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Summary 

Hybridization plays an important role in the evolution of vascular plants. It can have both positive 

and negative consequences, ranging from the origin of new species on the one hand to the extinction 

of taxa through introgression on the other. These effects may be pronounced in geographically 

restricted or rare species. The core of this thesis are three case studies addressing interspecific 

hybridization involving rare angiosperm species. Finally, the thesis is completed with a study 

considering hybridization as a source of variation and new species. The coexistence of frequent 

primary hybrids with their parental taxa was revealed in the system comprising the rare species 

Cerastium alsinifolium and its widespread counterpart C. arvense. The spatial distribution of the 

endemic species and its habitat preferences were elucidated. In contrast, comparatively rare 

hybridization events were found in the Nymphaea alba – N. candida complex. Although it has been 

assumed that water lilies hybridize freely, our karyological data do not support this hypothesis. 

Hybrids therefore do not present a serious risk to either of these rare species. The third study 

describes interspecific hybridization in the spore-bearing genus Diphasiastrum. Traditionally, three 

basic and three hybridogenous species are recognized in Central Europe. However, species 

boundaries are blurred through frequent introgressive hybridization. Introgression has been 

catalysed by human activities (disturbances), which facilitate spatial contact between originally partly 

allopatric species and subsequent interspecific hybridization. The origin of a new agamospermous 

lineage through interspecific hybridization was described in the genus Sorbus. Apomictic triploids 

most likely originated via hybridization between diploid and tetraploid taxa. Their mode of 

reproduction shifted from sexual to apomictic, which assured their long-term persistence. 
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Souhrn 

Hybridizace hraje významnou roli v evoluci cévnatých rostlin. Obecně ale může mít jak pozitivní tak 

negativní důsledky, sahající od vzniku nových taxonů až po možné vyhynutí druhu skrze introgresi. 

Tyto důsledky mohou být znásobeny obzvláště u taxonů s omezeným geografickým rozšířením nebo 

u vzácných taxonů. Základem předkládané dizertační práce jsou tři studie zabývající se mezidruhovou 

hybridizací s účastí vzácného taxonu. Práce je doplněna studií, ve které vystupuje hybridizace jako 

zdroj variability a nového taxonu. Koexistence početných primárních hybridů s rodičovskými taxony 

byla odhalena u endemického rožce Slavkovského lesa (Cerastium alsinifolium) a jeho široce 

rozšířeným protějškem (C. arvense). Naproti tomu, hybridizace nativních leknínů (Nymphaea alba, N. 

candida) je velmi vzácná. Předpokládalo se, že oba taxony mohou volně hybridizovat, avšak naše 

karyologická data tento předpoklad nepotvrdila. Hybridizace v obou případech není vážným 

ohrožením vzácných taxonů. Třetí studie osvětluje důsledky mezidruhové hybridizace v rámci rodu 

Diphasiastrum. Obecně jsou ve střední Evropě rozlišovány tři základní a tři hybridogenní taxony. 

Vymezení jednotlivých taxonů je však nejednoznačné a díky introgresivní hybridizaci existují 

přechody (jak v morfologii, tak ve velikosti genomu) mezi taxony. Tato introgrese je z velké části 

umožněna lidskými aktivitami (m.j. disturbance), které způsobily kontakt mezi původně prostorově 

izolovanými taxony a následnou hybridizaci. Původ nové agamospermické linie v rodu Sorbus byl 

popsán v poslední studii. Obdobné linie vznikají ve střední Evropě opakovaně díky mezidruhové 

hybridizaci. Nejčastěji vznikají agamospermičtí triploidi hybridizací diploiního (S. torminalis) a 

tetraploidního taxonu (např. S. danubialis, S. graeca). Dlouhodobá existence těchto linií je umožněna 

přechodem k agamospermickému způsobu reprodukce. 
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Introduction 

1) Interspecific hybridization in a nutshell 

Hybridization1 plays an important role in the evolution of living organisms. It is the basic mechanism 
of processes such as introgression of diverse phenotypic traits between diverged taxa or hybrid 
speciation. Most flowering plants and ferns originated through (allo-)polyploidization (= hybridization 
followed by genome duplication), which is supposed to be the most powerful “engine” of plant 
evolution (Soltis et Soltis 2009). Hybridization plays a striking role in human “nutrition evolution”. 
Although the first written evidence is dated back to the early 18th century, hybridization has been 
important to humans since the Neolithic era (Rieseberg et Carney 1998). When domestication and 
breeding of plants and animals was in its infancy, hybridization events happened mostly accidentally 
and inadvertently. Later, by selecting crops (or breeds) carrying required characters, hybridization of 
closely related species or local races became intentional and increased in intensity. 

In early studies devoted to hybridization, several incorrect presumptions had been made. 
Hybridization had been considered a “blind alley” of evolution because of assumed hybrid sterility 
(Grant 1981, Rieseberg et Carney 1998, Ouyang et al. 2010). The evolutionary impact of hybridization 
was once enormously underestimated due to presumed rarity of this phenomenon (Knobloch 1972). 
Although botanists have paid considerable attention to hybridization (Rhymer et Simberloff 1996), it 
has been proved in the last decades that hybridization plays an inestimable role not only in plant, but 
also in animal evolution (Dowling et Secor 1997, Hegarty et Hiscock 2005, Wissemann 2007, Soltis et 
Soltis 2009). 

Hybridization is of paramount importance in the conservation of many rare species. 
Hybridization is essential for generating new evolutionarily independent lineages (which may 
ultimately develop into new species); on the other hand, it can have a detrimental effect on 
populations of rare species. These may suffer from hybridization with common congeners, resulting 
in blurring of boundaries between taxa and threatening species´ genetic integrity. Low abundance of 
individuals, low number of populations, marginal populations and discontinuous range of distribution 
are the main “natural” reasons rare species are under threat. During the last century, human 
influence considerably increased the risk of rare species becoming extinct, eg. by landscape 
fragmentation, changes in traditional landscape management, habitat loss and degradation, etc. Rare 
species represent an important component of both local and global biodiversity and are often 
regarded as indicators of biodiversity richness (Heywood et Iriondo 2003). They often have narrow 
ecological niches, which are patchily distributed in the modern landscape. Populations of these 
specialists therefore often consist of a low number of individuals. Spatially-limited species include 
endemics of particular geographic regions (Kaplan 2012). The present thesis addresses questions 
concerning cases of interspecific hybridization that involve at least one rare species, with an 
emphasis on conservation consequences including a risk assessment. 

 

                                                           
1  Hybridization as a term has several different meanings – from the most strict : ”every fusion of two 

gametes”, through ”fusion of two gametes from two individuals from different populations of the same 

species”, to the widely accepted ”cross-fertilization between two individuals of different (and isolated) species” 

(eg. Rhymer et Simberloff 1996, Arnold 1997, Soltis et Soltis 2009). The latter meaning is used throughout this 

thesis, unless specified otherwise. 
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2) Evolutionary aspects of hybridization 

Hybridization is not uniformly distributed across the plant kingdom, but unevenly across different 
taxonomic groups. Some taxonomic groups hybridize freely whereas many others do not (Rieseberg 
et Carney 1998). Some of the most “promiscuous” temperate species are members of the families 
Asteraceae, Rosaceae, Poaceae, Scrophulariaceae, Brassicaceae and Salicaceae (Ellstrand et al. 1996). 
Attempts to analyse and compare local floras may run into problems when operating with different 
taxonomic concepts, especially when agamospermy occurs (Stace 1975, Ellstrand et al. 1996, 
Danihelka et al. 2012). The so-called narrow taxonomic concept is characterized by an increased 
number of described taxa (microspecies; see eg. Tyler 2011, Schischkin et Bobrov 2002). The so-
called broad taxonomic concept does not distinguish between hybrids and hybridogenous species, so 
the number of regular taxa is generally lower (Bräutigam et Greuter 2007, Aldasoro et al. 1998). 
Although the narrow concept reflects evolutionary patterns, numerous microspecies are impractical 
for non-expert botanists (Dickinson 1998, Hörandl 1998, Kirschner 1998, Stace 1998). The number of 
recognized taxa is frequently connected with so-called taxonomic favouritism (Bickford et al. 2007) 
and popularity of specific groups of taxa. There is, for example, a considerably higher proportion of 
hybridogenous Sorbus species in Germany and the British isles compared to the rest of Europe 
(especially Balkan Peninsula). It is open to argument whether low or high numbers of taxa reflect 
true biological diversity in nature and whether high numbers of recognized taxa merely indicate 
taxonomical bias. In spite of the mentioned difficulties, proportions of hybrid species in national 
floras are comparable and range from 10 to 20% (British Isles 10–20%, Czech Republic 14%, 
Scandinavia 10%; Stace 1975, Ellstrand et al. 1996, Danihelka et al. 2012). Hybridization is generally a 
widespread phenomenon in vascular plants. Approximately 25% of species are known to hybridize, 
but this proportion may be underestimated because hybrid origins are often difficult to prove 
(Wagner 1969, Mallet 2007). 

Advantages and disadvantages of hybridization 

Hybridization has both evolutionarily positive and negative consequences, which all stem from the 
fact that two different genomes are combined. Hybridization increases genetic diversity and enables 
gene flow between previously isolated taxa. If backcrossing occurs, some beneficial alleles may be 
transferred from one species to another. Interspecific hybrids are highly variable in fertility and 
vigour – especially F1 hybrids (eg. between geographic races or closely related taxa) tend to exceed 
their parents in vegetative vigour or robustness (heterosis; Grant 1975). This phenomenon is 
frequently utilized in crop breeding to reach specific characters increasing yield. Heterosis may also 
partially explain the success of allopolyploids and many clonal hybrid lineages (eg. agamic complexes 
in the genera Sorbus, Rubus or Taraxacum). Hybrids may also possess characters, which were 
suppressed or inexpressive in parental generations (Rieseberg and Carney 1998), or exhibit novel or 
extreme characters (transgressive segregation; Rieseberg 1997, Rieseberg et al. 2003, Seehausen 
2004). These characters can enable hybrids to reach novel niches and allow selection to act in favour 
of their establishment (Rieseberg and Carney 1998). Generally, hybrids have a broader adaptation 
ability (frequently combining that of their parents; Abbott 1992, Buerkle et al. 2000, Rieseberg et al. 
2003). Hybridization allows genetic novelties to accumulate faster than through mutations alone 
(Martinsen et al. 2001). If a newly arisen hybrid is capable of independent reproduction and is 
reproductively isolated from its parental species, it may act as a separate species. 

The main disadvantage of hybridization is the breakdown of the genetic integrity of parental 
taxa. Recurrent hybridization may lead to the emergence of the third group of plants (F1 hybrids) in 
the habitat. This model of hybridization is not harmful provided that hybridization events are rare or 
F1 hybrids are sterile, precluding the formation of complex hybrid swarms. If hybrids are fertile or if 
reproductive barriers towards (at least one) parental species is broken, backcrossing may occur, and 
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differences between species may get blurred, possibly leading to genetic swamping 2of parental 
species (Rhymer & Simberloff 1996). Taxa with low abundance may become extinct if strong 
introgression occurs (Levin et al. 1996). Hybrids, even if completely sterile, present a significant 
burden for parental species with regard to competition (Wolf et al. 2001, Prentis et al. 2007). Plant 
hybrids often share the same habitat and compete with their parents for resources (nutrients, water 
and radiation) or may dramatically decrease the number of suitable breeding partners (Buerkle et al. 
2000, Bleeker 2007). Hybrids can ultimately replace their parental species altogether (demographic 
swamping3; Wolf et al. 2001). 

Reproductive isolation mechanisms 

To avoid hybridization (and its evolutionary consequences), several breeding barriers in plants have 
developed. These reproductive isolation mechanisms may be classified into two major categories – 
prezygotic and postzygotic, referring to the ontogenetic stage in which they take effect (before or 
after fertilization). Prezygotic barriers include habitat, temporal (different growth period and 
flowering time) and behavioural isolation (pollinator fidelity, morphological adaptation avoiding 
pollination), gametic competition (pollen tube competition) or some kind of incompatibility 
(preventing pollen grains to germinate). Prezygotic mechanisms seem to represent the most efficient 
reproductive barriers against hybridization, although some of them may be easily overcome (eg. 
mentor effect in avoidance of pollen germination; Richards 1997, Krahulcová et al. 1999, Mráz 2003). 
Postzygotic barriers include zygote mortality, reduced hybrid vigour (hybrids fail to develop or do not 
reach maturity), reduced fertility (hybrids fail to produce gametes, eg. due to irregular chromosome 
pairing) and hybrid breakdown (descendants following the F1 generation are of various fitness, often 
inviable). Reproductive isolating mechanism does not work as a rigorous barrier, but more likely as 
permeable filters (Mallet 2007). In cases of closely related species (and species recently originated or 
diverged), isolation mechanisms are often weak or are not yet established. On the other hand, 
postzygotic barriers may decrease the fitness of parental taxa and thus are often replaced by 
prezygotic mechanisms of some kind. 

Hybridization is frequently initiated by the breakdown of spatial reproductive isolation 
barriers (either due to natural drivers or human activity). Another possible trigger of hybridization is 
the breakdown of ecological mechanisms isolating two potentially hybridizing taxa; in this case 
human activities play a major role (eg. transport of goods, changes in habitats, disturbances, new 
types of secondary habitats; Abbott 1992, Krahulcová et Krahulec 1999, Hanfling et Kollmann 2003, 
Krahulec et al. 2004). 

Although hybridization had been believed to be predominantly bidirectional, asymmetric 
patterns have often been found (Rieseberg et Carney 1998, Lepais et al. 2009, Ma et al. 2010). 
Unidirectional crossing is more common when hybridizing species are of different ploidy levels (ie. 
one ploidy level is the donor of pollen and second is the acceptor; Krahulec et al. 2004, Ludwig et al. 
2013). 

Outcomes of hybridization 

When reproductive barriers between two species are broken, hybridization can follow several 
different evolutionary trajectories, including the formation of a hybrid zone, hybrid swarm and 
genesis of a new species. A hybrid zone is formed where two genetically distinct groups meet and 

                                                           
2 The process when genes from a larger population dominate over the genes in a small population. Genetic 

diversity in the small population is thus significantly reduced. 

3 If hybrids are sterile or display reduced fitness, the population growth rate of the hybridizing taxa may 

decrease below that required for replacement of one or both parental species. 
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hybridize (Barton et Hewitt 1985). The existence of selection against hybrids stabilizes the hybrid 
zone and complicates later hybridizations. Hybrid zones are often formed at boundaries between 
different habitats – if each habitat favours one parental taxon, hybrids are selected against in both 
habitats (Anderson 1948, Harrison 1993), and hybridization is restricted to a relatively narrow area 
where the two species are in contact. More or less stable hybrid zones have been observed, for 
example, in Arctium (Repplinger et al. 2007), Senecio (Prentis et al. 2007) or Cardamine (Marhold et 
al. 2002, Lihová et al. 2007b); selection against hybrids has been documented in most hybrid zones 
studied (Arnold 1994, Allendorf et al. 2001, Seehausen 2004). An extreme example of hybrid zones 
are hybrid swarms, which result from introgressive hybridization. When newly arisen hybrids are 
(inter)fertile and backcross with their parents, the integrity of parental species is progressively 
blurred. After several generations of introgression, hybrids merge with their parental species, and a 
morphological and genetic continuum originates (plants with different proportions of parental 
genomes). Introgression either affects both parental taxa or may be unidirectional (backcrossing with 
one parental taxon only; eg. Rhododendron – Ma et al. 2010, Quercus – Lepais et al. 2009). A special 
and confounding product of introgression is chloroplast capture. During such an introgressive 
hybridization event, the cytoplasm of one species is replaced by that of another species (Rieseberg et 
Soltis 1991). To avoid introgression, reproductive barriers in introgressed population are often 
reinforced through selection for assortative mating (Arnold 1992). Introgression allows expansion 
into new habitats due to the production of new genotypes that may be better adapted than parental 
species (Arnold 1992, Rhymer et Simberloff 1996). Introgression is notoriously difficult to prove, 
which explains the lack of  biosystematic studies dealing with it. Introgressive hybridization has been 
documented, for example, in the genera Viola (Krahulcová et al. 1996), Populus (Martinsen et al. 
2001), Cardamine (Lihová et al. 2007b), Rhododendron (Ma et al. 2010) or Diphasiastrum (Hanušová 
et al. 2014). Rare hybridization events between two parapatric species may lead to the formation of 
a contact zone. Hybrids in contact zones have decreased fitness and are often sterile. As 
hybridization occurs at low frequency, introgression does not play a major role. A mosaic or tension 
contact zone may develop (Petit et al. 1999). In a mosaic zone, parental species are distributed 
patchily depending on ecological conditions. Where an ecological cline occurs, a tension contact zone 
may form. Studies of contact zones are frequently focused on the coexistence of different ploidy 
levels (Castro et al. 2012, Krejčíková et al. 2013), while the coexistence of parental taxa and their 
hybrids is often neglected. 

A hybrid (or hybridogenous) taxon may originate if some hybrids become independent of 
their parental species and are able to reproduce themselves. Single hybridization events usually do 
not lead to the emergence of hybrid species; series of hybridization events are most likely needed. 
Different asexual or modified sexual modes of reproduction often evolve to overcome the influence 
of parental species (eg. autogamy, agamospermy and clonal growth). Shifts in the reproductive mode 
accompanied by polyploidization play a crucial role in the establishment of agamic complexes (eg. 
Sorbus – Nelson-Jones et al. 2002, Pilosella – Krahulcová et al. 2000, Rubus – Krahulcová et al. 2013, 
Crataegus – Campbell et al. 1991). 

Hybrid speciation and polyploid formation 

Hybrid speciation is more common in plants than in animals, where other speciation modes prevail 
(Otto et Whitton 2000). Indeterminate growth, longevity, clonality, hermaphroditism with selfing 
potential and limited gene flow are the main differences which favour the formation of plant hybrid 
species (Mallet 2007). From a speciation point of view, hybridization is a process which allows faster 
accumulation of genetic novelties than random evolutionary events (eg. mutation, genetic drift; 
Martinsen et al. 2001). The presence of transgressive characters in hybrids supports the statement 
that hybridization is the main source of variation upon which selection can act (Rieseberg et Ellstrand 
1998). Reproductive isolation between parental and hybrid species is essential for their long-term 
existence, hybrid species must remain distinct even if they get in contact with their parents 
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secondarily (Mallet 2007). The formation of hybrid species is risky because newly arisen species 
always suffer (similarly to a newly formed cytotype) from processes analogous to the minority 
cytotype disadvantage (Levin 1975, Mallet 2007). Hybridization and hybrid speciation allow rapid 
evolutionary changes by generating novel gene combinations, which may lead to increased genetic 
variation and fitness, and to the adaptation to new environments (Ellstrand 1992). That is why hybrid 
speciation is common among rapidly radiating groups (Seehausen 2004, Mallet 2007, Fehrer et al. 
2009). Reproductive success is crucial for newly originated hybrids. Complete or partial sterility has 
been detected in many homoploid hybrids (Cirsium – Bureš et al. 2010; Cerastium – Vít et al. 2014) as 
well as in heteroploid hybrids (Viola – Krahulcová et al. 1996; Cardamine – Lihová et al. 2007a, 
Cirsium – Bureš et al. 2010; Sorbus – Rich 2009; Nymphaea – Kabátová et al. 2014). Analogously, 
reduced fertility has been observed in hybrid pteridophytes (spore abortion; Dryopteris – Ekrt et al. 
2009, Diphasiastrum – Hanušová et al. 2014). Reproductive success is often reduced in homoploid 
hybrids too, because they often face problems with chromosome pairing during meiosis (Grant 
1981). After meiosis, gametes carry an unbalanced number of chromosomes because somatic cells of 
the hybrid contain only one chromosome set from each parent. This often results in aneuploid 
somatic chromosome numbers (Ramsey and Schemske 1998). However, hybrids may overcome this 
“blind end” through polyploidization when all chromosomes are duplicated and then undergo regular 
meiosis. Alternatively, hybrids can switch their reproductive system to clonal growth (which is, 
however, not possible for all plants, eg. annuals) or apomixis (Asker et Jerling 1992). Many plant 
groups are predisposed to apomixis (Asker et Jerling 1992, Catanach et al. 2006), and its occurrence 
generally correlates with hybridization and polyploidization (eg. in Sorbus – Nelson-Jones 2002, 
Crataegus – Campbell et al. 1991, Pilosella – Krahulcová et al. 2000, Taraxacum – Richards 1997). 

Recent studies indicate that most angiosperms are of ancient polyploid origin (Soltis et Soltis 
2009). Hybridization accompanied by chromosome doubling is thus essential for generating 
contemporary species diversity (Grant 1981, Soltis et Soltis 1993). Polyploidy is highly correlated with 
asexual modes of reproduction (apomixis, haploid parthenogenesis), selfing and longevity in plants as 
well as in animals (Mallet 2007, Otto et Whitton 2000). Two types of polyploidy are recognized from 
a genetic point of view – autopolyploids arise within a single population or between ecotypes of a 
single species whereas allopolyploids are derived from interspecific hybrids (Ramsey et Schemske 
1998). Polyploids originate in different ways depending on the particular mechanism of chromosome 
doubling: 1) autopolyploidization of diploids, 2) triploid bridge (fusion of a reduced and an unreduced 
gamete), 3) fusion of two unreduced gametes. Unreduced gametes are rarely formed in diploids and 
non-hybrid taxa (mean frequency around 0,5%), but are about fifty times more frequent in hybrids 
(frequency around 25%; Ramsey et Schemske 1998). High numbers of aneuploid and probably also 
unreduced gametes seem to originate from polyploids with odd chromosome numbers (Krahulcová 
et al. 2000). When a polyploid successfully overcomes the phase of formation, other problems 
usually emerge (eg. demographic establishment of new a new cytotype facing the minority cytotype 
disadvantage; Ramsey et Schemske 1998). Polyploids are often reproductively independent of their 
diploid parents, but when they backcross, progeny with odd numbers of chromosomes occurs. 
Although these offspring may be viable, they frequently produce sterile gametes or gametes with 
aneuploid chromosome counts (Grant 1981, Ramsey et Schemske 1998). On the other hand, this 
triploid bridge is essential for most novel cytotype formations. The origins, distribution and spreading 
of many recently formed allopolyploids is well documented (eg. Senecio cambrensis – Abbott et Lowe 
2004, Spartina anglica – Ainouche et al. 2004, Tragopogon mirus and T. miscellus – Soltis et al. 2004, 
Cardamine schultzii – Urbanska et al. 1997, Mandáková et al. 2013, Zozomová-Lihová et al. 2014). 
Moreover, the evolutionary history of allopolyploid crops selected for transgressively high yields is 
also well described (Anderson et Stebbins 1954, Grant 1981, Soltis et Soltis 2009). 
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3) Human-triggered hybridization involving rare species 

In cases of rare species, the consequences of hybridization may be even stronger because their 
populations are often small or occur at the margins of the species´ distribution areas. 
Microevolutionary processes (eg. speciation, inbreeding depression, bottleneck effect, genetic drift) 
act more readily in small populations than in large populations (Rhymer et Simberloff 1996). 
Consequently, both beneficial and harmful consequences of hybridization (genesis of new 
evolutionary units vs. potential extinction of populations) are more striking (Rieseberg and Ellstrand 
1993). Many rare species originated from widely distributed relatives (textbook examples from the 
Czech flora are Minuartia smejkali – Dvořáková 1988; M. corcontica – Dvořáková 1999; Cerastium 
alsinifolium – Novák 1960), and are therefore more prone to hybridize with their progenitors. Several 
other taxonomically complex groups (Ennos et al. 2006) comprise rare taxa originating (eg. via 
allopolyploidy) from their widely distributed counterparts. 

Hybrid genotypes often vary considerably in their fitness (Rieseberg et Carney 1998). Although 
hybrids from early-generations are on average less vigorous than parental taxa, individuals with 
transgressive characters originate regularly. If reproductive isolation mechanisms are not 
established, further hybridization events may follow soon. Repeated rounds of hybridization, possibly 
leading to the establishment of hybrid swarms can dramatically jeopardize the genetic integrity of 
rare species. This process can ultimately result in genetic swamping of the rare species by hybrids. 
Parental species are more likely to get replaced by hybrids through genetic swamping than due to 
higher average fitness of hybrids (Rieseberg et Carney 1998). An analogous situation occurs in 
insular-like specialists (eg. serpentine or mountain relicts), whose distribution and gene pool is 
limited due to long-term isolation to specific ecological conditions, but are surrounded by many 
related and potentially crossable genotypes (eg. Knautia – Kolář et al. 2009, Cerastium alsinifolium – 
Vít et al. 2014). 

One still overlooked phenomenon is so-called anthropohybridization (Wójcicki 1991), which 
refers to hybridization processes with the participation of cultivated or human-introduced species. 
Such species might have detrimental effects on related native plants. Dilution of their gene pool and 
gene transfer from crops/aliens are of the most important consequences of anthropohybridization 
(Abbott 1992, Bleeker et al. 2007, Campbell et al. 2009). Recent examples in which 
anthropohybridization has been recorded are Prunus fruticosa (Musilová 2013) or Malus sylvestris 
(Cornille et al. 2013). Anthropohybridization is largely facilitated by the absence of reproductive 
isolation mechanisms between crops/aliens and rare species. Crop cultivars often originated in 
different parts of the world. Reproductive isolation mechanisms are therefore often missing; when 
cultivars and native taxa come into contact, they may hybridize freely (Ellstrand et al. 1999). Contact 
between introduced and native taxa is facilitated by three main human activities: plant introduction, 
landscape fragmentation and habitat modification (Allendorf et al. 2001). Determining whether 
hybridization is of natural or anthropogenic origin is crucial for conservationists, whose task is to set 
up appropriate management plans and to take necessary actions. Human-induced changes in 
habitats may lead to secondary contact of previously separated species, promoting their 
hybridization (Rhymer et Simberloff 1996). It has been documented, for example, in Viola lutea 
subsp. sudetica × V. tricolor (Krahulcová et al. 1996), Senecio hercynicus × S. ovatus (Raudnitschka et 
al. 2007), Arctium lappa / A. tomentosum × A. minus (Repplinger et al. 2007), Cerastium alsinifolium 
× C. arvense (Vít et al. 2014) or Diphasiastrum species (Hanušová et al. 2014). A classic example of 
when human-induced hybridization can take place are mountain meadows in the Krkonoše Mts, 
where native montane and introduced lowland species meet due to long-term human activities. 
Hybridization between alpine and lowland Hieracium subg. Pilosella species has led to the origin of 
hybridogenous species and lineages restricted to these habitats (eg. Hieracium iseranum; Krahulec et 
al. 2004). The role of habitat disturbance in hybridization has been a subject of discussion since 
Anderson (1948). He argued that disturbances create open niches which may host a wide diversity of 
hybrid genotypes. Disturbances may also support the breakdown of established reproductive 
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isolation mechanisms. Levin et al. (1996) consider disturbances as corridors promoting movement of 
species and leading to sympatry (and hybridization) between allo- or parapatric species. Expansion of 
one species to the geographical range of another may also be prompted by habitat modification 
(Rhymer et Simberloff 1996). A recurrent issue in conservation biology is whether populations with 
hybridizing rare species should receive the same conservation effort as non-hybridizing populations 
(eg. Thompson et al. 2009). Efforts should be targeted at maintaining remaining pure populations 
rather than at trying to save population already affected by high degrees of hybridization (eg. 
removal of non-native species and hybrids or restoration of habitats; Allendorf et al. 2001). 

Reciprocal transplant experiments are essential for obtaining environment-dependent fitness 
data for parental and hybrid individuals (Rieseberg and Carney 1998), but may endanger rare species 
populations. In a similar way, replanting experiments are often used by conservationists for 
strengthening population numbers or reintroducing rare species from distant (genetically different) 
populations. In stable populations of rare species, reproductive isolation mechanisms against closely 
related species may exist. Introducing “alien” individuals from distinct populations (which might be 
adapted to another environment) may lead to loss of local adaptation (eg. reproductive isolation 
mechanisms) and decrease (often substantially) the average fitness of targeted populations (Barton 
et Hewitt 1985, Ellstrand 1992). Moreover, the resulting outbreeding depression4 often promotes 
hybridization. When hybridization occurs, well intentioned reintroduction projects can be 
counterproductive if hybrids become fertile (Rhymer et Simberloff 1996). Rieseberg et Carney (1998) 
therefore advise to avoid transplantation experiments or to manage them under special conditions 
(removing anthers during the flowering period and harvesting seeds before they disperse). However, 
such measures are time-consuming and costly. 

Generally, biosystematic studies of species complexes with rare or endangered taxa 
threatened by hybridization with common relatives or intricate agamic complexes are highly 
appreciated by conservationists. Such studies allow them to better evaluate the risks of hybridization 
based on knowledge of reproductive modes, hybrid frequency and other important facts. The key 
question surrounding all conservation efforts undoubtedly is “How do we recognize hybrids?”. 

 

4) Current methods for hybrid identification 

Hybrids have been recognized and studied at least since the times of Linnaeus (Rieseberg and Carney 
1998), although “products of hybridization” were observed much earlier, at the dawn of agriculture 
(eg. descendants of cereal breeding and ancient agricultural selection of the most productive plants; 
Feuillet et al. 2007). As in many other areas, the sensitivity and resolution of research methods have 
changed rapidly over the last decades. Detection of hybridization (or ancient hybridization events) is 
much easier nowadays thanks to the development of highly sensitive approaches. Methods widely 
used for detecting hybridization and ongoing processes in populations of hybridizing taxa are 
discussed further below. 

Phenetic methods 

Phenetic methods have been for a long time the sole technique for hybrid detection. Intermediate 
appearance or a combination of morphological characters of parental taxa is a classic indication of 
hybrid origin. However, many hybrids have eluded detection by this approach (eg. hybrid swarms; 
Rhymer et Simberloff 1996, Allendorf et al. 2001). Transgressive or novel characters are not an 
exception, but occur regularly among hybrids and become more frequent in later hybrid generations 
(ca 10% in F1 hybrids; Rieseberg and Ellstrand 1993). A meta-analysis of 46 hybridization studies 
made by Rieseberg and Ellstrand (1993) found significant deviations from presumed intermediacy. 

                                                           
4 Crosses between genetically distant sources produce offspring with lowered fitness 
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Hybrids from the first generation were characterized by a mosaic of parental and intermediate 
characters, rather than possessing exclusively intermediate ones (Rieseberg 1995). Differences 
between particular morphological characters and their inheritance in hybrids can be explained by 
differences in their genetic control and interactions with the environment. Rieseberg and Ellstrand 
(1993) suppose, that morphological characters under multigenic control tend to attain intermediate 
values, while characters under simple control usually manifest as parental or intermediate 
appearance in the first hybrid generation. However not all morphological characters have a genetic 
basis (Allendorf et al. 2001) and hybrid characters constitute a mosaic of parental phenotypes. It is 
difficult to determine based on morphology alone whether a particular hybrid represents the first or 
a later generation or backcross (Allendorf et al. 2001). This knowledge is nevertheless crucial for 
conservationists whose job is to evaluate the risk of hybridization for rare species. Last but not least, 
it is necessary to take into account the quantity and potential correlation of morphometric 
characters when evaluating complex hybrids. Functional or developmental correlations highly reduce 
the informative content of each morphological character (Rieseberg and Ellstrand 1993). Only scoring 
of a considerable amount of characters may bring valuable results that truly indicate hybridization 
and backcrossing. 

On the other hand individuals with intermediate morphologies are often interpreted as 
interspecific hybrids (eg. in the genus Nymphaea; Heslop-Harrison 1955, Ejankowski & Małysz 2011) 
even though their hybrid status is not supported by other methods (karyology or molecular markers). 
Many recent studies have not confirmed hypotheses about the hybrid origins of such individuals (eg. 
in the genus Nymphaea; Kabátová et al. 2014). Analogously, several putative hybrids have finally 
turned out to be ecomorphoses, or individuals damaged during early developmental stages or 
altered by suboptimal conditions (eg. occurrence of frequent hybridization in the genus 
Chenopodium was disproved using karyological techniques; Mandák et al. 2012). 

Karyology 

Detection of hybrids using conventional karyology is relatively easy and straightforward when 
differences in chromosome number or karyotype exist. Special attention is necessary when 
chromosome deviations (eg. aneuploidy or chromosome rearrangements) are expected. This 
phenomenon is more common in hybrids (eg. higher frequency of aneuploidy; Ramsey et Schemske 
1998). The need of mitotically active tissue, huge laboriousness and the need of an experienced 
karyologist to analyse material are the main disadvantages of this method. Advanced karyological 
methods based on in situ hybridization (GISH, FISH) are suitable for detection of homoploid hybrids 
as well as for tracking the origin of allopolyploids. Nevertheless, exact chromosome counts or ploidy 
determination using karyological techniques are essential for the calibration of flow-cytometric 
analyses (Doležel et al. 2007). 

Flow cytometry 

Flow cytometry (FCM) is a fast and effective method for analysing optical characteristics of isolated 
particles. Estimation of genome size and detection of DNA ploidy level are routine applications of 
FCM in plant biology. Estimation of DNA ploidy level is much faster and easier than using 
conventional karyological techniques (Doležel et al. 2007). If differences in genome size or ploidy 
level between parental taxa exist, flow cytometry can easily be used for detecting both homoploid 
and heteroploid hybrids (Kron et al. 2007, Loureiro et al. 2010). Most hybridization events are not 
connected with changes in nuclear DNA content, and genome size of hybrids can be 
straightforwardly inferred from values of their putative parents (Kron et al. 2007, Loureiro et al. 
2010). Several obstacles may arise, however – for example, when taxa with the same or similar 
genome size have different chromosome numbers (eventually holocentric chromosomes may occur; 
eg. Bozek et al. 2012, Pazy & Plitmann 1995, Hipp et al. 2009). The use of flow cytometry for 
detecting hybrids of rare species might be beneficial because it requires only small amounts of tissue. 
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Moreover, some benchtop flow cytometers are mobile, and samples may be analysed directly in the 
field. Compared to karyology, flow cytometry is not dependent on mitotically active tissues, and 
samples may be prepared from various types of tissue (from roots to flowers). Nevertheless, each 
newly detected DNA ploidy level should be confirmed by chromosome counting (Suda et al. 2006). 

Molecular methods 

Data obtained from molecular markers have several advantages compared to other types of data (eg. 
karyological, morphological). Molecular markers are universal (they may be used to study 
morphologically or karyologically distant taxa and allow their direct comparison). Moreover, the 
number of characters obtained by molecular markers is many times higher compared to 
morphological ones. Molecular characters are also well defined (4 nucleotides in DNA sequences) 
and discrete. Nowadays, a wide spectrum of PCR-based methods is available and commonly used in 
studies of hybridization. As more and more sensitive methods are routinely used for hybrids 
detection, many new hybridization events are discovered. Ancient hybridization (eg. Grimm et Denk 
2008, Fehrer et al. 2009) and cryptic hybrids (eg. Jasińska et al. 2010, Nicole et al. 2007, Paule et al. 
2012) represent previously overlooked phenomena that were often for the first time unravelled 
using modern molecular techniques in the last decade. Hence, the selection of suitable genetic 
markers for studying hybridization is essential. It always depends on the required resolution and 
relationships of the studied taxa. 

Sequences of nuclear genes are useful for detecting hybrids because of their biparental 
inheritance. A sequence (or restriction profile) of a targeted gene is transferred from both parents 
equally to hybrids. However, because of the variation in inheritance patterns, recombinations and 
linkages, results must be interpreted with caution. Markers from nuclear ribosomal DNA (nrDNA; ITS 
region) are the most widely used to detect hybrids (eg. Fuertes Aguilar et al. 1999, Lihová et al. 
2007a). In cases of both ancient and recent hybridization events, potential consequences of 
concerted evolution (eg. homogenization of sequences) must be taken into account (Alvarez et 
Wendel 2003). The use of genes which are resistant to concerted evolution (eg. low copy genes) 
strikingly increased in the last decade (eg. Shimizu-Inatsugi et al. 2009, Krak et al. 2013, Ramadugu et 
al. 2013, Schneider et al. 2013). However, their application has also brought numerous difficulties, 
stemming mainly from population genetic processes such as incomplete lineage sorting, genetic drift 
or natural selection (Sang 2002, Small et al. 2004, Linder & Rieseberg 2004). Low-copy or nrDNA 
markers often suffer from insufficient variation, which causes problems in studies focused on the 
population level (eg. detection of hybridization rates, assessment of reproductive modes). More 
sensitive markers should therefore be adopted – traditionally, microsatellites or AFLPs are used in 
population based studies (Meudt et Clark 2007). For instance, SNPs5 derived from high-throughput 
sequencing techniques (Rad-seq, GBS) are becoming an important source of molecular data useful 
for elucidating hybrid origin (Hohenlohe et al 2011, 2013, Wagner et al. 2013). 

Organellar DNA (chloroplast DNA, mitochondrial DNA) can also be highly informative when 
detecting plant hybridization thanks to its predominantly uniparental inheritance in plants (Harris et 
Ingram 1991). Several aspects of microevolutionary processes may be tracked, including the direction 
of hybridization or introgression. Sufficient variation between the hybridizing taxa is the main 
prerequisite, despite the plethora of cpDNA markers (Taberlet et al. 1991, Demesure et al. 1995, 
Shaw et al. 2005, Shaw et al. 2007). The use of cpDNA seems to be easy, but one must bear in mind 
that cpDNA reflects only one genetic line (parental species), while the second remains hidden. It is 
therefore appropriate to use cpDNA markers in combination with nuclear markers to enable the 
reconstruction of relationships between both parental species and hybrids. 

 

                                                           
5 Single nucleotide polymorphisms 
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5) Species under study 

Cerastium alsinifolium 

Cerastium alsinifolium Tausch (Smejkal 1990, Kaplan 2012) is an outcrossing serpentine endemic of 
western Bohemia (Slavkovský les Mts). The total area occupied by this species does not exceed 15 
km2, with all sites situated within the Protected Landscape Area Slavkovský les (Tájek et al. 2012). 
Cerastium alsinifolium is a critically endangered plant in the Czech flora (Grulich 2012, Kaplan 2012). 
Currently, C. alsinifolium is reported from two rather contrasting types of habitat on serpentine 
bedrock, namely dry open grassland on rocky outcrops, and (semi)shaded springs and seeps in 
coniferous forests (Melichar 2005, Tájek et al. 2012). At several sites in the Slavkovský les Mts, it co-
occurs with another perennial large flowered species, C. arvense, which is widely distributed in 
Europe and usually inhabits dry grasslands or semiruderal sites (Smejkal 1990). Cerastium arvense is 
relatively tolerant of soils with a high heavy metal content (Levine & Greller 2004), and in the 
Slavkovský les Mts it occasionally grows on outcrops of serpentine or in their immediate vicinity. 

Potential hybridization between serpentine endemic Cerastium alsinifolium and its widespread 
counterpart C. arvense in the Slavkovský les Mts has been suspected for a long time (Smejkal 1990, 
Hrouda 2002, Rybka et al. 2004). It has, however, not been proved by biosystematic approaches. 
Possible evolutionary consequences of the hybridization also remain unknown. 

Sorbus 

In the genus Sorbus, taxonomic difficulties stem from recognizing and describing new species 
originating through hybridization of diploid sexual [S. torminalis (L.) Crantz, S. aucuparia L. and S. 
chamaemespillus (L.) Crantz] and tetraploid [taxa from the group of Sorbus aria (L.) Crantz] species. 
Primary hybrids occur spontaneously and are of the same ploidy level as their parents (Meyer et al. 
2005). Hybrid lineages and stabilized hybridogenous species (or so-called microspecies) have higher 
ploidy levels, indicating their formation through unreduced gametes or through hybridization of 
polyploids. Their evolutionary success is connected to agamospermy (apospory), which can be 
accompanied by residual sexuality (Proctor et Groenhof 1992, Robertson 2004). Newly originated 
lineages can persist in situ for many years and further shape the population structure of parental 
species (eg. as pollen donors; Ludwig et al. 2013). Microspecies may originate recurrently from the 
same parental combination and exhibit highly similar morphology with negligible differences due to 
distinct parent genotypes. Most discovered stabilized lineages are subsequently described as new 
species (see the number of Sorbus taxa in the flora of the Czech Republic; Kaplan 2012). This 
approach may, however, spoil the taxonomy, especially when each and every local lineage is formally 
described as a separate species. Sorbus quernea, a formerly recognized endemic rowan from Prague, 
is an example of an apomictic taxon that was sunk into synonymy after a thorough taxonomic 
revision (Lepší et al. 2013). 

The study of agamic complexes in the frame of conservation efforts is a very difficult task. With 
respect to taxonomy, agamic complexes are a “dynamic system” of newly described and rejected 
taxa (see Lepší et al. 2013). This approach is, however, often difficult to digest for conservationists. 
Conservation of higher taxonomic units (eg. at the subgeneric level; Pellicer et al. 2012) or the 
conservation of evolutionary units that generate taxonomic diversity seems to be an alternative 
(Rhymer et Simberloff 1996). The questions remain: What should be protected (the product or the 
speciation trigger), and which phenomenon is more valuable – endemism or speciation? One may 
argue that hybridogenous agamic species are “blind alleys” of evolution that do not deserve 
protection due to their asexual mode of reproduction. This is not the case, however, as they may still 
enter further hybridizations as pollen donors (production of viable pollen grains is relatively high; 
Rich 2009). Hybridization is a significant evolutionary process, and hybridizing populations of parental 
species and hybrids alike are extremely important from several standpoints. To protect taxonomically 
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complex groups and processes taking place within them, it is crucial to conserve these “engines” of 
evolution (Stace 1998, Ennos et al. 2006).  

Biosystematic evaluation of Sorbus eximia is presented in the second study. It was a textbook 
example of diploid-tetraploid taxon with agamospermous mode of reproduction (including 
agamospermy at the diploid level; Jankun et Kovanda 1988). This exceptional mode of reproduction 
was several times cited (Nelson-Jones 2002, Talent et Dickinson 2006, Dobeš et al. 2013), but never 
been reliably confirmed. 

 

Nymphaea 

Two native Nymphaea species occur in Central Europe – N. alba and N. candida. Species boundaries 
between them are blurred by overall morphological similarities, high phenotypic plasticity and 
possible interspecific hybridization. The situation is further complicated by the occurrence of many 
garden cultivars. Morphological similarities are at least partly caused by close evolutionary 
relationships between N. alba and N. candida (Volkova et al. 2010). Individuals with intermediate 
morphologies have often been interpreted as interspecific hybrids (Heslop-Harrison 1955, Ejankowski 
& Małysz 2011) although their hybrid status has only rarely been evidenced. The few exceptions 
include crosses between N. alba and N. candida (= N. × borealis Camus) from several sites in 
Germany and Sweden, confirmed by AFLP fingerprints (Werner & Hellwig 2006, Nierbauer et al. 
2014). Natural interspecific hybridization in Nymphaea seems to be quite extensive, as indicated by 
the great number of horticultural crosses (Slocum 2005). Garden cultivars have been repeatedly 
introduced, be it accidentally or intentionally, into natural habitats, where they can survive for long 
periods and potentially interact (compete or mate) with native plants. Reliable discrimination 
between escaped white-flowered cultivars and native species on the basis of morphological traits is 
difficult, if not impossible. 

 

Diphasiastrum 

Six diploid Diphasiastrum taxa are traditionally recognized in Europe: three (basic) species and three 
morphologically intermediate hybrids traditionally treated as species. Mixed populations frequently 
occur in Central Europe and often form apparent hybrid swarms. Species determination is quite 
problematic in mixed populations and especially in hybrid swarms occurring in man made habitats 
(eg. ski slopes, deforested strips). A number of factors complicate investigations of hybridization 
patterns in Diphasiastrum: simple morphology with few characters suitable for evaluation, high 
phenotypic plasticity and impossibility to accomplish hybridization experiments due to mycorrhizal 
gametophytes (Wilce 1961, 1965, Whittier 1977, Vogel et Rumsey 1999). The patterns of 
hybridization in Diphasiastrum have recently been addressed using two types of markers: low-copy 
nuclear genes and genome size. Sequences of three regions of the nuclear genome confirmed the 
hybrid status of D. ×issleri, D. ×oellgaardii and D. ×zeilleri (Aagaard et al. 2009a, 2009b). This study 
also indicates certain levels of recent hybridization and backcrossing within European Diphasiastrum. 
Its frequency and variation patterns in natural populations remain unknown, however. On the 
contrary, discrete variation in genome size in several parts of Europe indicates only primary 
hybridization with no hint of backcrossing (except for a few rare triploid hybrids) or introgression 
(Bennert et al. 2011). 
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Aims of the thesis 

1) To evaluate the risk of interspecific hybridization in selected rare species native to the Czech 

Republic 

2) To assess the value of different methodological approaches (incl. karyological, phenetic and 

molecular techniques) for hybrid identification 

3) To elucidate the human impact on the hybridization of rare plant species under investigation 

 

Conclusions and future directions 

Although much attention has been paid to the conservation of rare species during the last 
decades, most studies have not taken a complex biosystematic approach. The conservation and 
biosystematic points of view have rarely been integrated in a single study. Fortunately, recent years 
have seen significant progress, which is manifested by the publication of research papers at the 
interface between conservation and biosystematics (eg. Hedrén et al. 2012, Moreira et al. 2013). 

This thesis presents three cases of interspecific hybridization involving rare species. Hybrids 
coexist with parental taxa in the Cerastium alsinifolium/C. arvense system. The Czech serpentine 
endemic C. alsinifolium is threatened by competition from hybrids over both abiotic and biotic 
resources (light, nutrients and pollinators). Considering the absence of backcrosses, hybridization 
does not seem to severely affect the gene pool of the endemic species. Its genetic integrity will thus 
most likely be preserved. Nevertheless, in open sites, hybrids usually dominate over C. alsinifolium 
and may possibly outcompete it. Interspecific hybridization is much less pronounced in forest sites, 
which host core populations of the endemic and are therefore a conservation priority. 

Flow-cytometric measurements revealed a ca 45% difference in genome sizes between 
Nymphaea alba and N. candida. Moreover, the genome sizes of Nymphaea cultivars were 
considerably lower than those of native species. Statistical analyses of morphological characters 
allowed reliable phenotypic delimitation of both Nymphaea species and garden cultivars. Although 
morphotypes with intermediate values of characters and/or a mosaic-like combination of characters 
have often been interpreted as interspecific hybrids, our results indicate that interspecific 
hybridization under natural condition is quite rare (at least in the Czech Republic), and a hybrid origin 
was confirmed in only eleven out of 612 analysed plants (ca 1.8%). Native Nymphaea species are thus 
not directly threatened by interspecific hybridization. An important finding is the frequent 
occurrence of accidentally or intentionally introduced Nymphaea cultivars in more or less natural 
habitats in the Czech Republic. It is likely that white-flowered cultivars have previously often been 
confused with indigenous species. 

The frequency of interspecific hybridization among Diphasiastrum species and its 
consequences were evaluated using genome size analysis, and numerical and geometric 
morphometrics. Although genome sizes of basic taxa tend to differ, hybrids often form phenotypic 
continua. The most intricate genome size values were found in D. ×issleri and D. ×oellgaardii. The 
genome sizes of these hybridogenous species completely overlap even though they originated from 
different parental combinations. Very low genome size variation was detected in single-taxon 
populations. The highest variation was found in several populations that consisted of all six species, 
and in mixed populations comprising both D. alpinum and D. tristachyum. A similar pattern of 
variation was subsequently observed in both numerical and geometric morphometrics. 

The origin of the hybridogenous species Sorbus eximia was elucidated, and a new species (S. 
barrandienica) was recognized during the biosystematic revision of the Sorbus eximia group in the 
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Bohemian Karst. Flow cytometry did not confirm the existence of two ploidy levels (di- and 
tetraploid) and reported agamospermy at the diploid level (Jankun et Kovanda 1988). All accessions 
of S. eximia and S. barrandienica turned out to be triploid. The genetic variation of both investigated 
species was extremely low, indicating their single origins. Long-term persistence of their populations 
was most likely supported by their agamospermous mode of origin. 

The last decade has seen several attractive research directions in the study of hybridizing rare 
plant species. Although they might be methodologically challenging, they offer opportunities for 
gaining deeper insights into the patterns and processes of interspecific hybridization, ultimately 
leading to the identification of “common patterns”. 

Agamic complexes present a particularly promising group for the study of several 
microevolutionary processes. Although taxonomic studies (often resulting in the recognition of new 
agamospermous lineages) clearly prevailed in the last few decades (eg. in the genera Sorbus – 
Kovanda 1961, 1996, Lepší et al. 2008; Rubus – Lepší et Lepší 2009, Trávníček et Žíla 2011; Taraxacum 
– Trávníček et al. 2008), more recent works address ecological and microevolutionary questions (eg. 
in the genus Sorbus; Vít et al. 2012, Lepší et al. 2013, Ludwig et al. 2013). Many recent studies 
attempt to reveal microevolutionary mechanisms responsible for the genesis of hybridogenous 
species. Other attractive topics are detection of the mode of reproduction (using DNA flow 
cytometry and microsatellites), identification of parental taxa (microsatellites), elucidation of the 
direction of hybridization (chloroplast markers) and susceptibility of each parent to hybridization 
(using hybridization experiments). 

The spread of introduced (and possibly invasive) plant taxa has been well documented. 
Occasionally, they can hybridize with their native counterparts, and these systems offer unique 
opportunities to study hybridization at its initial stages. Future studies should clarify the evolutionary 
consequences of hybridization on populations of native species, using a multi-method approach 
involving, among others, detailed ecological studies, sophisticated spatial models (Phillips et al. 2006) 
and historical data coupled with molecular and cytogenetic techniques. Such studies will paint a 
holistic picture of the patterns, processes and dynamics of interspecific hybridization. 
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