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AbstratWe present an algorithm whih is able to ompute all roots of a given univari-ate polynomial within a given interval. In eah step, we use degree redutionto generate a strip bounded by two quadrati polynomials whih enloses thegraph of the polynomial within the interval of interest. The new interval(s)ontaining the root(s) is (are) obtained by interseting this strip with theabsissa axis. In the ase of single roots, the sequene of the lengths of theintervals onverging towards the root has the onvergene rate 3. For doubleroots, the onvergene rate is still superlinear (32). We show that the newtehnique ompares favorably with the lassial tehnique of B�ezier lipping.The generalization of algorithm for polynomial systems is presented. Demon-strating on bivariate ase, polynomials are both represented by surfaes inR3 and the solution is therefore the intersetion of graphs of both polynomi-als and the plane xy. Likewise the univariate ase, we onstrut the linearbounding spatial strips of graphs of both polynomials, whih de�ne a paral-lelogram in the plane xy. This parallelogram is interseted with the originaldomain in order to de�ne the new one.Keywordsroot �nding, polynomial, B�ezier lipping, polynomial system, L2 norm.
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1 INTRODUCTION 11 IntrodutionEÆient and robust algorithms whih ompute the solutions (of systems of)polynomial equations are frequently needed for modeling, proessing andvisualizing free-form geometry desribed by pieewise rational parametrirepresentations. For instane, the problem of interseting a straight line witha rational parametri surfae leads to a polynomial system onsisting of twoequations for two unknowns. If the surfae is given in impliit form, then onlya single equation has to be solved. Suh intersetions have to be omputedfor visualizing free{form surfaes using ray-traing Nishita, Sederberg andKakimoto (1990); Efremov, Havran and Seidel (2005). Similarly, the problemof omputing the losest point(s) on a urve or surfae to a given point leadsto polynomial equations, see e.g. Wang, Kearney and Atkinson (2003).Solutions of various geometri problems in omputer geometry, suh as surfae{surfae intersetions, bisetors / medial axes, onvex hull omputations, et.,lead to pieewise algebrai urves Lee (1999); Patrikalakis and Maekawa(2002b); Kim, Elber and Seong (2005). In this situation, eÆient meth-ods for analyzing and representing these urves are needed Gonzalez-Vegaand Neula (2002); Gatellier et al. (2003). Root �nding algorithms for (sys-tems of) polynomial equations are again an important ingredient of thesetehniques; they are used to determine \ritial points" (whih are needed todetermine the topology of the urve) and suitable initial points for traingthe urve.More preisely, in these and similar appliations, all solutions of a (systemof) polynomial equation(s) within a ertain domain 
, whih is typially abox in Rn , are sought for. We are interested in numerial tehniques whihguarantee that all solutions are found. Two major approahes exist:
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Figure 1: Root-�nding problem: all roots of polynomial f(x) oninterval [a; b℄ are required.Homotopy methods (see, e.g. Li, 2003; Sommese and Wampler, 2005) startwith the solutions of a simpler system with the same struture of the setof solutions. This system is then ontinuously transformed into the originalsystem, and the solutions are found by traing the solutions of the auxiliarysystem. These tehniques are partiularly well suited for 
 = C n .B�ezier lipping and related tehniques are based on the onvex-hull propertyof Bernstein-B�ezier- (BB-) representations. The main idea is desribed inSetion 2.5. Combined with subdivision, these tehniques lead to fast (ahiev-ing quadrati onvergene for single roots) solvers for univariate polynomialsNishita, Sederberg and Kakimoto (1990); Nishita and Sederberg (1990). Mul-tivariate versions, suh as the IPP algorithm, exist and have found their way
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xzFigure 2: Bivariate polynomial system: polynomial system (1) overdomain 
 represented as urves intersetion.into industrial software, suh as ommerial CAD systems Sheerbrooke andPatrikalakis (1993); Elber and Kim (2001); Ko, Sakkalis and Patrikalakis(2005); Mourrain and Pavone (2005).We will formulate a novel tehnique for omputing the roots of univariatepolynomials and will present a way of a generalization for multivariate ase.Both methods are based on degree redution. This term denotes the proessof approximating a polynomial of a ertain degree by a lower degree one, withrespet to a suitable norm, and possibly subjet to boundary onditions. Ithas been studied thoroughly in the rih literature on this subjet Ek (1992);Lutterkort, Peters and Reif (1999); Ahn, Lee, Park and Yoo (2004); Sunwoo(2005). In earlier years, the issue of degree redution was motivated by degree
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Figure 3: Bivariate polynomial system: solution of the system (1)represented as the intersetion of three surfaes: z = f(x; y), z =g(x; y), z = 0.limitations of CAD systems.The basi idea of the new robust univariate root solver quadrati lippinq(quadlip) is briey desibed as follows. The input of the algorithm onsistsof a polynomial f , interval [a; b℄ and auray ", the output are all roots off on [a; b℄ within desired preision ". In the �rst step, the best quadratiapproximant of f with respet to L2 norm is deteted. Then, upper andlower quadrati bounds are onstruted and its roots symbolially omputed.At most four real roots are obtained. Disussing the mutual position of rootsand the original interval [a; b℄, a new subinterval is loated. If no roots exist,the interval is erased. Algorithm works till the lenght of all root-ontaining



1 INTRODUCTION 5intervals is less then presribed auray ".The possibility of generalization of quadlip for multivariate polynomialsystems is shown. Demonstrated on bivariate systemf(x; y) = 0g(x; y) = 0; (1)the algorithm linbivar works with three surfaes in R3 instead of two urvesin R2 (ompare: Figure 2 and 3). Requiring all roots of system (1) lying indomain 
, the best planar approximants with respet to generalized L2 normof both surfaes are found. Construting planar boundaries for both surfaes,its intersetion with plane (x; y) gives the new domain.The remainder of this thesis is organized as follows. Setion 2 summarizesthe basi informations on B�ezier urves and pathes, degree redution, dualbasis, L2 norm and about the lassial tehnique of B�ezier lipping.Setion 3 desribes the new algorithm: quadrati lippinq (quadlip) andshows ubial onvergene rate in single roots and superlinear onvergenerate in double root ases. Further, we provide a detailed omparison ofquadlip with B�ezier lipping with respet to riteria suh as omputationale�ort, rate of onvergene and omputing times.Setion 4 shows the generalized algorithm (linbivar) for bivariate polyno-mial systems (1). We present roughasted omparison with results of Mour-rain and Pavone (2005). In addition, the way of generalization for system ofn variables is briey suggested.



2 PRELIMINARIES 62 PreliminariesIn this setion, we summarize some basi onepts and results onerningB�ezier urves and pathes, dual basis, degree redution, L2 norm and B�ezierlipping.2.1 B�ezier urvesA B�ezier urve of degree n 2 N is de�ned by formulab(t) = nXi=0 Bni (t)bi; t 2 [0; 1℄; (2)where oeÆients bi 2 Em are alled ontrol points and Bni (t) are the Bern-stein polynomials given by Bni (t) = �ni�ti(tn�i); (3)and the binomial oeÆients are determined by�ni� = 8>><>>: n!i!(n�i)! if 0 � i � n0 otherwise:Example 1 B�ezier urves of degree 4 of di�erent shape are shown in Fig. 5,orresponding Bernstein polynomials



2 PRELIMINARIES 7
B40(t) = (1� t)4; (5)B41(t) = 4t(1� t)3; (6)B42(t) = 6t2(1� t)2; (7)B43(t) = 4t3(1� t); (8)B44(t) = t4; (9)are displayed in Fig. 4.Observing the importane of the order of ontrol points, two neighbouringpoints are onneted by a line. The set of these lines and ontrol points isknown as ontrol polygon.
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2 PRELIMINARIES 9Properties of Bernstein polynomials: Looking at the de�nition of Bern-stein polynomials in more detail, the de�nition (3) yields diretly the list ofproperties below:1. nonnegativity: Bni (t) � 0 for all i, n and t 2 [0; 1℄;2. partition of unity: Pni=0Bni (t) = 1 for all t 2 [0; 1℄;3. linear preision: Pni=0 inBni (t) = t for all t 2 [0; 1℄;4. symmetry: Bni (t) = Bnn�i(1� t) for any n and t 2 [0; 1℄;5. reursion: Bni (t) = (1� t)Bn�1i (t) + tBn�1i�1 (t);6. for any n, Bni (t) attains exatly one maximum on [0; 1℄ for t = in ;7. derivative: ddtBni (t) = n(Bn�1i�1 (t)+Bn�1i (t)), where Bn�1�1 (t) � Bn�1n (t) �0;8. (1� t)Bni (t) = n+1�in+1 Bn+1i (t);9. tBni (t) = i+1n+1Bn+1i+1 (t);Properties of B�ezier urves: As a result of Bernstein polynomials prop-erties above, one an easily formulate following attributes of B�ezier urves.1. aÆne invariane: baryentri ombinations are invariant under aÆnemapping. In other words, aÆne image of ontrol polygon and theontrol polygon of the aÆne image of the urve are the same;2. onvex hull property: for any B�ezier urve and any parameter t0 2[0; 1℄, the point b(t0) lies inside the onvex hull of the ontrol polygon;3. endpoints interpolation: b(0) = b0 and b(1) = bn;
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Figure 6: Variation diminishing property: arbitrary line has no moreintersetions with B�ezier urve then with its ontrol polygon.4. end-tangent vetors: b0(0) = n(b1 � b0) and b0(1) = n(bn � bn�1);5. variation diminishing property: number of intersetions of a line withB�ezier urve is bounded by the number of intersetions of the line withontrol polygon.Example 2 Let b0, b1, b2 be three ontrol points of B�ezier urve of degreen = 2, b(t) =P2i=0B2i bi, t 2 [0; 1℄ and let us onstrutb10(t) = (1� t)b0 + tb1;b11(t) = (1� t)b1 + tb2;b20(t) = (1� t)b10 + tb11:Inserting the �rst two equations into the third one, we obtain
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Figure 7: Convex hull property: urve is inluded inside the onvexhull of its ontrol polygon.
b(t) = 2Xi=0 B2i bi = b20(t):We observe that given parabola is deomposed into two linear interpolants.Therefore, for �xed value t0 2 [0; 1℄, it is easy to onstrut b(t0) by threelinear interpolations (see Figure 8).2.1.1 The de Casteljau algorithmThe basi idea of linear deomposition, shown in example 2, is easily gener-alized to arbitrary degree. Let us assume B�ezier urve of degree n, b(t) =Pni=0Bni bi. Then, with respet to reursive property of Bernstein polynomi-als, we obtain
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Figure 8: Constrution of parabola by linear interpolation.
b(t) = (1� t) n�1Xi=0 Bn�1i bi + t n�1Xi=0 Bn�1i bi+1: (10)In other words, b(t) is expressed by linear ombination of two urves ofdegree n� 1. This priniple is a basi ground for the de Casteljau algorithm(11), whih reursively repeats the deomposition. For a �xed value t = t0,we obtain a reursive formula for onstruting the point b(t0) = bn0 on givenB�ezier urve: bki (t0) = (1� t0)bk�1i (t0) + t0bk�1i+1 (t0); (11)where bi = bi0, k = 1; 2; : : : ; n and i = 0; 1; : : : ; n� k. Sought point b(t0) isfound by sequene of linear interpolations (see table 1 and �gure 9).Subdivision: A B�ezier urve bn is usually de�ned on the interval [0; 1℄, butit an be easily de�ned on arbitrary subinterval [0; ℄. Handling B�ezier urve
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Figure 9: de Casteljau algorithm: Constrution of a point of B�ezierurve for parameter value t0 = 35 .by ontrol points, the onstrution of the new ontrol polygon is required.Finding this ontrol polygon is known as subdivision of B�ezier urve.Using de Casteljau algorithm, the ontrol points i, that de�ne urve bn onsubinterval [0; ℄, are given by formulai = bi0(); (12)for all i = 0; : : : ; n, (see Fig. 10). Analogously, following the symmetryproperty of Bernstein polynomials, the ontrol points orresponding to thesubinterval [; 1℄ are given by the bn�ii (), i = 0; : : : ; n.
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b0 b1 b2 : : : : : : : : : bn�2 bn�1 bnb10 b11 b12 : : : : : : b1n�2 b1n�1 b1nb20 b21 : : : : : : : : : b2n�1 b2n...bn�10 bn�11bn0Table 1: Sheme of point onstrution via de Casteljau algorithm.2.1.2 Degree elevationHandling and shaping a B�ezier urve using its ontrol points is really a skillfulapproah. With respet to baryentri oordinates, eah ontrol point hasits weight of inuene on hanging the shape. In order to modify the urveslightly, more ontrol points are desired. Degree elevation (or degree raising)is a standard tehnique, whih allows us to desribe a n-th degree B�ezierurve as a B�ezier urve of higher degree.Let us assume B�ezier urve of degree n is given by its ontrol points b0; : : : ;bn.Our task is to �nd a ontrol polygon b(1)0 ; : : : ;b(1)n+1 that de�nes the sameurve.
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Figure 10: Subdivision: Constrution of a ontrol polygon of B�ezierurve de�ned on subinterval [0; 35 ℄.Aording to the notation from (2) and using properties of Bernstein poly-nomials we rewrite our urve asb(t) = nXi=0 n + 1� in+ 1 Bn+1i (t)bi + nXi=0 i + 1n+ 1Bn+1i+1 (t)bi; t 2 [0; 1℄: (13)Looking at this equation in more detail, one an easily see that the upperbound of the �rst sum may be inreased to n + 1 sine the last expressionis equal to zero. Shifting the index of the seond sum by one and adding azero-term for i = 0 we getb(t) = n+1Xi=0 n + 1� in+ 1 Bn+1i (t)bi + n+1Xi=0 i + 1n+ 1Bn+1i (t)bi�1; t 2 [0; 1℄: (14)Summing up appropriate oeÆients, we obtain a formula for ontrol pointsof (n+ 1)-st degree B�ezier urveb(1)i = in+ 1bi�1 + (1� in + 1)bi; i = 0; : : : ; n+ 1: (15)
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Figure 11: Degree elevation: B�ezier ubi represented by �ve ontrolpoints after one elevation step.Verties b(1)i are onstruted by pieewise linear interpolation and onvexhull of the new ontrol polygon lies inside the original one (see Figure 11).One an easily see, that this proess may be repeated to obtain ontrolpolygon with higher number of ontrol points than is the degree of givenurve. This at allows us to modify original urve with higher preisionwhih is desirable in many appliations.Let us denote ontrol polygon of n-th degree B�ezier urve by b0; : : : ;bn.After r degree elevation steps, this urve is desribed by n+ r ontrol pointsb(1)0 ; : : : ;b(1)n+r (see Figure 12). New ontrol points are de�ned by formulab(r)i = nXj=0 bj�nj� � ri�j��n+ri � ; (16)whih is easily proved by indution.
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Figure 12: Repeated degree elevation: Paraboli ar after four degreeelevation steps.Degree redution: The inverse proess is at least as important as theprevious one. Having a B�ezier urve of degree n, the goal is to �nd B�ezierurve of lower degree de�ning the same urve. Generally, the exat degreeredution is not possible. For example, ubi with a usp annot be expressedlike quadrati. Thus, degree redution is an aproximative tehnique and thevalue of the error between the original urve and the redued one dependson the metri we apply. Many tehniques are known (for more informationsee Introdution and Referenes). Redution with respet to L2 metri isdesribed in setion (2.4).



2 PRELIMINARIES 18

PSfrag replaements
0 1

f(x)
16Figure 13: Nonparametri urve: polynomial f(x) of degree six on[0; 1℄ represented as a B�ezier urve.2.1.3 Nonparametri urvesThe following property may seem to be trivial, but its further appliation(setion 3) fores me to emphasize its signi�ane. Disussing B�ezier urveof degree n, both oordinates of this urve are desribed by polynomials ofdegree at most n (see (2) and (3)). Investigating polynomials, one an imme-diately see, that this group of funtions is easily desribed by B�ezier urves.Let us assume polynomial y = f(x) of degree n over interval [0; 1℄. Itsparametrization as a B�ezier urve isb(t) = 24 x(t)y(t) 35 = 24 tf(t) 35 ; (17)



2 PRELIMINARIES 19where polynomial f(t) is assumed to be expressed with respet to Bernsteinbasis f(t) = nXi=0 biBni (t): (18)Aording to the linear preision property of Bernstein polynomials, ontrolpoints are uniformly distributed in the diretion of x-axis (see Figure 13).Then, given polynomial is rewritten asb(t) = nXi=0 24 i=nbi 35Bni (t); (19)where real numbers bi are known as B�ezier ordinates and the uniform sepa-rators i=n, i = 0; : : : ; n are alled B�ezier absissas.Of ourse, we are not restrited only to unit interval [0; 1℄. Due to theaÆne invariane property of B�ezier urves, we an desribe polynomial overarbitrary domain [a; b℄. B�ezier absissas are a + i(b� a)=n, i = 0; : : : ; n.



2 PRELIMINARIES 202.2 B�ezier pathesB�ezier path of bidegree (m;n) is de�ned by formulabm;n(u; v) = mXi=0 nXj=0 Bmi (u)Bnj (v)bi;j; [u; v℄ 2 [0; 1℄� [0; 1℄; (20)where oeÆients bij are alled ontrol points and Bmi (u), Bnj (v) are theBerstein polynomials de�ned in 3.For a �xed value u0 2 [0; 1℄, the termbn(u0; v) = mXi=0 nXj=0 Bmi (u0)Bnj (v)bi;j; v 2 [0; 1℄; (21)depends only on one parameter v and therefore de�nes a urve on givensurfae. This urve is alled isoparametri v-urve. For all u0 2 [0; 1℄, weobtain a system of v-urves lying on the path. Analogously, �xing parameterv, the seond system of isoparametri u-urves is obtained. The doublesummation in equation (20) may be easily represented in matrix form:bm;n(u; v) = hUm0 (u) : : : Umm (u) i 26664 b00 : : : b0n... ...bm0 : : : bmn 37775 26664V n0 (v)...V nn (v)37775 ; (22)where the matrix fbijg is known as geometry matrix of the path. Obviously,B�ezier path is uniquely de�ned by its ontrol points. Similarly to the ase ofB�ezier urves and its ontrol polygons, the sequene of ontrol points playsvery important role. In order to avoid misinterpretation, eah ontrol pointis onneted to its neighborou(s) in u and v-diretions by line. These linesand ontrol points form ontrol points mesh.Example 3 B�ezier path of bidegree (1; 1) given by four distint ontrolpoints b00, b01, b10, b11:
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b1;1(u; v) = 1Xi=0 1Xj=0 Bmi (u)Bnj (v)bi;j; [u; v℄ 2 [0; 1℄� [0; 1℄ (23)and its matrix expressionb1;1(u; v) = h 1� u u i 24 b00 b01b10 b11 35 24 1� vv 35 : (24)This bilinear B�ezier path is known as hyperboli paraboloid, isoparametri
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Figure 15: B�ezier path of bidegree (3; 3): bounding urves and on-trol point mesh.u- and v-urves are both lines (see Figure 14).Properties of B�ezier pathes: Resulting diretly from the properties ofthe Bernstein polynomials, we obtain1. CoeÆients of B�ezier path are baryentri oordinates, in other words:mXi=0 nXj=0 Bmi (u)Bnj (v) � 1; (25)for all u, v 2 [0; 1℄;2. aÆne invariane: omputing the aÆne image of ontrol points mesh



2 PRELIMINARIES 23of the surfae and ontrol points mesh of the image of the surfae, weobtain the same result;3. onvex hull property: Bmi (u), Bnj (v) are nonnegative for all 0 � u; v �1. With respet to equations (25) and (20), bm;n(u; v) lies inside theonvex hull of ontrol points mesh;4. boundary urves: Evaluating the path bm;n(u; v) for u = 0; 1, v =0; 1, four B�ezier urves b(0; v), b(1; v), b(u; 0), b(u; 1) are obtained,respetively. Control polygons are formed by appropriate boundaryontrol points (see Fig. 15);5. tangent planes in the orners: omputing ��ubm;n(u; v), ��vbm;n(u; v)and evaluating them for u = 0; 1, v = 0; 1, the orner tangent planesare de�ned by three orner ontrol points (see Figure 16).
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Figure 16: Biquadrati B�ezier path: tangent plane in the ornerontrol point.
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Figure 17: Tensor produt surfae: shaping u-urve bm(u) sweepsalong the path v-urve bn2 (v).2.2.1 Tensor produtDe�nition of B�ezier path via ontrol points mesh (equation (20)) is lassialapproah to this topi. Observing this equation thoroughly, one an inter-prete this de�nition more from the kinemati point of view. Fixing the valueof parameter v = 0, we obtain a starting urvebm0 (u) = bm;n(u; 0) = mXi=0 Bmi (u)bi;0; u 2 [0; 1℄: (26)Varying the parameter v, the system � of B�ezier urves of degree m is ob-tained. This one-parametrial system � may be apprehended as a trajetoryof urve bm0 (u) during ertain aÆne kinemati motion. In other words: urve
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Figure 18: Tensor produt biubi path: onstrution of a pointb3;3(23 ; 12) via �ve de Casteljau algorithms.bm0 (u) is swept out, hanging ontinuously its shape (see Fig. 17). Clearly,eah point travels on the B�ezier urve of degree n. Then, u-urves are per-eived as shaping urves, v-urves represent trajetories of points bm0 (u) dur-ing this motion. Resulting from the symmetry of equation (20), u and v-urves may be replaed by eah other to reeive the same surfae. Then,surfae bm;n(u; v) is known as tensor produt surfae.Consequently, the onstrution of a point on a tensor produt surfae maybe easily redued to several one-dimensional steps. Figure 18 shows theappliation of de Casteljau algorithm for u-urves. The ontrol polygon forisoparametri v-urve is aquired.



2 PRELIMINARIES 262.2.2 Degree elevationFollowing the tensor produt approah to B�ezier pathes, the degree elevationproess may be easily redued to several univariate degree elevation steps ofB�ezier urves (see setion 2.1.2). Let us assume B�ezier path of bidegree(m;n) as a one of bidegree (m + 1; n). The goal is to �nd oeÆients b(1;0)i;jsuh that bm;n(u; v) = nXj=0 m+1Xi=0 Um+1i (u)b1;0i;j| {z }qi(u) Bnj (v): (27)The n + 1 terms qi(u) express n + 1 univariate degree elevation, that wasdisussed in setion 2.1.2. Applying repeatedly (15), the oeÆinets b(1;0)i;jare diretly obtained:b(1;0)i;j = im+ 1bi�1;j + (1� im+ 1)bi;j; (28)where i = 0; : : : ; m + 1 and j = 0; : : : ; n. Interpreting this result, ontrolpoint mesh of the degree elevated B�ezier path is reated from the originalone by n + 1 elevations of row ontrol points of isoparametri u-urves (seeFig. 19).Requesting the progressive degree elevation by k degrees in one diretion,the formula (16) is applied. The degree elevation in the v-diretion is de-�ned analougously. To reeive the degree elevated surfae by one in bothdiretions, we elevate in u-diretion and the v-diretion. Due to the tensorprodut properties, it is irrelevant whether we elevate in u-diretion �rst andthen in v-diretion or vie versa.
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Figure 19: Degree elevation of B�ezier path: redution to severalunivariate degree elevation steps.2.2.3 Nonparametri pathesAnalogously to the setion (2.1.3), one of the most signi�ant appliations ofB�ezier pathes is related to polynomials. The graph of polynomial f in twovariables x and y is easy expressed as a B�ezier path by parametrizationP(x; y) = 26664 xyf(x; y)37775 ; (29)where polynomial f is assumed to be expressed in Bernstein formf(x; y) = mXi=0 nXj=0 Bmi (x)Bnj (y)pi;j; (30)
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Figure 20: Nonparametri path: polynomial f(x; y) represented asB�ezier path.over unit square [0; 1℄� [0; 1℄. Due to linear preision property of Bernsteinpolynomials, the ontrol point mesh is given bybi;j(x; y) = 26664 i=mj=nbi;j 37775 : (31)



2 PRELIMINARIES 29The orthogonal projetion of bi;j into the plane z = 0 reate a uniform pointmesh known as B�ezier absissas and oeÆents bi;j are alled B�ezier ordinates.This is ilustrated in Figure 20. Of ourse, we are not restrited only to unitdomain [0; 1℄� [0; 1℄. Using aÆne transformation, we an map unit domaininto arbitrary domain [a; b℄ � [; d℄ to obtain B�ezier path over requesteddomain.2.3 Linear spae of polynomialsInvestigating polynomials and its degree redution, it is essential to mentionseveral notes onernig the linear spae of polynomials fousing on its norms.Let �n be the linear spae of polynomials of degree at most n, with the basis(Bni )i=0;:::;n, where Bni (t) = �ni�(t� �)i(� � t)n�i(� � �)n (32)are the Bernstein polynomials with respet to a ertain interval [�; �℄ � R.Let us de�ne L2 inner produthf; gi[�;�℄ = Z �� f(t) g(t) dt (33)with respet to the interval [�; �℄ and the normkfk[�;�℄2 = 1hqhf; fi[�;�℄; (34)where h = � � �, indued by it.In this de�nition of the norm, the fator 1=h is introdued in order to obtaina norm whih is invariant under aÆne transformations of the t{axis (see
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Figure 21: The aÆne transformation: the L2 norm of f and its aÆneimage A(f) are the same.Figure 21). More preisely, for any aÆne transformationA : t 7! A0 + A1 t (35)with A1 6= 0, the norms of f with respet to the interval [�; �℄ and of f ÆA�1with respet to the interval A([�; �℄) are idential,kfk[�;�℄2 = kf Æ A�1kA([�;�℄)2 : (36)Various norms on �n are available. Fousing on polynomials from the pointof view of B�ezier urves, we de�ne the maximum norm on BB-oeÆients ofpolynomial f : kfk[�;�℄BB;1 = maxi=0;:::;n jbij; (37)where onstants bi are the y-oordinates of ontrol points (ompare with 18and see Figure 22).The maximum norm of polynomial f is given bykfk[�;�℄1 = maxt2[�;�℄ jf(t)j: (38)



2 PRELIMINARIES 31
PSfrag replaements � �f(t)kfk[�;�℄BB;1

t
y

Figure 22: Maximum norm on BB-oeÆients: polynomial f and itsnorm kfk[�;�℄BB;1 with respet to the interval [�; �℄.
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Figure 23: Maximum norm: polynomial f and its norm kfk[�;�℄1 withrespet to the interval [�; �℄.



2 PRELIMINARIES 32This is ilustrated in Figure 23.One an easily hek that all three norms { L2 norm, maximum norm andmaximum norm on BB-oeÆients { satisfy the de�nition of the norm. ItsaÆne invariane is obvious.2.4 Degree redution and dual basisThe proess of approximating a polynomial of degree n by a polynomial ofdegree k, where k < n, with respet to a suitable norm, is alled degreeredution. We onsider the spaes �n and �k � �n, along with the L2 normde�ned in setion 2.3.Applying degree redution with respet to this norm to the given polynomialp gives the unique polynomial q 2 �k whih minimizes kp� qk[�;�℄2 , i.e.,q = arg minq2�k kp� qk[�;�℄2 : (39)Various tehniques for omputing q are available (see introdution for refer-enes). We desribe a simple tehnique whih is based on the dual basis ofthe Bernstein polynomials.The dual basis to the Bernstein basis of �k onsists of the unique polynomialsDkj of degree k whih satisfyhBki ; Dkj i[�;�℄ = Æij = 8<: 1 if i = j0 otherwise ; i; j = 0 : : : k; (40)see Figure 25. The polynomials Dkj an be represented with respet to theBernstein basis, Dki (t) = 1h kXj=0 i;j Bkj (t); i = 0; : : : ; k; (41)
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Figure 24: Degree redution: polynomial p and its best approximantq with respet to L2 norm.with the oeÆientsp;q = (�1)p+q�kp��kq� min(p;q)Xj=0 (2j + 1)�k+j+1k�p ��k�jk�p��k+j+1k�q ��k�jk�q� (42)whih have been derived in J�uttler (1998), and h = ���. Alternatively, thesepolynomials an be omputed using a reurrene relation involving dual basispolynomials of lower degree and Legendre polynomials Ciesielski (1987).The polynomial q obtained by applying degree redution to p (see (80) and(39)) with respet to the interval [�; �℄ may be omputed fromq(t) = kXj=0 hp(t); Dkj (t)i[�;�℄Bkj (t) = kXj=0  nXi=0 bi�n;ki;j !Bkj (t); (43)with the oeÆients �n;ki;j = hBni (t); Dkj (t)i[�;�℄: (44)
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Figure 25: Dual basis: The Bernstein basis of degree 3 and the asso-iated dual basis funtions.Using the identity hBmi ; Bnj i[�;�℄ = h �mi ��nj�(m+ n + 1) �m+ni+j � ; (45)these oeÆients an be omputed from (86) and (42). Note that theseoeÆients do not depend on the interval [�; �℄, sine the fators h in (86)and (45) anel eah other.Example 4 The degree redution oeÆients for n = 5 and k = 2 form thematrix
(�5;2i;j )i=0;::;5;j=0;:::;2 =

2666666666664
2328 �37 328928 27 � 3280 914 �17�17 914 0� 328 27 928328 �37 2328

3777777777775 : (46)



2 PRELIMINARIES 35
PSfrag replaements

� �

p(t)
q(t) t

y 0

1

2

Figure 26: The best quadrati approximant: given polynomial p andits best approximant q with respet to L2 norm; y-oordinates ofontrol points 0, 1, 2 are omputed via matrix (46); x-oordinatesare distributed uniformly on [�; �℄.The oeÆients vetor (0; 1; 2) of q is obtained by multiplying the row ve-tor (b0; : : : ; b5) of the oeÆients of p by this matrix. Representing parabolaq by B�ezier urve, the ontrol points are0 = 24 �0 35 ; 1 = 24 (�+ �)=21 35 ; 2 = 24 �2 35 : (47)This illustrates Figure 26.



2 PRELIMINARIES 36Algorithm 1 bezlip (p, [�; �℄) fB�ezier lippingg1: if length of interval [�; �℄ � " then2: C  onvex hull of the ontrol points of p with respet to [�; �℄.3: if C intersets t-axis then4: Find [�0; � 0℄ by interseting C with the t{axis.5: if j �0 � � 0 j< 12 j �� � j then6: return (bezlip (p, [�0; � 0℄))7: else8: return (bezlip (p,[�; 12(� + �)℄) [ bezlip (p,[12(�+ �); �℄)).9: end if10: else11: return (;)12: end if13: else14: return ([�; �℄)15: end if2.5 B�ezier lipping and its onvergene rateB�ezier lipping, presented in Nishita, Sederberg and Kakimoto (1990), isrobust polynomial solver, that gives all roots of given polynomial p on giveninterval [�; �℄. Presenting a new polynomial solver with similar struture andomparing it with B�ezier lipping (setion 3), we reall this method at �rst.B�ezier lipping, see Algorithm 1 (bezlip), uses the onvex hull property ofBernstein{B�ezier representations in order to generate one or more intervalsof maximum length " whih ontain(s) the roots.The polynomial p is represented by its B�ezier oeÆients with respet to theurrent interval [�; �℄. The graph of p an be desribed as a parametri B�ezier
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() (d)Figure 27: One iteration of bezlip: (a) The polynomial p is repre-sented in BB-form on [�; �℄, (b) The onvex hull C of ontrol polygonis onstruted, () C is interseted with t{axis in order to de�ne newinterval [�0; � 0℄, (d) p is subdivided on [�0; � 0℄.
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� �p t� �0 �0Figure 28: False positive answer: If the lenght of the interval [�0; � 0℄is less then presribed auray �, bezlip returns [�0; � 0℄ as root-ontaining interval.urve (see setion 2.1.3) with ontrol pointsbi = ((n� i)� + i�n ; bi); i = 0; : : : ; n: (48)Due to the onvex{hull property, the graph lies within the onvex hull C ofthe ontrol points (bi)i=0;:::;n. Consequently, all roots of the polynomial p areontained in the interval whih is obtained by interseting C with the t{axis.This observation, whih is illustrated by Figure 27, is used in lines 2{4 ofthe algorithm to generate the next interval.In line 6, the de Casteljau algorithm is applied twie to generate the oeÆ-ients with respet to the subinterval [�0; � 0℄. Similar, it is applied one inline 8, in order to biset the interval.For any root ontained in [0; 1℄, the all bezlip(p; [0; 1℄) returns an intervalontaining that root. B�ezier lipping may produe false positive answers (i.e.,intervals not ontaining any root) if the graph of the polynomial gets verylose to the t{axis.



2 PRELIMINARIES 39In order to study the eÆieny of B�ezier lipping, we analyze the sequene(hi)1i=0 of the lengths of the intervals [�; �℄ generated after alling bezlip itimes. Note that algorithm bezlip ats reursively, and ombines bisetionwith lipping steps. Here we follow only one path in the exeution tree whihleads towards one of the roots. As observed by Nishita and Sederberg (1990),this sequene has onvergene rate 2, provided that it leads to a single root.In the ase of multiple roots, however, only linear onvergene is ahieved.(See Gautshi (1997) for more information about onvergene rates).



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 403 Computing roots via quadrati lippingIn this setion, we desribe a new algorithm quadlip for isolating the rootsof univariate polynomial and analyze its onvergene rates in the ases ofroots with multipliities 1 and 2. Then, we present a detailed omparisonwith the standard tehnique of B�ezier lipping.3.1 The root{�nding problemLet �n be the linear spae of polynomials of degree n, with the basis (Bni )i=0;:::;n,where Bni (t) = �ni�(t� �)i(� � t)n�i(� � �)n (49)are the Bernstein polynomials with respet to a ertain interval [�; �℄ � R.Any polynomial p 2 �n an be desribed by its Bernstein{B�ezier represen-tation with respet to that interval,p(t) = nXi=0 biBni (t); t 2 [�; �℄; (50)with ertain Bernstein{B�ezier (BB) oeÆients bi 2 R.We onsider a given polynomial p 2 �n in Bernstein{B�ezier representationwith respet to the interval [�; �℄. All roots of p within [�; �℄ are to be found.More preisely, we want to generate a set of intervals of maximum length "whih ontain the roots, where the parameter " spei�es the desired auray.



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 413.2 AlgorithmBased on degree redution to a quadrati polynomial (see setion 2.4), we pro-pose a new tehnique for omputing the roots, see Algorithm 3 (quadlip).Some steps of the algorithm will be explained in more detail:� In line 2 of the algorithm, we generate the best quadrati approximant qwith respet to the L2 norm on the urrent interval [�; �℄, see Fig. 29(b).This is ahieved by multiplying the row vetor of B�ezier oeÆients of pwith the degree redution matrix (�n;2i;j )i=0;:::;n;j=0;1;2. These oeÆientsare preomputed and stored in a lookup{table.� In order to obtain the bound Æ onkp� qk[�;�℄1 = maxt2[�;�℄ jp(t)� q(t)j; (51)see line 3, we raise the degree of the Bernstein{B�ezier representationof the quadrati polynomial q to n. Similar to degree redution, thisis ahieved by multiplying the row vetor of B�ezier oeÆients of qwith the degree raising matrix (�2;ni;j )i=0;2;1;j=0;:::;n. These oeÆientsare again preomputed and stored in a lookup{table, see Example 5.The bound is hosen as Æ = maxi=0;:::;n jbi � ij; (52)see Fig. 29(), where bi and i are the oeÆients of the Bernstein{B�ezier representations of p and q of degree n with respet to [�; �℄,respetively.



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 42
Algorithm 2 quadlip(p, [�; �℄) fQuadrati lippingg1: if length of interval [�; �℄ � " then2: q  generate a quadrati polynomial by applying degree redutionwith respet to the L2 inner produt on [�; �℄ to p.3: Æ  ompute bound on kp�qk[�;�℄1 by omparing the Bernstein{B�ezierrepresentations of p and q.4: m q � Æ flower boundg5: M  q + Æ fupper boundg6: if the strip enlosed by m;M does not interset the t{axis within [�; �℄then7: return (;)8: else9: Find intervals [�i; �i℄, i = 1; : : : ; k, by interseting m;M with thet{axis. The number k of intervals is either 1 of 2.10: if maxi=1;:::;k j�i � �ij > 12 j�� �j then11: return (quadlip (p,[�; 12(�+�)℄) [ quadlip (p,[12(�+�); �℄)).12: else13: S  ;14: for i = 1; : : : ; k do15: S  S [ quadlip(p; [�i; �i℄)16: end for17: return (S)18: end if19: end if20: else21: return ([�; �℄)22: end if
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() ()Figure 29: One iteration of quadlip: (a) the polynomial p is repre-sented in BB-form on [�; �℄, (b) q { the best quadrati approximantof p with respet to L2 norm, () the error bound Æ is obtained as themaximum length of the thik grey vertial bars, (d) the lower andupper bounds m = q� Æ and M = q+ Æ, the intersetion of the stripenlosed by them with the t{axis de�nes the new interval [�0; � 0℄.



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 44� In lines 4 and 5, the bound Æ is used to onstrut quadrati polynomialsm and M satisfying8t 2 [�; �℄ : m(t) � p(t) �M(t): (53)� In lines 6{19 we analyze the strip enlosed by m and M and its inter-setion with the t{axis, see Fig. 30. If the intersetion is empty, thenno roots exist. Otherwise, the intersetion onsists of either one or twointervals that ontain the roots. Their boundaries are found by solvingtwo quadrati equations, see Remark 2.� If the length(s) of this/these interval(s) is/are suÆiently small, whenompared to the length of the previous interval [�; �℄, then quadlipis applied to them (lines 14{16). Otherwise we biset the interval [�; �℄and apply quadlip to the two halves (line 11).For any root ontained in [�; �℄, the all quadlip(p; [�; �℄) returns an inter-val ontaining that root. Similar to B�ezier lipping, quadrati lipping mayprodue false positive answers (i.e., intervals not ontaining any root) if thegraph of the polynomial gets very lose to the t{axis.Example 5 The degree raising oeÆients for n = 5 and k = 2 form thematrix (�2;5i;j )i=1;:::;2;j=0;:::;5 = 26664 1 35 310 110 0 00 25 35 35 25 00 0 110 310 35 1 37775 ; (54)where oeÆients are omputed via dual basis�2;5i;j = hB2i (t); D5j (t)i[�;�℄; (55)(see setion 2.4). The vetor of BB-representation of degree-raised parabolaq is obtained by multiplying the row vetor (0; 1; 2) by matrix (�2;5i;j ), seeFigure 31.
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(a) (b)Figure 30: The de�nition of a new domain: a) The parabolistrip { enlosed by M and m { is interseted with t-axis, �veoptions may our, b) Case 1, intervals de�ned by roots of Mand m are interseted with the original interval [�; �℄ in orderto obtain the new domains.Remark 1 In order to onstrut bound Æ (see eq. 52)), the maximum normon vetors of BB-representation of p and q is used. Clearly,kp� qk[�;�℄1 = nXi=0 jbi � ijBni (t) � nXi=0 maxi=0;:::;n jbi � ijBni (t) == maxi=0;:::;n jbi � ij = kp� qk[�;�℄BB;1 = Æ; (57)therefore the bounds M and m are well de�ned.Remark 2 The roots of a quadrati polynomial (f. lines 6 and 9 of thealgorithm) g(t) = B20(t) d0 +B21(t) d1 +B22(t) d2 are t1j2 = (1� �1j2)�+ �1j2�where �1j2 = d1 � d0 �pDd2 � 2d1 + d0 : (58)
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Figure 31: The degree-raised parabola: The best quadratiapproximant q, its original BB-representation (0; 1; 2) andthe ontrol polygon of q after degree raising.with D = d21 � d0 d2. If jd2 � 2d1 + d0j is below a user{de�ned threshold(whih depends on the auray of the numerial omputation), then theomputation of the roots via (58) beomes numerially unstable. In thissituation we apply B�ezier lipping to the ontrol polygon of g in order tobound the roots.3.3 Convergene rateIn order to make this thesis self{ontained, we start this setion by formu-lating two tehnial lemmas.Lemma 1 For any given polynomial p, there exists a onstant Cp depending



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 47solely on p, suh that for all intervals [�; �℄ � [0; 1℄ the bound Æ generated inline 3 of Algorithm quadlip satis�es Æ � Cp h3, where h = � � �.Proof 1 Due to the equivalene of norms in �nite{dimensional real linearspaes, there exist onstants C1 and C2 suh that8r 2 �n : krk[�;�℄BB;1 � C1krk[�;�℄2 and krk[�;�℄2 � C2krk[�;�℄1 ; (59)where the three norms are the maximum (`1) norm of the Bernstein{B�ezieroeÆients, the L2 norm and the maximum norm (see setion 2.3) all withrespet to the interval [�; �℄. The onstants C1 and C2 do not depend on the

PSfrag replaements
Q�
p

� �q kp� qk[�;�℄1
kp�Q�k[�;�℄1

hFigure 32: The lenghts of both thik grey vertial bars are ofO(h3).



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 48given interval [�; �℄, sine all three norms are invariant with respet to aÆnetransformations of the t{axis; f. (83) and (84).Consequently,Æ = kp� qk[�;�℄BB;1 � C1kp� qk[�;�℄2 � C1kp�Q�k[�;�℄2 �� C1C2kp�Q�k[�;�℄1 � 16 C1C2 maxt02[0;1℄ jp000(t0)j h3; (60)where Q� is the quadrati Taylor polynomial at t = � to p and p000 is thethird derivative. �Lemma 2 For any given polynomial p there exist onstants Vp, Dp and Apdepending solely on p, suh that for all intervals [�; �℄ � [0; 1℄ the quadratipolynomial q obtained by applying degree redution to p satis�eskp� qk[�;�℄1 � Vp h3; kp0 � q0k[�;�℄1 � Dp h2; and kp00 � q00k[�;�℄1 � Ap h; (61)with h = � � �, where k:k[�;�℄1 is de�ned as in (??).Proof 2 Similar to the proof of the previous lemma, it an be shown thatthe norm krk[�;�℄? = krk[�;�℄1 + h kr0k[�;�℄1 + h2 kr00k[�;�℄1 ; (62)satis�es krk[�;�℄? � C3krk[�;�℄2 (63)where the onstant C3 does not depend on the interval [�; �℄, again due to theaÆne invariane. Therefore, and using similar arguments as in the previousproof,kp� qk[�;�℄? = kp� qk[�;�℄1 + h kp0 � q0k[�;�℄1 + h2 kp00 � q00k[�;�℄1 �� C3kp� qk[�;�℄2 � C3kp�Q�k[�;�℄2 � C2C3kp�Q�k[�;�℄1 �� 16 C2C3 maxt02[0;1℄ jp000(t0)j h3; (64)



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 49where Q� is the quadrati Taylor polynomial at t = � to p. Clearly, thisimplies (61) �.Now we are able to analyze the speed of onvergene. The ase of single anddouble roots will be dealt with separately. In the ase of single roots, weobtain the following result.Theorem 1 If the polynomial p has a root t? in [�; �℄ and provided thatthis root has multipliity 1, then the sequene of the lengths of the intervalsgenerated by quadlip whih ontain that root has the onvergene rate d =3.Proof 3 The all quadlip(p; [�; �℄) generates a sequene of intervals([�i; �i℄)i=0;1;2;::: (65)with the lengths hi = �i � �i whose boundaries onverge to t?. We assumethat the �rst derivative satis�es p0(t?) > 0. If this assumption is violated,one may onsider the polynomial �p instead of p.Let qi be the quadrati polynomial obtained by degree redution with respetto the interval [�i; �i℄. Sine p0 is ontinuous and due to Lemma 2, theinequalitieskp0 � p0(t?)k[�i;�i℄1 � 14p0(t?) and kq0i � p0k[�i;�i℄1 � 14p0(t?) (66)hold for all but �nitely many values of i, where the maximum norm refers tothe interval [�i; �i℄. These two inequalities implykq0i � p0(t?)k[�i;�i℄1 � 12 p0(t?); hene 8t 2 [�i; �i℄ : q0i(t) > 12 p0(t?): (67)On the other hand, the vertial width 2Æi of the strip enlosed by m and Mis bounded by 2Cp h3i , due to Lemma 1. Thus, the lengths hi of the intervals
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Figure 33: Proof of Eq. (68)satisfy hi+1 � 4Cpp0(t?) h3i (68)for all but �nitely many values of i, see Fig. 33. �As for B�ezier lipping, multiple roots slow down the speed of onvergene.However, the rate is still super-linear for double roots, as desribed in thefollowing Theorem. See Figure 34 for an illustration.Theorem 2 If the polynomial p has a root t? in [�; �℄ and provided thatthis root has multipliity 2, then the sequene of the lengths of the intervalsgenerated by quadlip whih ontain that root has the onvergene rate d =32 .Proof 4 Similar to the proof of the previous Theorem, we analyze the se-quene (65) of intervals with lengths hi generated by the algorithm whih
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3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 52the interval [�i; �i℄. These two inequalities implykq00i � p00(t?)k[�i;�i℄1 � 12p00(t?); hene 8t 2 [�i; �i℄ : q00i (t) > 12p00(t?): (70)We onsider the lower bound mi = qi�Æi obtained by applying degree redu-tion with respet to the interval [�i; �i℄. Due to p00(t?) > 0, its intersetionswith the t{axis bound the next interval [�i+1; �i+1℄ for all but �nitely manyvalues of i. Let mi = ai2 (t� t?)2 + bi(t� t?) + i (71)with ertain real oeÆients ai = q00i (t?), bi = q0i(t?) and i. Aording to(70), the leading oeÆient satis�esai � 12p00(t?) (72)for all but �nitely many values of i. Due to the two Lemmas and to p0(t?) = 0,the other two oeÆients satisfyjbij = jp0(t?)� q0(t?)j � kp0 � q0k[�i;�i℄1 � Dp h2i (73)and jij = jp(t?)�m(t?)j � jp(t?)� q(t?)j+ jq(t?)�m(t?)j� kp� qk[�i;�i℄1 + Æi � (Vp + Cp) h3i : (74)The oeÆients i are non{positive, i � 0.For all but �nitely many values of i, the lengths of the interval [�i+1; �i+1℄ arebounded by the di�erene of the roots of the lower bound mi, whih leads tohi+1 � 2s b2ia2i � 2iai � jbijai +s2jijai � 2Dpp00(t?)h2i +s4(Cp + Vp)p00(t?) h3=2i : (75)Hene, the sequene (hi)i=0;1;2;::: has the onvergene rate 32 . �



4 COMPARISON 534 ComparisonWe ompare the two algorithms (B�ezier lipping and quadrati lipping)with respet to �ve riteria: onvergene rate, number of operations periteration step, time per iteration step, number of iterations needed to ahievea ertain presribed auray, and omputing time needed to ahieve a ertainpresribed auray.4.1 Convergene rates, number of operations and timeper iteration stepThe results onerning the onvergene rates are summarized in Table 2.With respet to these rates, the new algorithm learly performs better thanB�ezier lipping. However, the omputational e�ort per iteration step isequally important. For instane, it is known that solving univariate equa-tions by the seant method, where the onvergene rate is (1+p5)=2 � 1:618for a single root, is generally faster than Newton's method with quadrationvergene rate, sine it needs only one evaluation of the funtion per iter-ation step, while Newton's method needs one evaluation of the funtion andand another one of the derivative. Consequently, the omputational osts oftwo steps of the seant method and of one step of the Newton method areomparable.Table 3 shows the number of operations needed per iteration step, where itis assumed that one new interval is found (i.e., k = 1 in line 9 of Algorithm3) and that this interval has shrunk by more than 12 , f. line 5 of Algorithm1 and line 10 of Algorithm 3. Also, the number of operations needed foromputing the onvex hull for Algorithm 1 varies slightly; here we assume to



4 COMPARISON 54root multipliity single root double root triple root, et.quadlip 3 32 1bezlip 2 1 1Table 2: Convergene rates of the algorithms quadlip and bezlip.degree quadlip bezlipn � �� � p j:j P � �� � p j:j P2 120 75 30 4 0 229 90 30 5 0 0 1254 228 115 32 4 6 385 214 62 9 0 0 2858 548 243 30 4 2 827 582 174 17 0 0 77316 1676 691 30 4 2 2403 1698 590 33 0 0 2321Table 3: Number of operations per step of the iteration for variousvalues of the degree n.have a onvex ontrol polygon, sine this is the limit ase in general.The lassial B�ezier lipping has a slight advantage, though the omputa-tional osts of both methods are roughly omparable. The number of op-erations grows quadratially with the degree n. For both algorithms, theomputational e�ort grows linearly, exept for the quadrati grow aused byde Casteljau's algorithm whih is used to generate the Bernstein{B�ezier rep-resentation with respet to the newly generated interval. For large degreesn, the de Casteljau algorithm dominates the overall omputational osts andthe omputational osts of both algorithms beome inreasingly similar.This piture beomes even more lear by omparing the omputation times.We implemented both algorithms in C on a PC with a Intel(R) Xeon(TM)



4 COMPARISON 55degree of the polynomial 2 4 8 16quadlip 2.0 2.8 4.4 9.6bezlip 1.3 1.9 3.5 8.3Table 4: Time per iterations in miroseonds for various degrees n.CPU (2.40GHz) with 512KB of RAM running Linux and measured the timeneeded for 105 iterations (in order to obtain a measurable quantity). Theresults are reported in Table 4.In addition, Fig. 35a shows the relation between omputing times and poly-nomial degree, and Fig. 35b visualizes the ratio tquadlip=tbezlip. For largevalues of the degree n, the ratio tends to 1, sine the omputational e�ort ofthe de Casteljau algorithm beomes inreasingly dominant.4.2 Number of iterations and omputing times vs. a-urayIn order to analyze the relation between the omputational e�ort and thedesired auray, we disuss three examples, whih represent polynomialswith a single root, a double root, and two roots whih are very lose (\neardouble root").Example 6 (Single root) We applied the algorithms bezlip and quadlipto the four polynomialsf2(t) = (t� 13)(3� t); f4(t) = (t� 13)(2� t)(t+ 5)2;f8(t) = (t� 13)(2� t)3(t + 5)4; f16(t) = (t� 13)(2� t)5(t + 5)10in order to ompute the single root 13 in the interval [0; 1℄. Table 5 reportsthe number of iterations and the omputing times for various values of the
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" 10�2 10�4 10�8 10�16 10�32 10�64 10�128

degreen quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip2 N 1 2 1 3 1 3 1 4 1 5 1 6 1 7t 2.0 2.5 2.0 3.5 2.0 3.5 2.0 5.9 2.0 7.2 2.0 8.6 2.0 9.94 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8t 5.4 3.9 5.4 5.5 8.1 7.2 8.2 8.8 10.8 10.6 13.4 12.5 13.5 14.48 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8t 8.7 6.8 8.9 10.1 13.0 16.9 13.0 20.4 17.5 23.8 21.8 23.8 21.8 27.416 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8t 18.7 16.3 18.7 24.2 28.0 32.3 28.1 39.9 37.5 47.5 46.9 55.4 46.9 63.3Table 5: Example 6 (single root): Number of iterations N and om-puting time t in �s for various values of degree n and auray ".The times for more than 16 signi�ant digits (shown in itali) havebeen obtained by extrapolation.
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" 10�2 10�4 10�8 10�16 10�32 10�64 10�128

degreen quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip2 N 1 7 1 14 1 27 1 54 1 107 1 213 1 343t 2.0 8.6 2.0 15.6 2.0 30.3 2.0 61.6 2.0 124 2.0 246 2.0 3834 N 3 7 3 14 4 27 4 53 5 107 7 213 8 332t 7.1 13.6 7.2 25.1 10.4 47.2 10.4 93.7 16.8 188 19.6 375 22.4 5628 N 3 5 4 9 6 17 6 34 9 68 10 135 12 269t 12.2 16.7 16.4 32.2 26.6 63.1 26.9 124 39.6 249 44.1 495 52.8 98816 N 3 4 5 7 6 14 8 27 10 54 11 107 12 213t 27.4 32.3 45.4 56.2 56.1 107 76.8 206 96.2 402 105 823 115 1635Table 6: Example 7 (double root): Number of iterations N and om-puting time t in �s for various values of degree n and auray ".The times for more than 16 signi�ant digits (shown in itali) havebeen obtained by extrapolation.
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" 10�2 10�4 10�8 10�16 10�32 10�64 10�128

degreen quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip quadlip bezlip2 N 1 13 1 18 1 20 1 22 1 25 1 27 1 29t 2.0 13.2 2.0 18.6 2.0 20.9 2.0 23.1 2.0 24.6 2.0 247.0 2.0 29.04 N 3 7 4 13 6 27 8 35 10 37 12 39 14 43t 7.1 14.2 9.4 26.9 15.1 52.2 23.9 68.4 28.1 71.8 33.6 75.3 39.2 83.68 N 4 5 5 9 7 18 9 26 11 28 13 30 15 32t 16.2 20.2 20.3 35.8 30.4 71.4 40.2 103 49.4 111 57.4 119 66.2 12716 N 2 4 3 7 5 14 7 22 9 24 11 26 11 28t 18.6 32.2 27.4 58.4 50.6 113 63.2 176 86.4 192 105 208 105 224Table 7: Example 8 (near double root): Number of iterations N andomputing time t in �s for various values of degree n and auray ".The times for more than 16 signi�ant digits (shown in itali) havebeen obtained by extrapolation.
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5 BIVARIATE LINEAR CLIPPING 665 Bivariate linear lippingIn this setion, we present the generalization of univariate polynomial solverquadlip. Based on degree redution to linear approximants, the new linearlipping algorithm (bilinlip) is presented on bivariate polynomial system,however the idea may be easily applied to the system of n equations.5.1 The root{�nding problemLet us assume system of two polynomial equationsp(x; y) = 0q(x; y) = 0 (76)in variables x, y. Let both p and q be polynomials of bidegree (m;n)p(x; y) = m;nxmyn + m�1;nxm�1yn + � � �+ 0;0; m;n 6= 0: (77)Let us denote �m;n the (n+1)(m+1) dimensional linear spae of polynomialsof bidegree at most (m;n), with the basisBm;ni;j = fBmi (x)Bnj (y)gi=0;:::;m;j=0;:::;n,where Bmi (x) = �mi �(x� �)i(� � x)m�i(� � �)m ; (78)Bnj (y) = �nj�(y � )j(Æ � y)n�j(Æ � )n (79)are the Bernstein polynomials with respet to intervals [�; �℄; [; Æ℄ � R,respetively. Any polynomial p 2 �m;n an be desribed by its Bernstein{



5 BIVARIATE LINEAR CLIPPING 67B�ezier representation with respet to the domain [�; �℄� [; Æ℄,p(x; y) = mXi=0 nXj=0 bijBmi (x)Bnj (y); [x; y℄ 2 [�; �℄� [; Æ℄; (80)with ertain Bernstein{B�ezier (BB) oeÆients bij 2 R.We onsider a given polynomial system (76) in Bernstein{B�ezier representa-tion with respet to the domain [�; �℄ � [; Æ℄. All roots of (76) within thisdomain are to be found. More preisely, we want to generate a set of do-mains of maximum diameter 2" whih ontain the roots, where the parameter" spei�es the desired auray.5.2 The generalization of L2 norm and dual basisFollowing the setion 2.4, the de�nition of L2 norm and dual basis is easilyadopted for bivariate polynomials.5.2.1 L2 normWe onsider the spae �m;n with the L2 inner produthf; giD = Z �� Z Æ f(x; y) g(x; y) dy dx (81)with respet to the domain D = [�; �℄� [; Æ℄ and the normkfkD2 = 1kphf; fiD; (82)where h = (� � �)(Æ � ), indued by it.



5 BIVARIATE LINEAR CLIPPING 68Similarly to the univariate ase, the fator 1=h is introdued in order to obtaina norm whih is invariant under aÆne transformations in the diretions ofthe x and y{axes. More preisely, for any aÆne transformationA : 0� xy1A 7! 0� a0a11A+0� b00 00 b111A0� xy1A (83)with det(B) 6= 0 the norms of f with respet to the domain D and of f ÆA�1with respet to the domain A(D) are idential,kfkD2 = kf Æ A�1kA(D)2 : (84)5.2.2 Dual basisApplying degree redution with respet to L2 norm to the given polynomialp gives the unique polynomial p 2 �k whih minimizes kp� pkD2 .Let us assume �m;n with basis Bm;ni;j and let �k be the 2(k + 1)-dimensionalsubspae of all polynomials p, of whih power of both variables x and y is atmost k. Let us assume \monomial" basis fB ig2k+1i=0 = f1; x; y; xy; : : : ; xkykg.The dual basis fD ig2k+1i=0 to the basis fB ig2k+1i=0 of �k is uniquely de�ned byformula hB i ; D j iD = Æij = 8<: 1 if i = j0 otherwise ; i; j = 0; : : : ; 2k + 1: (85)The polynomials D j an be represented with respet to the original basisD i(x; y) = 1h 2k+1Xj=0 ri;j B j (x; y); i = 0; : : : ; 2k + 1: (86)



5 BIVARIATE LINEAR CLIPPING 69Aording to the dual basis properties (85), oeÆients ri;j are easy to om-pute via linear system of equations.The polynomial p obtained by applying degree redution to p (see (80)) withrespet to the domain D may be omputed fromp(x; y) = 2k+1Xj=0 hp; D j iD B j = 2k+1Xj=0  mXi=0 nXl=0 bi;l�ji;l! B j ; (87)with the oeÆients �ji;l = hBm;ni;l ; D j iD: (88)Example 9 Computing oeÆients ri;j, the equation (86) is multiplied (withrespet to the L2 inner produt (82)) by B i , i = 0; 1; 2. Solving the linearsystem, the dual basis fD jg2j=0 to the basis fB ig2i=0 = f1; x; yg on the unitdomain h0; 1i � h0; 1i is: D 0 = 7� 6x� 6yD 1 = �6 + 12xD 2 = �6 + 12y: (89)Example 10 The matrix of redution oeÆients for m = 3, n = 3.(�0i;j) = 2666664 2328 1728 1128 1161780 1180 116 � 1801180 1116 � 180 � 780116 � 180 � 780 �1380
3777775The best linear approximant p to p with respet to the L2 norm isp(x; y) = Æ0 + Æ1x + Æ2y; (91)where Æk = 3Xi=0 3Xj=0 bi;j�ki;j; k = 0; 1; 2 (92)



5 BIVARIATE LINEAR CLIPPING 70and bi;j are the Bernstein-B�ezier oeÆients of p (see (80)).5.3 AlgorithmSome steps of the algorithm will be explained in more detail:� In line 2 of the algorithm, we generate the best linear approximant pof p with respet to the L2 norm on the urrent domain [�; �℄� [; Æ℄.In other words, oeÆients Æ0, Æ1, Æ2 are to be found suh thatI = 1h Z �� Z Æ p(x; y)� (Æ0 + Æ1x + Æ2y) dy dx (93)is minimal. This is ahieved via dual basis (see Example 10 and Fig.42(d)). The linear approximant q is found the same way.� In order to obtain the bound Æp onkp� pkD1 = max[x;y℄2D jp(x; y)� p(x; y)j; (94)see line 3, we represent the linear funtion p as a Bernstein{B�ezierpath of bidegree (m;n). Therefore, p is represented via (m+1)(n+1)ontrol points i;j, i = 0; : : : ; m; j = 0; : : : ; n. Due to the properties ofBernstein polynomials, the bound is omputed asÆp = maxi;j jbi;j � i;jj; i = 0; : : : ; m; j = 0; : : : ; n (95)see Fig. 43(e), where bi;j and i;j are the oeÆients of the Bernstein{B�ezier representations of p and p with respet to domain D, respe-tively.



5 BIVARIATE LINEAR CLIPPING 71Algorithm 3 bilinlip(p, q, [�; �℄, [; Æ℄) fBivariate linear lippingg1: if diameter of domain [�; �℄� [; Æ℄ = D � " then2: p, q  generate the best linear approximant to p, q with respet tothe L2 inner produt on D.3: Æp, Æq  ompute bound on kp � pkD1 by omparing the Bernstein{B�ezier representations of p and p.4: pU  p+ Æp fupper bound of pg5: pL  p� Æp flower bound of pg6: qU  q + Æq fupper bound of qg7: qL  q � Æq flower bound of qg8: P  parallelogram in the plane z = 0 bounded by lines pU = 0, pL = 0,qU = 0, qL = 0.9: R retangle bounding P .10: if D \ R = ; then11: return (;)12: else13: De�ne new domain D0 = D \ R.14: if diam(D0) � 12 diam(D) then15: return (bilinlip (p, q, [�; 12(�+ �)℄� [; 12( + Æ)℄)[ bilinlip (p, q, [12(� + �); �℄� [; 12( + Æ)℄)[ bilinlip (p, q, [�; 12(� + �)℄� [12( + Æ); Æ℄)[ bilinlip (p, q, [12(� + �); �℄� [12( + Æ); Æ℄))16: else17: S  bilinlip(p, q, D0)18: return (S)19: end if20: end if21: else22: return (D)23: end if
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xFigure 45: The null set of p and q in unit domain5.4 ExamplesIn all examples bellow, all time-values of C ode implementation of bilinlipwere measured on a PC with a Intel(R) Xeon(TM) CPU (2.40GHz) with1.98GB of RAM running Linux. The loop of 104 repetitons was measured(in order to obtain a measurable quantity).Example 11 We applied the alogorithm bilinlip to the polynomials pand q of the bidegree (5; 5) in order to ompute all roots within the domainh0; 1i � h0; 1i, see (Fig. 45). P 5;5 and Q5;5 are the matries of Bernstein{B�ezier oeÆients of p and q, respetively. The graphs of both polynomialin R3 are visualized in Fig. 46.



5 BIVARIATE LINEAR CLIPPING 76

Figure 46: Polynomials p and q over unit domain.
P 5;5 =

26666666666666664
�20 �20 �20 �20 �20 �50�30 30 30 30 30 30�50 50 50 50 50 3050 50 50 50 50 50�150�150�150�150�150 50�50 50 50 50 50 50

37777777777777775 Q5;5 =
26666666666666664
�20 30 30 20 �10 �20�30 �30 �10 100 �150 30�50 �50 �10 100 �150 30�50 50 50 100 �150 50�50 50 50 100 �150 50�50 �50 20 30 50 50

37777777777777775Table 8 shows the numbers of progressive steps (lipping), bisetion steps,number of all iterations, number of roots and time with respet to the pre-sribed auray ". Aording to the shape of both polynomials, bisetionsteps dominate when low auray is required. After separating roots, al-gorithm works progressively without bisetion steps. Ahieving suÆientlyhigh auray, the phantom root is eliminated.Example 12 We applied the algorithm bilinlip to the Astroid p = x 23 +y 23 � 5 23 and Maltese Cross urve q = (x2 + y2) � xy (x2 � y2) within the



5 BIVARIATE LINEAR CLIPPING 77" 10�2 10�4 10�8 10�16lipping 19 28 36 50bisetion 12 12 12 12all iterations 60 70 78 92roots 8 7 7 7time(ms) 1:76 2:10 2:39 3:08Table 8: Example 11; omputing time, number of all itera-tions and number of roots within presribed auray ".domain h�5; 5i � h�5; 5i (see Fig. 47). Table 9 shows the numbers of pro-gressive steps, bisetion steps, number of all iterations, number of roots andtime with respet to the presribed auray ".Example 13 bilinlip was applied to the Desartes leaf p = x3+y3�3 xyand Lemnisat of Bernoulli q = (x2 + y2)2 � 2 x2 + 2 y2 within the domainh�2; 2i�h�2; 2i, see (Fig. 48). Again, Table 10 gives the numbers of progres-sive steps, bisetion steps, number of all iterations, number of roots and timewith respet to the presribed auray ". With respet to the multiplerootin [0; 0℄, signi�antly more iterations are neessary. Realizing the strutureof bilinlip, domain h�2; 2i � h�2; 2i is biseted after �rst iteration androot [0; 0℄ is onseutively inluded in four subdomains. Consequently, sixroots is reasonable solution within auray 10�16.
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" 10�1 10�2 10�4 10�8 10�16lipping 32 40 52 60 72bisetion 49 49 49 49 49all iterations 217 229 241 249 361roots 12 8 8 8 8time(ms) 8:43 9:38 9:50 9:81 11:47Table 9: Example 12; number of iterations with respet to the auray ".
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Figure 48: Desartes leaf and Lemnisat of Bernoulli on h�5; 5i �h�5; 5i " 10�2 10�4 10�8 10�16lipping 12 27 41 47bisetion 50 66 66 66all iterations 195 282 298 308roots 18 10 8 6time(ms) 3:09 4:07 4:39 4:63Table 10: Example 13; omputing time and number of iterationswithin presribed auray "
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Figure 49: Intersetion of urves of bidegree (6; 6)bilinlip IPP�iter: 2305 389result 39 78time(ms) 85 44Table 11: Example 14; time and number of iterations withinpresribed auray "In order to get omparable data with IPP algorithm, we applied our methodon two examples presented in Mourrain and Pavone (2005). With respetto omputer settings data presented in this paper (Intel Pentium 4, 2.0 GHzwith 512 Mo RAM), our time{onerning data should be inreased by some"handiap" onstant ompensating di�erent proessor tating.
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Figure 50: Intersetion of urves of bidegree (8; 8)Example 14 Intersetion of urves of bidegree (6; 6) are omputed, see Fig.49. Table 11 shows number of iterations, number of roots and time withrespet to the auray " = 10�6 omputed via bilinlip and intervalprojeted polyhedron algorithm with loal preonditioner (IPP*).Example 15 Intersetion of urves of bidegree (8; 8), Mourrain and Pavone(2005) example a, are omputed. Table 12 shows number of iterations, num-ber of roots and time with respet to the auray " = 10�6 omputed viabilinlip and (IPP*).Remark 3 In examples above, the behaviour of bilinlip was di�erentwith the respet of single or multiple roots. We remind the de�nition ofsingle root of system (76). We say, that point A = [x0; y0℄ is a single rootof system (76) if and only if (p(x0; y0) = 0; q(x0; y0) = 0) and there existgradients rA q, rA p and are linearly independent (see Figure 51).



5 BIVARIATE LINEAR CLIPPING 82bilinlip IPP�iter: 2045 1055result 16 60time(ms) 76 120Table 12: Example 15; time and number of iterations withinpresribed auray "
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Figure 51: Single root of bivariate polynomial system.Remark 4 Let us assume the system (76) has only one single root in domainD = D0 and let us denote di the diameter of domain Di after i-th iterationof bilinlip. Aording to many examples, the sequene (di)0;1;2;::: has theonvergene rate r = 2. The proof is under researh.



5 BIVARIATE LINEAR CLIPPING 83Remark 5 In fat, the algorithm bilinlip is not pure generalization ofquadlip. Contrary to quadlip, the best approximant with respet to L2norm is "only" linear in bivariate ase. Using quadrati approximant, onean expet { similarly to univariate ase { higher onvergene rate. Equally,the number of operations (and onsequently the time per one iteration) isexpeted to be inreased. The intersetion of two onis instead of lines(ompare with line 8, Algorithm 3) appears to be more ompliated. Anyway,the improvement of algorithm bilinlip ould be possible this way and isstill under researh.



6 CONCLUSION 846 ConlusionBased on the tehniques of degree redution, we derived an algorithm foromputing all roots of a given polynomial within a given interval, with aertain auray. We analyzed the onvergene rates of the new tehniqueand ompared it with the lassial tehnique of B�ezier lipping. In the aseof single roots, the new algorithm performs similarly to B�ezier lipping. Fordouble and near double roots, however, it redues the omputational e�ort.This is due to its superlinear onvergene rate (32) in the ase of double roots.As a diret improvement of the method, one may replae the quadrati poly-nomial q by a ubi or even a quarti one. In this ase, the formulas ofCardano and Ferrari are needed to ompute the intersetions of the bound-ing polynomial strip with the t{axis. Clearly, these omputations are moreinvolved than in the ase of a quadrati polynomial. It is to be expetedthat suh a generalized algorithm would provide an even higher onvergenerate for single and double roots, and superlinear onvergene for roots withmultipliities 3 and 4.Demonstrated on bivariate ase, the generalization of the algorithm is pre-sented. This tehnique is based on approximation by linear polynomials andit appears to have quadrati onvergene rate in single roots, leading to re-sults omparable to those of Mourrain and Pavone (2005). Attempting toreah faster onvergene rate for single roots and superlinear onvergenefor double roots, we will follow the idea of approximation by polynomials ofhigher degree.
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