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1 Introduction
In this thesis we study triangular con�gurations, binary matroids, binary
codes, and lattices generated by the cycles of a binary matroid.

In Section 2 we de�ne matroids and graphs. We present some basic facts
about matroids.

In Section 3 we de�ne the ear extension and the ear decomposition of a
binary matroid. Then we prove the existence of an ear decomposition for
every connected matroid and that the cycle space of the matroid has a basis
consisting of the "ears" vectors.

In Section 4 we de�ne codes, and integer lattices and describe their basic
properties.

In Section 5 we introduce the hypothesis about the basis of the lattice
generated by a binary code. The hypothesis is that the lattice generated by
the codewords of a binary code has a basis consisting only of the codewords.
In Subsection 5.3 we present a su�cient condition for constructing a cycle
lattice basis of an ear extension of M by extending a cycle lattice basis of
the matroid M .

In Section 6 we de�ne the triangular con�guration and its geometric rep-
resentation.

In Section 7 we study the edge contraction of a triangular con�guration.
We describe the properties of the cycles that remain a cycle after edge con-
traction.

In Section 8 for every graph we show how to �nd a triangular con�guration
with the skeleton that has this graph as a minor.

In Section 9 we construct a cycle lattice basis for triangular con�gurations.
This basis is constructed from a cycle lattice basis of an edge contraction.

In Section 10 for every binary matroid we construct a triangular con�g-
uration such that the matroid is a minor of the con�guration. We prove
that between the cycle spaces of the matroid and the con�guration exists a
bijection. The bijection maps the circuits of the matroid to the circuits of
the con�guration. We show a relationship between the weight polynomials
of the con�guration and the matroid.
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2 Preliminaries
In this section we de�ne basic concepts. We assume that the reader is familiar
with the linear algebra.

2.1 Matroids
We use standard de�nitions, which can be found in Oxley [4].

Let M be a set. The incidence vector of a set A a subset of M is a
vector χA of {0, 1}|M | such that χA

e := 1 if and only if e ∈M .
A matroid M is an ordered pair (E, I) consisting of a �nite set E and

a collection I of subsets of E satisfying the following three conditions:
(I1) ∅ ∈ I.
(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.
(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2− I1

such that I1 ∪ e ∈ I.
Elements of I are called independent sets. For particular matroid M ,

we denote the sets E and I by E(M) and I(M), respectively. The maximal
independent sets are called bases. The collection of bases of M is denoted
by B or B(M).

Any subset of E that is not in I is called dependent. A minimal depen-
dent set is called circuit. Let T be a maximal independent set of M . For
e ∈ E \ T , let Ce denote the fundamental circuit of e with respect to T ;
that is, Ce is the unique circuit such that e ∈ Ce ⊆ T ∪ {e}.

The collection of circuits of M is denoted by C or C(M). An element e of
M that is a circuit is called a loop. Moreover, elements f, g of M are said
parallel, if {f, g} is a circuit.

A parallel class is a maximal subset X of E such that every two distinct
elements of X are parallel and no element of X is a loop. A parallel class
that has only one element is called trivial. A matroid M is called simple,
if it has neither loops nor non-trivial parallel classes.

Let M be a matroid with a collection of bases B. Then the dual of M ,
denoted byM∗, is the matroid with the collection of bases B∗ := {E(M)−B :
B ∈ B}. We omit a proof that the dual is a matroid. The independent
sets, circuits, bases in the dual matroid are called coindependent sets,
cocircuits, cobases, respectively.

In this text we will frequently work with circuits rather than independent
sets. The next lemma shows that a matroid can be de�ned in terms of
circuits.
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Lemma 2.1. Let C be a collection of subsets of a set E. Then, C is the
collection of circuits of a matroid on E if and only if C satis�es the following
conditions:

(C1) ∅ /∈ C.
(C2) If C1 and C2 are members of C and C1 ⊆ C2, then C1 = C2.

(C3) If C1 and C2 are distinct members of C and e ∈ C1 ∩C2, then there is
a member C3 of C such that C3 ⊆ (C1 ∪ C2)− e.

Matroids have a lot of equivalent de�nitions. Another de�nitions can be
found in Oxley [4].

Let M be a matroid (E, I). Let T be a subset of E. Then the deletion
of T fromM or the restriction ofM to E \T is the pair (E \T, {I ⊆ E \T :
I ∈ I}). It is denoted byM \T orM | (E \T ), respectively. For the deletion
holds that C(M \ T ) = {C ⊆ E \ T : C ∈ C(M)}.

Let M/T , the contraction of T from M , be given by M/T = (M∗ \T )∗.
For the contraction holds that C(M/T ) = {C \ T : C ∈ C(M)}.

A matroidN that is obtained from a matroidM by a sequence of deletions
and contractions is called a minor of M .

Two matroids M1 and M2 are isomorphic, written M1
∼= M2, if there is

a bijection ψ from E(M1) to E(M2) such that for all X ⊆ E(M1) ψ(X) is
independent in M2 if and only if X is independent in M1.

A graph G consists of a nonempty set V (G) of vertices and a multi-
set E(G) of edges each of which consists of an unordered pair of (possibly
identical) vertices.

The degree of a vertex v is the number of edges incident with v, each
loop counting as two edges.

A graph H is a subgraph of a graph G if V (H) and E(H) are subsets
of V (G) and E(G), respectively.

A graph is a cycle if every vertex has an even degree. A nonempty cycle
that does not contain any other cycle is called circuit.

Lemma 2.2. Let E be the set of edges of a graph G. Let C be the collection
of circuits of G. Then C is the set of circuits of a matroid on E.

The matroid from the lemma above is called cycle matroid of a graph
G. A matroid that is isomorphic to the cycle matroid of a graph is called
graphic.

In the next lemma we introduce the vector matroid.
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Lemma 2.3. Let E be the set of labels of columns of an m × n matrix A
over a �eld F . Let I be the set of subsets X of E for which the multiset of
columns labeled by X is linearly independent. Then (E, I) is a matroid.

If a matroidM is isomorphic to a vector matroid of a matrixD over a �eld
F , thenM is said to be representable over F ; D is called representation
for M over F . A matroid is said to be representable, if it is representable
over some �eld F . A matroid that is representable over two element �eld Z2

is called binary.
If X and Y are sets then their symmetric di�erence, X4Y , is the set

(X ∪ Y ) \ (X ∩ Y ). One can easily checks that the operation of symmetric
di�erence is both commutative and associative.

The cycle of a binary matroid is a symmetric di�erence of any set of
circuits. We abbreviate notions, and the collection of cycles of a binary ma-
troidM denote by C(M). Obviously, C(M) is closed under taking symmetric
di�erence.

The circuit (cycle) space and the cocircuit (cocycle) space of a
binary matroid M are the vector spaces over Z2 that are generated by the
incidence vectors of the cycles and cocycles, respectively, of M .

Lemma 2.4. Let M be a binary matroid. Let A be a representation of M .
Then

(i) if C is a cycle of M and C∗ is a cocycle of M then |C ∩ C∗| is even;

(ii) a vector x belongs to the circuit space of M if and only if Ax = 0;

(iii) a vector x belongs to the cocircuit space of M if and only if x is a linear
combination of the rows of the matrix A;

(iv) a cycle C is a circuit if and only if C is minimal (that is, it does not
contain any other cycle) and nonempty.

In this text we will work only with binary matroids.
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3 Ear Decomposition of Connected Matroids
In this section we introduce the ear decomposition. The decomposition is
a generalization of the ear decomposition of 2-vertex connected graph. A
similar decomposition that use both operations of contraction and deletion
is de�ned in Oxley [4]. The decomposition that use only deletions is already
known but we give our de�nition and proofs.

A matroid M is connected if and only if for every pair of distinct ele-
ments of E(M) there is a circuit containing both.

Let V1 and V2 be vector spaces then the set of all sums v1 + v2 of vectors
v1 ∈ V1 and v2 ∈ V2 is called sum of vector spaces V1 and V2, denoted by
V1 + V2. We abbreviate this notion, and if C1 and C2 are collections of sets,
then the set of all symmetric di�erences c1 4 c2 of sets c1 ∈ C1 and c2 ∈ C2

is called sum of collections of sets, denoted by C1 + C2.
A matroid M is an ear extension of a matroid N , if the following con-

ditions are satis�ed. N is obtained from M by deleting a nonempty subset
T of E(M). There is a circuit C of M such that T is a proper subset of C.
The set T is a coparallel class of M . There is no matroid M ′ such that M ′ is
an ear extension of N and M is an ear extension of M ′. The circuit C and
the set T are called ear circuit and ear, respectively, of M .
Lemma 3.1. LetM be an ear extension of N . Let N be a connected matroid.
Then M is a connected matroid.
Proof. From the de�nition of the ear extension; N = M \ T . Let C be a
circuit of M containing T . Let u, v be elements of E(M).

If u, v belong to E(N) then there is, by assumptions that N is connected,
a circuit containing both.

If u, v belong to T then there is also a circuit containing both, as T is a
subset of some circuit.

So, suppose that u ∈ E(N) and v ∈ T = E(M) \ E(N). Let w be an
element of E(N) such that w ∈ C. As N is connected, there is a circuit C ′
containing w, u. Then C 4 C ′ is a circuit, as C ∩ C ′ 6= ∅. And this circuit
contains elements u, v.

Therefore M is connected.
Proposition 3.1. Let M be a connected matroid and suppose that |E(M)| ≥
2. Then there is a sequence M0, . . . ,Mn of connected matroids such that M0

contains just one circuit. The matroid Mi is an ear extension of Mi−1, for
i = 1, . . . , n. Moreover M = Mn.
Proof. As the matroid M has two distinct elements and is connected, then
it contains at least one circuit C ′. Set M0 := M | C ′. Let M0, . . . ,Mn be a
maximal desired sequence. For a contradiction suppose that Mn 6= M .
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As M is connected, there is a circuit containing both elements of E(M) \
E(Mn) and E(Mn). The collection of these circuits denote by D. Let C be
a circuit from D such that for every C ′ ∈ D; (C ′ \ E(Mn)) 6= (C \ E(Mn))
holds (C ′ \ E(Mn)) * (C \ E(Mn)). Let T be the set C \ E(Mn) and let
Mn+1 be the matroid on the ground set E(Mn) ∪ T and with the collection
of cycles C(Mn) + {0, C}. Obviously; Mn+1 \ T = Mn, and the set T is a
proper subset of C.

For a circuit C ′ ∈ C(M)\C(Mn); C ′ ⊆ E(Mn+1) holds (C4C ′) ⊆ E(Mn).
Thus C(Mn+1) = C(Mn) + {0, C} = {C ′ ⊆ E(Mn) : C ′ ∈ C(Mn)} ∪ {C ′ 4
C ⊆ E(Mn) : C ′ ∈ C(Mn+1)} = {C ′ ⊆ E(Mn+1) : C ′ ∈ C(M)} = C(M |
E(Mn+1)). Therefore M | E(Mn+1) = Mn+1, and Mn+1 is a minor of M .

Let D be a circuit of Mn+1 containing an element of T . Obviously, D is
a symmetric di�erence of C and some circuit of Mn. As the set T and every
circuit of Mn are disjoint, then D contains the entire set T . Therefore all
elements of T are pairwise coparallel. Let u be an element of T . Let v, w be
elements of E(Mn). Let D be a circuit containing u, v. Let D′ be a circuit of
Mn containing v, w. Then the circuit D 4D′ does not contain the element
v and contains the element u. So, the set T is a coparallel class of Mn+1. As
there is no proper subset T ′ of T such that Mn+1 \ T ′ is an ear extension of
Mn, then Mn+1 is an ear extension of Mn.

This is a contradiction with the maximality of the sequence. Therefore
Mn = M .

The sequence in the lemma above is called ear decomposition of a
matroid M . For a connected matroid M with at least two elements. We
de�ne the ear basis in this way. Let C0 denote a circuit of M0. Let Ci

denote the ear circuit of Mi. Then the set {χC0 , χC1 , . . . , χCn} is called ear
basis of C(M).

Proposition 3.2. Let M be a connected binary matroid such that |E(M)| ≥
2. Let β be an ear basis of M . Then the set β is a basis of the circuit space
C(M).

Proof. We apply induction on the dimension of the circuit space. If dim
C(M) = 1 then the matroid M has one circuit C. Hence, the ear decompo-
sition of M is M0. Therefore β = {χC}. This is a basis of C(M).

Suppose that dim C(M) > 1. The matroid M has an ear decomposition
M0, . . . ,Mn−1,Mn. By the induction assumptions, the ear basis β′ of the
matroid Mn−1 is a basis of the circuit space of Mn−1. Let C ′ be a cycle
of C(M) \ C(Mn−1). Let Cn be the ear circuit of Mn. Let T be the ear of
Mn. As T is a coparallel class of M , then χC′

i = χCn
i for i ∈ T . Thus,

the vector χC′ + χCn belongs to C(Mn−1). Therefore, the vector χC′ is a
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linear combination of χCn and the vectors of the set β′. Hence, the set
β = {χC0 , . . . , χCn} is a basis of the circuit space C(M).
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4 Lattices and Codes
4.1 Codes
An alphabet is a set of symbols Σ = {s0, . . . , sm}. Let Σn be a set of
n-tuples of symbols. Elements of Σn are called words. A code is a subset
W of Σn. Elements of W are called codewords.

If W forms a vector space over a �eld F, then W is called linear code.
A binary linear code is a linear code over two elements �eld. The weight
of a codeword x is the number of nonzero coordinates, denoted by w(x).

4.2 Lattices
4.2.1 De�nitions
A lattice in Rd is the set

Z(X) := {
∑
x∈X

λxx|λx ∈ Z ∀x ∈ X} (4.1)

where X is a set of real vectors of Rd. If Z(X) is a full dimensional lattice,
then the dual lattice of Z(X) is the set

(Z(X))∗ := {x ∈ Rd|xy ∈ Z ∀y ∈ Z(X)}. (4.2)

The following well known relation taken from Fleiner et al. [1] is between a
lattice and its dual lattice.

Proposition 4.1. Let Z(X) be a full dimensional lattice in Rd. Let (Z(X))∗

be the dual lattice. Let N be an integer. Then

NZd ⊆ Z(X) ⇔ (Z(X))∗ ⊆ 1

N
Zd (4.3)

.

Proof. At �rst, we observe that

{x ∈ Rd|xy ∈ Z ∀y ∈ NZd} =
1

N
Zd. (4.4)

” ⇒ ”
As NZd ⊆ Z(X) then

(Z(X))∗ = {x|xy ∈ Z ∀y ∈ Z(X)} ⊆ {x|xy ∈ Z ∀y ∈ NZd} =
1

N
Zd. (4.5)
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” ⇐ ”
We suppose that (Z(X))∗ ⊆ 1

N
Zd. Thus

(Z(X))∗ = {x|xy ∈ Z ∀y ∈ Z(X)} ⊆ {x|xy ∈ Z ∀y ∈ NZd} =
1

N
Zd. (4.6)

Therefore NZd ⊆ Z(X).

4.2.2 Bases of Lattices
In this section we de�ne the basis of a lattice and show that every rational
lattice admits a basis. The following de�nitions and proofs in this section
are taken from Schrijver [5].

A basis of lattice Z(M) is a linear independent subset B of Rd such that
Z(B) = Z(M). A matrix of full row rank is said to be in Hermite normal
form if it has the form

[
B 0

]
, where B is a nonsingular, lower triangular,

nonnegative matrix, in which each row has a unique maximum entry, which
is located on the main diagonal of B.

The following operations on a matrix are called elementary (unimod-
ular) column operations:

(i) exchanging two columns;
(ii) multiplying a column by −1;
(iii) adding an integral multiple of one column to another col-

umn.
Theorem 4.1. Each rational matrix of full row rank can be brought into
Hermite normal form by a series of elementary column operations.
Proof. Let A be a rational matrix of full row rank. Without loss of generality,
A is integral. Suppose we have transformed A, by elementary column oper-
ations, to the form

[
B 0
C D

]
where B is lower triangular and with positive

diagonal. Now with elementary column operations we can modify D so that
its �rst row (δ11, . . . , δ1k) is nonnegative, and so that the sum δ11 + · · ·+δ1k is
as small as possible. We may assume that δ11 ≥ δ12 ≥ · · · ≥ δ1k. Then δ11 0,
as A has full row rank. Moreover, if δ12 0, by subtracting the second column
of D from the �rst column of D, the �rst row will have smaller sum, contra-
dicting our assumption. Hence δ12 = · · · = δ1k = 0, and we have obtained a
larger lower triangular matrix.

By repeating this procedure, the matrix A �nally will be transformed into[
B 0

]
with B = (βij lower triangular with positive diagonal. Next do the

following:

9



for i = 2, . . . , n (:= order of B), do the following: for j = 1, . . . , i−
1, add an integer multiple of the ith column of B to the jth
column of B so that (i, j)th entry of B will be nonnegative and
less than βii.

It is easy to see that after these elementary column operations the matrix is
in Hermite normal form.

Corollary 4.1. Every lattice generated by rationals vectors a1, . . . , am has a
basis.

Proof. We may assume that a1, . . . , am span all space. (Otherwise we could
apply a linear transformation to a lower dimensional space.) Let A be the
matrix with columns a1, . . . , am (so A has full row rank). Let

[
B 0

]
be the

Hermite normal form of A. Then the columns of B are linearly independent
vectors generating the same lattice as a1, . . . , am.

4.3 Notations
We �x some notations.

• The cycle basis is a basis of cycle space over GF (2) of some binary
matroid.

• The ear basis is a basis of cycle space over GF (2) of some binary
matroid obtained from an ear decomposition.

• The lattice basis is a basis of lattice.

• The cycle lattice basis is a basis of lattice generated by cycle space of
some binary matroid consisting only of elements of cycle space (cycles).

10



5 Lattices of Binary Matroids
5.1 De�nitions and the Introduction to the Problem
Let M be a binary matroid, then the cycle lattice of M is the set

Z(M) := {
∑

C∈C(M)

λCχ
C |λC ∈ Z ∀C ∈ C(M)}. (5.1)

We study the following hypothesis taken from Fleiner et al. [1].

Hypothesis 5.1. Let M be a binary code. Let Z(M) be a lattice generated
by the code M . Then Z(M) has a basis consisting only of codewords.

No code is known for which the hypothesis fails. The best known results
are the following two theorems taken from Fleiner et al. [1].

Theorem 5.1. Let M be a binary matroid with no F ∗7 minor. Then the
lattice Z(M) has a basis consisting only of circuits.

The matroids with no F ∗7 minor contain the class of regular matroids,
which extends the graphic and cographic matroids.

Theorem 5.2. Let M be a binary matroid on E with no F ∗7 . Let M ′ be an
one-element extension of M . Then every cycle lattice basis BM of Z(M) can
be extended to a cycle lattice basis B of Z(M ′).

These matroids contain the class of graft matroids (that is, one-element
extensions of graphic matroids).

Our goal is to consider the hypothesis for a geometrically de�ned class
of binary codes. Especially the class of codes generated by the cycles of a
triangular con�guration.

We will work only with connected matroids. In disconnected matroid does
not exists a cycle that contains two elements of two di�erent components of
connectivity. Therefore the lattice generated by a component of connectivity
does not contains any cycle of the others components of connectivity.

5.2 Basic Facts
Fleiner et al. [1] showed propositions 5.1 and 5.2.

Proposition 5.1. Let M be a binary matroid, then the following holds ob-
viously for all x ∈ Z(M).

(i) ∑
e∈D xe is even for all cocircuits D ∈ C∗(M),
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(ii) xf = xg if f and g are coparallel in M ,

(iii) xe = 0 if e is coloop of M .

A matroid M has the lattice of circuits property if the conditions
(i)-(iii) characterize the lattice Z(M).

Hypothesis 5.1 is open even for matroids with the lattice of circuits prop-
erty.

Let M be a binary matroid, then the collection of all parallel classes of
M is denoted by P (M). From the lemma above follows that the dimension
of Z(M) is equal to the number of coparallel classes of M ; dim Z(M) =
|P (M∗)|.
Proposition 5.2. A matroid M has the lattice of circuits property if and
only if 2χP belongs to Z(M) for every coparallel class P of M .

If we want to prove that a matroid does not have the lattice of circuits
property, it su�ces to �nd a vector of (Z(M))∗ not in 1

2
Z.

Let M be a cosimple binary matroid. Let T be a maximal independent
subset of E(M). Let Ce (e ∈ T ′) be the corresponding fundamental circuits.
LetW be the matrix whose rows are the incidence vectors of the sets Ce∩Cf

(for e, f ∈ T ′). Lovász and Seress [3] have shown that

Proposition 5.3. Let M be a cosimple binary matroid. M has the lattice
of circuits property if and only if the matrix W has full column rank over
GF (2).

The following proposition is taken from Fleiner et al. [1].

Proposition 5.4. Let M be a cosimple binary matroid. If we could �nd a
set I of pairs (e, f) (e 6= f ∈ T ′) for which the submatrix WI with rows Ce

(e ∈ T ′) and Ce ∩Cf ((e, f) ∈ I) has its determinant equal to 1, then the set
{Ce(e ∈ T ′), Ce 4 Cf ((e, f) ∈ I)} would be a cycle basis of Z(M)}.

For r ≥ 2, the projective space Pr is the binary matroid represented by
the r × (2r − 1) matrix whose columns are all nonzero 0, 1-vectors of length
r. Lovász and Seress [3] have shown that

Theorem 5.3. Let M be a cosimple binary matroid with no P∗r+1 minor,
then 2r−1ZE ⊆ Z(M).

Fleiner et al. [1] showed that Z(P∗r ) has obviously a cycle basis, since the
nonempty cycles of P∗r are linearly independent over R. Fleiner et al. [1]
showed that Z(Pr) has a basis consisting only of cycles of Pr.
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5.3 New Results
In this section we give some new results. At �rst we prove a technical lemma
about coparallel classes of an ear extension of a matroid.

Lemma 5.1. Let N be a connected binary matroid with the collection of
coparallel classes P (N∗). Let M be an ear extension of N . Let C be the ear
circuit. Let T be the ear of the extension. Then P (M∗) = {T} ∪ {P ∩C,P \
C |P ∈ P (N∗)} \ {∅}.
Proof. From the de�nition of the ear extension, we know that the set T is a
coparallel class of M . Let P ′ be an arbitrary element of P (M∗) \ {T}. The
set P ′ is equal to P ∩ C or P \ C where P ∈ P (N∗).

Suppose that |P ′| ≥ 2. Let u, v be two distinct elements of P ′. Let C ′ be
a circuit of C(N). As P ′ is a subset of some coparallel class of N , |C ′∩{u, v}|
is even. Let C ′ be a circuit of C(M) \ C(N). Then the circuit C ′ is equal
to C 4 D where D ∈ C(N). If P ′ = P ∩ C, |C ∩ {u, v}| is equal to 2. If
P ′ = P \C, |C∩{u, v}| is equal to 0. As |D∩{u, v}| is even, |(C4D)∩{u, v}|
is even. Hence, every two elements of P ′ are coparallel.

Let u be an element of the set P ′. Let v be an element of E(M)\(P ′∪T ).
If v ∈ P then |C ∩ {u, v}| = 1, where C is the ear circuit. If v /∈ P then u, v
do not belong to the same coparallel class of N . Hence, there is a circuit D
of C(N) such that |D ∩ {u, v}| = 1. Therefore the set P ′ is a coparallel class
of M .

Let N be a connected binary matroid. Let M be an ear extension of N .
Let C be an ear circuit of the extension. Then denote by I(N,M) the set
{P ′ ∈ P (M∗)|P ′ ⊂ C,P ′ ( P ∈ P (N∗)}. The elements of the set I(N,M)
are the new coparallel classes of M contained in the ear circuit C. The
cardinality of I(N,M) is equal to |P (M∗)| − |P (N∗)| − 1.

The following basis construction is a generalization of the basis construc-
tion of the lattice of a graph introduced in Loebl and Matamala [2].

Theorem 5.4. Let N be a connected binary matroid with the lattice of cir-
cuits property and letM be an ear extension of N . Let m denote the cardinal-
ity of I(N,M) = {P ′1, . . . , P ′m}. If Z(N) has a cycle basis B = {β1, . . . ., βd}
such that βi ⊇ P ′i and βi ∩ P ′i+1 = ∅, . . . , βi ∩ P ′m = ∅ for i = 1, . . . ,m. Then
the lattice of the matroidM has circuits property and has a cycle lattice basis.
This basis contains the basis B.

Proof. We show that the set

B′ := B ∪ {β′i | β′i = βi 4 C, i = 1, . . . ,m} ∪ {C} (5.2)
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of cycles of M is a basis of Z(M) and generates the vectors 2χP ′ for all
coparallel classes P ′ of P (M∗).

Let P ′ be a coparallel class of M . If P ′ ∈ P (N∗), then the vector 2χP ′ is
generated by the set B since N has the lattice of circuits property.

If P ′ = P ′1, then

2χP ′1 = χβ1 + χC − χβ′1 +
∑

P∈P (N∗)

λP 2χP (5.3)

since β′1 = β1 4 C and P ′1 ⊆ β1 ∩ C and β1 ∩ P ′2 = ∅, . . . , β1 ∩ P ′m = ∅.
For P ′i ∈ I(N,M) \ {P ′1} we have

2χP ′i = χβi + χC − χβ′i +
∑

j∈{1,...,i−1}
λP ′j2χ

P ′j +
∑

P∈P (N∗)

λP 2χP . (5.4)

If P ′ is the ear T of the extension, then

2χT = 2χC +
∑

j∈{1,...,m}
λP ′j2χ

P ′j +
∑

P∈P (N∗)

λP 2χP . (5.5)

If P ′ ∈ P (M∗) \ (I(N,M)∪ T ), then P = P1 \P2 where P1 ∈ P (N∗) and
P2 ∈ I(N,M). Therefore

2χP = 2χP1 − 2χP2 . (5.6)

As P (M∗) ⊆ P (N∗) ∪ I(N,M) ∪ {T}, the matroid M has the lattice of
circuits property.

Finally, we prove that B′ generates all cycles of M over R. Let C ′ be a
cycle of M . If C ′ ∈ C(N) then C ′ is generated by the set B.

Suppose that C ′ /∈ C(N). From the de�nition of the ear extension, we
can express C ′ as C ′ = C 4D where D ∈ C(N). Thus

χC′ = χD + χC +
∑

P ′i∈I(N,M)}
λP ′i 2χ

P ′i . (5.7)

The set B′ has the right cardinality, because |B′| = |B|+ |I(N,M)|+1 =
|P (N∗)|+ |P (M∗)| − |P (N∗)| − 1 + 1 = P (M∗) = dim Z(M).

Therefore, the set B′ is a cycle lattice basis of Z(M).

In the following paragraphs we discuss whether Theorem 5.4 may provide
a proof of Hypothesis 5.1 restricted to the matroids with the lattice of circuits
property.

Let N be the ear extension of the graphic matroid M in �gure 5.1 with
the following cycle space C(N) + {e1, e2, e3, t}. Then I(N,M) = {e1, e2, e3}.

14



A basis vector containing e1 have to cover e2 or e3. Therefore M does not
have a basis required by Theorem 5.4. Thus, there exists an ear extension of
a matroid with the lattice of circuits property which does not have the basis
required by Theorem 5.4. Therefore Theorem 5.4 does not provide a proof
of the hypothesis.

Moreover, the matroid M does not have the lattice of circuits property,
by Proposition 5.5.

Figure 5.1: A matroid with no good basis.

Next, we demonstrate that an ear decomposition of a matroid with the
lattice of circuits property may contain a matroid that does not have the
lattice of circuits property. For instance the matroid S8 taken from Fleiner
et al. [1]. The matroid S8 is an ear extension of a graph G in �gure 5.2. S8

has the following cycle space C(S8) = C(G) + {e1, e2, e3, e4, t}. S8 has the
lattice of circuit property. As S8 contains as a minor the dual fano matroid
F ∗7 , there exists an ear decomposition which contains the dual fano matroid.

Figure 5.2: A graph G of graft S8.

The following proposition is taken from Fleiner et al. [1].
Proposition 5.5. Let M be a binary matroid. Let N be an ear extension of
M . Let I(N,M) be equal to {P1, . . . , Pk}. Let P ′i be an element of P ∗(M)

15



such that P ′i ⊃ Pi. If there exists elements e1 ∈ P1, . . . , ek ∈ Pk, f1 ∈ P ′1 \
P1, . . . , fk ∈ P ′k \ Pk (k ≥ 3) such that the set {e1, . . . , ek} is a cocircuit of
M , then N does not have the lattice of circuits property.

Proof. We can suppose without loss of generality that the matroidsM and N
are cosimple. We show that N does not have the lattice of circuits property
by constructing a vector x ∈ 1

4
ZE(N) \ 1

2
ZE(N) belonging to the dual lattice

(Z(N))∗. For this, set x(ei) = x(fi) := 1
4
(i = 1, . . . , k), x(t) := 0, 3

4
, 1

2
, 1

4
if k is

congruent to 0, 1, 2, 3, respectively, and x(e) := 0 for all remaining elements
e ∈ E(N).

Corollary 5.1. Let N be a connected graphic matroid with the lattice of
circuits property. Let M be a graphic matroid that is an ear extension of N .
If Z(N) has a cycle basis B, then Z(M) has a cycle basis B′. The basis B′

contains the basis B. Moreover M has the lattice of circuits property.

Proof. Let G,G′ be graphs such thatM(G) ∼= N andM(G′) ∼= M . Let C be
an ear circuit of the ear extensionM and T be the ear. Then T is a path. Let
t1, t2 be end vertices of the path. Let P1, P2 ∈ P (M∗) be coparallel classes
such that t1 ∈ e ∈ P1 and t2 ∈ f ∈ P2 and C ∩ P1 6= ∅ and C ∩ P2 6= ∅.

If both end vertices have degree greater than 2 in G, then the set I(N,M)
is empty.

If P1 = P2 and at least one end vertex has degree 2 in G then I(N,M) =
{P1 ∩ C}.

Suppose that P1 6= P2. If one end vertex ti of T has degree 2 in G, then
I(N,M) = {C ∩ Pi}.

If both end vertices of T have degree 2 in G, then I(N,M) = {C ∩
P1, C ∩ P2}. In that case there is a circuit D of G such that D ∩ P1 6= ∅ and
D ∩ P2 = ∅, since P1 and P2 are distinct coparallel classes.

Hence, we can use Theorem 5.4 and prove the corollary.

By using the corollary above, we give a new proof of the theorem that
the lattice of a graphic matroid has a basis consisting only of cycles of the
matroid.

Theorem 5.5. LetM be a connected graphic matroid. Then the lattice Z(M)
has a basis consisting only of cycles of M .

Proof. Let M0, . . . ,Mn be an ear decomposition of M . Obviously M0 has
the lattice of circuits property and Z(M0) has a basis consisting only of
cycles. By using corollary 5.1 repeatedly to the decomposition, we obtain
that Z(M) = Z(Mn) has a basis consisting only of cycles.
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The next theorem about basis extension is a reformulation of the theorem
taken from Fleiner et al. [1].

Theorem 5.6. Let N be a binary matroid. Let M be an ear extension of N .
If Z(N) has a cycle lattice basis B = {β1, . . . , βd} and |P (M∗)| = |I(N,M)|,
then Z(M) has the following cycle lattice basis B′ = B ∪ {D4 C|D ∈ B} ∪
{C}.
Proof. As B′ has the right cardinality, it su�ce to verify that it generates all
cycles of M . For this, let E be a cycle of N ; then

χE =
∑

β∈B

λβχ
β, (5.8)

where the λ′Bs are integers. Therefore,

χ(E4C) =
∑

β∈B

λβχ
(β4C) +

(
1−

∑

β∈B

λβ

)
χC (5.9)

belongs to Z(B′).

Remark 5.1. The comparison of Theorems 5.4 and 5.6. Let M be a binary
matroid. Let N be an ear extension of M . The theorems construct a lattice
basis of the matroid N by extending a basis of the matroid M .

The main di�erence is that Theorem 5.4 requires on the lattice of the
matroid N circuits property and the "good" cycle lattice basis. Whereas
Theorem's 5.6 assumptions are that the number of coparallel classes of M is
equal to 2|P (N∗)|+ 1.

The matroid in Figure 5.1 and the ear extension de�ned above do not
satisfy the assumptions of theorem 5.4 and satisfy the assumptions of Theo-
rem 5.6. The matroid with the lattice of circuits property in Figure 5.2 and
the matroid S8 do not satisfy assumptions of both Theorems 5.4 and 5.6.
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6 Triangular Con�gurations
6.1 De�nitions
A triangular con�guration is a triple ∆ = (V,E, T ) consisting of a �nite
set V of points, a �nite set E of edges satisfying E ⊆ (

V
2

)
, and a �nite set T

of triangles satisfying T ⊆ (
V
3

)
and for every t ∈ T holds

(
t
2

) ⊆ E.
A geometric representation of a triangular con�guration (V,E, T ) in

Rd is an injective mapping f : V 7→ Rd satisfying

1. for every t ∈ T holds the set f(t) := {f(x)|x ∈ t} is a�nely indepen-
dent,

2. for every e, e′ ∈ E such that e 6= e′ holds conv(f(e)) ∩ conv(f(e′)) is
equal to ∅ or f(v) for some vertex v ∈ V ,

3. for every t, t′ ∈ T such that t 6= t′ holds conv(f(t)) ∩ conv(f(t′)) is
equal to ∅; or f(v) for some vertex v ∈ V ; or conv(f(e)) for some edge
e ∈ E.

Let ∆ be a triangular con�guration, we denote by

• V (∆) the set of vertices of a triangulation;

• E(∆) the set of edges of a triangulation;

• T (∆) the set of triangles of a triangulation.

Let v1, v2, v3 be vertices of ∆. Let e be an edge of ∆. Let t be a triangle
of ∆. The edge e can be written as {v1, v2} or v1v2 where v1 and v2 are the
vertices of the edge. The triangle t can be written as {v1, v2, v3} or v1v2v3,
or efg or {e, f, g} where e, f, g are the edges of the triangle.

If we admit that T is a multiset in the de�nition of the triangular con�g-
uration, we say that the triple ∆ is a multitriangular con�guration.

A triangular con�guration S is a subcon�guration of a triangular con-
�guration R, if V (S); E(S); and T (S) are subsets of V (R); V (R); and T (R),
respectively. We say that R contains S.

Let ∆ be a triangular con�guration. Then the pair (V (∆), E(∆)) forms
a graph. This graph is called skeleton and is denoted by G(∆).

The edge degree dE(e) of an edge e of ∆ is the number of triangles
containing the edge.

dE(e) := |{t : t ∈ T (∆), e ⊂ t}| (6.1)
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We de�ne the incidence matrix of a triangular con�guration A = (Aet)
in this way. The rows are indexed by edges and the columns by triangles.
We set

aet :=

{
1 if the edge e belongs to the triangle t; e ⊂ t,

0 otherwise.
A triangular con�guration is a cycle if every edge has an even degree.
If R and S are triangular con�gurations then their symmetric di�er-

ence, denoted by R4S, is the triangular con�guration (V (R)∪V (S), E(R)∪
E(S), T (R)4 T (S)).

The Euler characteristic χ of a triangular con�guration ∆ is de�ned
according to the formula

χ = |V (∆)| − |E(∆)|+ |T (∆)|. (6.2)

6.2 Triangular Matroid
In this section we prove that the collection of the cycles of a triangular
con�guration forms a cycle space of some binary matroid.
Lemma 6.1. Let R and S be cycles. Then R4 S is a cycle.
Proof. We show that every edge of R4 S has an even degree. Let e be an
arbitrary edge. Let TR and TS be subsets of T (R) and T (R), respectively,
containing the edge e. Then the degree of the edge e is equal to |TR|+ |TS|−
2|TR ∩ TS|. Thus, the degree is even. Therefore R4 S is a cycle.

Denote by C(∆) the collection of the cycles contained in a triangular
con�guration ∆. From the lemma above we know that C(∆) is closed under
taking symmetric di�erence.
Lemma 6.2. Let ∆ be a triangular con�guration. Let A be the incidence
matrix of ∆. Let C be a subcon�guration of ∆. Then AχT (C) = 0 if and only
if C is a cycle.
Proof. C is a cycle. ⇔ For every edge ei ∈ E(∆) indexing row ai∗ holds
|{t|ei ⊂ t, t ∈ T (C)}| is even. ⇔ AχT (C) = 0.

From the lemma above follows that the incidence vectors of the cycles
contained in a triangular con�guration forms a circuit space of a binary
matroid. This matroid is called triangular matroid, and is denoted by
M(∆); where ∆ is the con�guration. The incidence matrix is a representation
of the matroid.

Let ∆ be a triangular con�guration. Let T ′ be a subset of T (∆). Then
the deletion of T ′ from ∆ is the triple (V (∆), E(∆), T (∆) \ T ′).
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Proposition 6.1. Let ∆ be a triangular con�guration. Let T ′ be a subset of
T (∆). Then M(∆ \ T ′) = M(∆) \ T ′.
Proof. Follows directly from the de�nition.

Proposition 6.2. Let C be a circuit. Then |T (C)| ≥ 4.

Proof. As T (C) is nonempty, there is a triangle t. Since every edge has an
even degree, every edge of t is incident with at least one triangle di�erent
from t. These triangles are pairwise di�erent, since three point determine an
unique triangle. Hence, we have found four triangles.

Proposition 6.3. Every triangular matroid is simple.

Proof. Follows directly from the de�nition.

Remark 6.1. Triangular matroid with a geometric representation is a simpli-
cial complex.

Corollary 6.1. Let C be a circuit then |E(C)| ≥ 6 and |V (C)| ≥ 4.

Proof. Follows directly from Proposition 6.2.

Proposition 6.4. Let ∆ be a triangular con�guration. Let V ∗ be the set of
isolated vertices (vertices not contained in any edge) of ∆. Let E∗ be the set
of edges of ∆ with degree 0. ThenM(∆) ∼= M((V (∆)\V ∗, E(∆)\E∗, T (∆))).

Proof. We consider the incidence matrices of ∆ and (V (∆) \ V ∗, E(∆) \
E∗, T (∆)). As isolated vertices are not contained in any edge, removing it
from triangular con�gurations does not a�ect incidence matrices. An edge
with degree 0 corresponds with a zero row vector. If we remove such edge,
then we delete a zero row vector. Such modi�cation of a representation
matrix does not a�ect a matroid represented by this matrix. Thus M(∆) ∼=
M((V \ V ∗, E \ E∗, T )).

Let ∆ be a triangular con�guration. Let v be a vertex of ∆. We de�ne
recursively the set ∆v.

∆v := {t}; t ∈ T (∆), v ⊂ t (6.3)
∆v := {t ∈ T (∆)|v ⊂ t, ∃t′ ∈ ∆v : t′ ∩ t ∈ E(∆)} (6.4)

For some vertex v may exists more distinct sets ∆v1,∆v2, . . . ,∆vn. We denote
the collection of all sets ∆v by ∆v.

The set ∆v of the vertex v depicted in Figure 6.1 contains three sets
∆v1,∆v2,∆v2. The set ∆v′ of the vertex v′ contains only one set ∆v′ . A
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Figure 6.1: Two vertices with distinct collections of ∆v sets

Figure 6.2: Vertex simpli�cation

vertex v is called simple vertex, if the cardinality of ∆v is equal to one. Let
v be a vertex with the set ∆v = {∆v1, . . . ,∆vn}. Then the simpli�cation
of a vertex v is a substitution of the vertex v by vertices v1, . . . , vn and each
triangle vxy belonging to the set ∆vi is replaced by the triangle vixy.
Proposition 6.5. Let ∆ be a triangular con�guration. Let ∆′ be a triangular
con�guration obtained from ∆ by simpli�cation of all vertices. ThenM(∆) ∼=
M(∆′).
Proof. Let v be an arbitrary vertex of ∆. Let t, t′ be triangles of ∆ such that
v ⊂ t, v ⊂ t′. Let ts, t′s be the triangles t, t′; respectively; after simpli�cation
of the vertex v.

If t ∩ t′ ∈ E(∆), then these triangles belongs to the same set ∆v. Hence
ts ∩ t′s ∈ E(∆′).

If t ∩ t′ /∈ E(∆), then t ∩ t′ ∈ V (∆). In case that the vertex v is splitted
in simpli�cation, then ts ∩ t′s = ∅. Hence ts ∩ t′s /∈ E(∆′). In the other case
that the vertex v is not splitted, then ts ∩ t′s ∈ V (∆′). Thus ts ∩ t′s /∈ E(∆′).
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Thus, the operation of simpli�cation preserve triangle incidence. There-
fore, both matroids has identical representation matrices. Hence, they are
isomorphic.
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7 Edge Contraction of Triangular Con�gura-
tions

7.1 De�nitions
Let ∆ = (V,E, T ) be a triangular con�guration. Let e = {v1, v2} be an edge
of ∆. The edge contraction is the triangular con�guration ∆/Ee = ∆′ =
(V ′, E ′, T ′) with the vertex set

V ′ := (V \ {v1, v2}) ∪ {ve},

the edge set

E ′ := {vw ∈ E|{v, w}∩{v1, v2} = ∅}∪{vew|v1w ∈ E \{e}∨ v2w ∈ E \{e}},

and the triangle set

T ′ := {uvw ∈ T |{u, v, w} ∩ {v1, v2} = ∅}
∪ {vevw|v1vw ∈ T ∨ v2vw ∈ T ; v 6= v1, v 6= v2, w 6= v1, w 6= v2}.

From the de�nition, triangular con�gurations are closed under taking edge

e
Edge contraction ve

Figure 7.1: Edge contraction

contractions. Unfortunately, we do not know whether edge contraction has
a geometric representation.

For a skeleton of a triangular con�guration holds G(∆/Ee) = G(∆)/e.
In this section we survey the e�ect of the edge contraction to a triangular

matroid. This e�ect depends only on the triangles that are incident with the
contracted edge.

Let ∆ be a triangular con�guration. Let e = {v1, v2} be an edge of ∆.
We say that the edge e is deleting, if ∆ contains the triangles xyv1 and xyv2

where x, y ∈ V (∆).
The set {e, f, g} of edges of ∆ is said to be the empty triangle, if

e∩ f 6= ∅, f ∩ g 6= ∅, g∩ e 6= ∅ and ∆ does not contains the triangle {e, f, g}.
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Figure 7.2: Deleting edge

Figure 7.3: Empty triangle

Let ∆ be a triangular con�guration. Let e = {v1, v2} be an edge of ∆.
De�ne

De : = {t|e ⊂ t, t ∈ T (∆)},
D′

e : = {{t1, t2}|v1 ∈ t1, v2 ∈ t2, t1 ∩ t2 ∈ E(∆), t1, t2 ∈ T (∆)},
D′

1e : = {t1|{t1, t2} ∈ D′
e},

D′
2e : = {t2|{t1, t2} ∈ D′

e}.

(7.1)

For an edge contraction of ∆ holds T (∆/Ee) = T (∆) \ (De ∪D′
2e).

7.2 Cycles and Acyclic Sets
Proposition 7.1. A contraction along an edge e = {v1, v2} of a cycle C
is a cycle if and only if C does not contains a triangle (xyv1) or (xyv2);
x, y ∈ V (C) (that is, the edge e is not deleting).

Proof. Let C ′ = (V ′, E ′, T ′) be an edge contraction of a cycle C = (V,E, T )
along the edge e = {v1, v2}.

” ⇐ ”
From the de�nition of the contraction, the edges whose degree are changed

are the new edges and the edges that in C lies in a triangle containing v1 or
v2.

We show that the new edges created by the contraction have an even
degree. Let {v, ve} be a new edge. From the assumption about degrees in C,
there are two sets of triangles of an even cardinality T1 = {v1va ∈ T |a ∈ V },
T2 = {v2vb ∈ T |b ∈ V }. From the de�nition, the sets T1 and T2 become,
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in the contraction, the sets T ′1 = {(veva)|(v1va) ∈ T1; v 6= v2, a 6= v2} and
T ′2 = {(vevb)|(v2vb) ∈ T2; v 6= v1, b 6= v1}.

We distinguish the following cases.

• Let T1 and T2 be empty. Then the degree of {v, ve} is equal to zero, by
the de�nition.

• Let one of T1 or T2 be empty. Let us say T2. Then the degree of {v, ve}
is equal to the degree of {v, v1}.

• Let T1 and T2 be non empty. If the sets T ′1 and T ′2 are disjoint, then
the degree of the edge {v, ve} is equal to the cardinality of T ′1 ∪ T ′2.
|T ′1 ∪ T ′2| = |T1|+ |T1| − 2|T1 ∩ T2|. Hence, this cardinality is even.

Suppose that T ′1 and T ′2 are not disjoint, then in the con�guration C are the
triangles (v1vx), (v2vx) and the edge e = {v1, v2}. This is the contradiction,
as we suppose that there are not such triangles.

Now we show that the edges that in C lies in a triangle containing v1 or
v2 have in C ′ an even degree. Let {x, y} be an edge incident with triangles
(xyv1) or (xyv2). If this edge is incident only with the one triangle, then the
degree of this edge in C ′ is equal to the degree in C, since instead of the
triangle (xyv1) there is (xyve). From the assumptions, we know that there is
only one triangle (xyv1) or (xyv2).

We have proved that all degrees in the contraction of a cycle C are even.
Therefore, C ′ is a cycle.

” ⇒ ”
Suppose that in C exists triangles (xyv1) and (xyv2). The edge {x, y}

has an even degree in C and is incident with the triangles (xyv1) and (xyv2).
From the de�nition, this edge remains in C ′. In C ′ the triangles (xyv1)
and (xyv2) are deleted. Hence, {x, y} is incident with only one new triangle
(xyve). Thus, the degree of {x, y} is odd. Therefore, C ′ is not a cycle.

Corollary 7.1. Let C be a cycle. Let e be an edge of C. If G(C) has no a
subgraph K4 containing the edge e, then the contraction along the edge e is a
cycle.

Proof. Let e be {v1, v2}. We show that C does not contains a triangle (xyv1)
or (xyv2); x, y ∈ V (C).

Let C contain triangles (xyv1) and (xyv2). Then there is a K4 with the
edges e = {v1, v2}, {v1, x}, {v1, y}, {v2, x}, {v2, y}, {x, y}. A contradiction.
Now, we use the previous proposition.
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Proposition 7.2. Let ∆ be a triangular con�guration that is not a cycle.
Let e be an edge of ∆. Then ∆/Ee is not a cycle if and only if at least one
of the following conditions is satis�ed

(i) there exists an edge f with an odd degree such that e ∩ f = ∅,
(ii) there exists an edge f with an odd degree such that e ∩ f 6= ∅ and there

does not exists an edge g such that f ∩ g 6= ∅ 6= g ∩ e,
(iii) there exists an edge f such that e ∩ f 6= ∅ and there exists an edge g

such that f ∩ g 6= ∅ 6= g ∩ e; and d(f) and d(g) have di�erent parities.

Proof. ” ⇐ ”
If the �rst or the second condition is satis�ed by an edge f , then no

triangle incident with f is removed or added by the contraction. Therefore
this edge has an odd degree in ∆/Ee.

If the third condition is satis�ed, then the edges f and g are merged into
one edge {ve, x}. The degree of the edge is equal to d(f) + d(g), if there is
no triangle incident with both f and g in ∆. If there is such triangle, then
the degree is equal to d(f) − 1 + d(g) − 1. As d(f) and d(g) have di�erent
parities, the edge {ve, x} has an odd degree.

” ⇒ ”
Suppose that ∆/Ee is a cycle. Obviously, the �rst and second conditions

are not satis�ed.
Each edge {ve, x} has an even degree equal to d({v1, x}) + d({v2, x}) or

d({v1, x})+d({v2, x})−2 depending on if in ∆ exists a triangle v1v2x. Thus,
{v1, x} and {v2, x} have the same parity. Therefore, the third condition is
not satis�ed.

Corollary 7.2. Let ∆ be an acyclic triangular con�guration. Let e be an
edge. Then ∆/Ee is acyclic if and only if there is no subcon�guration ∆′ of
∆ that does not satisfy the following conditions

(i) there exists an edge f with an odd degree such that e ∩ f = ∅,
(ii) there exists an edge f with an odd degree such that e ∩ f 6= ∅ and there

does not exists an edge g such that f ∩ g 6= ∅ 6= g ∩ e,
(iii) there exists an edge f such that e ∩ f 6= ∅ and there exists an edge g

such that f ∩ g 6= ∅ 6= g ∩ e and d(f) and d(g) have di�erent parities.

Proof. Directly from Proposition 7.2.
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Let ∆ be a triangular con�guration. Let e be an edge of ∆. If ∆/Ee
is acyclic, we say that ∆ is e-acyclic. A triangular con�guration is e-
contractable if every acyclic subcon�guration is e-acyclic.

Let ∆∗ be a triangular con�guration obtained from ∆ by �lling all empty
triangles incident with e.
Corollary 7.3. Let ∆ be an acyclic triangular con�guration. Let e be an
edge of ∆. Then ∆/Ee is acyclic if and only if there does not exists ∆′ ⊆ ∆∗

such that every edge of E(∆′) \ {e} has an even degree.
Proof. ” ⇒ ”

We know that ∆/Ee is acyclic. For a contradiction suppose that there
exists ∆′ ⊆ ∆∗ such that every edge of E(∆′)\{e} has an even degree. Then
∆′/Ee is a cycle, by Proposition 7.2. ∆′/Ee is contained in ∆/Ee, since every
added triangle of ∆∗ is deleted by the contraction. Thus ∆/Ee is not acyclic.
This is a contradiction.

” ⇐ ”
Let ∆′′ be a subcon�guration of ∆. Suppose that ∆′′ does not satisfy

the conditions (i)�(iii) of Proposition 7.2. Let t be an empty or nonempty
triangle of ∆′ containing the edge e. Then the edges of t excepting the edge
e have the same parities.

Let ∆′ be a con�guration obtained from ∆′′ by deleting (�lling) the tri-
angles (empty triangles) that contains the edge e and an edge distinct from e
with an odd degree. Then every edge of E(∆′) \ {e} has an even degree. ∆′

is a subcon�guration of ∆∗. This is the contradiction with our assumptions.
Thus, ∆′′ satisfy the assumptions of Proposition 7.2.

Hence, ∆′′/Ee is acyclic. Therefore, ∆/Ee is acyclic.

7.3 Triangular Matroid
Corollary 7.4. Let ∆ be an triangular con�guration. Let e = {v1, v2} be an
edge of ∆. If ∆ does not contain a triangle xyv1 or xyv2 where x, y ∈ V (C)
(that is, D′

e = ∅), then C(∆/Ee) ⊇ C(M(∆)/De).
Proof. Let C be a cycle of ∆ that contains the edge e. Since C does not
contain a triangle xyv1 or xyv2 where x, y ∈ V (C), then C/Ee is a circuit
with the triangle set T (C) \De; by Proposition 7.1. Thus, C/Ee belongs to
C(M(∆)/De)

Corollary 7.5. Let ∆ be a triangular con�guration. Let e = {v1, v2} be
an edge of ∆. If ∆ contains triangles xyv1 and xyv2 where x, y ∈ V (C),
then C(∆/Ee) ⊇ C(M(∆)/De \ D′

1e) and C(∆/Ee) + {C \ (D′
1e ∪ De)|C ∈

C(∆), {t1, t2} ⊆ C, {t1, t2} ∈ D′
e}.
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Proof. Let C be a cycle of ∆ that contains the edge e. If C does not contain
any element of D′

e, then C/Ee is a cycle; by the previous corollary. Therefore
C(∆/Ee) ⊇ C(M(∆)/De \D′

1e).
Let C ′ be an element of {C \ (D′

1e∪De)|C ∈ C(∆), {t1, t2} ⊆ C, {t1, t2} ∈
D′

e}. Then C ′ = T (C)\(D′
1e∪De) = T (C/Ee) where C is a cycle of ∆ , by the

de�nition of the edge contraction. C/Ee is not a cycle, by Proposition 7.1.
Thus, C ′ /∈ C(∆/Ee).

If a triangular con�guration is e-contractable, we can exactly express the
cycle space of the edge contraction.

Corollary 7.6. Let ∆ be an triangular con�guration. Let e = {v1, v2} be an
edge of ∆. Let ∆ be e-contractable. If ∆ does not contain a triangle xyv1 or
xyv2 where x, y ∈ V (∆), then M(∆/Ee) ∼= M(∆)/De.

Proof. By Corollary 7.4, we know that C(∆/Ee) ⊇ C(M(∆)/De). Suppose
that C(∆/Ee) contains a cycle C ′ such that T (C ′) 6= T (C) \ De for every
C ∈ C(∆). As ∆ is e-contractable, there is a cycle C ′′ of ∆ such that
C ′′/Ee = C ′, T (C ′′)\De = T (C ′). This is a contradiction. Hence, C(∆/Ee) =
C(M(∆)/De).

Corollary 7.7. Let ∆ be a triangular con�guration. Let e = {v1, v2} be an
edge of ∆. Let ∆ be e-contractable. If ∆ contains triangles xyv1 and xyv2

where x, y ∈ V (∆), then C(∆/Ee) = {C \De|{t1, t2} * C, {t1, t2} ∈ D′
e, C ∈

C(∆)}.
Proof. By Corollary 7.5, C(∆/Ee) ⊇ C(M(∆)/De \ D′

1e) and C(∆/Ee) +
{C \ (D′

1e ∪ De)|C ∈ C(∆), {t1, t2} ⊆ C ′, {t1, t2} ∈ D′
e}. Suppose that

there exists a cycle C ∈ C(∆/Ee) \ {C \ De|{t1, t2} * C, {t1, t2} ∈ D′
e, C ∈

C(∆)}. As ∆ is e-contractable, T (C) = T (C ′) \ De for C ′ ∈ C(∆) such
that {t1, t2} * C ′; {t1, t2} ∈ D′

e. This is a contradiction. Hence, C(∆/Ee) =
{C \De|{t1, t2} * C, {t1, t2} ∈ D′

e, C ∈ C(∆)}.

7.4 Euler Characteristic
Proposition 7.3. Let ∆ be a triangular con�guration with the Euler char-
acteristic χ. Let ∆′ be an edge contraction along an edge {v1, v2}. Let ∆
be e-contractable. If ∆ does not contains a triangle xyv1 or xyv2 where
x, y ∈ V (∆), then ∆′ has the Euler characteristic equal to χ.

Proof. By Corollary 7.6, M(∆′) ∼= M(∆)/De where De = {t|e ⊂ t, t ∈
T (∆)}. The contraction removes the edge {v1, v2} and one of the vertices v1,
v2; by the de�nition. Thus, |V (∆′)| = |V (∆)| − 1 and |E(∆′)| = |E(∆)| − 1.
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The number of triangles of ∆′ is equal to |T (∆)| − |De|. One edge distinct
of {v1, v2} is removed with each removed triangle. Hence,

χ = |V (∆′)| − |E(∆′)|+ |T (∆′)|
= (|V (∆)| − 1)− (|E(∆)| − |De| − 1) + (|T (∆)| − |De|)
= |V (∆)| − |E(∆)|+ |T (∆)|.

(7.2)
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8 Skeleton of Triangular Con�gurations
In this section we study the minors of a skeleton of a simple triangular circuit.
We show that a skeleton may contain any arbitrary graph as a minor. We
give the smallest triangular circuit with a nonplanar skeleton.

Proposition 8.1. Let G be a graph. Then there exists a simple triangular
circuit ∆ such that G is a minor of G(∆).

Proof. Before we construct ∆. We de�ne two particular triangular con�gu-
rations, which serve as basic building blocks. The triangular vertex (sphere),
depicted in Figure 8.1, is obtained by a su�cient dense triangulation of a
sphere.

Figure 8.1: A triangular sphere.

The triangular edge or tunnel, depicted in Figure 8.2, is obtained by
sticking together a number of basic buildings blocks. Dash triangles in the
�gure denote empty triangles, the others are regular triangles. Blocks are
stuck together at the ending empty triangles depicted by dash lines.

Figure 8.2: A triangular tunnel.
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Now, we construct the desired triangular circuit ∆. For each vertex of G
we add to ∆ a triangular vertex with the number of triangles at least equal
to the degree of the vertex. For each edge uv we remove one triangle from
the both triangular vertices u and v and we connect these empty triangles
by a su�cient large triangular tunnel (edge). Obviously, every edge of ∆

Figure 8.3: An example of a vertex of degree 1.

has degree 2. Therefore, ∆ is a simple triangular circuit.
Now, we construct the desired graph G. We take one vertex from every

triangular vertex of ∆ and put it in the set of vertices of G. Let u, v be
vertices of two triangular vertices connected by a tunnel. We take a path
between them leading throw the tunnel and contract it to the one edge. We
put this edge to the set of edges of G. Obviously, the graph G is a minor of
the skeleton of ∆.

Examples of triangular vertices connected by some edges are in Fig-
ures 8.3 and 8.4.

In the next proposition, we give a small triangular circuit that has a
nonplanar skeleton.
Proposition 8.2. There is a triangular circuit C such that G(C) is a non-
planar graph.
Proof. The desired circuit is depicted in Figure 8.5. The skeleton of the
circuit contains K3,3 as a subgraph. The circuit contains triangles that are
not depicted by the gray color on each picture. One partition class of K3,3 is
depicted by square nodes, the second by round nodes.
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Figure 8.4: An example of a vertex of degree 3.

Figure 8.5: The circuit ∆1 with the nonplanar skeleton.
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9 Lattices of Triangular Con�gurations
In this section we study the lattice generated by the set of cycles of a trian-
gular con�guration.

9.1 Some Interesting Triangular Con�gurations
We give a particular triangular con�guration which does not have the lattice
of circuits property and show that its lattice has a basis consisting only of
cycles. This triangular con�guration contains F ∗7 as a minor.

Proposition 9.1. There exists a triangular con�guration which does not
have the lattice of circuits property.

Proof. The desired triangular con�guration is depicted in the picture D4 in
Figure 9.2. Every triangular con�guration Di; i ≥ 1 is an ear extension of
Di−1.

Figure 9.1: The circuit ∆2 contains all triangles that are not depicted by the
gray color. The triangles containing a dash line have value 0 and the others
have 1

4
.

The ear circuits of these extensions are depicted in detail in Figures 9.1
and 8.5. We assign to the triangles some values. The values of triangles of
D0 are equal to the values of triangles of ∆2. The values of triangles of Di;
i = 1, 2, 3 are the same as the values of triangles of Di−1 and the ear circuit.
The values of triangles of T (D4) \ T (D3) are assigned to 0.

Now we observe that D4 does not have the lattice of circuits property. We
construct a cosimple matroid M from M(D4) by contracting all coparallel
classes into one element. The matroid M has well de�ned assignment of
values, since all triangles in one coparallel class of M(D4) have the same
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value. This assignment of values of M belongs to the dual lattice of M .
Thus, the dual lattice contains the point x ∈ 1

4
Z \ 1

2
Z. Therefore, D4 does

not have the lattice of circuits property.

Proposition 9.2. The lattice of the triangular con�guration D4 has a basis
consisting only of cycles.

Proof. We construct a cycle lattice basis by using Theorems 5.4 and 5.6.
Obviously, the triangular con�guration D0 has a cycle lattice basis, since it
contains only one circuit. A cycle lattice basis of the ear extension Di; i =
1, 2, 3 is constructed from a cycle lattice basis of Di−1 by using Theorem 5.4.
A cycle lattice basis of D4 is constructed from a cycle lattice basis of D3 by
using Theorem 5.6.

9.2 Local Constructions and Edge Contraction
We give a su�cient condition when it is possible extend a cycle lattice basis
of a triangular con�guration to the cycle lattice basis of its edge contraction.

Proposition 9.3. Let ∆ be a triangular con�guration. Let e = {v1, v2} be
an edge of ∆. Let B be a cycle basis of Z(∆). Let ∆′ be an edge contraction
of ∆ along the edge e. Let ∆ be e-contractable. If ∆ does not contain a
triangle xyv1 or xyv2 where x, y ∈ V (∆), then Z(∆′) has a cycle basis.

Proof. By Corollary 7.6, M(∆′) ∼= M(∆)/De where De = {t|e ⊂ t, t ∈
T (∆)}. Thus, C(M(∆′)) = {C \ De|C ∈ C(M(∆))}. A consequence of
Proposition 7.1 is that |C(M(∆))| = |C(M(∆′))|. Hence, the set B′ :=
{β \De|β ∈ B} is a basis of Z(∆′).
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D0 = D1 =

D2 = D3 =

D4 =

Figure 9.2: The triangular con�guration D4, which does not have the lattice
of circuits property and its ear decomposition.
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10 Minors of Triangular Con�gurations
In this section we survey how rich is the class of triangular matroids and their
minors. The hypothesis posed by Whittle is that for every binary matroid
exists triangular con�guration containing this matroid as a minor. We prove
the hypothesis. This hypothesis is equivalent with that for every P ∗r ; r ≥ 3
there exists a triangular con�guration having P ∗r as a minor. In Section 9 on
Figure 9.2 we �nd a con�guration having P ∗3 = F ∗7 as a minor.

Theorem 10.1. Let M be a binary matroid. Then there exists a triangular
con�guration ∆ such that M(∆)/S ∼= M , where S is a subset of E(M).
Moreover, there exists a bijection between C(M) and C(∆) mapping circuits
to circuits, and dim C(M) = dim C(∆).

Proof. Let n be the cardinality of the ground set of the matroid M . Let r
denote the dimension of the cycle space C(M) a subspace of GF (2)n. Let B
be a cycle basis of C(M). We construct the desired con�guration in this way.
We put n triangles into a space of su�cient large dimension (Figure 10.1).
Denote these triangles as t1, . . . , tn.

Figure 10.1: Triangles representing the entries of the vectors of C(M).

For every basis vector bi ∈ B we construct the following triangular con-
�guration ∆bi

(Figure 10.2). The con�guration ∆bi
is obtained from a suf-

�ciently dense triangular sphere (Figure 8.1, a sphere with the number of
triangles greater than n). For every nonzero entry of the vector bi we remove
a triangle from the sphere and add triangular tunnel (Figure 8.2) between
the new empty triangle and the triangle tj where j is a position of a nonzero
entry in the vector bi. Thus, ∆bi

contains tj if and only if bji = 1. We denote
the cardinality |T (∆bi

)| by w(∆bi
).

The desired triangular con�guration ∆ is the union of the triangular
con�gurations ∆bi

, i = 1, . . . , n; ∆ =
⋃d

i=1 ∆bi
(Figure 10.3).

It is convenient construct the con�gurations ∆bi
such that w(∆bi

) −
w(bi) = w(∆bj

) − w(bj) where i, j = 1, . . . , d. We denote the number
w(∆bi

)− w(bi) by w(∆).
The triangular con�guration ∆ obviously contains all symmetric di�er-

ences of the triangular con�gurations ∆bi
, i = 1, . . . , d. For a symmetric
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Figure 10.2: A triangular cycle representing a basis vector of C(M).

Figure 10.3: A triangular representation of M .
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di�erence of ∆bi
and ∆bj

holds that ∆bi
4∆bj

contains triangle tk if and only
if kth entry of the vector bi + bj is equal to 1. Using induction we have that
4i∈I∆bi

contains a triangle tk if and only if kth entry of the vector
∑

i∈I bi
is equal to 1. Therefore, C(M(∆)/S) ⊇ C(M) where S = E(M(∆)) \E(M).

We de�ne a mapping f : C(M) 7→ C(∆) in the following way. Let x be
an element of C(M). The vector x is equal to

∑
i∈I bi. We de�ne f(x) as

4i∈I∆bi
. From the paragraph above follows that f is an injective mapping.

Now we prove that dim C(M) = dim C(∆). Suppose that there exists a
circuit of ∆ that is not a symmetric di�erence of ∆bi

, i = 1, . . . , d. Let C
be a such circuit with the minimal possible number of triangles |T (C)|. It
is obvious that T (C) contains T (∆bi

) \ {t1, . . . , tn} for some i ∈ {1, . . . , t}.
For the circuit C 4 ∆bi

holds that |T (C 4 ∆bi
)| < |T (C)|, since T (∆bi

)
is su�ciently large. This is a contradiction. Thus, every circuit of ∆ is a
symmetric di�erence of ∆bi

, i = 1, . . . , d. Hence, dim C(M) = dim C(∆).
Therefore, C(M(∆)/S) = C(M) and M(∆)/S ∼= M .
As |C(M)| = |C(∆)|, the mapping f is a bijection.
Now we show that f maps circuits to circuits. Let c be a circuit of C(M).

For a contradiction suppose that f(c) is not a circuit. Then there are cycles
c1 and c2 of C(M) such that f(c1) ∪ f(c2) = f(c). By the de�nition of f ,
c = c1 ∪ c2. This is a contradiction. Thus, the mapping f maps circuits to
circuits.

The triangular con�guration in the theorem above we call triangular
representation of a binary matroid with respect to the basis B. A triangu-
lar con�guration such that all w(∆bi

)−w(bi) are the same is called normal.
Let M be a binary matroid. Let C be the cycle space of M . Let d be the

dimension of C. The weight polynomial of the code C is de�ned according
to the formula

W (C) :=
∑
c∈C

xw(c). (10.1)

Now, we survey a connection between the weight polynomial of a matroid
and the weight polynomial of its triangular representation.

Let B be a basis of C. Let ∆ be a normal triangular representation of C.
We say that an element c of C has degree of combination i if it is a sum of i
basis vectors. We denote the degree of combination of a vector c by dc(c).

For instance a basis vector has degree 1. We de�ne

Wi(C) :=
∑

c∈C,dc(c)=i

xw(c). (10.2)

38



It is obvious that

W (C) =
d∑

i=0

Wi(C). (10.3)

Proposition 10.1. Let M be a binary matroid. Let B be a basis of C(M).
Let ∆ be a normal triangular representation of M with respect to B. Then

Wi(C(∆)) = Wi(C(M))xiw(∆). (10.4)

Proof. Let c be a cycle of C(M) of degree i. The cycle c is equal to
∑

j∈J bj
where |J | = i. Then there exists a cycle c′ of C(∆) equal to 4j∈J∆bj

. The
weight of ∆bj

is equal to w(∆) + w(bj). Thus, the weight of the cycle c′ is
equal to iw(∆) + w(c).

Therefore,

Wi(C(∆)) =
∑

c′∈C(∆),dc(c′)=i

xw(c′)

=
∑

c∈C(M),dc(c)=i

xw(c)+iw(∆)

= Wi(C(M))xiw(∆).

(10.5)
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