
Charles University in Prague

Faculty of Mathematics and Physics

Master Thesis

Josef Hala

Real-life Middleware Support

for Connectors

Department of Software Engineering

Supervisor: RNDr. Tomáš Bureš, Ph.D.

Study Program: Computer Science

I would like to thank my advisor Tomáš Bureš, I very appreciate his valuable

suggestions and help with writing.

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatn a výhradn s ě ě

použitím citovaných pramen . Souhlasím se zap j ováním práce.ů ů č

I hereby declare that I have elaborated this master thesis on my own and listed all

used references. I agree with making this thesis publicly available.

In Prague on April 20, 2007 Josef Hala

Název práce: Real-life middleware support for connectors

Autor: Josef Hala

Katedra: Katedra Softwarového Inženýrství

Vedoucí diplomové práce: RNDr. Tomáš Bureš, Ph.D.

e-mail vedoucího: bures@nenya.ms.mff.cuni.cz

Abstrakt: Softwarové konektory se používají v komponentových systémech pro

realizaci mezi-komponentové komunikace. Pro jejich generovaní slouží generátor

konektor , který z konfigura ního souboru umí vytvo it odpovídajíci konektor.ů č ř

B hem návrhu aplikaceě generátor konektor ů umož ujeň specifikovat, jak mají

jednotlivé komponenty mezi sebou kooperovat. Za b hu aplikace pak vytvo enéě ř

konektory zajištují komunikaci, jak bylo uvedeno v konfiguraci. Konektory k tomu

typicky využívají n jaký midleware a m žou ě ů tak být považovany za abstrakci, která

zakrývá rozdíly mezi jednotlivými middlewary.

Cílem této diplomové práce je rozší it existující generátor konektor ř ů [1] a

poskytnout podporu pro generování konektor využívájících technologie RMI aů

CORBA a také jiné komunika ní styly (p edevším messaging). Krom implementaceč ř ě

r zných middlewar práce rozebírá pokro ilejší témata, jako p edávání referencí aů ů č ř

vypo ádání se s komplexními typy v rámci vzdálené komunikace. ř

Klí ováč slova: softwarové konektory, komponentové aplikace, komunika níč

middleware, framework pro middleware

Title: Real-life middleware support for connectors

Author: Josef Hala

Department: Department of Software Engineering

Supervisor: RNDr. Tomáš Bureš, Ph.D.

Supervisor's e-mail address: bures@nenya.ms.mff.cuni.cz

Abstract: Software connectors are used in component-based systems for realization of

inter-component communication. A connector generator serves for their generation.

It is able to create particular connector based on definitions in a high-level

configuration file. At design time the connector generator allows for specifying how

components interoperate, at run time created connectors are responsible for

communication between application's components as it was specified in the

configuration file. They typically utilize some middleware for realization of the

communication and they can be supposed as a higher level of abstraction which

covers the differences between various underlying middlewares.

The aim of the thesis is to extend the existing connector generator [1] and provide

support for generating and deploying RMI and CORBA-based connectors and also

connectors using other communication styles (particularly messaging). Besides the

actual implementation of various middlewares in the connector generator the thesis

also addresses some advanced topics like passing references and handling of

complex types within remote communication.

Keywords: software connectors, component-based applications, communication

middleware, framework for middleware

Table of Contents

1 Introduction...7

1.1 Software components and connectors..7

1.2 Goals...9

2 Middleware..10

2.1 Java Remote Method Invocation (RMI)...10

2.2 CORBA ..11

2.3 JMS...14

3 Connectors...16

3.1 Modelling connectors...17

3.2 Communication styles...20

3.2.1 Method invocation..20

3.2.2 Messaging..21

3.3 Generating connectors...22

4 Goals elaborated..24

4.1 Complete the full support for Java RMI...24

4.2 Implement support for CORBA...24

4.3 Integrate the JMS API...25

5 Connector generator overview...26

5.1 Connector architectures...26

5.2 Element types..28

5.3 Elements..29

5.3.1 Composite elements...30

5.3.2 Primitive elements..31

5.4 Binding elements...32

5.5 Element generators..33

5.6 Templates..35

5.7 Type system...36

6 Implementing support for Java RMI..38

4

6.1 Java RMI Overview...38

6.2 Former Support for Java RMI..39

6.2.1 Overview..39

6.2.2 Specifying business interfaces...42

6.2.3 Generating remote interfaces...45

6.2.4 Templates for RMI...47

6.2.5 Remote bindings..50

6.2.6 Argument passing..51

6.2.7 Summary...54

6.3 Improved support for RMI...55

6.3.1 Dealing with java.io.Serializable..55

6.4 Addressing support for object types...55

6.4.1 Basic Idea...56

6.4.2 A wrapper..57

6.4.3 RMIObjectAdapter..59

6.4.4 Integration with the connector...62

6.4.5 Summary...65

7 Implementing support for CORBA..71

7.1 Overview..71

7.1.1 Java IDL..71

7.1.2 Java RMI over IIOP..73

7.2 Comparison of the Java IDL vs. RMI-IIOP..76

7.2.1 Starting from an IDL..76

7.2.2 Starting from a Java Interface ..79

7.3 Implementation details...80

7.3.1 Configuration of CORBA stubs and skeletons..80

7.3.2 CorbaStub.class..81

7.3.3 CorbaSkeleton.class...82

7.4 Summary...83

8 JMS...85

5

8.1 The JMS API Overview...85

8.2 Implementation details..87

8.2.1 Connector architecture...87

8.2.2 Implementing the jms_server...89

8.2.3 Implementing the message_send_recv...90

8.3 Summary...92

9 Related work..93

10 Conclusion..95

6

Chapter 1

Introduction

1.1 Software components and connectors

There are many approaches and paradigms to software development. One of them
is the so-called Component-based Software Engineering (CBSE) [2]. This is a
discipline which emphasizes on splitting a large system into small logical, or
functional, components. These components can interact with each other only through
well-defined interfaces. Any other communication is forbidden which makes for good
encapsulation. Components can be regarded as a higher abstraction of objects – they
are more separate, they do not share nor expose any internal data or state, and from
the outside they are accessible strictly via interfaces. There is also another difference
compared to objects - while a component states explicitly which interfaces it offers, it
can also require some interfaces.

Clemens Szyperski [3] and David Messerschmitt [4] give these five criteria that
component systems must satisfy (for more information see Software componentry

[5]):

� Multiple-use

� Non-context-specific

� Composable with other components

� Encapsulated i.e., non-investigable through its interfaces

� A unit of independent deployment and versioning

These features of component systems help by reducing system's complexity and
increasing it's reusability, maintainability and scalability. A simple component-based
application is depicted in Figure 1.1.

7

Figure 1.1: A simple component application

Client

component

Server

component

Provided interface

Required interface

Connector

Component binding

Components also have a connection with an Interface description language (IDL),
a computer language used to describe a component's interface so that it should be
language-neutral in order that components written in different programming
languages (as well as running on different operating systems) can interoperate with
each other. IDL acts like a “bridge” between these distinct parts.

There are many different component systems developed by various companies and
groups. The most well-known of these include COM, DCOM and the recent .NET
component model developed by Microsoft Corporation [6], Enterprise JavaBean
(EJB) [7] by Sun Microsystems, and the CORBA Component Model (CCM) [8][9]
proposed by the Object Management Group (OMG) [10]. Besides these industrial
technologies we should also mention SOFA [11] project (being developed at Charles
University in Prague), and the modular Fractal Project [12].

A component is a software entity that implements some business logic.
Programmers should not have to bothered with low-level communication, they should
concentrate on the implementation encapsulated in the component. It should not
matter which middleware is used, the communication API should be unified and
generalized. For this purpose software connectors are highly suitable.

A software connector is a part of an application which takes care of the
communication between components, it is supposed to be a higher abstraction of
component's interoperability. It can be implemented in various ways and also be
aimed at slightly different areas, but its main purpose is dealing with low-level
middleware, to connect and bridge differences between heterogeneous components
For the user a software connector should act as if it were one uniform entity with a
common API.

Besides the invaluable help in hiding component and communication
dissimilarities software connectors can be also useful in other ways:

� Connectors can provide facilities for describing the properties of
communication. At deployment time they can serve as a modeling tool through
which a programmer can specify characteristics and an architecture of the
connection.

� At runtime they can add some extra values to the connection itself, e.g.
logging, measurement, encryption, increasing safety, reliability, etc.

In order that the connectors are actually useful in practice, they must be easy to
create. Therefore there should be a connector generator which is capable of creating,
from human readable configuration files, connectors both suitable and effective for
the particular application.

The connector generator is a matter of deployment compared with connectors
which are utilized at runtime. They should not be confused, the connector generator
generates connectors.

For example Figure 1.1 shows an application consisting of only two components –
client and server. The components say which interfaces they provide (and require)
and on the basis of this information the connector generator should generate a

8

specific connector for that application.

1.2 Goals

The goal of this thesis is to continue the work on the existing connector generator
[1] which is being developed at Charles University in Prague. It has a modular and
very extensible architecture and so that has the possibility to support many different
middlewares. At the moment it is only the framework that allows the possibility, but
does not yet actually provide the functionality. The challenge is to utilize selected
middlewares and integrate them into this system, a considerable amount of work in
an unresearched area. Besides the actual implementation of various middlewares in
the connector generator we will also have to deal with some advanced topics like
passing references and handling of complex types within remote communication.

9

Chapter 2

Middleware

“Middleware is connectivity software that consists of a set of enabling services that

allow multiple processes running on one or more machines to interact across a

network. Middleware is essential to migrating mainframe applications to client/server

applications and to providing for communication across heterogeneous platforms.”

Bray M.: Middleware [13]

Connectors use middleware to handle low level communication between software
components. The connector generator is highly configurable and contains facilities for
integration and support for generating connectors using various middlewares.

We have chosen the following three middleware families because they cover the
most common situations and needs of a component's programmers: Java Remote
Method Invocation (RMI), CORBA (Common Object Request Broker Architecture),
and the Java Message Service (JMS). They have been chosen as they are well known,
very popular and have very excellent support in the Java language. Here are brief
descriptions of the three.

2.1 Java Remote Method Invocation (RMI)

The Java Remote Method Invocation (RMI) API [14] allows a Java program
running in a Java Virtual Machine (JVM) [15] to invoke methods from another Java
Virtual Machine (which can be on the same host or on a remote host). The main
concept is that the user does not have to know that he is calling a remote method, it
should behave like a local one, and be transparent to the user. Although there are
some limitations (especially when passing complex objects as arguments) RMI is quite
easy to use and in simple cases the user really does not have to be concerned with the
fact that calls are remote.

There are two main implementations of the RMI API. The first, and original, one
uses serialization1 for transmitting an object across the network. This is unique to
Java and can therefore only be used when communicating between Java programs,
and disallows Communication with components written in other programming
languages. The “background” protocol used in this implementation is the Java

1 Serialization [16] is the process of saving an object onto a storage medium (such as a file, or a memory

buffer)

10

Remote Method Protocol (JRMP) [17].

The term RMI is used to denote just the programming interface or both the API
and JRMP.

A typical communication between a server and a client is shown in Figure 2.1.

The Stub and the Skeleton form the interlink between the server and the client,

they translate function calls into a protocol which is transportable over TCP/IP.

The second RMI implementation is known as RMI-IIOP [18] (Remote Method
Invocation over Internet Inter-ORB Protocol). This RMI delegates most functionality
to the supporting CORBA implementation, using the low-level IIOP protocol to allow
cooperation with CORBA components.

RMI-IIOP is based on open standards defined by the Object Management Group
(OMG) [19] and through its openness there are many participating vendors and
companies. The main strength of RMI-IIOP is that we can combine Java components
with components written in non-Java language (for example in Java, C++, Python,
Smalltalk and Lisp).

Here are some alternatives to the built-in Java RMI:

� LipeRMI [20] - is a completely new RMI implementation to replace native Java
RMI. It is totally independent from the native Java RMI and uses an Internet
optimized approach for the communication layer.

� cajo [21] - provides an easy to use framework to simplify the use of RMI.

2.2 CORBA

CORBA (Common Object Request Broker Architecture) [22] is a standard for
distributed computing. It enables software components written in multiple
programming languages to interoperate. CORBA uses an Interface Definition

Language (IDL) for the description of remote interfaces. Here is an example of a
simple IDL:

11

Figure 2.1: A typical implementation of Java RMI. Stub and Skeleton are

are special intermediate objects.

StubClient ServerSkeletonInternet

IDL is a common computer language for defining interfaces and data types. From
the IDL code, which is general and system independent, language-specific code is
generated. OMG specifies mapping from IDL into C, C++, Python, Ada, Java, Lisp,
Smalltalk and PL/I.

Figure 2.2 (above) shows the definition of a simple interface Car with one

function setSpeed(). The corresponding Java interface produced from this IDL

would be as shown in Figure 2.3:

Typically each language which the OMG defines mapping for has some utility that
generates source code from an IDL into its own language.

For example Java has a command line tool idlj which, besides the interface Java

code itself, generates also auxiliary files, in particular the stub and skeleton (see
later). The generated files contain Java source, which then have to be compiled into
binary code using javac or some other Java compiler. This process is shown in

Figure 2.4:

As mentioned some generated classes are used in the stub and skeleton. Stub and
skeleton, which are a form of deletage. For example, on the client side a remote
reference is in fact a reference to the stub. The client uses it as a normal object, but
all method invocations on the stub are forwarded to an ORB and finally to the server,
see Figure 2.5:

12

Figure 2.4: Generation of Java bindings from

IDL

Figure 2.2: Example of a simple IDL

*.idl *.java *.class
idlj javac

interface Car {

 void setSpeed(in long new_speed);

};

Figure 2.3: A corresponding Java interface

generated from the IDL in Figure 12

public interface Car
{
 void setSpeed (int new_speed);
}

The client's call to the stub is translated and modified so that ORB can transport it.
On the server side the skeleton is doing a reverse translation and the corresponding
server's method is called. The return value is transmitted back through the skeleton,
decoded by the stub, and finally passed back to the client.

The picture above is very simplified and does not show the POA (Portable Object
Adapter) which is normally used. The POA is a CORBA object which is responsible for
delivering the remote invocation to the correct servant1 [23][24]. The POA is very
flexible and robust. It can call either the local object or redirect the call to some other
server and in addition the servant can be chosen statically (once) or dynamically (for
each remote invocation).

The ORB (Object Request Broker) [24] performs the physical communication
between hosts. It handles a transformation of data structures from the host specific
format to a byte sequence which can be then transmitted over the network. This
process is called marshaling. In addition to marshaling, the ORB often provides other
features like transaction or security services.

In order that different ORBs can communicate with each other there exists an
abstract protocol, the General InterORB Protocol (GIOP), from which concrete
protocols are derived, such as the Internet Inter-Orb Protocol (IIOP) [25] for use over
TCP/IP layer, and the SSL InterORB Protocol (SSLIOP) which adds encryption and
authentication.

The IIOP protocol is also used in RMI-IIOP (see Chapter 7.1.2).

Here is a list of some concrete CORBA implementations:

� JacORB - A Free Software (LGPL) ORB implemented in Java.

� OpenORB - A Free Software (BSD) ORB for Java.

� IIOP.NET - A Free Software (LGPL) ORB for Microsoft .NET.

� omniORB - A Free Software (LGPL) ORB for C++ and Python.

� Borland Enterprise Server, VisiBroker Ed. - A CORBA 2.6–compliant
commercial ORB for Java and C++ from Borland.

� BEA Tuxedo - A CORBA 2.5–compliant commercial ORB for Java and C++

1 Servant (associated with POA) is an entity which at the end processes a method call, it contains an

implementation of some interface.

13

Figure 2.5: A simplified architecture of a

typical CORBA application

Client

Stub

ORB ORB

Server

Internet

IDL

Skeleton

from BEA Systems.

2.3 JMS

The Java Message Service (JMS) API [26] brings support for messaging into the Java
language.

Messaging is a kind of communication between software components. It is
comparable to e-mail when “clients” can send and receive messages to and from each
other.

The sending and receiving components need not be running at the same time. It is
only important to use the correct destination. One can send message without knowing
anything about the receiver. Similarly the receiver of the message need not to know
who has created it.

The JMS API provides facilities for creating, sending and receiving messages. Two
approaches to messaging exists:

� Point-to-point Messaging

Point-to-point messaging has producers, queues and consumers. Producers
send messages into a specific queue and consumers then receive the messages
from it. The important fact is that the queue holds messages until they are
received by a client, or until they expire. Each message has only one consumer.
When a client receives a message it is removed from the queue.

� Publish/Subscribe Messaging

In publish/subscribe messaging there are producers (which publish
messages), consumers (which receive them) and topics. A topic distributes
messages from producers (publishers) to all consumers which are subscribed
to the topic. Each message can be received by many clients (or by no clients if
there are no subscribers existing when the message is published). Another
difference compared to PTP (point-to-point) messaging is a time dependency -
consumers only receive messages AFTER their subscription, messages
published before subscription are not delivered.

14

Figure 2.6: Point-to-point messaging

Producer Consumer

Queue
Sends Receives

Here are some concrete JMS implementations:

� Java EE Platform – the JMS API is implemented directly in the platform since
release 1.3.

� Apache ActiveMQ [27] - a popular and powerful open source Message Broker.

� OpenJMS [28] - an open source implementation of the JMS API.

15

Figure 2.7: Publish/Subscribe

messaging

Producer

Consumer Consumer

Topic

Publishes

Receives Receives

Chapter 3

Connectors

The main purpose of software connectors is to connect distinct components. They
act as a mediator which completely cares about a physical communication. As has
been said components should aim on the solution of a particular problem and not be
concerned with the communication, therefore connectors are naturally evolved from
the needs of components programmers. Because there exist many communication
middlewares that are typically incompatible between each other and even most of
them are not so simple for use, the software connectors have grown up from demands
of some unification and simplification of inter-component communication. Thus
natural requirements on software connectors is that they have to be highly
configurable, easy to use and providing good encapsulation of the underlying
communication.

Connectors usually span over more address spaces because of their inherently
distributed nature. Figure 3.1 shows an application which consists of four
components spread over three address spaces. Each connector element realizing the
communication between the server and the client is generally divided into two
connector units (the server one and the client one).

As a side effect connectors besides pure communication can be adding some extra
features to a connection (monitoring, logging, security etc.).

Because manual writing of connectors would be surely hard and inflexible work
there exist generators which are capable of creating software connectors on the basis
of some high level prescription. The main idea can be compared to the code
generation from the Interface Description Language (IDL) where a language-

16

Figure 3.1: A sample component application using connectors

Client 1

Client 2 Client 3

Server
Provided interface

Required interface

Server connector unit

Client connector unit

Component binding

Distribution boundary

independent definition of interface is generated into some concrete programming
language.

In this work we are aiming on the connector generator [29] being developed on
Charles University in Prague. This generator is highly configurable and allows code to
be individually adjusted and optimized specially for each component. Primarily it
produces Java classes but its architecture is modular and extensible enough to
support also other languages.

3.1 Modelling connectors

Connectors are modeled using small pieces that can be nested. Thus they form tree
structures. Leaves are the most specific and doing one concrete thing. They are
grouped together into nodes which represent more and more abstract functionality.
The toplevel nodes forms big complex units that can be connected together.

A connector architecture (see Figure 3.2a) defines the first level of nesting. It says
how its main parts (toplevel nodes) are joined together. These main parts are so-
called connector units. The connector unit typically communicates on one side locally
with a component attached to it and on the other side remotely with a corresponding
connector unit.

17

Figure 3.2: A sample connector architecture

..
. .
..

Client unit

Server unit

Provided interface

Required interface

Sub-element

Element binding

Local element port (directed)

Remote element port (undirected)

Adaptor Stub Skeleton Logger ...

Skeleton

a) Connector architecture

b) Client unit element

architecture

c) Server unit element

architecture

d) Skeleton collection

element architecture

The basic building entity of a connector is a connector element. It is shown in
Figure 3.2b, 3.2c and 3.2d. Is is a box that can contain some sub-elements. Connector
units (toplevel nodes) are by itself a connector element and they can be next
subdivided. It can be represented as a tree.

Each connector element has some connector type. The connector type designates
which ports the corresponding connector element will have. Ports are access points
through which the elements can be connected between each other. The connector
type can be viewed as a black-box which have strictly prescribed its interfaces but
what is inside is now visible. In our model we distinguish three kinds of ports:

� provided ports – define points accessible for other elements (in Java they can
be realized as interfaces which the particular class provides – methods can be
called through it).

� required ports – each required port must be connected with some appropriate
provided ports of some other element (again in Java it is something like the
situation where some references in a class have to be initialized in order the
class could be used – otherwise null reference exception would probably be
thrown).

� remote ports – provided as well as required ports are intended to be used
within one address space (in one JVM). In contrast remote ports provide
interconnection between separate JVMs.

There are also two types of bindings:

� local binding - each required port has to have corresponding provided port.
Such a binding is taken as directed, the caller with required port calls some
method on a provided port, so the direction is always from “required” to
“provided”. The call is proceeded in one address space.

� remote binding – represents a complex communication typically realized by
some middleware. In out model we view this binding as undirected and as a
“hyper-edge” – it allows to connect several ports together.

Connector elements can be either primitive or composite. Primitive elements are
basic entities, they are no more subdivided and contain some piece of
implementation. Composite elements group elements together, they prescribe element
types (not concrete elements) of its sub-elements and bindings between them and
thus they serve as a container. Sub-elements of a composite element can be both
primitive or composite. It forms a tree structure, the level of nesting is potentially
unlimited, but there should not be circular references.

Picture 3.2a shows the topmost architecture of the connector. It says that the
connector has one server unit and any number of client units. Both server and client
units are ONLY connector types, it does not force any concrete implementation, it
defines that there must be included some element of the appropriate type. Picture
3.2b then shows an internal structure of one concrete client unit. There can be more
architectures of client units and then the most appropriate will be chosen by the
architecture resolver (see later).

18

There are some restrictions on where provided, required and remote ports can be.
Connector units (elements on the first level) can contain only remote ports even if
two connector units reside in one address space. In contrast inside a unit there may
be only local bindings between sub-elements (provided/required ports). If a sub-
element has a remote port it has to be delegated to its parent and so on until the
enclosing connector unit is reached.

Besides that each port is of some particular type (provided, required or remote),
they must also have assigned a signature. The signature is a string with functional
form: operator(operand1, operand2, ...). The operator is in lowercase

and can represent some special function, e.g. rmi() which adapt ordinary Java

interface for remoting, or just have only semantic meaning without physically
modifying the operands. The operands can be either nested operators, strings
surrounded by quotes or variables (in uppercase).

Only ports with signature that can be unified can be joined together. This simple
mechanism avoids linking of two incompatible ports.

The unification is very similar to the unification from the Prolog [30] programming
language. A signature of the one side of binding is unified with the signature from the
other side of that binding.

Variable names are local to a connector element. That means for example if a
variable I occurs a number of time in the port signatures of one connector element

the are “bound” together. But the same name I in some other element has no

association, they do not interfere.

In Figure 3.3 is depicted RMI stub with its two ports – the provided call and the

remote line. The call port has signature java_iface(I) where the letter I

denotes formal parameter. With this particular function (java_iface) it mu be a

name of some existing java interface, e.g. string 'BussinesIFace'. This formal

parameter is bound with formal parameter of line port because they have the same

name.

On the other side of the remote binding (of the line port) is RMI skeleton's line

port with the same signature.

 Thus the interface names can be propagated through the connector via the
unification. It is illustrated in Figure 3.4 where all formal parameters have been

19

Figure 3.3: Formal signatures of ports

RMI stub

c
a
ll

lin
e

Port signatures

call: java_iface(I)

line: line(rmi(

 java_iface(I)

))

already substituted with the 'BussinesIFace' interface.

3.2 Communication styles

A communication style is basically a way how particular connector units (see
Chapter 3.1) interact with each other, their kind of communication. It naturally stems
from families of protocols or technologies that have some common patterns. For
example Java RMI or XML-RPC [31] both belong to the method invocation

communication style because their common feature is calling methods as a kind of
interaction, or TCP/IP and RTSP (Real Time Streaming Protocol) can be considered as
a streaming communication style.

Naturally different communication styles require different connector architectures
(see Chapter 3.1) because of their various needs and approaches to the
communication. In this thesis we elaborate two styles because Java RMI and CORBA
belong to the method invocation and JMS represents messaging.

3.2.1 Method invocation

By this communication style is meant the method calling on objects. Methods can
be invoked on a local object as well as on a remote one. Mostly a user do not have to
even know about it, the behavior is the same – a client code holds a reference to some
object (local or remote) and calls a method through it.

Because of a flexibility the client do not have to hold direct reference to the server
object, but instead a proxy that is redirecting the call. Between the client and the
server component can be any number of elements. They are in general divided into
two groups – one which reside on the client side and the others on the server side.

In figure 3.5 is depicted an architecture used within the method communication
style.

20

Figure 3.4: An example of interface propagation through the connector

Adaptor Stub Skeleton Logger

Client Server

Connector

java_iface('BusinessIFace') line(rmi(

 java_iface('BusinessIFace')

))

java_iface('BusinessIFace')

As it can be seen a client unit can have multiple instances and the server only one.
It is a typical relation n..1. The client unit is connected on one side with a client
component through a local binding and on the other side remotely with the server. In
the picture is only a simple architecture where the client unit have only two sub-
elements – the logger logs thorough calls and the stub provides a connection with the
server.

Into the client unit as well as into the server unit there can be added any number
of sub-elements. Figure 3.6 shows an illustrative more robust architecture of the
server unit where the synchronizer takes control of threading policy, transaction
adapter manages transactions, server adapter alters minor incompatibilities between
client and server interfaces (the Decorator design pattern) and server interceptor
monitors a thorough communication.

3.2.2 Messaging

Messaging also uses client/server architecture. Here the clients can produce
messages (producers) and receive them (consumers). There are different
architectures for the two messaging types (point-to-point vs. publish/subscribe). In
Figure 3.7 is depicted the connector architecture for the publish/subscribe messaging.
It shows a client component which can figure in both roles – as a producer as well as
a consumer. It depends which client's unit port the component uses. It can also use
both of them and act as a producer and consumer at the same time.

21

Figure 3.6: The robust server unit in the method invocation

S
k
e

le
to

n

S
y
n

ch
ro

n
iz

e
r

T
ra

n
s
a

c
tio

n

a
d

a
p

to
r

S
e

rv
e

r

a
d

a
p

to
r

S
e
rv

e
r

in
te

rc
e

p
to

r

Server unit <one>

Figure 3.5: The method invocation architecture
L

o
g

g
e

r

S
tu

b

S
k
e
le

to
n

L
o

g
g

e
r

Client unit <multiple>

Server unit <one>

Client

component

Server

component�
�
�

�
�
�

When some producer creates and sends a message, the server forwards it to the all
registered consumers. Consumers are passive, they are not polling the server, instead
they are automatically given the message, therefore the consumers must provide
some interface through which the client unit can pass it (e.g. through some function
like onMessage(Message m)).

But that is not the case with the point-to-point messaging. Clients have to explicitly
ask for a message. When no message is actually in the server's queue, the client is
blocked until the message arrives or optionally specified timeout expires.

3.3 Generating connectors

The generation process is divided into two steps. At the beginning a user has to
provide a high level configuration of the connector. This configuration is designed to
be human readable and easily editable. Besides the list of all components in the
application ant their interfaces the high level configuration contains also the
communication style which should be used (method invocation, messaging, ...) and a
set of non-functional properties (NFPs) (in fact the communication style is set also
through NFP).

The NFPs is a set of named attributes. It describes the configuration in a
declarative way. The attributes are written in a dot notation and can be used in logical
predicates like the following example shows:

(monitoring.level = 'brief' && monitoring.filename = 'app.log')

An architectural resolver must build the resulting architecture (which connector
elements will be used and how they will be connected between each other). It reads
a high level configuration file provided by the designer of an application, connector

and element architectures (see Chapter 3.1) and capabilities of the particular hosts
where the components will run. Based on that the architecture resolver is supposed to
find “the best” configuration that satisfies all the requirements.

The resolution is done based on the Prolog programming language because of its
logic nature and capabilities. It has turned out that it is really suitable for this kind of

22

Figure 3.7: An architecture of the messaging communication style

Client unit <multiple>

Server unit <one>

Client

component

�
�
�

producer

JMS

controller
consumer

task.

Figure 3.8 shows the whole generation process:

The low-level connector specification produced by the architecture resolver has
already have assigned all concrete connector elements that will be needed.

The code generator reads that configuration and also the element templates that
contain parts of source code that must be adjusted depending on the resolved
architecture. At the end are all generated sources compiled into an executable code
and created libraries which forms a connector.

23

Figure 3.8: The generation process

Deployment

dock

capabilities

Architectural

connector

model

High-level

connector

specification

Low-level

connector

specification

Element

templates

Connector

A
rc

h
it
e

c
tu

re
 r

e
s
o

lv
e

r

C
o

d
e

 g
e

n
e

ra
to

r

Connector generator

Chapter 4

Goals elaborated

The connector generator in only a framework that helps with the process of the
component development. It has facilities for engineering a connector's architecture,
deployment and not least for distribution. But it is meaningful only with a connection
with some existing middleware which provides the real communication in the
generated connectors.

The goal of the thesis is to integrate various middlewares in the connector
generator. We have chosen three technologies of middlewares because of reasons
given in Chapter 2. These concrete technologies are Java RMI, CORBA and JMS.

There was a partial support for Java RMI, but the others were not implemented at
all. The aim of the thesis is to extend the existing connector generator and provide
support for generating and deploying RMI and CORBA-based connectors and also
connectors using the JMS API.

Thus the main goals of this thesis are:

� complete the support for Java RMI

� propose and implement support for CORBA so that it would be able to do
similar things as Java RMI

� choose a concrete JMS implementation and integrate it with the connector
generator

4.1 Complete the full support for Java RMI

At the time of writing this thesis there was only a partial support for Java RMI.
There was a good support for primitive data types as well as there had been solved
passing of remote references. Support for object types was not any so we want to
propose a solution which makes the passing of object types within Java RMI possible.

4.2 Implement support for CORBA

There was no support for CORBA so we attempt to implement it in that way it will
be able to do similar things as Java RMI (primitive and complex data type passing as
well as remote reference passing).

24

CORBA can be integrated in the connector generator in number of ways. A natural
approach to CORBA development is to begin with some IDL (Interface Description
Language, see Chapter 2.2) and from that create an interface in some concrete
language.

But since the connector generator has a good support for the Java language it
could be more suitable to begin with Java interfaces. We want to discuss this issue
and propose and realize some implementation.

4.3 Integrate the JMS API

The JMS was intentionally chosen to implement different communication style.
Java RMI as well as CORBA belong to method invocation communication style in
contrast to JMS representing messaging.

Integrating JMS API and with it the messaging communication style seems that it
can be a good example of the strength and flexibility of the generator. It is a good
opportunity to demonstrate how to extend support by a new architecture.

It will require to create number of configuration files, add new templates (see
later) and generators and maybe the core of the connector generator will have to be
slightly adjusted to meet JMS demands.

25

Chapter 5

Connector generator overview

The connector generator within its design is very good extensible and modifiable.
All configuration files are in XML (eXtensible Markup Language) [32] which is human
readable and a good structured format. The main configuration files reside under
org/objectweb/dsrg/congen/conrep folder and its subfolders and the one of

the most important is the conf.xml file shown in Figure 5.1. It contains list of

registered connector architectures, element types and elements itself which are all
described in the following subsections.

5.1 Connector architectures

As discussed before connector architectures (see chapter 3.1) defines the first level
of nesting, how particular connector units are joined together and their cardinality. In
the connector generator only two cardinalities are permitted: one and multiple.

The cardinality 'one' is usually used within some server entity which is typically
single or there is a limited number of them in contrast to client entities which are in
general more, so the cardinality 'multiple' comes in handy.

Figure 5.2 shows the location of the configuration files related to connector
architectures. When there is a need to add support for another communication style
there must exist a corresponding configuration file under that folder. But that is not,

26

Figure 5.1: Location of the main configuration file

org.objectweb.dsrg.congen.conrep

conf.xml

...

Figure 5.2: The configuration files for connector architectures

org.objectweb.dsrg.congen.conrep.connectors

method_invocation.xml

...

messaging.xml

enough it also has to be registered in the main configuration file org/objectweb/

dsrg/congen/conrep/conf.xml as demonstrates Figure 5.3. It says that the

connector generator will be looking for the files method_invocation.xml and

messaging.xml. As their names prompt method_invocation.xml contains

connector architecture for the method invocation communication style (see Chapter
3.2.1) and messaging.xml for the messaging communication style (see Chapter

3.2.2).

The structure of the configuration files is quite simple, here is an example of a
definition of the method invocation communication style:

The root element <connector> has one attribute which defines the name of the

architecture. The user can then specify in the high level configuration files which
architecture should be applied in the generation process.

The element <architecture> defines the layout of the connector architecture.

It prescribes the first level of nesting – the elements <unit> represent the root nodes

of the tree hierarchy and <binding> describes their mutual relationship. Each

<unit> has a name which is referenced in <binding>, a type and a cardinality.

The type do not force any concrete implementation of the element, it is rather a
class of elements. It says that in the place of <unit> can be any element of that type.

Which concrete implementation it should be is decided by the architectural resolver
when generating particular connector (see Chapter 3.3).

The <binding> element describes how the units are connected together, through

which ports. In Figure 5.4 there are only two ports, but <binding> can join also a
bigger number of them, it is like a hyper edge. Also note that there is no direction
nor any signatures. Directions are not stated because between units on the first level

27

Figure 5.4: org/objectweb/dsrg/congen/conrep/connectors/method_invocation.xml

<connector name="method_invocation">

 <architecture>
 <unit name="client_unit" type="rpc_client_unit" cardinality="multiple"/>
 <unit name="server_unit" type="rpc_server_unit" cardinality="one"/>

 <binding>
 <port element="client_unit" port="line"/>
 <port element="server_unit" port="line"/>
 </binding>
 </architecture>

</connector>

Figure 5.3: org/objectweb/dsrg/congen/conrep/conf.xml

<configuration>
...
<connector file="method_invocation.xml"/>
<connector file="messaging.xml"/>
...

</configuration>

of nesting there are only remote bindings which do not have any. And signatures are
inherited from subelements, there is no need to define them here because the
architecture is as abstract as possible. There is a certain freedom in that how the
resulting connector will look like. The architecture in only a skeleton into which the
concrete elements can be inserted.

5.2 Element types

Element types (e.g. rpm_client_unit) can be viewed as a black-box which

have only defined ports (provided, required and remote) and it is not known what is
inside. It can be imagined as an abstract class or interface from programming
languages. It says how it should look like but it does not force any concrete
realization. In places where some type is expected can be any element of that type.

Besides a configuration XML file describing the element type it must be also
registered in the conf.xml as in Figure 28.

The structure of the configuration files is simple. They contain only enumeration of
port names a their type (either required, provided or remote):

Figure 5.6 shows the type rpm_client_unit that has two ports: the provided

call which serves as local communication channel with an attached client

component and the remote line which is used in remote binding (see <binding>

element in Figure 5.4).

The name of the element type (specified through the attribute name) is referenced

in the connector architectures (see previous Chapter 5.1, especially the attribute
type of the element <unit>).

The port names are referenced in bindings, namely in connector architectures to
define relations between connector units and in the elements (see next Chapter 5.3)
to specify connections between their subelements.

28

Figure 5.6: The configuration file of the rpc_client_unit

element type

<element-type name="rpc_client_unit">

 <port name="call" type="provided"/>
 <port name="line" type="remote"/>

</element-type>

Figure 5.5: Registration of element types

<configuration>
...
<element-type file="rpc_client_unit.xml"/>
<element-type file="rpc_server_unit.xml"/>
...

</configuration>

5.3 Elements

When element types were compared to interfaces from high level programming
languages, the elements can be compared to implementations of that interfaces. An
element is like a gray-box, it is more specific than an element type. Besides that it has
assigned an element type (defining its ports which are “entry points” to the element)
it also defines the internal structure of the unit, its non-functional properties (for
NFPs see Chapter 3.3) and scripts related to the code generation.

Elements are divided into composite and primitive elements, both discussed in the
following subsections. Figure 5.3 shows their common structure:

The root tag <element> has these parameters:

� name – name of the element.

� type – the type denotes which outward ports the element will have, they serve

29

Figure 5.8: Structure of element configuration file

Figure 5.7: A location of configuration files for elements

<element name="client_unit" type="rpc_client_unit" impl-class="ClientUnit">

 <architecture cost="0">
 ...
 </architecture>

 <nfp-declarations>

 <nfp-mapping name="communication_style" value="method_invocation"/>
 </nfp-declarations>

 <script>
 <command action="jimpl">
 <param name="generator"
 value="org.objectweb.dsrg.congen.elemgen.
 generators.CompositeGenerator"/>

 <param name="class" value="ClientUnit"/>
 <param name="template" value="compound_default.template" />
 </command>

 ...

 </script>

</element>

org.objectweb.dsrg.congen.conrep.elements

rmi_skeleton.xml

client_unit.xml

rmi_stub.xml

server_unit.xml

...

as an entry points. Any other ports inside the element are not visible. For
element types see Chapter 5.2.

� impl-class – name of a Java class which will contain implementation for this
element (after the generation proceeds).

The <element> tag also has some subelements:

� <architecture> - describes the layout of the element, the bindings between
subelements and ports. It slightly differ between composite and primitive
elements.

This tag has also the attribute 'cost' which expresses approximate

consumption of system resources. Higher value means that this element
consumes either more memory, processor speed, network bandwidth etc. It is
of course very estimative value which do not event have to reflex the reality.

� <nfp-declarations> - contains list of attributes and their assigned values.

It describes some properties of the element, it is a declarative way how to
specify required properties of the element. In Figure 5.8 <nfp-

declarations> says that the element is usable only in method invocation

communication style.

� <script> - this section prescribes how the element should be physically

generated and compiled. It can utilize development tools like javac compiler.

5.3.1 Composite elements

Composite elements contain some subelements. The <architecture> tag then
describes how are these subelements joined together. Here is an example of an
architecture taken from the logged_client_unit.xml:

The list of the tags <inst> says which subelements the element contains. They

are named (the name is then referenced from the <binding>) and assigned a type

which restricts a set of substitutable elements.

30

Figure 5.9: An example of an architecture of a composite element

<architecture cost="0">
 <inst name="logger" type="logger"/>
 <inst name="stub" type="stub"/>

 <!--
 Element bindings:

 <this>.call (local, provided) -delegation-> <logger>.in (local, provided)
 <logger>.out (local, required) -binding-> <stub>.call (local, provided)
 <stub>.line (remote, required) -subsumption-> <this>.line (remote, required)
 -->
 <binding port1="call" element2="logger" port2="in"/>
 <binding element1="logger" port1="out" element2="stub" port2="call"/>
 <binding element1="stub" port1="line" port2="line"/>
</architecture>

Next the <architecture> contains also the <binding> elements. It describes

connections between the subelements. The connection is oriented and it can be
imagined as an arrow pointing from element1 and its port port1 to elements2's

port2 like in the picture:

The element1, port1, elements2, port2 are all the attributes of the

<binding>. If element1 or element2 are omitted, the parent's port is supposed

to be used (specified with corresponding port1 or port2).

The attribute cost (from figure 5.9) with zero value may look like a little strange.

There is the zero because the total cost is computed as the cost of an element (0 in
this case) plus sum of costs of all its subelements. The composite element shown in
Figure 5.9 serves only as an container that do nothing except gluing its subelements,
thus the resulting cost depend on their overall cost.

Here is a graphical illustration how the elements from Figure 5.9 are binded together:

5.3.2 Primitive elements

Primitive elements contain no other subelement. They are the main building blocks
of the connector. Figure 5.12 shows an example of an primitive element:

Here <architecture> contains only the XML tags <port> which to each

element's port assign some signature. It is in contrast to composite elements (see
previous Chapter 5.3.1) where the signatures are not specified but rather they are
inherited from their subelements.

But there is a slightly different specification of signatures between the local and

31

Figure 5.12: An example of an architecture of a primitive element

<architecture cost="5">
 <port name="call" signature="I"/>
 <port name="line">
 <signature-entry ref-name="rmi" type="client" signature="rmi(I)"/>
 </port>
</architecture>

Figure 5.10: Binding between

subelements

Figure 5.11: A graphical illustration of the composite element from Figure 5.9

element1 element2
port1 port2

in out call linecall line

logger stub

logged_client_unit

Element binding

Local element port (directed)

Remote element port (undirected)

remote ports.

The local ports contain only textual value within signature attribute, no other

informations are needed.

But the remote ports are more complex. Each remote port is rather a collection
than one single entity. The collection of signatures (used for remote bindings) is
formed by <signature-entry> elements.

The signature of one entry is captured by the signature attribute and its

meaning is similar to local port signatures.

Next they are differentiated by the attribute type which can have three values –

client, server and both. It denotes how the certain entry is participating in the

binding, whether it is providing some middleware reference (server), or just using it
(client) or both cases.

And finally the attribute ref-name is used to distinguish individual references in the
collection.

5.4 Binding elements

In order that elements can communicate between each other they must be
somehow linked together. Elements residing in one address space are connected only
via “ordinary” references (like pointers from low level programming languages), they
are not described here, this chapter is aimed on gluing elements from distinct JVMs.

Remote references are mediated via the special object of type RemoteRefBundle

(see Figure 5.13). It contains list of named values (String key : String value).

In order that the process of linking in the connector could be automatic, various
elements must implement particular interfaces. When linking two elements together
one is in a client role and the other acts as a server:

� Element in the server role is providing some service. It have to expose a
remote reference to itself so that clients can get use it. It must implement the
ElementRemoteServer interface which contains the method

lookupRemotePort(). It is supposed to return a remote reference

32

Figure 5.13: Linking two elements residing in separate address spaces

public void bindElRemotePort (
 String portName,
 RemoteRefBundle refBundle) {

 ...
}

public RemoteRefBundle
lookupElRemotePort (
 String portName) {

 ...
}

RemoteRefBundle
ElementRemoteServerElementRemoteClient

server roleclient role

“bundle”

(associated with some key) that is inserted into the global “bundle”.

� Clients have to implement the ElementRemoteClient interface containing

the method bindElRemotePort(). That method is given the global

“bundle” as a parameter and the client should extract (using the appropriate
key) and retain the remote reference.

5.5 Element generators

The architecture resolver (see Figure 3.8) produces a prescription for the low level
element generator that creates some real source code. These sources are then
compiled into libraries which forms the connector.

Each connector element can have associated specific generator that will be used in
the generation process. It is configured in the element configuration file (see Figure
5.8) inside the <command action="jimpl"> section which contains parameters

specific for compilation:

So there can be different generators e.g. for local_stub and for rmi_stub.

These generators form an hierarchy, on the top is BaseGenerator and all the others

inherit from it. There are also two general generators for primitive elements (the
PrimitiveGenerator Java class) and for composite elements (the

CompositeGenerator class). These classes are supposed to be further subclassed

to achieve a more specific behavior suitable for concrete connector element.

Figure 5.15 shows the generator's hierarchy. Core generators are for common use,
they are not specialized, but provide basic functionality. The figure also shows
element specific generators which extend PrimitiveGenerator.

33

Figure 5.14: The build commands used for one specific element. Each element is

configured separately.

<command action="jimpl">
 <param name="generator"
 value="org.objectweb.dsrg.congen.elemgen.
 generators.CompositeGenerator"/>

 ...
</command>

BaseGenerator contains the function getContent() which is then inherited

by all other generators. It takes a string as an input and returns also string, its
purpose is to substitute one string for another which is heavy used within templates
(see next Chapter 5.6). The other generators can override this function to add more
substitutable words.

Figure 5.16 shows the structure of the function getContent(). Its body is a

system of if clauses which works similar to the switch statement. But the switch

statement does not work with a string argument therefore it is solved in this way:

34

Figure 5.16: An overview of the getContent() function

public String getContent (String identifier)
throws TemplateProcessingException {

if ("PACKAGE".equals (identifier)) {
return destPkg;

} else if ("CLASS".equals (identifier)) {
return destClass;

} else if ("ELEMENT_METHODS".equals (identifier)) {
return implementGetElDescription ();

}

throw new TemplateProcessingException (
"Unknown content identifier: "+ identifier);

}

Figure 5.15: A hierarchy of generators

BaseGenerator

PrimitiveGenerator CompositeGenerator

RMIStub RMISkeleton LocalStub
...

Core generators

Element specific

5.6 Templates

A template is hybrid source code. It contains some static parts which are always
the same and dynamic parts that are generated as necessary for the concrete
connector.

It is a normal textual file but some words have special meaning, they can be
compared to macros from some programming languages. They are escaped at the
beginning and at the end by the letter '%'. These special words are then substituted by
the code generator (see Chapter 3.3) using the function getContent() (see

Chapter 5.5) and the template is adapted by the needs of the concrete connector
element.

Figure 5.18 shows how such a transformation can look like in practice:

35

Figure 5.18: An example of a code generation from some template

Figure 5.17: A location of template's configuration files

org.objectweb.dsrg.congen.conrep.templates

primitive_default.xml

compound_default.xml

rmi_skeleton.xml

rmi_stub.xml

...

package generated.A00000002;

public final class CorbaSkeleton
extends
javax.rmi.PortableRemoteObject
implements
org.objectweb.dsrg.connector.ElementRemoteServer,
org.objectweb.dsrg.connector.ElementLocalClient,
generated.A00000003.Interface {

protected congentest.Compute target;
...

}

package %PACKAGE%;

public final class %CLASS%
extends
javax.rmi.PortableRemoteObject
implements
org.objectweb.dsrg.connector.ElementRemoteServer,
org.objectweb.dsrg.connector.ElementLocalClient,
%IMPLEMENTS% {

protected %TARGET_INTERFACE% target;
...

}
Processed by the code generator

It is seen that the macros %PACKAGE%, %CLASS%, %IMPLEMENTS% and

%TARGET_INTERFACE% have been substituted by the concrete Java entities.

The exact list of defined macros depends on a concrete generator used for some
connector element. When an undefined macro is used the generator throws an
exception. The Figure 5.18 shows only a simple case when the macros are substituted
by one Java identifier. But macros can denote also more complex Java entities, even
the whole Java classes.

5.7 Type system

In a heterogeneous environment the connector generator has to deal with various
types. Each language and middleware is using its own special data types that are
incompatible with the others. But because connectors are supposed to join different
components by utilizing miscellaneous middlewares, the connector generator must
provide some model for working with different types.

The connector generator must have some concept how to hold information about
distinct types. Internally it defines three general interfaces - InderfaceDef,

PrimitiveDef and ArrayDef. How the names suggest it is for representing

interfaces, primitives and arrays. Each specific type system then subclasses these
general interfaces. Figure 5.19 shows classes for representing Java types:

The types are also used in signatures of the ports. For example type operator
java_interface('BusinessInterface') that can be used in signature loads

existing Java interface (through the Java reflection). Then there can be some
operators for modifying it, e.g. rmi(java_interface('BusinessInterface'

)) adjust the operand (it must be a Java interface) in a way that it can be used as a

remote interface in RMI.

The type system can also define operators for converting types between different
languages, for example java_to_idl() or idl_to_java() for transforming

interface between Java and IDL.

The system is designed in order to be very good extensible. Thus when some new
operator is needed it can be easy implemented and integrated into the existing type
system.

36

Figure 5.19: An extension of the abstract type model

<<interface>>

InterfaceDef

<<interface>>

PrimitiveDef

<<interface>>

ArrayDef

JavaInterface JavaInterface JavaInterface JavaInterface

The connector generator has also some special internal functions that operates
upon some specific types. For example JavaInterfaceWriter.write(Type type,

String destPackage) generates a Java source for a Java interface and writes it into

a file. The parameter Type must contain description of Java interface that is supposed

to be written, if different type is passed runtime exception will be thrown.

Figure 5.20 shows how the type operators can be used. At the beginning there is a
Java type Foo. The connector generator wants to use it in RMI but it does not satisfy

all the requirements (see Chapter 6.1) for usage in the remoting and thus it must be
modified. It is loaded into the generator through the java_interface() operator

and adjusted using the rmi(). The resulting java interface is passed to the

JavaInterfaceWriter which writes it onto the filesystem and finally the connector
generator invokes a Java compiler for creating an executable code.

37

Figure 5.20: A demonstration of the usage of the type operators and
JavaInterfaceWriter

JavaInterfaceWriter

Foo.class RemoteFoo.java RemoteFoo.class
javac

Connector generator

rmi(java_interface('Foo'))

Chapter 6

Implementing support for Java RMI

6.1 Java RMI Overview

Java RMI is a technology for distributed computing. RMI applications mostly
consist of two separate program – a server which is providing some service and a
client which is using it. The server has to make some of its object available in order
clients can invoke methods on them. Such objects are referred as remote objects.

When designing an application architecture a programmer should first define
remote interfaces through which some “remote services” will be available. A remote
interface in terms of Java RMI is a Java interface which satisfies some special
requirements:

� A remote interface must extend from the interface java.rmi.Remote.

� Each method of the interface must contain java.rmi.RemoteException

in its throw clause (it applies also for all inherited methods).

Here is an example of a valid remote interface:

public interface Test extends java.rmi.Remote {
 void doSomething() throws java.rmi.RemoteException;
}

Then the programmer can implement some remote objects. A remote object must
implement at least one remote interface in order clients can reference it. From the
client's perspective the remote objects are accessible only through the remote
interfaces, they never hold directly the implementation classes. Instead they have a
reference to a stub which acts as a proxy to the remote object. The stub implements
the same interfaces as the remote object which it represents. All method invocations
on the stub are redirected to the server.

When the server's remote objects are implemented clients can use them. With
earlier versions of Java (prior to Java Platform, Standard Edition 5.0) the rmic tool

was additionally needed when developing clients to generate stubs. Since Java
supports a dynamic generation of stub classes at runtime, this step is no longer
needed.

In order that clients can locate remote objects there exists the tool rmiregistry.

38

When the server wants to make some remote object accessible it calls the registry to
bind a name with the object. Clients can then query the registry for that name to
obtain a reference to the associated remote object. The other way how a client can
obtain a remote reference is through an other remote invocation where a method can
return it.

Because clients can pass to the remote method also objects it may happen that the
server will not have a class definition for that objects. In order the server can operate
with them it must obtain their class files. That is the other important feature of Java
RMI. Clients as well as the server are able to dynamically load the code of classes
through the web server which makes RMI applications more robust and flexible.

But there is a limitation within passing objects across the network. Objects that are
supposed to be used in RMI must be serializable, that is they must implement
java.io.Serializable interface.

6.2 Former Support for Java RMI

6.2.1 Overview

Java RMI belongs to the method invocation communication style (see Chapter
3.2.1). Basically it means that there will be one server and many clients components.
Each client will be connected with the server through a RMI connector unit. Here is a
connector architecture used within Java RMI:

In Figure 6.2 is depicted a more detailed scheme of the RMI connector unit. Each
RMI connector unit is divided into the two parts, client_unit and server_unit,

which next contain rmi_stub (client side) and rmi_skeleton (server side). So

each client component will be attached through a local binding to client_unit,

client_unit is then connected with the corresponding server_unit using

remote binding and finally server_unit is attached to the server component.

The names rmi_stub and rmi_skeleton are chosen in that way because the

39

Figure 6.1: A simplified RMI connector architecture

Client Serverclient_unit server_unit

RMI connector

Figure 6.2: Basic division of the RMI connector

Client Serverrmi_stub rmi_skeleton

Client address space Server address space

<local binding>
<remote binding>

<local binding>
client_unit server_unit

rmi_stub element is generated from the rmi_stub.template file and the

skeleton similarly from rmi_skeleton.template (see later).

From an implementation view the client_unit element is just a Java class and

the client component must somehow obtain a reference to it. Likewise
client_unit have to retrieve the remote reference to server_unit and that

must be connected with the server. The user need not even know that in fact all
method calls to client_unit are redirected through the network to

server_unit and in the end to the server component. The programmer is using the

object (client_unit) as if it were a local object.

Figure 6.3 shows a running example of a business interface which will be used in
the next chapters. It is only demonstrative and very simple, in real application the
interface would be probably much more complex.

The term “business interface” is derived from the informal term “business logic”
generally used to describe the functional algorithms. It is supposed that application's
components implement some business logic and make it available through some
interface. We use the the term “business interface” for interfaces which are exposed
by the application's components (containing some business logic). It is because we
want to distinguish the “normal” interfaces (which are local inside components) from
the others which are used for providing remote service. When we speak about
DemoIFace as about a business interface we mean that some component is

implementing it and providing it as a remote service.

The parameters of the function compute() in Figure 6.3 should demonstrate

different kinds of argument passing. The first parameter arg1 of the function is of a

primitive type, there is no trouble. The return value String is an object type, but it

is so usual (and Java language defines it as serializable) that there is no difficulty
with RMI either. But it becomes a little bit tricky when passing a remote reference (it
will be discussed later).

We use the term remote reference in a special meaning. Do not confuse it with RMI
remote object. In this thesis we call a reference to a RMI remote object as “RMI
remote reference”. Without the word “RMI” it has a connection with the connector. A
remote reference has always type of some business interface. When we say for
example that a client or object is holding a remote reference of the type DemoIFace
we mean that they are holding the appropriate connector's RMIStub (implementing
DemoIFace) which is providing communication with the server.

Figure 6.4 shows the difference between a remote reference and an “ordinary”

40

Figure 6.3: A Java interface that will be used in the consequent examples

public interface DemoIFace {

 String compute(int arg1, DemoIFace arg2);
 String message();
}

reference.

The variable remote holds a remote reference because it is linked with the

connector which forwards the callings to a remote server. The reference to the object
of the LocalObject type is not remote because it has no participation in the remote

communication. It is just accidentally implementing the DemoIFace business

interface, but it is a local object.

Figure 6.5 shows an example how the connector can be used from the client
component. The client component has to first obtain a remote reference. In fact it will
be given the reference to the RMIStub which acts as a proxy. All calls through the

reference (through RMIStub) are forwarded to the server.

41

Figure 6.5: A usage of the RMI connector from the client component

public clientFunction {
 ...
 // Obtain a reference to RMIStub
 DemoIFace demo = (DemoIFace) ...;

 // Call some function
 demo.compute (...);
 ...
}

RMIStub

compute(...)

Client component
JVM JVM

client_unit

Figure 6.4: The difference between a remote reference and an

"ordinary" reference

// Get remmote reference
DemoIFace remote = ...;

// Create local object
DemoIFace non_remote =
 new LocalObject();

RMIStub

<<implements>>

DemoIFace

public LocalObject
implements DemoIFace {
 ...
}

JVM 1 JVM 2

6.2.2 Specifying business interfaces

In order that the RMI connector would be useful with particular application the
connector generator which the RMI connector is generated from must be properly
configured.

The important thing is to set up which business interfaces the application's
components provide so that the generator knows for which interfaces the connector
should be generated. Is is done through configuring port signatures at the end points
of the RMI connector, that is in the place where the connector is joined with the client
component (and the server component).

Figure 6.6 shows the situation where the client wants to communicate with the
server through the DemoIFace business interface. The endpoints are assigned a

signature using the type operator java_interface() which expects a name of an

existing Java interface. The connector generator on the basis of this information
generates a specific connector.

Figure 6.7 shows an example of a possible high level configuration file for the RMI
connector. It is a XML file that sets signatures of the end points. A little bit confusing
can be that client_unit has the provided port and server_unit has the

required port. It is because client_unit acts as a local server to the client

component and server_unit is like a client for the server component. If the

signatures on the client and the server side do not match the architectural resolver

(see Chapter 3.3) will be unable to find a proper configuration. If it was necessary to
have different Java interfaces on the client and server side there would have to be
some adapter that would translate the method callings.

42

Figure 6.6: Concrete Java interfaces are assigned at the end points

rmi.compute(...);

Client public
String compute(...) {
 // some
 // implementation
}

Server

here will be the

RMI connector

java_interface('DemoIFace')

assigned signature

The client unit contains the element stub and the server unit contains skeleton.

The element configuration files for the stub and skeleton, rmi_stub.xml and

rmi_skeleton.xml, are under the org/objectweb/dsrg/congen/conrep/

elements/ folder (for element configuration files see Chapter 5.3).

Figure 6.8 shows port signatures inside the RMI connector.

The assigned endpoint signature java_interface('DemoIFace') is unified

with the signature I and that with the signature rmi(I). The resulting configuration

43

Figure 6.8: The signatures of the RMI stub and skeleton

call line

rmi_stub

singature: I

ref-name: rmi

type: client

signature: rmi(I)

rmi_skeleton

singature: I

ref-name: rmi

type: server

signature: rmi(I)

call line

network

<element name="rmi_stub" type="stub" implclass=
 "RMIStub">

 <architecture cost="5">
 <port name="call" signature="I"/>
 <port name="line">
 <signature-entry ref-name="rmi" type="client"
 signature="rmi(I)"/>
 </port>
 </architecture>
 �
</element>

rmi_stub.xml

rmi_skeleton.xml

client_unit server_unit

Client Server

connector

Figure 6.7: A high level configuration of the RMI connector

client_unit server_unit

connector

<specification>
 <unit name="client_unit" ...>
 ...
 <port name="call" type="provided" signature="java_interface('DemoIFace')"/>
 </unit>

 <unit name="server_unit" ...>
 ...
 <port name="call" type="required" signature="java_interface('DemoIFace')"/>
 </unit>
 ...
</specification>

Signatures must be the same

rmi.compute(...);

Client component public
String compute(...) {
 // some
 // implementation
}

Server component

where the all variables I have been substituted for java_interface(

'DemoIFace') is depicted in Figure 6.9.

The stub and the skeleton are communication between each other through the
network using Java RMI. So they utilize the type operator rmi() that adjusts the

interface I in order that it meets Java RMI requirements (see Chapter 6.1).

44

Figure 6.9: A propagation of the DemoIFace interface through the RMI connector

rmi_stub rmi_skeleton

rmi.compute(...);

public
String compute(...) {
 // some
 // implementation
}

Client

Server

java_interface('DemoIFace')
rmi(

 java_interface('DemoIFace')

)

java_interface('DemoIFace')

Client address space Server address space

connector

6.2.3 Generating remote interfaces

In order that the stub and skeleton can interoperate, the original DemoIFace must

be slightly adjusted to meet the RMI requirements – the interface must inherit from
the java.rmi.Remote interface and each method have to throw the java.rmi

.RemoteException exception.

For this purpose there is a special function in the type system – rmi(I). In fact

rmi(I) is only an abbreviation for the operators shown in Figure 6.10:

Here is their list with descriptions:

� trans_refs(I) – processes all methods of the interface I. Each argument

and return value that is of the business interface type (e.g. DemoIFace) is

replaced by java.lagn.String because the business interfaces are handled

specially (see Chapter 6.2.6).

� exc_add(I, E) – to each method's throws clause of the interface I adds

the exception E. rmi() uses this function for adding java.rmi.

RemoteException to all methods in the interface in order that the interface

can be used with RMI.

� ext_add(I, E) – to I's extends clause adds the interface E. rmi() uses

it for extending the java.rmi.Remote interface. Note that the name of the

interface has been changed because of name collisions.

45

Figure 6.10: Equivalent notation for the rmi(I) operator

ext_add(
exc_add(

trans_refs(I),
java_class('java.rmi.RemoteException')

),
java_interface('java.rmi.Remote)

)

Figure 6.11: Transforming remote interfaces in methods signatures into strings

Figure 6.12: Adding java.rmi.RemoteException to the throws clause of all methods

Figure 6.13: Adding java.rmi.Remote to the extends clause of the interface

String compute(int arg1,
DemoIFace arg2)

String compute(int arg1,
 java.lang.String arg2)

trans_refs()

String compute(int arg1, …) ;
String compute(int arg1, …)
 throws java.rmi.RemoteExcetpion ;

exc_add()

public interface DemoIFace { public interface Interface
 extends java.rmi.Remote {

ext_add()

Figure 6.14 shows a process of a generation of some remote interface. The stub as
well as the skeleton are attached to application components through the call ports.

Through them they are given the signature java_interface(

'DemoIFace') and then that signature it is propagated to the line ports where

the signature rmi(I) is substituted by rmi(java_interface('DemoIFace')).

The function rmi() makes from the originally “non-RMI” DemoIFace an remote

interface that can be already used by Java RMI. Finally the generated remote
interface is written onto the disc and compiled into a binary code.

Although the remote interface is generated by stub as well as by the skeleton, it is
created only once because the signature on the server side is the same as on the client
side. The generator ensures that identical signatures are compiled only once.

The generated interface is stored into some folder of form “generated/nnn”

(where nnn is sequential number) and always has the name Interface

(corresponding file name is Interface.java, respectively Interface.class

after the compilation). The names do not collide because they are always in different
Java packages.

46

Figure 6.14: Generation of the remote interface from the rmi_stub and

rmi_skeleton

call line

java_interface('DemoIFace') rmi(java_interface('DemoIFace'))

RMIStub
generator

rmi_stub

connector

package generated.A00000005;

public interface Interface

 extends java.rmi.Remote {

 public java.lang.String compute(

 int arg0, java.lang.String arg1)

 throws java.rmi.RemoteException;

 public java.lang.String message()

 throws java.rmi.RemoteException;

}

Reads configuration

generated
java_interface('DemoIFace')

public interface DemoIFace {

 String compute(int arg1,

 DemoIFace arg2);

 String message();

}

java_interface('DemoIFace')

RMISkeleton
generator

Reads configuration

rmi_skeleton

Generate

line call

6.2.4 Templates for RMI

Two main templates used for supporting RMI are the rmi_stub.template file

and the rmi_skeleton.template file located under the org/objectweb/

dsrg/congen/conrep/templates/ folder. From these templates the stub and

skeleton, specific for a concrete application, are generated by the code generator (see
Chapter 3.3),.

Figure 6.15 shows a stub's structure, the template for the skeleton is very similar.

As it is seen the templates are similar to Java source. But they contain special
macros that are replaced by the connector generator to adapt the connector for the
specific needs of an application. The stub as well as the skeleton are implemented as
one Java class. The following list explains the meaning of the particular macros:

� %PACKAGE% – is a name of a Java package where the resulting code for the
stub (or the skeleton) will be generated (e.g. generated.A00000008). The Java
language forces that the package name must correspond to the name of the
folder. The connector generator ensures that the code will be generated in the
appropriate package.

� %TARGET_INTERFACE% - It has a different meaning within the stub and
skeleton. In the stub it is a name of the generated RMI remote interface (using
the type operator rmi() and the auxiliary method

JvavaInterfaceWriter.write(), see Chapter 5.7 and 6.2.3) from the

business interface.

In the skeleton it is a name of the business interface.

47

Figure 6.15: A structure of rmi_stub.template

package %PACKAGE%;

/**
 * RMI stub for %TARGET_INTERFACE%.
 */
public final class %CLASS%
 implements
 org.objectweb.dsrg.connector.ElementLocalServer,
 org.objectweb.dsrg.connector.ElementRemoteClient,
 %IMPLEMENTS% {

 /**
 * Local target of business method invocations.
 */
 protected %TARGET_INTERFACE% target;

 ...

 /* **
 * %TARGET_INTERFACE% Methods
 * **/

%TARGET_METHODS%
}

They have in common that the variable target is used for forwarding calls.

The stub calls the skeleton and the skeleton calls the attached server
component as in Figure 6.16:

� %CLASS% - Is a name of a Java class which the stub of skeleton will be
generated into. From a programmer's view the stub or skeleton is only a piece
of code encapsulated in one Java class. Its name is taken from the according
element configuration file (see Chapter 5.3). For example the stub for RMI is
configured in org/objectweb/dsrg.congen/conrep/elements/

rmi_stub.xml:

When more stubs are needed (for various business interfaces) they are
distinguished only by the package therefore for example there can be two
stubs generated.a0004.RMIStub and generated.a0008.RMIStub.

The skeleton is configured to have the name RMISkeleton.

� %IMPLEMENTS% - Also have different meaning in the stub and skeleton. In
the stub it is a name of the business interface (e.g. DemoIFace). The stub
implements the business interface because it works as a proxy for the server
component which implements the business interface as well.

48

Figure 6.16: Usage of the %TARGET_INTERFACE% macro

Figure 6.17: Configuration of the name for the class generated

from the rmi_stub.template

<script>
 <command action="jimpl">
 . ..
 <param name="class" value="RMIStub"/>
 <param name="template" value="rmi_stub.template" />
 </command>

RMIStub RMISkeleton

gen.A008.Interface target;

%TARGET_INTERFACE%

DemoIFace target;

%TARGET_INTERFACE%

ServerClient

<<implements DemoIFace>> <<implements gen.A008.Interface>>

In the skeleton it is the generated RMI remote interface from the business
interface (for example generated.a0005.Interface) because it can be

used in Java RMI. The RMISkeleton class register itself with rmiregistry

so the RMIStub object can call it, see Figure 6.18.

� %TARGET_METHODS% - for each method from the business interface is
generated corresponding method in the RMIStub class (and also in the

RMISkeleton class) with the same name (Figure 6.19).

In RMIStub arguments and return values are the same as in the business

interface, but in RMISkeleton they are changed in dependence on the type

of the argument.

� Primitive values are left unchanged.

� Business interfaces are changed to java.lang.String (for the reason

explained later). So that for example the method “String compute(

int arg1, DemoIFace arg2)” from DemoIFace is changed to

“String compute(arg1, java.lang.String arg2)”.

� Objects or non-business interfaces are not supported.

49

Figure 6.18: A substitution of %IMPLEMENTS%

RMIStub RMISkeleton

class RMIStub

implements DemoIFace {

 gen.A008.Interface target;

 …

}

%IMPLEMENTS%

ServerClient

class RMISkeleton

implements gen.A005.Interface {

 DemoIFace target;

 …

}

%IMPLEMENTS%

6.2.5 Remote bindings

In order that the stub can communicate with the skeleton it must obtain the

50

Figure 6.19: A connection between business interface and %TARGET_METHODS%.

RMIStub and RMISkeleton contain all methods from the DemoIFace interface.

Figure 6.20: Scheme of the remote binding

RMIStub

// Constructor

public RMISkeleton {

 String rmiHost = System.getProperty

 ("java.rmi.server.hostname");

 java.rmi.server.UID uid =

 new java.rmi.server.UID ();

 String regName =

 "//" + rmiHost + ":2008/connector/element/rmi/"

 + uid;

 java.rmi.Naming.rebind (regName, this);

 ...

}

"rmi" regName

RMISkeleton

JVM1 JVM2

RemoteRefBundle

public interface DemoIFace {

 String compute(int arg1,
 DemoIFace arg2);

 String message();
}

class RMIStub
 implements DemoIFace {

 protected gen.A00005.Interface target;

 String compute(int arg0, DemoIFace arg1) {
 ...

return target.compute(...);
 }

 String message() {
 return target.message();
 }
}

class RMISkeleton
implements
gen.A005.Interface {
 ...

 String compute(...) {

 ...

 }

 String message() {
 ...
 }
}

RMIStub.java RMISkeleton.java

%TARGET_METHODS%

public interface gen.A005.Interface
 extends jara.rmi.Remote {

 String compute(int arg1,
 java.lang.String arg2);

 String message();
}

rmi()

skeleton's RMI address (see Chapter 5.4).

Figure 6.20 shows a piece of code taken from the RMISkeleton's constructor. It

gets a name of the host where the rmiregistry server runs. The property java

.rmi.server.hostname can be set by the java's -D option, e.g. -Djava

.rmi.server.hostname=rmi.server.host.com.

The variable uid represents an identifier which is unique within the host it is

generated on.

The string regName is created from rmiHost and uid in order to form an unique

URL address (without the protocol and colon at the beginning). The domain part of
the address, created from rmiHost, with the port number 2008 is pointing to the
running rmiregistry service.

java.rmi.Naming.rebind() then associates the string regName with the

RMISkeleton object. regName is passed to the global “bundle” of references,

extracted by the RMIStub which use it with the function java.rmi.Naming

.lookup() to obtain the RMI reference to RMISkeleton.

6.2.6 Argument passing

In the stub and skeleton is for each method from the business interface generated a
function with the same name (see Chapter 6.2.4).

A body of such a function in the stub prepares arguments for the corresponding
method in the skeleton and calls it (see Figure 6.19). The skeleton's function does the
similar thing – prepares arguments and calls the server component implementing a
business logic.

Arguments are processed differently based on their type. Primitive types are left
unchanged and just passed through. It becomes a little bit complicated when passing
a remote reference.

In the stub is the remote reference changed to the string ID using the function
DockConnectorManager.getConnectorUnitByReference(). It is because

the remote reference is just a local reference to some stub and it cannot be passed
through the network. When it is transformed to the ID, which is
java.lang.String, it can be without problems handled with Java RMI.

The skeleton must do a reverse operation – from the ID create the remote
reference. It is done by the function DockConnectorManager

.createSharedConnectorUnit() which based on the ID creates a local

RMIStub associated with the same server as the original remote reference from the

client component.

Passing objects through the connector in not supported.

Figure 6.21 shows an example where a remote reference is passed. There are three
address spaces – one clients and two servers. The client is holding two remote

51

references (of the DemoIFace type) in the variables rmi_1 and rmi_2. Through

the variable rmi_2 calls the function compute() where passes two arguments – the

first is the primitive type (value 10) and the second is the remote reference rmi_1.

The call is mediated through get.A009.RMIStub which left the first argument

unchanged (value 10) and from the second argument (rmi_1) gets the ID (it is ID of

the connector unit, in the picture with the name “Connector Unit 1”). Thus the
skeleton's function compute() is called with one integer and one string argument.

The class gen.A008.RMISkeleton creates from the string a local connector unit

(in the picture “Connector Unit 2”) and calls the server with appropriate parameters.

The server's body calls arg1.message() which through the created “Connector

unit 2” invokes the message() method on the other server Server_2 and returns

the string “Server_2”. That string is concatenated with the value 10 and returned to
the client. Therefore the function System.out.println() in the client prints the

string “Server_2 , 10”.

The client can also pass the variable rmi_2 instead of rmi_1 as a second

parameter in the compute() function. In that case the string “Server_1 , 10” would

be printed.

52

Figure 6.21: A scheme of passing of remote references

String compute(int arg0, DemoIFace arg1) {
 // arg0 (value 10) is left unchanged
 // arg1 is converted to string
 String arg1ConId = ...;

 return target.compute(arg0, arg1ConId);
}

String compute(int arg0, String arg1ConId) {

 // arg0 is left unchanged
 // arg1 is converted back to the connector unit
 ConnectorUnit arg1Stub =
 dcm.createSharedConnectorUnit("DemoIFace", arg1ConId);

 // From the arg1Stub obtain a reference to Server_2
 DemoIFace arg1 = ...;

 return target.compute(arg0, arg1);
}

// Get business interfaces
DemoIFace rmi_1 = ...;
DemoIFace rmi_2 = ...;

System.out.println(rmi_2.compute(10, rmi_1));

class Server_1 implements DemoIFace {
 String compute(int arg0, DemoIFace arg1) {
 return arg1.message() + " , “ + arg0;
 }

 String message() {
 return "Server_1";
 }
}

class Server_2 implements DemoIFace {
 String message() {
 return "Server_2";
 }
}

Connector unit 1

Connector unit 2

created by gen.A008.RMISkeleton

creates

method calling

reference

Client component

gen.A009.RMIStub gen.A008.RMISkeleton

Server component

Another server

JVM 3

JVM 1 JVM 2

6.2.7 Summary

From the previous chapters results that there exists partial support for Java RMI. It
can handle primitive data types (and the the type java.lang.String) and also

there are some mechanisms for passing remote references.

But support for passing objects is not implemented at all. These are two major
difficulties:

� In order that an object can be passed through the network it must be marked
as java.io.Serializable (it must implement java.io

.Serializable interface). Otherwise the runtime exception will be thrown.

We want to explore this issue and discuss whether this limitation could be
bypassed.

� Objects in general can also contain remote references inside them. These
references should be processed in a similar way as arguments of business
interface type of remote methods (see Chapter 6.2.6), that is to each remote
reference on the client side generate a proper string ID which is then used on
the server side for creation of corresponding local connector unit.

So we want to aim on the previous problems and implement the full support for
object types within Java RMI.

54

6.3 Improved support for RMI

6.3.1 Dealing with java.io.Serializable

In order that an object type can be used as an argument in a remote function it
must implement the java.io.Serializable interface. Fortunately that interface

does not contain any function. Its purpose is only mark the type as “ready to serialize”
and Java then handles a serialization process automatically.

One of the objectives was to bypass this limitation in order that programmer would
not be bothered by the duty to mark each object he wants to use within the connector
by java.io.Serializable. But it seems that Java designers had a good reason

that object are not serializable by default and users must mark them them explicitly.

Here are two arguments which it could have been:

� Some object are closely tied with the context of the Java Virtual Machine or a
computer where the program runs. For example java.io.File is associated

with the OS filesystem, it would not have any meaning if it was transferred to
an other computer. In general any object connected with an OS resource is a
nonsense to serialize (threads, sockets, opened database connection, ...).

� In Java when an object is passed to an ordinary function, it is passed by
reference (in contrast to primitive types which are passed by value). It means
that if a state of the object is changed (e.g. some field) in the body of the
function, the change is also visible after the return from that function. But in
RMI it is not the case. When an object is passed to a remote server, the object
is first serialized and then sent through the network. If it is changed on the
server (either explicitly or by a side effect), the changes are not reflected back
to the client. Even if it was implemented that all objects were sent back to the
client it would not avoid the kind of side effects like writing to a file. Such side
effects are almost impossible to mirror on the client side.

Unfortunately the conclusion is that the programmer always must be aware of that
he is using a remote method and thus be careful what parameters he is passing. It
seems that RMI will never be fully transparent, but a little extra care is worth the
power of remote objects.

6.4 Addressing support for object types

The previous chapter gives the reason why the use of java.io.Serializable

is inevitable. But that is still not sufficient for supporting general objects which can be
quite complex. If it was restricted that they could not contain inner remote references
the Java engine would take care about all needed things to transport the object across
the network. But in order that the connector would be able to support also nested
remote interfaces (and that is desired), extra attention must be paid to the
serialization and the deserialization process and treat remote references differently.

55

The java language allows a developer slightly modify the process of
serialization/deserialization using the special functions inside a serializable object:

private void writeObject(java.io.ObjectOutputStream out)
throws IOException

private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException;

The writeObject() function is responsible for writing the inner state of the

object to the output stream so that the opposite function readObject() can restore

it on the other side. The programmer has also at disposal the default function
out.defaultWriteObject() which invokes the standard serialization

mechanisms provided by the Java engine.

But the imagination that the user has to define these function for each object he
wants to use within the connector is inacceptable. The process should be most
transparent as possible.

6.4.1 Basic Idea

Finally we have used the Java Reflection [33]. It is a very powerful technology that
allows at runtime introspect objects and even modify them. The main idea is before
sending an object to the server go recursively through it and change all remote
references appropriately (how it will be discussed later). The first thing which is
needed is to distinguish between remote and local references and for that purpose it
seems that Java Annotations [34] are the most eligible.

Java Annotations are a way how to add some extra information (metadata) to a
Java source. Some can be then available to a programmer at runtime.

We use it to annotate the RMIStub classes. All remote references all pointing to

RMIStub and if all RMIStub classes are marked with some special annotation we

can distinguish remote references from the others.

The annotation used for marking stubs is defined in the org/objectweb/

dsrg/connector/rmi/ConnectorInterface.java file:

56

Figure 6.22: Some object containing a remote interface (the

variable remote). It must be handled separately, the default

Java routines is not possible to use.

import java.io.Serializable;

public class SomeObject
 implements Serializable {

 String message;

 DemoIFace iface_1;
}

RMIStub

<<implements>

DemoIFace

and here is a description of that annotation:

� @Retention(RetentionPolicy.RUNTIME) makes the annotation

information available at runtime. If it was not used the annotation could be
read only from sources.

� @Target(ElementType.TYPE) – says that the annotation is applicable only to

classes. The other possible value is for example @Target(ElementType.

METHOD).

� String value() - declares the the annotation will have one string property.

That property designates which wrapper (see Chapter 6.4.2) should be used
for the associated RMIStub class.

The template rmi_stub.template is changed appropriately to use that

annotation:

So when the client component has two references e.g. of the type DemoIFace,

and one is referring to the stub and the other just to some local object accidentally
implementing the interface DemoIFace, the connector can easily recognize them at

runtime by checking the annotation via the function
isAnnotationPresent(ConnectorInterface.class) of the Class object.

6.4.2 A wrapper

Now when it is possible to identify which references are remote and which are not,
the remote ones can be replaced by some special information so that the server based
on than information can create a local connector unit. But the original reference
cannot be substituted by a whatever object type. The Java language forces that
variable of a type A can hold only object of a type A or a type derived from A.

Remote references can be held only in variables of a business interface type, thus
there there is for each business interface generated a special class, a wrapper, that is

57

Figure 6.23: Definition of the annotation used for marking

stubs

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface ConnectorInterface {

String value();
}

Figure 6.24: Adjusted rmi_stub.template

@org.objectweb.dsrg.connector.rmi.ConnectorInterface("%WRAPPER%")
public final class %CLASS%
 implements
 ...

capable of holding some information about the remote reference. Besides the
information about the reference, which is useful on the server side, the wrapper must
implement the business interface (even it has no functionality) in order that the
wrapper can be hold in the variable of a business interface type.

Figure 6.25 shows how the remote interfaces are replaced. The variable remote is

originally holding a reference to the RMIStub. But in order the variable could be

transported over the network it is replaced by the appropriate wrapper class which
holds the ID associated with RMIStub.

In the type system accrues the new operator add_rmi_wrapper(I) which to the

business interface I produces a suitable wrapper.

The connector generator uses that type to prepare all wrappers which will be
needed at runtime. Here is a piece of code from the RMIStub generator:

The variable wrapper holds an internal description of the wrapper. The

expression (after the type cast operator (RMIInterfaceWrapper)) is simply

programmatic representation of a symbolic type. If the variable serverJavaIface

represents the DemoIFace interface, the whole expression can be imagined as the

signature "add_rmi_wrapper(java_interface('DemoIFace'))".

The function wrapper.compile() assures that the internal representation of

the wrapper will be written onto the filesystem as a Java source and then compiled
into a Java class (e.g. generated.A00000009.Wrapper).

RMIStub acts as a server to the client component and only references to RMI

58

Figure 6.26: A fragment of code from the RMIStub generator

RMIInterfaceWrapper wrapper = (RMIInterfaceWrapper)typeFactory.getType(
 new SymbolicTypeSpecifier("add_rmi_wrapper", serverJavaIface)
);

wrapper.compile(javaTools);

Figure 6.25: Replacing remote interface with the appropriate wrapper

// A variable holding
// remote interface
DemoIFace remote = ...;

RMIStub

<<implements>>

DemoIFace

public class DemoIFaceWrapper
implements DemoIFace,
java.io.Serializable {

 // contains the ID of the
 // substituted remote reference
}

Substitution

stubs are interpreted as remote so when each stub generates its associated wrapper it
will be guaranteed that at runtime the connector will have all necessary wrapper
classes available.

In order that the server can create an according stub (to the client's stub) in its
address space it needs only two information – the id associated with the stub and the
type of the business interface.

Here is an example of a wrapper generated for DemoIFace:

The next annotation used by the connector is org.objectweb.dsrg

.connector.rmi.ConnectorInterfaceWrapper. Its purpose is similar as

@ConnectorInterface to annotate stubs. While the @ConnectorInterface is

used within the serialization in order the connector could recognize "ordinary"
references from remote remote references, the @ConnectorInterfaceWraper is used

in the deserialization to distinguish between "ordinary" objects and wrappers. It has
one string property (in the picture “DemoIFace”) that says which business interface

the wrapper is related to.

Here are some notes for Figure 6.27:

� The wrapper implements java.io.Serializable because it is transferred

across the network using Java RMI and RMI requires that.
� The field connectorId contains the id of the connector which the wrapper

belongs to. From this information and from the property of
@ConnectorInterfaceWraper the server is able to create a local stub in its
address space.

� The rest of the body contains only empty implementations of the functions
from the business interface. They are doing nothing but they must be there to
satisfy the “contract” of the class (implement all interfaces stated after
implements keyword).

Each function contains only the return statement. Return value depends on a
return type of the function. For boolean type false is used, 0 is used for

primitive types except boolean and null for object types.

6.4.3 RMIObjectAdapter

We have implemented the class RMIObjectAdapter that is used for adjusting

objects before they are passed to a remote function (thus before the serialization) on

59

Figure 6.27: A wrapper generated for DemoIFace

@org.objectweb.dsrg.connector.rmi.ConnectorInterfaceWrapper("DemoIFace")
public class Wrapper
 implements DemoIFace, java.io.Serializable {

 public String connectorId;

 public java.lang.String compute(int arg0, DemoIFace arg1) { return null; };
 public java.lang.String message() { return null; };
}

the client side a then just before the server business logic takes control (just after the
deserialization). It goes recursively through the object and searches for the remote
references (recursively because the object can contain subobjects). Before the object is
passed to the server all remote references are replaced by the appropriate wrappers
and then on the server side the wrappers are back replaced by suitable local
connector units.

RMIObjectAdapter is extended by the two subclasses RMIObjectEncoder and

RMIObjectDecoder (see Figure 6.28):

The main method of RMIObjectAdapter is adaptObject(T o). It has one

parameter of an object type and it is supposed to return the same object with replaced
internal remote references. It goes through the object field by field and processes
differently various types:

� Primitive types are ignored because they cannot be assigned an object type
and thus not even a remote reference.

� Object types (except arrays) – when RMIObjectAdapter finds a field of

an object type it calls the method isRemoteObject(Object o) which

have to decide whether the object is associated with a remote reference
(remote object or wrapper). If it returns true the function

adaptRemoteObject(Object o) is called on that object. In case the

object is not remote the whole processing is repeated recursively on that
subobject. Both functions isRemoteObject() and

adaptRemoteObject() are supposed to be overrideen in subclasses.

� Arrays – whether the array will be processed or not depends on the
component type of an array, e.g. 'int[]' has the component type 'int' and

'String[][][]' has the component type 'String'.

� If the component type if primitive, the array is ignored because there is no
way how into such an array include a remote object. E.g. the array
int[][][] in the leaves must contain only integers (otherwise a compile

time will be thrown) and nodes of the array can be either null or an array

of integers of a corresponding dimension (e.g. the first dimension can
contain only int[][], the second int[] etc.). Here is an example:

60

Figure 6.28: Class hierarchy of the RMIObjectAdapter

public final <T> T adaptObject(T o)

abstract Object adaptRemoteObject(Object o)

abstract boolean isRemoteObject(Object o)

adaptRemoteObject()

isRemoteObject()

adaptRemoteObject()

isRemoteObject()

RMIObjectAdapter

RMIObjectEncoder RMIObjectDecoder

int[][] a = new int[2][];
a[0] = new int[2];
a[0][0] = new Object(); // Compile time error!
a[1] = (int []) new Object(); // Runtime error

� If the component type is of object type the whole array is traversed and all
leaves processed like objects.

An extra care must be paid because of possibility of circular references. An object
can contain (directly or inside some of its subobjects) reference to itself. Some
circular references can be quiet subtle, even if they are not written explicitly in a
source code. For example Java Inner Class holds hidden pointer made by the compiler
to the parent class.

The RMIObjectAdapter class must deal with that. That is why it contains field of

the type Map<Object, Object>1 (from the Java Collections2 [35]) of already

processed, or just being processed, objects.

private Map<Object, Object> beingProcessed =
 new IdentityHashMap<Object, Object>();

Naturally it seems that the standard set implementation HashSet<E>3 would be

appropriate for storing set of objects. But it compares objects using the inherited
function boolean equals(Object obj) from java.lang.Object. Instead the

comparison of objects based on the equality of references (whether two references
point at the same objects) is needed. The function equals() from the

java.lang.Object class exactly do that but that implementation can be overridden

in subclasses.

Standard Java libraries do not contain an implementation of the set that would
compare objects by reference equality. That is why we used
IdentityHashMap<Object, Object>(). In fact the mapping is not needed, but it

was one collection which compare references. Only keys from the map (by the put()

and get() functions) are used, the actual values of the mapping are insignificant.

The concrete behavior of the RMIObjectAdapter class is then refined in its

subclasses. Here is a list of that two subclasses and its functions:

� RMIObjectEncoder – is supposed to replace all references in some object by

their appropriate wrappers. It is achieved by overriding this two functions:

� isRemoteObject() - detects remote references. As has been said only

references to connector's stubs are regarded as remote and the stubs are
marked by the special annotation (see Chapter 6.4.1). Thus it is enough to
check if the object contains that annotation by this function of the
java.lang.Class class:

1 A Map is an object that maps keys to values.

2 A Collection represents a group of objects.

3 A set is a Collection that cannot contain duplicate elements. It models the mathematical set abstraction.

The HashSet is one concrete implementation of set.

61

isAnnotationPresent(ConnectorInterface.class)

� adaptRemoteObject() - from the object annotation property discovers

which wrapper should be used for that object, instantiate the wrapper and
set its field connectorId to the proper value.

� RMIObjectDecoder – it works in contrast to RMIObjectEncoder. It goes

through the object and replace all wrappers by appropriate connector units. It
also overrides the two functions"

� isRemoteObject() - detect if an object is a wrapper. All wrappers are
marked by a special annotation, this function check it by using function

isAnnotationPresent(ConnectorInterfaceWrapper.class)

� adaptRemoteObject() - from the wrapper extracts the id of the connector

an from the annotation's property a name of the business interface. This
information is enough for creation of local connector unit. The wrapper is
replaced by that unit.

RMIObjectEncoder and RMIObjectDecoder are used on both sides (client and

server). For an explanation how they are used in RMIStub and RMISkeleton see the

next chapters.

6.4.4 Integration with the connector

Besides of implementing the RMIObjectAdapter class and all stuff connected with

it (encoder, decoder, annotations...) there were also some adjustments in the original
sources.

The previous implementation was changing signatures of methods in RMI remote
interfaces (see Chapter 6.2.3) and with it also connected method signatures in the
RMISkeleton class (see Chapter 6.2.4 and 6.2.6). Concretely the arguments of a

business interface type were changed to java.lang.String.

But since RMIObjectEncoder transforms inner remote references inside objects

as well as “standalone” remote references (not nested) to their corresponding
wrappers, now it is possible to pass object arguments through the network (but they
still must be marked as serializable). It is even not necessary to change the method
signatures in RMISkeleton anymore. When passing the remote reference it is

substituted by the wrapper implementing the same business interface. And “ordinary”
objects are not changed to another type, only some of their fields, if they are remote
references, can be substituted.

Figure 6.29 shows a situation where the RMIStub class is passing a remote

reference. The function adaptObject() before sending that remote reference to

the server converts it to the appropriate wrapper also implementing the DemoIFace

interface. The skeleton's function compute() has parameters of the same type like

stub's compute().

62

RMI remote interfaces were created through the special type operator rmi(I) (see

Figure 6.10) which was using trans_refs(I) to change business interfaces in

arguments to strings. Now this function is omitted so the new operator rmi(I) has
this semantics:

Stub and skeleton generators besides the generation of the RMI remote interfaces
created from business interfaces (vie the rmi(I) operator) in addition generate also

wrapper classes. It is achieved by the new type operator add_rmi_wrapper(I) (see

Chapter 6.4.2).

The generated code of the stub and skeleton has been changed too. The
RMIObjectEncoder and RMIObjectDecoder are used to adapt function arguments

and return values (if they are of object type). Their occurrence in source code is
mirrored in the client and server. Whereas RMIObjectEncoder is called on the client

side to adjust function parameter before sending them to the server and
RMIObjectDecoder to transform back the return value (from a wrapper), on the
server side it is exactly opposite – RMIObjectDecoder changes the input parameters

(objects that can contain wrappers or are wrappers themselves) to “normal” objects
and RMIObjectEncode is called before the return value is sent back to the client.

Here are for example two pieces of code from the RMIStub and RMISkeleton

classes.

� RMIStub

63

Figure 6.30: Modified semantics of the rmi(I) type operator

ext_add(
exc_add(

I,
java_class('java.rmi.RemoteException')

),
java_interface('java.rmi.Remote)

)

Figure 6.29: A remote reference passing. The stub's methods have the same arguments as

skeleton's methods.

public
String compute(int arg0,
 DemoIFace arg1) {

 ...
 compute(arg0,
 rmiEncoder.adaptObject(arg1));

}

public
String compute(int arg0,
 DemoIFace arg1)
 throws java.rmi.RemoteException {

 ...
}

DemoIFaceWrapper

<<implements>>

DemoIFace

RMISkeletonRMIStub

The function compute() (line 1) is called from the client component. The

first parameter is of type int and the second is interface DemoIFace which

must be adapted first before it can be sent to the server. If it is a remote
reference (annotated with @ConnectorInterface) the function rmiEncoder

.adaptObject(arg1) returns a completely new object (the wrapper holding

information about the reference). Otherwise the argument arg1 is just a

“normal” local object implementing DemoIFace. In such a case the encoder

returns the same object but possibly with some changed fields (if it contains
some inner remote references).

After the server function returns (line 4) its result must be converted back
(notice that java.lang.String is also object and therefore it is adapted). It is
done on line 6 by the function rmiDecoder.adaptObject(result). After the

object is transformed it is returned to the client component which have
invoked the compute() function.

� RMISkeleton

The function compute() (on line 1) located on the server is called from the

client's stub. It is inside some object which is registered with rmiregistry.

The second parameter of the function has the type DemoIFace but it is

“encoded” in the way described earlier. So before RMISkeleton calls the

“real” server's compute() function (RMISkeleton's compute acts only as a

mediator) it must decode the DemoIFace object. On line 5 the server's

64

Figure 6.31: Structure of compute() from the RMIStub.

The function generated from the DemoIFace interface.

01 public java.lang.String compute (int arg0, DemoIFace arg1) {
02 ...
03 try {
04 result = this.target.compute (arg0, rmiEncoder.adaptObject(arg1));
05 ...
06 return rmiDecoder.adaptObject(result);
07 } catch (java.rmi.RemoteException) {
08 ...
09 }
10 }

Figure 6.32: The compute() function taken from RMISkeleton.

01 public java.lang.String compute (int arg0, DemoIFace arg1)
01 throws java.rmi.RemoteException {
03 ...
04 try {
05 result = this.target.compute(arg0, rmiDecoder.adaptObject(arg1));
06 ...
07 return rmiEncoder.adaptObject(result);
08 } catch (RMIObjectAdaptorException e) {
09 ...
10 }
11 }

function is called via the target field. Primitive type parameters are just

passed, there is no need to adjust them in any way, but the object type
parameters must be first modified by the rmiDecoder.adaptObject()

function.

On line 7 the return value is sent back to the client. Again if it is of a primitive
type it is leaved unchanged, otherwise rmiEncoder.adaptObject() is used.

So here is a brief scenario how the extended support for RMI is used:

Deployment time:

1. To the business interfaces the appropriate stubs and skeletons are generated

(which internally use RMIObjectEncoder and RMIObjectDecoder). For the

each interface the wrapper is also prepared (using the new type operator
add_rmi_wrapper).

Runtime:

2. The client holds the remote interface (reference to local RMIStub) and calls

some function on it.

3. Corresponding function of the RMIStub is invoked. Before it calls the matching

RMISkeleton's function it must modify all object parameters via

RMIObjectEncoder.adaptObject(). It internally uses the prepared

wrappers from Step 1. Primitive types are left unchanged.

4. RMISkeleton decodes object parameters through the RMIObjectDecoder

.adaptObject() method and forwards the calling to the server component's

function. After the server returns some value, it must be back encoded if it is
an object.

5. RMIStub decodes the return value (if it is of an object) and passes it back to

the client component.

6.4.5 Summary

We have extended the connector's RMI support by the object types. Here are some
notes which argument types are actually possible to use and what are the restrictions:

� Primitive types

Primitive types, that is byte, short, int, long, float, double, boolean and
char, are fully supported.

� Objects

public class MyParentClass {
 public String message() { ... }
}

public class MyClass extends MyParentClass implements
 java.io.Serializable, SomeInterface {

65

public static int staticField; // Wrong

public static final double PI = 3.141592653589793; // Ok
public static final int random =

(int) (Math.random() * 100); // Wrong

// All access modifiers can be used
public int publicField;
protected int protectedField;
private int privateField;
int field;

// Object fields must be also serializable!
public MyOtherClass objectField;

// Methods
public static int someStaticMethod() { ... }// Unusual,but Ok
public String message() { ... } // Ok

// Nested and inner classes
static class NestedClass { ... } // Ok
class InnerClass { ... } // Ok

}

There are some subtle aspects which a user should be aware of and avoids
them. The piece of code above demonstrates which is possible to use without
any troubles and which is not recommended.

A class can inherit from some other classes and implement any number of
interfaces. Classes which are supposed to be used in the remote commutation
must at least implement java.io.Serializable (it contain no methods, it is

just a mark). There would be no compile time error but if objects not
conforming to this rule were used in the connector, a runtime would error
occur.

Static fields should not be used at all (fields with static keyword). One

exception is using them together with the final keyword but it can be
dangerous too (see later). It is because static fields are something like global
variables known from other languages. It is expected that all objects of the
same type share that fields. When one object changes the value of the static
field, another object immediately sees that modification. It is true if an
application runs in one address space but it is not the case with RMI. The RMI
application is inherently distributed where the server and clients run in the
different Java Virtual Machines and mostly on different computers. Changes of
static fields on a client are not reflected to the server and vice versa. They are
ignored by the serialization, only instance fields are transferred through RMI.
Each JVM holds its own copy of static fields.

But when the static field is used also with the final keyword it can be safe. It

depends on which expression is used to initialize the field. If a constant

66

expression is used (like 3.141592) there is no problem. The field is assigned
always the same value and the final keyword assures that this value will not

be changed later. It does not matter that there are more copies of the same
field (for each JVM), they all have the same value and cannot be changed.

The other case is a static final field with non-constant initializer. Here it is a
problem, it is demonstrated in the example below (it uses MyClass from the

previous example):

Client.java
public class Client {

public static void main(String[] args) throws Exception {
...
// Get the remote interface
TestConstants testConstants = ...;

System.out.println(testConstants.test(MyClass.j));
}

}

Server.java
public class Server implements TestConstants {

public boolean test(int j) {
return j == MyClass.j;

}
}

The value of the expression “j == MyClass.j” depends on whether the client
and the server reside in one address space or not. If the application is
configured that the client and server components run in one Java Virtual
Machine, the expression will be always true. If the client and the server are
separated the expression can be also true, but that is highly improbable.

All access modifiers are allowed, that is public, protected, private and

fields without any modifier. All instance fields will be serialized, it does not
depend on their visibility.

Both static and instance methods are allowed as well as nested and inner
classes. But static methods in this case are not much usual because the
non-final static fields should not be referenced. Thus in the body of static
methods are available only final static fields, static methods and nested classes
and that can be mostly replaced by some expression.

If an object contains some subobjects they are serialized and transferred to the
server too (and thus they have to be also serializable). All objects accessible
from to "root" object form an oriented graph. Objects represent nodes of the
graph and references between them oriented edges. When the object is
serialized (and recursively all its subobjects) and passed to the server, the
topology of the graph is preserved (that means the relations between objects
are the same as on the client side).

67

� Interfaces

interface MyIFaceBase {
long doSomething(int i);

}

interface Foo {}

public interface MyIFace extends MyIFaceBase, Foo {
// Constant declarations
int i = 10; // OK
int j = (int)(Math.random()*100); // Avoid this!

// Method signatures
String doSomethingElse(int i) throws MyExcetpion;

}

Usage of interfaces in method signatures is fully supported. The above piece of
code shows the definition of MyIFace. As it is seen the interfaces besides the

method declarations can extends other interfaces and also contain definition of
constants. Methods are allowed to throw any exceptions.

A function can have in its signature an interface. But when the function is
called there must be passed some object that implements that interface.

If an object (that implements the appropriate interface) is passed to a remote
method it must be also serializable (implement java.io.Serializable). If

this rule is broken a runtime exception will be thrown.

But be careful with constants (they are implicitly public, static and final

and that cannot be changed). Usage of non-constant initializers (see the
(int)(Math.random()*100) expression) is not recommended. It is the same

problem as with static final fields in objects (see the previous section).

� Business Interfaces

To a definition of a business interface apply the same rules as to any other
interface. There can be used inheritance, constants declarations as well as
exceptions in functions. But it is strongly recommended to avoid using non-
constant initializers in constant declarations.

As has been said even if a signature of some function contains some interfaces
when the function is called the actual parameters are objects (implementing
that interfaces).

There is a difference between passing “ordinary” objects and the “remote” ones
but the user usually do not have to concern with it:

� If a user defines a local object implementing some business interface it
behaves like any other object (see previous section discussing about
objects). When it is passed to the server its internal state is serialized in
order to be transferable over the network and on the other side there is

68

created an “image” from it, new identical copy. Thus the type of the object
and values of its fields correspond on both sides. Here is an example:

The type MyLine can implement some business interface, for example

GraphicsObject. But that fact does not denote that it is a remote object.

In the example the object line (of type MyLine) is a “normal” local object.

The client creates an object line which constructor has four parameters

(coordinates of the endpoints (x1, y1, x2, y2)). Then it gets a remote
reference and call a remote method which is implemented on the server. It
has one parameter of the type MyLine. The client object created using the

constructor MyLine(0.0, 0.0, 1.0, 1.0) is passed to the server (the

coordinates are copied) and on the server side the length is computed. The
result is returned back to the client and printed.

� The remote objects (alias remote references) are not serialized. Instead of
that they are replaced by a wrapper containing some information
describing that object. Server then creates from it a new connector unit. It
do not have to be of the same type, important thing is that it implements
the same interface and all calls forwarded through it are processed by the
same implementation (some server) so it has an identical behavior. It is
showed in the following example:

69

MyLine line =
 new MyLine(0.0, 0.0, 1.0, 1.0);

// Get the remote interface
Test remote = . ..;

System.out.println(remote.test(line));

public double
compute(MyLine line) {
 return line.getLength();
}

Client

Server

// Get the remote objects
Test_1 r_1 = ...;
Test_2 r_2 = ...;

System.out.println(
 r_2.getClass());
);
System.out.println(
 r_1.test(r_2)
);
System.out.println(
 r_2.message();
}

public String
test(Test_2 r_2) {
 System.out.println(r_2.getClass());
 System.out.println(r_2.message());

 return
 r_2.getClass().toString() + ", "
 + r_2.message();
}

public String
message() {
 return "Hello";
}

Client.class

Server_1.class (implements Test_1)

Server_2.class (implements Test_2)

Output:
class generated.A0009.RMIStub
class Server_2, Hello
Hello

JVM1 JVM2

Output:
class Server_2
Hello

The client holds two remote references. One pointing to Server_1 (in the

variable r_1) and the other to Server_2 (in the variable r_2). Then it

prints the class of the object contained in the variable r_2. Because it is a

remote reference, it is represented e.g. by the proxy
generated.A0009.RMIStub. The next call is through r_1. It has one

argument where r_2 is passed. Server_1 then prints the class of that
argument. Although on the client side the r_2 variable is pointing to

generated.A009.RMIStub, on the server side the argument r_2 points

directly to Server_2 because Server_1 and Server_2 are in the same

address space, thus no mediator is needed. That is why the expression
r_2.getClass() returns different values on the client and on the server.
But it does not change the fact that on both sides it implements the same
interface and the message() method will return the same string "Hello".

70

Chapter 7

Implementing support for CORBA

7.1 Overview

CORBA has many implementations and bindings into various programming
languages. Concretely with Java language there are associated two technologies, Java
IDL [36] and Java RMI over IIOP [37].

Java IDL is a “direct” implementation of CORBA, it is built on the Interface
Definition Language providing standards-based interoperability and connectivity.

Java RMI-IIOP is more "Java oriented" but it is still possible to interoperate with
any CORBA-compliant language. The main benefit for the Java language is that there
is no need to use IDL, it is possible to write a whole application in Java using the RMI
API.

Both technologies have its “pros and cons”. Here is a description of that
technologies to better understand their differences and also benefits and restrictions
which they bring.

7.1.1 Java IDL

Java IDL is a technology for distributed objects. It is based on IDL (Interface
Definition Language) which is language neutral and thus it allows to interconnect
programs written in different programming languages.

One of the main parts of the CORBA technology is IDL. It is created at time of
designing an application. A programmer decides which components the application
constitutes of and how they interact with each other. IDL defines which interfaces will
be used and thus it forms a headstone of the application. Here is a sample
Hello.idl which will be used in consequent examples:

module HelloWorld {
 interface Hello {
 string message();
 };
};

It is very simple but satisfactory for showing the development process. module is a

group of related stuff (interfaces, types, ...). The Java package is very close it and as

71

it will be seen later it is indeed generated from it. The body of module in the example

consists only of one interface. It is direct equivalent for Java interface, it states

which methods some object provides.

When the IDL interfaces has already been designed it is time to generate bindings
for Java from them. For that purpose is supposed the tool idlj. It implicitly

generates only client-side bindings, for generation also for the server the -fall

option must be used:

idlj -fall Hello.idl

The command above generates six files and store them into the HelloWorld

directory (because of the name of the module). Here is a list of that files and a brief
description what they are used for:

� HelloOperations.java – contains all methods from the Hello interface, in this

case only the message() function:

package HelloWorld;

public interface HelloOperations
{
 String message ();
} // interface HelloOperations

� Hello.java – is empty interface but it extends HelloOperations which

contains all methods from the IDL interface. It also extends
org.omg.CORBA.Object providing standard CORBA object functionality. It

is used in the server and the client for holding references to CORBA objects.

package HelloWorld;

public interface Hello extends HelloOperations,
org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity
{
} // interface Hello

� HelloPOA.java – an abstract class that is used on the server side. It extends
org.omg.PortableServer.Servant and implements

HelloOperations. The servant then extend this class and is supposed to

implement all functions from the HelloOperations interface.

� _HelloStub.java – is a client's stub. It provides low level functionality
(marshaling arguments, communication with the server...) and implements
Hello interface. Client's remote references are in fact references to this class.

� HelloHelper.java – contains auxiliary functions, in particular the method
narrow() for casting from the general CORBA object (org.omg

.CORBA.Object) to the more specific Hello interface. It is used both by the

server and the client.

� HelloHolder.java – a class that contains public field of the type Hello. It is

used for supporting inout and out IDL parameters (they are intended to

72

contain return values of functions). Because the Java language do not allow
return values in parameters, output values of the type Hello are wrapped

into the HelloHolder object where it is possible to pass them.

When the server is implementing some interface from IDL it must provide
definition for all its methods. In Inheritance Model1 servants (for type Hello) have to

extend from HelloPOA which provides POA (Portable Object Adapter) functionality.

Here is an example of the servant:

class HelloServant extends HelloPOA {

 public String message() {
 return "Hello world!\n";
 }
}

The server must create an instance of the HelloServant and initialize the

CORBA subsystem. It is not important how exactly it is achieved, it is enough to know
that generated classes (using idlj, see previous section) are used and the clients

have facilities for obtaining the reference to the remote object.

A client has to also initialize the CORBA subsystem. Then it gets the remote
reference and cast it to the Hello interface (using the narrow() method of the

HelloHelper class). Afterwards it can use the remote object like as it was a local

one.

Client has a number of ways how to get a reference to a CORBA object, e.g.
through the COS Naming Service [38] or using a stringified object reference [39].
These facilities are in general independent on the background CORBA technology
actually being used and thus they are useful with the Java RMI over IIOP as well. We
have decided for the stringified object reference because there is no need for running
additional naming service.

7.1.2 Java RMI over IIOP

Java Remote Method Invocation over Internet Inter-ORB Protocol technology [40]
is part of Java 2 Platform Standard Edition (J2SE [41]). It allows to use the Java RMI
within the CORBA technology. If the whole application is written in the Java
programming language the “ordinary” Java RMI (over JRMP protocol) is probably
more suitable. But when it is also intended to cooperate with other CORBA objects
(possibly written in different language) here it comes in handy.

This technology is more natural (than Java IDL) for Java programmers because
they can design remote interfaces directly in Java (using RMI). In contract to Java IDL
where an IDL file is first created and then a Java remote interface using idlj is

generated. It is also interesting for programmers using Enterprise Java Beans because
that technology is also RMI-based.

1 There also exist Tie Model. For the differences see idlj manual pages.

73

The following text describes a development process of an application based on the
Java RMI over IIOP (using POA-based server-side model).

At first a programmer has to design a RMI remote interface. The interface must
satisfy some requirements in order it can be used in the remote communication (see
Chapter 6.1). Here is an example interface which will be used next through this
section. In contains only one function returning string:

public interface Hello extends java.rmi.Remote {
 public String message() throws java.rmi.RemoteException;
}

A server object then have to implement the interface so clients can use it. A class
that contains the implementation must extend javax.rmi

.PortableRemoteObject as it is shown in the example below:

import java.rmi.RemoteException;
import javax.rmi.PortableRemoteObject;

public class HelloServant extends PortableRemoteObject
 implements Hello {

 public HelloServant() throws RemoteException {
 // Empty
 }

 public String message() throws RemoteException {
 return "Hello World!";
 }
}

Because of extending PortableRemoteObject the HelloServant class can be

used as a remote object. It is important that constructor declares to throw java.rmi

.RemoteException otherwise the java compiler will report an error:

HelloServant.java:4: unreported exception java.rmi.RemoteException;
must be caught or declared to be thrown.

public class HelloServant extends PortableRemoteObject ...
 ^

1 error

The server has to contain some code that creates the HelloServant object and

exposes it to the clients (e.g. via COS Naming Service or using stringified object
reference). That code may be placed directly in HelloServant itself or in a

completely separated class.

In order that the server ant the clients can communicate there must be in addition
created stub and skeleton files. They are generated from the implementation class
(HelloServant in this case) using the rmic utility. HelloServant must be first

compiled because rmic operates directly on a binary code:

javac -classpath . HelloServant.java

The javac command generates the file HelloServant.class. Then it can be

74

processed by the rmic utility with the -poa -iiop options (-iiop causes rmic to

generate IIOP stub and tie classes rather than JRMP stub and skeleton classes; -poa

changes the inheritance from org.omg.CORBA_2_3.portable.ObjectImpl to

org.omg.PortableServer.Servant, see rmic manual pages). The

command rmic -poa -iiop takes one or more qualified class names. It introspect
implementation classes and generates the necessary files – for each remote object
implementation class creates a tie (skeleton) and a stub.

The following command

rmic -poa -iiop HelloServant

creates these files:

� _Hello_Stub.class – a client's stub generated for the Hello interface. If

the HelloServant class was implementing another remote interface an

another stub would be also generated.

� _HelloServant_Tie.class – a server's skeleton.

As mentioned before the client has to somehow obtain a reference to the remote
object. We have decided to use stringified object reference because the server can pass
the remote address to the client in form of string and there is no need for running any
extra naming service (for example orbd).

The class org.omb.CORBA.ORB offers the method object_to_string()

which converts an instance of type org.omg.CORBA.Object to its address in the

distributed environment. That address is quite a long string and has this form:

IOR:0000000000000033524d493a67656e6572617465642e4130303030303030362e496
e746572666163653a30303030303030303030303030303030000000000001000000001000
0002000000000000100010000000205010001000100200001010900000001000101000000
0026000000020002

The client then uses the following sequence of code to obtain the remote reference
from the variable stringifiedRef of the type java.lang.String holding the

address:

org.omg.CORBA.Object corbaObj =
 orb.string_to_object(stringifiedRef);

Hello target = (Hello) javax.rmi.PortableRemoteObject.narrow(
 corbaObj, Hello.class);

The function string_to_object() returns the common CORBA type

org.omg.CORBA.Object. It must be narrowed to a more specific type in order to

be useful. The static method javax.rmi.PortableRemoteObject.narrow()

takes two parameters, the first is a CORBA object to be narrowed and the second an
instance of java.lang.Class representing a target type, in this case

Hello.class. The result must be furthermore casted to the remote interface type

because the narrow() function returns only the general Java type

java.lang.Object.

75

Although RMI-IIOP is a powerful technology it has some restrictions too. Here is a
list taken from “RMI-IIOP Programmer's Guide” [42]:

� Make sure all constant definitions in remote interfaces are of primitive types

or String and evaluated at compile time.

� Don't use Java names that conflict with IDL mangled names generated by the

Java to IDL mapping rules. See section 28.3.2 of the Java Language to IDL

Mapping specification [43] for the Java to IDL name mapping rules.

� Don't inherit the same method name into a remote interface more than once

from different base remote interfaces.

� Be careful when using names that differ only in case. The use of a type name

and a variable of that type whose name differs from the type name only in case

is supported. Most other combinations of names that differ only in case are not

supported.

� Don't depend on runtime sharing of object references to be preserved exactly

when transmitting object references across IIOP. Runtime sharing of other

objects is preserved correctly.

� Don't use the following features of RMI:

� RMISocketFactory

� UnicastRemoteObject

� Unreferenced

� The Distributed Garbage Collection (DGC) interfaces

7.2 Comparison of the Java IDL vs. RMI-IIOP

There is a big difference in development process whether it is started with an IDL
file or with a Java interface. Sometimes a programmer can choose which one he starts
with, especially when writing a whole application from scratch. But it is not always
possible, it can be forced by a part of an application already written. The following
subsections discuss the two cases.

7.2.1 Starting from an IDL

There can be more reasons why start with an IDL file. The first is simply that it
already exists, e.g. the application is already designed, some components are done
and some are required to be completed, where IDL prescribes their API. The other
reason may be to take into account future possibility of usage in a heterogeneous
environment and make the application ready for it. In such a case it is much more
reasonable to start with the IDL file and then from it generate Java interfaces than
start with Java and to that write a corresponding IDL. The Java language is much
more specific than IDL and it can be very complex to generate an appropriate IDL file
from a Java interface than vice versa.

76

Here are described the two technologies, their usage and consequences when a
programmer starts with IDL:

� Java IDL

It very natural to use this technology when a programmer starts with IDL.
Java IDL is directly designed for it, for the development process see Chapter
7.1.1.

� RMI-IIOP

For RMI-IIOP it is necessary to generate a compiled RMI interface which would
correspond to the given IDL file. It is possible in number of ways, here are
some potentially solutions:

� The idlj utility besides the number of generated files creates also

HelloOperations.java which contains the corresponding Java

interface (in form of a source code) to the IDL interface. But RMI-IIOP
requires binary code and in addition it must satisfy some requirements to
be used with RMI (see Chapter 6.1). Thus the HelloOperations.java

file has to be adjusted. First of all it has to extend java.rmi.Remote and

each method must throw java.rmi.RemoteException). It can be

achieved by the already existent type operators rmi(java_interface(

'HelloOperations')). java_interface() takes as an argument

Java type (compiled), thus HelloOperations.java must be first

compiled into HelloOperations.class before use. From the created

type rmi(...) is then generated Java source and compiled into a Java

class file. The whole process is depicted in Figure 7.1.

But an IDL interface can be much more complex than Hello from the

Hello.idl file and use other types defined by IDL. Moreover the IDL file

itself can include other IDL files. Thus a generation of some Java interface
can result in creation of many types on which the interface is dependent.
Here is an example of a little more complex IDL file:

module HelloWorld {
struct Foo {

string symbol;

77

Figure 7.1: A possible solution of creating of a RMI interface from IDL

Hello.idl

...
HelloHolder.java
Hello.java
HelloOperations.java

...

HelloOperations.class

rmi(java_interface(
 'HelloOperations'
))

generated.A0006.Interface

javac
idlj

connector generator

long at_time;
double price;
long volume;

};
exception SomeException {};

interface MoreCompexHello {

 string message(out Foo foo)
raises(SomeException);

};
};

... and its corresponding MoreCompexHelloOperations interface in

Java (the struct which the interface depends on is not shown):

package HelloWorld;

public interface MoreCompexHelloOperations
{

String message (HelloWorld.FooHolder foo) throws
HelloWorld.SomeException;

} // interface MoreComplexHelloOperations

� The other solution is to process the IDL file directly without any
intermediate files (like HelloOperations.java or

HelloOperations.class) as in the previous method. In such a case

the IDL file have to be parsed into internal data structures. Fortunately
there is already a parser which is used also by the idlj utility. The class

com.sun.tools.corba.se.idl.toJavaPortable.Compile

contains many useful methods that the connector generator can use. To the
connector type system can be added some type operators like
idl_interface() and to_java_interface(). A resulting type
expression which is creating the RMI interface could for example look like
this: rmi(to_java_interface(idl_interface('Hello.idl',

'HelloWorl','Hello'))). Since the IDL file can include more modules

and each module can contain many interfaces, the operator
idl_interface() must specify which interface from which module it is

supposed to represent.

The type operator to_java_interface() maps an IDL interface to

Java. It is reasonable to do the mapping on a base of some standard. The
document 'Java IDL: IDL to Java Language Mapping' [44] shows the
correspondence between OMG IDL types and Java types. For the full OMG
specification see 'Java to IDL Language Mapping, v1.3' [45].

But the generation of the Java interface do not have to be easy. The IDL
interface can be using other types defined in the IDL file and even in a
completely separated file (included via the #include construct).

Moreover when the necessary class files are created at the connector
generation the programmer cannot use them earlier when designing and
developing the application. Many IDEs (Integrated Development

78

Environments) are capable of immediate syntax checking and code
completion. It is with absence of generated sources impossible and the
environment will report an error that it does not know the type (which is
generated later).

It seems to be more reasonable to use the idlj utility within the

development process. A programmer should generate necessary sources
manually into some folder and then set up that folder in the IDE's build
path. Thus the development environment will be aware of the generated
types.

7.2.2 Starting from a Java Interface

This will be probably much more frequently case than designing and developing an
applications from IDL because users mostly do not need such a universality that the
IDL brings. Here is again an overview how the two technologies (Java IDL vs. RMI-
IIOP) are used when starting with some Java interface:

� Java IDL

We highly discourage to use Java IDL with interfaces originally designed in
Java because Java is a much more specific and complex language than IDL. A
lot of mappings from Java to IDL are problematic and brings only problems, it
is usable only with very simple interfaces.

To generate an IDL file for from a Java interface the utility rmic with the

option -idl can be used. The arguments of rmic should be full qualified java

types.

Here is a list of some examples which cause serious problems even if they are
very simple:

� Hierarchy of Java interfaces in some ordering can even into lexically
incorrect IDL files (generated via rmic)! For example here is a definition

of two Java interfaces:

public interface A {}

and

public interface B extends A, java.rmi.Remote {
}

A simplified output of the 'rmic -idl B' command is:

#include “A.idl”

interface B: {
};

There is an error, after the colon an interface name is expected (which the
B class inherits from). Here is an error message of idlj running on

B.idl:

79

> idlj B.idl
B.idl (line 15): Expected `<identifier>'; encountered `{'.

interface B: {

� An occurrence even of a very simple Java exception causes the generation
of many IDL files because IDL exceptions must reflect a hierarchy of Java
exceptions. Running rmic -idl on the interface below results in the

generation of 24 IDLs.

public interface A {
public void doSomething() throws Exception;

}

Creating stubs and skeletons from that IDLs (using the idlj compiler)

leads into yet more Java sources which some of them cannot be even
compiled (because the idlj compiler produces incorrect code).

Thus because of former reasons the Java IDL technology seems to be useless
when starting development of an application using Java interfaces.

� RMI-IIOP

RMI-IIOP is straight designed to be used within Java interfaces. They just have
to be adjusted to be remote. For this purpose is the type operator rmi()

perfectly suitable.

7.3 Implementation details

We have implemented Java RMI over IIOP because it is possible to use it with the
native Java interfaces as well as with IDL.

The implementation of support for CORBA in the connector is very similar to
integration of RMI described in Chapter 6.3. In fact CORBA is also some kind of
Remote Method Invocation, it is based on the calling of remote methods.

Because configuration files and the whole concept are very similar to Java RMI
there will be in the next sub-chapters described only significant differences. The
RMIObjectAdapter class is used for handling of remote references because the

structure of stub/skeleton model remains the same. Instead of RMIStub.class

there is CorbaStub.class and RMISkeleton.class is replaced by

CorblaSkeleton.class. Similarly corba_stub.xml is a configuration file for

the CorbaStub class and analogously corba_skeleton.xml for the

CorbaSkeleton class.

7.3.1 Configuration of CORBA stubs and skeletons

As was described in Chapter 5.3 element configuration files contain besides other
stuff also virtual “cost” of a particular architecture, signatures of ports, remote
reference names and build scripts. In a case of CORBA stub the build scripts are very
similar to those in Java RMI, there are no special compiler options. The main
differences are in this part of the corba_stub.xml file:

80

<architecture cost="7">
 <port name="call" signature="I"/>
 <port name="line">
 <signature-entry ref-name="corba" type="client" signature="rmi(I)"/>
 </port>
</architecture>

The cost of the architecture is higher. Java RMI has number 5 whereas here is 7. It
should express that usage of CORBA middleware is a little more demanding on
systems resources. But it is not so significant, it depends on a programmer's personal
opinion what he thinks, it need not reflect the reality. But based on that value the
generator is trying to choose the “best possible” configuration so it influences the
resulting efficiency of the connector.

The other difference is that it is using the “corba” reference name instead of “rmi”.
There could be any string that differs from the other reference names.

The file corba_skeleton.xml is very similar but it has in addition two options

-poa and -iiop in the rmic compiler specification to create the CORBA stub and

Tie (skeleton).

<command action="rmic">
 <param name="class" value="CorbaSkeleton"/>
 <param name="add_param" value="-poa"/>
 <param name="add_param" value="-iiop"/>
</command>

7.3.2 CorbaStub.class

The CorbaStub class is analogous to RmiStub marked with the proper

annotation so RMIEncoder can handle it correctly (see Chapter 6.4.1).

@org.objectweb.dsrg.connector.rmi.ConnectorInterface(
"generated.A0000000A.Wrapper")

public final class CorbaStub
implements
...

The wrapper is generated exactly in the same way as within RMIStub.

A constructor of CorbaStub besides an other initialization sets up also a

protected field orb.

 protected ORB orb;

 // Constructor
 public CorbaStub (
 org.objectweb.dsrg.connector.ConnectorUnit parentUnit,
 boolean isTopLevel)
 throws org.objectweb.dsrg.connector.ElementLinkException {
 ...
 // create and initialize the ORB
 orb = ORB.init(...);
 ...

81

The field orb is then used in the client's function bindElRemotePort() to

obtain a remote reference (see Chapter 5.4):

public void bindElRemotePort (
String portName,
org.objectweb.dsrg.connector.RemoteRefBundle refBundle)

throws org.objectweb.dsrg.connector.ElementLinkException {
...
refBundle.getRef("corba");
org.omg.CORBA.Object obj = orb.string_to_object(

corbaRef.stringifiedRef);

target = (generated.A00000006.Interface)
PortableRemoteObject.narrow(

obj, generated.A00000006.Interface.class
);

The variable corbaRef.stringifiedRef contains stringified object reference

(of the remote object). The statement orb.string_to_object(corbaRef

.stringifiedRef) returns a CORBA object which the stringifiedRef points

to. It must be then narrowed and casted to an appropriate type.

The remain of the class is the same as in the RMIStub class. For each method from

the business interface is generated a corresponding method in CortbaStub (see

Figure 6.32). The are forwarding method callings from the client component to the
server. If some arguments are of an object type the RMIObjectEncoder() method

is also used to ensure a proper behavior with remote references.

7.3.3 CorbaSkeleton.class

The CorbaSkeleton class acts as a CORBA servant and thus it must inherit from

javax.rmi.PortableRemoteObject which makes the object usable with the

CORBA engine:

public final class CorbaSkeleton
extends

javax.rmi.PortableRemoteObject
implements

org.objectweb.dsrg.connector.ElementRemoteServer,
org.objectweb.dsrg.connector.ElementLocalClient,
...

A constructor initializes ORB and gets a tie for itself. The tie is something like
skeleton, it provides a lowlevel functionality. When the tie is obtained it must be
registered within CORBA via the function activate_object_with_id(). It

makes the CorbaSkeleton object ready for use. Finally its stringified reference is

stored to the ior field.

protected String ior;

// Constructor
public CorbaSkeleton (

org.objectweb.dsrg.connector.ConnectorUnit parentUnit,

82

boolean isTopLevel)
...

{
...
ORB orb = ORB.init(new String[] {}, p);
...
Servant tie = (Servant)Util.getTie(this);
tPOA.activate_object_with_id(id, tie);
ior = orb.object_to_string(tPOA.create_reference_with_id(id,

tie._all_interfaces(tPOA,id)[0]));
...

A function lookupElRemotePort() adds the stringified reference stored in the

ior field to the global “reference bundle” (see Chapter 5.4) through the method

addRef(). Thus the client can retrieve it through the opposite function

refBundle.getRef().

public org.objectweb.dsrg.connector.RemoteRefBundle lookupElRemotePort (
 String portName)
throws org.objectweb.dsrg.connector.ElementLinkException {
 ...
 if ("line".equals (portName)) {
 result.addRef (
 new org.objectweb.dsrg.connector.RemoteRef("corba", ior)
);
 ...

The remain of the class is the same as in the RMISkeleton class. For each

method from the business interface there must be corresponding method in the
CorbaSkeleton which forwards callings to the server component. Object

arguments must be first processed with the RMIObjectDecoder method (see

Chapter 6.4.3).

7.4 Summary

We have integrated the RMI-IIOP technology into the connector generator. It brings
the possibility to use the connector with CORBA compliant components.

When at a time of writing distributed application is in advance taken into account
that more programming languages can be used, we highly recommend to start with
IDL. Starting with some language specific interface and then retroactively designing
IDL leads mostly into difficulties. In this chapter we have discussed differences
between using the two technologies (Java IDL and RMI-IIOP).

The following table shows which interfaces are usable with which technologies. It
is seen that RMI-IIOP can be used both with Java interfaces and IDL, but that IDL
must be first converted into Java using idlj utility.

83

Java IDL RMI-IIOP

IDL � � (using idlj to convert IDL

to a Java interface)

Java Interface � �

Usability of different types of interfaces (IDL vs. Java) with the distinct technologies (Java

IDL vs. RMI-IIOP)

The connector generator can be also utilizing both types (Java IDL and RMI-IIOP)
and at a time of generating of a specific connector use the more appropriate one. It is
probably the best solution.

84

Chapter 8

JMS

The Java Message Service (JMS) [26][46] API is a message oriented API which
allows sending messages between two or more participants. It supports both kinds of
messaging – point-to-point as well as publish/subscribe schemes.

But the JMS API is only an “interface”, there can be various middlewares that
implements that API.

Java Platform, Enterprise Edition (Java EE) implements the JMS API, but it is
“huge” and unnecessary complex for the usage in the connector generator.

There was a requirement to find a middleware that would be easy to use but still
providing enough functionality.

It seems that Apache ActiveMQ [27] is a suitable for this task. It is popular and
powerful open source message broker1 which implements the Java Message Service
(JMS). Apache ActiveMQ supports many enterprise features, cross language clients
(C, C++, C#, Java, Ruby, PHP, Perl, Python) and protocols.

8.1 The JMS API Overview

The JMS API consists of several interfaces. Figure 8.1 shows the most important of
them and their relations.

1 Message broker is a program that translates messages from a messaging protocol of the sender to a

messaging protocol of the receiver.

85

Figure 8.1: Relations between JMS interfaces. An arrow means

that one object is creating the other.

ConnectionFactory

Connection

Session

Destination

MessageProducer

MessageConsumer

Message

ConnectionFactory is used to create a connection to a JMS server. It hides a

lowlevel configuration like an URL of the JMS server. ActiveMQ provides
ActiveMQConnectionFactory which do not implement the

ConnectionFactory interface but is also used for creation of javax.jms

.Connection. A constructor can have a user's name, password and URL of the JMS

server as paramaters.

ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory(userName, password, brokerURL);

The connection can be created from the connection factory. The connection
represents a binding between the client and the JMS server and allows to create a
session.

// Create the connection
Connection connection = connectionFactory.createConnection();
connection.start();
...
connection.close();

Before the application can receive messages it must call the connection's method
start(). And when it is not more needed the method close() should be called to

release resources.

A session represents a single-threaded messaging context. It means that all
messages in one session will be “serialized” and received one by one. The session also
supports transactions.

// Create the session
Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

The first parameter in the example means that the session should not use transactions
and Session.AUTO_ACKNOWLEDGE ensures that messages will be automatically

acknowledged when they will be received.

A destination is an object that represents a location where messages are delivered
to and received from. It can be either a queue or a topic.

// Create the destination
Destination destination = session.createTopic("some_topic_name");

A producer is used for sending messages to a destination. It can be created by
session's createConsumer(Destination dest) function with one argument

that denotes a destination. A user can create also a generic sender that specifies the
destination at the time the message is sent.

// Create the producer
producer = session.createProducer(destination);

A message interface is extremely flexible and provides numerous ways to
customize the contents of a message. In the connector generator for the testing
purposes it is enough to use only textual messages. The message can be then sent
using the producer.

86

// Create some message
TextMessage message = session.createTextMessage("some text");

// Sent the message
producer.send(message);

A message consumer receives messages from some destination. It can receive them
synchronously or asynchronously from both queues and topics. It is also created by
the session.

An object which is supposed to receive messages asynchronously must implement
the MessageListener interface, which contains only one method onMessage().

That object is then passed to the method setMessageListener() of the

consumer.

// Create the consumer
consumer = session.createConsumer(destination);

// Listener define the onMessage() method
MessageListener listener = ...;

// Set the handler for asynchronous messages
consumer.setMessageListener(listener);

8.2 Implementation details

Messaging can be used in many ways. We have implemented the publish/subscribe
messaging, where clients send messages through topics, and asynchronous mode, thus
clients do not have to poll server for new messages and instead they are given a
message when it arrives in the topic.

8.2.1 Connector architecture

The connector architecture for the messaging communication style uses the
client/server model. It consists of many client units and one server which acts as a
control unit. Client units are then attached to the client components which can send
and receive messages. The server unit is standalone with no component binded, it is
supposed to operate as a JMS server. Figure 8.2 shows the configuration file for the
messaging communication style.

87

Figure 8.3 then depicts an architecture of the connector with attached client
component. The unit messaging_client_unit has two local ports, one for

sending messages and one for receiving and one remote port line for

communication with the server. The unit can work dynamically, it can be either a
sender, a receiver or both (but acting in both roles is not much useful because it
causes that sent messages by the client component are also in turn received by the
same component).

Because of more flexibility messaging_client_unit and messaging_

server_unit can be next subdivided as shown in Figure 8.4.

If the client component wants to send some message it must bind the send port (it

must obtain its reference). The port send will be always exposed to the client

because it is implemented as a Java interface that message_send_recv

implements and the client component holding a reference to it can any time call a

88

Figure 8.2: org/objectweb/dsrg/congen/conrep/connectors/messaging.xml

<connector name="messaging">

 <architecture>
 <unit name="client_unit" type="messaging_client_unit"
 cardinality="multiple"/>

 <unit name="server_unit" type="messaging_server_unit"
 cardinality="one"/>

 <binding>
 <port element="client_unit" port="line"/>
 <port element="server_unit" port="line"/>
 </binding>
 </architecture>

</connector>

Figure 8.3: Graphical illustration of the connector architecture for messaging

with an attached client component

messaging_client_unit messaging_server_unit
line line

Client

<multiple>
<one>

send

recv

Figure 8.4: Client's and server's unit refinement

send

recv

message_send_recv
line

jms_server

messaging_client_unit messaging_server_unit

method on it. That is why the message_send_recv element must always be ready

to send messages. It send messages through an internal message producer, but
message_send_recv can create the message producer dynamically, by the first call

on the send port. If the client component never sends a message the internal

producer need not be instantiated and that can spare system resources.

On the other hand the port recv is more controllable by the

message_send_recv unit. Here is the reference opposite, message_send_recv

is holding the reference to the client component. That reference is set up by the client
through the function bindElPort("recv", listener) where the object

listener must implement the onMessage() method. Until the bindElPort

method is called (and thus message_send_recv is holding null pointer to the

client component) there is no need to create message_send_recv's internal

message receiver.

The method unbindElPort() can be also called. It unbinds the recv port and it

can have the semantics that the client do not want to listen to messages anymore and
thus the internal message_send_recv's internal message consumer should be

closed.

8.2.2 Implementing the jms_server

The jms_server element type (see Figure 8.4) is located on the server side. It is
nested inside the messaging_server_unit and should act as a JMS server (see

Figure 8.4).

One concrete implementation of the jms_server type is the JMSServer class.

Here is its main code taken from the JMSServer's constructor, it creates an

embedded JMS server and runs it.

import org.apache.activemq.broker.BrokerService;

public final class JMSServer
implements

...
{

// Constructor
public %CLASS% (

org.objectweb.dsrg.connector.ConnectorUnit parentUnit,
boolean isTopLevel)
throws ...

{
...
BrokerService broker = new BrokerService();

 broker.setUseJmx(true);
 broker.addConnector(.../* bind address */);
 broker.start();

}
}

The method broker.addConnector() set the JMS server's bind address (which

89

port and address the server should listen on). That address should be configurable
and the client must know it because it connects to that address. The server send
round messages between clients that are connected to it.

8.2.3 Implementing the message_send_recv

The client side is more complex. The class MessageSendRect implements the

MessageSender and MessageListener interfaces. The interface

MessageSender contains one method send(String message) through which

the client component can send messages. The class MessageSendRecv implements

MessageListener because it acts as a proxy. Messages received from the server are

first caught by this class and then forwarded to the client.

...
import javax.jms.*;

public final class MessageSendRecv
implements

...
 org.objectweb.dsrg.connector.messaging.MessageSender,
 MessageListener {

public void bindElPort (String portName, Object target) {
...
// Listen for messages from the server,
// 'this' object acts as a proxy
consumer.setMessageListener(this);
...

}

public void unbindElPort (String portName) {
...
// Stop sending messages
consumer.setMessageListener(null);
...

}

// Establish a remote binding
public void bindElRemotePort (..., RemoteRefBundle refBundle) {

...
// Create the connection.
ActiveMQConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(...);

connection = connectionFactory.createConnection();
connection.start();

// Create the session
session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

// Get the address of the destination
RemoteRef activeMQRef = refBundle.getRef(“messaging”);

90

// Create the destination
Destination destination =

session.createTopic(activeMQRef.stringifiedRef);
...

}

// Listen for messages from the server
// and forward them to the client
public void onMessage(Message message) {

...
// Extract text from the message
String text = ((TextMessage)message).getText();

// ... and forward to the client
client.onMessage(text);
...

}

public void send(String message) {
...
// Forward to the server
producer.send(session.createTextMessage(message));
...

}
}

The method bindElRemotePort() should not be called by the client. It is

invoked automatically by the connector. Its purpose is to establish a remote
connection with the server. First it creates the connection factory. The
ActiveMQConnectionFactory(...) has some argument like an address of the JMS

server or a password. The URL should be configurable and the same as the
JMSServer used by startup. Then the connection, session and destination are

initialized. The address of the destination is provided by the server, it is simply some
string which denotes the name of the topic (or the queue if the point-to-point was
used). The address is obtained from the parameter refBundle by getRef().

When the client wants to receive messages it calls the method bindElPort

("recv", listener). That method creates an inner receiver and as a listener sets

the class MessageSendRecv itself. It is because MessageSendRecv works as

proxy and forwards incoming messages from the server to the listener as specified

as the second parameter of the bindElPort() function. listener must

implement the interface org.objectweb.dsrg.connector.messaging

.MessageSender that define the function void onMessage(String message)

through which MessageSendRecv can send message to the listener.

When the client wants to stop receiving messages it can call
unbindElPort("recv"). Its sets the listener of the MessageSendRecv's internal

message receiver to null, but not destroy the receiver. The client can start receive
messages anytime again with bindElPort().

The client component can also send messages. For that purpose is supposed the
send() function. The MessageSendRecv object needs an internal message

91

producer through which it can forward messages to the server. But as was said that
producer can be created dynamically by the first call of the send() function in order

to spare system resources.

8.3 Summary

We have implemented support for the JMS API in the connector generator.
Messaging needs a different approach than method invocation communication style.
A similarity is that it also uses a client/server model, but in messaging the server unit
is not attached to any component, it servers only as an arbiter. Most of the
functionality is concentrated in the JMS server itself. We have used Apache ActiveMQ
which through its flexibility and robustness could be also used as a bridge between
different languages like C++, C#, Python and others.

92

Chapter 9

Related work

The idea of some unification of middlewares and creation of an abstract layer is
presented also in the project Arcademis [47][48]. It aims on object oriented
middleware and the main purpose why the Arcademic project has arisen is that
current convectional object oriented middlewares are monolithic and inflexible to
meet the needs of modern rapidly changing technologies. Nowadays there exist many
different devices like cell phones, PDAs, etc., with various demands on quality and
characteristics of a connection. Arcacemic tries to be highly reconfigurable and
addresses the limitations of current middleware implementations. It consists of a set
of abstract classes and interfaces that define the general architecture of middleware
systems. Arcademic heavily uses design patterns, for example well-known singletons,
strategies, factories, decorators and facades. It is designed to be flexible, so that new
transport protocols, connection management policies and authentication algorithms
can be easily configured. But Arcademic in only a “template” how some middleware
could look like, it does not implement any actual functionality. In order to illustrate
how Arcademic can be used the document [48] describes a derived middleware from
Arcademic named RME providing a remote method invocation for the J2ME/CLDC
platform.

The other project using various middlewares for providing inter-component
communication is PadicoTM [49]. It aims on parallel computational infrastructures
called the grid. The grid encourages the development of new applications in the field
of scientific computing. It is used for example for simulation of complex physical
processes. Different components of a scientific application may demand different
communication paradigms like RMI (Remote Method Invocation) or MPI (Message
Passing Interface). However some existing communication middlewares are unable to
take benefits of networking technologies available in the grid. And also some low-
level communication layers in grid systems were not designed to be able to share
resources with several middlewares. The aim of PadicoTM is to allow several
communication middleware and runtime to efficiently share the networking resources
and use the most suited communication for a specific application.

The last project we want to mention is The Proteus Multiprotocol Message Library
[50]. Similarly as PadicoTM it is tied closely with grid systems. It is specialized
exclusively on messaging, Proteus is a library for decoupling clients from the
messaging protocols. It can communicate through SOAP, JMS or by locally developed
binary protocol. But it is designed generally enough and other protocols can be added

93

dynamically without recompiling or halting applications. Proteus is written in C++
but a Java implementation is also planned.

94

Chapter 10

Conclusion

The goal of this thesis was to extend existing connector generator [1] and provide
support for generating and deploying RMI, CORBA, and JMS-based connectors.

The connector generator originally partly supported RMI. Passing of primitive types
was implemented and also remote references were supported as well. But passing of
object types was completely missing because of several reasons. At first, it was not
known whether it would be possible to bypass the limitation that all objects being
used within Java RMI must be serializable. It emerged that users always have to be
aware of remoting and marking objects as serializable is a reasonable way how to
express that. At second, there was a need to deal with remote references inside
complex types. We have implemented a special object RMIObjectAdapter which

uses the Java Reflection API to adjust that inner references in order to allow object
transports across the network. Thus the support for Java RMI is now complete.

There was no support for CORBA at all. At first it was mandatory to choose some
concrete implementation of CORBA. We have decided for Java RMI-IIOP because it is
possible to use it with native Java interfaces as well as with IDL when necessary. We
have implemented the support for CORBA in a way that it can manage similar things
as the improved support for RMI, that is passing of primitive types, object types and
even remote references.

The third goal was to implement different communication style, concretely the
JMS API. We have prepared an infrastructure in the connector generator, which
comprises configuration files for element types, elements, messaging architecture and
templates. With that low-level “background” it was possible to delegate most of the
JMS logic to the server side, where we have employed the Apache ActiveMQ as a JMS
provider. We have implemented and tested the publish/subscribe model with
asynchronous delivery of messages. Concerning a future work it is possible to extend
it also by point-to-point messaging, to use more destinations, to add a logger to the
architecture, to add support for transactions, to encrypt messages and many others.

95

Bibliography

[1] Bures, T.: Generating Connectors for Homogenous and Heterogenous deployment, Ph.D.

Thesis, advisor: Frantisek Plasil, Sep 2006

[2] Component-based software engineering, http://en.wikipedia.org/wiki/Component-

based_software_engineering

[3] Szyperski, C.: Component Software: Beyond Object-Oriented Programming – 2nd

edition, 2002, ISBN 0-201-74572-0

[4] Messerschmitt, D. and Szyperski, C.: Software Ecosystem: Understanding An

Indispensable Technology and Industry, 2003, ISBN 0-262-13432-2

[5] Software componentry, http://en.wikipedia.org/wiki/Software_componentry

[6] Microsoft corporation, Component Object Model Technologies,

http://www.microsoft.com/com/

[7] Sun Microsystems, Enterprise JavaBeans, http://java.sun.com/products/ejb/

[8] OMG, Corba Component Model,

http://www.omg.org/technology/documents/formal/components.htm

[9] Common Object Request Broker Architecture, http://en.wikipedia.org/wiki/CORBA

[10] The Object Management Group, http://www.omg.org/

[11] SOFA Component System, http://sofa.objectweb.org/

[12] The Fractal Project, http://fractal.objectweb.org/

[13] Bray, M.: Middleware, 1997, http://www.sei.cmu.edu/str/descriptions/middleware.html

[14] Java remote method invocation, http://en.wikipedia.org/wiki/Java_RMI

[15] Java Virtual Machine, http://en.wikipedia.org/wiki/Java_Virtual_Machine

[16] Serialization, http://en.wikipedia.org/wiki/Serialization

[17] Java Remote Method Protocol,

http://en.wikipedia.org/wiki/Java_Remote_Method_Protocol

[18] Sun Microsystems, Java RMI over IIOP, http://java.sun.com/products/rmi-iiop/

[19] Object Management Group, http://www.omg.org/

[20] LipeRMI, http://lipermi.sourceforge.net/

[21] cajo, https://cajo.dev.java.net/

[22] CORBA, http://www.corba.org/

[23] Servant (CORBA), http://en.wikipedia.org/wiki/Servant_(CORBA)

[24] Object Management Groupt, ORB Basics,

96

http://www.omg.org/gettingstarted/orb_basics.htm

[25] Object Management Group, CORBA/IIOP Specification,

http://www.omg.org/technology/documents/formal/corba_iiop.htm

[26] Sun Microsystems, Java Message Service, http://java.sun.com/products/jms/

[27] Apache ActiveMQ, http://activemq.apache.org/

[28] OpenJMS, http://openjms.sourceforge.net/

[29] Bures, T.: A Connector Model Suitable for Automatic Generation of Connectors, Ph.D.

Thesis, advisor: Frantisek Plasil, Sep 2006

[30] Prolog, http://en.wikipedia.org/wiki/Prolog

[31] XML-RPC, http://www.xmlrpc.com/

[32] XML, http://www.w3.org/XML/

[33] Sun Microsystems, Java Reflection,

http://java.sun.com/docs/books/tutorial/reflect/index.html

[34] Sun Microsystems, Java Annotations,

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

[35] Sun Microsystems, Java Collections,

http://java.sun.com/docs/books/tutorial/collections/index.html

[36] Sun Microsystems, Java IDL, http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html

[37] Sun Microsystems, Java RMI over IIOP, http://java.sun.com/j2se/1.5.0/docs/guide/rmi-

iiop/index.html

[38] Sun Microsystems, COS Naming Service, http://www-inf.int-

evry.fr/COURS/java/jdk1.4docs/guide/idl/jidlNaming.html

[39] Sun Microsystems, Using Stringified Object References,

http://java.sun.com/j2se/1.3/docs/guide/idl/tutorial/GSstring.html

[40] Sun Microsystems, Java RMI over IIOP, http://java.sun.com/j2se/1.5.0/docs/guide/rmi-

iiop/index.html

[41] Sun Microsystems, Java 2 SE, http://java.sun.com/javase/

[42] Sun Microsystems, RMI-IIOP Programmer's Guide,

http://java.sun.com/j2se/1.5.0/docs/guide/rmi-iiop/rmi_iiop_pg.html

[43] OMG, Java Language to IDL Mapping, http://www.omg.org/cgi-bin/doc?formal/01-06-

07

[44] Sun Microsystems, IDL to Java Language Mapping,

http://java.sun.com/j2se/1.4.2/docs/guide/idl/mapping/jidlMapping.html

[45] OMG, Java to IDL Language Mapping, http://www.omg.org/cgi-bin/doc?formal/03-09-

04

97

[46] Sun Microsystems, The Java Message Service API,

http://java.sun.com/javaee/5/docs/tutorial/doc/

[47] Arcedemis, http://www2.dcc.ufmg.br/laboratorios/llp/arcademis/

[48] Arcademis,

http://www2.dcc.ufmg.br/laboratorios/llp/publications/Rt2003/LLP002_2003.pdf

98

