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Abstract: In this thesis, I utilize photometric data sparse in time produced by
all-sky surveys and investigate physical properties of large asteroid populations.
In principle, the individual approach to asteroid modeling cannot compass all
objects because new asteroids are continually discovered and we do not have
enough data for them. Therefore, in this work I present an essentially different,
statistical approach. In a series of papers, we developed two independent methods
which use a triaxial-ellipsoid approximation, and we test their applicability and
limits. We prove they can be used to the photometric databases like Lowell
Observatory database or Pan-STARRS. The output quantities are distributions
of the spin axis directions and shape elongations for asteroid populations, and
using the Kolmogorov-Smirnov test we search for differences among them. The
main result of my work is that the distribution of ecliptical longitudes of spin axes
is nonuniform. Moreover, this nonuniformity is more significant for asteroids with
low orbital inclinations and the distribution is dependent on the shape elongation.
We ran a number of simulations and tests, but we did not find a clear explanation
of this enigmatic result. We found that small asteroids (D < 25 km) are on
average more elongated than large ones. We also constructed distributions for
13 main-belt families; as to the distributions of spin axes latitudes, we found that
Gefion family is significantly different from its background and when studying
distributions of elongations, we found that Massalia and Phocaea have more
elongated members than corresponding backgrounds.
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Preface

Our knowledge of asteroids improved significantly during the last ∼15 years
thanks to the growing amount of data from space satellites and ground-based
telescopes and development of new techniques to utilize them. The physical
properties of asteroids such as rotational states, shapes and sizes are generally
important for our understanding of the collisional history of the Solar System,
since they evolved during the evolution of the main asteroid belt due to the
non-gravitational forces and the mutual collisions between asteroids.

A rich source of information about asteroid physical properties is photometry.
The amount of photometric data of asteroids has been growing rapidly in recent
years mainly thanks to the all-sky surveys such as Catalina (Drake et al., 2012),
Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) (Hodapp
et al., 2004; Tonry et al., 2012) or Lowell Observatory Near-Earth Object Search
(LONEOS) (Bowell et al., 1995). The brightness of an asteroid as a function
of time is called the lightcurve. Typically, if the lightcurve is dense enough,
i.e., contains enough measurements during the time interval comparable with the
asteroid rotational period, it is used for the determination of the convex shape and
rotational state using the lightcurve inversion method (Kaasalainen and Torppa,
2001; Kaasalainen et al., 2001). Data from sky surveys are, however, sparse in
time and their systematic uncertainty is often worse than∼0.1 mag, which usually
makes impossible to find a unique rotational period of an asteroid.

One of the goals of this work is to fully utilize sparse photometry for the de-
termination of distribution functions of asteroid spin axis orientations and shape
elongations and to develop a reliable method applicable on the more accurate
photometric data that shall be provided in the future by the Large Synoptic Sur-
vey Telescope (LSST) (Callahan et al., 2016). We were inspired by the work of
Bowell et al. (2014), who first found the nonuniform distribution of spin axes
longitudes when analyzing the photometric data from the Lowell Observatory
database. However, they were not able to find any explanation for such result,
which motivated us to study this problem in detail.

The backbone of this thesis is the paper Cibulková et al. (2016), where we
developed a new method that provides pole positions and shape elongations of
asteroids. The paper is included after the List of papers and is labeled as Paper 2.
We model asteroids as geometrically scattering triaxial ellipsoids. The model
compares observed values of mean brightness and the dispersion of brightness
with computed values obtained from the parameters of the model: ecliptical
longitude λ and latitude β of the pole and the ratios a/b, b/c of axes of the
ellipsoid. These parameters are optimized to get the best agreement with the
observation. The model is described in Chapter 3, where we also test its reliability
on synthetic data and then we apply our model to photometric data from Lowell
Observatory database, analyze the results and compare distributions of model
parameters for various asteroid populations, such as asteroid families, taxonomic
classes or asteroids located in different parts of the main belt. Our motivation is
to find if these groups, different within one classification, will have also different
distributions of our studied parameters.
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A different approach was used in the papers Nortunen et al. (2017) and
Cibulková et al. (2017). In the former, we mainly studied the validity and ac-
curacy of the method, that is based on the inversion of distribution functions,
and practical applicability on astronomical databases; in the latter, we applied
the model to photometric data from Pan-STARRS1 survey and performed an
analysis focusing on various asteroid populations. This is the content of Chapter
4, where we also compare results with those from Chapter 3. The advantage of
this method is that it can be used even if only a few points and one apparition
are available for an asteroid.

The main results of this thesis are summarized in Conclusions. One of the
benefits of this work is that our results can be used in other investigations of
asteroid populations, e.g., to constrain theoretical evolution models of asteroid
families or for an independent comparison of distributions of spin axes and shapes.
That was done in the paper Hanuš et al. (2017a), where 16 new shape models of
the members of Eos family were derived. In total, they showed spin directions
of 56 Eos members and compared them with our distributions of spin longitudes
and latitudes for Eos family. Both results were in the mutual agreement.

Finally, after the List of papers, we included the paper Cibulková et al. (2014)
(labeled as Paper 1) that deals with the long-term collisional evolution of the main
belt. This issue is naturally connected with the main topic of this thesis, since
all asteroids have been influenced by mutual collisions (catastrophic or cratering
events) that changed the orientation of their spin axes and also their sizes and
shapes. In this paper, we divided the whole main belt into six parts since we
realized they have different size-frequency distributions, collision probabilities
and impact velocities. To simulate the mutual collisions of asteroids, we used
a modified version of the Boulder code (Morbidelli et al., 2009). We accounted
also for the material characteristics by creating two models, one for monolithic
objects and one for rubble-pile bodies. We found that for the monoliths, the
match between observational data (we compared the size-frequency distributions
and number of asteroid families in individual parts of the main belt) and the
results of our simulations is significantly better than for the rubble-piles. This
work was not one of the main topics of this thesis and thus it is included in the
form of attached paper.

During my investigation, I collaborated also with colleagues whose contribu-
tions have to be mentioned. The author of the mathematical background of both
photometric models is Mikko Kaasalainen; the code used in Chapter 4 was writ-
ten by Hari Nortunen; the photometric data from the Lowell Observatory were
provided by Dagmara Oszkiewicz; and the data from Pan-STARRS1 survey were
provided by Peter Vereš.
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1. Introduction

Small Solar System Bodies are the most numerous group of objects in our So-
lar System that compasses asteroids, centaurs, Neptune trojans, transneptunian
objects and comets. In this work, we focus on asteroids, specifically main-belt
asteroids (MBAs) located between the secular resonance ν6 with Saturn and the
2:1 mean motion resonance with Jupiter. The largest body in the main belt,
(1) Ceres, with a diameter ∼850 km, belongs to the dwarf planets since 2006,
together with Pluto and some other objects. Nevertheless, as a rule we do not
exclude Ceres from our sample.

1.1 Main belt

In the main belt, we can notice several prominent gaps at certain semimajor
axes. They were discovered in 1866 by Daniel Kirkwood and are called Kirkwood
gaps. They are located at those semimajor axes where the mean motion of an
asteroid and the mean motion of Jupiter are related by a ratio of two small inte-
gers. Positions of some strongest low-order resonances are shown in Fig. 1.1. The
mechanism that can deliver asteroids with diameter D < 20 km in the main belt
to resonance is the Yarkovsky drift (e.g., Bottke et al., 2002) – a non-gravitational
force caused by the anisotropic emission of thermal photons from a rotating body.
The most powerful resonances that cause a large increase of the asteroid eccentric-
ity and consecutive transport of bodies (with a contribution of close encounters)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5

e

a [au]

Trojans

NEAs

MBAs

3:1 5:2 7:3 2:1 3:2

Hildas

Hungarias

Figure 1.1: Osculating orbits of 100,000 asteroids in the plane of semimajor
axes a and eccentricity e. Data were taken from the Asteroid Orbital Elements
Database updated on March 21, 2017.
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to Mars-, Earth-, and Venus-crossing orbits are ν6 secular resonance1, 3:1 and 5:2
mean motion resonances (MMRs) with Jupiter (e.g., Morbidelli et al., 2002). The
situation in the 2:1 MMR is more complicated. The dynamical lifetime in the
center of the resonance is comparable to the age of the Solar System, while the
regions close to the borders of the resonance are unstable, but it still takes sev-
eral million years to achieve the Earth-crossing orbit (Moons et al., 1998). Such
behaviour is caused by the three-body resonances (between an asteroid and two
planets, mainly Jupiter and Saturn, Nesvorný and Morbidelli, 1998) that force
asteroids to have strongly chaotic orbits but stable on long time intervals (Milani
et al., 1997). The example of a stable resonance is the 3:2 MMR with Jupiter,
where Hildas can be found (see Fig. 1.1). Some of the asteroids ejected from the
main belt can also fall into the Sun. Gladman et al. (1997) showed that 25−30%
of resonant bodies from the 3:1 MMR go into the Sun.

The clumps of asteroids are the second important pattern of the main belt.
They are called Hirayama families (Hirayama, 1918) and were created by a mutual
collision of asteroids. The objects that belong to the same family have similar
orbits, colours, spectra and albedos. Nesvorný et al. (2015) discussed family
memberships for 122 families using the Hierarchical Clustering Method (Zappala
et al., 1990). This method is very sensitive to the chosen cutoff distance and
to identify the family members it is necessary to account also for colours and
spectra. In this work, we focus on 13 most important, large families (with parent
body larger than 100 km) created by catastrophic disruptions, which means that
the mass of the largest fragment is smaller than 0.5 of the mass of the parent
body.

The total mass of asteroids in the current main belt is MMB ∼ 13.5×10−10M�
(Kuchynka and Folkner, 2013). However, the primordial (post-accretion) belt
contained more than 100 times more mass that was removed during its evolution.
The evolution of the main belt towards the current state can be described in three
steps (Morbidelli et al., 2015): (i) an early strong dynamical excitation ∼ 4.5 Gyr
ago that caused the formerly circular (e, sin I . 0.001) orbits of asteroids to have
wide range of values of eccentricity and inclination together with asteroid removal
that left about four times the current asteroid population; (ii) a temporary late
instability of giant planets which caused a second excitation ∼ 4.1 Gy ago and
the asteroid belt lost ∼ 50% of bodies; (iii) during the following 100 My, another
50% of asteroids was lost due to the sweeping resonances (mean motion and sec-
ular) with the giant planets. The main belt is now in a quasi-steady state, where
collisional rate is approximately constant and where non-gravitational forces such
as Yarkovsky effect and Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect
influence the orbits and rotations of asteroids, together with gravitational per-
turbations, close encounters and other phenomena.

1.2 Basic physical properties of asteroids

Up to now, we know orbits of ∼ 720 000 asteroids. The parameters describing
osculating orbits (semimajor axis a, eccentricity e, inclination I, longitude of

1Secular resonance occurs when the precession rate of the asteroid orbit is equal to one of the
fundamental frequencies of the precession of the planets orbits. ν6 is a linear secular resonance
between an asteroid and Saturn.
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ascending node Ω and argument of perihelion ω) as well as absolute magnitude H
can be found in the Asteroid Orbital Elements Database (AstOrb2) or Minor
Planet Center Orbit (MPCORB) Database3. The proper values are stored in
Asteroid Dynamic Site (AstDyS) catalog (Knežević and Milani, 2003).

For ∼19 000 asteroids, the rotational periods are stored in The Asteroid
Lightcurve Database (LCDB4) (Warner et al., 2009). In Fig. 1.2, we plot the
dependence of rotation rate ω on diameter D for the LCDB data. We can no-
tice that (i) among the asteroids larger than ∼10 km, there are not fast rotators
(ω & 10 rev/day); (ii) there is a group of very fast small rotators (D . 0.1 km)
and (iii) there is also a group of slow small rotators. The source of such extreme
rotators, fast and slow, is probably the YORP effect. The limit diameter DYORP

for YORP-driven evolution of spin for the timescale of τ = 4.5 Gyr is

DYORP =

(
τ

τ0
cYORP

(
a

a0

)−2(
ρ

ρ0

)−1) 1
2

D0 , (1.1)

where τ0 = 11.9 Myr, a0 = 2.5 au, D0 = 2 km, ρ0 = 2500 kg m−3 (Čapek and
Vokrouhlický, 2004). The appropriateDYORP is shown in Fig. 1.2. We also plotted
two limit frequencies (both for the timescale τ = 4.5 Gyr): (i) the limit frequency
for the collisional reorientation

ωreor =

(
τ

B

(
D

D0

)−β2) 1
β1

ω0 , (1.2)

where B = 84.5 kyr, ω0 = 2π/P0, P0 = 5 h, β1 = 5/6, and β2 = 4/3 (Farinella
et al., 1998); and (ii) the limit frequency for the damping of non-principal-axis
rotation (Hestroffer and Tanga, 2006)

ωdamp =

(
µQ

τρK2
1(D/2)2

) 1
3

, (1.3)

where ρ = 2500 kg m−3, K2
1 ' 0.1, and the value µQ = 5 × 1012 Pa. Finally, we

plotted the critical rotation rate (Pravec and Harris, 2000)

ωcrit =
√

(4/3)πGρ , (1.4)

where G is the gravitational constant.
For ∼1000 asteroids, the rotation periods derived from the lightcurve inver-

sion method are also stored in the Database of Asteroid Models from Inversion
Techniques (DAMIT5 Ďurech et al., 2010) (see also Fig. 1.2). Besides the rota-
tional period, three-dimensional convex asteroid models are available in DAMIT.
More informations about asteroid shapes and models will be given in Sec. 2.2.

According to their visual and infrared reflectance spectra, we can divide aster-
oids into taxonomic classes that represents also different chemical compositions.
For ∼ 60, 000 asteroids we have an information about spectral type thanks to

2ftp://ftp.lowell.edu/pub/elgb/astorb.html
3http://www.minorplanetcenter.net/iau/MPCORB.html
4http://www.minorplanet.info/lightcurvedatabase.html
5http://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php
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Figure 1.2: The rotation rate ω as a function of diameter D for ∼19 000 aster-
oids from the LCDB database (Warner et al., 2009, blue points) and for ∼1000
asteroids from DAMIT database (Ďurech et al., 2010, black points). We also plot-
ted the limit frequency for the collisional reorientation of the spin ωreor on the
timescale of τ = 4.5 Gyr, the limit frequency for damping of the excited rotation
to the lowest energy state of principal-axis rotation ωdamp (again for τ = 4.5 Gyr),
the limit diameter for YORP-driven evolution of spin axis Dyorp (τ = 4.5 Gyr)
and the critical rotation rate ωcrit.
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the Sloan Digital Sky Survey (SDSS). Data are available on Planetary Data Sys-
tem6, Asteroid Taxonomy V6 0 (Carvano et al., 2010). Besides spectra, SDSS
provides also asteroid color in five filters: u, g, r, i, z. An overview of the progress
concerning the compositional structure of the main belt can be found in DeMeo
et al. (2015). Here, we include only basic information. The three main taxonomic
complexes that group together classes with similar characteristics are following:

• S-complex (silicaceous bodies) with spectra showing strong absorptions at
1 and 2 µm (olivine, pyroxene) and the slope of a spectrum high;

• C-complex (carbonaceous objects) with spectra showing small or no features
and the slope of a spectrum low or medium;

• X-complex (multiple composition) also displays either small or no features
and has a medium or high slope of spectrum.

Besides these main complexes, there are other, less common, classes that can
be distinguished: V, R, O, Q, A, K, L, D, T, B. DeMeo et al. (2009) defined in total
24 taxonomic classes using the Principal Component Analysis; their spectra are
shown in Fig. 1.3. Although the different taxonomic complexes clearly dominate
in different parts of the main belt, they are also partly mixed as a result of the
dynamical evolution of the main belt and we can see all types of asteroids in
every region of the main belt. More than a half of the mass of S-types is located
outside the inner belt. Also with decreasing size of asteroids in the inner belt, the
contribution of C-types increases. A detailed compositional mass distribution of
taxonomic classes can be found in DeMeo and Carry (2014).

The spectra and colors of asteroids can also help us to determine the mem-
bership to dynamical families (Nesvorný et al., 2015). Since all members were
originally a part of one object, they should belong to the same taxonomic class.
Nevertheless, it is not a definite rule, because we have to take into account that
large parent body could be differentiated, therefore, it is possible that fragments
will be of different taxonomic classes. Another process that has to be mentioned
is space weathering that affect the physical and optical properties of the surface.
Nesvorný et al. (2005) studied color variations between young and old asteroid
families and found that colors of asteroids changed over time: the S-types become
redder and their spectral slope increases; for the C-types they suggested behavior
opposite to the S-types.

For size and albedo determinations, the infrared observations are useful. The
infrared catalogue7 based on the AKARI All-Sky Survey (Shibai, 2007) was pub-
lished on 2010 March. AKARI observed in the wavelength range from 1.7µm
(near-infrared) to 180µm (far-infrared) and provides the sizes and albedos for
5120 asteroids (Usui et al., 2011). Thanks to the Wide-field Infrared Survey
Explorer (WISE), we have the albedo informations and sizes for more than one
hundred thousand asteroids (Masiero et al., 2011; Mainzer et al., 2011a). In four
infrared wavelengths, 3.4, 4.6, 12, and 22µm, WISE has observed nearly two or-
ders of magnitude more minor planets than the Infrared Astronomical Satellite
(IRAS, Tedesco et al., 1988). The minimum relative diameter and albedo errors
are ∼10% and ∼20%, respectively (Mainzer et al., 2011b).

6https://sbn.psi.edu/pds/resource/sdsstax.html
7http://darts.isas.jaxa.jp/ir/akari
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Figure 1.3: The average spectra for 24 taxonomic classes defined over 0.45–
2.45 µm with constant horizontal and vertical scaling. Figure is taken from
DeMeo et al. (2009).

Density ρ is a basic property for understanding of compositions of asteroids
and their internal structure. Carry (2012) compiled densities for 287 small bodies,
out of which 230 were main-belt asteroids. He provided average density for each
of 24 taxonomic classes defined in DeMeo et al. (2009). With the level of accuracy
20% (caused by mass and diameter estimates discussed in the paper in detail), he
found for the C-complex ρ from 1.25 ± 0.21 to 1.41 ± 0.29 g/cm3, for S-complex
2.72 ± 0.54 to 3.43 ± 0.20 g/cm3. Both complexes show a trend of increasing
density with mass. For X-types, the interval of ρ is wide: from 1.85 ± 0.81 to
4.86± 0.81 g/cm3, which suggests that in the X-complex, multiple compositions
are present. With the level of accuracy 50% the intervals are wider. For details
see Figure 7 or Table 3 in the respective paper.

In this Chapter, we introduced some of the asteroid properties, according to
which we can divide asteroids into different groups (e.g., taxonomic classes, dy-
namical families, fast vs. slow rotators, asteroids with different sizes and others).
We were interested if the groups different within a certain classification will dif-
fer also in spin or shape distributions. We studied this problem in two different
ways. First, we derived the spin longitudes and latitudes and shape elongations
for individual asteroids and constructed distributions for selected groups that we
wanted to compare (Chapter 3). Next, we considered the whole asteroid pop-
ulations right at the beginning and derived directly the distributions of studied
parameters (Chapter 4).
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2. Spin states and models of
asteroids

The information about asteroid rotational state and shape elongation can be
obtained from photometry. A significant progress of this problem began with the
development of the lightcurve inversion method (Kaasalainen and Torppa, 2001;
Kaasalainen et al., 2001) discussed in Sec. 2.2.4. The photometric data can be
obtained in two different modes of observation: (i) data dense in time consists
typically of tens to hundreds of measurements during few hours and thus sample
well the rotational period P (these data are suitable for lightcurve inversion);
(ii) data sparse in time are produced by all-sky surveys and consists typically of
few measurements per night over a timescale ∼10 years.

2.1 Asteroid rotation

The time evolution of the brightness L of an asteroid observed near opposition,
the lightcurve, is typically a double sinusoidal curve. The rotation of an irregular
asteroid causes changes in asteroid brightness together with different geometry
of individual measurements and scattering effects. With the phase angle α (the
angle between the direction to the Sun and to the Earth) approaching zero, the
asteroid brightness grows, since the illuminated part of the surface is maximal
for α = 0◦. Moreover, a significant growth of the asteroid brightness for small α
(known as the opposition effect) is caused by the coherent backscattering and the
lack of shadowing. The light reflection from the element on the asteroid surface is
described by the scattering law S = S(µ, µ0, $, α), where µ = e ·n, µ0 = s ·n and
$ denotes albedo, n denotes the unit surface normal, e and s are the unit vectors
pointing to the Earth and to the Sun. The most often used scattering laws are: (i)
Hapke model (Hapke, 1981, 1993); (ii) Lumme-Bowell model (Lumme and Bowell,
1981); (iii) Lommel-Seeliger law or (iv) Lambert law and also a combination of
(iii) and (iv). A special case when the reflected brightness depends only on the
projected area (S = µ) is the geometric scattering. Such approximation can
be used for analyzing data obtained from observations with small phase angle.
An overview about the advances concerning asteroid scattering can be found in
Muinonen et al. (2002) or Li et al. (2015).

2.1.1 The previous statistical studies of spin states of as-
teroids

The first statistical study of pole orientation of asteroids was done by Magnusson
(1986) on a sample of 20 asteroids, with 17 of them larger than 100 km. To
determine the pole position (ecliptical longitude λ and latitude β), he used two
different methods: amplitude-magnitude method and the epoch method that uses
the variations in the observed synodic period of rotation. His main result was
that spin axes seem isotropically distributed. He found a flat distribution of
longitudes and a slight (statistically insignificant) majority of prograde rotators.
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From the simulations of the collisional evolution of asteroids, Davis et al. (1989)
also suggested an isotropic distribution of rotational axes.

On a sample of 83 asteroids, Pravec et al. (2002) realized that there is a lack
of poles close to the ecliptic plane. This was also confirmed by, e.g., Skoglöv
and Erikson (2002) on a sample of 73 main-belt asteroids. Moreover, they sug-
gested a possibility that the observed depopulation of spin axes could be caused
by a correlation with the inclination of orbit I. For I > 10◦ they found the rele-
vant depopulation, while asteroids with I < 10◦ have a more regular spin vector
distribution. They explain this behaviour as due to the different dynamical evo-
lution of the spin axes of asteroids with different orbit inclinations. Pravec et al.
(2002) also studied the distribution of rotational periods P and found that for
asteroids larger than ∼ 40 km, the distribution is close to Maxwellian, while small
asteroids, with 0.15 < D < 10 km, show significant excesses of both fast and slow
rotators. Small asteroids (D < 15 km) were studied in detail in Pravec et al.
(2008), who found that their spin rates appear heavily evolved by the YORP
effect and processes at the fast spin barrier (11 rev/day Pravec et al., 2007).

Kryszczyńska et al. (2007) performed a statistic study for 92 MBAs and
21 NEAs and found there is clear excess of retrograde rotators among NEAs.
This was already discussed in La Spina et al. (2004) and it is in agreement with
the theoretical predictions of the Yarkovsky model. The main source of NEAs
are the resonances 3:1 and ν6. Since only the objects with retrograde spins can
enter the ν6 resonance through the Yarkovsky effect, it is more probable for the
retrograde rotators to become NEAs. Kryszczyńska et al. (2007) also tested the
correlation of MBAs’ β distribution with inclination of orbit suggested by Skoglöv
and Erikson (2002), however, they did not find the correlation to be significant.
The constructed distribution of pole longitudes λ for both MBAs and NEAs did
not show any statistically significant clustering.

With the growing number of asteroids for which pole orientation have been
determined, a reliable statistics could be achieved. Hanuš et al. (2011), using
a sample of 206 main belt asteroids, found the dependence of the latitudes distri-
bution on the diameter D. For D > 60 km they found nearly isotropic distribution
of β value lower than 11◦ and evident excess of prograde rotators (β > 11◦). For
D . 30 km, the distribution of β value was found to have a strong preference for
either low or high values indicating pole orientation near the pole of the ecliptic.
The lack of poles near the ecliptic plane is due to the YORP effect, which can al-
ter the direction of the spin axes of asteroids smaller than ≈ 40 km on a timescale
shorter than their collisional lifetime (e.g., Pravec and Harris, 2000; Rubincam,
2000). The distribution of ecliptical longitudes λ seemed uniform as in the pre-
vious works. Nevertheless, their data sample was probably too small to indicate
meaningful nonuniformities.

Considering the λ distribution, Slivan (2002) and Slivan et al. (2003) revealed,
on the contrary to the aforementioned papers, a nonuniform distribution of λ
for nine members of the Koronis family with diameters from ∼ 20 to ∼ 40 km.
In particular, the prograde-rotating asteroids all had pole latitude λ between 24◦

and 73◦. This conundrum was resolved by Vokrouhlický et al. (2003), who showed
that these objects underwent a 2− 3 Gy long dynamical evolution during which
the YORP effect tilted their spin axis towards the ecliptic pole. Since YORP
continued to decrease the rotation frequency in their dynamical model, the spin
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state was captured in the Cassini resonance between the pole precession owing
to solar torque and orbit precession from Jupiter-Saturn perturbations. The
stationary point of this particular spin-orbit resonance is currently at λ ' 35◦.
Consequently all bodies whose spin axes librate about this point must have λ
near this value.

More recently, Bowell et al. (2014) estimated the ecliptical longitudes λ for
more than 350 000 asteroids of the main belt using the magnitude method (Mag-
nusson, 1986), based on the variation of brightness with the ecliptical longitude:
the maximum of brightness corresponds to the spin axis pointing either toward
or opposite from the Earth. Surprisingly, the resulting λ distribution is clearly
nonuniform with an excess of asteroids with λ from 30◦ to 110◦ and with a mini-
mum from 120◦ to 160◦, which have not been yet explained.

In this thesis, we continue in these statistical studies having a new method
and extensive photometric data and we focus on MBAs altogether as well as on
smaller selected asteroid populations.

2.2 Shape models of asteroids

Besides the spin orientation, in this thesis, we are focused on the elongation of
asteroids defined by the axes ratio a/b which is the simplest description of the
asteroid shape. Thus, in this section, we will describe the most important sources
of information about asteroid shapes and also some methods for the determination
of two- and three-dimensional models of asteroids. Our motivation is to provide
an overview, what can be found about these objects, how detailed structures can
be identified and also to emphasize that these achievements cover only a small
fraction of the whole population of asteroids.

2.2.1 Space probe flybys

The first asteroid approached by a space probe was (951) Gaspra in 1991 by
the Galileo spacecraft (Belton et al., 1992; Veverka et al., 1994) (see Fig. 2.1 on
the left) that revealed it to be an irregular body (19 × 12 × 11 km) with many
craters. The first asteroid orbited by a spacecraft was the near-Earth aster-
oid (433) Eros (Veverka et al., 2001) (the spacecraft NEAR Shoemaker landed
in 2001). Till today, we have in situ observations from space probe flybys for
11 minor planets: (4) Vesta, (21) Lutetia, (243) Ida, (253) Mathilde, (433) Eros,
(951) Gaspra, (2867) Šteins, (4179) Toutatis, (5535) Annefrank, (9969) Braille
and (25143) Itokawa; and dwarf planets Ceres and Pluto. During a single flyby,
a part of the body remains unseen. The reconstruction of the dark side can be
done using the procedure described in Kaasalainen and Viikinkoski (2012).

2.2.2 Stellar occultations

A two-dimensional shape projection of an asteroid can be obtained from a stellar
occultation. From the duration of the disappearance of a star behind the as-
teroid, we can determine a chord – a length on the disk of the asteroid. With
a combination of chords, obtained from different locations on the Earth, we can
construct a projection of the shape of an asteroid. An example of shape projection
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Figure 2.1: Left: A picture of (951) Gaspra. A mosaic of two images taken
by the Galileo spacecraft, NASA. Right: The shape projection of asteroid
(135) Hertha based on stellar occultations (Timerson et al., 2009).

of asteroid (135) Hertha is shown in Fig. 2.1 on the right. Dunham et al. (2014)
compiled data for 2102 occultations (annually, there is a new compilation), from
which ∼ 40 are good enough for a reconstruction of asteroid’s shape projection.
The remaining ones can be used for determination of asteroid sizes or at least for
a scaling of three-dimensional models (Ďurech et al., 2011; Hanuš et al., 2017b).

2.2.3 Radar observations

The two-dimensional images can be obtained by radar techniques based on delay-
Doppler imaging. In this method, we measure the Doppler frequency and echo
power in time delay and with adequate orientation coverage, such images can be
used to construct detailed three-dimensional models and define the rotation state
precisely. The two most sensitive facilities are Arecibo Observatory in Puerto
Rico and Goldstone Solar System Radar at the NASA’s Goldstone Deep Space
Communications Complex. The details about the radar technique can be found
in Ostro et al. (2002), here we only point out the main benefits and new findings
of radar observations.

Since the echo power steeply decreases with the distance to the object, the
main-belt asteroids are not suitable for detailed imaging, nevertheless, some of
them were already imaged, e.g., (4) Vesta, (5) Astraea, (7) Iris, (216) Kleopatra
(see Fig. 2.2). The situation is better for near-Earth asteroids as almost 100
objects are observed with radar annually (Benner et al., 2015).

Using the radar technique, it is possible to detect the Yarkovsky drift. The
first direct detection was on (6489) Golevka (Chesley et al., 2003). Recently, the
attention is focused on Yarkovsky drift on NEAs (Farnocchia et al., 2013a,b; Ches-
ley et al., 2015). A combination with optical observation revealed the evidence
of the YORP effect (asteroid later logically named as (54509) YORP) (Lowry
et al., 2007; Taylor et al., 2007). At the same time, the evidence of the YORP
effect was also obtained from photometric lightcurves of asteroid (1862) Apollo
(Kaasalainen et al., 2007). Radar observations also revealed binaries, contact
binaries and triple systems. For many rapidly rotating NEAs, equatorial bulges
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Figure 2.2: Arecibo radar images of asteroid (216) Kleopatra (top rows) and
results of shape reconstruction (bottom rows). The figure is taken from Ostro
et al. (2000).

were found in radar images (e.g., (66391) 1999 KW4, Scheeres et al., 2006); on
the surface of NEAs, even small impact craters and boulders can be found.

A new technique developed by Busch et al. (2010) that enables to estimate
the spin vectors is speckle tracking. Due to the interference of reflections from
different parts of the asteroid’s surface a radar echo contains a characteristic
pattern of speckles that moves as the asteroid rotates. By tracking the motion of
the pattern it is possible to determine the pole direction of the asteroid.

2.2.4 Lightcurve inversion

Nevertheless, the main method for determination of shapes and spin states of
asteroids is the inversion of lightcurves, which was developed by Kaasalainen and
Torppa (2001) and Kaasalainen et al. (2001). Most of the convex shape models
obtained with this method are stored in the DAMIT database (Ďurech et al.,
2010). These models are a good approximation of the whole asteroid, but are
not able to reveal craters and other small-scale and non-convex structures on the
surface.

To solve the inverse problem means to express the asteroid observed bright-
ness as a function of free parameters describing asteroid shape, rotational state,
geometry of observation, surface scattering properties and time. These parame-
ters are fitted and the unique sidereal rotational period P has to be determined.
In the case of dense photometric data, we can substantially reduce the computa-
tional time necessary for the determination of P by only searching the interval
around the value estimated from dense light curves. The relative accuracy of
the period determined from lightcurves is 10−5 or better and depends mainly on

15



the time distribution of observations (Ďurech et al., 2015a). For sparse data, we
usually do not have any estimate of P and we have to search the interval of all
possible values, which is time consuming. Moreover, for the majority of asteroids
we currently do not have sparse data that is accurate enough to derive a unique
rotational period. Kaasalainen (2004), Ďurech et al. (2005), and Ďurech et al.
(2007) showed that it is possible to get the solution of the inverse problem from
sparse photometry if the data noise is . 5%. Using the distributed computing
project Asteroids@home (Ďurech et al., 2015b), which significantly reduces the
computational time of the period search, Ďurech et al. (2016) derived 328 new
models from the analysis of sparse Lowell photometric data. New asteroid models
were also derived with a combination of dense and sparse photometry (Ďurech
et al., 2009; Hanuš et al., 2011, 2013, 2016).

All the described methods work with individual objects and although the
number of models is growing and in a few next years we will have thousands
of models (e.g., thanks to the Gaia satellite), it is essentially impossible to get
models for all asteroids. A different statistical approach was used by Nortunen
et al. (2017), where they described physical parameters for selected populations of
asteroids with distribution functions. They constructed cumulative distribution
functions (CDFs) of variation of brightness for selected groups of asteroids and
studied the inverse problem. A similar approach was used by Szabó and Kiss
(2008) or McNeill et al. (2016). In this work, we created a new model that works
with individual asteroids, but we interpret the results in a statistical sense.
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3. Analysis of the photometric
data from the Lowell
Observatory database

In this Chapter, we introduce a new model that determines the orientation of spin
axes and elongation of asteroids. As mentioned in the previous section, the sparse
photometric data are a rich source of information about asteroids, nevertheless
the quality of the data is often not good enough for a unique solution of the
lightcurve inversion. Therefore, we developed a new method that was published
in Cibulková et al. (2016) and the author of its mathematical background is Mikko
Kaasalainen, one of the coauthors of the paper. First, we describe the model and
test its reliability on synthetic data. Then, we apply it on the photometric data
from the Lowell Observatory database and analyze the results.

3.1 Description of the model

Asteroids are modeled as geometrically scattering triaxial ellipsoids (a ≥ b ≥ c =
1) rotating about the shortest axis of the inertia tensor. The model has four free
parameters: the ecliptic longitude λ and latitude β of the pole and the ratios
of axes a/b and b/c of the ellipsoid. The advantage of this model is that the
brightness L, which is proportional to the projected area of the illuminated and
visible part of the surface, can be computed analytically (Connelly and Ostro,
1984) as follows:

L ∝ πabc

2

(√
eTMe +

eTMs√
sTMs

)
, (3.1)

where e, s denote unit vectors defining the position of the Earth and the Sun in
the asteroid coordinate system of principal axes of the inertia tensor, and

M =

1/a2 0 0
0 1/b2 0
0 0 1/c2

 . (3.2)

In a special case of opposition e = s, Eq. (3.1) simplifies to

L ∝ πabc
√

eTMe . (3.3)

The direction toward the Earth can be described by the rotational angle φ and
the aspect angle θ (i.e., the angle between e and the spin axis direction),

e = [sin θ cosφ, sin θ sinφ, cos θ]T . (3.4)

Having set c = 1, the squared brightness L2 normalized by the maximal possible
value πab is

L2 =
sin2 θ cos2 φ

a2
+

sin2 θ sin2 φ

b2
+ cos2 θ . (3.5)
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The mean quadratic brightness over one rotational period is then

〈L2〉 =
1

2π

∫ 2π

0

L2dφ = 1 +
1

2
sin2θ

(
1

a2
+

1

b2
− 2

)
, (3.6)

and the normalized dispersion of squared brightness is

η =

√
var(L2)

〈L2〉
=

√
〈(L2 − 〈L2〉)2〉
〈L2〉

=

=
a2 − b2√

8

[
a2b2

sin2 θ
+

1

2
(a2 + b2 − 2a2b2)

]−1
. (3.7)

We used Eqs. (3.6) and (3.7) to compute 〈L2
model〉 and ηmodel for each asteroid and

for each of its apparitions; we defined apparitions as sets of observations with the
gap between sets of at least 100 days. We note that in combining equations (3.6)
and (3.7) we obtain, for a given asteroid, the relation between 〈L2〉 and η,

η =
1√
2

a2 − b2

a2 + b2 − 2a2b2

[
1− 1

〈L2〉

]
. (3.8)

This implies that for large 〈L2〉 the model predicts small dispersion η. This is
in accord with the intuition that a large brightness corresponds to the pole-on
geometry of view (i.e., small aspect angle θ).

For the observational data, we used the following procedure. First, we removed
the dependence on solar phase angle, because not only rotation, but also the
different geometry of observations changes the asteroid brightness. In the model,
we assume the case of opposition, which means the solar phase angle α = 0.
For the observational data, we fitted the dependence of the brightness on α by
a linear–exponential dependence similar to Hanuš et al. (2011) (see Fig. 3.1), i.e.,

g
(
h exp−α/d−kα + 1

) 1 + cosα

2
, (3.9)

where g, h, d and k are four additional free parameters fitted for each asteroid.
We simply divided the observed brightness by this function. As an example, the
corrected data for asteroid (511) Davida are shown in Fig. 3.2. Next, we required
that there were enough data for each asteroid, specifically, at least 20 points in
each apparition and at least five apparitions for one asteroid (in Fig. 3.2 there are
data from ten apparitions that can be used).

We compared computed theoretical values of the mean brightness 〈L2〉 and
of the dispersion of the brightness η with observations by means of χ2 that we
defined as

χ2 = χ2
η + wχ2

L2 =
∑

apparitions

(ηmodel − ηobs)2

σ2
η

+

+ w
∑

apparitions

(〈L2
model〉/〈L2

model〉 − 〈L2
obs〉/〈L2

obs〉)2

σ2
L2

, (3.10)

where σ denotes the standard deviation and w denotes the weight for χ2
L2 of

squared brightness. To normalize values of calculated and observed mean squared
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Figure 3.1: The dependence of the brightness L on the phase angle α for aster-
oid (511) Davida. The red line represents the fitted linear–exponential function
(Eq. 3.9). The appropriate free parameters are: g = 1.144, h = 0.836, d = 0.0686,
k = −1.00988.
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Figure 3.2: Photometric data from the Lowell Observatory database of asteroid
(511) Davida corrected by the influence of the solar phase angle (black points).
Red points with vertical lines denote the observed mean brightness and its dis-
persion in individual apparitions, green colour denotes the same but calculated
quantities for the best-fit model. To normalize L, we divided each value by the
mean value Lmean calculated over all apparitions. There are 10 apparitions with
sufficient number of measurements.
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brightness, we divided them by the mean values calculated over all apparitions,
〈L2

model〉 and 〈L2
obs〉, respectively. The value of w is not set in advance and has to

be found by testing on known data. Since 〈L2〉 and η are not Gaussian random
variables, the χ2 in relation (3.10) is not χ2 distributed. Nevertheless, we use this
χ2 formalism to define the best solution, which has the minimum χ2.

To find a model with the best agreement (the lowest χ2) between the calcu-
lated values and the observation, we computed model values on a grid in param-
eter space: the ecliptical longitude λ of the pole from 0◦ to 360◦; the latitude β
from 0◦ to 90◦, both with a 5◦ step, and the axes a and b, from 1.1 to 4 and from
1 to a, respectively, both with a 0.1 step (an elongation larger than 4 : 1 is con-
sidered unrealistic). As mentioned above, we corrected the observed brightness
to the solar phase angle α = 0. However, we used the real unchanged geometry
of measurements and the aspect angle θ, which appears in Eqs. (3.6) and (3.7),
was calculated as a mean value for each apparition as follows:

cos θmean = v · emean , (3.11)

where v = [cos β cosλ, cos β sinλ, sin β]T is the vector defining the direction of
the spin axis and emean is the mean vector defining the position of the Earth
during one apparition. From the relation (3.11) we can see that we obtain the
same aspect angle for λ, β and λ ± 180◦, −β. This is the reason why we test
β only in the interval from 0◦ to 90◦ (instead of the full interval −90◦ to 90◦).
Relation (3.11) also indicates that, for most asteroids, there is only a slightly
worse second minimum of χ2 for λ ± 180◦. For zero inclination of the orbit
(ez = 0), the aspect angle would be the same for λ and λ± 180◦. Because of this
ambiguity in λ, we constructed distributions of λ only in the interval 0◦ to 180◦

and for λ > 180◦ we used modulo 180◦.

3.2 Tests on synthetic data

We tested the reliability of the model on synthetic data created as follows.
We computed the brightness of asteroids using the shape models from DAMIT
database and the Hapke scattering model (Hapke, 1981, 1993) with parameters w,
g, h, B0 and θ randomly chosen from distributions uniform on intervals [0.02, 0.4]
for w, [−0.45,−0.2] for g, [0.05, 0.5] for h, [0.8, 1.8] for B0 and [0◦, 40◦] for θ.
These new (synthetic) values were assigned to asteroids contained in the Lowell
database (to the time of observation and the appropriate geometry). The distri-
bution of poles for this synthetic data was created isotropic. Next, we added the
Gaussian noise, specifically, we tested noise σL = 0.15 and 0.2. The noise was
then subtracted according the relation

ηobs =
√
η2 − σ2

L2 =
√
η2 − 4σ2

L (3.12)

if η2 ≥ 2σL, else ηobs = 0. We also tested synthetic data without any noise
(σL = 0).

After applying our model to these synthetic data, we should obtain uniform
distribution of the ecliptical longitudes λ and latitudes sin β. This was indeed
satisfied for the resulting distribution of λ as shown in Fig. 3.3, however, the
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Figure 3.3: Distributions of pole longitudes λ calculated from synthetic data
with noise σL = 0.15. The black line denotes test without model noise σmodel = 0,
the red line denote test with model noise σmodel = 0.06.

distribution of sin β showed a preference for high β. The possible explanation of
this result is that we did not include the uncertainties arising from the assumption
of triaxial ellipsoids and also from the Hapke model. That means, for example,
that for data without any noise and for an asteroid with β = 0, there are still
some changes in brightness that our model interprets as nonzero β. Therefore,
to correct this problem, we added a new parameter that we called model noise
σmodel. Then the equation (3.12) had to be changed to

ηobs =
√
η2 − 4σ2

L − σ2
model (3.13)

if η ≥
√

4σ2
L + σ2

model, else ηobs = 0.

We tested values σmodel = 0.05, 0.06, 0.07 and 0.1. The resulting distributions
of λ were uniform independently on σmodel. This is probably because λ is prin-
cipally determined from the mean brightness 〈L2〉, which is comparatively more
stable than the dispersion of brightness η from which β is determined. The dis-
tributions of sin β for the two best values of σmodel and for zero data noise σL = 0
are shown in the left panel of Fig. 3.4. The distributions are clearly nonuniform,
nevertheless this is the best result we obtained. When we added noise to the syn-
thetic data, we found that there is no significant difference between distributions
of sin β for σmodel = 0.06 and 0.07 (see Fig. 3.4 on the right) and we decided to
use the value 0.06 for the real data.

The takeaway message from our tests is that (i) the determination of λ is
reliable in a statistical sense, while (ii) determination of β is subject to systematic
bias that needs to be corrected before interpreting the results. Therefore, we
divided each distribution of sin β in Sec. 3.5 by the synthetic distribution with
noise 0.15 and model noise 0.06 (the black curve on Fig. 3.4 on the right).
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3.3 Tests on real data

Having tested our approach and calibrated its parameters, we applied our model
on the real data from the Lowell Observatory photometric database (Bowell et al.,
2014). For a detailed information about the data reduction and calibration, see
Oszkiewicz et al. (2011).

3.3.1 Data description

The Lowell database contains data from 11 observatories (most of them located
in the Northern Hemisphere), each having different random and systematic er-
rors, sometimes time variable. It combines photometric data stored in the Minor
Planet Center (the majority of the data pertain to MBAs and Jupiter trojans)
with the orbital data from the Lowell Observatory orbital data file maintained by
E. Bowell and L. H. Wasserman. Most of the photometric data are rounded to
0.1 mag. The typical rms magnitude uncertainties are 0.2 to 0.3 mag. The data
were calibrated using the broadband accurate photometry of the Sloan Digital
Sky Survey converted to the V band. Data for the asteroids whose brightness
does not fall within the range of the SDSS (bright and very faint ones) are less
reliable. In total, we had photometric data for 326 266 asteroids. For 69 053
asteroids, there were enough apparitions and data points to calculate pole lon-
gitude λ and latitude β; the vast majority of these asteroids belong to the first
100 000 numbered asteroids. For one asteroid, we could utilize 7 apparitions and
324 measurements on average.

3.3.2 A comparison with DAMIT

First, we applied the model to the data for 765 asteroids, which are also included
in DAMIT database, specifically, these were asteroids selected from the first 10 000
numbered asteroids that satisfy the conditions on the number of apparitions and
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the number of measurements in one apparition. We tried different values of noise
level σL (0.08, 0.1, 0.12, 0.15) and weight w (1, 5, 25); the value of model noise
was σmodel = 0.06. To find which is the best value of σL and w, we compared the
calculated λ and β with λDAMIT (values from DAMIT derived with the lightcurve
inversion) and βDAMIT, respectively. From the distributions of ∆λ = |λ−λDAMIT|,
we found the best value of weight as w = 5 and from the distributions of ∆β we
found the best value of noise level as σL = 0.08.

Nevertheless, we also revealed that with this assumed data noise, the model
produces hardly any spheroidal asteroids a/b ∼ 1. This is because the photomet-
ric data for less bright asteroids have higher noise level than for brighter asteroids.
When considering only asteroids from DAMIT, we did not reveal this problem,
because these asteroids are preferentially bright, but for less bright asteroids, the
noise level σL = 0.08 is underestimated.

To estimate the σL(L) dependence we used the magnitude amplitudes Amag

of lightcurves stored in the LCDB database compiled by Warner et al. (2009).
For Amag we can write

Amag = 2.5 log
Lmax

Lmin

= 2.5 log
L|φ=0

L|φ=π/2
, (3.14)

where L is given by Eq. (3.5). The normalized dispersion of brightness η, defined
by Eq. (3.7), is then related to the amplitude A as

ηA =
1√
8

(
1

1− A2
− 1

2

)−1
, (3.15)

where A = Lmin/Lmax = 10−0.4Amag . For 9698 asteroids included in LCDB, we
calculated ηA according to Eq. (3.15) and then the appropriate noise level in data
for each asteroid is written as

σL =
1

2

√
η2 − η2A − σ2

model (3.16)

if η >
√
η2A + σ2

model, else σL = 0. We calculated the running mean (over 500 bod-
ies) of σL to get the dependence of σL(Lmean). The resulting dependence is shown
in Fig. 3.5, together with the standard deviation of σL among corresponding 500
bodies.

This dependence was applied in our model as follows: We assumed the noise
level σL = 0.07 for asteroids with Lmean > 80; the brightness here is a dimension-
less quantity calculated from magnitude M as L = 10−0.4(M−15). For asteroids
less bright than 80, we calculated the noise level according to the equation of the
best-fit parabola,

σL = 0.07 +
(Lmean − 80)2

110 000
. (3.17)

The corresponding curve is shown in Fig. 3.5 (red line). We can see it does not fit
the data perfectly, nevertheless, considering the standard deviation of σL (gray
lines), such difference seems insignificant.
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Figure 3.5: Dependence of the mean value of noise level σL on the mean value
of Lmean, where Lmean is mean brightness over all apparitions. Each mean value
was calculated from a sample of 500 asteroids (as described in the main text).
Gray lines denote the standard deviation of σL among corresponding 500 bodies.
The red line denotes the fit that was applied in the model.

3.3.3 The bootstrap method

Formally, it is always possible to obtain the best pole longitude λ, latitude β and
shape elongation a/b, i.e., the lowest χ2. However, if the minimum is flat, the
parameters are not well determined. To estimate the parameter uncertainties,
we applied the bootstrap method (Davison and Hinkley, 1997) on a set of mea-
surements for each asteroid. We used the first 10 000 numbered asteroids1 from
the Lowell database, of which 9774 have enough data points. From the set of
measurements for each asteroid we randomly selected data to get the same total
number of measurements, but some of them were chosen more than once and
some of them were missing. We repeated this ten times, therefore, we obtained
ten modified sets of measurements and thus ten possible values of λ, β and a/b
for each asteroid. We considered the parameter well enough determined when
the maximum difference among ten obtained values was: ≤ 50◦ for λ; ≤ 30◦

for β; ≤ 0.25 for a/b. This was satisfied for 3930 asteroids in case of λ, for 4215
asteroids in a case of β and for 3819 asteroids in a case of a/b. For these asteroids
(with well-determined parameters) we calculated the mean values of the largest
differences. These are different from the maximal allowed differences, because for
some asteroids the maximum difference among ten values could be better. For λ,
the mean value is 30◦, for β it is 16◦ and for a/b it is 0.18. In next sections of this
chapter, we consider these values as the uncertainties of derived parameters for
individual asteroids. Even though the uncertainties are large, working with as-
teroid populations should smear them and the results should hold in a statistical
sense.

1We did not use data for all asteroids, because it would be very time-consuming.
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Figure 3.6: Distribution of pole longitudes λ derived for 69 053 asteroids from
the Lowell Observatory photometric database with model noise σmodel = 0.06
and weight w = 5. The values of λ larger than 180◦ map to the values λ− 180◦,
because of the symmetry of the model.

3.4 Distributions of pole longitudes λ

After testing our model we applied it to the photometric data for 69 053 asteroids
from the Lowell Observatory database. For this sample, we used our model with
weight w = 5, model noise σmodel = 0.06, and data noise σL calculated for each
asteroid according to the rule described above.

The resulting distribution of λ is shown in Fig. 3.6. As we can see, it is clearly
nonuniform with an excess of asteroids with λ from 40◦ to 100◦ and with a min-
imum for λ ∼ 150◦. We calculated the Kolmogorov-Smirnov (KS) test for this
distribution if it is compatible with a uniform one and we found that the proba-
bility QKS that they belong to the same parent distribution is < 10−16. A similar
result was obtained by Bowell et al. (2014), who estimated pole longitudes λ
for more than 350 000 main-belt asteroids using the same dataset but different
method, precisely the magnitude method (Magnusson, 1986) based on the varia-
tion of brightness L with λ, which can be fitted by a sinusoid curve. Essentially,
from the maximum of the curve, which corresponds with the spin axis pointing
either toward the Earth or opposite from the Earth, they found λ.

Up to now, there is no satisfactory explanation of such nonuniformity in the
distribution of pole longitudes λ. We considered the observational and method
biases described in Marciniak et al. (2015) and Santana-Ros et al. (2015), never-
theless, we found these do not influence our results. Therefore, we searched for
some other observational biases and geometrical and dynamical effects as well.

3.4.1 Searching for an explanation

Correlation with heliocentric ecliptic longitudes of observations. First,
we studied the influence of the geometry of observation, specifically the correlation
between the calculated values of λ and the heliocentric ecliptic longitudes λobs of
observations. We used data for the first 10 000 asteroids from the Lowell database.
Such sample is large enough to show the nonuniformity in λ distribution. For
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gitudes λobs of observations. The shown distribution contains data for 9680 as-
teroids from the Lowell database. Right: Distributions of pole longitudes λ for
two different intervals of λobs. The KS test did not find these distributions to be
significantly different.

each asteroid apparition containing at least 20 measurements we calculated the
mean value of λobs. If the number of apparitions was at least 5, we calculated the
overall mean value of λobs for a given asteroid.

We found that the preferred values of λobs are 100◦−150◦ as shown in Fig. 3.7.
Nevertheless, when we compared distributions of pole longitudes for asteroids
observed at the privileged λobs (6437 bodies) and at λobs = 40◦−80◦ (575 bodies)
we did not find any significant difference (see Fig. 3.7). The result of the KS test
was QKS = 0.53 meaning that there is no statistical difference between these two
intervals of λobs.

Galactic plane bias. Next, we tested the influence of the measurements near
the Galactic plane. The stellar background there is more dense and thus the pho-
tometric measurements may have higher uncertainties. We thus eliminated the
observations with Galactic latitudes |b| < 10◦ and repeated the analysis (for one
asteroid there were on average about 6 % less points). We again compared derived
values of λ with λ’s from the DAMIT database. The differences were comparable
with values for the model with Galactic plane included. The nonuniformity in λ
was, however, even slightly larger as we can see in Fig. 3.8. This result could sug-
gest, on the contrary, that the nonuniformity of λ distribution could be caused
by the shortage of observations near the Galactic plane. However, if such a bias
could influence our results, it would have been seen in our test with synthetic
data (Sec. 3.2), since the geometry of observations was kept unchanged. Never-
theless, the resulting distribution of pole longitudes was uniform, therefore, we
believe our results are not influenced by such bias and we had to look for another
explanation.

Correlation with the longitude of ascending node Ω. We also studied the
role of the orbital longitude of node Ω. We tested a possible correlation between
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asteroid’s pole longitude λ and Ω. The orbital data were taken from the AstOrb
catalog. Figure 3.9 shows the distribution of Ω values for 566 089 multi-opposition
orbits of main-belt asteroids.

First, we focused on the data in the ecliptic reference system. The Ω values
show an overpopulation centered at ∼ 100◦, and underpopulation shifted by about
180◦, i.e., centered at ∼ 270◦. This result is not new (see, e.g., JeongAhn and
Malhotra, 2014, and references therein) and the reason for this nonuniformity in
Ω is due to planetary perturbations. The asteroids’ inclination I and node Ω
evolve in time such that sin I exp(ιΩ) can be represented with a Fourier series
'
∑
Ak exp(ι(skt + Φk)), with the first few terms typically dominating (e.g.,

Brouwer and Clemence, 1961). The first term, k = 0, is called proper as it is
determined by the initial orbital conditions of each asteroid. The phase Φ0 of
the proper term is uniform at a current epoch t = 0. The other terms in the
Fourier representation of sin I exp(ιΩ) are due to planetary perturbations and
they are common to all asteroids in the belt. In the ecliptic reference system,
one of these planetary terms has zero frequency and amplitude corresponding to
inclination of about 1.58◦. This is the tilt between the Laplace plane, normal to
the planetary total angular momentum, and the plane of ecliptic. The common
phase of this term, ascending node of the Laplace plane, is ' 100◦ (see, e.g.,
(Dermott et al., 2002)). Further planetary terms have non-zero frequencies and
smaller amplitudes, with the leading term due to the s6 frequency and amplitude
between ' 0.8◦ and ' 1◦ (depending on the mean heliocentric distance). The
present phase Φ6 of this term is ' 305◦ in the ecliptic system. Therefore, the
s6 term partially, but not entirely, compensates the zero-frequency term. Other
planetary terms have smaller amplitudes and may be ignored in our discussion.

The bottomline of this analysis is as follows. In the ecliptic system, the
proper term of all asteroids in the sin I exp(ιΩ) complex-plane representation is
presently off-centered by about a degree towards the longitude ' 100◦. Since
asteroids are uniformly distributed along the proper-term circle, the planetary
terms present compositely forcing which makes the value of osculating nodal
longitude in the ecliptic coordinates non-uniform with a slightly preferred values
near ' 100◦ (Fig. 3.9). The situation in the Laplace reference frame is the same
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Figure 3.9: Distribution of the osculating longitudes of ascending node Ω (from
AstOrb catalog) for MBAs. The red curve represents the distribution in the
ecliptic plane; the black curve indicates the distribution in the invariant (Laplace)
plane. The green and blue lines represent the distribution in the invariant plane
for asteroids with the inclination of the orbit I < 10◦ and I < 5◦, respectively.

with the only difference consisting in the absence of the zero-frequency term in
the Fourier representation of sin I exp(ιΩ). Because the longitude origin in the
Laplace plane was deliberately chosen to make only a small difference between
the nodal longitudes in both reference frames (the ecliptic and Laplace), the
proper term is now shifted by little less than a degree towards a longitude ' 290◦.
Therefore, this is also the preferred value of the asteroids’ osculating longitude
of node in the Laplace frame (Fig. 3.9). Obviously, the effect becomes larger
for small-inclination orbits (i.e., whose proper inclination value is small), as also
shown in Fig. 3.9. In next few tests we will examine, whether the nonuniform
distribution of λ is not a simple implication of the known nonuniformity in Ω.

First, we ran the following experiment. We divided asteroids according to
their value of Ω to 18 equal bins (each 20◦ wide). We found the bin that con-
tains the smallest number N of asteroids, and we randomly selected N objects
from all other bins. In other words, we had a sample of asteroids with a uni-
form distribution of ascending nodes. The distribution of pole longitudes λ for
this subsample was, however, still nonuniform, resembling that in Fig. 3.6. The
KS test of compatibility of the λ distributions obtained from our subsample and
the whole sample of asteroids gave us a likelihood QKS ' 0.90 that they have the
same parent distribution. We repeated this experiment several times, creating
new subsamples, and obtained the same results. We also ran the same experi-
ment in the Laplace reference system, but the choice of reference plane does not
influence the result. These experiments suggest that the nonuniform distribution
of orbital nodes does not play a fundamental role in the nonuniform distribution
of longitudes of spin axis.

Nevertheless, we would expect some relation between Ω and λ should exist.
For instance, plotting λ distributions for asteroids in each of the Ω bins described
above, we obtained data shown in Fig. 3.10. As we can see, in each of the bins
of restricted Ω values, distribution of pole longitude peaks at ' (Ω− 90◦). This
is actually understandable in the simplest model, in which the spin axis of each
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Figure 3.10: Distributions of pole longitudes λ for different intervals of longitude
of ascending node Ω. Each distribution has a maximum for ∼ (Ω− 90◦).

asteroid just uniformly precesses about the normal to its osculating orbit due to
solar gravitational torque. We have quantitatively tested how much this simple
geometrical effect of such precession could contribute to the observed dependence
of pole longitude λ on node Ω by running the following experiment: We assumed
the pole position in the moving orbital plane is set with the obliquity ε and
we chose the inclination of orbit I and the longitude of ascending node Ω. This
initial set up was changed several times, specifically, we tested values of inclination
sin I = 0.10, 0.15, 0.30, values of node Ω = 10◦, 170◦, 250◦ and values of obliquity
ε < I, ε > I. Assuming a simple regular precession, we randomly picked many
values of the longitude λ′, uniform in 0◦ to 360◦. We then transformed poles
(λ′ , ε) to the ecliptic system:cosλ cos β

sinλ cos β
sin β

 = Rz(−Ω)Rx(−I)

sinλ′ sin ε
cosλ′ sin ε

cos ε

 , (3.18)

determined appropriate λ and constructed a model distribution of the ecliptical
longitudes. Results of these simple simulations satisfied our hypothesis of geo-
metrical effect; for ε < I, the distribution of λ was only a tight interval of values
near ' (Ω− 90◦), and for ε > I, the λ values spanned the whole interval from 0◦

to 360◦, but with a peak at ' (Ω− 90◦) (see Fig. 3.11).
After these simple tests that confirmed our hypothesis we performed a more

realistic simulation. Instead of only a single input value of I and Ω, we used a real
distributions represented by the sample of 69 053 bodies for which we determined
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Figure 3.11: The results from the simulations of the precession of the spin
axis. Left: The distribution of the ecliptical longitudes λ of the spin axis that
precesses about the normal to its osculating orbit for an asteroid with obliquity
ε < I. Right: The same, but for an asteroid with ε > I.

the λ distributions from Lowell photometric data. For each asteroid we randomly
picked value of λ′, uniform in 0◦ to 360◦. As to the obliquity, we assigned to each
asteroid a fixed value ε = 2◦. Such choice of obliquity may seem extreme, but
our sample is dominated by small asteroids that have spin axes evolved by the
YORP effect, i.e., small obliquities. Then we applied the Eq. 3.18. The resulting
distribution of λ is shown in Fig. 3.12. We can see it is nearly uniform, with only
a very slight excess of bodies at ' 100◦. The probable explanation of this result is
that the center of maximum of Ω distribution (' 100◦) and the deep minimum of
its distribution (' 270◦) are basically 180◦ apart, which in our operation brings
them together in contribution to the λ distribution. We tried several more initial
condition, but only when we limit Ω to the narrow interval (in the most extreme
case to a single value for all objects), we obtained λ distribution significantly
different from uniform. Our results suggest that the projection of the spin axis
precession can partly explain the nonuniform λ distribution, but there must be
some other dynamical or observational effects because the simple projection model
together with the nonuniformity of the ecliptic Ω values and other assumptions
of our model cannot explain the nonuniformity in pole longitudes.

However, the evolution of pole orientation in the orbit frame may be much
more complicated than just a simple steady precession about the orbital angular
momentum vector due to a possibility of resonant, spin-orbit effects described
by Cassini dynamics (e.g., (Colombo, 1966); (Henrard and Murigande, 1987);
(Vokrouhlický et al., 2006)). In fact, a part of the Koronis family, the so called
Slivan sample, has actually been identified as being captured in s6 Cassini res-
onance resulting in a common orientation of their pole longitudes near the sta-
tionary point at λ ' 35◦ (Vokrouhlický et al., 2003).

However, we verified that such resonant effects are not able to explain the
nonuniformity in the distribution of λ. First, if the capture in the aforemen-
tioned Cassini resonance played a dominant role population-wise, the λ distribu-
tion would be peaked at the stationary point of the resonance, which is shifted by
some 35◦ − 40◦ from the maximum seen in Fig. 3.6. Next, Vraštil and Vokrouh-
lický (2015) have shown that the capture in this resonance is generally unstable,
especially in the inner part of the main belt. They also found that its phase vol-
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Figure 3.12: The same as in Fig. 3.11, but with real distribution of nodes Ω
defined by 69 053 asteroids for which we determined λ distribution shown in
Fig. 3.6. The distribution plotted by black line was obtained by using the real
distribution of sin I, the distribution plotted by red line was obtained by using
a single value sin I = 0.15.

ume is small (few percent at maximum), which implies that expecting the spin
pole located in this resonance by chance is very small. In order to verify these pre-
liminary conclusions, we used the software described in Vraštil and Vokrouhlický
(2015) to probe the expected effect. This is basically a much more sophisticated
variant of our previous Monte Carlo experiment in which we assumed a steady
precession in the orbit frame. We numerically propagated orbit and spin evolu-
tion of the first 10 000 main belt asteroids for tens of millions of years (with the
YORP effect included) and monitored the distribution of their pole longitudes.
To the sample of asteroid we gave random initial rotation state parameters, such
as rotation period pole orientation, and dynamical ellipticity. We found that
the sample quickly forgets the initial conditions and fluctuates about a steady-
state situation with basically uniform distribution of ecliptic longitudes of spin
axes. We repeated the numerical experiment several times with different initial
conditions but always obtained very similar results.

Synthetic data with narrow range of Ω. When studying the dependence of
λ distribution on ascending node Ω we noticed that for two Ω intervals, 40◦ to 60◦

and 220◦ to 240◦, the distributions are flatter than for other Ω intervals. These
two intervals are approximately ±90◦ from the privileged ecliptic longitudes of
observation λobs (see Fig. 3.7). That could suggest the pole longitudes are less
constrained since we observed the asteroids mostly above or bellow the ecliptic.

To test this hypothesis, we performed the following test. We created synthetic
data as in Sec. 3.2, but for all asteroids we chose obliquity from ε = 0◦ to 5◦ and
pole longitude (in the asteroid coordinate system) uniformly distributed. Then we
calculated the ecliptic coordinates of the spin axes λinitial, βintial, selected objects
with (i) Ω = 40◦ − 60◦; (ii) Ω = 130◦ − 150◦; (iii) Ω = 220◦ − 240◦ and (iv)
Ω = 340◦ − 360◦ and ran our model. The initial and calculated λ distributions
for each of the tested intervals of Ω are shown in Fig. 3.13. We can see that
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Figure 3.13: Test with synthetic data. Left: Distribution of initial pole longi-
tudes λinitial of asteroids with obliquities from ε = 0◦ to 5◦ for individual intervals
of ascending nodes Ω. Right: Distributions of pole longitudes calculated with our
model for appropriate Ω intervals. We can see that for each Ω interval, our model
behaves similarly, distributions are mutually shifted but have similar shapes.

the information about the initial λ distribution is partially lost, but for each
Ω interval to the same extent, i.e., the distributions have similar shapes, and are
only mutually shifted.

The calculated distributions are flatter and their peaks are not so pronounced
as in Fig. 3.10. This is possibly due to our choice of asteroid obliquities, which
were too extreme. Thus, we performed a second test with the same initial con-
ditions but with ε = 5◦ − 10◦. The results are in Fig. 3.14. The distributions
are not improved in comparison to the previous test and again we do not see any
differences between individual intervals of Ω except the mutual shift. In principle,
it would be possible to choose such distributions of ε and λinitial and their cor-
relations with Ω distribution to obtain the nonuniform λcalculated distribution as
shown in Fig. 3.6. However, we would not be able to explain, why the considered
quantities should be bound by such correlations and thus, these tests would not
provide us with any physical explanation of the problem.

Distribution of λDAMIT. As an independent check, we also plotted the distri-
bution of λ for asteroids in DAMIT database to find if a different method applied
to a different data would provide the same λ distribution and also to test if there
is some difference between λ from interval 0◦−180◦ and 180◦−360◦. In Fig. 3.15,
there is a distribution for 964 models from DAMIT (for asteroids with two differ-
ent models available, we chose the first one). We can see that the nonuniformity
is significant and in accordance with Fig. 3.6. The distributions in both intervals
of λ are quite similar, in fact, when we transformed λ ≥ 180◦ into the interval 0◦

to 180◦ and compared with the group with λ < 180◦ using the KS test, we found
QKS = 0.346, which means no statistical difference. Therefore, the distributions
limited to the interval of λ from 0◦ to 180◦ are reliable in a statistical sense.
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Figure 3.14: The same as in Fig. 3.13 but with initial obliquities from ε = 5◦

to 10◦. Again, there are no significant differences between individual Ω intervals.
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Figure 3.15: Distributions of pole longitudes λ of 964 DAMIT models. The
intervals λ = 0◦ to 180◦ and 180◦ to 360◦ are not statistically different.
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Figure 3.16: Distributions of pole longitudes λ for groups of asteroids with
different intervals of diameter D. Distributions are not statistically different.

population N population N

0− 3 km 15 235 Flora 4 098
3− 6 km 28 686 Massalia 434
6− 9 km 12 618 Nysa/Polana 3 042
9− 12 km 5 322 Vesta 3 788
12− 15 km 2 127 Eunomia 2 115
15− 25 km 2 069 Gefion 783
25− 50 km 884 Maria 832
> 50 km 679 Koronis 1 616

Eos 2 764
C class 4 550 Hygiea 746
S class 6 660 Themis 1 587

Table 3.1: Number of asteroids in several studied populations. The family
membership was taken from Nesvorný et al. (2015).

3.4.2 Distribution of λ for groups of asteroids

Our next step was to study the distributions of λ for various groups of asteroids,
specifically for asteroids with different sizes, different spectral types, individual
dynamical families, and asteroids located in different parts of the main belt.
Distributions were compared using the KS test.

Asteroids with different sizes. We divided asteroids into eight groups ac-
cording to their diameters D: 0–3 km; 3–6; 6–9; 9–12; 12–15; 15–25; 25–50; and
50–1000 km; the number of asteroids decreases with larger diameters, therefore,
we chose wider ranges of bins (the exact numbers of asteroids in these popu-
lations are listed in Table 3.1). We preferentially used diameters derived from
the observations of the WISE satellite (Masiero et al., 2011)2. For asteroids not
included there, we used diameters from AstOrb catalog. Distributions of λ of
these asteroid populations were compared with each other. We found that the
differences are not significant, which means that the data do not reveal any strong
dependence of λ on D. The distributions of λ are shown in Fig. 3.16.

2http://wise2.ipac.caltech.edu/staff/bauer/NEOWISE pass1/.
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Figure 3.17: Distributions of pole longitudes λ for taxonomic complex S (black
line) and C (red line).

Taxonomic complexes. Next, we compared distributions of λ between aster-
oids belonging to the most common taxonomic complexes C and S. We assigned
a taxonomic class to asteroids according to the SDSS-based Asteroid Taxonomy
(Carvano et al., 2010). The result of the KS test, QKS = 0.014, does not indi-
cate a significant difference between these two populations. Such value is usually
considered small enough to signify relevant differences, nevertheless our model
is calibrated by several parameters that influence the results. Thus, we require
QKS < 10−4 to claim that the two distributions do not belong to the same par-
ent distribution. In Fig. 3.17 we can see there is only a small shift between the
λ distributions of S and C complexes – the maximum for S complex is ∼ 70◦,
for the C complex the maximum is ∼ 90◦. This difference is comparable with
the uncertainty estimated by the bootstrap method, i.e., 30◦. The fact that the
distribution of λ is independent of the sizes and taxonomic complexes actually
simplified tests with other asteroid populations.

Different parts of the main belt. We also studied the distributions of pole
longitudes for groups of asteroids located in different parts of the main belt.
Specifically, asteroids with different inclinations sin I, eccentricities e, and semi-
major axes a of their orbits (we used osculating orbital elements from AstOrb).
While our tests did not reveal the distribution of λ to be dependent on the ec-
centricity, we found that it is strongly dependent on the inclination. As is shown
in Fig. 3.18, for sin I < 0.02 there is a huge excess of asteroids with λ from 60◦

to 100◦, there are more than four times more bodies than for λ ∼ 150◦. With
increasing I the maximum decreases and the minimum becomes shallow. This
result is surprising and it actually goes against the ideas about simple geometrical
(projection) effects discussed in Sec. 3.4.1, suggesting that perhaps some not yet
identified dynamical effect influences the distribution of λ.

We also studied the dependence of the distribution of λ on the inclination of or-
bit in the invariant plane. Although the maximum of distribution for sin I < 0.02
is slightly lower, there is still a strong dependence on the inclination.

Next, we constructed distributions of λ for individual Ω bins (as in Fig. 3.10)
for asteroids with sin I < 0.04. The peaks of all distribution correspond with
the peak of the λ distribution for small inclinations (i.e., λ from 60◦ to 100◦).
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Figure 3.18: Distributions of pole longitudes for asteroids with different incli-
nations sin I of their orbits.
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semimajor axis a (we used proper values of a and I from Asteroids Dynamic Site;
(Knežević and Milani, 2003)). The locations of some more populous asteroid
families are emphasized.
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Figure 3.20: Distributions of λ for different parts of the main belt according
to semimajor axis. The pristine zone is significantly different from the middle
and outer belts. For the pair inner belt and pristine we cannot make a definitive
conclusion.

This means that for orbits with small I, the dependence of λ on Ω is somehow
suppressed.

We then constructed distributions of pole longitudes for asteroids with differ-
ent semimajor axes a. We separated the main belt into four parts as shown in
Fig. 3.19: the inner, middle, pristine and outer belt, which are naturally divided
by low-order mean-motion resonances with Jupiter. To eliminate the dependence
on the orbital inclination we divided asteroids of each part into bins of sines of
inclinations (we used the same bins as in Figure 3.18) and we randomly chose
such number of asteroids to have the same number of asteroids in correspond-
ing bins of two populations. That way, we forced the sin I distributions for the
two compared populations to be the same. The results of KS tests show that
only the pristine zone, bracketed by the powerful mean-motion resonances 5:2
and 7:3 at ' 2.82 au and ' 2.96 au, has a significantly different distribution from
the middle and outer belts (QKS < 3 × 10−6); specifically, the nonuniformity is
more significant in pristine zone than in other parts. For the pair inner belt and
pristine zone, the KS test gives QKS = 0.00013, which is on the edge of being
significant. The distributions of λ are shown in Fig. 3.20. We can notice that the
nonuniformity is larger than what is seen in Fig. 3.6. This is due to the fact that
the pristine zone contains significantly more asteroids with small inclinations and
as described above, we applied a correction to have the same number of asteroids
in inclination bins. Therefore, also in other parts of the main belt, there are more
low-inclination objects, which causes the stronger nonuniformity.

Dynamical families. Finally, we studied 13 major dynamical families shown
in Fig. 3.19. The family membership of asteroids was taken from Nesvorný et al.
(2015). Distributions of λ for individual families were compared with the distri-
butions of corresponding backgrounds formed by asteroids that (i) do not belong
to any of the studied families; (ii) are from the same part (inner, middle, pristine,
and outer) as the family and (iii) have orbit inclinations from the interval defined
by the members of the family. The KS test did not reveal any significant differ-
ence between any family and its background. We also compared families located
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Figure 3.21: Distributions of λ for Flora, Nysa Polana, and Massalia (left) and
for Eos, Themis, and Koronis (right). The individual distributions corresponds
with the λ distributions for appropriate intervals of orbit inclinations.

approximately in the same interval of inclination (see Fig. 3.19) with each other,
specifically: Themis with Massalia; Vesta with Eos, Hygiea and Flora; Hygiea
with Flora; and Koronis with Nysa/Polana. Again, the KS test showed no differ-
ences for these pairs of families. The distributions of λ for six selected families
are shown in Fig. 3.21. The differences we can see between the distributions are
caused only by the dependence on the inclination of orbit.

We should note, that the strong maximum of the λ distribution between
' (80◦−110◦) in the Koronis family does not fit the interval of expected librators
in Slivan states described by Vokrouhlický et al. (2003) which would be shifted
by about 40◦ to 50◦ degrees toward lower values.

Rotational period. Using the LCDB database we divided main-belt asteroids
into groups with different rotational periods P (we used only P with the quality
U code 2-, 2, 2+, 3- and 3 that should be sufficient for a statistical study; Warner
et al., 2009). To have a reasonable number of asteroids in individual groups
we chose following ranges: P < 3 hours (609 asteroids); 3 − 6 (2976); 6 − 10
(2179); 10− 40 (2422); and P > 40 hours (811). For these groups we constructed
distributions of λ. We found that for P > 10 h, the minimum around λ = 140◦

becomes flatter and for P > 40 h, the minimum already vanished (see Fig. 3.22).
This is an unexpected result that we are not able to explain.

Prograde and retrograde rotation. One limitation of our model is that we
are not able to distinguish between prograde and retrograde rotators, it gives
us only the absolute value of β. However, it could be useful to check if the
distribution of pole longitude λ differs for populations with different sense of
rotation. Therefore, we divided 964 asteroids from DAMIT database according
to their sense of rotation: there are 454 prograde rotators and 510 retrograde
rotators. We constructed appropriate distributions of λ, which are shown in
Fig. 3.23. We can see, that the distributions are not different, the KS test gave
us the probability that the distributions belong to the same parent distribution
QKS = 0.59.
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Figure 3.22: Distributions of λ for asteroids with different rotational periods P .
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models from DAMIT. Distributions are not significantly different.
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|β| derived with our model for 69 053 asteroids using the data from the Lowell
database. Bins are equidistant in sin β. Distributions are debiased, i.e., divided
by the synthetic distribution with noise 0.15 and model noise 0.06 (Fig. 3.4 right
panel, black curve).

3.5 Distributions of pole latitudes β

In this Section, we study the distribution of absolute value of ecliptical latitude
|β| for groups of asteroids. Since the distribution calculated for the synthetic
data was not uniform, the determined latitudes are affected by the method bias.
Therefore, all constructed distributions of |β| are divided by the distribution for
synthetic data with noise 0.15 and model noise 0.06 (Fig. 3.4 right panel, black
curve). This is the simplest debiasing procedure we can use.

Asteroids with different sizes. First, we studied the dependence of pole
latitude |β| on size and tried to confirm and extend the result of Hanuš et al.
(2011), who found the dependence of the distribution of β on the diameter D (for
D . 30 km asteroids they found a strong preference for pole orientation near the
pole of the ecliptic). In agreement with findings of Hanuš et al. (2011), we found
a visible depopulation of spin axes close to the ecliptic plane with decreasing
diameter as shown in Fig. 3.24 on the right. The same figure on the left shows
distributions of |β| inferred from DAMIT models. We can see that, in comparison
with models from DAMIT, our model overestimates high |β| bins, however, the
trend for decreasing diameter of asteroids is obvious.

This is yet another interesting hint about the origin of the nonuniformity of
λ distribution. The affinity of latitudes toward extreme values for small asteroids
clearly shows that the YORP effect has been affecting the population in a size-
dependent way, as predicted by the theory. However, the distribution of the
longitudes does not indicate this size-dependency, implying the YORP effect is
not the primary mechanism in the longitude story. Indeed, the theory of the
YORP effect alone so far has not predicted any significant effects for the pole
longitude.
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Figure 3.25: Debiased distributions of |β| for some of the most populous dy-
namical families. Bins are equidistant in sin β.

Dynamical families, inclination dependence. Next, we constructed distri-
butions of |β| for asteroid families. We included only asteroids with diameter
D < 20 km to eliminate the above described dependence on diameter. Resulting
distributions are shown in Fig. 3.25. The high-inclination families in the middle
belt, Eunomia and Maria, have significantly smaller number of spin axes with
|β| & 70◦ and more asteroids with |β| . 70◦. Even more significant is that for
the outer-belt family Alauda.

The shown distributions of pole latitude |β| of asteroid families correspond
with distributions of |β| of populations with different inclination of orbits plotted
in Fig. 3.26. To suppress this dependence we should rather plot the distributions
of obliquities. The quantity influenced by the YORP effect is the obliquity ε, not
the latitude β (only for inclination I = 0◦ is ε = 90◦ − β). Unfortunately, we are
not able to compute obliquities, because our model provides longitudes only in
the interval 〈0◦, 180◦〉.

Nevertheless, it is possible to test the respective relation between ε and β on
the synthetic data with isotropic distribution of spin axes described in Section 3.2.
To this aim, we calculated obliquity for each asteroid in our synthetic sample as

cos ε = sin I sin Ω cosλ cos β − sin I cos Ω sinλ cos β + cos I sin β . (3.19)

We chose only asteroids with cos ε > 0.866 (the spin axes . 30◦ from the pole
of ecliptic). Then we ran our model to get the new values of pole latitudes β.
The results were divided into the inclination bins and for each of them we plotted
the distributions of |β|. As we can see in Fig. 3.27, for sin I < 0.02, the majority
of objects have β > 60◦, which corresponds with the original obliquities. With
growing inclinations, the number of bodies with β < 60◦ is growing and the
information about the original obliquities is practically lost. Thus, we have to
be careful when analyzing the results since the debiasing distribution derived in
Sec. 3.2 includes the whole population. However, for the individual inclination
intervals the debiasing distributions could be different.

The two families that do not follow the distribution of the corresponding
background are Gefion in the middle belt and Koronis in the pristine zone. The
result of the KS test suggests that Gefion could be different from its background,
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Figure 3.26: Debiased distributions of |β| for groups of asteroids with different
inclinations of orbits sin I. Bins are equidistant in sin β.
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from which we chose only asteroids with obliquity cos ε > 0.866.
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Figure 3.28: Distributions of |β| for groups of asteroids with different semimajor
axes. The inner and outer belts do not differ and both are significantly different
from the middle belt and pristine zone.

QKS = 0.0017 is on the edge of being significant. Nevertheless, if we compare
Gefion with the objects with appropriate orbit inclinations (0.16 < sin I < 0.2),
we obtain QKS < 10−8. We also compared Gefion with the Eos family, which is
located approximately at the same interval of inclination, and obtained QKS =
0.00068, which gave us no definite answer. Koronis is not significantly different
from its background, however, when we compared it with corresponding interval
of sin I (0.02− 0.06, see Fig. 3.19), the value of QKS is almost zero. Such results
suggest, that the whole pristine zone could be different from the rest of the main
belt.

Different semimajor axes, taxonomic classes. Previous results motivated
us to compare also distributions of β for asteroids in different parts of the main
belt according to their semimajor axes a. Again, we used only bodies with
D < 20 km, and moreover, we eliminated the dependence on inclination in the
same way as when we studied the distributions of longitudes λ. The results are
shown in Fig. 3.28. The inner and outer belts have practically the same distribu-
tion of β (QKS = 0.28) and both are significantly different from the middle belt
and pristine zone (QKS < 10−11). For the pair middle belt and pristine zone, the
KS test gave us the probability QKS = 0.0225. These two parts contain signifi-
cantly less objects with β close to 90◦ than inner and outer belt. In contrary, the
Gefion family, located in the middle belt, contains more objects in the last bin
of β distribution, and is therefore exceptional in two ways: (i) it is different from
objects with the same interval of inclinations and (ii) from other objects in the
middle belt (QKS < 10−7).

Though we did not assume the distribution of β to be different for asteroids
with different taxonomic classes, we performed also this test for the sake of com-
pleteness. The probability that the taxonomic classes S and C have distributions
of β that are both drawn from the same parent distribution is QKS = 0.46.
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Figure 3.29: Distributions of λ for asteroids with pole latitude |β| = 0◦ to 90◦

and |β| = 50◦ to 90◦.

Distributions of λ for different β values. Finally, we checked the correlation
of λ and β. We thus divided asteroids to two groups: 9 191 asteroids that have |β|
from 0◦ to 50◦ and 59 721 asteroids that have |β| from 50◦ to 90◦. The result of
the KS test (QKS < 10−9) shows that the distributions are significantly different.
As we can see in Fig. 3.29, the distribution of λ for lower values of |β| is uniform
from λ = 0◦ to approximately 100◦ and then, there is a deep minimum around
140◦, while the distribution for |β| > 50◦ is similar as the distribution for the
whole main belt.

3.6 Distributions of shape elongations a/b

In this section, we study ellipsoidal shapes of asteroids, specifically the ratios of
axes a/b and b/c derived from our model. As described in Sec. 3.2, we tested
our model on synthetic data with assumed noise level σL = 0.15. The values
of ratios a/b and b/c obtained with our model were compared with values from
DAMIT models derived from the principal moments I1, I2, I3 of the inertia tensor
(assuming uniform density) as

a

b
=

√
I3 − I1 + I2
I3 + I1 − I2

,
b

c
=

√
I1 − I2 + I3
I1 + I2 − I3

. (3.20)

Since the values of ratios computed with our model were obtained from synthetic
data based on DAMIT, they should be ideally the same as values derived from
the inertia tensor, but our model is, of course, simplified and surely introduces
a method bias. The result is shown in Fig. 3.30. For both ratios, we calculated
the linear (Pearson) correlation and Spearman correlation, the coefficients ρ are
summarized in Table 3.2. For the ratio a/b we obtained the correlation coeffi-
cients ρ ∼ 0.9 which suggests that a/b is well-determined, while the ratio b/c is
unconstrained.

Next, we applied our model on real data. The setup was the same as described
in Section 3.4: weight w = 5; model noise σmodel = 0.06; and data noise σL = 0.07,
respectively, σL was calculated according the equation (3.17) for asteroids less
bright than 80. We compared resulting ratios a/b and b/c of 765 asteroids included
in DAMIT with a/bDAMIT and b/cDAMIT and calculated correlation coefficients (see
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Figure 3.30: A comparison of the values of a/b and b/c derived from DAMIT
shape models with values calculated from synthetic data described in Sec. 3.2.
To create the synthetic data, one shape model from DAMIT was used more than
once. The error bars thus denote the standard deviation of the mean value of the
calculated values that all match with a single shape model from DAMIT.

ρ linear ρSpearman

synthetic data, a/b 0.88 0.91
synthetic data, b/c 0.35 0.38

real data, a/b 0.48 0.61
real data, b/c 0.053 0.088

Table 3.2: The linear (Pearson) and Spearman coefficients ρ of correlation be-
tween ratios a/b and b/c derived from DAMIT shape models and ratios calculated
with our model from synthetic data.
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Figure 3.31: A comparison of 756 values of the a/b ratio calculated from the
photometric data from the Lowell database with the corresponding values from
the DAMIT database.

Table 3.2 and also Fig. 3.31). Since the ratio b/c is unconstrained (the correlation
coefficient is lower than 0.1), in following tests we will study only the a/b ratio.
The problem to determine the ratio b/c is linked to our previous result that the
distribution of pole latitudes β shows a preference for high values of β, especially
for small bodies (see Fig. 3.24), because for a spin axis with high β (small ε)
we have observations only from a limited range of polar aspect angles. The
determination of b/c, however, definitely requires observations from wide range
of aspect angles. In principle, we could choose asteroids with sufficient coverage of
observations and obtain reliable values of b/c, but considering the β distribution,
such sample would be too small for a statistical use.

3.6.1 Distribution of a/b for groups of asteroids

Similar as for distribution of spin axes longitudes, we constructed distributions
of a/b for some selected asteroid populations.

Asteroids with different sizes. First, we studied groups of asteroids with
different diameters and we found that larger asteroids (D > 25 km) are clearly
more spheroidal (values of a/b are closer to 1) and smaller bodies are more elon-
gated (the mean value of a/b is 1.6±0.3), as is shown in Fig. 3.32. The differences
between distributions in Fig. 3.32 on the right are much bigger than the uncer-
tainties estimated from bootstrap testing.

We repeated this test for a smaller sample of 3819 asteroids, which were veri-
fied by bootstrapping in Sec. 3.3.3 as having well-determined a/b. The dependence
of a/b on D remained, which means that the poorly constrained models did not
cause any systematic change of a/b distribution.

McNeill et al. (2016) determined the average axial ratio for asteroids with
diameters D < 8 km from Pan-STARRS1 survey as 1:0.85±0.13, i.e., a/b = 1.18,
which is not in agreement with our findings. For the corresponding range of
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Figure 3.32: Distributions of a/b for groups of asteroids with different sizes
(from 0 to 12 km on the left; from 12 to 1000 km on the right). The numbers of
objects in individual groups are listed in Table 3.1.

diameters, we calculated the average value of a/b for asteroids in DAMIT (de-
rived from the principal moments of the inertia tensor). The average value is
a/bDAMIT = 1.47 ± 0.25, however, the sample of asteroids from DAMIT with
D < 8 km is probably strongly biased, containing preferentially more elongated
asteroids, for which it is easier to find a solution of the lightcurve inversion. In
Chap. 4, we also analyze the Pan-STARRS data using a different method and
compare the results with findings of McNeill et al. (2016).

We also checked our result that larger asteroids are more often spheroidal,
against the asteroids in DAMIT. For D > 50 km, we obtained the average value
of a/bDAMIT = 1.23± 0.13 (our model gives a/b = 1.29± 0.17). We can conclude
that the dependence of a/b on diameter is real, but our model gives higher values
of a/b for asteroids with D < 25 km. Considering the dispersion of values σL in
Fig. 3.5, this could be because we underestimated data noise for smaller and less
bright asteroids.

Different parts of the main belt. Next, we constructed distributions of a/b
for asteroids with different inclinations of orbits. Since the previously revealed
dependence on the diameter can influence also this comparison, we used only
asteroids with D < 20 km. The differences between resulting a/b distributions
are not so pronounced as when we studied the dependence on diameter, and they
are comparable with the uncertainties of a/b.

We also studied distributions of a/b for asteroids with different semimajor
axes, specifically inner, middle, pristine, and outer belt. The differences between
distributions of a/b are not significant though, as they are again comparable with
the uncertainties in a/b.

Dynamical families. Regarding the comparison for dynamical families and
their backgrounds, we used only asteroids with D < 20 km. We did not found any
family to be significantly different from its background. Neither the comparison
for families with each other show any differences larger than uncertainties of a/b.
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Figure 3.33: Distributions of a/b for some selected dynamical families.
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Figure 3.34: Distributions of a/b for two main taxonomic complexes S (black
line) and C (red line).

Szabó and Kiss (2008) derived distributions of a/b for eight asteroids families
using data from the Sloan Digital Sky Survey (SDSS). Their distributions are
surprisingly different from ours; they are often bimodal (Figures 4, 5, 6 therein)
and have a maximum for a/b ∼ 1.2 (recall our distributions have maximum
around 1.6). They also suggested a possible dependence on the age of families (old
families should contain more spheroidal members), but we do not observe that
behaviour in our distributions. We believe they used a questionable assumption
that could influence the results: a fixed value of spin axis latitude for all asteroids
(they tested β = 50◦ and also a simplified case when the rotational axes of all
asteroids are perpendicular to the line of sight).

Taxonomic classes. Finally, we compared distributions of a/b of the two
largest taxonomic classes C and S. The result of the KS test, QKS = 0.0018, sug-
gests that these two populations are not significantly different since as explained
above (Sec. 3.4.2), we require QKS < 10−4 to decide otherwise. The distributions
shown in Fig. 3.34 confirm this interpretation.
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asteroids. Right: The previous distributions summed into two groups.

a/b 1.0− 1.2 1.2− 1.4 1.4− 1.6 1.6− 1.8
N 1 294 4 476 22 782 27 515

a/b 1.8− 2.0 2.0− 2.2 2.2− 2.4 2.4− 2.6
N 7 744 2 609 1 020 458

Table 3.3: The number of asteroids N in asteroid populations with different
shape elongation a/b.

3.6.2 Dependence of distribution of λ on a/b

After studying distributions of spin axis longitudes λ and shape elongations a/b
separately, we then examined the dependence of λ on a/b. We divided asteroids
into eight groups according to their elongation: from a/b = 1.0 to 2.6, with the
width of each bin 0.2. For each group, we constructed a distribution of λ (see
Fig. 3.35 on the left and in the middle). We found that with increasing elongation,
the maximum of the distribution of λ is shifted towards lower values. Neverthe-
less, we have to be careful, because with increasing elongation, the number of
asteroids decreases and the group with a/b from 2.4 to 2.6 contains 458 objects
only (see Table 3.3). Therefore, we created only two subpopulations, first with
a/b from 1.0 to 1.8 containing in total 56 067 asteroids, the second from 1.8 to 2.6
containing 11 831 asteroids, which is sufficiently numerous sample. We calculated
the KS test and obtained almost zero probability (QKS < 10−16) that these two
λ distributions belong to the same parent distribution (see also Fig. 3.35 on the
right). This is another interesting result, for which we were not able to find an
explanation.
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4. Analysis of the photometric
data from the Pan-STARRS1
survey

In this Chapter, we focus on photometric data from Panoramic Survey Telescope
& Rapid Response System (Pan-STARRS). These data cannot be analyzed with
the model described in Chapter 3.1, because Pan-STARRS photometry does not
provide enough measurements covering long enough time intervals. Therefore, we
used a different model developed by Nortunen et al. (2017), which also enables us
to construct distributions of shape elongations b/a and ecliptical latitudes β of the
spin axis for selected asteroid populations. We should emphasize that this method
is not meant to invert the shape and spin characteristics of individual lightcurves;
the inversion works only on a population-scale, where we consider the shape and
spin distributions of a large population. The distributions are then compared
with the Latitudes and Elongations of Asteroid Distributions Estimated Rapidly
(LEADER) algorithm (Nortunen and Kaasalainen, 2017).

4.1 Description of the model

Similar as in Sec. 3.1, we approximate the shape of an asteroid with a simple
biaxial ellipsoid with a ≥ b = c = 1 and we describe the shape elongation by
the parameter 0 < b/a ≤ 1. Small b/a denotes an elongated body, and b/a = 1
denotes a sphere. This shape approximation is rough, but with a high number
of observations (∝ 103), it will portray statistical tendencies of a population
accurately. For completeness, we include all the values 0 < b/a ≤ 1 in our
grid, despite the fact that the proportion of highly elongated values b/a < 0.4 is
negligible, and most asteroids have b/a > 0.5. Thus, if the solved b/a distribution
contains an unusually high number of bodies with b/a < 0.4, it is usually an
indicator of some error in the solution, caused by noise and/or instabilities. Our
second parameter is the spin co-latitude β? of the spin axis. In our convention,
β? = 0 indicates that the spin direction is perpendicular to the ecliptic plane,
while β? = π/2 means the spin is in the ecliptic plane (this is opposite from the
ecliptical latitude β used in previous section).

As our observable we utilize the brightness variation η defined in Eq. 3.7. For
the lightcurve amplitude A we can write:

A =

√
1−

(
1√
8η

+
1

2

)−1
. (4.1)

Note that the amplitude is based on intensity, not on magnitudes. With the
amplitudes known, we can create their cumulative distribution function C(A).

To solve the joint distribution for elongation b/a and spin co-latitude β?, we
create a grid of bins ((b/a)i, β

?
j ) ∈ [0, 1] × [0, π/2], where i = 1, . . ., k and

j = 1, . . ., l. Our goal is to determine the proportion of each bin. The cumula-
tive distribution function (CDF) can be written as a linear combination of other
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functions:

C(A) =
∑
i,j

wijFij(A), (4.2)

where Fij(A) are monotonously increasing basis functions derived by Nortunen
et al. (2017):

Fij(A) =


0, A ≤ (b/a)i

π
2
− arccos

√
A2−(b/a)2i

sinβ?j

√
1−(b/a)2i

, (b/a)i < A < F((b/a)i, β
?
j )

π
2
, A ≥ F((b/a)i, β

?
j ),

(4.3)

where F((b/a)i, β
?
j ) =

√
sin2 β?j + (b/a)2i cos2 β?j . Each basis function Fij(A) de-

scribes the contribution made by objects in a given bin ((b/a)i, β
?
j ) to the CDF

C(A). The weights wij are the occupation numbers of each bin ((b/a)i, β
?
j ).

Eq. (4.2) can be written in an equivalent form,

Mw = C, (4.4)

where each column of the matrix M contains a basis function Fij(A), the vector
w contains the occupation numbers wij and the vector C contains the CDF C(A).
To solve the Eq. (4.4), we can use linear least squares methods in e.g. Matlab,
along with regularization and a positivity constraint that wij ≥ 0. With the
weights wij solved, we have the proportion of each bin ((b/a)i, β

?
j ).

Having the joint distribution for b/a and β?, we can compute the marginal
distribution functions (DFs) for both parameters fb/a and fβ? :

f(b/a)i =
l∑

j=1

wij, fβ?j =
k∑

i=1

wij. (4.5)

For the marginal DFs, we can compute the CDFs labeled as Fb/a and Fβ? . Typi-
cally, are goal is to compare CDFs of two populations, S1 and S2 (the CDFs are
denoted as Fb/a(S1), Fb/a(S2), Fβ?(S1) and Fβ?(S2)). To measure the statistical
difference between populations we use the measure

Db/a(S1, S2) = αk ‖Fb/a(S1)− Fb/a(S2)‖ k , (4.6)

Dβ?(S1, S2) = αk ‖Fβ?(S1)− Fβ?(S2)‖ k , (4.7)

where k = 1; 2;∞ and αk is a norm-based scaling factor: α1 = 1/4; α2 = 1
and α∞ = 2 (Nortunen et al., 2017). Each norm provides different kind of
information about the statistical differences of the populations. As a general rule,
two distributions can be considered significantly different if D & 0.2. However, to
obtain a better understanding of the statistical differences, a visual inspection of
DFs and CDFs is also recommended. The detailed description of the LEADER
software can be found in Nortunen and Kaasalainen (2017) and the software itself
is available in DAMIT database.
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4.2 Data description

The 1.8-meter Pan-STARRS1 survey telescope (Hodapp et al., 2004; Tonry et al.,
2012), build atop of Haleakala, Maui, started its 3-year science mission in May
2010. Photometric data were obtained in six optical and near-infrared filters
(g, r, i, z, y and w). Due to the distinct survey goals and patterns, most of
the asteroids were observed in a wide-band w-filter (∼ 400 − 700 nm). We used
the unpublished high-precision calibrated chip-stage photometry (Schlafly et al.,
2012) with photometric errors and selected detections of a good photometric
quality. Only PSF-like and untrailed detections were considered. Our subset
spanned from April 11, 2011 until May 19, 2012. In total, we had photometric
data for 348 210 asteroids with about 20 measurements for an asteroid on average.
The second highest number of measurements is in the i-band, where we have data
for 136 463 asteroids. Only the w-band data provided enough measurements for
a reasonable application of our model. We shortly discuss results from the i-filter
and compare them with results from the w-filter in Sect. 4.4.5.

The typical time interval between two measurements in the w-band filter is
∼17 minutes (see Fig. 4.1). However, not all the data were applicable to our
model. Our conditions on the data were following:

1. The time interval between measurements greater than 0.01 day (∼ 14 min-
utes). In the case of shorter interval the rotational period would not be
randomly sampled over one rotation of ∼hours, and in the case of longer
minimum interval we would lose a significant amount of data, as we can see
from Fig. 4.1.

2. Then, we limited the solar phase angle α to be ≤ 20◦. In the model we
assume this angle to be close to zero, however, in the data, there are not
enough measurements with α ∼ 0◦, therefore, we have to choose some
reasonable value (see also Fig. 4.1). As described in Nortunen et al. (2017)
(they used α ≤ 30◦) the error caused by this condition is negligible.

3. Finally, we required at least five measurements satisfying previous condi-
tions within 3 days to keep the geometry of observation sufficiently constant
(this is the same condition as in Nortunen et al., 2017).

It is possible that for the same asteroid we had two (or even more) sets of mea-
surements. In that case, each set was incorporated in the model.

4.3 Tests of the model

Before we compute the solution of the inverse problem from Eq. (4.4) for any
Pan-STARRS1 population, we should test if the method is reliable with the given
database. To do that, we first test our model using synthetic data. Then, with
the real data, we test how large population of asteroids is necessary to provide
stable results.
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Figure 4.1: Left: The histogram of time intervals between measurements in the
w-band filter from the Pan-STARRS1 survey. Right: The histogram of the solar
phase angle α.

4.3.1 Synthetic data

The synthetic data were created according to the procedure described in Nortunen
and Kaasalainen (2017). We chose a peak of the (b/a, β?) distribution. For each
asteroid in the considered population we chose a shape model from DAMIT, with
|b/aDAMIT−b/awanted| ≤ 0.075. The rotation period was chosen randomly between
3 and 12 hours from a uniform distribution (we did not use rotation periods
from DAMIT, as they could be biased). Next, we used the real Pan-STARRS1
geometries and times of observations and computed the synthetic brightness using
a combination of Lommel–Seeliger and Lambert scattering laws. To simulate
noise, we added a minor Gaussian perturbation 1 − 2%. Our aim was to find
how well the solution distribution computed from Eq. (4.4) coincides with the
known, synthetic distribution. For simplicity, we are interested in reconstructing
the highest peak of the joint (b/a, β?) distribution. The peak is defined as the bin
with the highest occupation numbers. Similar synthetic simulations were used
by Nortunen et al. (2017) to estimate the accuracy of the method for the WISE
database. They found systematic errors in the computed solution and apply
a posterior correction to the solution.

Number of bodies in a population. First, we create 50 synthetic popu-
lations, each containing N asteroids, where N = 100 to 5000 to test how the
accuracy of our method increases with a growing number of bodies. For each
population we randomly chose a single peak (actual (b/a, β?)) and plotted it to-
gether with the computed (b/a, β?) peak to see how well they coincide. The
results are shown in Fig. 4.2.

As we can see from the b/a plots (left columns), with growing number of aster-
oids in a population, the accuracy of the obtained b/a distribution is significantly
improved. For b/a . 0.4, there is always some overshoot and undershoot, but as
mentioned above, with the real data, we typically have b/a & 0.5. Thus, the peak
of the distribution can also be expected to be above 0.5. For N < 1000, there
is a slight overshoot even when b/a > 0.5, suggesting the asteroids are slightly
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Figure 4.2: Synthetic simulations showing how the accuracy of our method
improves with a growing number of asteroids (from 100 to 5000). The plots have
the real peak of the distribution plotted versus the computed peak. The black
dashed line of the form “y = x” denotes the ideal situation when the actual and
computed peaks are the same.
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Figure 4.3: Synthetic simulations using a fixed (b/a, β?) peak for a population
of 10 000 asteroids. Top left plot shows the actual (b/a, β?) distribution, top
right shows the computed (b/a, β?) distribution, and bottom shows the top right
solution with a deconvolution filter applied.

more spheroidal than what they actually are. Nevertheless, with a population of
more than 1000 objects, the computed b/a peak is very accurate for the realistic
shape elongations b/a > 0.5.

The situation is substantially worse for the β? distribution (see Fig. 4.2, right
columns). For a population with a number of asteroids N < 1000, no actual
information can be recovered since the solution is too noisy. The improvement of
the accuracy is noticeable for populations with 2 000 − 5 000 bodies. When the
β? peak is high (bodies in the ecliptic plane), the computed distribution also has
a high β? peak, but for a low β? peak, our model shifts the computed β? to the
middle values. To conclude, due to the low accuracy of the computed β?, we have
to be careful when interpreting results of β? distributions of asteroid populations.

We are also interested in the overall shape of the joint distribution. The
computed distribution is typically spread too much, especially in β? direction,
and has a tail towards the spin directions in the ecliptic plane. To correct this
error, we may apply a deconvolution filter to the computed distribution, i.e., we
reduce the occupation numbers of bins when moving further away from the peak.
A similar method was used in Nortunen et al. (2017). In Fig. 4.3, we plotted an
example of a typical solution and the effects of deconvolution, when we reduced
the spreading of the solved distribution, but did not shift the position of the
(b/a, β?) peak. The shown results are from the simulation with a population of
10 000 asteroids with fixed (b/a, β?) peak and with the geometries from Pan-
STARRS1 database.

We emphasize that the reliability of this method is strongly dependent on the
used asteroid database and it should never be used as a “black box” for a database.
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Figure 4.4: Synthetic simulations showing the accuracy of our method for differ-
ent values of rotation period P . The black dashed line denotes the ideal situation.

For each database we should test the validity using synthetic simulations to es-
timate the error, since the noise level and noise distribution in the database is
rarely known, For example, Nortunen and Kaasalainen (2017) performed similar
synthetic simulations for WISE database and found that in comparison with the
synthetic simulations with Pan-STARRS1 database, the results are considerably
different.

The influence of the rotation period. Next, we studied how accurately we
are able to reproduce the known (b/a, β?) distribution when we create synthetic
data by using different rotation periods P . We chose the following intervals of P :
(i) 3 − 12 hours; (ii) 12 − 24 hours; and (iii) 24 − 96 hours. The synthetic
populations contained 2 000 asteroids each. The results are plotted in Fig. 4.4.
Considering the b/a distribution, for P < 12 h our method provides reliable re-
sults. For P > 12 h the solution prefers values of b/a ∼ 1 (spheroidal bodies) and
moreover, the solution becomes unstable for b/a < 0.6. As to the β? distribution,
for 3 < P < 12 h we can notice a correlation between actual and computed β?,
but for P > 12 h, the β? distribution is unconstrained.

The fact, that our computed distributions of b/a for slow rotators (P > 12 h)
peak at b/a ∼ 1 is probably due to the time distribution of Pan-STARRS1 mea-
surements. For most asteroids, data were obtained during a single night, i.e., few
hours. If the real P is much longer, the data cover only a small fraction of the
full lightcurve (showing the time evolution of brightness during the whole P ).
The changes of brightness are thus small and our model interprets them as be-
longing to a spheroidal asteroid. If we construct the distribution of P from the
LCDB database for the asteroid included in Pan-STARRS1 database we found
that most of the asteroids have P . 15 h. Nevertheless, we have to mention that
the sample of objects in the LCDB database is biased and the number of slow
rotators is underestimated since it is observationally difficult to determine long
periods (Marciniak et al., 2015; Szabó et al., 2016).

The influence of the orbit inclination. Finally, using the synthetic data we
tested the influence of the orbit inclination sin I on our solution since in the model
we assume sin I = 0. When creating the synthetic data, we used Pan-STARRS1
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Figure 4.6: Synthetic simulations showing the accuracy of our method for dif-
ferent values of orbital inclination sin I. The black dashed line denotes the ideal
situation. There is no significant difference between populations with small and
high inclinations.

geometries of 2 000 asteroids with sin I ≤ 0.2, i.e., first population, and 2 000
asteroids with sin I > 0.2, i.e., second population. The resulting distributions
of b/a and β are shown in Fig. 4.6. We can see that the differences between
populations with small and high inclinations of orbits. For b/a, the computed
peak corresponds with the actual peak, but for β?, we can notice the same problem
as in Fig. 4.2, the model shifts the peak to middle values.

4.3.2 Test on the number of asteroids in a population with
real data

Using the real photometric data from Pan-STARRS1, we tested how many as-
teroids have to be in a studied population to obtain reliable results, because
typically we compare populations that contain different numbers of asteroids.
We performed the following test: We used data for the Flora family and we ran-
domly chose 100 of its members and ran our model ten times. We obtained ten
distributions of b/a and of β? from which we calculated one mean distribution

58



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1

D
F

 o
f 
b
/a

b/a

100

200

300

500

700

1000

1300

1500

1700

2000

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

D
F

 o
f 

β
*

sinβ
*

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f 
b
/a

b/a

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 o

f 
β

*

sinβ
*

Figure 4.7: Distributions of b/a and β? for Flora family constructed for growing
number of asteroids that were included (from 100 to 2000).

for b/a and one for β?. We repeated this for a sample of 200 randomly chosen
asteroids, then 300, 400 etc., up to the sample of 2000 asteroids. The selected
mean distributions of these subpopulations of Flora family are shown in Fig. 4.7.
For the distribution of b/a we can see that the results are stable from ∼ 700 aster-
oids in the subpopulation. However, for β? the results are much more unstable,
the distributions are clearly different even for populations with > 1000 asteroids.
With growing number of bodies the peak of β? distribution is higher and the
number of asteroids with β? ∼ π/2 decreases.

4.4 Distributions of shape elongations a/b

In this section, we will construct the distributions of shape elongation b/a for
various subpopulations of main-belt asteroids. Similarly as in Sec. 3.6.1 we will
focus on asteroids with different sizes, dynamical families, taxonomic classes and
subpopulations of asteroids located in different parts of the main belt. To compare
the distributions, we calculated Db/a and Dβ? according the Eq. (4.6) and (4.7).
The bins in the distributions of b/a and β? are chosen randomly, hence, for each
two subpopulations that were compared, we processed ten runs and obtained 10
values of Db/a and Dβ? , from which we calculated the mean values. For the
distribution of b/a we chose 14 bins from 0 to 1, however, because the shape
elongation greater than 0.25 is improbable, there was only one bin from 0 to 0.25,
then one bin from 0.25 to 0.4 and 12 bins from 0.4 to 1. For the distribution
of β? we chose 20 bins from 0 to π/2, specifically, 15 bins for β? > 43.4◦ and
then always one bin in following intervals: 37.2◦− 43.4◦, 31◦− 37.2◦, 24.7◦− 31◦,
18.5◦ − 24.7◦ and 0◦ − 18.5◦ to consider that the distribution of pole co-latitudes
is uniform in sin β?.
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Figure 4.8: DFs and CDFs of b/a and β? for asteroids with 12 < D < 15 km
(red lines), 15 < D < 25 (blue lines) and D > 25 km (green lines).

4.4.1 Asteroids with different diameters

First, we focused on groups of asteroids with different diameters D. We divided
asteroids into seven groups: with D < 3 km; 3 − 6 km; 6 − 9 km; 9 − 12 km;
12 − 15 km; 15 − 25 km; and D > 25 km; and compared them with each other.
For D < 15 km we have in all five groups more than 1200 asteroids, however,
there are only 990 asteroids with 15 < D < 25 km and only 223 bodies in the last
group (D > 25 km), which is not enough for a reliable result. The distributions for
three groups with the largest D are shown in Fig. 4.8. Although, it is in agreement
with the findings from Sec. 3.6.1 that the asteroids larger than D > 25 km are
more often spheroidal, in our case it might be just an effect of the low number of
asteroids in the last subpopulation.

The mean values of Db/a for distributions of b/a for the three subpopulations
with largest diameters are listed in Table 4.1. The distributions of b/a for groups
of asteroids with D < 15 km are not statistically different from the group of
asteroids with 15 < D < 25 km and have a maximum for b/a ∼ 0.8. The average
axial ratio b/a from Pan-STARRS1 survey was also determined by McNeill et al.
(2016). For asteroids with D < 8 km they found the average b/a to be 0.85, which
is a little more spheroidal than our result. Our results from Sec. 3.6.1 showed that
the maximum of distribution of b/a for D < 25 km is at ∼ 0.63, i.e., asteroids are
more elongated, nevertheless, as mentioned above, the previous results could be
influenced by the underestimated data noise, which causes shape estimates to be
more elongated. Finally, we can compare our results with the work of Nortunen
et al. (2017) based on WISE data: the maxima of distributions of b/a for asteroids
smaller than 25 km are ∼ 0.5, for the large object (D > 50 km), the maximum
is for b/a ∼ 0.7, i.e., they determined larger asteroid elongations than what was
found from Lowell photometry and Pan-STARRS1 data.
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populations Db/a(L
1) Db/a(L

2) Db/a(L
∞)

D = 15− 25 km; > 25 km 0.164 0.269 0.351
D = 12− 15 km; 15− 25 km 0.091 0.146 0.189

P = 0− 4 h; 4− 8 h 0.369 0.537 0.573
P = 0− 4 h; 8− 15 h 0.107 0.163 0.204
P = 4− 8 h; 8− 15 h 0.450 0.638 0.642

Flora; background 0.087 0.159 0.244
Massalia; background 0.294 0.462 0.554

Nysa Polana; background 0.140 0.259 0.399
Vesta; background 0.068 0.114 0.170

Phocaea; background 0.175 0.274 0.367
Eunomia; background 0.079 0.123 0.176
Gefion; background 0.132 0.203 0.270
Maria; background 0.078 0.129 0.186

Koronis; background 0.142 0.244 0.367
Eos; background 0.084 0.142 0.208

Hygiea; background 0.098 0.163 0.218
Themis; background 0.134 0.243 0.342
Alauda; background 0.144 0.219 0.250

C class; S class 0.081 0.129 0.174
Massalia; backgro1und (filter i) 0.273 0.415 0.495
Phocaea; background (filter i) 0.212 0.291 0.333

filter w; filter i for Nysa Polana 0.095 0.160 0.220

Table 4.1: The parameter Db/a for selected pairs of populations that were com-
pared. The given values are the mean values from ten runs of our model.
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Figure 4.9: Left: Cumulative distributions of absolute value of change in mag-
nitude |∆mag| for groups of asteroids with different sizes. Right: Cumulative
distributions of η for groups of asteroids with different sizes.

We also tried to reconstruct the cumulative distributions of absolute rate of
change in magnitude from work McNeill et al. (2016), who constructed distribu-
tions for asteroids with 1 < D < 8 km and divided them into groups 1 − 2 km,
2 − 3 km etc. to 7 − 8 km. They found that with decreasing diameter, the dis-
tributions show smaller change in magnitude. However, we did not reveal any
differences between individual distributions (see Fig. 4.9 on the left). The possible
explanation of this disagreement is that McNeill et al. (2016) used only measure-
ments with magnitude uncertainty ≤ 0.02, however, we used all measurements,
our only conditions were (i) the solar phase angle α < 10◦ (this is the same condi-
tion as in McNeill et al., 2016) and (ii) pairs of measurements separated by time
interval 10 min < ∆t < 20 min. We constructed also cumulative distributions
of brightness variation η to see if there will be any differences, but as shown in
Fig. 4.9 on the right, the η distributions for groups of asteroids with different
diameters are almost the same.

Then we focused on the distributions of β?. As we can see in Fig. 4.8 on
the right, they look different from our previous results or e.g., from Hanuš et al.
(2011), where β? is clustered around 0 due to the YORP effect, that shifts β? near
the pole of the ecliptic. Nevertheless, as explained in Sec. 4.3.1 or 4.3.2, we found
that the distribution of β? is considerably influenced by the number of asteroids
in given subpopulation and becomes flatter with decreasing number of asteroids.
In Fig. 4.2 we can also see that the model tends to shift the peak to the middle
values. The results on β? are thus not reliable and in the following tests, we will
only focus on the distributions of b/a.

Because the number of asteroids with D > 25 km in data from Pan-STARRS1
is insignificant in comparison to the number of smaller asteroids (less than 1%),
this dependence on diameter does not influence the results of the following tests.

4.4.2 Different rotation periods

According to their rotation periods P provided by the LCDB database, we divided
asteroids into three groups. We chose different intervals than in Sec. 3.4.2 to
ensure that all groups are populous enough for stable results. The individual
groups are the following: (i) P = 0− 4 h (1081 bodies); (ii) 4− 8 h (1967 bodies);
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Figure 4.11: Left: Distributions of lightcurves amplitudes from the LCDB
database for different rotation periods P . Right: Synthetic simulations showing
the accuracy of our method for two different intervals of rotation period P .

and (iii) 8 − 15 h (1071 bodies). We excluded asteroids with P > 15 h since
our simulations with synthetic data showed the results are not reliable (see also
Fig. 4.4).

We compared populations with each other and plotted their distributions of
b/a in Fig. 4.10. We can see that the fastest rotators (P = 0−4 h) are on average
more spheroidal (peak at b/a ∼ 0.75) than the population with P = 4−8 h (peak
at b/a ∼ 0.6), but their b/a distribution is not different from the third population
with P = 8− 15 h. The mean values of Db/a are listed in Table 4.1.

The critical rotation rate is, for the same density, dependent on the elongation
(Pravec and Harris, 2000). The spheroidal bodies are thus able to rotate faster
that the elongated ones, which is in accordance with our results for the first two
populations. However, we were not able to explain why the third population, with
P = 8− 15 h, should contain more spheroidal asteroids than the population with
P = 4−8 h. Therefore, using the LCDB database we constructed distributions of
lightcurves amplitudes for the three above mentioned populations (see Fig. 4.11).
Higher amplitudes correspond with larger elongations. The distributions of the
first two groups are in accordance with the results from Pan-STARRS1 data, but
for the third population (P = 8 − 15 h), we obtained similar distribution as for
the population with P = 4− 8 h.
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To explain this discrepancy we performed another test with synthetic data.
We used the same setup as in Sec. 4.3.1, where we studied the influence of the
rotation period on the accuracy of the solution, but we chose populations with
P = 4 − 8 h and P = 8 − 15 h. The resulting distributions of b/a are shown in
Fig. 4.11, right panel. We can see that for both populations, our model is not
able to correctly reproduce peak b/a . 0.6, nevertheless such elongation peak is
uncommon, most of the asteroids have b/a > 0.6. Considering 0.8 > b/a > 0.6,
for the population with P = 8−15 h, our model provides slightly more spheroidal
objects (b/a ∼ b/aactual+0.1) and for the population with P = 4−8 h, it provides
slightly more elongated objects (b/a ∼ b/aactual−0.05). We can conclude that the
difference between b/a distributions for these two populations (shown in Fig. 4.10)
is due to the method bias that shifts their b/a values ∼ 0.15 apart.

By this analysis we have learned that our distributions of b/a for other asteroid
populations can be strongly influenced by the appropriate period distributions.
Unfortunately, our model does not provide the rotation period P and the LCDB
database contains P for only ∼ 14 000 asteroids. That sample, divided into in-
dividual populations, is not large enough for a statistical purpose. Nevertheless,
we noticed that P could be formally calculated directly from photometric data
if there are many measurements for an asteroid and if they are appropriately
distributed in time. More precisely, we need pairs of measurements close in time
and also a sufficient number of such pairs.

As described in Nortunen et al. (2017), for the brightness L of an biaxial
ellipsoid we can write (assuming b = c = 1)

L2 = 1 + ((b/a)2 − 1) sin2 θ cos2 φ (4.8)

where θ denotes the aspect angle and φ the rotational angle. The mean quadratic
brightness over one rotational period is then

〈L2〉 =
1

2π

∫ 2π

0

L2dφ = 1 +
1

2
sin2θ

(
b2

a2
− 1

)
, (4.9)

and the mean value of time derivative of L2 is〈∣∣∣∣dL2

dt

∣∣∣∣〉 =
4

P

(
1− b2

a2

)
sin2 θ . (4.10)

For the variation of brightness defined by Eq. (3.7) we can write

η =
1√
8

(
1

sin2 θ(1− b2/a2)
− 1

2

)−1
(4.11)

Combining Eqs. (4.9), (4.10) and (4.11) we can derive the relation for the
rotational period

P = 8
√

2η
〈L2〉
〈|dL2

dt
|〉
. (4.12)

Notice, that to calculate the period we need only mean brightness, time derivative
of brightness and variation of brightness η, but for each asteroid it requires a lot
of measurements. The derivative dL2

dt
can be approximately calculated from pairs

of measurements close in time, but there is a lower limit due to the accuracy of
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data. We chose dt > 10 min to distinguish the change of brightness from data
noise.

To verify, if this relation can be used in practice, we performed a test on
synthetic data created as follows: using the DAMIT models, the Hapke scattering
model with randomly chosen parameters (as in Sec. 3.2) and randomly chosen
rotational period P (uniformly distributed from 2 to 50 h), we calculated synthetic
brightness that we assigned to ∼1000 asteroids observed with Pan-STARRS1
(we left the geometry of observations unchanged), for which we had the largest
number of measurements. From this new synthetic brightnesses we can calculate
the period P according the Eq. (4.12) that should be the same as the synthetic P .

The derivative 〈|dL2/dt|〉 was calculated from pairs of measurement separated
by time interval 10 < ∆t < 20 min and we required at least 12 pairs (to calculate
the mean value) within 5 days. The variation η as well as the mean brightness
〈L2〉 were also calculated within 5 days. We tested synthetic data without any
noise and also data with Gaussian noise of 2%. We compared the calculated
P with the synthetic by computing the correlation coefficient: data with noise
show no correlation (the coefficient is 0.19) and as we can see in Fig. 4.12 (blue
points), there is a strong preference for low values of P . Interestingly enough, the
bias is systematic and amounts to an underestimation factor of about 0.5 for the
point fan. Apparently noise systematically increases the slope average from the
pairwise slope estimates. The situation for data without noise is slightly better
(coefficient 0.30) and if we consider only periods from interval 2 to 30 hours, the
correlation coefficient is 0.65 (see also Fig. 4.12). For periods under ten hours,
the points are even more tightly clustered near the x = y correlation line.

The possible reason for this bad correlation could be the insufficient number
of measurements from which the mean values are calculated. Therefore, to each
measurement we added two another, one 0.01 d (14.4 minutes) earlier and the
second 0.01 d later. In total, we had three times more measurements for each
asteroid. However, the resulting P were not significantly different from the pre-
vious test, in the interval of P from 2 to 30 hours, the correlation coefficient is
0.60.

We also tested the relation (4.12) on real data from Pan-STARRS1 survey,
however, there were only few asteroids for which we had required number of
measurements (as described above) and at the same time also the information
about the real rotational period (from LCDB). For these bodies we did not obtain
a good agreement between the estimated and the real periods. Apparently the
use of the period estimate Eq. (4.12) requires a large number of well-distributed
pairs of measurements over a rotation cycle and a low number of pairs exacerbates
the effects of noise. Estimates based on the derivative of a function are usually
considerably more unstable than those based on the function itself. This approach
is thus not applicable in practice and we are not able to correct b/a distributions
of other asteroid populations to have the same P distributions.

4.4.3 Dynamical families

Next, we compare distributions of dynamical families with their background
formed by asteroids from the same part of the main belt as the family (inner,
middle, pristine, outer), which do not belong to any other family. We focused
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Figure 4.12: The comparison of calculated and synthetic rotational period P .
The red points denote synthetic data without noise, the blue points synthetic
data with noise 0.02.

on 13 most populous families: Vesta, Massalia, Flora, Nysa Polana and Phocaea
in the inner belt; Eunomia, Gefion and Maria in the middle belt; Koronis in the
pristine belt; Themis, Eos, Hygiea and Alauda in the outer belt; see also Fig. 3.19.
The typical number of asteroids (for which we have enough data) in a family is
few thousands, for Vesta, Flora and Nysa Polana it is slightly more than ten
thousands and for Phocaea and Alauda it is less than 1000 (the exact numbers
are in Table 4.2). Unlike in Sec. 3.6.1, where we did not reveal any differences
among families, we found that Massalia has a significantly different distribution of
b/a from its background, containing more elongated asteroids. Distributions are
shown in Fig. 4.13 on the left. Significantly different are also cumulative distribu-
tions of brightness variation η of Massalia and its background, which are shown
in Fig. 4.14 on the left. Unfortunately, we cannot compare our distribution of b/a
for Massalia with the distribution from Nortunen et al. (2017) based on WISE
data, because their sample contained insufficient number of bodies. The mean
values of Db/a for all families are listed in Table 4.1. The second largest differ-
ence between distribution of b/a is for the Phocaea family and its background
(see Fig. 4.13 on the right), nevertheless the value Db/a(L

1) = 0.175 is not high
enough for a definite answer. We should note than for Phocaea we have only data
for 812 asteroids, however, the small number of asteroids causes the population
to be more spheroidal and, as we can see in Fig. 4.13 on the right, Phocaea, in
comparison to its background, contains more elongated objects.

We have to remind that the difference between Massalia family and its back-
ground can be due to the different period distributions. To test this possibility we
used the LCDB database and constructed distributions of P for Massalia and its
background (see Fig. 4.15). Before interpreting the results we have to emphasize
that the shown distribution of Massalia contains only 100 bodies and 420 bodies
represent its background, which is not enough for a solid conclusion. Neverthe-
less, we can see that Massalia really contains less objects with P = 0 − 4 h and
more with P = 4 − 8 h than its background, which is in accordance with the
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Figure 4.13: Left: DFs and CDFs of b/a for Massalia family (blue lines) and
its background (red lines). Right: The same for Phocaea family.

family members being more elongated (compare with Fig. 4.10). We do not have
enough periods determined for members of Phocaea to perform such test as for
Massalia.

4.4.4 Taxonomic classes and different parts of the main
belt

We also compared the distributions of b/a of the two most populous taxonomic
classes: S that dominates in the inner mail belt, and C that dominates in the
middle and outer belt. For both classes we had data for ∼10 000 asteroids from
the SDSS-based Asteroid Taxonomy. We did not find these two groups to have
different distributions of the shape elongation b/a.
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family in filter w and filter i.
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family Nw backgroundw Ni backgroundi

Flora 11 291 11 029 4135 5316
Massalia 4267 11 029 1032 5316

Nysa Polana 14 741 11 029 4675 5316
Vesta 11 895 11 029 4863 5316

Phocaea 812 11 029 577 5316
Eunomia 4126 12 069 2247 6728
Gefion 2629 12 069 1203 6728
Maria 2203 12 069 1243 6728

Koronis 4845 1272 1881 775
Eos 8237 6665 4272 4172

Hygiea 4191 6665 1584 4172
Themis 4181 6665 1588 4172
Alauda 649 6665 489 4172

Table 4.2: The number of asteroids in individual families and corresponding
backgrounds for which we have data from Pan-STARRS1 survey in filters w and i.
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Figure 4.16: The same as in Fig. 4.13, but in the i-filter.

Finally, we compared groups of asteroids with different semimajor axes (inner,
middle, pristine, outer) and with different inclinations of orbit. None of the
subpopulations is significantly different from others.

4.4.5 Comparison of results from filters w and i

We also analyzed Pan-STARRS1 data in the i-filter (∼ 700-800 nm) (Tonry et al.,
2012) and compared the results with the w-filter. We had data for 136 463 aster-
oids and on average, there were ∼10 measurements for one asteroid. We focused
only on taxonomic classes and dynamical families. There were not enough aster-
oids to study the dependence of the elongation of asteroids on the diameter (only
few asteroids were in the two subpopulations with the largest D).

The number of asteroids in subpopulations containing the taxonomic class S
was 6349 and for the taxonomic class C 5813. As in the w-filter, the difference
between these two groups is insignificant. Then we focused on dynamical fami-
lies. As in the w-filter, we found that Massalia family has a significantly different
distribution of b/a from its background. Moreover, also the result for Phocaea
(Db/a(L

1) = 0.212) suggests that this family could have a different distribution
of b/a from its background. However, Fig. 4.16 does not show a significant dif-
ference.

To compare results from the filters w and i directly, we constructed distribu-
tions of b/a for some families in both filters and calculated Db/a. We did not find
any significant differences between filters. As an example, distributions of Nysa
Polana are shown in Fig. 4.17. We also constructed cumulative distributions of
the brightness variation η for some families in both filters to confirm that there
are no differences between filters before the inversion.
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Conclusions

The aim of this thesis was to study physical parameters of asteroids, specifically
the distributions of position of the spin axes and of shape elongations. We an-
alyzed two different datasets using two different methods, each suitable for the
specific time distribution of photometric measurements.

Lowell Observatory database. Assuming a triaxial shape model, we devel-
oped a new method for determination of the direction of spin axis and elongation
of asteroids, which can be used for sparse photometric data covering several ap-
paritions. By testing on synthetic data, we found that our resulting distributions
of ecliptical latitudes β have to be divided by the bias function. Our model has
also few limitations: (i) it provides λ only in the interval (0◦, 180◦), (ii) instead
pole latitude, it provides only its absolute value and (iii) the determined shape
elongation of asteroids could be a little larger than the real one (the determina-
tion is sensitive on data noise, which in our case can be underestimated). Using
the bootstrap method we estimated the uncertainties in λ as ' 30◦, in β as 16◦

and in a/b as 0.18. These uncertainties are large for individual bodies, but for
statistical approach, such accuracy is sufficient. We then applied our method to
69 053 main belt asteroids for which a suitably rich and good quality set of obser-
vations were obtained from the Lowell Observatory database. The main results
are as follows:

1. The distribution of λ is nonuniform, with an excess of asteroids with λ values
between 60◦ and 100◦. Similarly, there is a deficiency of asteroids with
λ values between 130◦ and 160◦. By testing on DAMIT models, we show
that this nonuniformity is for both prograde and retrograde rotators and
that there is not difference for 0◦ < λ < 180◦ and 180◦ < λ < 360◦.

2. Curiously, our tests revealed a correlation of the nonuniformity in λ with
orbital inclination: asteroids with very low-inclination orbits (sin I ≤ 0.04)
show the effect more significantly than asteroids with higher inclination
orbits.

3. We constructed distributions of the absolute value β for asteroids with
different sizes and we confirmed previously reported results that asteroids
with size D ≤ 25 km have their pole latitude tightly clustered about the
poles of ecliptic. This is due to the YORP effect that makes the pole latitude
to approach the extreme values asymptotically.

4. When studying the λ distribution for different intervals of rotation period P ,
we revealed that while for P . 10 h the distribution follows the pattern of
the whole asteroid population, for P & 10 h the distribution is significantly
flatter.

5. We also analyzed our results for populations in different asteroid fami-
lies. As to the λ distribution, they mainly derive from their inclination
value of the aforementioned inclination dependence. For instance, the low-
inclination families such as Massalia or Themis have the strongest nonuni-
formity of the λ distribution in our results. Among distributions of a/b
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of families, we did not find any significantly different family from others.
When studying distributions of β, we found that Gefion in the middle belt
contains significantly more asteroids with β > 70◦ than population of bod-
ies in corresponding interval of inclinations and than population of bodies
in the middle belt.

6. We also found that small main belt asteroids (D ≤ 25 km) are more elon-
gated, with a median of ratio a/b ' 1.6, compared to the large asteroids
(D ≥ 50 km), which have a median of ratio a/b ' 1.3.

7. Finally, we found that the distribution of λ is dependent on the elongation
a/b: with increasing elongation, the maximum of λ distribution shifts to
lower values.

We confirmed the previous unexpected result of Bowell et al. (2014), who
found the nonuniformity in distribution of ecliptic longitude of spin axes of the
main belt asteroids. We tested various hypotheses of its origin, but we had
to reject most of them, proving that the proposed processes would not lead to
a significant enough nonuniformity. A part of the solution of this problem could
be a geometric projection of the precessing axis, but it seems it cannot explain
the whole nonuniformity, unless there are some additional correlations between
the relevant quantities. Therefore, this result remains enigmatic and requires
further analysis. In particular, it would be very useful if more detailed methods
of spin state and shape inversion from astronomical data confirmed this result
and provided more details. Justifications of reliability of our method, by running
blind tests against synthetic populations of asteroids and limited datasets for
which complete models are already available, make our method a solid tool for
further studies. Our results are available online and can be used in independent
investigations of, e.g., asteroid families to constrain theoretical evolution models.
It would be also interesting to apply our model to more accurate photometric
data provided by Large Synoptic Survey Telescope (LSST).

Pan-STARRS1 survey. The previous method cannot be used when we have
only few points during a single apparition. For such data, Nortunen et al. (2017)
and Nortunen and Kaasalainen (2017) developed model that instead of individual
asteroids works with large asteroid populations and instead of the inversion of
lightcurves realizes inversion of distribution functions. Limitations of this model
are: (i) it does not provide the pole longitude and (ii) it provides only the com-
bined distribution of the β? of both ecliptic hemispheres. Moreover, by testing
on synthetic data we found that our model shifts the peak of the β? distribution
to the middle values and is strongly influenced by the number of objects in stud-
ied populations. For the distribution of b/a we found that the model provides
stable results for numbers of objects higher than ∼ 700. The test with synthetic
data also revealed that our model provides reliable results only for asteroids with
rotation periods P . 12 h. This is due to the time distribution of measurements
of Pan-STARRS1 survey and thus it is not a limitation of the method in general.
We analyzed mainly data in the wide w-band filter. The most populous asteroid
populations were studied also in the i-filter. The main results are as follows:
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1. Groups of asteroids with diameter D < 25 km do not have significantly
different distributions of b/a, the maximum of these distribution is for
b/a ' 0.8. The distribution for asteroids larger than 25 km suggests that
these objects are more spheroidal in comparison with the smaller ones, nev-
ertheless, the number of objects in this population is insufficient for a strong
result.

2. By comparing distributions of b/a for different intervals of rotation period P
we found, that the fastest rotators with P = 0 − 4 h are more spheroidal
(the maximum is for b/a ∼ 0.75) than the population with P = 4−8 h (the
maximum is for b/a ∼ 0.6).

3. We constructed distributions of b/a for 13 most populous dynamical fami-
lies. We revealed two families in the inner belt, Massalia and Phocaea, to be
significantly different from their background. Both families have members
that are more elongated than corresponding backgrounds. One possible ex-
planation is that such result is due to the dependence of shape elongation
on the rotation period.

4. By analyzing data in the i-filter we confirmed previous results and we did
not found any significant differences between populations studied in the
w-filter in comparison with the i-filter.
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Ďurech J., Grav T., Jedicke R., Denneau L., and Kaasalainen M. (2005). Asteroid
Models from the Pan-STARRS Photometry. Earth Moon and Planets, 97, 179–
187.
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Hanuš J., Delbo M., Aĺı-Lagoa V., Bolin B., Jedicke R., et al. (2017a). Spin states
of asteroids in the Eos collisional family. Icarus, in press.
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La Spina A., Paolicchi P., Kryszczyńska A., and Pravec P. (2004). Retrograde
spins of near-Earth asteroids from the Yarkovsky effect. Nature, 428, 400–401.

Li J.-Y., Helfenstein P., Buratti B., Takir D., and Clark B. E. (2015). Asteroid
Photometry. In Asteroids IV (Michel P., DeMeo F. E., and Bottke W. F.,
editors). pp. 129–150.

Lowry S. C., Fitzsimmons A., Pravec P., Vokrouhlický D., Boehnhardt H., et al.
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a b s t r a c t

In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals
are to test the scaling law of Benz and Asphaug (Benz, W., Asphaug, E. [1999]. Icarus, 142, 5–20) and
ascertain if it can be used for the whole belt. We want to find initial size–frequency distributions (SFDs)
for the considered six parts of the belt (inner, middle, ‘‘pristine’’, outer, Cybele zone, high-inclination
region) and to verify if the number of synthetic asteroid families created during the simulation matches
the number of observed families as well. We used new observational data from the WISE satellite
(Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with
a modified version of the Boulder code (Morbidelli, A., et al. [2009]. Icarus, 204, 558–573), where the
results of hydrodynamic (SPH) simulations of Durda et al. (Durda, D.D., et al. [2007]. Icarus, 498–516)
and Benavidez et al. (Benavidez, P.G., et al. [2012]. 219, 57–76) are included. Because material
characteristics can significantly affect breakups, we created two models — for monolithic asteroids and
for rubble-piles. To explain the observed SFDs in the size range D ¼ 1 to 10 km we have to also account
for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile asteroids
leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt
asteroids are rather monolithic. Our work may also serve as a motivation for further SPH simulations of
disruptions of smaller targets (with a parent body size of the order of 1 km).

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The collisional evolution of the main asteroid belt has been
studied for more than 60 years (Dohnanyi, 1969; Davis et al.,
1979 etc.). The first collisional model was created by Dohnanyi
(1969) and his important result was that a size–frequency distribu-
tion for a population of mutually colliding asteroids will reach an
equilibrium. If the cumulative distribution is described by a power
law, the corresponding slope (exponent) will be close to �2:5. An
overview of previous modeling of the main belt and subsequent
advances can be found in a relatively recent paper by Bottke
et al. (2005), so that we shall not repeat it here. Nevertheless, it
is worth to mention another development, which is an attempt
to merge a classical particle-in-a-box collisional model with
(parametrized) results of smooth-particle hydrodynamic (SPH)
codes as done in Morbidelli et al. (2009). We are going to use this
kind of method in this work.

Every collisional model should comply with two important con-
straints: (1) the size–frequency distribution (SFD) of main belt at

the end of a simulation must fit the observed SFD; (2) the number
of asteroid families created during this simulation must fit the
observed number of families. It is important to note, that the mod-
els were improved in the course of time not only due to the pro-
gress of technology or new methods but also thanks to an
increasing amount of observational data. In this work, we could
exploit new data obtained by the WISE satellite (Wide-field Infra-
red Survey Explorer; Masiero et al., 2011), specifically, diameters
and geometric albedos for 129,750 asteroids.

Moreover, several tens of asteroid families are observed in the
main belt as shown by many authors (Zappalà et al., 1995;
Nesvorný et al., 2005, 2010; Brož et al., 2013; Masiero et al.,
2013; Milani et al., 2013). The lists of collisional families are also
steadily improved, they become more complete and (luckily)
compatible with each other.

In order to fully exploit all new data, we created a new colli-
sional model in which we divided the whole main belt into six
parts (see Section 2 for a detailed discussion and Section 3 for
the description of observational data). Our aims are: (1) to check
the number of families in individual parts of the belt — we use
the list of families from Brož et al. (2013) (which includes also their
physical properties) with a few modifications; (2) to verify
whether a single scaling law (e.g. Benz and Asphaug, 1999) can

http://dx.doi.org/10.1016/j.icarus.2014.07.016
0019-1035/� 2014 Elsevier Inc. All rights reserved.
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be used to fit the whole asteroid belt, or it is necessary to use two
different scaling laws, e.g. one for the inner belt and second for the
outer belt; (3) and we also test a hypothesis, if the main belt is
mostly composed of monolithic or rubble-pile objects.

In this paper, we assume that all families observed today were
created in the last �4 Gyr (without any influence of the late heavy
bombardment dated approximately 4.2 to 3.85 Gyr ago).1 We thus
focus on an almost steady-state evolution of the main belt, without
any significant changes of collisional probabilities or dynamical
characteristics. This is different from the work of Bottke et al.
(2005). We must admit here that the assumption of the steady-state
evolution could be disputable, since Dell’Oro et al. (2001) showed
that the formation of big asteroid families may influence the impact
probability.

We model collisions with the statistical code called Boulder
(Morbidelli et al., 2009) that we slightly extended to account for
six populations of asteroids (Sections 5 and 6). As mentioned
above, the Boulder code incorporates the results of the SPH simu-
lations by Durda et al. (2007) for monolithic DPB ¼ 100 km parent
bodies, namely for the masses of the largest remnant and fragment
and an overall slope of fragment’s SFD. For asteroids larger or smal-
ler than DPB ¼ 100 km a scaling is used for sake of simplicity.

Material characteristics definitely have significant influence on
mutual collisions (e.g. Michel et al., 2011; Benavidez et al., 2012).
Therefore, we also run simulations with rubble-pile objects, which
are less firm (refer to Section 7). A set of simulations analogous to
Durda et al. (2007) for rubble-pile targets with DPB ¼ 100 km was
computed by Benavidez et al. (2012).

First, we try to explore the parameter space using a simplex
algorithm while we keep the scaling law fixed. Considering a large
number of free parameters and the stochasticity of the system, we
look only for some local minima of v2 and we do not expect to find
a statistically significant global minimum. Further possible
improvements and extensions of our model are discussed in Sec-
tions 8 and 9.

2. A definition of the six parts of the main belt

We divided the main belt into six parts (sub-populations)
according the synthetic orbital elements (the semimajor axis a
and the inclination I, Fig. 1). Five parts separated by major mean-
motion resonances with Jupiter are well-defined — if an asteroid
enters a resonance due to the Yarkovsky effect (Bottke et al.,
2006), its eccentricity increases and the asteroid becomes a near-
Earth object. Consequently, vast majority of large asteroids do
not cross the resonances2 and we do not account for resonance
crossing in our model. The sixth part is formed by asteroids with
high inclinations, sin Ip > 0:34. This value corresponds approxi-
mately to the position of the m6 secular resonance.

Namely, the individual parts are defined as follows:

1. inner belt – from a ¼ 2:1 to 2.5 AU (i.e. the resonance 3:1);
2. middle belt – from 2.5 to 2.823 AU (5:2);

3. ‘‘pristine’’ belt – from 2.823 to 2.956 AU (7:3; as explained in
Brož et al. (2013));

4. outer belt – from 2.956 to 3.28 AU (2:1);
5. Cybele zone – from 3.3 to 3.51 AU;
6. high-inclination region – sin I > 0:34.

For a and sin I we preferentially used the proper values from the
AstDyS catalog (Asteroids Dynamic Site; Knežević and Milani,
2003).3 For remaining asteroids, not included in AstDyS, we used
osculating orbital elements from the AstOrb catalog (The Asteroid
Orbital Elements Database).4

More precisely, we used proper values from AstDyS for 403,674
asteroids and osculating values from AstOrb for 132,102 not-yet-
numbered (rather small) asteroids, which is a minority. We thus
think that mixing of proper and osculating orbital elements cannot
affect the respective size–frequency distributions in a significant
way. Moreover, if we assign (erroneously) e.g. a high-inclination
asteroid to the outer main belt, then it is statistically likely that
another asteroid from the outer main belt may be assigned (erro-
neously) to the high-inclination region, so that overall the SFDs
remain almost the same.

3. Observed size–frequency distributions

To construct SFDs we used the observational data from the
WISE satellite (Masiero et al., 2011)5 — for 123,306 asteroids. Typ-
ical diameter and albedo relative uncertainties are �10% and �20%,
respectively (Mainzer et al., 2011), but since we used a statistical
approach (104 to 105 bodies), this should not present a problem.
For asteroids not included there we could exploit the AstOrb catalog
(i.e. data from IRAS; Tedesco et al., 2002) — for 451 bodies. For
remaining asteroids (412,019), we calculated their diameters accord-
ing the relation (Bowell et al., 1989)

D ¼ 100:5ð6:259�log pV Þ�0:4H; ð1Þ

where H denotes the absolute magnitude from the AstOrb catalog
and pV the (assumed) geometric albedo. We assigned albedos to
asteroids without a known diameter randomly, by a Monte-Carlo
method, from the distributions of albedos constructed according

Fig. 1. A definition of the six parts of the main asteroids belt according to the
semimajor axis a and the inclination I: inner, middle, ‘‘pristine’’, outer, Cybele zone
and high-inclination region. The numbers of objects in these parts are the
following: 177,756; 186,307; 23,132; 121,186; 1894 and 25,501, respectively.

1 This is an approach different from Brož et al. (2013), where (at most) 5 large
(DPB > 200 km) catastrophic disruptions were attributed to the LHB. Nevertheless,
there was a possibility (at a few-percent level) that all the families were created
without the LHB. So our assumptions here do not contradict Brož et al. (2013) and we
will indeed discuss a possibility that the number of post-LHB families is lower than
our ‘nominal’ value.

2 For very small asteroids (D K 10 m) we must be more careful. Nevertheless, if an
asteroid is able to cross the resonance between e.g. the pristine and the middle belt
(i.e. increasing the population of the middle belt) then another asteroid is able to
cross the resonance between the middle and the inner belt (decreasing the population
of the middle belt). The crossing of the resonances essentially corresponds to a longer
time scale of the dynamical decay, which we shall discuss in Section 8.

3 http://hamilton.dm.unipi.it/astdys/.
4 ftp://ftp.lowell.edu/pub/elgb/astorb.html.
5 http://wise2.ipac.caltech.edu/staff/bauer/NEOWISE_pass1/.
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to the WISE data. Differences in albedo distributions can influence
the resulting SFDs, therefore for each part of the main belt, we con-
structed a distribution of albedos separately.

We checked that the WISE distributions of albedos are (within a
few percent) in agreement with the distributions found by Tedesco
et al. (2005). The (minor) differences can be attributed for example
to a substantially larger sample (119,876 asteroids compared to
5983), which includes also a lot of asteroids with smaller sizes
(D K 10 km). The resulting observed SFDs are shown in Fig. 2. We
can see clearly that the individual SFDs differ significantly in terms
of slopes and total numbers of asteroids.

To verify a validity of this method, we perform the following test
(for the whole main belt). We assume a known set of diameters. We
then assign albedos randomly to the individual diameters according
to the distribution of WISE albedos. We calculate the values of the
absolute magnitudes H by the inversion of Eq. (1). Now, we try to
reconstruct the SFD from H and pV . The new ’’unknown‘‘ values of
diameters are computed according to Eq. (1) and for the values of
pV we test three following options: (1) a fixed albedo pV ¼ 0:15;
(2) the mean value pV ¼ 0:13 (derived from the distribution of WISE
albedos); (3) for H < 15 mag we used the known albedos, for other
bodies we assigned albedos by the Monte-Carlo method as above.
The known SFD and the three reconstructed SFDs are shown in Fig. 3.

The largest uncertainties of the reconstruction are given by the
method of assignment of geometric albedos, but we verified that
the third method is the best one and that these uncertainties
(Fig. 3) are much smaller than the differences between individual
SFDs (Fig. 2).

Another possible difficulty, especially for asteroids with diame-
ters D < 10 km, is the observational bias. In Fig. 2, we can see that
for sizes smaller than some Dlimit the total number of asteroids
remains constant. We also probably miss same asteroids with
Dlimit < D < 10 km. These objects are less bright than the reach of
current surveys: LINEAR (Stuart, 2001), Catalina,6 Spacewatch
(Bottke et al., 2002), or Pan-STARRS (Hodapp et al., 2004). Neverthe-
less, for D > 10 km we do not need to perform debiasing and neither
for smaller asteroids we do not account for the bias, because the
range of diameters D where we fit out model is limited (see Table 4).

4. Collisional probabilities and impact velocities

To model the collisional evolution of the main belt by the Boul-
der code we need to know the intrinsic probabilities pi of collisions
between individual parts and the mutual impact velocities v imp.
The values of pi and v imp were computed by the code written by
W.F. Bottke (Bottke and Greenberg, 1993; Greenberg, 1982). For
this calculation, we used only the osculating elements from the
AstOrb catalog.

We calculated pi’s and v imp’s between each pair of asteroids of
different populations. We used first 1000 asteroids from each pop-
ulation (first according to the catalog nomenclature). We checked
that this selection does not significantly influence the result. We
constructed the distributions of eccentricities and inclinations of
first 1000 objects from each region and we verified that they
approximately correspond with the distributions for the whole
population. We also tried a different selection criterion (last 1000
orbits), but this changes neither pi nor v imp values substantially.

From these sets of pi’s and v imp’s, we computed the mean values
pi and v imp (for v imp only if corresponding pi – 0). We checked that
the distributions are relatively close to the Gauss distribution and
the computations of the mean values are reasonable.

We found out that the individual pi and v imp differ significantly
(values from 0:35� 10�18 to 11:98� 10�18 km�2 yr�1 and from

2.22 to 10:09 km s�1) — see Table 1. The collision probability
decreases with an increasing difference between semimajor axis
of two asteroids (the lowest value is for the interaction between
the inner belt and the Cybele zone, while the highest for the inter-
actions inside the inner belt). The highest impact velocities are for
interactions between the high-inclination region and any other
population.

The uncertainties of pi are of the order 0:1� 10�18 km�2 yr�1

and for v imp about 0:1 km s�1. Values computed by Dahlgren
(1998), pi ¼ 3:1� 10�18 km�2 yr�1 and v imp ¼ 5:28 km s�1 (mean
values for the whole main belt), are in accordance with our results
as well as values computed by Dell’Oro and Paolicchi (1998) —
from 3.3 to 3:5� 10�18 km�2 yr�1 (depending on assumptions for
orbital angles distributions). However, it seems to be clear that
considering only a single value of pi and v imp for the whole main
belt would result in a systematic error of the model.

5. A construction of the model

In this section, we are going to describe free and fixed input
parameters of our model, the principle how we explore the param-
eter space and we also briefly describe the Boulder code.

The initial SFDs of the six parts of the main belt are described by
36 free parameters — six for every part: qa; qb; qc; d1; d2 and
nnorm. Parameter qa denotes the slope of the SFD for asteroids with
diameters D > d1; qb the slope between d1 and d2; qc the slope for
D < d2 (in other words, d1 and d2 are the diameters separating dif-
ferent power laws) and nnorm is the normalization of the SFD at d1,
i.e. the number of asteroids with D > d1 (see also Table 4).

We must also ‘‘manually’’ add biggest asteroids, which likely
stay untouched from their formation, to the input SFDs: (4) Vesta
with a diameter 468.3 km (according to AstOrb) in the inner belt,
(1) Ceres with a diameter 848.4 km (AstOrb) in the middle belt,
and (2) Pallas with a diameter 544 km (Masiero et al., 2011) in
the high-inclination region. These asteroids are too big and ‘‘soli-
tary’’ in the respective part of the SFD and consequently cannot
be described by the slope qa.

The list of fixed input parameters is as follows: collision proba-
bilities and impact velocities from Section 4; the scaling law
parameters according to Benz and Asphaug (1999); initial
(�4 Gyr) and final (0) time and the time step (10 Myr).
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Fig. 2. The observed cumulative size–frequency distributions Nð> DÞ of the six
parts of the main belt. We used the observational data from the WISE satellite
(Masiero et al., 2011) and the AstOrb catalog for their construction. For asteroids
which have no albedos in the WISE database, we assigned albedos by a Monte Carlo
method from the distribution of WISE albedos.

6 http://www.lpl.arizona.edu/css/.

360 H. Cibulková et al. / Icarus 241 (2014) 358–372



5.1. The scaling law

One of the input parameters is the scaling law described by a
parametric relation

QH

D ¼
1

qfact
ðQ 0ra þ BqrbÞ; ð2Þ

where r denotes the radius in cm, q the density in g/cm3, parame-
ters qfact; Q0 and B are the normalization parameters, a and b char-
acterize the slope of the corresponding power law. QH

D is the specific
impact energy required to disperse half of the total mass of a target.
A scaling law which is often used is that of Benz and Asphaug
(1999) (Fig. 4), which was derived on the basis of SPH simulations.
Parameters in Eq. (2), corresponding to Benz and Asphaug (1999),
are listed in Table 2.

In our simulations, we used three different scaling laws, one for
monolithic bodies and two for rubble-pile bodies (to be studied in
Section 7). Densities we assumed are within the ranges reported by
Carry (2012) for major taxonomical classes (C-complex 1.3 to 2.9 g/
cm3; S-complex 2 to 4 g/cm3; for X-types the interval is wide; see
Fig. 7 or Table 3 therein).

5.2. A definition of the v2 metric

To measure a match between our simulations and the observa-
tions we calculate v2 prescribed by the relation

v2 ¼
Xn

i¼1

ðsyni � obsiÞ2

r2
i

; ð3Þ

where syni denotes the synthetic data (i.e. results from Boulder sim-
ulations) and obsi denotes the observed data, ri is the uncertainty of
the corresponding obsi. The quantities syni and obsi are namely the
cumulative SFDs Nð> DÞ or the numbers of families Nfamilies. More
exactly, we calculate v2

sfd for the 96 points in the cumulative SFDs
of the six populations (we verified that this particular choice does
not influence our results) and we add v2

fam for the numbers of fam-
ilies in these populations.7

To minimize v2 we use a simplex numerical method (Press
et al., 1992). Another approach we could use is a genetic algorithm
which is not-so-prone to ‘‘fall’’ into a local minimum as simplex.

Nevertheless, we decided to rather explore the parameter space
in a more systematic/controlled way and we start the simplex
many times with (729) different initial conditions. We thus do
not rely on a single local minimum.

The v2 prescribed by Eq. (3) is clearly not a ‘‘classical’’ v2, but a
‘‘pseudo’’-v2, because we do not have a well-determined ri.8 Using
v2 we can only decide, if our model corresponds to the observations
within the prescribed uncertainties ri. Specifically, we used
ri ¼ 10%, obsi for the SFDs9 (similarly as Bottke et al. (2005)) and

ri ¼
ffiffiffiffiffiffiffiffi
obs
p

i for the families.
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Fig. 3. A test of three reconstructions of a ’’known‘‘ size–frequency distribution. Diameters were calculated according to Eq. (1) and for values of pV we try to use: (1)
pV ¼ 0:15 (blue line), (2) pV ¼ 0:13, i.e. the mean value from the distribution of WISE albedos (red line), and (3) we used albedos from WISE for H < 15 mag; for other bodies
we assigned albedos by a Monte-Carlo method according to the distribution of WISE albedos (green line). We can see that the third method is the best one. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
The computed intrinsic collisional probabilities pi and the mutual impact velocities
v imp (for v imp only if pi – 0) between objects belonging to the different parts of the
main belt. The uncertainties are of the order 0:1� 10�18 km�2 yr�1 for pi and
0:1 km s�1 for v imp.

Interacting populations pi ð10�18 km�2 yr�1Þ v imp ðkm s�1Þ

Inner–inner 11.98 4.34
Inner–middle 5.35 4.97
Inner–pristine 2.70 3.81
Inner–outer 1.38 4.66
Inner–Cybele 0.35 6.77
Inner–high Inc. 2.93 9.55
Middle–middle 4.91 5.18
Middle–pristine 4.67 3.96
Middle–outer 2.88 4.73
Middle–Cybele 1.04 5.33
Middle–high Inc. 2.68 8.84
Pristine–pristine 8.97 2.22
Pristine–outer 4.80 3.59
Pristine–Cybele 1.37 4.57
Pristine–high Inc. 2.45 7.93
Outer–outer 3.57 4.34
Outer–Cybele 2.27 4.45
Outer–high Inc. 1.81 8.04
Cybele–Cybele 2.58 4.39
Cybele–high Inc. 0.98 7.87
High Inc.–high Inc. 2.92 10.09

7 We should mention that more sophisticated techniques of assessing the
goodness-of-fit (based on bi-truncated Pareto distributions and maximum likelihood
techniques) exist, as pointed out by Cellino et al. (1991).

8 We cannot use a usual condition v2 � n or the probability function qðv2jnÞ to
asses a statistical significance of the match between the synthetic and observed data.

9 We prefer to use cumulative values Nð> DÞ instead of differential, even though
the bins are not independent of each other. The reason is more-or-less technical: the
Boulder code can create new bins (or merge existing bins) in the course of simulation
and this would create a numerical artefact in the v2 computation.
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We are aware that the observed Nfam values do not follow a
Poissonian distribution, and that was actually a motivation for us
to use a higher value of weighting for families wfam ¼ 10 (we mul-
tiply v2

fam by wfam), i.e. we effectively decreased the uncertainty of
Nfam in the v2 sum. The weighting also emphasizes families,
because six values of v2

fam would have only small influence on
the total v2. Unfortunately, there are still not enough and easily
comparable family identifications. Even though there are a number
of papers (Parker et al., 2008; Nesvorný, 2012; Masiero et al., 2013;
Carruba et al., 2013; Milani et al., 2013), they usually do not discuss
parent-body sizes of families.

If a collision between asteroids is not energetic enough (i.e. a
cratering event), then only a little of the mass of the target (parent
body) is dispersed to the space. In this case, the largest remaining
body is called the largest remnant. The second largest body, which
has a much lower mass, is called the largest fragment. If a collision
is catastrophic, the first two fragments have comparable masses
and in such a case, the largest body is called the largest fragment.

In our simulations, we focused on asteroid families with the
diameter of the parent body DPB � 100 km and the ratio of the larg-
est remnant/fragment to the parent body MLF=MPB < 0:5 only (i.e.
catastrophic disruptions), though the Boulder code treats also cra-
tering events, of course. For that sample we can be quite sure that
the observed sample is complete and not biased. This approach is
also consistent with the work of Bottke et al. (2005). The numbers
of observed families Nfam in individual parts are taken from Brož
et al. (2013), except for the inner belt, where two additional fami-
lies were found by Walsh et al. (2013) (i.e. three families in total,
see Table 3). Our synthetic families then simply correspond to indi-
vidual collisions between targets and projectiles — which are ener-
getic enough to catastrophically disrupt the target of given
minimum size (D P 100 km) — as computed by the Boulder code.

In order to avoid complicated computations of the observa-
tional bias we simply limit a range of the diameters Dmax to Dmin

where v2 is computed (see Table 4) and we admit a possibility that
v2 is slightly increased for D approaching Dmin. We estimated Dmax

and Dmin for each population separately from the observed SFDs
shown in Fig. 2.

5.3. The Boulder code

A collisional evolution of the size–frequency distributions is
modeled with the statistical code called Boulder (Morbidelli

et al., 2009), originally developed for studies of the formation of
planetary embryos. Our simulations were always running from 0
to 4 Gyr. The Boulder code operates with particles separated to
populations, which can differ in values of the intrinsic impact prob-
ability pi, mutual velocity v imp, in material characteristics, etc. The
populations are then characterized by their distribution of mass.
The total mass range is divided to logarithmic bins, whose width
and center evolve dynamically. The processes which are realized
in every time step are:

1. the total numbers of collisions among all populations and all
mass bins are calculated according to the mutual pi’s;

2. the mass of the largest remnant MLR and the largest fragment
MLF and the slope q of the SFD of fragments are determined
for each collision;

3. the largest remnant and all fragments are distributed to the
mass bins of the respective population;

4. it is also possible to prescribe a statistical decay of the popula-
tions by dynamical processes;

5. finally, the mass bins are redefined in order to have an optimal
resolution and an appropriate next time step Dt is chosen.

The relations for MLR; MLF and q, derived from the works of
Benz and Asphaug (1999) and Durda et al. (2007), are

MLR ¼ �1
2

Q

QH

D

� 1
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þ 1
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D ; ð4Þ
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; ð7Þ

where Mtot denotes the sum of the masses of target and of projec-
tile, QH

D the strength of the asteroid and Q the specific kinetic energy
of the projectile
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Fig. 4. The scaling law for basaltic material at 5 km/s (black line) according to Benz
and Asphaug (1999). The red a green lines represent two scaling laws assumed for
rubble-pile bodies (1. with less strength than monoliths at all sizes; 2. with less
strength than monoliths at large sizes). Their derivations are described in Section 7.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Parameters of the scaling law according to Benz and Asphaug (1999) (see Eq. (2)).
Parameters qfact ; Q0 and B are the normalization parameters, a and b characterize the
slope of the corresponding power law. The procedure how we obtained the
parameters for rubble-pile bodies is described in Section 7.

q (g/cm3) Q0 (erg/g) a B (erg/g) b qfact

Basalt 3.0 9� 107 �0:36 0.5 1.36 1.0

Rubble-pile 1 1.84 9� 107 �0:36 0.5 1.36 13.2

Rubble-pile 2 1.84 118:8� 107 �0:36 0.5 1.36 13.2

Table 3
The list of asteroid families in individual parts of the main belt according to Brož et al.
(2013) and Walsh et al. (2013). Only families with the diameter of the parent body
DPB > 100 km and the ratio of the largest remnant/fragment to the parent body
MLF=MPB < 0:5 are listed.

Belt Nfam Families

Inner 3 Erigone Eulalia Polana
Middle 8 Maria Padua Misa

Dora Merxia Teutonia
Gefion Hoffmeister

Pristine 2 Koronis Fringilla
Outer 6 Themis Meliboea Eos

Ursula Veritas Lixiaohua
Cybele 0
High Inc. 1 Alauda
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Q ¼
1
2 Mprojectilev2

imp

Mtot
: ð8Þ

The disruptions of large bodies have only a small probability during
one time step Dt. In such situations the Boulder uses a pseudo-ran-
dom-number generator. The processes thus become stochastic and
for the same set of initial conditions we may obtain different
results, depending on the value of the random seed (Press et al.,
1992).

The Boulder code also includes additional ‘‘invisible’’ bins of the
SFD (containing the smallest bodies) which should somewhat pre-
vent artificial ‘‘waves’’ on the SFDs, which could be otherwise cre-
ated by choosing a fixed minimum size.

6. Simulations for monolithic objects

We can expect a different evolution of individual populations as
a consequence of their different SFDs, collision probabilities and
impact velocities. Therefore, in this section we are going to run
simulations with a new collisional model with six populations.

6.1. An analysis of an extended parameter space

First, we explored the parameter space on larger scales and
started the simplex10 with many different initial conditions (see
Fig. 5). The calculation had 36 free parameters, as explained above.
To reduce the total computational time, we change the same
parameter in each part of the main belt with every initialisation
of the simplex. For example, we increase all parameters
qa1; qa2; qa3; qa4; qa5; qa6 together and then we search for a neigh-
boring local minimum with the simplex which has all 36 parameters
free — we call this one cycle. In total, we run 36 ¼ 729 cycles (i.e. ini-
tialisations of the simplex), for each parameter we examined 3 val-
ues (within the ranges from Table 4). The maximum permitted
number of iterations of the simplex was 300 in one cycle (and we
verified that this is sufficient to find a v2 value which is already close
to a local minimum). In total, we run 218,700 simulations of the col-
lisional evolution of the main belt.

The argument which would (partly) justify simultaneous
changes of all parameters in the 6 parts of the main belt is that
we use the same scaling law for each of them, therefore we can
expect a similar behavior in individual belts and it then seems log-
ical to choose initial conditions (SFDs) simultaneously.

The input parameters are summarized in Table 4. The mid-
in-the-range values were derived ‘‘manually’’ after several preli-
minary simulations of collisional evolution (without simplex or
v2 calculations). The changes of parameters between cycles and
the steps of simplex within one cycle are listed in Table 5.

The minimum value of v2, which we obtained, is v2 ¼ 562, but
we found many other values, that are statistically equivalent (see
Fig. 6 as an example). Therefore, we did not find a statistically
significant global minimum. The parameters qb1—b6 seem to be
well-determined within the parameter space, parameters
qa1—a6; d1 1—6; d2 1—6 and nnorm 1—6 are slightly less constrained. For
the remaining parameters qc1—c6 we essentially cannot determine
the best values. This is caused by the fact that the ‘tail’ of the
SFD is created easily during disruptions of larger asteroids, so that
the initial conditions essentially do not matter. The influence of the
initial conditions at the smallest sizes (D < d2) on the final SFDs
was carefully checked. As one can see e.g. from the dependence
v2ðqc1Þ, i.e. the resulting v2 values as a function of the initial slope
of the tail, the outcome is essentially not dependent on the tail
slope, but rather on other free parameters of our model.

The differences between simulated and observed SFDs and
numbers of families for individual populations corresponding to
v2 ¼ 562 are shown in Figs. 7 and 8. We can see that the largest dif-
ferences are for the inner and outer belt. Note that it is not easy to
improve these results, e.g. by increasing the normalization nnorm4 of
the outer belt, because this would affect all of the remaining pop-
ulations too.

From Fig. 7, we can also assess the influence of the choice of
Dmin and Dmax values on the resulting v2 — for example, an increase
of Dmin would mean that the v2 will be lower (because we would
drop several points of comparison this way). However, as this hap-
pens in all main belt parts (simultaneously), it cannot change our
results significantly. We ran one complete set of simulations with
Dmin ¼ 15 km (i.e. with qc unconstrained) to confirm it and we
found out that the resulting SFDs, at both larger and smaller sizes
than Dmin, are not significantly different from the previous ones.

The parameters of the initial SFDs for the minimal v2 are sum-
marized in Table 6. Comparing with Table 4, the best initial slopes
qa1—6 and qc1—6 are both significantly steeper than the mid-in-the-
range values (from Table 4) and they exceed the value�3:5 derived
by Dohnanyi. We can also see that the SFD of the Cybele zone is
significantly flatter than the SFDs of the other populations and is
more affected by observational biases (incompleteness) which
actually corresponds to our choice of (relatively large) Dmin ¼ 6 km.

Another approach to the initial conditions we tested is the fol-
lowing: we generated a completely random set of 729 initial condi-
tions — generated within the ranges simulated previously — and
without simultaneous (i.e. with uncorrelated) changes in the 6
parts of the main belt. We then started the simplex algorithms
again, i.e. we computed 729 initial conditions for the simplex
�300 iterations = 218,700 collisional models in total. Results are
very similar to the previous ones, with the best v2 ¼ 544, which
is statistically equivalent to 562, reported above. In Fig. 6, we com-
pare the dependence of the v2 on the parameter qb2 for simulta-
neous (correlated) changes of parameters and for the randomized
(uncorrelated) sets of initial parameters. Both results are equiva-
lent in terms of residuals and we can conclude that there is no sig-
nificantly better local minimum on the interval of parameters we
studied.

To test the influence of the choice of wfam, we ran simulation
with wfam ¼ 0. The resulting SFDs for monoliths were similar (i.e.
exhibiting the same problems) and v2

sfd ¼ 612 (among �100,000
simulations) remained high. We thus think that the choice of
wfam is not critical. While this seems like the families do not deter-
mine the result at all, we treat this as an indication that the num-
bers of families and SFDs are consistent.

6.2. A detailed analysis of the parameters space

We also tried to explore the parameter space in detail — with
smaller changes of input parameters between cycles and also smal-
ler steps of the simplex. The best v2 which we found is however
statistically equivalent to the previous value and we did not obtain
a significant improvement of the SFDs. Parameters are not well-
constrained in this limited parameter space, because the simula-
tions were performed in a surroundings of a local minimum and
the simplex was mostly contracting. An even more-detailed explo-
ration of the parameter space thus would not lead to any improve-
ment and we decided to proceed with a model for rubble-pile
asteroids.

7. Simulations for rubble-pile objects

The material characteristics of asteroids can significantly influ-
ence their mutual collisions. We can modify the Boulder code for10 The simplex as well as v2 calculation is not a direct part of the Boulder code.
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rubble-pile bodies on the basis of Benavidez et al. (2012) work,
who ran a set of SPH simulation for rubble-pile DPB ¼ 100 km
parent bodies. We used data from their Fig. 8, namely diameters
of fragments inferred for simulations with various projectile
diameters and impact velocities.

7.1. Modifications of the Boulder code for rubble-pile bodies

We need to modify the parameters of the scaling law first. We
were partly inspired by the shape of scaling laws presented in
Levison et al. (2009) for icy bodies (Fig. 3 therein). The modified
versions used by these authors are all scaled-down by a factor
(i.e. qfact in our notation). Thus, the only two parameters we chan-
ged are qfact and density. For the density of asteroids, we used
q ¼ 1:84 g cm�3 as Benavidez et al. (2012). We determined the
specific impact energy Q �D required to disperse half of the total
mass of a D ¼ 100 km rubble-pile target from the dependence of
the mass of the largest remnant MLR as a function of the kinetic

energy of projectile Q (see Fig. 9). Q �D is then equal to Q correspond-
ing to MLR=Mtarget ¼ 0:5. So the result is Q �D ¼ ð9� 1Þ � 107 erg g�1

and the corresponding parameter qfact in the scaling law is then
13:2� 1:5 (calculated according to Eq. (2) with q ¼ 1:84 g cm�3,
r ¼ 5� 106 cm, parameters Q 0; a; B and b remain same as for
the monolithic bodies). The scaling law for rubble-pile bodies
was already shown graphically in Fig. 4 (red line).

We must also derive new dependencies of the slope qðQÞ of the
fragments’ SFD and for the mass of the largest fragment MLFðQÞ on

Fig. 5. A set of 729 synthetic size–frequency distributions (for six parts of the main belt), which served as starting points for the simplex algorithm and subsequent
simulations of collisional evolution. Thin lines (with various colors) denote the synthetic SFDs, while the thick lines corresponds to the observed SFDs. Note that we tested
quite a large range of possible initial conditions. The number of simplex steps was limited to 300 because the convergence to a local minimum is difficult due to the
stochasticity of the collisional evolution. The total number of collisional simulations we ran was thus 729� 300 ¼ 218;700. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 4
The ranges of input parameters describing the size–frequency distributions (SFDs) of the six parts of the main belt: qa denotes the slope of the SFD for asteroids with diameters
D > d1, qb the slope between d1 and d2, qc the slope for D < d2 and nnorm is the normalization of the SFD at d1. Nfam denotes the number of observed families and Dmax and Dmin the
range of diameters in the SFD, where the v2 is calculated.

Population d1 (km) d2 (km) qa qb qc nnorm Nfam Dmax (km) Dmin (km)

Inner 75 to 105 14 to 26 �3:6 to �4:2 �1:5 to �2:7 �3:0 to �4:2 14 to 26 3 250 3
Middle 90 to 120 12 to 24 �4:0 to �4:6 �1:7 to �2:9 �3:0 to �4:2 60 to 90 8 250 3
Pristine 85 to 115 7 to 19 �3:3 to �3:9 �1:8 to �3:0 �3:0 to �4:2 15 to 27 2 250 5
Outer 65 to 95 14 to 26 �3:4 to �4:0 �1:9 to �3:1 �2:9 to �4:1 75 to 105 6 250 5
Cybele 65 to 95 9 to 21 �2:2 to �2:8 �1:4 to �2:6 �2:2 to �3:4 11 to 23 0 250 6
High-inclination 85 to 115 14 to 26 �3:6 to �4:2 �1:6 to �2:8 �2:9 to �4:1 24 to 36 1 250 5

Table 5
The changes of input parameters between cycles, and steps of the simplex within one
cycle. d1; d2; qa; qb ; qc and nnorm denote the same parameters as in Table 4. For the
middle and outer belt, which are more populous, we used Dnnorm ¼ 15 and dnnorm ¼ 5.

d1 (km) d2 (km) qa qb qc nnorm

Cycles ±15 ±6 ±0.3 ±0.6 ±0.6 ±6; 15
Steps 5 2 0.1 0.2 0.2 2; 5
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the specific energy Q of the impact. The cumulative SFDs of the
fragments cannot be always described with only one single slope.
We thus divided the fragments according to their diameters to
small (D < 10 km) and large (D > 10 km) and we determined two
slopes. Then we calculated the mean value and we used the differ-
ences between the two values as error bars (see Fig. 10).

For some of the SPH simulations outcomes it can be difficult to
determine the largest fragment, in other words, to distinguish a
catastrophic disruption from a cratering event, as explained in
Section 5.2. The error bars in Fig. 11 correspond to the points,
which we would get if we choose the other of the two above-
mentioned possibilities.
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Fig. 6. The values of v2 for all simulations of collisional evolution as a function of the parameter qb2 (i.e. the slope of the SFD of the middle belt for asteroids with diameters
D < d1 and D > d2). Black points display all initial conditions of the collisional models (within the ranges of the figure), red points display the initial conditions for which
simplex converged to a local minimum (i.e. 729 points in total, but less within the ranges of the figure). The dotted line is a value twice larger than the best v2. Values below
this line we consider statistically equivalent. Left: simultaneous (correlated) changes of parameters in individual parts of the main belt. Right: randomized (uncorrelated) set
of initial parameters (as described in the text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The observed (black line) and simulated (green line) SFDs and the differences between them for the simulation with v2 ¼ 562. Sigma error bars denote the (prescribed)
uncertainties of the observed SFDs. This result is for the simulation with monoliths. The largest differences can be seen for the inner and outer belt. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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The parametric relations we determined for rubble-pile bodies
are the following

q ¼ �6:3þ 3:16
Q

QH

D

 !0:01

exp �0:008
Q

QH

D

 !
; ð9Þ

MLF ¼
0:6

13 Q
QH

D

� ��1:2
þ 1:5 Q

QH

D

Mtot: ð10Þ

When we approximate scattered data with functions, we must care-
fully check their limits. In the case of low-energetic collisions there
is one largest remnant and other fragments are much smaller,
therefore for decreasing Q we need MLF to approach zero. The slope
q we need to stay negative and not increasing above 0 (that would
signify an unphysical power law and zero number of fragments).
These conditions are the reasons why our functions do not go
through all of the data points (not even within the range of uncer-
tainties). This problem is most pronounced for the dependence of
MLFðQÞ for small Q (Fig. 11). Nevertheless, we think that it is more
important that the functions fit reasonably the data for high Q’s,
because highly-energetic collisions produce a lot of fragments and
they influence the SFD much more significantly.

7.2. A comparison of results for monoliths and rubble-piles with less
strength at all sizes

We explored the parameter space in a similar way as for mono-
liths: with 729 different initial SFDs (i.e. 729 cycles), the maximum
permitted number of iterations 300 and 218,700 simulations in
total. The changes of parameters between cycles and the steps of

the simplex within one cycle are the same as for simulations with
monolithic bodies (see Table 5).
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Fig. 8. The differences between simulated and observed numbers of families Nfam in
individual populations, corresponding to the total v2 ¼ 562. Sigma error bars
denote the uncertainties of the observed numbers of families. This results is for
simulations with monoliths. The simulated and observed numbers of families seem
to be consistent within the uncertainties.

Table 6
The parameters describing the initial SFDs (for time t ¼ �4 Gyr) of the six parts of the
main belt for which we obtained the best fit (v2 ¼ 562) of the observed SFDs and the
number of families. d1 ; d2; qa; qb; qc and nnorm denote the same parameters as in
Table 4 and are rounded to two decimal places.

Population d1 (km) d2 (km) qa qb qc nnorm

Inner 90.07 20.03 �4:20 �2:10 �4:20 20.03
Middle 105.07 18.03 �4:60 �2:30 �4:20 75.07
Pristine 100.07 13.03 �3:90 �2:30 �4:20 21.03
Outer 80.07 20.03 �4:00 �2:50 �4:10 90.07
Cybele 80.07 15.03 �2:80 �2:00 �3:40 17.03
High-inclination 100.07 20.03 �4:20 �2:20 �4:10 30.03
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Fig. 10. The slope q of the SFD of fragments as a function of the impact energy Q=Q �D
for the rubble-pile parent bodies with DPB ¼ 100 km. The horizontal axis is in a
logarithmic scale. The SFD of fragments is characterized by two slopes (for
fragments D < 10 km and D > 10 km) and we calculated the mean value. The
displayed uncertainties of q are the differences between real and mean values. The
horizontal error bars are given by the uncertainties of Q �D . The gray line corresponds
to the dependence for monoliths (Morbidelli et al., 2009), which we used in Section
6.
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Fig. 11. The ratio MLF=Mtot (the mass of the largest fragment divided by the sum of
the mass of target and the mass of projectile) as a function of the impact energy
Q=Q �D for the rubble-pile parent bodies with the diameter DPB ¼ 100 km. The
horizontal axis is in a logarithmic scale. The uncertainties of MLF=Mtot are caused by
a problematic determination of the largest fragment and the largest remnant. The
horizontal error bars are given by the uncertainties of Q �D . The gray line corresponds
to the dependence for monoliths (Morbidelli et al., 2009) which we used in Section
6.
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The minimum v2 which we obtained was 1321. The differences
between the simulated and observed SFDs and the numbers of
families for individual populations corresponding to v2 ¼ 1321
are shown in Figs. 12 and 13. These values are significantly higher
than what we obtained for monoliths (v2 ¼ 562 at best). Given that
the set of initial conditions was quite extensive (refer to Fig. 5), we
think that this difference is fundamental and constitutes a major
result of our investigation.

It seems that, at least within our collisional model, we can pre-
liminarily conclude that the main belt does not contain only rub-
ble-pile bodies, because otherwise the corresponding fit would
not be that worse than for monoliths (see Figs. 7 and 8 for a
comparison).

It would be interesting to run a simulation with two different
population of the main belt — monolithic and rubble-pile bodies.
Also because Benavidez et al. (2012) concluded that some asteroid
families were more likely created by a disruption of a rubble-pile
parent body: namely the Meliboea, Erigone, Misa, Agnia, Gefion
and Rafita. Such simulation remains to be done.

7.3. Simulations for rubble-piles with less strength at large sizes

Large rubble-piles objects can be also assumed to be composed
of monolithic blocks with sizes of the order of 100 m. Then, at and

below this size, the scaling law QH

D should be a duplicate of the
Benz and Asphaug (1999) — see Fig. 4 (green line). We computed
a new set of 729 � 300 = 218,700 collisional simulations with the
scaling law modified in this way. The resulting smallest v2 is
1393, which should be compared to the previous result
v2 ¼ 1321 — i.e. no statistically significant improvement.

We thus can conclude that this kind of QH

D modification does not
lead to an improvement of the model. We think that the collisional
evolution and overall shape of the SFDs are more affected by dis-
ruptions of large asteroids.

8. Improvements and extensions of the model

We think that the match between our collisional model and the
observational data as presented in Sections 6 and 7 is not entirely
convincing. In this section we thus try to improve the model by the
following procedures: (i) we use a longer ‘tail’ of the SFD (down to
D ¼ 0:01 km), which is a straightforward modification. Neverthe-
less, the longer tail means a significant increase of the required
CPU time (which is proportional to N2

bins). (ii) We account for the
Yarkovsky effect whose time scales for small bodies (D K 0:1 km)
are already comparable to the collisional time scales (see Section
8.1). (iii) We do not converge all 36 free parameters at once but
we free only 6 of them (d1; d2; qa; qb; qc and nnorm for one popu-

Fig. 12. The observed (black line) and simulated (green line) SFDs and the differences between them for the simulation with rubble-piles with total v2 ¼ 1321. Sigma error
bars denote the adopted uncertainties of the observed SFDs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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lation only) and proceed sequentially with six parts of the main
belt (see Section 8.2). (iv) Finally, we try to use a scaling law differ-
ent from Benz and Asphaug (1999) (see Section 8.3).

8.1. Dynamical decay caused by the Yarkovsky effect

In order to improve the Boulder code and use a more complete
dynamical model, we try to account for the Yarkovsky effect as fol-
lows. We assume that the Yarkovsky effect causes a dynamical
decay of the population which can be described by the following
relation

Nðt þ DtÞ ¼ NðtÞ exp
Dt
sYE

� �
; ð11Þ

where NðtÞ denotes the number of bodies at time t, Dt the time step
of the integrator and sYE is the characteristic timescale.

We can compute the semimajor-axis drift rate da=dt, for both
the diurnal and seasonal variants of the Yarkovsky effect, using
the theory of Vokrouhlický (1998), Vokrouhlický and Farinella
(1999) and the (size-dependent) time scale is then

sYEðDÞ ¼
Da
d

a=dtðDÞ; ð12Þ

where Da is the range of semimajor axis given by the positions of
major mean-motion resonances which are capable to remove
objects from the respective populations. It differs for different zones
of the main belt, of course (see Table 7).

In the thermal model, we assume the following parameters: the
thermal conductivity K ¼ 0:01 W m�1 K�1 for D > DYE, i.e. a transi-
tion diameter, and 1:0 W m�1 K�1 for D 6 DYE. The break in KðDÞ
reflects the rotational properties of small bodies, as seen in
Fig. 14 (and Warner et al., 2009): they rotate too fast, above the
critical limit of about 11 revolutions/day, to retain low-conductiv-
ity regolith on their surfaces. This is also in accord with infrared
observations of Delbo’ et al. (2007), even though the authors pro-
pose a linear relationship between the thermal intertia
C ¼

ffiffiffiffiffiffiffiffiffiffi
KqC

p
and size D (their Fig. 6), a step-like function may be also

compatible with the data. The thermal capacity was

C ¼ 680 J kg�1 K�1, the infrared emissivity � ¼ 0:95 and the Bond
albedo AB ¼ 0:02. The latter value of AB corresponds to the geomet-
ric albedo pV ¼ 0:05, which is typical for C-complex asteroids (e.g.
Masiero et al., 2013), with AB ¼ pV q, where q denotes the phase
integral (with a typical value of 0.39; Bowell et al., 1989). If we

assume higher pV ¼ 0:15 (typical of S-complex) and AB ¼ 0:06,
the Yarkovsky dynamical time scale would remain almost the
same, because it is driven by the factor ð1� ABÞ. Remaining ther-
mal parameters, namely the densities, are summarized in Table 7.
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Fig. 13. The simulated and the observed numbers of families Nfam in individual
populations for the simulation with rubble-piles, corresponding to the total
v2 ¼ 1321. Sigma error bars denote the uncertainties of the observed numbers of
families.

Table 7
The parameters of the Yarkovsky-driven decay which are dependent
on the zone of the main asteroid belt: Da is half of the zone size (or a
typical distance from neighboring strong mean-motion resonances), q
denotes the (bulk and surface) density assumed for respective bodies.

Zone Da AU q kg m�3

Inner 0.2 2500
Middle 0.1615 2500
Pristine 0.0665 1300
Outer 0.162 1300
Cybele 0.105 1300
High-I 0.135 1300
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Fig. 15. The time scale sYE of the Yarkovsky-driven decay (as defined by Eq. (12)) vs
size D for three different models (denoted 1, 3 and 5), or in other words,
assumptions of the thermal conductivity KðDÞ and the spin rate xðDÞ, which were
described in the text. The obliquities c of the spin axes were assumed moderate,
jcj ¼ 45	 . Model 2 is quite similar to 1 and model 4 is similar to 3, so we decided not
to plot them in order to prevent many overlapping lines. For each model, we plot six
lines corresponding to the six zones of the main belt: inner, middle, ‘pristine’, outer,
Cybele and high inclination. Bottke et al. (2005) time scales were used for the whole
main belt (regarded as a single population).
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We tested five different models (assumptions):

1. low thermal conductivity K ¼ 0:01 W m�1 K�1 only, i.e.
DYE ¼ 0 km, fixed rotation period P ¼ 5 h;

2. both low/high K with DYE ¼ 200 m, again P ¼ 5 h;
3. the same KðDÞ dependence, but size-dependent spin rate

xðDÞ ¼ 2p
P0

D0
D ; P0 ¼ 5 h; D0 ¼ 5 km;

4. xðDÞ ¼ 2p
P0

D
D0

� ��1:5
; P0 ¼ 2 h; D0 ¼ 0:2 km (see Fig. 14);

5. we used Bottke et al. (2005) time scales.

It is important to explain that these spin rate dependencies are
not meant to describe bigger asteroids but rather smaller ones
(D K 1 km) that comprise the majority of impactors but mostly fall
below the detection threshold.

We then computed the Yarkovsky time scales sYEðDÞ (Fig. 15)
and constructed a ‘testing’ collisional model in order to check the
influence of the dynamical decay on the evolution of the main belt
SFD. Note that for small sizes D K 1 km; sYEðDÞ can be even smaller
than corresponding collisional time scales scolðDÞ.

Regarding the asteroid families, we use the most straightfor-
ward approach: we simply count only families large enough (origi-
nal DPB > 100 km, mLR=mPB < 0:5) which cannot be completely
destroyed by a collisional cascade (Bottke et al., 2005) or by the
Yarkovsky drift (Bottke et al., 2001). We verified this statement
(implicitly) also in our recent work (Brož et al., 2013) in which
the evolution of SFDs for individual synthetic families was studied.
At the same time, we use original parent-body sizes DPB of the
observed families — inferred by using methods of Durda et al.
(2007) or Tanga et al. (1999); as summarized in Brož et al.
(2013) — so that we can directly compare them to synthetic fami-
lies, as output from the Boulder code.

The results of models 1 and 2 above are clearly not consistent
with the observed SFD (see Fig. 16). The results of 3, 4 and 5 seem
to be equivalent and consistent with observations, however, we
cannot distinguish between them. We can thus exclude ‘extreme’
Yarkovsky drift rates and conclude that only lower or ‘reasonable’
drift rates provide a reasonable fit to the observed SFD of the main
belt.

8.2. Subsequent fits for individuals parts of the main belt

In order to improve our ‘best’ fit from Section 6 (and 7), we ran
simplex sequentially six times, with only 6 parameters free in each
case, namely d1; d2; qa; qb; qc; nnorm for a given part of the main
belt. We included a longer tail (Dmin ¼ 0:01 km) and the Yarkovsky
model discussed above.11 The number of simplex iterations was
always limited to 100.

We shall not be surprised if we obtain a v2 value which is
(slightly) larger than before because we changed the collisional
model and this way we moved away from the previously-found
local minimum. At the same time, we do not perform that many
iterations as before (600 vs. 218,700), so we cannot ‘pick-up’ the
deepest local minima.

For monoliths, we tried to improve the ‘best’ fit with v2 ¼ 562.
However, the initial value at the very start of the simplex was
v20 ’ 803 (due to the changes in the collisional model) and the final
value after the six subsequent fits v200 ¼ 520. This is only slightly
smaller than the previous v2 and statistically equivalent
(v200 ’ v2). For rubble-piles, a similar procedure for the v2 ¼ 1321
fit lead to the initial v20 ’ 1773 and the final v200 ¼ 1470. Again, a
statistically-equivalent result.

We interpret this as follows: our simplex algorithm naturally
selects deep local minima. It seems that the lowest v2 (for a given
set of initial conditions) can be achieved by a ‘lucky’ sequence of
disruptions of relatively large bodies (DPB J 100 km) which results
in synthetic SFDs and the numbers of families best matching the
observed properties. Of course, this sequence depends on the ‘seed’
value of the random-number generator.

To conclude, our improvements of the collisional model do not
seem significant and the v2 values are of the same order. This can
be considered as an indication that we should probably use an even
more complicated model. (Nevertheless, there is still a significant
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11 This more complicated model runs about 10 times slower, because we have both
larger number of bins to account for smaller bodies and a shorter time step to account
for their fast dynamical removal. It is thus not easy to run a whole set of simulations
from Sections 6 and 7 again.
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difference between monoliths and rubble-piles and the assump-
tion of monolithic structure matches the observations better.)

8.3. Simulations with various scaling laws

So far we used the scaling law of Benz and Asphaug (1999) for
all simulations. In this section, we are going to test different scaling
laws. Similarly as Bottke et al. (2005), we changed the specific
impact energy Q �D of asteroids with D > 200 m (see Fig. 17, left).
For each scaling law we ran 100 simulations of the collisional evo-
lution with different random seeds. The initial parameters of SFDs
are fixed and correspond to the best-fit initial parameters found in
Section 6.

In order to decide which scaling laws are suitable, we can sim-
ply compare the resulting synthetic SFDs and the numbers of fam-
ilies to the observed ones. It is clear that if we increase the strength
of D ’ 100 km bodies by a factor of 10 or more, the number of syn-
thetic families (namely catastrophic disruptions with
DPB P 100 km) is much smaller than the observed number (usually
4 vs 20, see in Fig. 17, middle). On the other hand, if we decrease
the strength by a factor of 10, the synthetic SFDs exhibit a signifi-
cant deficit of small bodies with D < 10 km due to a collisional cas-
cade (especially in the inner belt, see Fig. 17, right). Moreover, the
number of synthetic families is then significantly larger, of course.

The fact that the number of synthetic families is dependent on the
scaling law confirm our statement that families are important
observational constraints.

These results lead us to the conclusion, that the ‘extreme’ scal-
ing laws (i.e. much different from Benz and Asphaug, 1999) cannot
be used for the main asteroid belt. This result is also in accord with
Bottke et al. (2005).

9. Conclusions

In this work, we created a new collisional model of the evolu-
tion of the main asteroid belt. We divided the main belt into six
parts and constructed the size–frequency distribution for each
part. The observed SFDs differ significantly in terms of slopes and
total numbers of asteroids. We then ran two sets of simulations
— for monolithic bodies and for rubble-piles.

In the case of monoliths, there seem to be (relatively minor) dis-
crepancies between the simulated and observed SFDs in individual
parts of the main belt, nevertheless, the numbers of families (cat-
astrophic disruptions) correspond within uncertainties. On the
other hand, the v2 value for rubble-pile bodies is more than twice
as large because there are systematic differences between the SFDs
and the number of families is substantially larger (usually 30 or
more) than the observed one (20 in total). We can thus conclude
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that within our collisional model, monolithic asteroids provide a
better match to the observed data than rubble-piles, even though
we cannot exclude a possibility that a certain part of the popula-
tion is indeed of rubble-pile structure, of course.

We tried to improve our model by: (i) introducing a longer ‘tail’
of the SFD12 (down to D ¼ 0:01 km); (ii) incorporating the Yarkovsky
effect, i.e. a size-dependent dynamical decay; (iii) running many
simulations with different random seeds, in order to find even
low-probability scenarios. Neither of these improvements provided
a substantially better match in all parts of the main belt at once.

However, we can think of several other possible reasons, why
the match between our collisional model and the observed SFDs
is not perfect:

1. There are indeed different scaling laws for different parts of
the main belt. This statement could be supported by the
observed distribution of albedo, which is not uniform in
the main belt, and by the diverse compositions of asteroids
(DeMeo and Carry, 2014). This topic is a natural continuation
of our work (and a detailed analysis is postponed to a forth-
coming paper).

2. The scaling of the SPH simulations from DPB ¼ 100 km by
one or even two orders of magnitude is likely problematic.
Our work is thus a motivation to study disruptions of both
smaller (DPB ’ 1 km) and larger (400 km) targets. Similar
sets of SPH simulations as in Durda et al. (2007) and
Benavidez et al. (2012) would be very useful for further
work.

3. To explain the SFD of the inner belt, namely its ‘tail’, we
would need to assume a recent disruption (during the last
�100 Myr) of a large parent body (DPB J 200 km). In that
case the SFD is temporarily steep — and may be closer to
the observed SFD in the particular part of the main belt —
but only for a limited period of time which is typically about
200 Myr. After that time, the collisional cascade eliminates
enough bodies and consequently the SFD becomes flatter.
On the other hand, there must not have occurred a recent
large disruption in the middle or the outer belt, otherwise
the synthetic SFD is more populous than the observed one.
It is not likely, that all such conditions are fulfilled together
in our model, in which collisions occur randomly.

4. When we split the main belt into 6 parts, the evolution
seems too stochastic (the number of large events in individ-
ual part is of the order of 1). It may be even useful to prepare
a ‘deterministic model’, in which large disruptions are pre-
scribed, according to the observed families and their ages.
Of course, the completeness of the family list and negligible
bias are then crucial.

5. Our model does not yet include an YORP-induced fission
(Marzari et al., 2011), even though there are indications that
these ‘additional’ disruptions might affect the tail of the SFD
if they are frequent enough as stated by Jacobson et al.
(2014).

6. We can improve the modeling of the Yarkovsky/YORP effect,
e.g. by assuming a more realistic distribution of spin rates
(not only the xðDÞ dependence, Fig. 14) and performing an
N-body simulation of the orbital evolution to get a more
accurate estimate of the (exponential) time scale sYEðDÞ. It
may be difficult to estimate biases in the xðDÞ plot, because
the respective dataset is heterogeneous. Luckily, the Gaia
spacecraft is expected to provide a large homogeneous data-
base of asteroid spin properties (Mignard et al., 2007).

7. May be, the intrinsic collisional probabilities pi were sub-
stantially different (lower) in the past, e.g. before major
asteroid families were created (as suggested by Dell’Oro
et al. (2001)).

8. Some of the mutual impact velocities v imp, especially with
high-inclination objects, are substantially larger than the
nominal 5 km s�1, so the outcomes of these collisions are
most-likely different. On the other hand, these collisions
are usually of lower probability and the high-inclination
region is not that populous, so that this effect has likely a
minor contribution only. One should properly account for
observational biases acting against discoveries of high-incli-
nation objects, thought (Novaković et al., 2011).

9. Collisions occur not only at the mean impact velocity v imp,
but there is rather a distribution of velocities. It would be
then useful and logical to use a velocity-dependent scaling
law (Leinhardt and Stewart, 2012; Stewart and Leinhardt,
2009).

10. There might be several large undiscovered families, or in
other words, the lists of DPB 6 100 km families (Brož et al.,
2013, or Masiero et al., 2013) might be strongly biased,
because comminution is capable to destroy most of the
fragments.13

11. Possibly, parent-body sizes DPB of the observed families are
systematically underestimated or their mass ratios
MLR=MPB of the largest remnant to parent body are offset,
even though they were determined by best available meth-
ods (Durda et al., 2007; Tanga et al., 1999).

The topics outlined above seem to be good starting points for (a
lot of) further work.
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Nesvorný, D., 2012. Nesvorný HCM Asteroid Families V2.0, NASA Planetary Data
System 189.
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ABSTRACT

Context. Large all-sky surveys provide us with a lot of photometric data that are sparse in time (typically a few measurements per
night) and can be potentially used for the determination of shapes and rotational states of asteroids. The method generally used to
derive these parameters is the light curve inversion. However, for most asteroids their sparse data are not accurate enough to derive a
unique model and the light curve inversion method is thus not very efficient.
Aims. To fully utilize photometry sparse in time, we developed a new simplified model and applied it on the data from the Lowell
photometric database. Our aim was to derive spin axis orientations and shape elongations of asteroids and to find out if there are some
differences in distributions of these parameters for selected subpopulations.
Methods. We modeled asteroids as geometrically scattering triaxial ellipsoids. Observed values of mean brightness and the dispersion
of brightness were compared with computed values obtained from the parameters of the model, i.e., the ecliptical longitude λ and
latitude β of the pole and the ratios a/b, b/c of axes of the ellipsoid. These parameters were optimized to get the best agreement with
the observation.
Results. We found that the distribution of λ for main-belt asteroids is not uniform and is dependent on the inclination of the orbit.
Surprisingly, the nonuniformity of λ distribution is larger for asteroids residing on low-inclination orbits. We also studied distributions
of a/b for several groups of asteroids and found that small asteroids (D < 25 km) are on average more elongated than large ones.

Key words. minor planets, asteroids: general – methods: statistical – techniques: photometric

1. Introduction

The amount of photometric data of asteroids has been grow-
ing rapidly in recent years. These data are a source of infor-
mation about shapes and rotational states of asteroids. Cur-
rently, the main method for determination of spin states and
shapes of asteroids from photometry is the inversion of light
curves, which was developed by Kaasalainen & Torppa (2001)
and Kaasalainen et al. (2001). Models obtained with this method
are stored in the Database of Asteroid Models from Inversion
Techniques (DAMIT; Ďurech et al. 2010), which now contains
models for 907 asteroids. The photometric data can be formally
divided into two groups: (i) data dense in time that sample the
rotational period well and that are typically used for the light
curve inversion method, and (ii) data sparse in time (few mea-
surements per night) that are produced by all-sky surveys, such
as Pan-STARRS, Catalina, or LONEOS. Kaasalainen (2004) and
Ďurech et al. (2005, 2007) showed that it is possible to get the
solution of the inverse problem from sparse photometry if the
data are of good quality (noise .5%). New asteroid models were
also derived with a combination of dense and sparse photometry
(Ďurech et al. 2009; Hanuš et al. 2011, 2013, 2016).

In the first statistical study of pole orientation of asteroids
(based on 20 bodies), Magnusson (1986) revealed the lack of
poles close to the ecliptic plane. That was later confirmed in

analyses by Pravec et al. (2002), Skoglöv & Erikson (2002), and
Kryszczyńska et al. (2007) for slightly less than 100 asteroids.
Hanuš et al. (2011), using a sample of 206 main belt asteroids,
found the dependence of the distribution of ecliptical latitudes β
on the diameter D. They found basically isotropic distribution
of β value with only a slight excess of prograde rotators for
D & 60 km, while the distribution of β value for D . 30 km
asteroids was found to have a strong preference for either low
or high values indicating pole orientation near the pole of the
ecliptic. The lack of poles near the ecliptic is most probably due
to the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect,
which can alter the direction of the spin axes of asteroids smaller
than ≈40 km on a timescale shorter than their collisional lifetime
(e.g., Pravec & Harris 2000; Rubincam 2000). The distribution
of ecliptical longitudes λ of spin axes was, however, supposed to
be rather uniform. For instance, Davis et al. (1989) came to this
conclusion from the simulations of the collisional evolution of
asteroids. With the growing number of asteroids for which pole
orientation have been determined, a reliable statistics could be
achieved and this hypothesis could be tested. However, even for
a sample of 206 asteroids, Hanuš et al. (2011) did not reveal any
nonuniformity in distribution of λ, but at the same time the data
sample was too small to indicate meaningful nonuniformities.
On the contrary, Slivan (2002) and Slivan et al. (2003) revealed a
nonuniform pole distribution for 20−35 km size members in the

Article published by EDP Sciences A57, page 1 of 10

Paper 2



A&A 596, A57 (2016)

Koronis family. In particular, the prograde-rotating asteroids all
had ecliptic longitude between 24◦ and 73◦. This conundrum was
resolved by Vokrouhlický et al. (2003), who showed that these
objects underwent a 2−3 Gyr long dynamical evolution during
which the YORP effect tilted their spin axis near the ecliptic
pole. Since YORP also continued to decrease the rotation fre-
quency in their model, the spin state was captured in the Cassini
resonance between the pole precession owing to solar torque and
orbit precession from Jupiter-Saturn perturbations. The station-
ary point of this particular secular, spin-orbit resonance is cur-
rently at '35◦ ecliptic longitude. Thus all bodies whose spin
axes librate about this point must have λ near this value. More
recently, Bowell et al. (2014) estimated the ecliptical longitudes
λ for more than 350 000 asteroids of the main belt using the
magnitude method (Magnusson 1986), based on the variation of
brightness with the ecliptical longitude: the maximum of bright-
ness corresponds with the spin axis pointing either toward or op-
posite from the Earth. Surprisingly, the resulting distribution is
clearly nonuniform with an excess of asteroids with λ from 30◦
to 110◦ and with minimum for 120◦ to 160◦.

The success of getting a unique solution of the inverse prob-
lem with currently available sparse photometric data (which are
not accurate enough) is low. Nevertheless, using the distributed
computing project Asteroids@home (Ďurech et al. 2015), which
significantly reduces the computational time of the period
search, Ďurech et al. (2016) derived 328 new models from the
analysis of Lowell photometric data. This is an impressive, but
still small increase in number to enable a population-wide study.
For this reason, we describe a new method for the determina-
tion of the orientations of spin axes and shapes of asteroids to
utilize photometric data sparse in time. The uncertainties of spin
vectors are large for individual bodies, therefore we work with
groups of asteroids and construct distributions of tested parame-
ters because working with large samples of bodies should smear
uncertainties of individual solutions and, if uncorrelated, the re-
sults should hold in a statistical sense.

The structure of this paper is as follows: in Sect. 2, we
describe our model and test its reliability on synthetic data;
in Sect. 3, we apply the model to the photometric data from
the Lowell Observatory database and construct the distributions
of ecliptical longitudes for main-belt asteroids and for several
groups of asteroids; Sect. 4 deals with distributions of the ratio
a/b of axes of asteroids and, in Sect. 5, we summarize the main
results.

2. Model

In the light curve inversion method, all parameters describing the
rotational state (i.e., the rotational period and orientation of the
spin axis), shape, and light scattering on the surface are fitted,
and the unique sidereal rotational period P has to be determined.
In the case of dense photometric data, we can substantially re-
duce the computational time necessary for the determination
of P by only searching the interval around the value estimated
from dense light curves. For sparse data, we usually do not have
any estimate of P and we have to search the interval of all pos-
sible values, which is time consuming. Moreover, for the ma-
jority of asteroids we currently do not have sparse data that is
accurate enough to derive a unique rotational period. Therefore,
to fully utilize sparse photometry, we developed a new model,
which does not allow us to determine the rotational period, but
provides an approximate solution for the orientation of the spin
axis and the shape parameters of the asteroid.

We model asteroids as geometrically scattering triaxial ellip-
soids (a ≥ b ≥ c = 1) rotating about the shortest axis of the
inertia tensor. The parameters of the model are the ecliptic lon-
gitude λ and latitude β of the pole and the ratios of axes a/b and
b/c of the ellipsoid, alternatively axes a and b. The advantage
of this model is that the brightness L, which is proportional to
the projected area of the illuminated and visible part of the sur-
face, can be computed analytically (Connelly & Ostro 1984) as
follows:

L ∝ πabc
2

(√
eTMe +

eTMs√
sTMs

)
, (1)

where e, s are unit vectors defining the position of the Earth and
the Sun in the asteroid coordinate system of principal axes of the
inertia tensor, and

M =


1/a2 0 0

0 1/b2 0
0 0 1/c2

 . (2)

In a special case of opposition e = s, the Eq. (1) simplifies to

L ∝ πabc
√

eTMe. (3)

The direction toward Earth can be described by the rotational
angle φ and aspect angle θ (i.e., angle between e and the direction
of the spin axis),

e = [sin θ cos φ, sin θ sin φ, cos θ]T. (4)

Having set c = 1, the squared brightness L2 normalized by the
maximal possible value πab is

L2 =
sin2 θ cos2 φ

a2 +
sin2 θ sin2 φ

b2 + cos2 θ. (5)

The mean quadratic brightness over one rotational period is then

〈L2〉 =
1

2π

∫ 2π

0
L2dφ = 1 +

1
2

sin2θ

(
1
a2 +

1
b2 − 2

)
, (6)

and the normalized dispersion of squared brightness is

η =

√
var(L2)
〈L2〉 =

√
〈(L2 − 〈L2〉)2〉
〈L2〉

=
a2 − b2

√
8

[
a2b2

sin2 θ
+

1
2

(
a2 + b2 − 2a2b2

)]−1

. (7)

We used Eqs. (6) and (7), to compute 〈L2
model〉 and ηmodel for

each asteroid and for each of its apparition; we defined appari-
tions as sets of observations with the gap between these sets of
at least 100 days.

For the observational data, we used the following procedure:

1. We remove the dependence on solar phase angle. The
changes in brightness in the light curve of an asteroid are not
only due to the rotation but also the geometry of observa-
tion. In the model, we assume the case of opposition, which
means the solar phase angle α = 0. For the observational
data, we fitted the dependence of the brightness on the solar
phase angle α by a linear-exponential dependence similar to
Hanuš et al. (2011), i.e.,

g
(
h exp−α/d −kα + 1

) 1 + cosα
2

, (8)

where g, h, d, k are parameters fitted for each asteroid, and
we divided the observed brightness by that function. As an
example, the corrected data for asteroid (511) Davida are
shown in Fig. 1.
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Fig. 1. Photometric data of the asteroids (511) Davida corrected by the
influence of the solar phase angle (black points). Red points with verti-
cal lines denote the observed mean brightness and its dispersion in in-
dividual apparitions, green color denotes the same but calculated quan-
tities for the best-fit model. To normalize L, we divided each value by
mean value of L calculated over all apparitions.

2. Then, we required that there were enough data for each as-
teroid: at least 20 points in one apparition and at least five
apparitions for one asteroid (in Fig. 1 there are data from ten
apparitions that can be used).

Computed theoretical values of the mean brightness 〈L2〉 and of
the dispersion of the brightness η can be compared with obser-
vation by χ2 that we define as:

χ2 = χ2
η + wχ2

L2 =
∑

apparitions

(ηmodel − ηobs)2

σ2
η

+w
∑

apparitions

(〈L2
model〉/〈L2

model〉 − 〈L2
obs〉/〈L2

obs〉)2

σ2
L2

, (9)

where σ denotes the standard deviation and w denotes the weight
for χ2 of brightness. To normalize values of calculated and ob-
served mean quadratic brightness, we divided them by 〈L2

model〉
and 〈L2

obs〉, respectively, which are mean values calculated over
all apparitions. The value of w is not set in advance and has to
be found by testing on known data. Since 〈L2〉 and η are not
Gaussian random variables, the χ2 in relation (9) is not χ2 dis-
tributed. Nevertheless, we use this χ2 formalism to define the
best solution, which has the minimum χ2.

In passing we note that in combining Eqs. (6) and (7) we
obtain, for a given asteroid, the relation between 〈L2〉 and η,

η =
1√
2

a2 − b2

a2 + b2 − 2a2b2

[
1 − 1
〈L2〉

]
· (10)

This implies that for larger 〈L2〉 the model predicts smaller dis-
persion η. This is in accord with the intuition that a larger bright-
ness corresponds to the pole-on geometry of view (i.e., smaller
aspect angle θ).

To find a model with the best agreement (the lowest χ2) be-
tween the calculated values and the observation, we computed
model values on a grid in parameter space: the ecliptical longi-
tude of the pole from 0◦ to 360◦; the latitude from 0◦ to 90◦, both
with a 5◦ step, and the axes a and b, from 1.1 to 4 and from 1
to a, respectively, both with a 0.1 step (an elongation larger than

4:1 would be unrealistic). As mentioned above, we corrected the
observed brightness to the solar phase angle α = 0, however, the
geometry remained unchanged and the aspect angle θ, which ap-
pears in Eqs. (6) and (7), was calculated for each apparition as a
mean value as follows:

cos θmean = u · emean, (11)

where u = [cos β cos λ, cos β sin λ, sin β]T is the vector defining
the direction of the spin axis and emean is the mean vector defin-
ing the position of the Earth during one apparition. From the re-
lation (11) we can see that we obtain the same aspect angle for λ,
β and λ ± 180◦ , −β, which is the reason why we test β only in
the interval from 0◦ to 90◦. Relation (11) also indicates that, for
most asteroids, there is only a slightly worse second minimum
of χ2 for λ ± 180◦. For zero inclination of orbit (ez = 0), the
aspect angle would be the same for λ and λ ± 180◦. Owing to
this ambiguity in λ, we constructed distributions of λ only in the
interval 0◦–180◦ and for λ > 180◦ we used modulo 180◦.

2.1. Testing of the model on synthetic data

To test our model and confirm its reliability, we created syn-
thetic data. We computed the brightness of asteroids using the
models from DAMIT database and the Hapke scattering model
(Hapke 1981, 1993) with randomly chosen parameters, and we
assigned these new (synthetic) values to asteroids contained in
the Lowell database (to the time of observation and the appro-
priate geometry). The distribution of poles for this synthetic data
was isotropic.

We added the Gaussian noise (we tested noise σL = 0.15 and
0.2), which was then subtracted according the relation

ηobs =

√
η2 − σ2

L2 =

√
η2 − 4σ2

L (12)

if η ≥ 2σL, else ηobs = 0. For the real data, we only have an
estimate of the noise level and we attempt to subtract different
values from the data to find the best results. We also tested syn-
thetic data without any noise (σL = 0).

After applying our model on these data, we should obtain
uniform distributions of the ecliptical longitudes λ and latitudes
sin β. This was satisfied for the resulting distribution of λ, how-
ever, the distribution of latitudes showed a preference for high
β. The possible explanation is that we did not include the un-
certainties from the Hapke model and from the assumption that
asteroids are triaxial ellipsoids. That means, for example, that for
synthetic data without any noise and for an asteroid with β = 0,
there are still some changes in brightness that our model inter-
prets as nonzero β. To improve the model we added a new pa-
rameter that we called model noise σmodel. Then Eq. (12) had to
be changed to

ηobs =

√
η2 − 4σ2

L − σ2
model (13)

if η ≥
√

4σ2
L + σ2

model, else ηobs = 0.
We tested values σmodel = 0.05, 0.06, 0.07 and 0.1. The re-

sulting distributions of λ were uniform independently on σmodel.
This is probably because λ is principally determined from the
mean brightness 〈L2〉, which is comparatively more stable than
the dispersion of brightness η from which β is determined. In
the left panel of Fig. 2, there are shown distributions of sin β for
the two best values of σmodel and for the data noise σL = 0. The
distributions are clearly nonuniform, nevertheless this is the best
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Fig. 2. Distributions of ecliptical latitudes β calculated from synthetic
data with noise σL = 0 (left) and σL = 0.15 (right) for two best values
of σmodel.

result we obtained. When we added noise to the synthetic data,
we found that there is no significant difference between distribu-
tions of sin β for σmodel = 0.06 and 0.07 (see Fig. 2 on the right)
and, therefore, we decided to use the value 0.06 for the real data.

The takeaway message from our tests is that (i) determina-
tion of λ is reliable in a statistical sense, while (ii) determination
of β is subject to systematic bias that needs to be corrected before
interpreting the results.

3. The distribution of ecliptical longitudes

Having tested our approach and calibrated its parameters, we
now construct the distribution of ecliptical longitudes for the
real data from the Lowell Observatory photometric database
(Bowell et al. 2014). This database contains data from 11 ob-
servatories, which are stored in the Minor Planet Center. The
data were calibrated using the broadband accurate photometry
of the Sloan Digital Sky Survey; the accuracy is ∼0.1−0.2 mag.
For more information about the data reduction and calibration,
see Oszkiewicz et al. (2011).

First, we applied our model to 765 asteroids included in
DAMIT database (from the first 10 000 numbered asteroids,
which are included in the Lowell Observatory database and sat-
isfy the conditions on the number of apparitions and the number
of measurements in one apparition) and tried different values of
noise σL (0.08, 0.1, 0.12, 0.15) and weight w (1, 5, 25); the value
of model noise was 0.06. To decide on the best noise level and
weight, we compared the calculated λ and β with λDAMIT (values
from DAMIT derived with the light curve inversion) and βDAMIT,
respectively. From the distributions of ∆λ = |λ − λDAMIT|, we
found the best value of weight as w = 5 and from the distribu-
tions of ∆β we found the best value of noise level as σL = 0.08.
However, we revealed that with this assumed data noise, the
model produces hardly any spheroidal asteroids a/b ∼ 1. This
is because the photometric data for less bright asteroids have
higher noise level than for brighter asteroids. In DAMIT, there
are preferentially brighter asteroids, hence the noise level 0.08
works for them, but for less bright asteroids, such noise level
is underestimated. To estimate the dependence of σL on L we
used the amplitudes Amag of light curves stored in the Aster-
oid Lightcurve Database (LCDB)1 compiled by Warner et al.
(2009). For Amag we can write

Amag = 2.5 log
Lmax

Lmin
= 2.5 log

L|φ=0

L|φ=π/2
, (14)

1 http://www.minorplanet.info/lightcurvedatabase.html
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Fig. 3. Dependence of the mean value of noise level σL on the mean
value of Lmean; Lmean is mean brightness over all apparitions. Each mean
value was calculated from a sample of 500 asteroids (as described in the
main text). Gray lines denote dispersions of σL among corresponding
500 bodies. The red line denotes the fit that was applied in the model.

where L is given by Eq. (5). The normalized dispersion of bright-
ness η, defined by Eq. (7), is then related with amplitude as

ηA =
1√
8

(
1

1 − A2 −
1
2

)−1

, (15)

where A = Lmin/Lmax = 10−0.4Amag . For 9698 asteroids included
in LCDB, we calculated ηA according Eq. (15) and then the ap-
propriate noise level in data for each asteroid is written as:

σL =

(√
η2 − η2

A − σ2
model

) /
2 (16)

if η >
√
η2

A + σ2
model, else σL = 0. We calculated the running

mean of σL for the sample of 500 bodies to obtain the depen-
dence of σL on the mean brightness over all apparitions Lmean.
The resulting dependence, with dispersion of σL among corre-
sponding 500 bodies, is shown in Fig. 3. We applied this de-
pendence in our model as follows: we assumed the noise level
σL = 0.07 for asteroids with Lmean > 80; the brightness here
is a dimensionless quantity calculated from magnitude M as
L = 10−0.4(M−15). For asteroids less bright than 80, we calculated
the noise level according to the equation of parabola,

σL = 0.07 +
(Lmean − 80)2

2 × 55 000
· (17)

The appropriate curve is shown in Fig. 3 (red line). We can
see it does not fit the data perfectly, nevertheless, considering
the dispersion of values of σL (gray lines), such deviation is
insignificant.

The Lowell Observatory database contains, in total, data for
326 266 asteroids. For 69 053 asteroids, there were enough ap-
paritions and data points to calculate ecliptical longitude λ and
latitude β; the vast majority of these asteroids belong to the first
100 000 numbered asteroids. For this sample, we used our model
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Fig. 4. Distribution of λ derived for 69 053 asteroids from the Lowell
Observatory photometric database with model noise σmodel = 0.06 and
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with weight w = 5, model noise 0.06, and data noise calculated
for each asteroid according to the rule described above. The re-
sulting distribution of the ecliptical longitude λ of asteroid pole
orientation, shown in Fig. 4, is clearly nonuniform. As we can
see, there is an excess of asteroids with λ from 40◦ to 100◦ and a
minimum for λ ∼ 150◦. We calculated the Kolmogorov-Smirnov
(KS) test of this distribution with a uniform one. The probability
that they belong to the same parent distribution QKS is almost
zero. A similar result was obtained by Bowell et al. (2014), who
determined λ from the maximum of a sinusoid curve fitting the
variation of brightness.

The distribution of ecliptical latitudes β shows strong pref-
erence for sin β & 0.9, however, since the distribution of sin β
for the synthetic data was not uniform (Fig. 2), the determined
ecliptical latitudes are affected by biases and uncertainties that
are not properly modeled here; therefore, in the following text
we mainly study the distribution of ecliptical longitudes λ.

3.1. Searching for an explanation

Up to now, there is no satisfactory explanation of such nonuni-
formity in the distribution of ecliptical longitudes λ. We
considered the observational and method biases described in
Marciniak et al. (2015) and Santana-Ros et al. (2015), neverthe-
less, we found these do not influence our results; therefore, we
searched for some other observational biases and geometrical
and dynamical effects as well.

3.1.1. Galactic plane bias

First, we tested the influence of the measurements near Galac-
tic plane, where the stellar background is more dense and thus
the measurements may have higher uncertainties. We eliminated
the observations with Galactic latitude |b| < 10◦ and repeated
the analysis; for one asteroid there were on average about 6%
less points. The differences between computed λ and λ from the
DAMIT database were comparable with values for the model
with the Galactic plane, however, the nonuniformity in λ was
even larger. This result could suggest that, on the contrary, the
shortage of observations near the Galactic plane could cause the
nonuniformity of λ. However, if such a bias could influence our
results, it would have also been seen in our test with synthetic
data, since the geometry of observations was kept unchanged.
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Fig. 5. Distribution of the longitudes of ascending node Ω (from AstOrb
catalog) for the asteroid main belt. The red curve represents the distri-
bution in the ecliptic plane; the black curve indicates the distribution
in the invariant (Laplace) plane. The green and blue lines represent the
distribution in the invariant plane for asteroids with the inclination of
the orbit I < 10◦ and I < 5◦, respectively.

Nevertheless, the resulting distribution of ecliptical longitudes
was uniform, therefore, we believe our results are not influenced
by such bias and we had to look for another explanation.

3.1.2. Correlation with longitude of ascending node

Next, we studied the role of the orbital longitude of node Ω by
examining a possible correlation between asteroid’s pole longi-
tude λ and Ω. The orbital data were taken from the AstOrb cata-
log2. Figure 5 shows distribution of Ω values for 566 089 multi-
opposition orbits of main-belt asteroids.

Focusing first on the data in the ecliptic reference system,
we note that Ω values show overpopulation centered at '100◦
value, and underpopulation shifted by about 180◦, i.e., centered
at '270◦ value. This result is not new (see, e.g., JeongAhn
& Malhotra 2014, and references therein). The reason for this
nonuniformity in Ω is due to planetary perturbations. The dis-
tribution of Ω transformed to the Laplace plane shows similar
nonuniformity, only shifted by ∼180◦; this is due to a slight but
significant '1.58◦ tilt between the ecliptic plane and invariant
plane of planets. For small-inclination orbits (i.e., whose proper
inclination value is small), this effect becomes larger, as also
shown in Fig. 5. Having learned about the nonuniformity of os-
culating nodal longitudes of asteroids in the main belt we should
now examine, whether the nonuniform distribution of their pole
longitudes λ is not a simple implication of the primary effect in
nodes.

First, we ran the following experiment. We divided the aster-
oid population according to their value of Ω to 18 equal bins
(each 20◦ wide). We found the bin that contains the smallest
number N of asteroids, and from all other bins we randomly se-
lected N objects. That way, we had a sample of asteroids whose
distribution of nodes was uniform. We examined distribution of
rotation poles of this subsample, in particular the distribution of
their λ values, and we found it is still nonuniform, resembling
that in Fig. 4. The KS test of compatibility of the λ distributions
obtained from our subsample and the whole sample of asteroids
gave us a likelihood QKS ' 0.90 that they have the same parent
distribution. We repeated our experiment several times, creating
new subsamples, and obtained the same results. We also ran the

2 ftp://ftp.lowell.edu/pub/elgb/astorb.html
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Fig. 6. Distributions of ecliptical longitudes λ of poles for different lon-
gitudes of ascending node Ω.

same experiment in the Laplace reference system, but the choice
of reference plane does not influence the results. These exper-
iments suggest that nonuniformity in the distribution of orbital
nodes does not play fundamental role in the nonuniform distri-
bution of pole longitudes of asteroid spins.

Yet, we would expect some relation between Ω and λ should
exist. For instance, plotting λ distributions for asteroids in each
of the Ω bins described above, we obtained data shown in Fig. 6.
The results indicate that in each of the bins of restricted Ω val-
ues, distribution of pole longitude peaks at '(Ω − 90◦). This is
actually understandable in the simplest model, in which the spin
axis of each asteroid just uniformly precesses about the normal
to its osculating orbit due to solar gravitational torque. We have
quantitatively tested how much a simple geometrical effect of
such precession could contribute to the observed dependence of
ecliptical longitude λ on node Ω. To that goal we assumed the
pole position in the moving orbital plane is set with the obliq-
uity ε and we chose the inclination of orbit I and the longitude
of ascending node Ω. This initial set up was changed several
times, specifically, we tested values of inclination sin I = 0.10,
0.15, 0.30, values of node Ω = 10◦, 170◦, 250◦ and values of
obliquity ε < I, ε > I. Assuming a simple regular precession,
we randomly picked many values of longitude ϕ, uniform in 0◦
to 360◦. We then transformed poles to the ecliptic system, de-
termined appropriate λ and construct a model distribution of the
ecliptical longitudes. Results of these simple simulations satis-
fied our hypothesis of geometrical effect; for ε < I, the distribu-
tion of λ was only a tight interval of values near '(Ω− 90◦), and
for ε > I, the λ values ranged the whole interval from 0◦ to 360◦,
but with a peak at '(Ω − 90◦). However, when we summed dis-
tributions of λ for values of ε from assumed distribution n(cos ε)
for a fixed I and Ω, we reached an almost uniform final distri-
bution, which is far from the distributions shown in Fig. 6. We
tested n(cos ε) uniform and also some unrealistic distributions,
for example, we assumed there were ten times more bodies with
ε < 45◦ than with ε > 45◦, but with insignificant effect on the
final distribution.

Therefore, using two lines of evidence we show that the
nonuniformity of the ecliptic Ω values together with only simple
geometric (projection) effects cannot explain the nonuniformity
in the distribution of pole ecliptic longitudes. However, the flow
of pole orientation in the orbit frame may be much more com-
plicated than just a simple steady precession about the orbital
angular momentum vector. This is because of a possibility of
resonant, spin-orbit effects described by Cassini dynamics (e.g.,
Colombo 1966; Henrard & Murigande 1987; Vokrouhlický et al.
2006). In fact, the large-asteroid subgroup in the Koronis family,
the Slivan sample, has actually been identified as being captured
in the most prominent s6 Cassini resonance resulting in a com-
mon orientation of their pole longitudes near the stationary point
at ecliptic longitude '35◦ (e.g., Vokrouhlický et al. 2003). There-
fore, we examined whether such resonant effects could help us
to explain the nonuniformity in the λ distribution.

However, we found the answer is negative. First, if the cap-
ture in the aforementioned Cassini resonance played a domi-
nant role population wise, the pole longitude distribution would
be peaked at the stationary point of the resonance (shifted
by some 35◦−40◦ from the maximum seen in Fig. 4). Next,
Vraštil & Vokrouhlický (2015) have shown that the capture in
this resonance is generally unstable (especially in the inner part
of the main belt), and that its phase volume is small (few percent
at maximum). The latter implies that expecting the spin pole lo-
cated in this resonance by chance is very small. In order to verify
these preliminary conclusions, we used the software described
in Vraštil & Vokrouhlický (2015) to probe the expected effect.
This is basically much more sophisticated variant of our previ-
ous Monte Carlo experiment in which we assumed a steady pre-
cession in the orbit frame. Here we propagated orbit and spin
evolution of the first 10 000 main belt asteroids, giving them
random initial rotation state parameters, such as rotation period,
pole orientation, and dynamical ellipticity. We then numerically
propagated orbit and spin evolution for tens of millions of years
and monitored distribution of simulated ecliptic longitudes of the
sample. We found the sample quickly forgets given initial condi-
tions and fluctuates about a steady-state situation with basically
uniform distribution of ecliptic longitudes of rotation poles. We
repeated the numerical experiment several times with different
initial conditions but always obtained very similar results.

3.2. Distributions of λ for groups of asteroids

Our next step was to study the distributions of λ for various
groups of asteroids, specifically for asteroids with different sizes,
different spectral types, dynamical families, and asteroids in dif-
ferent parts of the main belt. Distributions were again compared
using the KS test.

3.2.1. Asteroids with different sizes

We divided asteroids into eight groups according their diameters:
0–3; 3–6; 6–9; 9–12; 12–15; 15–25; 25–50; and 50–1000 km; the
number of asteroids decrease with higher diameters, therefore,
we chose wider ranges of bins. We preferentially used diameters
derived from the observations of the WISE satellite (Masiero
et al. 2011)3. For asteroids not included there, we used diame-
ters from AstOrb catalog. We compared distributions with each
other and found that the differences are not significant, which
means that the data do not reveal any dependence of λ on size.

3 http://wise2.ipac.caltech.edu/staff/bauer/NEOWISE_
pass1/
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Fig. 7. Distribution of ecliptical latitudes β for groups of asteroids with
different sizes. All distributions are divided by the distribution for syn-
thetic data with noise 0.15 and model noise 0.06 (Fig. 2 on the right,
black curve). This is the simplest debiasing procedure we can use.

We also studied the dependence of ecliptical latitude β on size
and tried to confirm the result from Hanuš et al. (2011). In Fig. 7,
we can see that, even though the distributions show preference
for sin β & 0.9, with decreasing diameter D, there is a visible
depopulation of spin axes close to the ecliptic plane, which is in
agreement with findings of Hanuš et al. (2011).

This is yet another interesting hint about the origin of the
nonuniformity of λ distribution. The affinity of latitudes toward
extreme values for small asteroids clearly shows that the YORP
effect has been affecting the population in a size selective way
exactly predicted by the theory. However, the distribution of the
longitudes does not indicate this size-selectivity, implying the
YORP effect is not the primary mechanism in the longitude story.
Indeed, the theory of the YORP effect so far has not predicted
any significant effects for the pole longitude.

3.2.2. Taxonomic classes

We compared distributions of λ between asteroids belonging to
the taxonomic class C and S (using the AstOrb catalog), which
are the largest groups. The result of KS test, QKS = 0.45, indi-
cates that there is no significant difference. The fact that the dis-
tribution of λ is independent of the sizes and taxonomic classes
simplified tests with other subpopulations.

3.2.3. Different parts of the main belt

We also studied the distributions of λ for groups of asteroids lo-
cated in different parts of the main belt. Specifically, asteroids
with different inclinations sin I, eccentricities e, and semimajor
axes a of their orbits. We found that the distribution of λ is not
dependent on the eccentricity, however it is strongly dependent
on the inclination (see Fig. 8). For sin I < 0.02 there is a huge
excess of asteroids with λ from 60◦ to 100◦, there are more than
four times more bodies than for λ ∼ 150◦. With increasing I the
distributions are closer to the uniform distribution. This result is
surprising and it actually goes against the ideas about simple ge-
ometrical (projection) effects discussed in Sect. 3.1.2, suggesting
that perhaps some unidentified yet dynamical effects are at play.

We also studied the dependence of the distribution of λ
on the inclination of orbit in the invariant plane. Although the
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sin I < 0.04, for which the maximum of distributions of λ for λ ∼ 80◦
is highest. The locations of some more populous asteroid families are
emphasized.

maximum of distribution for sin I < 0.02 is slightly lower, there
is still strong dependence on the inclination.

We constructed distributions of λ for individual Ω bins (as in
Fig. 6) for asteroids with sin I < 0.04. The peaks of all distri-
bution were for λ from 60◦ to 100◦, which corresponds with the
distribution of λ for small inclinations. This means that for orbits
with small inclination, the dependence of λ on Ω is suppressed.

We then constructed distributions for asteroids with different
semimajor axes a. We separated the main belt into four parts (see
Fig. 9), the inner, middle, pristine4, and outer belt, which are sep-
arated by mean-motion resonances with Jupiter. To eliminate the
dependence on the inclination of orbit we divided asteroids of
each part into bins with different inclination (we used the same
bins as in Fig. 8) and we randomly chose such number of aster-
oids to have the same number of asteroids in corresponding bins
of two populations. In other words, the distributions of inclina-
tion of orbit for the compared populations were the same. The
results of KS tests show that only the pristine zone, bracketed by
the powerful mean motion resonances 5/2 and 7/3 with Jupiter
at '2.82 au and '2.96 au, has significantly different distribution
from the middle and outer belt (QKS < 3×10−6); specifically, the
nonuniformity is more significant in pristine zone than in other
parts. For the pair inner belt and pristine zone, the KS test gives
QKS = 0.00013.

4 We adopted the word pristine from Brož et al. (2013).
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3.2.4. Dynamical families

Finally, we studied dynamical families. The family membership
of asteroids was taken from Nesvorný et al. (2015). Distributions
of individual families were compared with the distribution of
corresponding background formed with asteroids from the same
part (inner, middle, pristine, and outer) as the family and with
inclinations of orbit from the interval defined by the members
of the family. The KS test did not reveal any significant differ-
ence between any family and its background. We also compared
families located approximately in the same interval of inclina-
tion (see Fig. 9) with each other, specifically: Themis with Mas-
salia; Vesta with Eos, Hygiea and Flora; Hygiea with Flora; and
Koronis with Nysa Polana. Again, the KS test showed no dif-
ference for these pairs of families. The distributions of λ for six
selected families are shown in Fig. 10. The differences we can
see between the distributions are caused only due to the depen-
dence on the inclination of orbit.

The strong maximum of the λ distribution between
'(80◦−110◦) in the Koronis family does not fit the interval of ex-
pected librators in Slivan states described by Vokrouhlický et al.
(2003) which would be shifted by about 40◦ to 50◦ degrees to-
ward lower values.

3.3. The bootstrap method

Formally, it is always possible to find the best ecliptical longi-
tude λ and latitude β of the pole, i.e., the lowest χ2. However,
the minimum can be flat and in that case λ is not well deter-
mined. To estimate the errors of determined longitudes we ap-
plied the bootstrap method (Davison & Hinkley 1997) on the
set of measurements for each asteroid; we used the first 10 000
numbered asteroids from the Lowell Observatory database, of
which for 9774 there were enough data points. From the set we
randomly selected data to get the same number of measurements,
but some of them were chosen more than once and some of them
were missing. We repeated this ten times, therefore, we obtained
ten modified sets of measurements and thus ten possible longi-
tudes for each asteroid. We considered that the longitude was
well determined when the maximum difference among ten val-
ues of λ was ≤50◦. This was satisfied for 3930 from 9774 as-
teroids; the mean value of the largest differences for these bod-
ies is 30◦. The dependences of λ on the longitude of ascending
node Ω and on the inclination of orbit I for this new sample of
3930 asteroids did not significantly change, which means that the
poorly constrained models did not cause any systematic effect to
distribution of λ.
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4. Distributions of the ratio of axes a/b

In this section, we study shapes of asteroids (specifically the ra-
tios of axes a/b and b/c) derived from our model. We tested our
model on synthetic data as described above in Sect. 2.1, the as-
sumed noise was 0.15. The values of ratios a/b and b/c obtained
with our model are compared with values from DAMIT models
derived from the principal moments I1, I2, I3 of the inertia tensor
(assuming uniform density),

a
b

=

√
I3 − I1 + I2

I3 + I1 − I2
,

b
c

=

√
I1 − I2 + I3

I1 + I2 − I3
· (18)

Since the values of ratios computed from our model were ob-
tained from synthetic data based on DAMIT, they should be
the same as values derived from the inertia tensor. The result
is shown in Fig. 11. We calculated the linear (Pearson) correla-
tion and Spearman correlation for both ratios, the coefficients ρ
are summarized in Table 1. We obtained a good correlation for
the ratio a/b, while the ratio b/c is not so well determined.

For the real data, the setup was the same as described in
Sect. 3: weight w = 5; model noise σmodel = 0.06; and data noise
σL = 0.07, respectively, σL was calculated according Eq. (17)
for asteroids less bright than 80. We compared resulting ratios
a/b and b/c of 765 asteroids included in DAMIT with a/bDAMIT
and b/cDAMIT and calculated correlation coefficients (see Table 1
and also Fig. 12). The correlation coefficients for the ratio b/c
are lower than 0.1, which implies that b/c is not well determined
and in following tests we will study only the ratio a/b. The prob-
lem to determine the ratio b/c is linked with our previous result
that the distribution of ecliptical latitudes β, especially for small
bodies (see Fig. 7), shows a preference for high values of β be-
cause for a spin axis with high latitude (small obliquity) we have
observations only from limited range of polar aspect angles. The
determination of b/c, however, requires observations from wide
range of aspect angles.

As in Sect. 3.3 we used the bootstrap method to estimate
errors of the ratio a/b. The allowed maximum difference among
ten calculated values of a/b was 0.25, 3819 remain from 9774
asteroids, and the mean value of the largest differences is 0.18.
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Table 1. Linear (Pearson) and Spearman coefficients ρ of correlation.

ρ linear ρSpearman

Synthetic data, a/b 0.88 0.91
Synthetic data, b/c 0.35 0.38

Real data, a/b 0.48 0.61
Real data, b/c 0.053 0.088
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4.1. Distributions of a/b for asteroids with different sizes

As in the case of the ecliptic longitude λ, we studied distributions
of a/b for several groups of asteroids. The test for asteroids with
different diameters showed that larger asteroids (D > 25 km) are
more spheroidal (values of a/b closer to 1) and smaller asteroids
are more elongated (a/b ∼ 1.6) as is shown in Fig. 13. The differ-
ences between distributions in Fig. 13 on the right are much big-
ger than the uncertainties estimated from bootstrap method 0.18.

This dependence of a/b on D also remained for a smaller
sample of 3570 asteroids, which were obtained from the boot-
strap method as having well-determined a/b. Since such depen-
dence on diameter can influence the comparison of distributions
of a/b of other populations of asteroids, we have to eliminate it
in the following tests.

McNeill et al. (2016) determined an average axial ratio for
asteroids with diameter D < 8 km from PanSTARRS 1 survey
as 1:0.85, i.e., a/b = 1.18, which is not in agreement with our
findings. For the corresponding range of diameters, we calcu-
lated the average value of a/b for asteroids in DAMIT (derived
from the principal moments of the inertia tensor). The average

value is a/bDAMIT = 1.47, however, the sample of asteroids
from DAMIT with D < 8 km is biased. The DAMIT sample
contains preferentially more elongated asteroids, for which is
easier to find the solution of the light curve inversion method.
We also checked our result, that larger asteroids are more often
spheroidal, against the asteroids in DAMIT; for D > 50 km we
obtained the average value of a/bDAMIT = 1.23 (our model gives
a/b = 1.29). We can conclude that the dependence of a/b on di-
ameter is real, however our model gives higher values of a/b for
asteroids with D < 25 km. Considering the dispersion of values
σL in Fig. 3, this could be because of the underestimated data
noise for smaller and less bright asteroids.

4.2. Different parts of the main belt

Next, we studied distribution of a/b for asteroids with different
inclinations of their orbits. To remove the dependence of a/b on
diameter, we used only asteroids with D < 20 km. The differ-
ences between resulting distributions of a/b are not so distinct
as when we studied the dependence on diameter, and they are
comparable with the uncertainties in a/b.

We also compared distributions of a/b for asteroids with dif-
ferent semimajor axes, specifically inner, middle, pristine, and
outer belt, using only asteroids with diameters D < 20 km. The
differences between distributions of a/b are not significant and
are again comparable with the uncertainties in a/b.

4.3. Dynamical families and taxonomic classes

As in Sect. 3.2.4, we compared dynamical families with their
backgrounds, using again only asteroids with D < 20 km. We
did not reveal any significant differences between distributions of
a/b of families and corresponding backgrounds. Also the com-
parison of families with each other did not show any differences
larger than uncertainties in a/b.

Szabó & Kiss (2008) derived distributions of a/b for eight
asteroids families using data from the Sloan Digital Sky Sur-
vey (SDSS). However, their distributions are different from ours;
they are often bimodal (Figs. 4−6 therein) and the maximum
is for a/b ∼ 1.2 (our distributions have maximum around 1.6).
They also suggest a possible dependence on the age of families
(old families contain more spheroidal members), but we do not
observe that in our distributions. We believe that they used an
assumption that could influence the results. First they assumed
that the rotational axes of all asteroids are perpendicular to the
line of sight. Then they also tested fixed value β = 50◦ for all
asteroids.

The last populations of asteroids we compared were different
taxonomic classes, specifically C and S types. The result of KS
test, QKS = 0.17, did not show any difference between these two
groups.

5. Conclusions

We developed a new method that allows us to determine the ori-
entation of rotational axes and equatorial axes ratio a/b, assum-
ing a triaxial shape model, using sparse data obtained by all sky
surveys. The goal of our approach is to provide a distribution
function of the solved-for parameters for a large sample of main
belt asteroids rather than detailed rotational state of individual
objects. A limitation of our method is that it provides, first, lon-
gitude λ of the rotation pole in the interval (0◦, 180◦) only, with
values in (180◦, 360◦) transformed to (0◦, 180◦) by λ = λ − 180◦
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rule; and second, absolute value of the ecliptic latitude β, instead
of β itself. The latter means that we cannot determine whether
the asteroid rotates in a prograde or retrograde sense. Addition-
ally, our model also does not provide rotational period.

We first justified our method by applying it to a synthetic
sample of asteroids and also to a known sample of objects with
rotational states resolved by more detailed methods that can be
found in the DAMIT database. We observed that our method re-
produces well the distribution of the ecliptic longitudes and the
equatorial axes ratio a/b in a statistical sense. The uncertainties,
estimated using the bootstrap method, are '30◦ in λ and '0.2 in
a/b without systematic effects on the mean value. The determi-
nation of ecliptical latitudes β shows bias toward finding prefer-
entially spin axes near the ecliptic pole. Our tests may, however,
provide a rough approximation of the bias function.

We then applied our method to 69 053 main belt asteroids
for which a suitably rich and good quality set of observations
were obtained from the Lowell Observatory database. The main
results are as follows:

1. The distribution of λ is nonuniform, with an excess of aster-
oids with λ values between 60◦ and 100◦. Similarly, there is a
deficiency of asteroids with λ values between 130◦ and 160◦.
Curiously, our tests revealed a correlation of this nonuni-
formity with orbital inclination: asteroids with very low-
inclination orbits (sin I ≤ 0.04) show the effect more sig-
nificantly than asteroids with higher inclination orbits.

2. While not a primary result from our paper, we also deter-
mined distribution of the absolute value of sine of ecliptic
latitude | sin β|. We confirm previously reported results that
asteroids with size D ≤ 25 km have their pole latitude tightly
clustered about the poles of ecliptic. This is due to the YORP
effect that makes the pole latitude to approach the extreme
values asymptotically.

3. We also found that small main belt asteroids (D ≤ 25 km) are
more elongated, with a median of ratio a/b ' 1.6, compared
to the large asteroids (D ≥ 50 km), which have a median of
ratio a/b ' 1.3.

4. We also analyzed our results for populations in different as-
teroid families. As to the λ distribution, they mainly derive
from their inclination value of the aforementioned inclina-
tion dependence. For instance, the low-inclination families
such as Massalia or Themis have the strongest nonunifor-
mity of the λ distribution in our results.

Using a more detailed method, we confirmed the previously re-
ported unexpected nonuniformity in distribution of ecliptic lon-
gitude of spin axes of the main belt asteroids. We tested various
hypotheses of its origin, but we had to reject them, proving that
the proposed processes would not lead to a significant enough
nonuniformity. Therefore, this result remains enigmatic and re-
quires further analysis. In particular, it would be very useful if
more detailed methods of spin state and shape inversion from as-
tronomical data confirmed this result and provided more details.
We note, for instance, that methods both in Bowell et al. (2014)
and here are not able to discriminate between the prograde- and
retrograde-rotating asteroids. It would be important to see, if
the excess in λ values at about 80◦ concerns equally well both
classes, or whether it is preferentially associated with one of
them. This could hint about the underlying processes that cause
the effect. In the same way, all methods used so far fold the whole
range of ecliptic λ values to a restricted interval (0◦, 180◦). This

is because of their intrinsic drawback of not distinguishing data
for λ and λ + 180◦ cases. Yet, breaking this uncertainty may
also help to disentangle the underlying physical causes of the
nonuniformity.

Justifications of reliability of our method, by running blind
tests against synthetic populations of asteroids and limited
datasets for which complete models are already available, make
our method a solid tool for further studies. It would be interest-
ing to apply it to more accurate photometric data provided by
Large Synoptic Survey Telescope (LSST).
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Hanuš, J., Ďurech, J., Brož, M., et al. 2011, A&A, 530, A134
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Hanuš, J., Ďurech, J., Oszkiewicz, D. A., et al. 2016, A&A, 586, A108
Hapke, B. 1981, J. Geophys. Res., 86, 4571
Hapke, B. 1993, Theory of reflectance and emittance spectroscopy (UK:

Cambridge University Press)
Henrard, J., & Murigande, C. 1987, Celest. Mech., 40, 345
JeongAhn, Y., & Malhotra, R. 2014, Icarus, 229, 236
Kaasalainen, M. 2004, A&A, 422, L39
Kaasalainen, M., & Torppa, J. 2001, Icarus, 153, 24
Kaasalainen, M., Torppa, J., & Muinonen, K. 2001, Icarus, 153, 37
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Abbreviations

A – amplitude
α – solar phase angle
AstOrb – The Asteroid Orbital Elements Database
β – ecliptical latitude of the spin axis
β? – pole co-latitude
CDF – cumulative distribution function
D – diameter
DAMIT – Database of Asteroid Models from Inversion Techniques
DF – distribution function
ε – obliquity
η – dispersion of squared brightness
KS – Kolmogorov-Smirnov
λ – ecliptical longitude of the spin axis
L – brightness
LCDB – The Asteroid Lightcurve Database
LEADER – Latitudes and Elongations of Asteroid Distributions

Estimated Rapidly
LONEOS – Lowell Observatory Near-Earth Object Search
LSST – Large Synoptic Survey Telescope
MBAs – main-belt asteroids
MMR – mean motion resonance
NEAs – near-Earth asteroids
Ω – longitude of ascending node
P – rotation period
Pan-STARRS – Panoramic Survey Telescope & Rapid Response System
QKS – probability that two distributions belong to the same parent distribution
ρ – density
σ – noise
SDSS – Sloan Digital Sky Survey
SFD – size-frequency distribution
WISE – Wide-field Infrared Survey Explorer
YORP – Yarkovsky-O’Keefe-Radzievskii-Paddack
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