Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Pavel Rytír
Lattices and Codes
Department of Applied Mathematics
Supervisor: Doc. RNDr. Martin Loebl, CSc.
Study program: Computer Science, Discrete Mathematics and Optimization

I would like to thank to my supervisor Martin Loebl for his support and comments. I am grateful to Ondřej Pangrác for a fruitful discussion.

I declare that I wrote the thesis by myself and listed all used sources. I agree with lending of this thesis.

Title: Lattices and Codes
Author: Pavel Rytiř
Department: Department of Applied Mathematics
Supervisor: Doc. RNDr. Martin Loebl, CSc.
Supervisor's e-mail address: loebl@kam.mff.cuni.cz
Abstract: This thesis studies triangular configurations, binary matroids, and integer lattices generated by the codewords of a binary code. We study the following hypothesis: the lattice generated by the codewords of a binary code has a basis consisting only of the codewords. We prove the hypothesis for the matroids with the good ear decomposition. We study the operation of edge contraction in the triangular configurations. Especially in cycles and acyclic triangular configurations. For an arbitrary graph we find a triangular configuration with the skeleton containing this graph as a minor. For every binary matroid we construct a triangular configuration such that the matroid is a minor of the configuration. We prove that between the cycle spaces of the matroid and the configuration exists a bijection. The bijection maps the circuits of the matroid to the circuits of the configuration.
Keywords: code, matroid, triangular configuration, integer lattice, minor.

Název práce: Mřižky a kódy
Autor: Pavel Rytír
Katedra: Katedra aplikované matematiky
Vedoucí diplomové práce: Doc. RNDr. Martin Loebl, CSc.
e-mail vedoucího: loebl@kam.mff.cuni.cz
Abstrakt: Diplomová práce zkoumá trojúhelníkové konfigurace, binární matroidy a mřižky generované binárními kódy. Zkoumáme domněnku, zdali mřǐžka generovaná kódovými slovy binárního kódu má bázi skládající se pouze z kódových slov. Domněnku dokážeme pro matroidy s dobrou uchovou dekompozicí. Prostudujeme operaci hranové kontrakce trojúhelníkové konfigurace. Hlavně dopad kontrakce na cyklus a acyklickou trojúhelníkovou konfiguraci. Dokážeme, že pro každý graf existuje trojúhelníková konfigurace s kostrou která obsahuje tento graf jako minor. Pro každý binární matroid sestrojíme trojúhelníkovou konfiguraci, která obsahuje tento matroid jako minor. Navíc dokážeme, že mezi prostory cyklů konfigurace a matroidu existuje bijekce. Tato bijekce zobrazuje kružnice matroidu na kružnice konfigurace. Klicčová slova: kód, matroid, trojúhelníkova konfigurace, mřízka, minor.

Contents

1 Introduction 1
2 Preliminaries 2
2.1 Matroids 2
3 Ear Decomposition of Connected Matroids 5
4 Lattices and Codes 8
4.1 Codes 8
4.2 Lattices 8
4.2.1 Definitions 8
4.2.2 Bases of Lattices 9
4.3 Notations 10
5 Lattices of Binary Matroids 11
5.1 Definitions and the Introduction to the Problem 11
5.2 Basic Facts 11
5.3 New Results 13
6 Triangular Configurations 18
6.1 Definitions 18
6.2 Triangular Matroid 19
7 Edge Contraction of Triangular Configurations 23
7.1 Definitions 23
7.2 Cycles and Acyclic Sets 24
7.3 Triangular Matroid 27
7.4 Euler Characteristic 28
8 Skeleton of Triangular Configurations 30
9 Lattices of Triangular Configurations 33
9.1 Some Interesting Triangular Configurations 33
9.2 Local Constructions and Edge Contraction 34
10 Minors of Triangular Configurations 36

1 Introduction

In this thesis we study triangular configurations, binary matroids, binary codes, and lattices generated by the cycles of a binary matroid.

In Section 2 we define matroids and graphs. We present some basic facts about matroids.

In Section 3 we define the ear extension and the ear decomposition of a binary matroid. Then we prove the existence of an ear decomposition for every connected matroid and that the cycle space of the matroid has a basis consisting of the "ears" vectors.

In Section 4 we define codes, and integer lattices and describe their basic properties.

In Section 5 we introduce the hypothesis about the basis of the lattice generated by a binary code. The hypothesis is that the lattice generated by the codewords of a binary code has a basis consisting only of the codewords. In Subsection 5.3 we present a sufficient condition for constructing a cycle lattice basis of an ear extension of M by extending a cycle lattice basis of the matroid M.

In Section 6 we define the triangular configuration and its geometric representation.

In Section 7 we study the edge contraction of a triangular configuration. We describe the properties of the cycles that remain a cycle after edge contraction.

In Section 8 for every graph we show how to find a triangular configuration with the skeleton that has this graph as a minor.

In Section 9 we construct a cycle lattice basis for triangular configurations. This basis is constructed from a cycle lattice basis of an edge contraction.

In Section 10 for every binary matroid we construct a triangular configuration such that the matroid is a minor of the configuration. We prove that between the cycle spaces of the matroid and the configuration exists a bijection. The bijection maps the circuits of the matroid to the circuits of the configuration. We show a relationship between the weight polynomials of the configuration and the matroid.

2 Preliminaries

In this section we define basic concepts. We assume that the reader is familiar with the linear algebra.

2.1 Matroids

We use standard definitions, which can be found in Oxley [4].
Let M be a set. The incidence vector of a set A a subset of M is a vector χ^{A} of $\{0,1\}^{|M|}$ such that $\chi_{e}^{A}:=1$ if and only if $e \in M$.

A matroid M is an ordered pair (E, \mathcal{I}) consisting of a finite set E and a collection \mathcal{I} of subsets of E satisfying the following three conditions:
(I1) $\emptyset \in \mathcal{I}$.
(I2) If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$.
(I3) If I_{1} and I_{2} are in \mathcal{I} and $\left|I_{1}\right|<\left|I_{2}\right|$, then there is an element e of $I_{2}-I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$.

Elements of \mathcal{I} are called independent sets. For particular matroid M, we denote the sets E and \mathcal{I} by $E(M)$ and $\mathcal{I}(M)$, respectively. The maximal independent sets are called bases. The collection of bases of M is denoted by \mathcal{B} or $\mathcal{B}(M)$.

Any subset of E that is not in \mathcal{I} is called dependent. A minimal dependent set is called circuit. Let T be a maximal independent set of M. For $e \in E \backslash T$, let C_{e} denote the fundamental circuit of e with respect to T; that is, C_{e} is the unique circuit such that $e \in C_{e} \subseteq T \cup\{e\}$.

The collection of circuits of M is denoted by \mathcal{C} or $\mathcal{C}(M)$. An element e of M that is a circuit is called a loop. Moreover, elements f, g of M are said parallel, if $\{f, g\}$ is a circuit.

A parallel class is a maximal subset X of E such that every two distinct elements of X are parallel and no element of X is a loop. A parallel class that has only one element is called trivial. A matroid M is called simple, if it has neither loops nor non-trivial parallel classes.

Let M be a matroid with a collection of bases \mathcal{B}. Then the dual of M, denoted by M^{*}, is the matroid with the collection of bases $\mathcal{B}^{*}:=\{E(M)-B$: $B \in \mathcal{B}\}$. We omit a proof that the dual is a matroid. The independent sets, circuits, bases in the dual matroid are called coindependent sets, cocircuits, cobases, respectively.

In this text we will frequently work with circuits rather than independent sets. The next lemma shows that a matroid can be defined in terms of circuits.

Lemma 2.1. Let \mathcal{C} be a collection of subsets of a set E. Then, \mathcal{C} is the collection of circuits of a matroid on E if and only if \mathcal{C} satisfies the following conditions:
(C1) $\emptyset \notin \mathcal{C}$.
(C2) If C_{1} and C_{2} are members of \mathcal{C} and $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$.
(C3) If C_{1} and C_{2} are distinct members of \mathcal{C} and $e \in C_{1} \cap C_{2}$, then there is a member C_{3} of \mathcal{C} such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-e$.

Matroids have a lot of equivalent definitions. Another definitions can be found in Oxley [4].

Let M be a matroid (E, \mathcal{I}). Let T be a subset of E. Then the deletion of T from M or the restriction of M to $E \backslash T$ is the pair ($E \backslash T,\{I \subseteq E \backslash T$: $I \in \mathcal{I}\})$. It is denoted by $M \backslash T$ or $M \mid(E \backslash T)$, respectively. For the deletion holds that $\mathcal{C}(M \backslash T)=\{C \subseteq E \backslash T: C \in \mathcal{C}(M)\}$.

Let M / T, the contraction of T from M, be given by $M / T=\left(M^{*} \backslash T\right)^{*}$. For the contraction holds that $\mathcal{C}(M / T)=\{C \backslash T: C \in \mathcal{C}(M)\}$.

A matroid N that is obtained from a matroid M by a sequence of deletions and contractions is called a minor of M.

Two matroids M_{1} and M_{2} are isomorphic, written $M_{1} \cong M_{2}$, if there is a bijection ψ from $E\left(M_{1}\right)$ to $E\left(M_{2}\right)$ such that for all $X \subseteq E\left(M_{1}\right) \psi(X)$ is independent in M_{2} if and only if X is independent in M_{1}.

A graph G consists of a nonempty set $V(G)$ of vertices and a multiset $E(G)$ of edges each of which consists of an unordered pair of (possibly identical) vertices.

The degree of a vertex v is the number of edges incident with v, each loop counting as two edges.

A graph H is a subgraph of a graph G if $V(H)$ and $E(H)$ are subsets of $V(G)$ and $E(G)$, respectively.

A graph is a cycle if every vertex has an even degree. A nonempty cycle that does not contain any other cycle is called circuit.

Lemma 2.2. Let E be the set of edges of a graph G. Let \mathcal{C} be the collection of circuits of G. Then \mathcal{C} is the set of circuits of a matroid on E.

The matroid from the lemma above is called cycle matroid of a graph G. A matroid that is isomorphic to the cycle matroid of a graph is called graphic.

In the next lemma we introduce the vector matroid.

Lemma 2.3. Let E be the set of labels of columns of an $m \times n$ matrix A over a field F. Let \mathcal{I} be the set of subsets X of E for which the multiset of columns labeled by X is linearly independent. Then (E, \mathcal{I}) is a matroid.

If a matroid M is isomorphic to a vector matroid of a matrix D over a field F, then M is said to be representable over $F ; D$ is called representation for M over F. A matroid is said to be representable, if it is representable over some field F. A matroid that is representable over two element field \mathbb{Z}_{2} is called binary.

If X and Y are sets then their symmetric difference, $X \triangle Y$, is the set $(X \cup Y) \backslash(X \cap Y)$. One can easily checks that the operation of symmetric difference is both commutative and associative.

The cycle of a binary matroid is a symmetric difference of any set of circuits. We abbreviate notions, and the collection of cycles of a binary matroid M denote by $\mathcal{C}(M)$. Obviously, $\mathcal{C}(M)$ is closed under taking symmetric difference.

The circuit (cycle) space and the cocircuit (cocycle) space of a binary matroid M are the vector spaces over \mathbb{Z}_{2} that are generated by the incidence vectors of the cycles and cocycles, respectively, of M.

Lemma 2.4. Let M be a binary matroid. Let A be a representation of M. Then
(i) if C is a cycle of M and C^{*} is a cocycle of M then $\left|C \cap C^{*}\right|$ is even;
(ii) a vector x belongs to the circuit space of M if and only if $A x=0$;
(iii) a vector x belongs to the cocircuit space of M if and only if x is a linear combination of the rows of the matrix A;
(iv) a cycle C is a circuit if and only if C is minimal (that is, it does not contain any other cycle) and nonempty.

In this text we will work only with binary matroids.

3 Ear Decomposition of Connected Matroids

In this section we introduce the ear decomposition. The decomposition is a generalization of the ear decomposition of 2 -vertex connected graph. A similar decomposition that use both operations of contraction and deletion is defined in Oxley [4]. The decomposition that use only deletions is already known but we give our definition and proofs.

A matroid M is connected if and only if for every pair of distinct elements of $E(M)$ there is a circuit containing both.

Let V_{1} and V_{2} be vector spaces then the set of all sums $v_{1}+v_{2}$ of vectors $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ is called sum of vector spaces V_{1} and V_{2}, denoted by $V_{1}+V_{2}$. We abbreviate this notion, and if C_{1} and C_{2} are collections of sets, then the set of all symmetric differences $c_{1} \triangle c_{2}$ of sets $c_{1} \in C_{1}$ and $c_{2} \in C_{2}$ is called sum of collections of sets, denoted by $C_{1}+C_{2}$.

A matroid M is an ear extension of a matroid N, if the following conditions are satisfied. N is obtained from M by deleting a nonempty subset T of $E(M)$. There is a circuit C of M such that T is a proper subset of C. The set T is a coparallel class of M. There is no matroid M^{\prime} such that M^{\prime} is an ear extension of N and M is an ear extension of M^{\prime}. The circuit C and the set T are called ear circuit and ear, respectively, of M.
Lemma 3.1. Let M be an ear extension of N. Let N be a connected matroid. Then M is a connected matroid.
Proof. From the definition of the ear extension; $N=M \backslash T$. Let C be a circuit of M containing T. Let u, v be elements of $E(M)$.

If u, v belong to $E(N)$ then there is, by assumptions that N is connected, a circuit containing both.

If u, v belong to T then there is also a circuit containing both, as T is a subset of some circuit.

So, suppose that $u \in E(N)$ and $v \in T=E(M) \backslash E(N)$. Let w be an element of $E(N)$ such that $w \in C$. As N is connected, there is a circuit C^{\prime} containing w, u. Then $C \triangle C^{\prime}$ is a circuit, as $C \cap C^{\prime} \neq \emptyset$. And this circuit contains elements u, v.

Therefore M is connected.
Proposition 3.1. Let M be a connected matroid and suppose that $|E(M)| \geq$ 2. Then there is a sequence M_{0}, \ldots, M_{n} of connected matroids such that M_{0} contains just one circuit. The matroid M_{i} is an ear extension of M_{i-1}, for $i=1, \ldots, n$. Moreover $M=M_{n}$.
Proof. As the matroid M has two distinct elements and is connected, then it contains at least one circuit C^{\prime}. Set $M_{0}:=M \mid C^{\prime}$. Let M_{0}, \ldots, M_{n} be a maximal desired sequence. For a contradiction suppose that $M_{n} \neq M$.

As M is connected, there is a circuit containing both elements of $E(M) \backslash$ $E\left(M_{n}\right)$ and $E\left(M_{n}\right)$. The collection of these circuits denote by \mathcal{D}. Let C be a circuit from \mathcal{D} such that for every $C^{\prime} \in \mathcal{D} ;\left(C^{\prime} \backslash E\left(M_{n}\right)\right) \neq\left(C \backslash E\left(M_{n}\right)\right)$ holds $\left(C^{\prime} \backslash E\left(M_{n}\right)\right) \nsubseteq\left(C \backslash E\left(M_{n}\right)\right)$. Let T be the set $C \backslash E\left(M_{n}\right)$ and let M_{n+1} be the matroid on the ground set $E\left(M_{n}\right) \cup T$ and with the collection of cycles $\mathcal{C}\left(M_{n}\right)+\{0, C\}$. Obviously; $M_{n+1} \backslash T=M_{n}$, and the set T is a proper subset of C.

For a circuit $C^{\prime} \in \mathcal{C}(M) \backslash \mathcal{C}\left(M_{n}\right) ; C^{\prime} \subseteq E\left(M_{n+1}\right)$ holds $\left(C \triangle C^{\prime}\right) \subseteq E\left(M_{n}\right)$. Thus $\mathcal{C}\left(M_{n+1}\right)=\mathcal{C}\left(M_{n}\right)+\{0, C\}=\left\{C^{\prime} \subseteq E\left(M_{n}\right): C^{\prime} \in \mathcal{C}\left(M_{n}\right)\right\} \cup\left\{C^{\prime} \triangle\right.$ $\left.C \subseteq E\left(M_{n}\right): C^{\prime} \in \mathcal{C}\left(M_{n+1}\right)\right\}=\left\{C^{\prime} \subseteq E\left(M_{n+1}\right): C^{\prime} \in \mathcal{C}(M)\right\}=\mathcal{C}(M \mid$ $\left.E\left(M_{n+1}\right)\right)$. Therefore $M \mid E\left(M_{n+1}\right)=M_{n+1}$, and M_{n+1} is a minor of M.

Let D be a circuit of M_{n+1} containing an element of T. Obviously, D is a symmetric difference of C and some circuit of M_{n}. As the set T and every circuit of M_{n} are disjoint, then D contains the entire set T. Therefore all elements of T are pairwise coparallel. Let u be an element of T. Let v, w be elements of $E\left(M_{n}\right)$. Let D be a circuit containing u, v. Let D^{\prime} be a circuit of M_{n} containing v, w. Then the circuit $D \triangle D^{\prime}$ does not contain the element v and contains the element u. So, the set T is a coparallel class of M_{n+1}. As there is no proper subset T^{\prime} of T such that $M_{n+1} \backslash T^{\prime}$ is an ear extension of M_{n}, then M_{n+1} is an ear extension of M_{n}.

This is a contradiction with the maximality of the sequence. Therefore $M_{n}=M$.

The sequence in the lemma above is called ear decomposition of a matroid M. For a connected matroid M with at least two elements. We define the ear basis in this way. Let C_{0} denote a circuit of M_{0}. Let C_{i} denote the ear circuit of M_{i}. Then the set $\left\{\chi^{C_{0}}, \chi^{C_{1}}, \ldots, \chi^{C_{n}}\right\}$ is called ear basis of $\mathcal{C}(M)$.

Proposition 3.2. Let M be a connected binary matroid such that $|E(M)| \geq$ 2. Let β be an ear basis of M. Then the set β is a basis of the circuit space $\mathcal{C}(M)$.

Proof. We apply induction on the dimension of the circuit space. If dim $\mathcal{C}(M)=1$ then the matroid M has one circuit C. Hence, the ear decomposition of M is M_{0}. Therefore $\beta=\left\{\chi^{C}\right\}$. This is a basis of $\mathcal{C}(M)$.

Suppose that $\operatorname{dim} \mathcal{C}(M)>1$. The matroid M has an ear decomposition $M_{0}, \ldots, M_{n-1}, M_{n}$. By the induction assumptions, the ear basis β^{\prime} of the matroid M_{n-1} is a basis of the circuit space of M_{n-1}. Let C^{\prime} be a cycle of $\mathcal{C}(M) \backslash \mathcal{C}\left(M_{n-1}\right)$. Let C_{n} be the ear circuit of M_{n}. Let T be the ear of M_{n}. As T is a coparallel class of M, then $\chi_{i}^{C^{\prime}}=\chi_{i}^{C_{n}}$ for $i \in T$. Thus, the vector $\chi^{C^{\prime}}+\chi^{C_{n}}$ belongs to $\mathcal{C}\left(M_{n-1}\right)$. Therefore, the vector $\chi^{C^{\prime}}$ is a
linear combination of $\chi^{C_{n}}$ and the vectors of the set β^{\prime}. Hence, the set $\beta=\left\{\chi^{C_{0}}, \ldots, \chi^{C_{n}}\right\}$ is a basis of the circuit space $\mathcal{C}(M)$.

4 Lattices and Codes

4.1 Codes

An alphabet is a set of symbols $\Sigma=\left\{s_{0}, \ldots, s_{m}\right\}$. Let Σ^{n} be a set of n-tuples of symbols. Elements of Σ^{n} are called words. A code is a subset W of Σ^{n}. Elements of W are called codewords.

If W forms a vector space over a field \mathbb{F}, then W is called linear code. A binary linear code is a linear code over two elements field. The weight of a codeword x is the number of nonzero coordinates, denoted by $w(x)$.

4.2 Lattices

4.2.1 Definitions

A lattice in \mathbb{R}^{d} is the set

$$
\begin{equation*}
\mathbb{Z}(X):=\left\{\sum_{x \in X} \lambda_{x} x \mid \lambda_{x} \in \mathbb{Z} \forall x \in X\right\} \tag{4.1}
\end{equation*}
$$

where X is a set of real vectors of \mathbb{R}^{d}. If $\mathbb{Z}(X)$ is a full dimensional lattice, then the dual lattice of $\mathbb{Z}(X)$ is the set

$$
\begin{equation*}
(\mathbb{Z}(X))^{*}:=\left\{x \in \mathbb{R}^{d} \mid x y \in \mathbb{Z} \forall y \in \mathbb{Z}(X)\right\} . \tag{4.2}
\end{equation*}
$$

The following well known relation taken from Fleiner et al. [1] is between a lattice and its dual lattice.

Proposition 4.1. Let $\mathbb{Z}(X)$ be a full dimensional lattice in \mathbb{R}^{d}. Let $(\mathbb{Z}(X))^{*}$ be the dual lattice. Let N be an integer. Then

$$
\begin{equation*}
N \mathbb{Z}^{d} \subseteq \mathbb{Z}(X) \Leftrightarrow(\mathbb{Z}(X))^{*} \subseteq \frac{1}{N} \mathbb{Z}^{d} \tag{4.3}
\end{equation*}
$$

Proof. At first, we observe that

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{d} \mid x y \in \mathbb{Z} \forall y \in N \mathbb{Z}^{d}\right\}=\frac{1}{N} \mathbb{Z}^{d} . \tag{4.4}
\end{equation*}
$$

$" \Rightarrow$
As $N \mathbb{Z}^{d} \subseteq \mathbb{Z}(X)$ then

$$
\begin{equation*}
(\mathbb{Z}(X))^{*}=\{x \mid x y \in \mathbb{Z} \forall y \in \mathbb{Z}(X)\} \subseteq\left\{x \mid x y \in \mathbb{Z} \forall y \in N \mathbb{Z}^{d}\right\}=\frac{1}{N} \mathbb{Z}^{d} \tag{4.5}
\end{equation*}
$$

```
\(" \Leftarrow "\)
    We suppose that \((\mathbb{Z}(X))^{*} \subseteq \frac{1}{N} \mathbb{Z}^{d}\). Thus
```

$$
\begin{equation*}
(\mathbb{Z}(X))^{*}=\{x \mid x y \in \mathbb{Z} \forall y \in \mathbb{Z}(X)\} \subseteq\left\{x \mid x y \in \mathbb{Z} \forall y \in N \mathbb{Z}^{d}\right\}=\frac{1}{N} \mathbb{Z}^{d} \tag{4.6}
\end{equation*}
$$

Therefore $N \mathbb{Z}^{d} \subseteq \mathbb{Z}(X)$.

4.2.2 Bases of Lattices

In this section we define the basis of a lattice and show that every rational lattice admits a basis. The following definitions and proofs in this section are taken from Schrijver [5].

A basis of lattice $\mathbb{Z}(M)$ is a linear independent subset B of \mathbb{R}^{d} such that $\mathbb{Z}(B)=\mathbb{Z}(M)$. A matrix of full row rank is said to be in Hermite normal form if it has the form $\left[\begin{array}{ll}B & 0\end{array}\right]$, where B is a nonsingular, lower triangular, nonnegative matrix, in which each row has a unique maximum entry, which is located on the main diagonal of B.

The following operations on a matrix are called elementary (unimodular) column operations:
(i) exchanging two columns;
(ii) multiplying a column by -1 ;
(iii) adding an integral multiple of one column to another column.

Theorem 4.1. Each rational matrix of full row rank can be brought into Hermite normal form by a series of elementary column operations.
Proof. Let A be a rational matrix of full row rank. Without loss of generality, A is integral. Suppose we have transformed A, by elementary column operations, to the form $\left[\begin{array}{ll}B & 0 \\ C & D\end{array}\right]$ where B is lower triangular and with positive diagonal. Now with elementary column operations we can modify D so that its first row ($\delta_{11}, \ldots, \delta_{1 k}$) is nonnegative, and so that the sum $\delta_{11}+\cdots+\delta_{1 k}$ is as small as possible. We may assume that $\delta_{11} \geq \delta_{12} \geq \cdots \geq \delta_{1 k}$. Then $\delta_{11} 0$, as A has full row rank. Moreover, if $\delta_{12} 0$, by subtracting the second column of D from the first column of D, the first row will have smaller sum, contradicting our assumption. Hence $\delta_{12}=\cdots=\delta_{1 k}=0$, and we have obtained a larger lower triangular matrix.

By repeating this procedure, the matrix A finally will be transformed into $\left[\begin{array}{ll}B & 0\end{array}\right]$ with $B=\left(\beta_{i j}\right.$ lower triangular with positive diagonal. Next do the following:
for $i=2, \ldots, n(:=$ order of $B)$, do the following: for $j=1, \ldots, i-$ 1 , add an integer multiple of the i th column of B to the j th column of B so that (i, j) th entry of B will be nonnegative and less than $\beta_{i i}$.

It is easy to see that after these elementary column operations the matrix is in Hermite normal form.

Corollary 4.1. Every lattice generated by rationals vectors a_{1}, \ldots, a_{m} has a basis.

Proof. We may assume that a_{1}, \ldots, a_{m} span all space. (Otherwise we could apply a linear transformation to a lower dimensional space.) Let A be the matrix with columns a_{1}, \ldots, a_{m} (so A has full row rank). Let $\left[\begin{array}{ll}B & 0\end{array}\right]$ be the Hermite normal form of A. Then the columns of B are linearly independent vectors generating the same lattice as a_{1}, \ldots, a_{m}.

4.3 Notations

We fix some notations.

- The cycle basis is a basis of cycle space over $G F(2)$ of some binary matroid.
- The ear basis is a basis of cycle space over $G F(2)$ of some binary matroid obtained from an ear decomposition.
- The lattice basis is a basis of lattice.
- The cycle lattice basis is a basis of lattice generated by cycle space of some binary matroid consisting only of elements of cycle space (cycles).

5 Lattices of Binary Matroids

5.1 Definitions and the Introduction to the Problem

Let M be a binary matroid, then the cycle lattice of M is the set

$$
\begin{equation*}
\mathbb{Z}(M):=\left\{\sum_{C \in \mathcal{C}(M)} \lambda_{C} \chi^{C} \mid \lambda_{C} \in \mathbb{Z} \forall C \in \mathcal{C}(M)\right\} . \tag{5.1}
\end{equation*}
$$

We study the following hypothesis taken from Fleiner et al. [1].
Hypothesis 5.1. Let M be a binary code. Let $\mathbb{Z}(M)$ be a lattice generated by the code M. Then $\mathbb{Z}(M)$ has a basis consisting only of codewords.

No code is known for which the hypothesis fails. The best known results are the following two theorems taken from Fleiner et al. [1].

Theorem 5.1. Let M be a binary matroid with no F_{7}^{*} minor. Then the lattice $\mathbb{Z}(M)$ has a basis consisting only of circuits.

The matroids with no F_{7}^{*} minor contain the class of regular matroids, which extends the graphic and cographic matroids.

Theorem 5.2. Let M be a binary matroid on E with no F_{7}^{*}. Let M^{\prime} be an one-element extension of M. Then every cycle lattice basis B_{M} of $\mathbb{Z}(M)$ can be extended to a cycle lattice basis B of $\mathbb{Z}\left(M^{\prime}\right)$.

These matroids contain the class of graft matroids (that is, one-element extensions of graphic matroids).

Our goal is to consider the hypothesis for a geometrically defined class of binary codes. Especially the class of codes generated by the cycles of a triangular configuration.

We will work only with connected matroids. In disconnected matroid does not exists a cycle that contains two elements of two different components of connectivity. Therefore the lattice generated by a component of connectivity does not contains any cycle of the others components of connectivity.

5.2 Basic Facts

Fleiner et al. [1] showed propositions 5.1 and 5.2.
Proposition 5.1. Let M be a binary matroid, then the following holds obviously for all $x \in \mathbb{Z}(M)$.
(i) $\sum_{e \in D} x_{e}$ is even for all cocircuits $D \in \mathcal{C}^{*}(M)$,
(ii) $x_{f}=x_{g}$ if f and g are coparallel in M,
(iii) $x_{e}=0$ if e is coloop of M.

A matroid M has the lattice of circuits property if the conditions (i)-(iii) characterize the lattice $\mathbb{Z}(M)$.

Hypothesis 5.1 is open even for matroids with the lattice of circuits property.

Let M be a binary matroid, then the collection of all parallel classes of M is denoted by $P(M)$. From the lemma above follows that the dimension of $\mathbb{Z}(M)$ is equal to the number of coparallel classes of $M ; \operatorname{dim} \mathbb{Z}(M)=$ $\left|P\left(M^{*}\right)\right|$.

Proposition 5.2. A matroid M has the lattice of circuits property if and only if $2 \chi^{P}$ belongs to $\mathbb{Z}(M)$ for every coparallel class P of M.

If we want to prove that a matroid does not have the lattice of circuits property, it suffices to find a vector of $(\mathbb{Z}(M))^{*}$ not in $\frac{1}{2} \mathbb{Z}$.

Let M be a cosimple binary matroid. Let T be a maximal independent subset of $E(M)$. Let $C_{e}\left(e \in T^{\prime}\right)$ be the corresponding fundamental circuits. Let W be the matrix whose rows are the incidence vectors of the sets $C_{e} \cap C_{f}$ (for $e, f \in T^{\prime}$). Lovász and Seress [3] have shown that

Proposition 5.3. Let M be a cosimple binary matroid. M has the lattice of circuits property if and only if the matrix W has full column rank over $G F(2)$.

The following proposition is taken from Fleiner et al. [1].
Proposition 5.4. Let M be a cosimple binary matroid. If we could find a set I of pairs $(e, f)\left(e \neq f \in T^{\prime}\right)$ for which the submatrix W_{I} with rows C_{e} $\left(e \in T^{\prime}\right)$ and $C_{e} \cap C_{f}((e, f) \in I)$ has its determinant equal to 1, then the set $\left\{C_{e}\left(e \in T^{\prime}\right), C_{e} \triangle C_{f}((e, f) \in I)\right\}$ would be a cycle basis of $\left.\mathbb{Z}(M)\right\}$.

For $r \geq 2$, the projective space \mathcal{P}_{r} is the binary matroid represented by the $r \times\left(2^{r}-1\right)$ matrix whose columns are all nonzero 0,1 -vectors of length r. Lovász and Seress [3] have shown that

Theorem 5.3. Let M be a cosimple binary matroid with no \mathcal{P}_{r+1}^{*} minor, then $2^{r-1} \mathbb{Z}^{E} \subseteq \mathbb{Z}(M)$.

Fleiner et al. $[1]$ showed that $\mathbb{Z}\left(\mathcal{P}_{r}^{*}\right)$ has obviously a cycle basis, since the nonempty cycles of \mathcal{P}_{r}^{*} are linearly independent over \mathbb{R}. Fleiner et al. [1] showed that $\mathbb{Z}\left(\mathcal{P}_{r}\right)$ has a basis consisting only of cycles of \mathcal{P}_{r}.

5.3 New Results

In this section we give some new results. At first we prove a technical lemma about coparallel classes of an ear extension of a matroid.

Lemma 5.1. Let N be a connected binary matroid with the collection of coparallel classes $P\left(N^{*}\right)$. Let M be an ear extension of N. Let C be the ear circuit. Let T be the ear of the extension. Then $P\left(M^{*}\right)=\{T\} \cup\{P \cap C, P \backslash$ $\left.C \mid P \in P\left(N^{*}\right)\right\} \backslash\{\emptyset\}$.

Proof. From the definition of the ear extension, we know that the set T is a coparallel class of M. Let P^{\prime} be an arbitrary element of $P\left(M^{*}\right) \backslash\{T\}$. The set P^{\prime} is equal to $P \cap C$ or $P \backslash C$ where $P \in P\left(N^{*}\right)$.

Suppose that $\left|P^{\prime}\right| \geq 2$. Let u, v be two distinct elements of P^{\prime}. Let C^{\prime} be a circuit of $\mathcal{C}(N)$. As P^{\prime} is a subset of some coparallel class of $N,\left|C^{\prime} \cap\{u, v\}\right|$ is even. Let C^{\prime} be a circuit of $\mathcal{C}(M) \backslash \mathcal{C}(N)$. Then the circuit C^{\prime} is equal to $C \triangle D$ where $D \in \mathcal{C}(N)$. If $P^{\prime}=P \cap C,|C \cap\{u, v\}|$ is equal to 2. If $P^{\prime}=P \backslash C,|C \cap\{u, v\}|$ is equal to 0 . As $|D \cap\{u, v\}|$ is even, $|(C \triangle D) \cap\{u, v\}|$ is even. Hence, every two elements of P^{\prime} are coparallel.

Let u be an element of the set P^{\prime}. Let v be an element of $E(M) \backslash\left(P^{\prime} \cup T\right)$. If $v \in P$ then $|C \cap\{u, v\}|=1$, where C is the ear circuit. If $v \notin P$ then u, v do not belong to the same coparallel class of N. Hence, there is a circuit D of $\mathcal{C}(N)$ such that $|D \cap\{u, v\}|=1$. Therefore the set P^{\prime} is a coparallel class of M.

Let N be a connected binary matroid. Let M be an ear extension of N. Let C be an ear circuit of the extension. Then denote by $I(N, M)$ the set $\left\{P^{\prime} \in P\left(M^{*}\right) \mid P^{\prime} \subset C, P^{\prime} \subsetneq P \in P\left(N^{*}\right)\right\}$. The elements of the set $I(N, M)$ are the new coparallel classes of M contained in the ear circuit C. The cardinality of $I(N, M)$ is equal to $\left|P\left(M^{*}\right)\right|-\left|P\left(N^{*}\right)\right|-1$.

The following basis construction is a generalization of the basis construction of the lattice of a graph introduced in Loebl and Matamala [2].

Theorem 5.4. Let N be a connected binary matroid with the lattice of circuits property and let M be an ear extension of N. Let m denote the cardinality of $I(N, M)=\left\{P_{1}^{\prime}, \ldots, P_{m}^{\prime}\right\}$. If $\mathbb{Z}(N)$ has a cycle basis $B=\left\{\beta_{1}, \ldots, \beta_{d}\right\}$ such that $\beta_{i} \supseteq P_{i}^{\prime}$ and $\beta_{i} \cap P_{i+1}^{\prime}=\emptyset, \ldots, \beta_{i} \cap P_{m}^{\prime}=\emptyset$ for $i=1, \ldots, m$. Then the lattice of the matroid M has circuits property and has a cycle lattice basis. This basis contains the basis B.

Proof. We show that the set

$$
\begin{equation*}
B^{\prime}:=B \cup\left\{\beta_{i}^{\prime} \mid \beta_{i}^{\prime}=\beta_{i} \triangle C, i=1, \ldots, m\right\} \cup\{C\} \tag{5.2}
\end{equation*}
$$

of cycles of M is a basis of $\mathbb{Z}(M)$ and generates the vectors $2 \chi^{P^{\prime}}$ for all coparallel classes P^{\prime} of $P\left(M^{*}\right)$.

Let P^{\prime} be a coparallel class of M. If $P^{\prime} \in P\left(N^{*}\right)$, then the vector $2 \chi^{P^{\prime}}$ is generated by the set B since N has the lattice of circuits property.

If $P^{\prime}=P_{1}^{\prime}$, then

$$
\begin{equation*}
2 \chi^{P_{1}^{\prime}}=\chi^{\beta_{1}}+\chi^{C}-\chi^{\beta_{1}^{\prime}}+\sum_{P \in P\left(N^{*}\right)} \lambda_{P} 2 \chi^{P} \tag{5.3}
\end{equation*}
$$

since $\beta_{1}^{\prime}=\beta_{1} \triangle C$ and $P_{1}^{\prime} \subseteq \beta_{1} \cap C$ and $\beta_{1} \cap P_{2}^{\prime}=\emptyset, \ldots, \beta_{1} \cap P_{m}^{\prime}=\emptyset$.
For $P_{i}^{\prime} \in I(N, M) \backslash\left\{P_{1}^{\prime}\right\}$ we have

$$
\begin{equation*}
2 \chi^{P_{i}^{\prime}}=\chi^{\beta_{i}}+\chi^{C}-\chi^{\beta_{i}^{\prime}}+\sum_{j \in\{1, \ldots, i-1\}} \lambda_{P_{j}^{\prime}} 2 \chi^{P_{j}^{\prime}}+\sum_{P \in P\left(N^{*}\right)} \lambda_{P} 2 \chi^{P} . \tag{5.4}
\end{equation*}
$$

If P^{\prime} is the ear T of the extension, then

$$
\begin{equation*}
2 \chi^{T}=2 \chi^{C}+\sum_{j \in\{1, \ldots, m\}} \lambda_{P_{j}^{\prime}} 2 \chi^{P_{j}^{\prime}}+\sum_{P \in P\left(N^{*}\right)} \lambda_{P} 2 \chi^{P} . \tag{5.5}
\end{equation*}
$$

If $P^{\prime} \in P\left(M^{*}\right) \backslash(I(N, M) \cup T)$, then $P=P_{1} \backslash P_{2}$ where $P_{1} \in P\left(N^{*}\right)$ and $P_{2} \in I(N, M)$. Therefore

$$
\begin{equation*}
2 \chi^{P}=2 \chi^{P_{1}}-2 \chi^{P_{2}} \tag{5.6}
\end{equation*}
$$

As $P\left(M^{*}\right) \subseteq P\left(N^{*}\right) \cup I(N, M) \cup\{T\}$, the matroid M has the lattice of circuits property.

Finally, we prove that B^{\prime} generates all cycles of M over \mathbb{R}. Let C^{\prime} be a cycle of M. If $C^{\prime} \in \mathcal{C}(N)$ then C^{\prime} is generated by the set B.

Suppose that $C^{\prime} \notin C(N)$. From the definition of the ear extension, we can express C^{\prime} as $C^{\prime}=C \triangle D$ where $D \in \mathcal{C}(N)$. Thus

$$
\begin{equation*}
\chi^{C^{\prime}}=\chi^{D}+\chi^{C}+\sum_{\left.P_{i}^{\prime} \in I(N, M)\right\}} \lambda_{P_{i}^{\prime}} 2 \chi^{P_{i}^{\prime}} . \tag{5.7}
\end{equation*}
$$

The set B^{\prime} has the right cardinality, because $\left|B^{\prime}\right|=|B|+|I(N, M)|+1=$ $\left|P\left(N^{*}\right)\right|+\left|P\left(M^{*}\right)\right|-\left|P\left(N^{*}\right)\right|-1+1=P\left(M^{*}\right)=\operatorname{dim} \mathbb{Z}(M)$.

Therefore, the set B^{\prime} is a cycle lattice basis of $\mathbb{Z}(M)$.
In the following paragraphs we discuss whether Theorem 5.4 may provide a proof of Hypothesis 5.1 restricted to the matroids with the lattice of circuits property.

Let N be the ear extension of the graphic matroid M in figure 5.1 with the following cycle space $\mathcal{C}(N)+\left\{e_{1}, e_{2}, e_{3}, t\right\}$. Then $I(N, M)=\left\{e_{1}, e_{2}, e_{3}\right\}$.

A basis vector containing e_{1} have to cover e_{2} or e_{3}. Therefore M does not have a basis required by Theorem 5.4. Thus, there exists an ear extension of a matroid with the lattice of circuits property which does not have the basis required by Theorem 5.4. Therefore Theorem 5.4 does not provide a proof of the hypothesis.

Moreover, the matroid M does not have the lattice of circuits property, by Proposition 5.5.

Figure 5.1: A matroid with no good basis.
Next, we demonstrate that an ear decomposition of a matroid with the lattice of circuits property may contain a matroid that does not have the lattice of circuits property. For instance the matroid S_{8} taken from Fleiner et al. [1]. The matroid S_{8} is an ear extension of a graph G in figure 5.2. S_{8} has the following cycle space $\mathcal{C}\left(S_{8}\right)=\mathcal{C}(G)+\left\{e_{1}, e_{2}, e_{3}, e_{4}, t\right\}$. S_{8} has the lattice of circuit property. As S_{8} contains as a minor the dual fano matroid F_{7}^{*}, there exists an ear decomposition which contains the dual fano matroid.

Figure 5.2: A graph G of graft S_{8}.
The following proposition is taken from Fleiner et al. [1].
Proposition 5.5. Let M be a binary matroid. Let N be an ear extension of M. Let $I(N, M)$ be equal to $\left\{P_{1}, \ldots, P_{k}\right\}$. Let P_{i}^{\prime} be an element of $P^{*}(M)$
such that $P_{i}^{\prime} \supset P_{i}$. If there exists elements $e_{1} \in P_{1}, \ldots, e_{k} \in P_{k}, f_{1} \in P_{1}^{\prime} \backslash$ $P_{1}, \ldots, f_{k} \in P_{k}^{\prime} \backslash P_{k}(k \geq 3)$ such that the set $\left\{e_{1}, \ldots, e_{k}\right\}$ is a cocircuit of M, then N does not have the lattice of circuits property.

Proof. We can suppose without loss of generality that the matroids M and N are cosimple. We show that N does not have the lattice of circuits property by constructing a vector $x \in \frac{1}{4} \mathbb{Z}^{E(N)} \backslash \frac{1}{2} \mathbb{Z}^{E(N)}$ belonging to the dual lattice $(\mathbb{Z}(N))^{*}$. For this, set $x\left(e_{i}\right)=x\left(f_{i}\right):=\frac{1}{4}(i=1, \ldots, k), x(t):=0, \frac{3}{4}, \frac{1}{2}, \frac{1}{4}$ if k is congruent to $0,1,2,3$, respectively, and $x(e):=0$ for all remaining elements $e \in E(N)$.

Corollary 5.1. Let N be a connected graphic matroid with the lattice of circuits property. Let M be a graphic matroid that is an ear extension of N. If $\mathbb{Z}(N)$ has a cycle basis B, then $\mathbb{Z}(M)$ has a cycle basis B^{\prime}. The basis B^{\prime} contains the basis B. Moreover M has the lattice of circuits property.

Proof. Let G, G^{\prime} be graphs such that $M(G) \cong N$ and $M\left(G^{\prime}\right) \cong M$. Let C be an ear circuit of the ear extension M and T be the ear. Then T is a path. Let t_{1}, t_{2} be end vertices of the path. Let $P_{1}, P_{2} \in P\left(M^{*}\right)$ be coparallel classes such that $t_{1} \in e \in P_{1}$ and $t_{2} \in f \in P_{2}$ and $C \cap P_{1} \neq \emptyset$ and $C \cap P_{2} \neq \emptyset$.

If both end vertices have degree greater than 2 in G, then the set $I(N, M)$ is empty.

If $P_{1}=P_{2}$ and at least one end vertex has degree 2 in G then $I(N, M)=$ $\left\{P_{1} \cap C\right\}$.

Suppose that $P_{1} \neq P_{2}$. If one end vertex t_{i} of T has degree 2 in G, then $I(N, M)=\left\{C \cap P_{i}\right\}$.

If both end vertices of T have degree 2 in G, then $I(N, M)=\{C \cap$ $\left.P_{1}, C \cap P_{2}\right\}$. In that case there is a circuit D of G such that $D \cap P_{1} \neq \emptyset$ and $D \cap P_{2}=\emptyset$, since P_{1} and P_{2} are distinct coparallel classes.

Hence, we can use Theorem 5.4 and prove the corollary.
By using the corollary above, we give a new proof of the theorem that the lattice of a graphic matroid has a basis consisting only of cycles of the matroid.

Theorem 5.5. Let M be a connected graphic matroid. Then the lattice $\mathbb{Z}(M)$ has a basis consisting only of cycles of M.

Proof. Let M_{0}, \ldots, M_{n} be an ear decomposition of M. Obviously M_{0} has the lattice of circuits property and $\mathbb{Z}\left(M_{0}\right)$ has a basis consisting only of cycles. By using corollary 5.1 repeatedly to the decomposition, we obtain that $\mathbb{Z}(M)=\mathbb{Z}\left(M_{n}\right)$ has a basis consisting only of cycles.

The next theorem about basis extension is a reformulation of the theorem taken from Fleiner et al. [1].

Theorem 5.6. Let N be a binary matroid. Let M be an ear extension of N. If $\mathbb{Z}(N)$ has a cycle lattice basis $B=\left\{\beta_{1}, \ldots, \beta_{d}\right\}$ and $\left|P\left(M^{*}\right)\right|=|I(N, M)|$, then $\mathbb{Z}(M)$ has the following cycle lattice basis $B^{\prime}=B \cup\{D \triangle C \mid D \in B\} \cup$ $\{C\}$.

Proof. As B^{\prime} has the right cardinality, it suffice to verify that it generates all cycles of M. For this, let E be a cycle of N; then

$$
\begin{equation*}
\chi^{E}=\sum_{\beta \in B} \lambda_{\beta} \chi^{\beta}, \tag{5.8}
\end{equation*}
$$

where the $\lambda_{B}^{\prime} \mathrm{S}$ are integers. Therefore,

$$
\begin{equation*}
\chi^{(E \Delta C)}=\sum_{\beta \in B} \lambda_{\beta} \chi^{(\beta \Delta C)}+\left(1-\sum_{\beta \in B} \lambda_{\beta}\right) \chi^{C} \tag{5.9}
\end{equation*}
$$

belongs to $\mathbb{Z}\left(B^{\prime}\right)$.
Remark 5.1. The comparison of Theorems 5.4 and 5.6. Let M be a binary matroid. Let N be an ear extension of M. The theorems construct a lattice basis of the matroid N by extending a basis of the matroid M.

The main difference is that Theorem 5.4 requires on the lattice of the matroid N circuits property and the "good" cycle lattice basis. Whereas Theorem's 5.6 assumptions are that the number of coparallel classes of M is equal to $2\left|P\left(N^{*}\right)\right|+1$.

The matroid in Figure 5.1 and the ear extension defined above do not satisfy the assumptions of theorem 5.4 and satisfy the assumptions of Theorem 5.6. The matroid with the lattice of circuits property in Figure 5.2 and the matroid S_{8} do not satisfy assumptions of both Theorems 5.4 and 5.6.

6 Triangular Configurations

6.1 Definitions

A triangular configuration is a triple $\Delta=(V, E, T)$ consisting of a finite set V of points, a finite set E of edges satisfying $E \subseteq\binom{V}{2}$, and a finite set T of triangles satisfying $T \subseteq\binom{V}{3}$ and for every $t \in T$ holds $\binom{t}{2} \subseteq E$.

A geometric representation of a triangular configuration (V, E, T) in \mathbb{R}^{d} is an injective mapping $f: V \mapsto \mathbb{R}^{d}$ satisfying

1. for every $t \in T$ holds the set $f(t):=\{f(x) \mid x \in t\}$ is affinely independent,
2. for every $e, e^{\prime} \in E$ such that $e \neq e^{\prime}$ holds $\operatorname{conv}(f(e)) \cap \operatorname{conv}\left(f\left(e^{\prime}\right)\right)$ is equal to \emptyset or $f(v)$ for some vertex $v \in V$,
3. for every $t, t^{\prime} \in T$ such that $t \neq t^{\prime}$ holds $\operatorname{conv}(f(t)) \cap \operatorname{conv}\left(f\left(t^{\prime}\right)\right)$ is equal to \emptyset; or $f(v)$ for some vertex $v \in V$; or $\operatorname{conv}(f(e))$ for some edge $e \in E$.

Let Δ be a triangular configuration, we denote by

- $V(\Delta)$ the set of vertices of a triangulation;
- $E(\Delta)$ the set of edges of a triangulation;
- $T(\Delta)$ the set of triangles of a triangulation.

Let v_{1}, v_{2}, v_{3} be vertices of Δ. Let e be an edge of Δ. Let t be a triangle of Δ. The edge e can be written as $\left\{v_{1}, v_{2}\right\}$ or $v_{1} v_{2}$ where v_{1} and v_{2} are the vertices of the edge. The triangle t can be written as $\left\{v_{1}, v_{2}, v_{3}\right\}$ or $v_{1} v_{2} v_{3}$, or efg or $\{e, f, g\}$ where e, f, g are the edges of the triangle.

If we admit that T is a multiset in the definition of the triangular configuration, we say that the triple Δ is a multitriangular configuration.

A triangular configuration S is a subconfiguration of a triangular configuration R, if $V(S)$; $E(S)$; and $T(S)$ are subsets of $V(R) ; V(R)$; and $T(R)$, respectively. We say that R contains S.

Let Δ be a triangular configuration. Then the pair $(V(\Delta), E(\Delta))$ forms a graph. This graph is called skeleton and is denoted by $G(\Delta)$.

The edge degree $d_{E}(e)$ of an edge e of Δ is the number of triangles containing the edge.

$$
\begin{equation*}
d_{E}(e):=|\{t: t \in T(\Delta), e \subset t\}| \tag{6.1}
\end{equation*}
$$

We define the incidence matrix of a triangular configuration $A=\left(A_{e t}\right)$ in this way. The rows are indexed by edges and the columns by triangles. We set

$$
a_{e t}:= \begin{cases}1 & \text { if the edge } e \text { belongs to the triangle } t ; e \subset t, \\ 0 & \text { otherwise } .\end{cases}
$$

A triangular configuration is a cycle if every edge has an even degree.
If R and S are triangular configurations then their symmetric difference, denoted by $R \triangle S$, is the triangular configuration $(V(R) \cup V(S), E(R) \cup$ $E(S), T(R) \triangle T(S))$.

The Euler characteristic χ of a triangular configuration Δ is defined according to the formula

$$
\begin{equation*}
\chi=|V(\Delta)|-|E(\Delta)|+|T(\Delta)| . \tag{6.2}
\end{equation*}
$$

6.2 Triangular Matroid

In this section we prove that the collection of the cycles of a triangular configuration forms a cycle space of some binary matroid.
Lemma 6.1. Let R and S be cycles. Then $R \triangle S$ is a cycle.
Proof. We show that every edge of $R \triangle S$ has an even degree. Let e be an arbitrary edge. Let T_{R} and T_{S} be subsets of $T(R)$ and $T(R)$, respectively, containing the edge e. Then the degree of the edge e is equal to $\left|T_{R}\right|+\left|T_{S}\right|-$ $2\left|T_{R} \cap T_{S}\right|$. Thus, the degree is even. Therefore $R \triangle S$ is a cycle.

Denote by $\mathcal{C}(\Delta)$ the collection of the cycles contained in a triangular configuration Δ. From the lemma above we know that $\mathcal{C}(\Delta)$ is closed under taking symmetric difference.
Lemma 6.2. Let Δ be a triangular configuration. Let A be the incidence matrix of Δ. Let C be a subconfiguration of Δ. Then $A \chi^{T(C)}=0$ if and only if C is a cycle.

Proof. C is a cycle. \Leftrightarrow For every edge $e_{i} \in E(\Delta)$ indexing row $a_{i *}$ holds $\left|\left\{t \mid e_{i} \subset t, t \in T(C)\right\}\right|$ is even. $\Leftrightarrow A \chi^{T(C)}=0$.

From the lemma above follows that the incidence vectors of the cycles contained in a triangular configuration forms a circuit space of a binary matroid. This matroid is called triangular matroid, and is denoted by $M(\Delta)$; where Δ is the configuration. The incidence matrix is a representation of the matroid.

Let Δ be a triangular configuration. Let T^{\prime} be a subset of $T(\Delta)$. Then the deletion of T^{\prime} from Δ is the triple $\left(V(\Delta), E(\Delta), T(\Delta) \backslash T^{\prime}\right)$.

Proposition 6.1. Let Δ be a triangular configuration. Let T^{\prime} be a subset of $T(\Delta)$. Then $M\left(\Delta \backslash T^{\prime}\right)=M(\Delta) \backslash T^{\prime}$.

Proof. Follows directly from the definition.
Proposition 6.2. Let C be a circuit. Then $|T(C)| \geq 4$.
Proof. As $T(C)$ is nonempty, there is a triangle t. Since every edge has an even degree, every edge of t is incident with at least one triangle different from t. These triangles are pairwise different, since three point determine an unique triangle. Hence, we have found four triangles.

Proposition 6.3. Every triangular matroid is simple.
Proof. Follows directly from the definition.
Remark 6.1. Triangular matroid with a geometric representation is a simplicial complex.

Corollary 6.1. Let C be a circuit then $|E(C)| \geq 6$ and $|V(C)| \geq 4$.
Proof. Follows directly from Proposition 6.2.
Proposition 6.4. Let Δ be a triangular configuration. Let V^{*} be the set of isolated vertices (vertices not contained in any edge) of Δ. Let E^{*} be the set of edges of Δ with degree 0 . Then $M(\Delta) \cong M\left(\left(V(\Delta) \backslash V^{*}, E(\Delta) \backslash E^{*}, T(\Delta)\right)\right)$.

Proof. We consider the incidence matrices of Δ and $\left(V(\Delta) \backslash V^{*}, E(\Delta) \backslash\right.$ $\left.E^{*}, T(\Delta)\right)$. As isolated vertices are not contained in any edge, removing it from triangular configurations does not affect incidence matrices. An edge with degree 0 corresponds with a zero row vector. If we remove such edge, then we delete a zero row vector. Such modification of a representation matrix does not affect a matroid represented by this matrix. Thus $M(\Delta) \cong$ $M\left(\left(V \backslash V^{*}, E \backslash E^{*}, T\right)\right)$.

Let Δ be a triangular configuration. Let v be a vertex of Δ. We define recursively the set Δ_{v}.

$$
\begin{align*}
& \Delta_{v}:=\{t\} ; t \in T(\Delta), v \subset t \tag{6.3}\\
& \Delta_{v}:=\left\{t \in T(\Delta) \mid v \subset t, \exists t^{\prime} \in \Delta_{v}: t^{\prime} \cap t \in E(\Delta)\right\} \tag{6.4}
\end{align*}
$$

For some vertex v may exists more distinct sets $\Delta_{v 1}, \Delta_{v 2}, \ldots, \Delta_{v n}$. We denote the collection of all sets Δ_{v} by Δ^{v}.

The set Δ^{v} of the vertex v depicted in Figure 6.1 contains three sets $\Delta_{v 1}, \Delta_{v 2}, \Delta_{v 2}$. The set $\Delta^{v^{\prime}}$ of the vertex v^{\prime} contains only one set $\Delta_{v^{\prime}}$. A

Figure 6.1: Two vertices with distinct collections of Δ_{v} sets

Figure 6.2: Vertex simplification
vertex v is called simple vertex, if the cardinality of Δ^{v} is equal to one. Let v be a vertex with the set $\Delta^{v}=\left\{\Delta_{v 1}, \ldots, \Delta_{v n}\right\}$. Then the simplification of a vertex v is a substitution of the vertex v by vertices v_{1}, \ldots, v_{n} and each triangle $v x y$ belonging to the set $\Delta_{v i}$ is replaced by the triangle $v_{i} x y$.

Proposition 6.5. Let Δ be a triangular configuration. Let Δ^{\prime} be a triangular configuration obtained from Δ by simplification of all vertices. Then $M(\Delta) \cong$ $M\left(\Delta^{\prime}\right)$.

Proof. Let v be an arbitrary vertex of Δ. Let t, t^{\prime} be triangles of Δ such that $v \subset t, v \subset t^{\prime}$. Let t_{s}, t_{s}^{\prime} be the triangles $t, t^{\prime} ;$ respectively; after simplification of the vertex v.

If $t \cap t^{\prime} \in E(\Delta)$, then these triangles belongs to the same set Δ_{v}. Hence $t_{s} \cap t_{s}^{\prime} \in E\left(\Delta^{\prime}\right)$.

If $t \cap t^{\prime} \notin E(\Delta)$, then $t \cap t^{\prime} \in V(\Delta)$. In case that the vertex v is splitted in simplification, then $t_{s} \cap t_{s}^{\prime}=\emptyset$. Hence $t_{s} \cap t_{s}^{\prime} \notin E\left(\Delta^{\prime}\right)$. In the other case that the vertex v is not splitted, then $t_{s} \cap t_{s}^{\prime} \in V\left(\Delta^{\prime}\right)$. Thus $t_{s} \cap t_{s}^{\prime} \notin E\left(\Delta^{\prime}\right)$.

Thus, the operation of simplification preserve triangle incidence. Therefore, both matroids has identical representation matrices. Hence, they are isomorphic.

7 Edge Contraction of Triangular Configurations

7.1 Definitions

Let $\Delta=(V, E, T)$ be a triangular configuration. Let $e=\left\{v_{1}, v_{2}\right\}$ be an edge of Δ. The edge contraction is the triangular configuration $\Delta /{ }_{E} e=\Delta^{\prime}=$ ($V^{\prime}, E^{\prime}, T^{\prime}$) with the vertex set

$$
V^{\prime}:=\left(V \backslash\left\{v_{1}, v_{2}\right\}\right) \cup\left\{v_{e}\right\},
$$

the edge set
$E^{\prime}:=\left\{v w \in E \mid\{v, w\} \cap\left\{v_{1}, v_{2}\right\}=\emptyset\right\} \cup\left\{v_{e} w \mid v_{1} w \in E \backslash\{e\} \vee v_{2} w \in E \backslash\{e\}\right\}$,
and the triangle set

$$
\begin{aligned}
T^{\prime}:=\{u v w & \left.\in T \mid\{u, v, w\} \cap\left\{v_{1}, v_{2}\right\}=\emptyset\right\} \\
& \cup\left\{v_{e} v w \mid v_{1} v w \in T \vee v_{2} v w \in T ; v \neq v_{1}, v \neq v_{2}, w \neq v_{1}, w \neq v_{2}\right\} .
\end{aligned}
$$

From the definition, triangular configurations are closed under taking edge

Edge contraction $\quad v_{e}$
e

Figure 7.1: Edge contraction
contractions. Unfortunately, we do not know whether edge contraction has a geometric representation.

For a skeleton of a triangular configuration holds $G\left(\Delta /{ }_{E} e\right)=G(\Delta) / e$.
In this section we survey the effect of the edge contraction to a triangular matroid. This effect depends only on the triangles that are incident with the contracted edge.

Let Δ be a triangular configuration. Let $e=\left\{v_{1}, v_{2}\right\}$ be an edge of Δ. We say that the edge e is deleting, if Δ contains the triangles $x y v_{1}$ and $x y v_{2}$ where $x, y \in V(\Delta)$.

The set $\{e, f, g\}$ of edges of Δ is said to be the empty triangle, if $e \cap f \neq \emptyset, f \cap g \neq \emptyset, g \cap e \neq \emptyset$ and Δ does not contains the triangle $\{e, f, g\}$.

Figure 7.2: Deleting edge

Figure 7.3: Empty triangle

Let Δ be a triangular configuration. Let $e=\left\{v_{1}, v_{2}\right\}$ be an edge of Δ. Define

$$
\begin{align*}
D_{e} & :=\{t \mid e \subset t, t \in T(\Delta)\}, \\
D_{e}^{\prime} & :=\left\{\left\{t_{1}, t_{2}\right\} \mid v_{1} \in t_{1}, v_{2} \in t_{2}, t_{1} \cap t_{2} \in E(\Delta), t_{1}, t_{2} \in T(\Delta)\right\}, \tag{7.1}\\
D_{1 e}^{\prime} & :=\left\{t_{1} \mid\left\{t_{1}, t_{2}\right\} \in D_{e}^{\prime}\right\}, \\
D_{2 e}^{\prime} & :=\left\{t_{2} \mid\left\{t_{1}, t_{2}\right\} \in D_{e}^{\prime}\right\} .
\end{align*}
$$

For an edge contraction of Δ holds $T\left(\Delta /{ }_{E} e\right)=T(\Delta) \backslash\left(D_{e} \cup D_{2 e}^{\prime}\right)$.

7.2 Cycles and Acyclic Sets

Proposition 7.1. A contraction along an edge $e=\left\{v_{1}, v_{2}\right\}$ of a cycle C is a cycle if and only if C does not contains a triangle ($x y v_{1}$) or ($x y v_{2}$); $x, y \in V(C)$ (that is, the edge e is not deleting).

Proof. Let $C^{\prime}=\left(V^{\prime}, E^{\prime}, T^{\prime}\right)$ be an edge contraction of a cycle $C=(V, E, T)$ along the edge $e=\left\{v_{1}, v_{2}\right\}$.
$" \Leftarrow "$
From the definition of the contraction, the edges whose degree are changed are the new edges and the edges that in C lies in a triangle containing v_{1} or v_{2}.

We show that the new edges created by the contraction have an even degree. Let $\left\{v, v_{e}\right\}$ be a new edge. From the assumption about degrees in C, there are two sets of triangles of an even cardinality $T_{1}=\left\{v_{1} v a \in T \mid a \in V\right\}$, $T_{2}=\left\{v_{2} v b \in T \mid b \in V\right\}$. From the definition, the sets T_{1} and T_{2} become,
in the contraction, the sets $T_{1}^{\prime}=\left\{\left(v_{e} v a\right) \mid\left(v_{1} v a\right) \in T_{1} ; v \neq v_{2}, a \neq v_{2}\right\}$ and $T_{2}^{\prime}=\left\{\left(v_{e} v b\right) \mid\left(v_{2} v b\right) \in T_{2} ; v \neq v_{1}, b \neq v_{1}\right\}$.

We distinguish the following cases.

- Let T_{1} and T_{2} be empty. Then the degree of $\left\{v, v_{e}\right\}$ is equal to zero, by the definition.
- Let one of T_{1} or T_{2} be empty. Let us say T_{2}. Then the degree of $\left\{v, v_{e}\right\}$ is equal to the degree of $\left\{v, v_{1}\right\}$.
- Let T_{1} and T_{2} be non empty. If the sets T_{1}^{\prime} and T_{2}^{\prime} are disjoint, then the degree of the edge $\left\{v, v_{e}\right\}$ is equal to the cardinality of $T_{1}^{\prime} \cup T_{2}^{\prime}$. $\left|T_{1}^{\prime} \cup T_{2}^{\prime}\right|=\left|T_{1}\right|+\left|T_{1}\right|-2\left|T_{1} \cap T_{2}\right|$. Hence, this cardinality is even.

Suppose that T_{1}^{\prime} and T_{2}^{\prime} are not disjoint, then in the configuration C are the triangles $\left(v_{1} v x\right),\left(v_{2} v x\right)$ and the edge $e=\left\{v_{1}, v_{2}\right\}$. This is the contradiction, as we suppose that there are not such triangles.

Now we show that the edges that in C lies in a triangle containing v_{1} or v_{2} have in C^{\prime} an even degree. Let $\{x, y\}$ be an edge incident with triangles $\left(x y v_{1}\right)$ or $\left(x y v_{2}\right)$. If this edge is incident only with the one triangle, then the degree of this edge in C^{\prime} is equal to the degree in C, since instead of the triangle $\left(x y v_{1}\right)$ there is $\left(x y v_{e}\right)$. From the assumptions, we know that there is only one triangle $\left(x y v_{1}\right)$ or $\left(x y v_{2}\right)$.

We have proved that all degrees in the contraction of a cycle C are even. Therefore, C^{\prime} is a cycle.

$$
" \Rightarrow "
$$

Suppose that in C exists triangles $\left(x y v_{1}\right)$ and $\left(x y v_{2}\right)$. The edge $\{x, y\}$ has an even degree in C and is incident with the triangles $\left(x y v_{1}\right)$ and $\left(x y v_{2}\right)$. From the definition, this edge remains in C^{\prime}. In C^{\prime} the triangles ($x y v_{1}$) and $\left(x y v_{2}\right)$ are deleted. Hence, $\{x, y\}$ is incident with only one new triangle $\left(x y v_{e}\right)$. Thus, the degree of $\{x, y\}$ is odd. Therefore, C^{\prime} is not a cycle.

Corollary 7.1. Let C be a cycle. Let e be an edge of C. If $G(C)$ has no a subgraph K_{4} containing the edge e, then the contraction along the edge e is a cycle.

Proof. Let e be $\left\{v_{1}, v_{2}\right\}$. We show that C does not contains a triangle ($x y v_{1}$) or $\left(x y v_{2}\right) ; x, y \in V(C)$.

Let C contain triangles $\left(x y v_{1}\right)$ and $\left(x y v_{2}\right)$. Then there is a K_{4} with the edges $e=\left\{v_{1}, v_{2}\right\},\left\{v_{1}, x\right\},\left\{v_{1}, y\right\},\left\{v_{2}, x\right\},\left\{v_{2}, y\right\},\{x, y\}$. A contradiction. Now, we use the previous proposition.

Proposition 7.2. Let Δ be a triangular configuration that is not a cycle. Let e be an edge of Δ. Then $\Delta /{ }_{E} e$ is not a cycle if and only if at least one of the following conditions is satisfied
(i) there exists an edge f with an odd degree such that $e \cap f=\emptyset$,
(ii) there exists an edge f with an odd degree such that $e \cap f \neq \emptyset$ and there does not exists an edge g such that $f \cap g \neq \emptyset \neq g \cap e$,
(iii) there exists an edge f such that $e \cap f \neq \emptyset$ and there exists an edge g such that $f \cap g \neq \emptyset \neq g \cap e$; and $d(f)$ and $d(g)$ have different parities.

Proof. " $\Leftarrow "$
If the first or the second condition is satisfied by an edge f, then no triangle incident with f is removed or added by the contraction. Therefore this edge has an odd degree in $\Delta / E e$.

If the third condition is satisfied, then the edges f and g are merged into one edge $\left\{v_{e}, x\right\}$. The degree of the edge is equal to $d(f)+d(g)$, if there is no triangle incident with both f and g in Δ. If there is such triangle, then the degree is equal to $d(f)-1+d(g)-1$. As $d(f)$ and $d(g)$ have different parities, the edge $\left\{v_{e}, x\right\}$ has an odd degree.
$" \Rightarrow "$
Suppose that $\Delta /_{E} e$ is a cycle. Obviously, the first and second conditions are not satisfied.

Each edge $\left\{v_{e}, x\right\}$ has an even degree equal to $d\left(\left\{v_{1}, x\right\}\right)+d\left(\left\{v_{2}, x\right\}\right)$ or $d\left(\left\{v_{1}, x\right\}\right)+d\left(\left\{v_{2}, x\right\}\right)-2$ depending on if in Δ exists a triangle $v_{1} v_{2} x$. Thus, $\left\{v_{1}, x\right\}$ and $\left\{v_{2}, x\right\}$ have the same parity. Therefore, the third condition is not satisfied.

Corollary 7.2. Let Δ be an acyclic triangular configuration. Let e be an edge. Then $\Delta /_{E} e$ is acyclic if and only if there is no subconfiguration Δ^{\prime} of Δ that does not satisfy the following conditions
(i) there exists an edge f with an odd degree such that $e \cap f=\emptyset$,
(ii) there exists an edge f with an odd degree such that $e \cap f \neq \emptyset$ and there does not exists an edge g such that $f \cap g \neq \emptyset \neq g \cap e$,
(iii) there exists an edge f such that $e \cap f \neq \emptyset$ and there exists an edge g such that $f \cap g \neq \emptyset \neq g \cap e$ and $d(f)$ and $d(g)$ have different parities.

Proof. Directly from Proposition 7.2.

Let Δ be a triangular configuration. Let e be an edge of Δ. If $\Delta / E e$ is acyclic, we say that Δ is e-acyclic. A triangular configuration is econtractable if every acyclic subconfiguration is e-acyclic.

Let Δ^{*} be a triangular configuration obtained from Δ by filling all empty triangles incident with e.

Corollary 7.3. Let Δ be an acyclic triangular configuration. Let e be an edge of Δ. Then $\Delta /_{E} e$ is acyclic if and only if there does not exists $\Delta^{\prime} \subseteq \Delta^{*}$ such that every edge of $E\left(\Delta^{\prime}\right) \backslash\{e\}$ has an even degree.

Proof. " $\Rightarrow "$
We know that $\Delta /{ }_{E} e$ is acyclic. For a contradiction suppose that there exists $\Delta^{\prime} \subseteq \Delta^{*}$ such that every edge of $E\left(\Delta^{\prime}\right) \backslash\{e\}$ has an even degree. Then $\Delta^{\prime} / E e$ is a cycle, by Proposition 7.2. $\Delta^{\prime} /{ }_{E} e$ is contained in $\Delta /{ }_{E} e$, since every added triangle of Δ^{*} is deleted by the contraction. Thus $\Delta / E e$ is not acyclic. This is a contradiction.
$" \Leftarrow "$
Let $\Delta^{\prime \prime}$ be a subconfiguration of Δ. Suppose that $\Delta^{\prime \prime}$ does not satisfy the conditions (i)-(iii) of Proposition 7.2. Let t be an empty or nonempty triangle of Δ^{\prime} containing the edge e. Then the edges of t excepting the edge e have the same parities.

Let Δ^{\prime} be a configuration obtained from $\Delta^{\prime \prime}$ by deleting (filling) the triangles (empty triangles) that contains the edge e and an edge distinct from e with an odd degree. Then every edge of $E\left(\Delta^{\prime}\right) \backslash\{e\}$ has an even degree. Δ^{\prime} is a subconfiguration of Δ^{*}. This is the contradiction with our assumptions. Thus, $\Delta^{\prime \prime}$ satisfy the assumptions of Proposition 7.2.

Hence, $\Delta^{\prime \prime} /{ }_{E} e$ is acyclic. Therefore, $\Delta /{ }_{E} e$ is acyclic.

7.3 Triangular Matroid

Corollary 7.4. Let Δ be an triangular configuration. Let $e=\left\{v_{1}, v_{2}\right\}$ be an edge of Δ. If Δ does not contain a triangle $x y v_{1}$ or $x y v_{2}$ where $x, y \in V(C)$ (that is, $D_{e}^{\prime}=\emptyset$), then $\mathcal{C}\left(\Delta /{ }_{E} e\right) \supseteq \mathcal{C}\left(M(\Delta) / D_{e}\right)$.

Proof. Let C be a cycle of Δ that contains the edge e. Since C does not contain a triangle $x y v_{1}$ or $x y v_{2}$ where $x, y \in V(C)$, then C / E is a circuit with the triangle set $T(C) \backslash D_{e}$; by Proposition 7.1. Thus, $C / E e$ belongs to $\mathcal{C}\left(M(\Delta) / D_{e}\right)$

Corollary 7.5. Let Δ be a triangular configuration. Let $e=\left\{v_{1}, v_{2}\right\}$ be an edge of Δ. If Δ contains triangles $x y v_{1}$ and $x y v_{2}$ where $x, y \in V(C)$, then $\mathcal{C}\left(\Delta /{ }_{E} e\right) \supseteq \mathcal{C}\left(M(\Delta) / D_{e} \backslash D_{1 e}^{\prime}\right)$ and $\mathcal{C}(\Delta / E e) \nsupseteq\left\{C \backslash\left(D_{1 e}^{\prime} \cup D_{e}\right) \mid C \in\right.$ $\left.\mathcal{C}(\Delta),\left\{t_{1}, t_{2}\right\} \subseteq C,\left\{t_{1}, t_{2}\right\} \in D_{e}^{\prime}\right\}$.

Proof. Let C be a cycle of Δ that contains the edge e. If C does not contain any element of D_{e}^{\prime}, then $C /_{E} e$ is a cycle; by the previous corollary. Therefore $\mathcal{C}\left(\Delta /{ }_{E} e\right) \supseteq \mathcal{C}\left(M(\Delta) / D_{e} \backslash D_{1 e}^{\prime}\right)$.

Let C^{\prime} be an element of $\left\{C \backslash\left(D_{1 e}^{\prime} \cup D_{e}\right) \mid C \in \mathcal{C}(\Delta),\left\{t_{1}, t_{2}\right\} \subseteq C,\left\{t_{1}, t_{2}\right\} \in\right.$ $\left.D_{e}^{\prime}\right\}$. Then $C^{\prime}=T(C) \backslash\left(D_{1 e}^{\prime} \cup D_{e}\right)=T(C / E e)$ where C is a cycle of Δ, by the definition of the edge contraction. $C / E e$ is not a cycle, by Proposition 7.1. Thus, $C^{\prime} \notin \mathcal{C}\left(\Delta /{ }_{E} e\right)$.

If a triangular configuration is e-contractable, we can exactly express the cycle space of the edge contraction.

Corollary 7.6. Let Δ be an triangular configuration. Let $e=\left\{v_{1}, v_{2}\right\}$ be an edge of Δ. Let Δ be e-contractable. If Δ does not contain a triangle xyv v_{1} or $x y v_{2}$ where $x, y \in V(\Delta)$, then $M(\Delta / E e) \cong M(\Delta) / D_{e}$.

Proof. By Corollary 7.4, we know that $\mathcal{C}\left(\Delta /{ }_{E} e\right) \supseteq \mathcal{C}\left(M(\Delta) / D_{e}\right)$. Suppose that $\mathcal{C}\left(\Delta /{ }_{E} e\right)$ contains a cycle C^{\prime} such that $T\left(C^{\prime}\right) \neq T(C) \backslash D_{e}$ for every $C \in \mathcal{C}(\Delta)$. As Δ is e-contractable, there is a cycle $C^{\prime \prime}$ of Δ such that $C^{\prime \prime} /{ }_{E} e=C^{\prime}, T\left(C^{\prime \prime}\right) \backslash D_{e}=T\left(C^{\prime}\right)$. This is a contradiction. Hence, $\mathcal{C}\left(\Delta /{ }_{E} e\right)=$ $\mathcal{C}\left(M(\Delta) / D_{e}\right)$.

Corollary 7.7. Let Δ be a triangular configuration. Let $e=\left\{v_{1}, v_{2}\right\}$ be an edge of Δ. Let Δ be e-contractable. If Δ contains triangles $x y v_{1}$ and $x y v_{2}$ where $x, y \in V(\Delta)$, then $\mathcal{C}\left(\Delta /{ }_{E} e\right)=\left\{C \backslash D_{e} \mid\left\{t_{1}, t_{2}\right\} \nsubseteq C,\left\{t_{1}, t_{2}\right\} \in D_{e}^{\prime}, C \in\right.$ $\mathcal{C}(\Delta)\}$.

Proof. By Corollary 7.5, $\mathcal{C}\left(\Delta /{ }_{E} e\right) \supseteq \mathcal{C}\left(M(\Delta) / D_{e} \backslash D_{1 e}^{\prime}\right)$ and $\mathcal{C}(\Delta / E e) \nsupseteq$ $\left\{C \backslash\left(D_{1 e}^{\prime} \cup D_{e}\right) \mid C \in \mathcal{C}(\Delta),\left\{t_{1}, t_{2}\right\} \subseteq C^{\prime},\left\{t_{1}, t_{2}\right\} \in D_{e}^{\prime}\right\}$. Suppose that there exists a cycle $C \in \mathcal{C}\left(\Delta /{ }_{E} e\right) \backslash\left\{C \backslash D_{e} \mid\left\{t_{1}, t_{2}\right\} \nsubseteq C,\left\{t_{1}, t_{2}\right\} \in D_{e}^{\prime}, C \in\right.$ $\mathcal{C}(\Delta)\}$. As Δ is e-contractable, $T(C)=T\left(C^{\prime}\right) \backslash D_{e}$ for $C^{\prime} \in \mathcal{C}(\Delta)$ such that $\left\{t_{1}, t_{2}\right\} \nsubseteq C^{\prime} ;\left\{t_{1}, t_{2}\right\} \in D_{e}^{\prime}$. This is a contradiction. Hence, $\mathcal{C}\left(\Delta /{ }_{E} e\right)=$ $\left\{C \backslash D_{e} \mid\left\{t_{1}, t_{2}\right\} \nsubseteq C,\left\{t_{1}, t_{2}\right\} \in D_{e}^{\prime}, C \in \mathcal{C}(\Delta)\right\}$.

7.4 Euler Characteristic

Proposition 7.3. Let Δ be a triangular configuration with the Euler characteristic χ. Let Δ^{\prime} be an edge contraction along an edge $\left\{v_{1}, v_{2}\right\}$. Let Δ be e-contractable. If Δ does not contains a triangle $x y v_{1}$ or $x y v_{2}$ where $x, y \in V(\Delta)$, then Δ^{\prime} has the Euler characteristic equal to χ.

Proof. By Corollary 7.6, $M\left(\Delta^{\prime}\right) \cong M(\Delta) / D_{e}$ where $D_{e}=\{t \mid e \subset t, t \in$ $T(\Delta)\}$. The contraction removes the edge $\left\{v_{1}, v_{2}\right\}$ and one of the vertices v_{1}, v_{2}; by the definition. Thus, $\left|V\left(\Delta^{\prime}\right)\right|=|V(\Delta)|-1$ and $\left|E\left(\Delta^{\prime}\right)\right|=|E(\Delta)|-1$.

The number of triangles of Δ^{\prime} is equal to $|T(\Delta)|-\left|D_{e}\right|$. One edge distinct of $\left\{v_{1}, v_{2}\right\}$ is removed with each removed triangle. Hence,

$$
\begin{align*}
\chi & =\left|V\left(\Delta^{\prime}\right)\right|-\left|E\left(\Delta^{\prime}\right)\right|+\left|T\left(\Delta^{\prime}\right)\right| \\
& =(|V(\Delta)|-1)-\left(|E(\Delta)|-\left|D_{e}\right|-1\right)+\left(|T(\Delta)|-\left|D_{e}\right|\right) \tag{7.2}\\
& =|V(\Delta)|-|E(\Delta)|+|T(\Delta)| .
\end{align*}
$$

8 Skeleton of Triangular Configurations

In this section we study the minors of a skeleton of a simple triangular circuit. We show that a skeleton may contain any arbitrary graph as a minor. We give the smallest triangular circuit with a nonplanar skeleton.

Proposition 8.1. Let G be a graph. Then there exists a simple triangular circuit Δ such that G is a minor of $G(\Delta)$.

Proof. Before we construct Δ. We define two particular triangular configurations, which serve as basic building blocks. The triangular vertex (sphere), depicted in Figure 8.1, is obtained by a sufficient dense triangulation of a sphere.

Figure 8.1: A triangular sphere.
The triangular edge or tunnel, depicted in Figure 8.2, is obtained by sticking together a number of basic buildings blocks. Dash triangles in the figure denote empty triangles, the others are regular triangles. Blocks are stuck together at the ending empty triangles depicted by dash lines.

Figure 8.2: A triangular tunnel.

Now, we construct the desired triangular circuit Δ. For each vertex of G we add to Δ a triangular vertex with the number of triangles at least equal to the degree of the vertex. For each edge $u v$ we remove one triangle from the both triangular vertices u and v and we connect these empty triangles by a sufficient large triangular tunnel (edge). Obviously, every edge of Δ

Figure 8.3: An example of a vertex of degree 1.
has degree 2. Therefore, Δ is a simple triangular circuit.
Now, we construct the desired graph G. We take one vertex from every triangular vertex of Δ and put it in the set of vertices of G. Let u, v be vertices of two triangular vertices connected by a tunnel. We take a path between them leading throw the tunnel and contract it to the one edge. We put this edge to the set of edges of G. Obviously, the graph G is a minor of the skeleton of Δ.

Examples of triangular vertices connected by some edges are in Figures 8.3 and 8.4.

In the next proposition, we give a small triangular circuit that has a nonplanar skeleton.
Proposition 8.2. There is a triangular circuit C such that $G(C)$ is a nonplanar graph.

Proof. The desired circuit is depicted in Figure 8.5. The skeleton of the circuit contains $K_{3,3}$ as a subgraph. The circuit contains triangles that are not depicted by the gray color on each picture. One partition class of $K_{3,3}$ is depicted by square nodes, the second by round nodes.

Figure 8.4: An example of a vertex of degree 3.

Figure 8.5: The circuit Δ_{1} with the nonplanar skeleton.

$9 \quad$ Lattices of Triangular Configurations

In this section we study the lattice generated by the set of cycles of a triangular configuration.

9.1 Some Interesting Triangular Configurations

We give a particular triangular configuration which does not have the lattice of circuits property and show that its lattice has a basis consisting only of cycles. This triangular configuration contains F_{7}^{*} as a minor.

Proposition 9.1. There exists a triangular configuration which does not have the lattice of circuits property.

Proof. The desired triangular configuration is depicted in the picture D_{4} in Figure 9.2. Every triangular configuration $D_{i} ; i \geq 1$ is an ear extension of D_{i-1}.

Figure 9.1: The circuit Δ_{2} contains all triangles that are not depicted by the gray color. The triangles containing a dash line have value 0 and the others have $\frac{1}{4}$.

The ear circuits of these extensions are depicted in detail in Figures 9.1 and 8.5. We assign to the triangles some values. The values of triangles of D_{0} are equal to the values of triangles of Δ_{2}. The values of triangles of D_{i}; $i=1,2,3$ are the same as the values of triangles of D_{i-1} and the ear circuit. The values of triangles of $T\left(D_{4}\right) \backslash T\left(D_{3}\right)$ are assigned to 0 .

Now we observe that D_{4} does not have the lattice of circuits property. We construct a cosimple matroid M from $M\left(D_{4}\right)$ by contracting all coparallel classes into one element. The matroid M has well defined assignment of values, since all triangles in one coparallel class of $M\left(D_{4}\right)$ have the same
value. This assignment of values of M belongs to the dual lattice of M. Thus, the dual lattice contains the point $x \in \frac{1}{4} \mathbb{Z} \backslash \frac{1}{2} \mathbb{Z}$. Therefore, D_{4} does not have the lattice of circuits property.

Proposition 9.2. The lattice of the triangular configuration D_{4} has a basis consisting only of cycles.

Proof. We construct a cycle lattice basis by using Theorems 5.4 and 5.6. Obviously, the triangular configuration D_{0} has a cycle lattice basis, since it contains only one circuit. A cycle lattice basis of the ear extension $D_{i} ; i=$ $1,2,3$ is constructed from a cycle lattice basis of D_{i-1} by using Theorem 5.4. A cycle lattice basis of D_{4} is constructed from a cycle lattice basis of D_{3} by using Theorem 5.6.

9.2 Local Constructions and Edge Contraction

We give a sufficient condition when it is possible extend a cycle lattice basis of a triangular configuration to the cycle lattice basis of its edge contraction.

Proposition 9.3. Let Δ be a triangular configuration. Let $e=\left\{v_{1}, v_{2}\right\}$ be an edge of Δ. Let B be a cycle basis of $\mathbb{Z}(\Delta)$. Let Δ^{\prime} be an edge contraction of Δ along the edge e. Let Δ be e-contractable. If Δ does not contain a triangle $x y v_{1}$ or $x y v_{2}$ where $x, y \in V(\Delta)$, then $\mathbb{Z}\left(\Delta^{\prime}\right)$ has a cycle basis.

Proof. By Corollary 7.6, $M\left(\Delta^{\prime}\right) \cong M(\Delta) / D_{e}$ where $D_{e}=\{t \mid e \subset t, t \in$ $T(\Delta)\}$. Thus, $\mathcal{C}\left(M\left(\Delta^{\prime}\right)\right)=\left\{C \backslash D_{e} \mid C \in \mathcal{C}(M(\Delta))\right\}$. A consequence of Proposition 7.1 is that $|\mathcal{C}(M(\Delta))|=\left|\mathcal{C}\left(M\left(\Delta^{\prime}\right)\right)\right|$. Hence, the set $B^{\prime}:=$ $\left\{\beta \backslash D_{e} \mid \beta \in B\right\}$ is a basis of $\mathbb{Z}\left(\Delta^{\prime}\right)$.

$$
D_{0}=
$$

$D_{2}=$
$D_{3}=$

$$
D_{4}=
$$

Figure 9.2: The triangular configuration D_{4}, which does not have the lattice of circuits property and its ear decomposition.

10 Minors of Triangular Configurations

In this section we survey how rich is the class of triangular matroids and their minors. The hypothesis posed by Whittle is that for every binary matroid exists triangular configuration containing this matroid as a minor. We prove the hypothesis. This hypothesis is equivalent with that for every $P_{r}^{*} ; r \geq 3$ there exists a triangular configuration having P_{r}^{*} as a minor. In Section 9 on Figure 9.2 we find a configuration having $P_{3}^{*}=F_{7}^{*}$ as a minor.

Theorem 10.1. Let M be a binary matroid. Then there exists a triangular configuration Δ such that $M(\Delta) / S \cong M$, where S is a subset of $E(M)$. Moreover, there exists a bijection between $\mathcal{C}(M)$ and $\mathcal{C}(\Delta)$ mapping circuits to circuits, and $\operatorname{dim} \mathcal{C}(M)=\operatorname{dim} \mathcal{C}(\Delta)$.

Proof. Let n be the cardinality of the ground set of the matroid M. Let r denote the dimension of the cycle space $\mathcal{C}(M)$ a subspace of $G F(2)^{n}$. Let B be a cycle basis of $\mathcal{C}(M)$. We construct the desired configuration in this way. We put n triangles into a space of sufficient large dimension (Figure 10.1). Denote these triangles as t_{1}, \ldots, t_{n}.

Figure 10.1: Triangles representing the entries of the vectors of $\mathcal{C}(M)$.
For every basis vector $b_{i} \in B$ we construct the following triangular configuration $\Delta_{b_{i}}$ (Figure 10.2). The configuration $\Delta_{b_{i}}$ is obtained from a sufficiently dense triangular sphere (Figure 8.1, a sphere with the number of triangles greater than n). For every nonzero entry of the vector b_{i} we remove a triangle from the sphere and add triangular tunnel (Figure 8.2) between the new empty triangle and the triangle t_{j} where j is a position of a nonzero entry in the vector b_{i}. Thus, $\Delta_{b_{i}}$ contains t_{j} if and only if $b_{i}^{j}=1$. We denote the cardinality $\left|T\left(\Delta_{b_{i}}\right)\right|$ by $w\left(\Delta_{b_{i}}\right)$.

The desired triangular configuration Δ is the union of the triangular configurations $\Delta_{b_{i}}, i=1, \ldots, n ; \Delta=\bigcup_{i=1}^{d} \Delta_{b_{i}}$ (Figure 10.3).

It is convenient construct the configurations $\Delta_{b_{i}}$ such that $w\left(\Delta_{b_{i}}\right)$ -$w\left(b_{i}\right)=w\left(\Delta_{b_{j}}\right)-w\left(b_{j}\right)$ where $i, j=1, \ldots, d$. We denote the number $w\left(\Delta_{b_{i}}\right)-w\left(b_{i}\right)$ by $w(\Delta)$.

The triangular configuration Δ obviously contains all symmetric differences of the triangular configurations $\Delta_{b_{i}}, i=1, \ldots, d$. For a symmetric

Figure 10.2: A triangular cycle representing a basis vector of $\mathcal{C}(M)$.

Figure 10.3: A triangular representation of M.
difference of $\Delta_{b_{i}}$ and $\Delta_{b_{j}}$ holds that $\Delta_{b_{i}} \triangle \Delta_{b_{j}}$ contains triangle t_{k} if and only if k th entry of the vector $b_{i}+b_{j}$ is equal to 1 . Using induction we have that $\triangle_{i \in I} \Delta_{b_{i}}$ contains a triangle t_{k} if and only if k th entry of the vector $\sum_{i \in I} b_{i}$ is equal to 1 . Therefore, $\mathcal{C}(M(\Delta) / S) \supseteq \mathcal{C}(M)$ where $S=E(M(\Delta)) \backslash E(M)$.

We define a mapping $f: \mathcal{C}(M) \mapsto \mathcal{C}(\Delta)$ in the following way. Let x be an element of $\mathcal{C}(M)$. The vector x is equal to $\sum_{i \in I} b_{i}$. We define $f(x)$ as $\triangle_{i \in I} \Delta_{b_{i}}$. From the paragraph above follows that f is an injective mapping.

Now we prove that $\operatorname{dim} \mathcal{C}(M)=\operatorname{dim} \mathcal{C}(\Delta)$. Suppose that there exists a circuit of Δ that is not a symmetric difference of $\Delta_{b_{i}}, i=1, \ldots, d$. Let C be a such circuit with the minimal possible number of triangles $|T(C)|$. It is obvious that $T(C)$ contains $T\left(\Delta_{b_{i}}\right) \backslash\left\{t_{1}, \ldots, t_{n}\right\}$ for some $i \in\{1, \ldots, t\}$. For the circuit $C \triangle \Delta_{b_{i}}$ holds that $\left|T\left(C \triangle \Delta_{b_{i}}\right)\right|<|T(C)|$, since $T\left(\Delta_{b_{i}}\right)$ is sufficiently large. This is a contradiction. Thus, every circuit of Δ is a symmetric difference of $\Delta_{b_{i}}, i=1, \ldots, d$. Hence, $\operatorname{dim} \mathcal{C}(M)=\operatorname{dim} \mathcal{C}(\Delta)$.

Therefore, $\mathcal{C}(M(\Delta) / S)=\mathcal{C}(M)$ and $M(\Delta) / S \cong M$.
As $|\mathcal{C}(M)|=|\mathcal{C}(\Delta)|$, the mapping f is a bijection.
Now we show that f maps circuits to circuits. Let c be a circuit of $\mathcal{C}(M)$. For a contradiction suppose that $f(c)$ is not a circuit. Then there are cycles c_{1} and c_{2} of $\mathcal{C}(M)$ such that $f\left(c_{1}\right) \cup f\left(c_{2}\right)=f(c)$. By the definition of f, $c=c_{1} \cup c_{2}$. This is a contradiction. Thus, the mapping f maps circuits to circuits.

The triangular configuration in the theorem above we call triangular representation of a binary matroid with respect to the basis B. A triangular configuration such that all $w\left(\Delta_{b_{i}}\right)-w\left(b_{i}\right)$ are the same is called normal.

Let M be a binary matroid. Let C be the cycle space of M. Let d be the dimension of C. The weight polynomial of the code C is defined according to the formula

$$
\begin{equation*}
W(C):=\sum_{c \in C} x^{w(c)} . \tag{10.1}
\end{equation*}
$$

Now, we survey a connection between the weight polynomial of a matroid and the weight polynomial of its triangular representation.

Let B be a basis of C. Let Δ be a normal triangular representation of C. We say that an element c of C has degree of combination i if it is a sum of i basis vectors. We denote the degree of combination of a vector c by $d c(c)$.

For instance a basis vector has degree 1 . We define

$$
\begin{equation*}
W_{i}(C):=\sum_{c \in C, d c(c)=i} x^{w(c)} . \tag{10.2}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
W(C)=\sum_{i=0}^{d} W_{i}(C) . \tag{10.3}
\end{equation*}
$$

Proposition 10.1. Let M be a binary matroid. Let B be a basis of $\mathcal{C}(M)$. Let Δ be a normal triangular representation of M with respect to B. Then

$$
\begin{equation*}
W_{i}(\mathcal{C}(\Delta))=W_{i}(\mathcal{C}(M)) x^{i w(\Delta)} . \tag{10.4}
\end{equation*}
$$

Proof. Let c be a cycle of $\mathcal{C}(M)$ of degree i. The cycle c is equal to $\sum_{j \in J} b_{j}$ where $|J|=i$. Then there exists a cycle c^{\prime} of $\mathcal{C}(\Delta)$ equal to $\triangle_{j \in J} \Delta_{b_{j}}$. The weight of $\Delta_{b_{j}}$ is equal to $w(\Delta)+w\left(b_{j}\right)$. Thus, the weight of the cycle c^{\prime} is equal to $i w(\Delta)+w(c)$.

Therefore,

$$
\begin{align*}
W_{i}(\mathcal{C}(\Delta)) & =\sum_{c^{\prime} \in \mathcal{C}(\Delta), d c\left(c^{\prime}\right)=i} x^{w\left(c^{\prime}\right)} \\
& =\sum_{c \in \mathcal{C}(M), d c(c)=i} x^{w(c)+i w(\Delta)} \tag{10.5}\\
& =W_{i}(\mathcal{C}(M)) x^{i w(\Delta)} .
\end{align*}
$$

References

[1] Tamás Fleiner, Winfried Hochstättler, Monique Laurent, and Martin Loebl, Cycle bases for lattices of binary matroids with no Fano dual Minor and their one-element extensions, J. Comb. Theory Ser. B, 77 (1999), pp. 25-38.
[2] Martin Loebl and Martin Matamala, Some Remarks on Cycles in Graphs and Digraphs. Discrete Math., 233 (2001), pp. 175-182.
[3] L. Lovász and A. Seress, The cocycle lattice of binary matroids, European J. Combin., 14 (1993), pp. 241-250.
[4] J. G. Oxley, Matroid Theory, Oxford Graduate Texts in Mathematics 3, Oxford University Press, 1992.
[5] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1992.

