk) }Ík h(tk) l1k 
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Using the fact that tk ~ tk+l for k E Z 1, we have 

and theref ore 

t (j ) l/J>1 
llJll(Lpo,LP1lh,q ~ h(:.) . f*(s)i> 1 ds 

k 1 k· l 
'(/ 

Now, since h(fk) TI, we shall use Le111111a 2.2 when q < oo, or Lennna 2.3 in the case 
q = oo to obtain 

~ . tk ( /'oo. f* (s )1>1 ds) l/p1 

l h( t,J .!t,z 
'<J l '(/ 

which is one side of the desired equivalence. The converse one is trivial fron1 the 
proof of Theorem 6.4, more precisely (15), so (i) follows. 

On the other hand, if f3h < 1, then tk ~ tk+l for k E Z2 , by Theorein ~3.6. This, 
together with Definition 2.6, implies 

It follows that 

Since h(~k) ll, we can again use Lemma 2.2 when q < oo, or Lemma 2.3 when q = oo 
to obtain 

( ) 
1/ Po 11 1 ( ť" ) 1/ Po 

llJll(Lpo,LP1lh,q ~ h(L1) L f*(s)Pods lq ~ li h(tk) 1 k f*(s)Pods lq 

The opposite inequality is clear from (15), the proof of (ii) is complete. D 
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Remark 6.9. In the case q = oo we have the following fonnulas: 

(i) if ah > O then 

(ii) if f3h < 1 then 

This follows from Proposition 5.11, Proposition 6.8 and the fact that _!:.L' (tt .. ) ~ / t:+ 1
) 

I ··k· I k·+ 1 

when ah > O and h(;k) ~ h(t~+i) when f3h < 1. 

Proposition 6.10. Let 1 < Po < P1 < oo, 1 < q < oo. Let h E no,1 and as8urne 
that { tk} is a discretizing sequence for h. Let ah and f3h be the dilation indices· oj 
h. Let a be given by 1/a = l/p0 - l/p1. 

(i) If ah > O, then 

l (zM. k) q P1 

(ii) if f3h < 1, then 

(iii) i/ O < ah < f3h < 1, then 

2Í /po J * (2í) 
li f li (LPo•LPl )h,q ~ h(2i /u) 

Proof. From Theorem 6.7 we have 

2Í /po J * (2j) 
lij 11 (Lp0,LP1 )i;,q ~ h(2if u) 

If ah > O, then we obtain from Theorem 3.6 that 

tk+l sup - < oo, 
kEZ1 tk 
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so this implies that the nu111ber of ele1nents of Ail is unifonnly bounded. Since all 
norms on a finite-dimensional space are equivalent, in fact, it suffices to know that 

Ml Ml 
we can replace lp0 k in (21) by lp 1 k and we get (i). 

Analogously, we can obtain (ii) and (iii). D 

Theorem 6.11. Let 1 < p0 < p1 < oo, q E [1, oo). Let h E 0 0,1 and assum,e that 
ah and f3h are the dilation indices oj h satisjying O < ah < f3h < 1. Let a be given 
by 1/a = l/p0 - 1/p1 and let 

tq/po 

<p(t) = t M(tl/u)' t >o. 

Then (Lp0 , Lp1 )h,q = Aq('P) with equivalence oj norrns. 

Prooj. Since O < ah < f3h < 1, we have, by Proposition 5.10, that (Lp0 , Lp1 )h,q = 
(Lp0 , Lp1 )h,,q with equivalent norms. From Proposition 6.10 we obtain 

(22) 

We should estimate the norm of f in A q ( rp), that is, 

Since l/p0 = l/a + l/p1, we have 

tl/po tl/u 
--=tl/p1 __ 
h(tl/u) h(tl/u)' 

so this function is increasing in t E (O, oo) by the quasiconcavity of h. By this and 
again by the quasiconcavity of h, we obtain 

where we used (22). 
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Conversely, 

again by (22). 
Altogether, (Lp0 , Lpi)h,q = Aq(r..p) with equivalence of norn1s. D 

Remark 6.12. In same fashion we can prove Theoren1 6.11 replacing the condition 
O < ah < f3h < 1 by one of the following conditions: 

(i) ah> O and q =pI; 

(ii) f3h < 1 and q =Po· 

Example 6.13. If we consider the special case Qe(t) = t 8 , where O < () < 1, then 
we know from Example 3.2 that ag8 = {3g 8 = (), and soby Theorem 6.11 we obtain 

1 1-{} () 
(Lp0 , Lp1 )e,q = (Lp0 , Lp1 )g8 ,q = Lp8 ,q, where - = + -. 

Pe Po PI 

Example 6.14. Let µ(R) = 1 and Qe,1 (t) = t8(1 - logt)', where O < t, () < 1 and 
1 E JR. Then ag8 = (3g8 = () and, by Theorem 6.11, we have 

,"'f ,"'f 

1 - () () 
--+-. 

Po PI 
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7 Extrapolation Spaces 

Throughout this section we will consider that p(R) = 1. Then, by Holder's inequal
ity, we obtain Lp1 c.......+ Lp0 with the constant of the e111bedding equal to 1. Therefore, 
K(f, t; Lp0 , Lpi) = Ilf llx0 for t > 1, and we have 

llfll ~ ( { 1 (K(f,t;Lp0 ,Lp1 ))<J dt)l/q. 
(Lpo,LP1)r;,q lo g(t) t 

In this setting we shall characterize the space (Lp0 , Lp1 )h.,q as an extrapolation space. 

Lemma 7.1. Let 1 < p0 < p1 < oo, 1 < q < oo, let h E 00,1 and let {tk} 
be the discretizing sequence for h. Suppose that the dilation indices oj h satisfy 
O < ah < f3h < 1. Then 

where { rk} ;;2_
00 

is the decreasing sequence sv,ch that 

1 1 

Po= r _1 < rk < Tk-I < JJ1, (tk+i)Pi -rk = c > 1, k= -2, -3, ... , (23) 

o- is given by I/ o- = I/po - l/p1, <p(rk) = h~:k) and h = [tk, tk+i). 

Proof. By Proposition 6.8 (i), we have 

With the aid of Corollary 4.3 with the parameter T = a-a, we obtain 

Clearly, we see from (23) that rk /'Pi and we have also by (23) that 

( )

_L __ l_ 1 1 

(1 - a-a)tk Pl rk-1 < (1 - a-a) Pl - POC. 
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S. O b Tl 3 6 l f' , '71 i h(t~„) h(tk+1) ince ah > , y ieore1n . , we 1ave tk ~ tk+l or "~ E !úl anc so -t- ~ t 
'k 'k+l 

for all k E Z by Definition 2.6 (iii). Using also the Holder inequality with exponents 
..!Js__ and rk we have 
Tk-1 Tk-Tk-1' 

h~;k) llJ* llLrk-l ( h-1U (tp)) 
lq 

< h~;k) li J* llLrk-1 (h-1) lq + ht;k) llJ* llLrk-I ( (tp)) lq 

;S h~;:~l) lij* li Lrk-1 (Ik-d lq + h~;k) 11 j* li Lrk ( (tp)) ( 1 - tk) „~ - rk~ 1 lq 

1 1 

Since r
1
k - rk~i >O, and (1 - t<[J < 1, it is (1 - tfJrk -T'k- 1 < 1, and therefore 

which is one side of desired equivalence. 
In order to get the converse one, we use Holder's inequality with exponents Ei 

Tk 

and ____E1_ to obtain 
P1-Tk 

1 1 

The term (1 - t/J rk - P1 can be estimated by 1 and so we obtain 

This completes the proof. D 

Theorem 7.2. Let 1 < Po < P1 < oo, 1 < q < oo and let h E 0 0,1 such that the 
f ollowing conditions hold: 

(i) the dilation indices oj h satisfy O < ah < f3h < 1; 

(ii) let be be the largest number such that h~t) te is increasing on (O, be), then 
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(iii) there exists a > b-4 such that 

h(t2 ) h(t) 
--<a-, t>O. 

t 2 - t 

Assume that {tk} is the discretizing sequence for h with the parameter a (see 
Lemma 2. 7). Let { rk} ;2_

00 
be the decreasing sequence such that 

Po=r-1 <rk <p1, and for k= -2, -3, ... , (24) 

where a is given byl/a= 1/p0 - l/p1 . Then 

where 1.p(rk) = h~:k). 

Proo f. According to Lemma 7 .1, i t is suffi.cient to prove 

By the Minkowski inequality we obtain 

llJllLrk < tk ~ llf*ll tk llf*ll I II 
(r ) - h(t ) ~ Lrk(Irn) + h(tk) Lrk((tk,1)) lq = + . 

'P k lq k m=-oo lq 

To estimate the first term, we apply Holder's inequality with exponents rm 
Tk 

and 
rrn , and we obtain 

Trn-Tk 

k-1 ( ) 2 ( ) 2 tk * tm+l h(tm+1) a _1_ __ 1 

J < h(t ) L llJ llLrmUm) h(t ) t (tm+l)rk rm • 
k m=-oo m+l m+l l 

q 

1 1 1 1 

Now, by (24), we can replace (t~+1) rk - Trn by (t~+1) rk - Pl. Let 1 < q < 00. The 
discrete version of Holder's inequality with exponents q and q' yields 
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Since h satisfies ( iii), we ha ve 

1 h( im+l) t;n+l 
- < 2 ' 
a tm+l h(tm+1) 

'Tn <O. 

Then by (3) and the n1onotonicity of h(t), we get t111 < t~l+I · This ilnplies 

m <k< O 
- ' 

and by (24) we obtain 

( 
tm ) O" ( r> P1

1 ) O" ( 1 1 ) -- < (tk+1) Tk -Pl = b4 E (O, 1), 
tm+l 

m <k< -1. (25) 

Now, our aim is to prove the following statement: 

h(tk) 1 u(..1...-..1...) 
--t~ rk Pl is increasing on (O, tk)· 

tk 
(26) 

It suffices to prove that 

By (24), we have 

which follows from (ii), so (26) is proved. 
Using (25) and (26) we obtain 

1/ I 

( 

k-1 ( ( ) 2q' ( 1 1 ) ') q m~oo \:+~1) t:;t -P1 q 

2q' 1/q' 

lu( 1 1) I t 2 rk - Pl q 
m+l 

k-1 

L 1-lu(...1.._...1..) t 4 rk Pl 
m+l 

m=-oo 

< 
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Therefore and also by h~:k) .l.L we have 

J< 
f"'...J 

where we also used the fact that h~:k) 
Theorem 3.6 and Definition 2.6 (iii). 

Altogether we obtain 

~ h(tk+i) for all k E Z. This follows fro1n 
tk+l 

In the cases q = 1 or q = oo, we should replace sums by supremums and every-
thing works in the same way. The proof is complete. D 

Example 7.3. Let h(t) = t(log e/t)'Y, where 1 > O and t E (O, 1). Clearly h E 0 0,1 . 

Since we want to use Theorem 7.2, we should verify the following conditions: 

(i) the dilation indices of h are both equal to 1; 

(ii) the function h~t)tc = tc(log e/t)'Y is increasing on (O, e 1 -~), so bc e 1 -~. 
Therefore 

(iii) in our case, we should verify 

(log e/t2)1' < a(log e/t)'Y, 

~ < (~)alh 
t 2 - t ' 

ta1
h < ea1

h-lt2' 

which holds when a > 21', so we can take a = b-4 = e41'. 
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Theorem 7.2 yields 

ll fll llfllLrk 
(LPo•LP1lh,q ~ rp(rk) lq 

Now, we shall identify a sequence {rk} and a function <p. A silnple con1putation 
1 -kh 1 -4k h gives us that tk = e -·a = e -e . T us, 

and by (24) we finally obtain 

1 1 41 1 

We define the grand Lebesgue space in the next definition. This space was 
introd uced in [7]. 

Definition 7.4. Let 1 < p < oo, then the grand Lebesgue space LP) is determined 
by the norm 

1 

Ilf ''LP) = sup ép-e ll!llLp-e· 
O<e<p-1 

Theorem 7.5. Let 1 < Po < p1 < oo and h(t) = t(l - log t) 11P1 • Then V 1) 

(Lp0 , Lp1 h,oo with equivalence oj norms. 

Proof. By Proposition 5.11, we have (Lp0 , Lp1 )h,oo = (Lp0 , Lp1 )h,oo with equivalent 
norms. Let { tk} be the discretizing sequence for h with the parameter b-4 = e4/P1 • 

We know from Example 7.3 that 

where rp(rk) = h~:k) and {rk} is defined by (24). If we extend rp monotonously on 
the whole interval (p0 ,p1), we have 

llJ llLrk llJ llLs sup ~ sup . 
k<O <p(rk) po<s<p1 <p(s) 

Indeed, let s E [rk, rk+1L then by Holder's inequality and the fact that <p(rk) ~ 
<p(rk+1), we obtain 

Ilf llL, < llfllLrk+l ....., Ilf llLrk+l 
<p( s) - <p(rk) ~ <p(rk+1) · 
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Now, we should express 'P(rk) in tenus of 1„h~· Using (24), we obtain 

Altogether, we get 

1 1 

Since é P1 ~ é P1 -e , we eventually obtain 

as we wanted to prove. D 

Remark 7.6. Combining Theorem 7.5 and Remark 6.9 we obtain 

Ilf llLP) ~ sup (log e/Wl/p r f*(s)Pds . 
( 

1 ) 1/p 

O<t<l J~ 

These results were also established by A. Fiorenza and G. E. Karadzhov in [3]. 
However, they used the theory of the ~(p) methods of extrapolation developed in 
[10]. 
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