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A matrix (sans serif)
r vector (bold face)
σ cross section; spin state
n principal quantum number (ni initial, nf final)
l orbital quantum number; general angular momentum
m magnetic quantum number
s spin state (projection)
µ reduced mass; combined projection of spin and orbital momentum
k wave vector
L total angular momentum quantum number
M total angular momentum projection
S total spin projection
ℓ angular momentum of a single electron
Pnl regular hydrogen radial orbital, Pnl(r) = rRnl(r)

ĵl regular Riccati-Bessel function of the first kind, ĵl(x) = xjl(x) =
√

πx
2
Jl+1/2(x)

Ω solid angle; collision strength
H hydrogen atom
H hamiltonian
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Chapter 1

Introduction

The problem of collision of an electron with an isolated hydrogen atom has been a test
bed of atomic physics for almost a century due to its outstanding simplicity and hence
possibility of application of various direct methods of description and solution. Still, the
underlying problem is a three-particle process and the dynamics of its constituents is
unsolvable in a closed form both within the classical and quantum mechanics.

The area of application of the quantum electron-hydrogen scattering calculations lies
mainly in the plasma physics. Stellar atmospheres contain free hydrogen atoms kept by the
electromagnetic radiation from recombining into molecules, as well as the free electrons,
whether slow—thermal—or fast—accelerated by magnetohydrodynamic forces in flare
events. The effects of individual collisions resulting in excitations and de-excitations then
combine to average level populations and to a big picture that manifests as a shape or
polarization of spectral lines [1], [2], [3], [4].

Another astrophysical setting where the electron-hydrogen scattering plays a distin-
guished part is the cooling of the interstellar gas in the evolution of the Universe. The
coupling between the gas temperature, radiation temperature and electron temperature
were of different importance throughout the history and in some epochs the cooling of the
interstellar gas by free electrons significantly contributed to the overall cooling rate. The
interaction that coupled the temperatures of these two media was the low-energy spin-flip
process [5], which is also discussed in this thesis.

Particularly in the astrophysical case the medium can be very thin and recombination
unlikely. Low density is both an advantage and a disadvantage. On the one hand the
interaction between atoms can be disregarded, which tremendously simplifies the descrip-
tion and solution of the system, effectively making the atom isolated. On the other hand,
it also allows long-term existence of highly excited (Rydberg) states of the atoms. Such
atoms then effectively span much larger space, making their numerical simulation even
more challenging.

But collisions of electrons with hydrogen atoms and its isotopes have also industrial
use. Neutral hydrogen beams are used for diagnostic purposes in the thermonuclear
reactors. The application is done by injecting hydrogen gas into the working plasma, which
is nothing else than a mixture of electrons and nuclei of hydrogen isotopes with traces of
other elements. Collisions of the plasma with the neutral beam produce radiation, which
can be analyzed and serves as another probe into the inner dynamics of the working gas [6],
[7]. The importance of this topic can be well illustrated by the fact that the International
Atomic Energy Agency (IAEA) regularly opens Coordinated Research Projects (CRPs)
that include the topic of electrons colliding with hydrogen isotopes in the environment of
the thermonuclear reactor, for example:

13



• 2009–2015 CRP F43018
Light Element Atom, Molecule and Radical Behaviour in the Divertor and Edge
Plasma Regions

• 2017–2021 CRP F43023
Data for Atomic Processes Related to Neutral Beams in Fusion Plasma

The task of this thesis has been to collect, refine and employ several existing numerical
methods, so that the scattering problem can be solved for:

1. Most processes that can occur in the electron-hydrogen collisions
This includes the elastic scattering

H(n, l,m) + e−(ki) → H(n, l,m) + e−(kf ) , |ki| = |kf | ,

excitation (or spin flip)

H(ni, li,mi, si) + e−(ki, σi) → H(nf , lf ,mf , sf ) + e−(kf , σf ) ,

and fragmentation (ionization)

H(ni, li,mi) + e−(ki) → p+(K) + e−(k1) + e−(k2) .

In general, the scattering system should also be coupled to the electromagnetic field,
allowing for radiative processes like photo-ionization, radiative attachment, or even
Bremsstrahlung at higher energies. These processes were not considered in this
work.

2. Broad range of energies
The electron in the hydrogen atom can be stripped by projectile with impact energy
greater than the ionization threshold, which is approximately 13.6 eV. This energy
marks a boundary between the resonant low-energy scattering and intermediate-to-
high-energy scattering. Coverage of a considerable surrounding of this transition
energy to both directions is necessary. Both regions are complicated: The resonant
region requires fine sampling of the impact energy parameter, so that the resonances
are represented in a sufficient detail, whereas the high energy region requires careful
handling of rapidly oscillating wave functions.

The ultimate goal of this project is to build as complete database of electron-hydrogen
scattering cross sections as possible, so that it can be used in the applications by astro-
physicists and plasma physicists. Moreover, the accuracy of the produced results should
be superior to the presently available data; the estimated error should not exceed 5 %.

Similar effort had been exerted before by several researchers and currently there is a
large body of data already present to compare with. Still, the desired degree of complete-
ness had not yet been achieved, as the available data exist just for a specific selection
of energies, for transitions between the lowest atomic states and only for some of the
possible processes. While the fundamental theory of the electron-hydrogen collisions is
very straightforward, the long-range character of the inter-particle forces prevented (and
to some degree still prevents) a direct numerical solution of the equation of motion of the
system—the Schrödinger equation—for all possible initial and final configurations of the
two electrons involved.

The first noteworthy collection of accurate elastic and non-elastic data is due to
Callaway [8], who used the straightforward close-coupling calculation with a handful of
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states to calculate the cross sections for the transitions 1s − 1s, 1s − 2s and 1s − 2p.
Even though only total angular momenta L ≤ 3 were included in the calculation, they
are remarkably accurate and compare well with more recent calculations. The follow-
ing calculation by the same author [9] presented for the first time the cross sections for
scattering on excited states.

Aggarwal et al [10] published collision-strength datasets for all transitions n → n′,
where n ≤ n′, n′ = 1, 2, 3, 4, at energies from the transition threshold to a few electron-
volts above the ionization threshold. Their data are very finely sampled and contain
a large amount of physical resonances, which have correct positions. In the review by
Callaway [11] the accuracy of [10] has been disputed, mentioning the omission of the
continuum channels from the R-matrix basis as a possible cause for discrepancies.

Another recalculation of the three lowest transitions 1s − 1s, 1s − 2s and 1s − 2p
between the n = 2 and n = 3 thresholds has been done by Bartschat [12] using the
R-matrix with pseudo-states (RMPS) method. These data were compared to the results
of the converged close-coupling method (CCC, [13]) and belong currently among the
reference data for electron-hydrogen scattering.

Anderson et al [14] used the RMPS method to calculate the cross sections for trans-
itions n, l → n′, l′, where n < n′, with the aim to produce relevant data for fusion plasma
simulations. They used 15 physical states, 24 pseudo-states and RA = 140 a0 as the radius
of the inner region. However, this radius is not appropriate for transitions between highly
excited states.

Bartlett [15] calculated the cross sections for transitions from the ground state to all
n = 3 states at a small range of energies to demonstrate the accuracy of the propagating
exterior complex-scaling (PECS) method.

To sum up, some of the existing publications focus on providing rich variety of data-
sets, some focus on accuracy of the results for a few particular transitions, some illustrate
an efficient solution method, but none of them does really combine all these viewpoints
together, with explicit consideration of consistency of the datasets and their good conver-
gence.

There are also a few on-line databases that contain the scattering data of interest. The
most comprehensive is the dataset in the Aladdin database [16] calculated by Bray and
Stelbovics [17] using the CCC method. Their data for elastic transitions are in perfect
agreement with [12], but according to the information in Aladdin the same calculation
setup has been used for higher transitions (up to n = 4), which raises doubts, whether
they are sufficiently converged with respect to the basis size. Some, mainly elastic data are
contained in LXcat database [18]. Another database is that of NIST [19], which contains
only optically allowed transitions from the ground state (up to n = 10), produced by BE-
scaling of the plane wave Born approximation results [20], [21]. NIST data are not meant
for the low-energy usage and there are very few points below the ionization threshold, if
any. There is also another database by NIST [22] containing ground state elastic data
produced by Salvat et al [23], based on the Dirac equation with a model potential.
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Chapter 2

Physical description

This opening chapter is devoted to a summary of the basic physical and formal concepts
used further. The electron-hydrogen scattering problem is solved by a time-independent
quantum-mechanical method, which—depending on the particular method employed—
provides either directly the scattering statistical quantities, or a stationary scattering
wave function, from which the data can be extracted. Even though this thesis contains
mostly low-energy results, presented in the last chapter, the long-term intent of the project
is to cover all scattering energies from zero impact velocity to the region where first Born
approximation yields satisfactory results, which is around 1 keV. The physical model must
be such as to allow valid description for all these energies.

The first section of this chapter presents the physical approximations used, consistent
with the aim of 5 % accuracy. The second chapter deals with hydrogen eigenstates needed
for preparation of the initial state and analysis of the final state. Third section introduces
fundamental scattering quantities that are to be obtained, followed by definitions of a se-
lection of derived quantities, including the spin-flip cross section in the fourth section, the
direction-dependent scattering amplitude in the fifth section and fine-structure transition
amplitudes in the sixth section. The sixth section also explains which transitions result
in non-physical cross sections under approximations done on the way. Finally, the last,
seventh, section presents description of the break-up process.

2.1 Physical approximations

To start with, we are interested in energies comparable to the ionization energy. The
structure of proton is irrelevant for impact energies in this domain [24] and the whole
composit can be regarded as an elementary particle. All elementary particles are deemed
point-like sources of electromagnetic field. Heavier isotopes of hydrogen have larger nuclei,
but not so dramatically as to violate this assumption [25].

The rest mass of electron is around 511 keV, which is also orders of magnitude larger
that the interesting impact energies. Relativistic effects have been thus neglected and
non-relativistic Schrödinger equation has been used, with the hamiltonian [26]

H =
p21
2µ

+
p22
2µ

+
p1 · p2

mp

− αℏc
r1

− αℏc
r2

+
αℏc
r12

, (2.1)

where µ = memp/(me +mp) is the reduced mass of the electron-proton system.
Finally, the proton to electron rest mass ratio is around 1800. Within some degree of

accuracy the proton can be thought of as having infinite mass compared to the electron.
The presence and motion of electrons then do not alter the kinematic state of the proton
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and the hydrogen nucleus can be therefore considered as a static point source (in a con-
venient frame of reference). This is equivalent to neglecting the mass polarization term
(p1 · p2)/mp. The hamiltonian of the system is then

H =
p21
2me

+
p22
2me

− αℏc
r1

− αℏc
r2

+
αℏc
r12

. (2.2)

In dimensionless atomic units, used in all following equations, is ℏ = me = αc = 1, leading
to

H =
p21
2

+
p22
2

− 1

r1
− 1

r2
+

1

r12
. (2.3)

2.2 Hydrogen atom

The neutral hydrogen (deuterium, tritium) atom is the scattering target for all considered
processes. In the non-relativistical description it is possible to obtain both its bound and
continuum eigenstates in a closed form. Both can be also easily generalized to the situation
of a charged hydrogen-like ion.

In this work the bound hydrogen wave functions are used in the form

⟨r|ψnlm⟩ = Rnl(r)Y
m
l (r̂) , (2.4)

where Y m
l (r̂) is the standard spherical harmonic function and the radial part is

Rnl(r) =
1

r
Pnl(r) =

√(
2

n

)3
(n− l − 1)!

2n(n+ l)!

(
2r

n

)l

L
(2l+1)
n−l−1

(
2r

n

)
e−r/n , (2.5)

where L
(α)
n (x) is the generalized Laguerre polynomial. The bound states exponentially

decrease with distance once the so-called classical turning point is reached. This, however,
does not prevent a quadratic inflation of the effective radius of the orbital with the increase
of the principal quantum number n at fixed angular momentum l ([26], §3.20). Extensive
atomic orbitals contribute to the large polarizability of the atom, making the scattering
calculations rather difficult.

The free states are used in ionization processes, or in place of plane waves in case that
the target is charged. For unit nuclear charge (Z = 1) they are described by the functions

⟨r|ψ(+)
k ⟩ = 1

(2π)3/2

∑
lm

4πilFl(−1/k, kr)Y m
l (r̂)Y m∗

l (k̂) , (2.6)

where the Coulomb (partial) wave function Fℓ(η, ρ) is defined as ([27], §33.2)

Fℓ(η, ρ) =
2ℓe−πη/2|Γ(ℓ+ 1 + iη)|

(2ℓ+ 1)!
ρℓ+1e−iρ1F1

(
ℓ+ 1− iη
2ℓ+ 2

⏐⏐⏐⏐ 2iρ) , (2.7)

in terms of the confluent hypergeometric function 1F1.

2.3 Scattering problem description

Given the hamiltonian (2.3) of the electron-hydrogen system one can search for a subset
of its eigenstates coinciding with stationary scattering states. These can be obtained by
solution of the time-independent Schrödinger equation

H|Ψ+
i ⟩ = Etot|Ψ+

i ⟩ (2.8)
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with a scattering boundary condition, or as a solution of the Lippmann-Schwinger equa-
tion

|Ψ+
i ⟩ = |Ψi⟩+ G

(+)
0 Hint|Ψ+

i ⟩ , (2.9)

where |Ψi⟩ is the initial state (atom + incident projectile plane wave), the full hamiltonian
H is given by (2.3) and the interaction hamiltonian Hint is the following part of H:

Hint = H− Hfree = − 1

rproj
+

1

r12
, (2.10)

The equation (2.8) is often written in the “scattering form”

(E − H)
⏐⏐Ψ+

sc

⟩
= Hint|Ψi⟩ , (2.11)

which follows from the definitions
⏐⏐Ψ+

i

⟩
= |Ψi⟩ + |Ψ+

sc⟩ and (H − Hint)|Ψi⟩ = E|Ψi⟩.
This is actually a very prominent equation in the mathematical physics. Written in the
coordinate representation it reads(

△6D + k2(r1, r2)
)
Ψ+

sc(r1, r2) = χi(r1, r2) , (2.12)

which is the (six-dimensional) Helmholtz equation, an equation routinely used in the clas-
sical propagation, or scattering, of electromagnetic field. Due to the industrial importance
of electromagnetism there is an extremely active research activity going on around the
Helmholtz equation, part of which has been used to the advantage of this thesis. This
includes an effective separation-of-variables preconditioner and a domain decomposition
approach, both explained in chapter 4.

The scattering boundary condition mentioned above has different form for discrete
scattering (elastic and excitation processes) and for ionization. Ionization boundary con-
dition is described at the end of this chapter, here we focus only on discrete transitions,
when just one of the two electrons goes away to infinity. Assuming that the scattered
electron is labeled “2”, whereas the atomic one “1”, the scattering boundary condition
has the form

Ψ(r1, r2) ∼
1

(2π)3/2
ψi(r1)e

iki·r2 +
∑
j

fji(k̂j)ψj(r1)
eikjr2

r2
. (2.13)

Here ψ is the state of the atomic electron, ki is the projectile initial wave vector and kj

the final wave vector. This must hold when r2 → +∞. Analogous boundary condition
with indices “1” and “2” swapped holds for r1 → +∞. The scattering amplitude fji char-
acterizes the scattering process. From the quantum scattering theory it can be deduced
that it is related to a T -matrix, or element of the T -operator. In this work we use the
notation

fji = − 1

2π
⟨Ψf |Hint

⏐⏐Ψ+
i

⟩
= − 1

2π
⟨Ψf |T|Ψi⟩ = − 1

2π
Tji . (2.14)

The cross section is a quantity expressing effectivity of the scattering. The differential
cross section is the number of projectiles (N) scattered by a target (originally in state i,
leaving in state j) into specific direction per unit of time (t), normalized by the incoming
flux density (J). The formal definition of the differential cross section is

dσji
dΩ

=
1

J

dNji

dt
. (2.15)
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The integral cross section is (2.15) integrated over all angles,

σji =

∫
dσji
dΩ

dΩ . (2.16)

The differential cross section can be related to the scattering amplitude as

dσji
dΩ

= |fji|2 . (2.17)

The T -matrix introduced in (2.14) is indexed by initial and final states, including
the magnetic quantum numbers. This quantity can be transformed to a “canonical” T -
matrix indexed only by energy and angular momentum of the scattering channels. For
the canonical T -matrix it then holds

Tnm = Snm − δnm , (2.18)

where S-matrix is the unitary scattering matrix. This is more thoroughly discussed in
chapter 6.

2.4 Separation of spin and spin flip

The wave function of two indistinguishable fermions must be antisymmetrical with respect
to exchange of the particles (their full quantum states, i.e. their positions, quantum
numbers etc.),

|Ψ(1, 2)⟩ = −|Ψ(2, 1)⟩ . (2.19)

To enforce the antisymmetry of the solution Ψ+
i of (2.11) it is enough to put in an anti-

symmetrized right hand side AHintΨi, because the full hamiltonian itself is symmetrical.
The Schrödinger equation (2.8) does not depend on spins of the electrons. Linear com-
bination of solutions with the same spatial part and different spin parts is thus again a
solution. Without loss of generality we can cosider two classes of solutions: those with
antisymmetric spin part (and symmetric spatial part) and those with symmetric spin part
(and antisymmetric spatial part). The former are called the singlet states

|Ψsinglet⟩ =
⏐⏐Ψ0,0(r1, r2)

⟩⏐⏐Ξ0,0
⟩
,

the latter the triplet states

|Ψtriplet⟩ =
⏐⏐Ψ1,M(r1, r2)

⟩⏐⏐Ξ1,M
⟩
,

whereM ∈ {−1, 0, 1} is the projection of the total spin. The singlet and triplet spin parts
are ⏐⏐Ξ0,0

⟩
=

1√
2

(⏐⏐1
2
,+1

2

⟩
1

⏐⏐1
2
,−1

2

⟩
2
−
⏐⏐1
2
,−1

2

⟩
1

⏐⏐1
2
,+1

2

⟩
2

)
,⏐⏐Ξ1,−1⟩ =

⏐⏐1
2
,−1

2

⟩
1

⏐⏐1
2
,−1

2

⟩
2
,⏐⏐Ξ1,0

⟩
=

1√
2

(⏐⏐1
2
,+1

2

⟩
1

⏐⏐1
2
,−1

2

⟩
2
+
⏐⏐1
2
,−1

2

⟩
1

⏐⏐1
2
,+1

2

⟩
2

)
,⏐⏐Ξ1,+1

⟩
=

⏐⏐1
2
,+1

2

⟩
1

⏐⏐1
2
,+1

2

⟩
2
.

The states classified by the total spin satisfy the relation (2.19) and are useful for the
calculation. The initial and final state, however, are generally not eigenstates of total
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spin angular momentum, they only have a fixed spin of the atomic electron (s) and
projectile electron (s′). Antisymmetrizazion of such a state results in

|Ψi, si, s
′
i⟩ =

1√
2

(
|ψi⟩1|βi⟩2

⏐⏐1
2
, si

⟩
1

⏐⏐1
2
, s′i

⟩
2
− |βi⟩1|ψi⟩2

⏐⏐1
2
, s′i

⟩
1

⏐⏐1
2
, si

⟩
2

)
,

where ψ is an atomic orbital and β an incident plane wave state. This wave function can
be expressed in terms of the singlet and triplet spatial parts

|Ψi,singlet⟩ =
1√
2
(|ψi⟩1|βi⟩2 + |βi⟩1|ψi⟩2) and |Ψi,triplet⟩ =

1√
2
(|ψi⟩1|βi⟩2 − |βi⟩1|ψi⟩2)

using one of the rows in the table 2.1.

s s′ |Ψi⟩
−1

2
−1

2
|Ψi,triplet⟩|Ξ1,−1⟩

−1
2

+1
2

1√
2
(|Ψi,triplet⟩|Ξ1,0⟩ − |Ψi,singlet⟩|Ξ0,0⟩)

+1
2

−1
2

1√
2
(|Ψi,triplet⟩|Ξ1,0⟩+ |Ψi,singlet⟩|Ξ0,0⟩)

+1
2

+1
2

|Ψi,triplet⟩|Ξ1,+1⟩

Table 2.1: Antisymmetrized initial state expressed in terms of the singlet/triplet spatial com-
binations and total spin eigenstates.

If we now introduce the spin transition T -matrix element

Tji,sjs′jsis′i =
⟨
Ψj, sj, s

′
j

⏐⏐T|Ψi, si, s
′
i⟩

and total spin T -matrices

T 0
ji =

⟨
Ψj,singlet,Ξ

0,0
⏐⏐T⏐⏐Ψi,singlet,Ξ

0,0
⟩

and T 1
ji =

⟨
Ψj,triplet,Ξ

1,M
⏐⏐T⏐⏐Ψi,triplet,Ξ

1,M
⟩
,

of which Tji,sjs′jsis′i is the interesting physical quantity, whereas T S
ji are more straightfor-

ward to calculate, we can write the following relations between these expressions:

T
ji,±1

2
,±1

2
,±1

2
,±1

2
= T 1

ji [maximal projection] (2.20)

T
ji,±1

2
,∓1

2
,±1

2
,∓1

2
=

1

2
(T 1

ji + T 0
ji) [spin-elastic] (2.21)

T
ji,±1

2
,∓1

2
,∓1

2
,±1

2
=

1

2
(T 1

ji − T 0
ji) [spin-flip] (2.22)

From the above T -matrices, which are proportional to the scattering amplitudes (2.14),
we can obtain the spin-flip cross section

dσspin−flip
ji

dΩ
=

1

4
|f 1

ji − f 0
ji|2 . (2.23)

It is also possible to obtain spin-averaged cross section for unpolarized initial states.
Averaging over initial spin configurations and summing over final spin configuration we
obtain

dσji
dΩ

=
1

4

∑
sj ,s′j=±

1
2

∑
si,s′i=±

1
2

|fji,sj ,s′j ,si,s′i |
2 =

1

4
|f 0

ji|2 +
3

4
|f 1

ji|2 . (2.24)

21



Often we talk about singlet or triplet cross section, which is one of the resulting terms in
(2.24) multiplied by the spin weight,

dσS
ji

dΩ
=

2S + 1

4
|fS

ji|2 , (2.25)

or the angle-integrated value of this expression.

2.5 Arbitrary impact angle scattering

In the following sections we will use a specific quantization axis (chosen as the third, z,
axis). All projections are considered with respect to this axis. For example the hydrogen
magnetic quantum number is a projection of the angular momentum into this axis. Also,
the projectile is always described as a plane wave coming in the direction of the quantiz-
ation axis, so that the projection of its orbital momentum onto the quantization axis can
be set to zero.

In general applications, however, the impacting electron can approach a polarized atom
from any spatial direction. Fortunately, the scattering amplitudes for those configurations
can be obtained as a linear combination of amplitudes of scattering in the idealized single-
axis case. The key idea is that a given angular momentum state

|ψ⟩ = |l,m⟩

in one coordinate frame will transform to a combination of states

|ψ′⟩ =
∑
m′

Dl
m,m′(α, β, γ)|l,m′⟩

after rotation given by the Euler angles α, β and γ. The symbol Dl
m,m′(α, β, γ) is the

Wigner matrix and apart from phase factors it is equal to the “small d” Wigner mat-
rix dlm,m′(β). Here β is the angle between the original quantization axis and the new
quantization axis.

Using these observations, scattering amplitude for the reaction

H(ni, li,mi) + e− → H(nj, lj,mj) + e− ,

where the impact direction and the atom’s quantization axis make angle β, can be written
in terms of z-aligned scattering amplitude as

fnj ,lj ,mj←ni,li,mi
(β) =

∑
m′

i

fnj ,lj ,mj←ni,li,m′
i
(0) dlim′

i,mi
(β) . (2.26)

2.6 Accidental degeneracy and fine structure trans-

itions

In spectroscopy, the notation |ψ⟩ = |nljµ⟩ rather than |ψ⟩ = |nlms⟩ is used. For heavier
atoms, where the relativistic effects play larger role than in the case of hydrogen, the spin-
orbital coupled quantum numbers l, j and µ are better than simple l, m and s. However,
as we have neglected all relativistic effects, description using lms and ljµ are equivalent
and related by a unitary transformation given by Clebsch-Gordan coefficients.
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Using the relation

⟨ljjjµj|T|lijiµi⟩ =
∑

mjmisjsi

C
jjµj

ljmj ,
1
2
sj
Cjiµi

limi,
1
2
si
⟨ljmjsj|T|limisi⟩

it follows

fnj ,lj ,jj ,µj←ni,li,ji,µi
=

∑
mjmisjsi

C
jjµj

ljmj ,
1
2
sj
Cjiµi

limi,
1
2
si
fnj ,lj ,mj ,sj←ni,li,mi,si . (2.27)

In the non-relativistic approximation used in this work the states 2sj and 2pj′ have
exactly equal energy irrespective of the values of j and j′. This phenomenon is called
the accidental degeneracy and corresponds to the existence of another quantum number
related to the Runge-Lenz vector, that commutes with energy in case of the pure Coulomb
potential.1 The energy degeneracy of the levels with the same principal quantum number
has an unpleasant consequence that the cross sections for processes H(n, l) → H(n, l± 1)
are infinite. Here follows a short explanation inspired by [29] and [30].

It will be shown later that the Schrödinger equation for the unknown two-electron
scattering function Ψ(r1, r2) = (r1r2)

−1∑
ℓ1ℓ2LM

ψLM
ℓ1ℓ2

(r1, r2)YLM
ℓ1ℓ2

(r̂1, r̂2) can be written as

∑
ℓ′1ℓ

′
2

[
(Etot − Tℓ1 − Tℓ2) δ

ℓ′1
ℓ1
δ
ℓ′2
ℓ2
−
∑
λ

V λ
ℓ1ℓ2ℓ′1ℓ

′
2;L

]
ψLM
ℓ′1ℓ

′
2
= χLM

ℓ1ℓ2
,

where Tℓ are the operators of kinetic energy and the multipole potential is

V λ
ℓ1ℓ2ℓ′1ℓ

′
2;L

= fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

(
−δ

0
λ

r1
− δ0λ
r2

+
rλ<
rλ+1
>

)
.

Now consider such a two-electron wave function at energies below the n = 3 threshold.
The atomic electron can be either in s-state, or p-state, other orbital momenta are not
allowed. We will also restrict ourselves to states with n = 2. The radial components then
must asymptotically tend to (for large projectile coordinates r2 = r)

ψ0,ℓ(R, r) → P2s(R)F
s
ℓ (r) ,

ψ1,ℓ−1(R, r) → P2p(R)F
p
ℓ−1(r) .

When we substitute these asymptotic conditions to the equation above and project them
on the two considered hydrogen states, we get(

k2 +
d2

dr2
− ℓ(ℓ+ 1)

r2

)
F s
ℓ (r) = 2⟨2s|V 0

0,ℓ,0,ℓ;ℓ|2s⟩F s
ℓ (r) + 2⟨2s|V 1

0,ℓ,1,ℓ−1;ℓ|2p⟩F p
ℓ−1(r) ,(

k2 +
d2

dr2
− ℓ(ℓ− 1)

r2

)
F p
ℓ−1(r) = 2⟨2p|V 0

1,ℓ−1,1,ℓ−1;ℓ|2p⟩F p
ℓ−1(r) + 2⟨2p|V 1

1,ℓ−1,0,ℓ;ℓ|2s⟩F s
ℓ (r) ,

where k2 = 2(Etot − E2s) = 2(Etot − E2p) and the specific indices on V λ
ℓ1ℓ2ℓ′1ℓ

′
2;L

follow

from the properties of the angular integral fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

. The multipole potential V λ
ℓ1ℓ2ℓ′1ℓ

′
2;L

is

1This additional symmetry is broken by spin-orbit and radiative corrections, which are of relative
order α2 in energy, see [28].
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short-range for λ = 0, but it evaluates to a long-range dipole potential when λ = 1. After
keeping only the long-range parts and relabeling the angular momentum of F p

ℓ (r) it is(
k2 +

d2

dr2
− ℓ(ℓ+ 1)

r2

)
F s
ℓ (r) =

A

r2
F p
ℓ (r) ,(

k2 +
d2

dr2
− ℓ(ℓ+ 1)

r2

)
F p
ℓ (r) =

A

r2
F s
ℓ (r) .

These equations have been solved by Seaton in [29] by combining them into an equation
for Fℓ+ = F s

ℓ + F p
ℓ and an equation for Fℓ− = F s

ℓ − F p
ℓ ; they result in the scattering

T -matrix

T2s−2p,ℓ = T2p−2s,ℓ ∼
A

2ℓ+ 1
[ℓ→ ∞] .

The corresponding partial cross section

σ2s−2p,ℓ = σ2p−2s,ℓ ∼ (2ℓ+ 1)|T2p−2s,ℓ|2 ∼
A2

2ℓ+ 1
[ℓ→ ∞]

behaves as ℓ−1 for large partial waves and as such it does not sum to a final total cross
section. The situation changes when the states 2p and 2s have even a tiny energy shift
∆ε. As shown by Gailitis and Damburg in [30], the total cross section is then proportional
to

σ2s−2p ∼ − ln∆ε .

2.7 Ionization

The fragmentation process needs a different description. It is not compatible with the
discrete transition boundary condition (2.13), where only one of the electrons is allowed
to escape to infinite distance. Instead one has to use the ionization boundary condition,
which was summarized e.g. in [31]. There are several possible output configurations:

• Uniform ionization (Ω0): Both electrons escape into infinity and become also well
separated from each other. The conditions for Ω0 are ρ2 = r21 + r22 → +∞ and
neither r1/ρ, nor r2/ρ approaches zero. Or, equivalently, r1/r2 converges neither to
zero, nor to infinity.

• First electron isolation (Ω1): In this configuration the first electron has been accel-
erated significantly more than the other one. The electrons escape (ρ → +∞), but
the second tarries behind (r2/r1 → 0).

• Second electron isolation (Ω2): As above, but with swapped roles. Now the second
electron is the faster one and r1/r2 → 0.

• Nuclear isolation (Ω3): Finally, it can happen that the electrons are ejected into
a similar direction, making their correlation very important. This happens when
ρ→ +∞, but |r1 − r2|/ρ→ 0.

Every Ωi must be handled separately, which has been done in [31] in Jacobi coordinates,
i.e. in terms of the three-particle relative positions and canonically conjugated momenta.
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For the case of uniform ionization (Ω0) the asymptotic form of the wave function is (see
also [32])

Ψ+
sc(rα,ρα) ∼

(2πi)1/2

(2π)3
f

(
µα

m

κ

ρ
rα,

Mα

m

κ

ρ
ρα

)
(µαMα)

3/2

m2

κ3/2

ρ5/2
eiκρ−iλ0 ln(2κρ)−iσ0 . (2.28)

In this formula: rα is relative position of particles β and γ; ρα is the position of particle
α with respect to the centre of mass of particles β and γ; µα is the reduced mass of the
particles β and γ; Mα is the reduced math of particle α and the βγ pair; zα is the electric
charge of particle α in terms of the elementary charge; m is an optional positive constant
with dimension of mass. Function f is the ionization amplitude in Jacobi coordinates.
The remianing variables are defined here:

ηα = zβzγµα , κ = (2mEtot)
1/2 , ρ =

(
µα

m
r2α +

Mα

m
ρ2α

)1/2

,

λ0 =
1

κ

∑
ν=α,β,γ

(
m

µν

)1/2
ην

sinφν

, σ0 =
2

κ

∑
ν=α,β,γ

(
m

µν

)1/2
ην ln sinφν

sinφν

,

φα = arctan

[(
µα

Mα

)1/2
rα
ρα

]
.

When one of the particles is “infinitely heavy” compared to the other two, the formula
greatly simplifies. If α = 2 is one of the electrons, then rα reduces to r1 and ρα to r2.
Picking m = me = 1 we obtain

Ψ+
sc(r1, r2) ∼

1

(2π)5/2
f

(
κ
r1
ρ
, κ

r2
ρ

)
κ3/2

ρ5/2
eiκρ−iλ0 ln(2κρ)−iσ0+iπ/4 . (2.29)

The function f is the ionization amplitude. In the limit of r1 → +∞ and r2 → +∞ it is
equal to f(k1,k2), with no dependence on the coordinates. The conservation of energy

1

2

(
k21 + k22

)
=

1

2

[(
κ
r1
ρ

)2

+

(
κ
r2
ρ

)2
]
=

1

2
κ2
r21 + r22
ρ2

= Etot

results as a byproduct.
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Chapter 3

Design of the Hex package

3.1 Hex modules

The original conception was to create a single computer program that would be able to
calculate the T -matrix or cross section for arbitrary energy and transition. Such program
would be valuable and user-friendly for the applied researchers in astrophysics and plasma
physics. Very soon it became apparent that this idea would lead to a program too complex
and computationally too demanding for any serious application. Another way has been
chosen, which is summarized in this chapter.

The principal change has been the separation of the production of the data into two
phases:

• Solution of the scattering equations and production of the scattering T -matrices as
an intermediate result.

• Calculation of derived scattering quantities from the T -matrices, particularly various
cross sections.

In the first phase the T -matrices are calculated by an expert in quantum scattering theory
and stored in an intermediate database, which is then accessed by the database interface
program in the second phase by other researchers needing the data. The calculation of
the T -matrices in the first phase is managed by several computational modules, which are
computer programs that implement various solution methods. Every method is valid (or
computationally feasible) only over a specific energy interval. Determination of overlaps
of the implemented methods was a necessary part of the first phase.

The schematic layout of the package is presented in a form of a graph in the figure 3.1.
There are several computational modules of varying degree of completeness. Here is a
short overwiew.

• The scattering at low and intermediate energies is found by a direct solution of the
Schrödinger equation in the basis of B-spline functions, with the exterior complex
scaling approach used to avoid explicit usage of the scattering boundary condition
(program hex-ecs). The use of B-splines in the Schrödinger equation (2.11) converts
the differential equation into a large matrix equation. This low-energy part received
most attention in this work and the rest of the text is dedicated almost exclusively
to its explanation and to the results calculated by this method.

• The scattering quantities for high energies are obtained by the perturbation method
of the Born approximation of the second or first order (programs hex-pwba2 and
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Figure 3.1: Hex package scheme. The programs are written in an upright font. Other infras-
tracture is in italics.

hex-dwba). These programs were not yet optimized for serious runs, neither used
for production calculations. Their description has already been done in the master
thesis [33] and was thus omitted from this text. The same also holds for the planned
program hex-ctmc, intended for high energies and high partial waves, implementa-
tion of which did not yet start.

The interface program hex-db is command-line based, which allows its easy inclusion
in various scripts. Even more, the main part of the program is separated into a shared
library. The library can be linked to derived programs and offer full functionality of the
database interface. There is also a web front-end to the database interface at the web
pages of the Institute of Theoretical Physics, archiving all final results of calculations done
during this work:

http://utf.mff.cuni.cz/data/hex

At the same page one can also obtain the latest frozen releases of the programs. The most
up-to-date sources and binaries can be found at the SourceForge repository:

https://sourceforge.net/projects/hecs

3.2 Database structure

For the database the SQLite [34] format has been chosen. It is a well-established database
format used in a vast amount of computer software. SQLite is dedicated to the public
domain, free of patents and copyright issues and with prospect of being maintained for
decades. The format is binary and the data are manipulated using calls to the SQLite
library. The calls have a form of the text SQL statements. “SQL” is an abbreviation of
the Structured Query Language, which is a standardized form of accessing a database.

The database consists of three tables—ordered sets of key-value pairs—which contain
the data and its indices. The database tables are listed in table 3.1. The tables are created
using the following statements:

CREATE TABLE IF NOT EXISTS ’tmat’

(

ni INTEGER, li INTEGER, mi INTEGER,

nf INTEGER, lf INTEGER, mf INTEGER,
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L INTEGER, S INTEGER,

Ei DOUBLE PRECISION,

ell INTEGER,

Re_T_ell DOUBLE PRECISION,

Im_T_ell DOUBLE PRECISION

PRIMARY KEY (ni,li,mi,nf,lf,mf,L,S,Ei,ell)

);

CREATE TABLE IF NOT EXISTS ’ics’

(

ni INTEGER, li INTEGER, mi INTEGER,

nf INTEGER, lf INTEGER, mf INTEGER,

S INTEGER,

Ei DOUBLE PRECISION,

ell INTEGER,

sigma DOUBLE PRECISION

PRIMARY KEY (ni,li,mi,nf,lf,mf,S,Ei,ell)

);

CREATE TABLE IF NOT EXISTS ’ionf’

(

ni INTEGER, li INTEGER, mi INTEGER,

L INTEGER, S INTEGER,

Ei DOUBLE PRECISION,

l1 INTEGER, l2 INTEGER,

cheb BLOB,

PRIMARY KEY (ni,li,mi,L,S,Ei,l1,l2)

);

The meaning of the individual variables will be clear from further chapters. Only the
last table contains non-trivially stored radial part fLS

ℓ1,ℓ2
(k1, k2) of the ionization amplitude,

see (4.17), which should be clarified here. The function fLS
ℓ1,ℓ2

(k1, k2), even though it
appears to have two arguments, is essentially one-dimensional, because the two linear
momenta k1 and k2 are bound by the conservation of energy

k21 + k22 = k2i −
1

n2
i

.

The linear momenta can be parametrized by the hyperangle α, or by its cosine x = cosα,
as k1 = kmaxx, k2 = kmax

√
1− x2, where kmax =

√
2Etot. The one-dimensional function

fLS
ℓ1,ℓ2

(k1(x), k2(x)) is approximated using the Chebyshev polynomials, see the Appendix A.
The array of the Chebyshev expansion coefficients is then stored in a raw binary form
as the element cheb in the table ionf. No endianness management is done, so if one
transfers the database between big- and little-endian operating systems, it will not be
compatible. Most commonly used operating systems (Linux, Windows) are little-endian,
though.

3.3 VAMDC connection

VAMDC (Virtual Atomic and Molecular Centre, [35]) is a European project that cent-
ralizes various atomic and molecular databases offered by different scientific groups and
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Title Contents Indexed by

tmat T -matrices (real and imaginary part) ni, li,mi, nf , lf ,mf , L, S, ℓ, Ei

ionf ionization amplitude (see (4.17)) ni, li,mi, L, S, ℓ1, ℓ2, Ei

ics partial cross section ni, li,mi, nf , lf ,mf , L, S, Ei

Table 3.1: Hex database structure. The symbols indicate the initial atomic state (ni, li,mi),
final atomic state (nf , lf ,mf ), total electron angular momentum L, total electron spin S, incom-
ing electron angular momentum ℓ, incoming electron energy Ei and outgoing electron angular
momenta ℓ1 and ℓ2.

institutes. It allows users of the VAMDC web portal to query all included databases
simultaneously for required data.

The communication between VAMDC and individual databases takes form of VAMDC
SQL subset version 2 queries (VSS2 ) and XML responses. A typical query can look like
this:

SELECT

AtomStates, Processes, Sources, Methods

WHERE

reactant1.StateEnergy = -1 AND

product1.StateEnergy <= -0.25

This request is sent by accessing the database server at address:

http://[server]/sync?REQUEST=doQuery&LANG=VSS2&FORMAT=XSAMS&QUERY=[query]

where “[server]” is the database server address (e.g. utf.mff.cuni.cz/data/hex) and “[query]”
is the above VSS2 statement.

The response of the database server is a XML document, which (in the case of Hex)
contains a list of hydrogen initial and final states, the restricted list of processes they
participate in, and references to sources and methods explaining the origin of the data.
Also, for each process it contains available datasets, in this particular case the energy-
dependent integral cross sections. A truncated example is in the following listing; ellipsed
parts have been replaced by “(...)”.

<?xml version ="1.0" encoding ="UTF -8"?>

<XSAMSData xmlns="http :// vamdc.org/xml/xsams /1.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http :// vamdc.org/xml/xsams /1.0 http :// vamdc.org/xml/xsams /1.0">

<Species >

<Atoms>

<Atom>

<ChemicalElement >

<NuclearCharge >1</NuclearCharge >

<ElementSymbol >H</ElementSymbol >

</ChemicalElement >

<Isotope >

<Ion speciesID = "X.H">

<IonCharge >0</IonCharge >

<AtomicState stateID = "S.1s0">

<Description >1s (m = 0)</Description >

<AtomicNumericalData >

<StateEnergy ><Value units = "Ry">-1</Value></StateEnergy >

</AtomicNumericalData >

<AtomicQuantumNumbers >

<TotalAngularMomentum >0</TotalAngularMomentum >

<MagneticQuantumNumber >0</MagneticQuantumNumber >
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</AtomicQuantumNumbers >

</AtomicState >

(...)

<InChIKey >YZCKVEUIGOORGS -UHFFFAOYSA -N</InChIKey >

</Ion>

</Isotope >

</Atom>

</Atoms >

<Particles >

<Particle speciesID = "X.e" name = "electron"/>

</Particles >

</Species >

<Processes >

<Collisions >

<CollisionalTransition id = "P.1s0.1s0">

<ProcessClass >

<Code>elas</Code>

<IAEACode >EDX</IAEACode >

</ProcessClass >

<Reactant ><SpeciesRef >X.H</SpeciesRef ><StateRef >S.1s0</StateRef ></Reactant >

<Reactant ><SpeciesRef >X.e</SpeciesRef ></Reactant >

<Product ><SpeciesRef >X.H</SpeciesRef ><StateRef >S.1s0</StateRef ></Product >

<Product ><SpeciesRef >X.e</SpeciesRef ></Product >

<Threshold ><Value units = "Ry">0</Value></Threshold >

<DataSets >

<DataSet dataDescription = "crossSection">

<TabulatedData >

<Description >

Cross section for reaction e + H[1s0] -> e + H[1s0]

</Description >

<X units = "Ry"><DataList count = "230"> (...) </DataList ></X>

<Y units = "au"><DataList > (...) </DataList ></Y>

<ReferenceFrame >TargetFrame </ReferenceFrame >

</TabulatedData >

</DataSet >

</DataSets >

</CollisionalTransition >

(...)

</Collisions >

</Processes >

<Sources >

<Source sourceID="B.HexII">

<Category >journal </Category >

<SourceName >Comput. Phys. Commun </SourceName >

<Year>2014</Year>

<Authors >

<Author ><Name>Benda J.</Name></Author >

<Author ><Name>Houfek K.</Name></Author >

</Authors >

</Source >

</Sources >

<Methods >

<Method methodID="M.calc">

<Category >theory </Category >

<Description >Exterior complex scaling </Description >

</Method >

</Methods >

</XSAMSData >
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Chapter 4

Hex-ecs: The low-energy program

4.1 Theory

The program hex-ecs implements direct numerical solution of the Schrödinger equation in
the basis of B-spline functions on a radial grid transformed by exterior complex scaling
(ECS). The details are discussed in this chapter.

This method was published in articles [36] and [37], which build on the seminal work
of McCurdy and Mart́ın [38] (see also [39]), advancing their method with several improve-
ments. The current implementation is an alternative to the successful PECS (propagating
ECS ) approach of Bartlett [15]. While PECS uses a fixed-order discretization rule, hex-
ecs—through the use of B-splines—allows a choice of arbitrary discretization order and
makes the grid setup more straightforward. The domain decomposition preconditioner
presented at the end of the chapter acts as a counterpart to the propagation technique
introduced in PECS.

This first section deals with the theoretical aspects of the method, from the basic
equation to its linear-algebraic formulation. The next section discusses the numerical
solution and properties. The last section, finally, deals with the pressing problem of the
radial convergence of scattering quantities.

4.1.1 Angular momentum expansion

The scattering solution |Ψsc⟩ of the Schrödinger equation (2.11) is expanded in bi-polar
spherical functions,

Ψsc(r1, r2) = ⟨r1r2|Ψsc⟩ =
1

r1r2

∑
LMℓ1ℓ2

ψLM
sc,ℓ1ℓ2

(r1, r2)YLM
ℓ1ℓ2

(r̂1, r̂2) , (4.1)

where
YLM

ℓ1ℓ2
(r̂1, r̂2) =

∑
m1m2

CLM
ℓ1m1ℓ2m2

Y m1
ℓ1

(r̂1)Y
m2
ℓ2

(r̂2) . (4.2)

By projecting the equation (2.11) on a complete set of the bi-polar spherical harmon-
ics (4.2) one transforms the original single six-dimensional differential equation to an
infinite set of two-dimensional differential equations numbered by the angular momenta
ℓ1, ℓ2 and L,∑

ℓ′1ℓ
′
2

[
(E − H1 − H2)δ

ℓ′1
ℓ1
δ
ℓ′2
ℓ2
− ⟨(ℓ1ℓ2)LM | 1

r12
|(ℓ′1ℓ′2)LM⟩

]
ψLM
sc,ℓ′1ℓ

′
2
(r1, r2) = χLM

ℓ1,ℓ2
(r1, r2) .

(4.3)
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The quantum number M does not raise the number of equations, because in the con-
figuration used the projectile approaches along the z-axis and thus has no component
of angular momentum in that axis. The total angular momentum projection M is then
always equal to the initial magnetic quantum number of the target.

The system of equations is not coupled in total angular momentum, which is a con-
sequence of conservation of this quantum number. We can thus correct the previous
observation and state that there is an infinite number (L = 0, 1, . . .) of infinite coupled
systems of differential equations numbered by ℓ1 and ℓ2.

The coupling of the equations is due to the two-electron term

⟨(ℓ1ℓ2)LM | 1
r12

|(ℓ′1ℓ′2)LM⟩ = ⟨ℓ1ℓ2||
1

r12
||ℓ′1ℓ′2⟩L =

∑
λ

fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

rλ<
rλ+1
>

, (4.4)

fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

= (−1)L+ℓ2+ℓ′2

{
ℓ1 ℓ2 L
ℓ′2 ℓ′1 λ

}(
ℓ1 λ ℓ′1
0 0 0

)(
ℓ2 λ ℓ′2
0 0 0

)
×

×
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ′1 + 1)(2ℓ′2 + 1) .

The braces and parentheses denote the standard Wigner 6j and 3j symbols, respectively.
When we organize the set of the equations into a matrix equation, where the rows and

columns are indexed by ℓ1 and ℓ2, the only off-diagonal elements are those where some
fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

̸= 0. The angular function fλ then determines the structure of the (E1 − H)

matrix. It has the following properties:

• The function fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

is zero whenever the triplet {ℓ1, ℓ2, L} or {ℓ′1, ℓ′2, L} violates

triangle inequality that requires |ℓ1 − ℓ2| ≤ L and ℓ1 + ℓ2 ≥ L.

• It is also identical zero whenever the operator r−112 would couple angular states of
different parity. This means that fλ

ℓ1ℓ2ℓ′1ℓ
′
2;L

is non-zero only if (−1)ℓ1+ℓ2 = (−1)ℓ
′
1+ℓ′2 .

Putting these rules together, we can draw a graphical representation of the matrix (E1−
H). An example for L = 2 and ℓ1,2 ≤ 5 is given in the figure 4.1. The original matrix
has 36 diagonal components. The lack of even-odd parity coupling is clearly visible. The
system can be split into two smaller systems. The separated even/odd parts have 13
and 8 diagonal components, respectively. Some angular momentum configurations are
completely non-interacting (forbidden), because the electron angular momenta in these
configuration cannot add up to the total angular momentum L. Omission of these 15
rows and columns is an advantageous step for an efficient solution.

A simple algorithm how to choose the contributing angular configurations, ordered in
descending order according to importance of their contribution to the dynamics of the
system, has been shown in [40]. The (ℓ1, ℓ2) pairs are organized into sets with a constant
sum, ℓ1 + ℓ2 = kL. As these angular momenta must be able to compose the total angular
momentum L, there is a lower bound on the sum, kL ≥ L, and upper bound at the
difference, |ℓ1 − ℓ2| ≤ L. In the first group is kL = L and the electron angular momenta
are for a given parity Π ∈ {0, 1} the following: (Π, L), (Π + 1, L− 1), (Π+ 2, L− 2), . . . ,
(L,Π). In the next group the sum kL will increase by two so that states with different
parity are skipped. The table 4.1 shows examples of this scheme.

There are infinitely many angular momentum groups, because kL is not bounded by
anything from above. For the actual calculation the number is truncated, the total number
of different groups considered is denoted by nL + 1. Due to decreasing importance with
rising kL the convergence in nL is possible. The original algorithm from [40] can be even
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Figure 4.1: Graphical representation of the matrix (E1 − H) of the set of equations, and the
right hand side χ, for L = 2 and maximal allowed ℓ equal to five. The green colour indicates a
natural parity component, i.e. (−1)l1+l2+L = (−1)l

′
1+l′2+L = 1, and the yellow is an un-natural

parity component. White components are zero due to the angular momentum conservation.
The two-digit pairs along the borders, (l1l2), denote the angular momenta of the electrons. This
system can be split into two independent systems, as shown right.

kL Natural parity Π = 0 Un-natural parity Π = 1

4 (0,4) (1,3) (2,2) (3,1) (4,0) (1,4) (2,3) (3,2) (4,1)
5 (1,5) (2,4) (3,3) (4,2) (5,1) (2,5) (3,4) (4,3) (5,2)
6 (2,6) (3,5) (4,4) (5,3) (6,2) (3,6) (4,5) (5,4) (6,3)
7 (3,7) (4,6) (5,5) (6,4) (7,3) (4,7) (5,6) (6,5) (7,4)
. . . . . . . . .

Table 4.1: Coupled angular states for L = 4 with leading contribution.

improved. Not all angular pairs in a single row corresponding to some nL are equally
important. For example, at high total angular moment L, say L = 40, the angular
basis will contain (among others) the angular pairs (0,40) and (20,20) for nL = 0. But
the situation where both electrons have ℓ1 = ℓ2 = 20 is very unlikely compared to the
situation where the atomic electron has ℓ1 = 0 and the projectile partial wave has ℓ2 = 40.
It is thus possible to introduce another limiting parameter n′L, which will also ensure that
ℓ1 ≤ n′L or ℓ2 ≤ n′L. It is possible to seek convergence also with respect to this parameter.

The right-hand side of (4.3) is

χLM
ℓ1ℓ2

(r1, r2) =
∑
ℓλ

√
2π(2ℓ+ 1)

ki
iℓCLM

limiℓ0

(
χdir + (−1)S+Πχexc

)
, (4.5)

χdir = fλ
ℓ1ℓ2liℓ;L

(
1

r12
− 1

r2

)
Pnili(r1)ĵℓ(kir2) , (4.6)
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χexc = fλ
ℓ1ℓ2ℓli;L

(
1

r12
− 1

r1

)
ĵℓ(kir1)Pnili(r2) , (4.7)

where Π = li + ℓ + L is the total conserved parity. Here, li is the initial atomic orbital
quantum number and ℓ is the projectile partial wave. Apparently, we have a symmetry
(or antisymmetry)

χLM
ℓ1ℓ2

(r1, r2) = (−1)S+ΠχLM
ℓ2ℓ1

(r2, r1) . (4.8)

Similarly, the solution ψLM
sc,ℓ1ℓ2

(r1, r2) must be symmetric or antisymmetric, depending on
its total spin state and parity. It is then possible to only solve for states with e.g. ℓ1 ≤ ℓ2;
the remaining states with ℓ1 > ℓ2 can be obtained by transposition and application of the
sign factor (−1)S+Π. In further text S and Π are added to the labels of ψ and χ.

The importance of the electron-electron multipole potential V λ = rλ</r
λ+1
> in (4.4)

decreases with rising multipole moment λ, see the figure 4.2. In the region where r1 and
r2 are comparable, however, the contribution cannot be neglected ever for high λ. This
is an unavoidable feature of the the original singular term V12 = |r1 − r2|−1.

4.1.2 Exterior complex scaling

The differential equation (2.11), or its angular expansion (4.3), need a specification of a
boundary condition in order to yield a unique solution. In scattering theory the boundary
condition is the expression (2.13) or (2.29). The method of the exterior complex scaling
(ECS) uses the observation that if we—instead of the real coordinate r—use a complex co-
ordinate ρ = Re ρ+i Im ρ with uniformly increasing positive imaginary part, the resulting
expression will be exponentially damped,

eikρ = eikRe ρe−k Im ρ . (4.9)

The canonical way how to obtain this complexified coordinate is a rotation of a part of
the coordinate axis into the complex plane using the expression (also see fig. 4.3)

ρ(r) =

{
r [r ≤ R0] ,

R0 + (r −R0)e
iθECS [r > R0] .

(4.10)

The scattering part of the wave function (2.13) (i.e. the second term) subject to the
transformation (4.10) rapidly decreases when the distance of the projectile from origin
significantly exceeds the radius R0 in magnitude. In a sufficient distance beyond the
turning radius R0 the function can be considered effectively equal to zero. Also the
asymptotic ionization wave function (2.29) contains an oscillatory term, which will behave
exactly the same—the oscillations will be transformed to an exponential damp factor. See
also the figure 4.4.

When using the ECS approach, the equation (4.3) for ψLM
sc,ℓ′1ℓ

′
2
can be supplemented

with the pure Dirichlet boundary condition: we require that the solution is zero when
r1 = 0 or r2 = 0 (thanks to separation of the term 1

r1r2
in (4.1)) and also when r1 ≥

Rmax or r2 ≥ Rmax (thanks to (4.9)). This allows introduction of a finite basis on the
rectangle (0, Rmax) × (0, Rmax), discretization of the differential operators and ultimate
transformation of the problem into a (large) system of linear-agebraic equations.

For completeness, we should note that the exterior complex scaling is not the only
possible approach. It evolved from the smooth complex scaling [41], which, nevertheless,
has been recently demonstrated to yield as good results as ECS [42].

36



Figure 4.2: Magnitude of the coupling potential rλ</r
λ+1
> for different values of the multipole

λ. For high multipoles the contribution comes only from the region where r1 is comparable to
r2.
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Figure 4.3: Exterior complex scaling contour—the complex-rotated radial coordinate.

Figure 4.4: A radial part of the two-electron wavefunction for spin S = 0 and total angular
momentum L = 0. The top panel is for total energy Etot = −0.4 Ry, whereas the bottom panel
for the total energy Etot = 4 Ry. The notable difference is the oscillation pattern in the right
figure that corresponds to non-zero probability of both electrons retreating to continuum. The
left figure does not allow that option, it contains only the evanescent waves running along the
boundaries. See also the discussion in [43].
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4.1.3 B-spline basis

B-splines (basis splines) are a special class of piecewise polynomial functions of a real
variable with compact support. They are defined by their orderK and an ordered sequence
of knots ti, i = 1, . . . , Nknot. The mathematical properties of the B-splines have been
reviewed by de Boor in [44]. The application of the B-splines in atomic and molecular
physics has been discussed by Bachau in [45].

The defining prescription is a recursive formula (called de Boor formula)

BK
i (x) =

x− ti
ti+K − ti

BK−1
i (x) +

ti+K+1 − x

ti+K+1 − ti+1

BK−1
i+1 (x) , (4.11)

with the seed value

B0
i (x) =

{
1 [ti ≤ x < ti+1] ,

0 otherwise.

The derivative of a B-spline is a combination of B-splines with lower order,

d

dx
BK

i (x) =
K

ti+K − ti
BK−1

i (x)− K

ti+K+1 − ti+1

BK
i+1(x) . (4.12)

B-splines are composed of polynomials of degree equal to their order K. For this reason,
integration of a product of two B-splines can be done efficiently using the Gauss-Legendre
quadrature with number of points equal to the splines’ order. Furthermore, the for-
mula (4.11) is friendly to vector processing on modern CPUs (e.g. using AVX instruc-
tions); thanks to the simple operations a single B-spline can be effectively evaluated in
several points at once if x and B(x) are considered vectors and the operations component-
wise. If the knot sequence is non-decreasing, with point multiplicity not exceeding the
B-spline order, then all B-splines span exactly K + 1 knots or K inter-knot intervals.
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0.1

0.2

0.3

0.4

0.5
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0 5 10 15 20

Figure 4.5: Example of a B-spline set of order 6 and knot sequence 0 [6×], 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 10+1eiπ/4, 10+2eiπ/4, 10+3eiπ/4, 10+4eiπ/4, 10+5eiπ/4, 10+6eiπ/4, 10+7eiπ/4, 10+8eiπ/4,
10+ 9eiπ/4, 10+ 10eiπ/4 [6×]. Real part is black, imaginary part red. The horizontal axis shows
the length of the semi-complex coordinate contour, bullets indicate horizontal positions of the
knots.
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Originally, the knot sequence has been considered only real, but McCurdy and Mart́ın [38]
showed that if the knots are chosen along the semi-complex ECS contour (i.e. initially
real and beyond R0 rotated into the complex plane), the resulting set is an excellent basis
for the solution of the Schrödinger equation in the ECS method, because it already con-
tains the sharp feature at ρ = R0, which would require much finer basis around ρ = R0

otherwise. Example of such a basis set is presented in the figure 4.5. The discontinuity
of the derivative at the turning point R0 = 10 is apparent.

Using this basis is advantageous in the ECS method also due to the fact that it
automatically enforces the desired boundary condition: zero at the origin and at the end
of the grid. In the present problem the equations are two-dimensional, hence we are using
a product basis of the one-dimensional bases. The property of the chosen B-splines then
ensures that the solution is zero at the boundary of the grid. Note that to allow different
shapes of the solution at the origin (r1 = 0 or r2 = 0), it is necessary to use the maximal
knot multiplicity there, i.e. the multiplicity equal to the order of the B-splines.

The matrix elements of various operators can be computed as integrals of B-splines,

⟨Bi|Bk⟩ =
∫
Bi(r)Bk(r) dr = Sik ,

⟨Bi|
(
− d2

dr2

)
|Bk⟩ = +

∫
dBi(r)

dr

dBk(r)

dr
dr = Dik ,

⟨Bi|rα|Bk⟩ =
∫
Bi(r)r

αBk(r) dr =M
(α)
ik ,

⟨BiBj|
rλ<
rλ+1
>

|BkBl⟩ =
∫ ∫

Bi(r1)Bj(r2)
rλ<
rλ+1
>

Bk(r1)Bl(r2)dr1dr2 = Rλ
ijkl .

Using these matrices the equation (4.3) can be written in a matrix form,∑
ℓ′1ℓ

′
2

AL
ℓ1ℓ2ℓ′1ℓ

′
2
ψLMSΠ

sc,ℓ′1ℓ
′
2
= χLMSΠ

ℓ1ℓ2
, (4.13)

where

AL
ℓ1ℓ2ℓ′1ℓ

′
2
= (ES⊗ S− H1 ⊗ S− S⊗ H2) δ

ℓ′1
ℓ1
δ
ℓ′2
ℓ2
−
∑
λ

fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

Rλ , (4.14)

Hn =
1

2
D+

1

2
ℓn(ℓn + 1)M(−2) −M(−1)

and

χLMSΠ
ℓ1ℓ2

=
∑
ℓλ

√
2π(2ℓ+ 1)

ki
iℓCLM

limiℓ0

(
χdir + (−1)S+Πχexc

)
, (4.15)

χdir = fλ
ℓ1ℓ2liℓ;L

(
Rλ − δ0λδ

li
ℓ1
δℓℓ2S⊗M(−1)) (p⊗ j) ,

χexc = fλ
ℓ1ℓ2ℓli;L

(
Rλ − δ0λδ

ℓ
ℓ1
δliℓ2M

(−1) ⊗ S
)
(j⊗ p) ,

with p and j being the vectors of B-spline expansion of the respective one-dimensional
radial function Pnili(r) or jℓ(kir). The block structure of (4.13) has been discussed in the
section 4.1.1 and in the figure 4.1.
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4.1.4 Extraction of scattering information

Once the solution to the Schrödinger equation is found, it is possible to extract information
on the scattering processes that originate from the initial state contained in the right-hand
side. For discrete transitions one uses the formula for the T -matrix element

Tfi = ⟨Ψf |T|Ψi⟩ = ⟨Ψf |Hint|Ψ(+)
i ⟩ .

Thanks to the assumption that the potentials are terminated at the end of the real grid,
the radial integrals in the above formula can be terminated at the same radius R0, too.

Tfi = ⟨Ψf |Hint|Ψ(+)
i ⟩R0 = ⟨Ψf |Hfull − Hfree|Ψ(+)

i ⟩R0 .

The stationary scattering state Ψ
(+)
i is an eigenstate of Hfull with eigenenergy Etot, so that

Tfi = ⟨Ψf |Etot − Hfree|Ψ(+)
i ⟩R0 .

In the coordinate representation this can be simplified to

Tfi =
∑
ℓ

TℓY
mi−mf

ℓ (k̂f ) , Tℓ =
∑
L

TL
ℓ ,

TL
ℓ =

1√
2

4π

kf
i−ℓCLmi

lfmmℓmi−mf

(
Λ

(1)Lmi

ℓ + Λ
(2)Lmf

ℓ

)
Λ

(1)Lmi

ℓ =

∫ R0

0

Pnf lf (r1)W
[
ψLmi
sc,lf ,ℓ

(r1, •), ĵℓ(kf•)
]
R0

dr1 ,

Λ
(2)Lmi

ℓ =

∫ R0

0

ĵℓ(kfr2)W
[
ψLmi
sc,lf ,ℓ

(•, r2), Pnf lf (•)
]
R0

dr2 ,

where W [f(x), g(x)]x0 = f ′(x0)g(x0)− f(x0)g
′(x0) is the wronskian of two functions eval-

uated at the given point. In the limit R0 → +∞ the second radial integral Λ
(2)Lmi

ℓ is
effectively zero, because it is proportional to the hydrogen radial orbital Pnf lf evaluated
at R0, or to its derivative at that point. In hex-ecs it is neglected.

The extraction of the ionization exmplitude is much more challenging, because the
partial wave expansion of (2.29) is complicated. It has been shown, though, that a
reasonably good approximation (at least in Ω0) is an assumption that the final state can
be approximated as a product of two non-interacting Coulomb waves, ϕ1ϕ2. This is the
method known as the Peterkop surface integral [46]. Then we have

F (k1,k2) =
∑

ℓ1ℓ2LM

i−ℓ1−ℓ2ei(σ1+σ2)YLM
ℓ1ℓ2

(k̂1, k̂2)f
LM
ℓ1ℓ2

(k1, k2) , (4.16)

fLM
ℓ1ℓ2

(k1, k2) =
2√
π

ρ

k1k2

∫ π/2

0

(
ϕ1ϕ2

∂

∂ρ
ψLM
sc,ℓ1ℓ2

− ψLM
sc,ℓ1ℓ2

∂

∂ρ
ϕ1ϕ2

)
dt . (4.17)

Whereas the discrete T -matrices are extracted from a line at (r1, r2) = (R0, r2), the
ionization amplitude is extracted from a quarter-circle (r1, r2) = (ρ cos t, ρ sin t). The
hyper-radius ρ is chosen to be equal to R0. This last oscillatory integral is integrated
using the Clenshaw-Curtis quadrature, see Appendix A.
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4.2 Implementation

4.2.1 Solution of the linear system

The system (4.13) is generally huge. If there are N basis functions (B-splines) in each
dimension and A angular momentum pairs, then the rank of the set of equations is N2A.
For a moderate calculation is N ≈ 103 and A ≈ 101, which gives a rank of 107. Such
a matrix cannot be solved by a simple application of a LAPACK routine, already for
the reason that such a large dense matrix does not fit into commonly available computer
memory. Fortunately, thanks to the compact support of the basis functions the matrix is
very sparse. The one-electron matrices S, M(α) and D have 2K+1 diagonals in the central
band, where K is the order of the B-splines. The two-electron matrices R and A have
(2K+1)2 diagonals and have a two-level recursive structure: They are composed of blocks,
which are either identically zero, or with the same structure as the one-electron matrices.
Technically, the structure of the two-electron matrices is the same as the structure of
the tensor product of two one-electron matrices. All matrices are symmetric, however
indefinite.

The solution algorithm used in hex-ecs is the PCOCG algorithm (preconditioned con-
jugate orthogonal conjugate gradients) [47], which is a slightly modified standard PCG
algorithm (preconditioned conjugate gradients). The only difference between CG and
COCG is that the scalar products a · b, which are in CG computed as

∑
i a
∗
i bi, are

replaced by non-conjugated
∑

i aibi, which enables the algorithm to converge also for
non-positive-definite complex symmetric linear systems. The plain CG solution method
typically converges for sparse two-dimensional problems in O(n3/2) iterations when n is
the rank of the matrix [48]. However, the number of iterations can be considerably reduced
by preconditioning.

4.2.2 Preconditioning

The preconditioning is done by solution of a simplified system where the coupling between
different (ℓ1, ℓ2) blocks is neglected. This assumption is equivalent to replacing Aℓ1ℓ2ℓ′1ℓ

′
2
in

equation (4.13) by Aℓ1ℓ2ℓ′1ℓ
′
2
δ
ℓ′1
ℓ1
δ
ℓ′2
ℓ2
. The solution of the large linear system of rank N2A then

reduces to solution of A systems of rank N2. These block-diagonal systems are slightly
smaller, though generally still very large for a straightforward direct solution. Hence the
iterative method is employed here for the second time. And again with a preconditioner.

A standard choice of the nested preconditioner is the incomplete LU factorization and
back-substitution [49]. The factorization is done once before the iterative solver starts,
and then reused on every preconditioner application. In hex-ecs one can choose from
several options when using the ILU preconditioner. The factorization can be done by
MUMPS [50], PARDISO [51], UMFPACK [52], SuperLU [53] or SuperLU DIST [54]. All
these libraries use similar workflow: the matrix is analyzed and permuted, so that the
fill-in (number of new non-zero elements in LU factors) will be as low as possible, and
then decomposed into the L and U factors. In the case of the incomplete LU factorization
elements outside of the sparse pattern of the original matrix are compared to a given
tolerance and dropped if their magnitude falls below the tolerance. This action reduces the
memory required to hold the LU factors, though introducing irregularity in the memory
storage and hence preventing vectorization of the linear-algebraic operations. The existing
decomposition can be then used for fast solution of the linear system with varying right-
hand sides. Note that—depending on the drop tolerance used—the ILU preconditioner is
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very efficient and mostly results only in a single iteration of the nested conjugate gradients,
hence effectively in a direct solution of the preconditioner system.

The figure 4.6 compares factorization and running times for a particular setup domin-
ated by outer region (see the section “Channel reduction”) for different LU decomposition
libraries. The properties of the individual libraries in calculations dominated by the inner
region are demonstrated in the next figure 4.7. General conclusion is that the PARDISO
solver is fastest, whereas the UMFPACK library produces smallest LU factors.

Figure 4.6: Comparison of numerical performance of various LU decomposition numerical
libraries for an outer-region-dominated calculation. The test calculation is as in the last row
of table 4.3, only with angular momenta limited to ℓ1,2 ≤ 3. The “LU time” is the time for
LU decomposition of the largest ℓ1 = ℓ2 = 0 block of rank 3’886’188, while the “full time” is
the LU-backsubstitution-dominated running time of the iterative solver for the whole system
of rank 7’865’688. The gigabytes (white columns) indicate the memory consumed by the LU
factorization of the first diagonal block.

Figure 4.7: Comparison of numerical performance of various LU decomposition numerical
libraries for an inner-region-dominated calculation. The test calculation is as in the second row
of table 4.3, only with angular momenta limited to ℓ1,2 ≤ 3. Here, the rank of the first diagonal
block was 289’444 and of the full hamiltonian 1’157’776.

4.2.3 Kronecker product approximation preconditioner

Even though the preparational step with fill-in reducing permutations is done, the LU
factors can easily overgrow the available computer memory. For this reason an alternative
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preconditioner has been implemented. Here it is called Kronecker product approximation
(KPA) and its idea lies in the observation that if the two-electron term containing Rλ is
neglected in (4.14), then there are only Kronecker products in the diagonal block AL

ℓ1ℓ2ℓ1ℓ2

and those can be simultaneously diagonalized by suitable similarity transform, see also [55]
and [56]

AL
ℓ1ℓ2ℓ1ℓ2

≈
(
S1/2C−11 ⊗ S1/2C−12

)
(E1⊗ 1−Λ1 ⊗ 1− 1⊗Λ2)

(
C1S

1/2 ⊗ C2S
1/2

)
,

where
S−1/2HnS

−1/2 = C−1n ΛnCn .

The diagonalization of S−1/2HnS
−1/2 is done by the standard LAPACK routine zgeev,

inversion of matrices by the tandem zgetrf & zgetri. The simplified and factored
AL
ℓ1ℓ2ℓ1ℓ2

can be easily inverted, because the participating matrices are only of rank N ,
which is the number of B-splines in one dimension. The approximate solution of the
system AL

ℓ1ℓ2ℓ1ℓ2
z = r is then

z ≈
(
S−1/2C−11 ⊗ S−1/2C−12

)
(E1⊗ 1−Λ1 ⊗ 1− 1⊗Λ2)

−1 (C1S
−1/2 ⊗ C2S

−1/2) r . (4.18)

The application of a Kronecker product on a vector, (A⊗B) ·v, is a very efficient operation
which requires only two matrix-matrix multiplications when the vector is reshaped to a
matrix form by columns,

w = (A⊗ B) · v ↔ W = AVB⊤ . (4.19)

This relation reduces the number of floating point multiplications fromN4 to 2N3, which is
a great speed-up. Translating (4.18) into the matrix notation using (4.19) and Z = mat(z),
R = mat(r), D = (E1⊗ 1−Λ1 ⊗ 1− 1⊗Λ2)

−1 we get

Z = S−1/2C−11

[
D
(
C1S

−1/2 RS−1/2⊤C⊤2
)]

C−⊤2 S−1/2⊤

= FRS−1 , F = S−1/2C−11 DC1S
−1/2 .

4.2.4 Preconditioner performance

The effectivity of the preconditioners varies with the impact energy. The angular coupling,
which is neglected by the main block-diagonal preconditioner, becomes very important
around the ionization threshold. For energies close to the threshold the convergence will
be very slow. The figure 4.8 shows performance of the COCG method when the inversion
of diagonal blocks is used as the preconditioner. It would be possible to include the off-
diagonal blocks, or some of them, in the preconditioner to increase its effectivity. This
would, however, lead to solution of the huge full-rank matrix of the two-dimensional
system. The figure 4.9 shows the number of iterations for various number of multipole
moments considered in the off-diagonal blocks. The LU factorization (and its subsequent
application) of the full-rank matrix is done by the library MUMPS [50], which, unlike
both UMFPACK and SuperLU, offers also out-of-core mode, so that the LU factors do
not need to fit in computer memory and are stored in temporary files on the disk.

The nested KPA preconditioner performs well if the electrons are not interacting too
much. This is violated in vicinity of all thresholds, for which the electron-electron cor-
relation is very important. The figure 4.10 shows number of nested PCOCG iterations
needed to invert the (0, 0) block for a specific energy and basis.

44



10

100

1000

−1 −0.5 0 0.5 1 1.5 2 2.5

it
er
a
ti
o
n
s

Etot [Ry]

Figure 4.8: Preconditioner iterations: Iterations of COCG needed for convergence of the whole
scattering wave solution of a sample setup at different energies. The number diverges around
the ionization threshold. This curve does not depend very much on the specific initial state; the
convergence character is rather a property of the matrix of the equations and its eigenspectrum.

Figure 4.9: Number of COCG iterations needed to converge a solution when off-diagonal
multipole blocks Rλ up to a given λmax are included in the preconditioner. The importance of
the multipoles decreases only slowly, cf. fig 4.2, and does not outweigh the construction cost of
the coupled ILU preconditioner. Note however that the inclusion of λ = 1 (i.e. dipole coupling,
which is responsible for polarization) significantly reduces the iteration count in the vicinity of
the thresholds: The peaks at −0.25, −0.111... and −0.0625 Ry disappear.
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Figure 4.10: Nested (KPA) preconditioner iterations: Iterations of COCG needed for a conver-
gence of the (0, 0) segment of the scattering wave solution for a given initial state and other input
parameters. The number diverges in the vicinity of excitation thresholds, which, unfortunately,
means that is is relatively high in the whole resonance region.

The total solution time depends on the number of iterations of the main block-diagonal
linear solver. Every iteration includes many KPA- (or a few ILU-) -preconditioned nested
iterations. Apparently, when KPA is used, the total time will be proportional to the
product of the two curves in figures 4.8 and 4.10. That number is low in the extremely
low-energy region (below the first threshold) and in the intermediate-energy region (above
the ionization threshold). In the resonance region (i.e. total energies from approximately
−0.3 Ry to 0 Ry) the ILU preconditioner is more useful, despite its huge memory require-
ments.

The KPA preconditioner is effective when the electron-electron interaction is not dom-
inant. This is the case for high energies and for high partial waves (angular momenta);
the average electron separation is then large and the interaction is suppressed accord-
ingly. Also, due to the fact that the electron-electron interaction is strongest along the
line r1 = r2, the configurations with either S = 1 or Π = 1 are easier to solve than the
rest. For these quantum numbers the wave function is antisymmetrical with respect to
the exchange of the particles and hence equal to zero on the diagonal r1 = r2, reducing
the magnitude of the interaction.

4.2.5 Parallelization

To make the solution faster it is necessary to distribute the computational work among
several processing units. The program can run (a) in a single-thread mode, (b) in a shared
memory mode on several cores (or processors) of a single node and (c) in a distributed
mode on several communicating nodes.

The shared memory mode is implemented through the OpenMP standard. Optimally,
hex-ecs uses the OpenBLAS [57] library, which contains parallelized BLAS and LAPACK
routines and many of them are heavily optimized; the numerical kernels are written in
assembly language, specifically tailored for each common processor model. The libraries
UMFPACK and SuperLU can take advantage of multi-core machines as well; the first
one only through OpenBLAS, the second even by itself. OpenMP parallelization allows
access to more computing power; however, in large-scale calculations it is often necessary
to access also more memory than a single node can offer.
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The cross-node parallelization is done using the standard MPI model. The program
is launched in several copies on several nodes and these instances communicate with each
other and share work. The present model in hex-ecs is the following: There are ng equal-
sized groups containing np processes, altogether ngnp processes. All processes within the
group work on the same block-rows of the matrix AL

ℓ1ℓ2ℓ′1ℓ
′
2
and corresponding segments

ψsc,ℓ1ℓ2 and χℓ1ℓ2 of the solution and the right-hand side, respectively; they store the same
data. They evenly divide simple operations and synchronize the results among the group
afterwards. The concept of a group is used due to the library SuperLU DIST , which
allows several processes (= the group) to work on the LU factorization of a single matrix.
During the preconditioning step the groups are independently working on the solution of
diagonal block systems associated to them. The only non-trivial cooperation among the
groups comes in the multiplication by the whole block matrix.

The parallel efficiency on multicore processor is illustrated in the left panel of the
figure 4.11. The program can also run on GPUs; comparison of GPU vs CPU timing is
done in the right panel of the same figure.
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Figure 4.11: Performace of the program on various platforms: Left panel compares run times
on increasing number of cores of an Ivy Bridge-class Xeon processor. Right panel compares run
times on consumer Haswell-class i7 processor to a common GPU.

4.3 Radial convergence

Even though the atomic orbitals are asymptotically exponentially vanishing, the conver-
gence of scattering amplitudes with the increasing R0 is not as fast as one might hope.
The reason is that the multipole effective potentials stemming from the multipole expan-
sion of the electron-electron interaction, see (4.5) and (4.4), decrease with a power of the
radial coordinate and much larger radii need to be considered so that one can obtain
converged results.

Another way of seeing this situation comes from the notion of the Helmholtz prob-
lem (2.12). The right-hand side χi acts as a “source” of the complex “field” Ψ+

sc. If χi

cannot be neglected to a large distance, the “field” Ψ+
sc will not stabilise until reaching

large distances from the scattering centre. But this is not enough. For the quantum scat-
tering it is also necessary to obtain converged angular expansion components ψℓ1ℓ2 of Ψ+

sc

defined in (4.1). But these components again interact through multipole potentials. So the
six-dimensional Helmholtz problem (2.12) can be rewritten as a set of two-dimensional
Helmholtz problems for fields with a continuous source and where each field acts as a
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source for other fields to large distances,

(△+ k2ℓ1ℓ2(r1, r2))ψℓ1ℓ2 = χℓ1ℓ2 +
∑

(ℓ′1,ℓ
′
2 )̸=(ℓ1,ℓ2)

Wℓ1ℓ2ℓ′1ℓ
′
2
ψℓ′1ℓ

′
2
. (4.20)

The radial convergence must encompass the effect of the right-hand side in (4.20).

4.3.1 S-model

In the case of an “S-model”, i.e. a calculation where all angular momenta are set to
zero, no long-range multipole potentials arise. Let us assume that we are looking for the
solution of the ECS scattering equations for L = Π = S = 0, nL = 0, initial state 1s and
impact energy Ei = 2 Ry. Only the angular momentum pair (0, 0) contributes to this
calculation. The right-hand side has the form

χ00(r1, r2) =

(
1

r>
− 1

r2

)
P1s(r1) sin kir2 + (1 ↔ 2) ,

If we take the limit r2 → +∞, the function χ00 either becomes identically zero when
r1 < r2 or exponentially decreases if we keep r1 > r2. In other words it mimics a short-
range potential contribution. The extracted scattering quantities converge very fast with
grid size in such a case, see the figure 4.12.

Figure 4.12: Radial convergence of extracted cross section for S-model scattering transition
H(1s) to H(10s) at impact energy Ei = 2 Ry.

4.3.2 Higher angular momenta

Now assume that we raise nL to 1, i.e. include the angular state (1, 1). Then the right-
hand side receives a new component

χ11(r1, r2) = − 1√
3

r<
r2>
P1s(r1) sin kir2 + (1 ↔ 2) .

This other component decreases as

χ11(r1, r2) ∼
A

r22
sin kir2 ,
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where A = − 1√
3
r1P1s(r1) is a bounded function of r1. The function χ11 corresponds to a

long-range potential and the truncation of the right-hand side at R0 leads to an error that
diminishes with the power of the distance R0. A similar effect as in the right-hand side
takes place also in the the matrix of the set of equations, which contains the multipole
potentials as well.

There are several ways how to compensate this loss of information, which are presented
in the next three sections.

4.3.3 Potential splitting

One could take the asymptotic form of the potential, correct the initial and final states
to account for this long-range interactions, and then solve the scattering between these
modified, distorted, asymptotic states only on the remaining short-range (or at least more
quickly decaying) potential. A similar operation has been done for ECS in [58] and [59],
where the long-range direct Coulomb interaction for ionic targets has been separated.

Because the angular momentum pair coupling is what we would like to separate, one
would need to solve practically the same two-dimensional system for the distorted initial
and final states as for the scattered waves, as it has been done, illustratively, in [60].
The only difference would be a potential cut-off. Moreover, the distorted wave equations
would need to involve even larger physical space than the scattering equations to result
in correct asymptotic states. There is no benefit in such an approach.

4.3.4 Extrapolation

The slow radial convergence of the scattering amplitude can be resolved by extrapolation.
When extrapolating, we assume that the dependence of the T -matrix (or the scattering
amplitude) on the truncation radius is asymptotically

Tfi,ℓ(R0) → Tfi,ℓ + cR−10 +O(R−20 ) .

For asymptotic T -matrix it is then

Tfi,ℓ →
R′0Tfi,ℓ(R

′
0)−R0Tfi,ℓ(R0)

R′0 −R0

,

which should converge considerably faster than Tfi,ℓ(R0) alone. It has been noted in [40]
that if sufficiently large grid is used to calculate the solution, then the extrapolation can
be done by extracting T -matrices from this single solution at various radii, rather than
calculating a whole set of solutions with varying grid size. This speeds up the methodology
immensely.

The actual algorithm implemented in hex-ecs uses simple linear regression applied on
the T -matrix as a function of the inverse extraction radius, see the figure 4.13. How-
ever, extrapolation of the extracted amplitude is only useful when evaluating excitations
from low states to high states; otherwise the calculated wave function lacks important
contributions from far distances.

4.3.5 Channel reduction

This is a very powerful method, which has been published in [61]. The grid still needs
to be stretched very far; however, the method reduces the dimensionality of the problem
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Figure 4.13: Radial extrapolation of cross sections for elastic scattering on H(2s) at impact
energy Ei = 0.05 Ry, for L = S = Π = 0, nL = 10. The two plots show the same function of
radial distance, only for different mapping of the horizontal axis: on the right panel it is changed
so that the 1/r dependence transforms to a straight line.

and so the long grid does not pose any problem. Unfortunately, a channel reduction is
possible only for total energies below (or around) the ionization threshold.

In asymptotic distances, where r2 ≪ r1 → +∞ or r1 ≪ r2 → +∞, the electrons
become distinguishable and the atomic electron, which is bound to the nucleus, has to be
in one of the energy-allowed atomic states. It is then

ψLMS
sc,ℓ1ℓ2

(r1, r2) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
(1)
c∑

m=1

F
(1)
mℓ1

(r1)Pmℓ2(r2) [r1 → +∞] ,

N
(2)
c∑

n=1

Pnℓ1(r1)F
(2)
nℓ2

(r2) [r2 → +∞] ,

0 [r1, r2 → +∞] ,

(4.21)

where Pnl(r) = rRnl(r) is the hydrogen bound state radial function multiplied by the

radius, F
(a)
nl (r) is the corresponding (unknown) projectile channel function for asymptotic

ra → +∞ and N
(a)
c is the number of open scattering channels. The summation overm and

n includes only energetically allowed states, i.e. states with energy lower than the total
energy Etot. Note that the channel functions F

(a)
nl should actually bear all the indices of

ψLMS
sc,ℓ1ℓ2

, because they are unique for each of these angular components. However, most of
the discussion deals with a single block for given angular momenta, so we use a simplified
notation without these indices.

The asymptotic forms (4.21) can be plugged into the scattering equation (4.3), result-
ing in (for r1 → +∞)

[
(Etot − Eat

m)− Tℓ1
]
F

(1)
nℓ1

= ξ
(1)
nℓ2

+
∑
ℓ′1ℓ

′
2m

λ>0

fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

ρλnℓ2,mℓ′2

rλ+1
F

(1)

mℓ′1
, (4.22)
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where

ξ
(1)
nℓ2

(r1) =

∫
Pnℓ2(r2)χ

LMS
ℓ1ℓ2

(r1, r2) dr2 (4.23)

and

ρλnℓ2,mℓ′2
=

∫
Pnℓ2(r2) r

λ
2 Pmℓ′2(r2) dr2 , (4.24)

or similarly

[
(Etot − Eat

n )− Tℓ2
]
F

(2)
mℓ2

= ξ
(2)
mℓ1

+
∑
ℓ′1ℓ

′
2n

λ>0

fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

ρλmℓ1,nℓ′1

rλ+1
F

(2)

nℓ′2
(4.25)

for the other asymptotics (r2 → +∞).

The proposition (4.21) is satisfied very accurately already for moderate distances,
because all energetically forbidden channels Fn exponentially decrease with the distance
and only the asymptotically allowed states Pnl remain in the expansion. If there is a
distance Ra where (4.21) is satisfactorily accurate, it is possible to solve the problem
(4.3) only for radii smaller than Ra and the equations (4.22) and (4.25) only beyond the
dividing radius Ra. The only remaining question is that of the boundary conditions, for
which we will use ECS, and of the continuity, which is discussed further in the B-spline
framework.

Let us consider the B-spline expansion of the radial functions:

ψLMS
sc,ℓ1ℓ2

(r1, r2) =
N∑

k,l=1

Bk(r1)Bl(r2)ψ
LMS
sc,ℓ1ℓ2,kl

, (4.26)

F
(1)
mℓ1

(r1) =
N∑
k=1

Bk(r1)F
(1)
mℓ1,k

, (4.27)

F
(2)
nℓ2

(r2) =
N∑
l=1

Bl(r2)F
(2)
nℓ2,l

. (4.28)

Every B-spline in a basis overlaps with 2K other B-splines, where K is the B-spline order.
The full problem knot sequence is chosen along an ECS contour, i.e. knots are real up
to some sufficiently large R0 ≫ Ra, where the multipole coupling can be neglected, and
complex with geometrically increasing distances until the point where all outgoing waves
are effectively damped by ECS to the numerical zero. Now assume that approximately N0

leading B-splines fit into the inner radius Ra. This will be the “inner basis”. All further
B-splines are considered the “outer” basis. There is N1 = N − N0 outer B-splines. The
overlapping B-splines offer a simple means of enforcing the continuity between the inner
and outer regions.

By projecting the equation (4.3) on the product Bi(r1)Bj(r2) and the one-dimensional
equations (4.22) and (4.25) on Bi(r1) and Bj(r2), respectively, we obtain a triplet of
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matrix equations in the full B-spline basis,∑
ℓ′1ℓ

′
2

N∑
k,l=1

AL
ℓ1ℓ2ℓ′1ℓ

′
2,ijkl

ψLMS
sc,ℓ′1ℓ

′
2,kl

= χℓ1ℓ2,ij , (4.29)

∑
ℓ′1ℓ

′
2

N
(1)
c∑

m=1

N∑
k=1

B
(1)

ℓ1ℓ2ℓ′1ℓ
′
2,mn,klF

(1;ℓ′1,ℓ
′
2)

mℓ′1,k
= ξ

(1;ℓ1,ℓ2)
nℓ2,l

, (4.30)

∑
ℓ′1ℓ

′
2

N
(2)
c∑

n=1

N∑
l=1

B
(2)

ℓ1ℓ2ℓ′1ℓ
′
2,mn,klF

(2;ℓ′1,ℓ
′
2)

nℓ′2,l
= ξ

(2;ℓ1,ℓ2)
mℓ1,k

. (4.31)

Typically, the solution vector ψLMS
sc,ℓ′1ℓ

′
2,kl

is found by a straightforward solution of the coupled

set (4.29). However, the three sets (4.29)–(4.31) can be combined into a single system
that is mostly much smaller than (4.29) alone when the assumption (4.21) is used. The
B-spline equivalents of (4.21) are

ψLMS
sc,ℓ1ℓ2,kl

=

N
(1)
c∑

m=1

F
(1)
mℓ1,k

Pmℓ2,l [k ≳ N0] , (4.32)

=

N
(2)
c∑

n=1

Pnℓ1,kF
(2)
nℓ2,l

[l ≳ N0] , (4.33)

= 0 [k, l ≳ N0] .

These relations have a simple inversion originating in orthogonality
∑N0

i,j=1 Pmℓ,iSijPnℓ,j =
δmn of the hydrogen orbitals:

F
(1)
mℓ1,k

=

N0∑
i,j=1

Pmℓ2,iSijψ
LMS
sc,ℓ1ℓ2,kj

[k ≳ N0] , (4.34)

F
(2)
nℓ2,l

=

N0∑
i,j=1

Pnℓ1,jSijψ
LMS
sc,ℓ1ℓ2,il

[l ≳ N0] . (4.35)

The summation can be truncated already at N0 due to exponential decay of the orbitals.
The matrix Sij is the overlap matrix of the B-spline basis, Sij =

∫
Bi(r)Bj(r)dr.

Having these relations between the full and asymptotic solutions we can now choose
the following subset from the equations (4.29)–(4.31), where we suppressed the angular
summations and indices:

∀i, j = 1, . . . , N0 :

χij =

N0∑
k,l=1

Aijklψkl

+

N0+K∑
k=N0+1

N0∑
l=1

N
(1)
c∑

m=1

AijklF
(1)
mkPml

+

N0∑
k=1

N0+K∑
l=N0+1

N
(2)
c∑

n=1

AijklPnlF
(2)
nl , (4.36)
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∀l = N0 + 1, . . . , N ∀n = 1, . . . , N (1)
c :

ξ
(1)
nl =

N
(1)
c∑

m=1

N∑
k=N0+1

B
(1)
mnklF

(1)
mk

+

N
(1)
c∑

m=1

N0∑
k=N0+1−K

B
(1)
mnkl

N0∑
i,j=1

PniSijψkj , (4.37)

∀k = N0 + 1, . . . , N ∀m = 1, . . . , N (2)
c :

ξ
(2)
mk =

N
(2)
c∑

n=1

N∑
l=N0+1

B
(2)
mnklF

(2)
nl

+

N
(2)
c∑

n=1

N0∑
l=N0+1−K

B
(2)
mnkl

N0∑
i,j=1

PmjSijψil . (4.38)

These three sub-systems relate the combined solution vector (ψkl, F
(1)
mk , F

(2)
nl ), see fig-

ure 4.14, to the combined right-hand side (χij, ξ
(1)
nl , ξ

(2)
mk).

If no outer problem is to be solved (N0 = N , N1 = 0), the equations (4.36)–(4.38)
reduce to (4.29) and the symmetrical matrix of the linear equations has the structure
illustrated in the figure 4.15. The rank of the matrix grows as O(N2).

When the problem is split into the inner and outer part, the combined matrix has a
slightly more complicated structure shown in the figure 4.16, but the rank of the combined
matrix for the fixed inner basis (fixed N0) scales with O(N1) ∼ O(N) as N1 → +∞, which
is already a great improvement over the original O(N2). Even more, for a general M -
electron problem, the number of inner solution elements grows as O(NM

0 ), but with the
new approach still just a few one-dimensional (hence O(N1)) channels will dominate as
N → +∞.

As noted, the resulting combined matrix does not possess the regular nested structure
of the original inner-only problem, so that it is not easily possible to use the effective
Kronecker product approximation preconditioner. However, the matrix is relatively small
and it is computationally feasible to use the sparse incomplete LU factorization.

The method of channel reduction can be, to some degree, used also for energies above
the ionization threshold. This is possible, because a numerical grid (including the B-spline
representation) can support only a finite number of bound and continuous eigenstates of
the one-electron hamiltonian. Number of these states is equal to the number of basis
elements. For energies close above the ionization threshold there is mostly less than a
hundred open channels, which can be used in expansion (4.21).

Finally, it is possible to include also some forbidden channels in the expansion (4.21).
The benefit of this inclusion is that the inner radius Ra does not need to reach so far.
This is very advantageous close below a threshold, where the channel that opens above
the threshold already manifests itself very clearly and only slowly decays. Inclusion of
such a channel in the asymptotic expansion will speed up the convergence in Ra.

To illustrate the benefits of the suggested approach we did several simple calculation
of the electron-hydrogen scattering at energies right above chosen excitation thresholds.
All calculations are for transitions between the s-states and for total quantum numbers
L = S = Π = 0. The B-spline knot spacing is 1 a0 in the real part and gradually
increasing in the complex part, which is 500 a0 long. The scattering equations have been
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Figure 4.14: Relation of the solution parts ψ, F (1) and F (2). Every square corresponds to
a B-spline projection of the functions. Only the coloured parts are solved for; yellow elements
correspond to real radial B-splines, green to complex B-splines. Elements outside of the inner
(outer) B-spline basis are combined from the outer (inner) solutions along the arrows.

Figure 4.15: Structure of the original B-spline matrix A of the equation (4.3) or (4.29) (one
angular block). The matrix corresponds to the two-dimensional nature of the problem—it has
a regular structure of a tensor product of one-dimensional banded matrices.
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Figure 4.16: Structure of the combined set of equations (4.36), (4.37) and (4.38). The inner
problem (top left) keeps the two-dimensional tensor-product nature, whereas the outer problems
for the various channels (right bottom) are one-dimensional. The inner and outer problems are
coupled (left bottom and right top). Generally the one-dimensional diagonal blocks can be also
coupled to each other, but always only within a set corresponding to Fnℓ(r1) or Fnℓ(r2), whenever
dipole or higher coupling is possible, see (4.22) and (4.25). This figure, however, corresponds to
the matrix A0

0000 dealing with L = ℓ1 = ℓ2 = 0 solution blocks; these solutions asymptotically
converge to a sum of s-states which are not coupled by any multipole.

solved both by the original method presented in [36] (top rows of the tables) and by
the new method with dividing radius Ra (rest of the tables’ rows). The results and the
required computation times (for a 4-core Intel i7-4790K processor) are summarized in the
tables 4.2 and 4.3. The dramatical reduction of calculation times is striking. With the
original approach (i.e. without the channel reduction), it would be virtually unthinkable
to reach radial convergence in these cases, particularly in the second one.

4.3.6 Domain decomposition

For energies high above the ionization threshold it is not possible to substantially reduce
the number of asymptotic channels, as suggested in the previous section. The solution
must be sought in its full form throughout the computational domain. Due to the radi-
ally decreasing influence of the inter-particle potentials the coupling between the angular
components ψsc,ℓ1ℓ2 of the scattering wave function is stronger in the vicinity of the origin
r1 = r2 = 0 and weaker far from the origin. The coupling is accounted for by the outer
iterations of the COCG linear solver. For energies right above an excitation or ionization
threshold the number of iterations needed for convergence of COCG is large, because the
coupling is relatively strong at such energies. However, if the two-dimensional solution
on a square (0, R0) × (0, R0) could be separately solved on sub-squares, only the square
at the origin would need the full number of COCG iterations. The rest of the solutions
would converge faster, because of weaker coupling. Also, with a symmetrical sub-division
of the original domain, it is possible to take advantage of the anticipated symmetry or
anti-symmetry of the wave function and solve only half of the off-diagonal sub-domains.

These are the motivations for the domain decomposition. Apart from reducing the
average number of outer COCG iterations, the domain decomposition transforms the
original large linear system to a set of smaller systems, which can better fit into the
computer memory and so can be solved without resorting to out-of-core calculations or
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Ra [a0] R0 [a0] σ0 [a20] time [min]

- 100 0.1125 0.7
- 200 0.1135 1.0
- 400 0.1151 3.5
- 800 0.1147 39.5
- 1600 0.1145 337

100 200 0.1135 0.1
100 400 0.1151 0.1
100 800 0.1147 0.1
100 1600 0.1146 0.1

Table 4.2: The partial singlet cross section for H(1s) → H(2s) transition at projectile impact
energy Ei = 0.755 Ry. The angular states up to 0 ≤ ℓ1,2 ≤ 3 have been included. The total
energy is Etot = −0.245Ry, which is 0.005 Ry above the n = 2 threshold, with 2 allowed
asymptotic channels: 1s and 2s. Using Ra = 100 a0 as the inner region’s radius is enough to
match the original results within 0.1 %.

Ra [a0] R0 [a0] σ0 [a20] time [min]

- 200 0.105 4.5
- 400 0.106 101
- 800 0.160 533
- 1600 0.208 1094

200 800 0.160 2.7
200 1600 0.208 2.7
200 6400 0.241 2.7
200 64000 0.251 3.9
200 640000 0.252 72.6

Table 4.3: The partial singlet cross section for H(2s) → H(3s) transition at projectile impact
energy Ei = 0.14 Ry. The angular states up to 0 ≤ ℓ1,2 ≤ 7 have been included. The total
energy is Etot = −0.11Ry, which is approximately 0.001 Ry above the n = 3 threshold, with 3
allowed asymptotic channels: 1s, 2s and 3s. Using Ra = 200 a0 as the inner region’s radius is
enough to match the original results within 1 %.
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Figure 4.17: Different approaches to solution of coupled angular components of the wave
function. The first figure shows the traditional approach—segregated solution—where the com-
ponents are solved independently and coupling is added through the linear solver iterations. The
second figure illustrates the idea of the domain decomposition—the global problem is solved sep-
arately on sub-domains. Of course, individual vertical clips (sub-domains) shown in the second
figure are, again, solved by segregation.

perpetual recomputing of various intermediate results. Furthermore, the calculation of
the individual sub-domain solutions can be done in parallel without involving any MPI
communication apart from occasional synchronization of the solution at the interfaces.
All of this has a potential of a great speed-up.

The equation (4.3) can be written as a two-dimensional Helmholtz equation in a non-
homogeneous medium with a continuous source and feedback (due to the coupling to
other angular components):(

△+ k2(r1, r2)
)
ψℓ1ℓ2(r1, r2) = sℓ1ℓ2(r1, r2) , (4.39)

△ =
∂2

∂r21
+

∂2

∂r22
,

k2(r1, r2) = 2Etot −
ℓ1(ℓ1 + 1)

r21
− ℓ2(ℓ2 + 1)

r22
+

2

r1
+

2

r2
−
∑
λ

2fL
ℓ1ℓ2ℓ1ℓ2;L

rλ<
rλ+1
>

,

sℓ1ℓ2(r1, r2) = 2χℓ1ℓ2(r1, r2) +
∑

ℓ′1ℓ
′
2 ̸=ℓ1ℓ2;λ

2fλ
ℓ1ℓ2ℓ′1ℓ

′
2;L

rλ<
rλ+1
>

ψℓ′1ℓ
′
2
(r1, r2) .

This equation is a classical stationary wave equation well known from the electromagnet-
ism. As in the classical elecromagnetism, each of the (uncountable) elementary source
points of the source s(r1, r2) generates waves that propagate to all directions from that
point through a “medium” with varying “optical properties” given by the position-dependent
wave number k(r1, r2). When summed up, the individual field contributions give rise to
the total solution of the equation (4.39). This image naturally leads to a domain decom-
position approach suggested in [62], where the individual sub-problems are solved only
using the sources from the sub-square, and where the sources from other panels are ac-
counted for by inclusion of a surrogate source on the boundaries of the sub-square; the
surrogate source is chosen such that it generates exactly the same incoming waves as if the
other sub-squares were connected to the just considered sub-square. All other waves are
out-going, so it is possible to wrap the whole sub-domain into an ECS layer of a sufficient
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thickness, apart from edges where Dirichlet boundary condition is already present (r1 = 0
and r2 = 0).

The presentation [62] took advantage of the finite difference approach and introduced
the surrogate source in the form of a term proportional to the local field value and a
δ-function located at the boundary between the sub-domains. In the B-spline formulation
this is difficult to realize due to the inherent smoothness of the B-spline description, which
benefits elsewhere. Thus, instead of the geometrical domain decomposition from [62], the
program hex-ecs uses an algebraical domain decomposition, where the basic objects are
not points of the position space, but elements of the B-spline expansion in the algebraical
linear space of the solution.
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Figure 4.18: Sub-domain composition in index (algebraical) space. Left-most figure shows the
full solution domain, the four remaining figures highlight the four sub-domains with all additional
grid parts that are appended before the solution. The B-splines of Pn and Qn, Qn ⊂ Pn, are
common to the full and decomposed grid, the B-splines of Rn and Sn are additional fully real
B-splines with the same knots as the counterpart B-splines in the neighbour sub-domains, and
Tn denotes the remaining, complex, B-splines of the ECS absorption layer.

The figure 4.18 illustrates the individual parts of the sub-domains. Every sub-domain
is composed of:

• its unique B-spline elements (green regions Pn and Qn), which are used to recon-
struct the global solution,

• a few additional interface layers of B-splines that are geometrically identical to those
in the neighbour panel, needed to couple the domains together (yellow regions Rn

and Sn)

• and the elements corresponding to the complex B-splines in the ECS region Tn
(gray), needed to damp outgoing solutions, so that we can use Dirichlet boundary
condition as usual.

The solution of the scattering problem on a sub-domain is a sum of the solution generated
by sources local to the sub-domain, and of the solution generated by sources from other
sub-domains. The equations will be now assembled for the situation, where green parts
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Pn and Qn contain the sum of the solutions (including the in-coming solutions from
neighbour panels) and yellow and gray parts Rn, Sn and Tn contain only the local (out-
going) solution. It is also assumed that the buffer layersQn and Rn are exactlyK B-splines
thick, K being the B-spline order used, and that Sn is at least K B-splines thick.

After a projection on the full-domain double B-spline basis the equation (2.11) can be
written as ∑

J∈U(I)
AIJxJ = bI , (4.40)

where the angular indices have been omitted for clarity. In this equation I ≡ (i, j) and
J = (k, l) are two-component multi-indices and J ∈ U(I) denotes all index pairs (k, l)
of two-dimensional B-splines Bk(r1)Bl(r2) that have a non-empty overlap with the two-
dimensional B-spline Bi(r1)Bj(r2). The equation (4.40) reduces to several special cases
when restricted to a sub-domain n:

∀I ∈ Pn :
∑

J∈U(I)
A

(n)
IJ x

(n)
J = b

(n)
I , (4.41)

∀I ∈ Qn :
∑

J∈U(I)∩Pn

A
(n)
IJ x

(n)
J +

∑
J∈U(I)∩Rn

A
(n)
IJ

(
x
(n)
J + y

(n)
J

)
= b

(n)
I , (4.42)

∀I ∈ Rn :
∑

J∈U(I)∩Qn

A
(n)
IJ

(
x
(n)
J − y

(n)
J

)
+

∑
J∈U(I)∩(Rn∪Sn)

A
(n)
IJ x

(n)
J = 0 , (4.43)

∀I ∈ Sn ∪ Tn :
∑

J∈U(I)
A

(n)
IJ x

(n)
J = 0 . (4.44)

For a sub-domain n, the source b
(n)
I is only non-zero in Pn; it is assigned to the sub-domain

during the decomposition of the global source. In other parts it is zero. The matrix A
(n)
IJ

has identical elements for both the global and local problem only for I, J in Pn and Rn;
otherwise the elements are different, hence the distinction between AIJ (global) and A

(n)
IJ

(local, differs from AIJ close to complex region and inside of it).
The remaining newly introduced symbols in the above set of equations are the neigh-

bour panel solutions yJ generated by sources in other panels than the currently solved

panel n. In case of equation (4.42) it is y
(n)
J = x

(m)
J − x

(n)
J , where m is the only neighbour

panel for which J ∈ Qm. The line above the symbols means that the values from the
previous sweep are used. With progressing convergence the expression x

(n)
J −y(n)J tends to

x
(m)
J , because x

(n)
J −x(n)J tends to zero, resulting in desirable continuity (coupling) between

panels. In case of equation (4.43) it is y
(n)
J =

∑
m̸=n x

(m)
J , where the sum goes over all

neighbour panels of the panel n. This sums all field coming from neighbour panels, so
that they can be used to isolate the field originating from the sub-domain n.

The above equations can then be rewritten as

∀I ∈ Pn :
∑

J∈U(I)
A

(n)
IJ xJ = bI , (4.45)

∀I ∈ Qn :
∑

J∈U(I)
A

(n)
IJ xJ = bI −

∑
J∈U(I)∩Rn

A
(n)
IJ

(
x
(m)
J − x

(n)
J

)
, (4.46)

∀I ∈ Rn :
∑

J∈U(I)
A

(n)
IJ xJ =

∑
J∈U(I)∩Qn

A
(n)
IJ

∑
m ̸=n

x
(m)
J , (4.47)

∀I ∈ Sn ∪ Tn :
∑

J∈U(I)
A

(n)
IJ xJ = 0 , (4.48)
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which is exactly the original proposal: we are solving standard local field problem (where

mostly A
(n)
IJ = AIJ) with a modified source bI . All modifications to the source arise only

in regions Qn and Rn.
The penalty for the benefits of the domain decomposition approach is an addition

of another level of iterations to propagate information from each sub-domain into all
other sub-domains. Nevertheless, during these additional iterations convergence is always
reached in a finite number of sweeps over all sub-domains. Due to the linearity of the
equation (4.40) the resulting “field” in every sub-domain is a simple sum of fields generated
by sources in all sub-domains. In other words, the source in every sub-domain contributes
to the field in every sub-domain. So it is necessary to do so many sweeps that the influence
of every sub-domain propagates into every other subdomain. The zero Dirichlet boundary
condition in the origin r1 = 0 or r2 = 0 acts as a fixed-end reflecting boundary, so the fields
bounce off the two edges and propagate back into the space, until they are damped in the
complex grid area. If n is the number of sub-domains along an axis, then the information
needs to (approximately) traverse less than or equal to 2n sub-domains. This is true for
all sub-domains, so one has to solve all sub-domains approximately 2n-times, totalling
in 2n3 separate sub-domain solutions, to obtain the final global solution, assuming equal
sub-division in both axes.

The symmetrical and uniform n-by-n decomposition shown in the figure 4.17 is not
the only possibility, though it is the most efficient one when the magnitude of the wave
function far from the axes is small and so most of the field propagates more or less sym-
metrically along the axes. In this case some of the central sub-domains can be ignored to
save computational time. A different possibility is to use a 1-by-n, i.e. linear, decomposi-
tion, which performs well in situations where the ionization contribution is important; see
figure 4.19. Also, it is advantageous to split the solution domain into even parts in terms
of the number of B-splines. These are more densely clustered close to the axes, which is
the reason for the uneven appearence of the sub-domains in the figure 4.19.

The domain decomposition can be combined with the channel reduction discussed
earlier without any restriction. The channel-reduced grid part is then either (and prefer-
ably) a separate sub-domain of its own, or part of another, standard, sub-domain. This
is yet to be implemented in the solver program hex-ecs.

To conclude this section, it is worthwhile to point out that in the above presentation
the linearity of wave-functions and of probability fluxes with respect to their sources has
been used interchangeably, even though on the first sight the relation for the flux j

j =
1

2i
(ψ∗∇ψ − ψ∇ψ∗) (4.49)

is of the second order in ψ. While it is obvious that a linear combination of sources
on the right-hand side of the equation (4.39) leads to the same linear combination of
solutions, it is not so obvious for the combination of fluxes. However, it holds as well due
to cancellation of cross-terms in the formula for a combined probabilty flux:

j =
1

2i
((ψ1 + ψ2)

∗∇(ψ1 + ψ2)− (ψ1 + ψ2)∇(ψ1 + ψ2)
∗) =

=
1

2i
(ψ∗1∇ψ1 + ψ∗2∇ψ2 − ψ1∇ψ∗1 − ψ2∇ψ∗2) = j1 + j2 .
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Figure 4.19: Collected solutions from sub-domains for 1-by-4 domain decomposition in the
first sweep. The remaning sweeps only slightly correct the wave function without a deep visual
impact.
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Chapter 5

Hex-db: Database interface

The result of the computational codes are either the T -matrices, or the cross sections for
various outcomes of the electron-hydrogen collisions. These can be used on their own,
or assembled in a common database file, which can be then post-processed for derived
scattering quantities. The interface program hex-db does a similar service for the Hex
package as the program MJK [63] for the R-matrix package RMATRX1 [64]. Description
of the program hex-db was published in [65].

5.1 Scattering T -matrices

The most basic scattering quantity used in Hex is the T -matrix. It is produced, stored
and re-used in the form of the partial wave expansion,

T =
∞∑
ℓ=0

TℓY
mi−mf

ℓ . (5.1)

This expansion can take very large amount of terms to converge. Interestingly, for some
cases like scattering on charged target or for transitions between degenerate levels the
sum does not converge at all, even though the terms are perfectly finite. When the sum
exists, it is necessary to truncate it at some ℓmax. The rest of the sum is either negligible,
or can be extrapolated.

For elastic scattering the only important asymptotic contribution is from the po-
larization potential Vpol = −α/2r4. In the first Born approximation the T -matrix is
proportional to

T el
ℓ ∼

∫
ĵℓ(kr)Vpol(r)ĵℓ(kr)dr .

This can be integrated using the formula ([66], §6.576)∫ ∞
0

x−λJν(ax)Jν(bx)dx =
aνbνΓ

(
ν + 1−λ

2

)
2λ(a+ b)2ν−λ+1Γ(ν + 1)Γ

(
1+λ
2

) 2F1

(
ν + 1−λ

2
, ν + 1

2

2ν + 1

⏐⏐⏐⏐ 4ab

(a+ b)2

)
and the Gauss identity ([27], §15.4)

2F1

(
a, b
c

⏐⏐⏐⏐ 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

to yield, see also [67], §45.2.4,

T el
ℓ ∼ αk2

(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
, (5.2)
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or simply Tℓ ∼ ℓ−3.
For inelastic transitions the ultimate asymptotic behaviour is exponential due to ex-

ponentially decreasing overlap between the initial and final orbital;

T inel
ℓ ∼ cqℓ . (5.3)

The formulas (5.2) and (5.3) are used to add as many terms to (5.1) as needed to make
it converge within sufficient tolerance.

5.2 Derived scattering quantities

The definitions of all scattering quantities provided by hex-db interface are summarized
in this section, together with the keywords that should be used when querying for these
particular quantities. These are given in typewriter font.

The scattering amplitude, scatamp, for discrete transitions

fS
fi(k̂f ) = − 1

2π

∑
ℓ

TLSmi
ℓ Y

mi−mf

ℓ (k̂f ) . (5.4)

and for ionization amplitude F S(k1,k2), ionamp, see (4.16). Alternatively, there is also
scatamp-dir which provides the scattering amplitude calculated for arbitrary impact
direction, see (2.26). In the computer code the d-matrix needed for directional scattering
amplitude is evaluated using the appropriate routine from GSL [68]. The differential cross
section, dcs,

dσS
fi

dΩ
(k̂f ) =

kf
ki

2S + 1

4

⏐⏐⏐fS
fi(k̂f )

⏐⏐⏐2 .
The spin asymetry, asy, is a combination of the discrete differential cross sections,

αfi =
dσ0

fi +
1
3
dσ1

fi

dσ0
fi + dσ1

fi

.

The triple differential cross section, tdcs, is a five-dimensional distribution of scattering
probability in the case of ionization,

dσfi

dk̂1dk̂2dE2

(k1,k2) =
∑
S

2S + 1

4

k1k2
ki

|F S(k1,k2)|2 .

The (partial) integral cross section, ics, for discrete transitions

σS
fi,ℓ =

kf
ki

2S + 1

16π2

∑
LL′

TLSmi
ℓ TL′Smi∗

ℓ ,

and for ionization

σS
fi,L =

∑
ℓ1,ℓ2

∫ E/2

0

k1k2
ki

|fLS
ℓ1ℓ2

(k1, k2)|2dE2 .

The integrand in this integral is very oscillatory and is integrated by means of the
Clenshaw-Curtis quadrature, see Appendix A, which uses harmonic functions to approx-
imate the integrand and is well suited for oscillatory functions.

The collision strength, colls, is a dimensionless quantity proportional to the cross
section ([67], §47.1.1). The cross section is multiplied by the impact energy. The advantage
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of the collision strength is its symmetry (Ωfi = Ωif ) stemming from the theorem of the
detailed balance, and also that it filters out the overall energy dependence, so that for
example the threshold value does not rise sharply. The formula is

ΩS
fi = (2li + 1)k2i σ

S
fi .

The (total) cross section, ccs,

σS
fi =

∑
ℓ

σS
fi,ℓ .

The spin flip cross section, spflip, comes from (2.23),

σspin−flip
fi =

kf
ki

1

16π2

∑
ℓLL′

(
TL0mi
ℓ TL′0mi∗

ℓ + TL1mi
ℓ TL′1mi∗

ℓ − 2ReTL0mi
ℓ TL′1m1∗

ℓ

)
.

The (grand) total cross section, tcs, uses for its evaluation the optical theorem,

σS
i =

∑
f

σS
fi =

2S + 1

4

4π

ki
Im fii(k̂i) . (5.5)

The above equation follows from the unitarity of the S-matrix and its consequence that∑
fℓ′ Tif,ℓℓ′T

∗
fi,ℓ′ℓ ∼ ImTii,ℓℓ in the meaning refined in the beginning of the next chapter.

In electron-photon coincidence experiments several special variables are used. For
dipole-allowed transitions (|li − lf | = 1, e.g. H(1s) → H(2p)) they are defined using the
three basic statistical quantities ([67], §46)

λ = ⟨|f 2
0 |⟩

(
dσ

dΩ

)−1
, R = Re ⟨f1f ∗0 ⟩

(
dσ

dΩ

)−1
, I = Im ⟨f1f ∗0 ⟩

(
dσ

dΩ

)−1
. (5.6)

The angle brackets symbolize averaging over the spin states (i.e. 1/4 of the singlet value
and 3/4 of the triplet value). The indices 1 or 0 indicate whether the transition changed
the atomic magnetic quantum number or not. The reduced Stokes parameters are then
the components of the vector

P = (2λ− 1; 2
√
2R;−2

√
2I) ,

the linear polarization is the size of the xy-projection of P,

Pl =
√
P 2
x + P 2

y ,

the charge cloud alignment is the angle parameter

γ =
1

2
arg(Px + iPy) ,

and the excitation coherence is the magnitude of the vector P,

P+ = |P| .

All these numbers will be written out if the switch --stokes is used.
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5.3 Interpolation

A very important part of the post-processing is the interpolation of the results. The
reasons for a need of a good interpolation technique are at least two:

• The database may not contain the numerical data for a particular impact energy,
but it does contain data for some close energies, which can be used to estimate of
the missing points.

• To avoid unnecessary consumption of the computational time, some partial waves
may be calculated with fewer energy samples than other partial waves for the same
transition. For example low partial waves need to be more finely sampled to capture
the shape of the resonances, whereas the higher partial waves are typically very
smooth and monotonous. But to construct the final cross section energy dependence,
these partial wave contributions need to be added together, which is not well defined
if the sampling is not identical.

The method of choice in hex-db has been the interpolation using the Akima splines [69].
These polynomial functions are essentially plain cubic splines with relaxed condition on
the continuity of the second derivative. As such they are more flexible and support smooth
interpolation of data with out-of-trend points. This is very useful in scattering data, where
the energy dependencies have a simple overall behaviour with sudden resonant structures.
The construction of the Akima spline iterpolation is done using the routines from the GSL
[68].
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Figure 5.1: Comparison of interpolation using the Akima splines and the common cubic splines.
Whereas the cubic spline interpolation oscillates in the vicinity of an out-of-trend point, the
Akima spline adapts very well to the expected behaviour of the curve.

But it is not enough to know how to interpolate, also the decision of what to interpolate
is important. Even the powerful Akima splines are just polynomial functions, which by
themselves would prove very useless to follow the cross section curves, which typically
decrease as an inverse of the impact energy. For this reason it is not the cross sections
that are interpolated, but the collision strengths Ωij = Eiσji. Similarly, the T-matrices
need to be interpolated only through the product τji = kiTji.
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Chapter 6

Results

This chapter presents the calculated data and also results from several basic tests, which
include comparison with other data and verification of the theoretical requirements on
unitarity and conservation. The figures in this part contain mostly the collision strengths.
The calculated T -matrices and other derived quantities are available via the web portal
to the database mentioned in the chapter 3. The calculated datasets were published in
[78].

One of the theoretical tests is the conservation of flux, also called the unitarity of the
S-matrix. If we use the canonical definition of the T -matrix, we have ([67], §47.1.1)

ffi(k̂f ) = i

√
π

kikf

∑
LSℓ′ℓ

iℓ−ℓ
′√

2ℓ+ 1CLmi
limiℓ0

CLmi
lfmf ℓmi−mf

TLS
fi,ℓ′ℓY

mi−mf

ℓ′ (k̂f ) .

By substituting this expression to (5.4) we obtain the relation between the canonical
multi-channel T -matrix TLS

fi,ℓ′ℓ and the T -matrix TLS
fi,ℓ used in Hex:

TLS
fi,ℓ′ℓ =

∑
mimf

iℓ
′−ℓCLmi

limiℓ0
CLmi

lfmf ℓ′mi−mf

i

2π

√
kikf
π

1√
2ℓ+ 1

TLS
fi,ℓ . (6.1)

After summing over L this number should satisfy the relation (2.18) in a matrix sense,
when the channel labels (i, ℓ) and (f, ℓ′) are used as matrix indices.

The figures in this chapter show among other things the partial wave convergence. This
is represented by several curves with increasing saturation. The lightest curve represents
the lowest partial wave, the next is sum of the first two partial waves, etc., and the darkest
curve represents the converged sum of all partial waves.

6.1 Scattering lengths

The datasets are not bounded from above due to arbitrary possible impact energy, but
for every process there exists a specific energy when the channel opens. In the textbook
scattering on finite-range potentials, the inelastic cross sections at the excitation threshold
are equal to zero. However, due to the degeneracy of the hydrogen levels, the atom is
strongly polarized by the projectile and the cross sections (or T -matrices) at the thresholds
are generally non-zero [70]. A similar situation occurs in elastic scattering on excited
states, where the cross section diverges. Only for elastic scattering on the ground state,
in the only single-channel situation, there is a finite non-zero limit ([67], §45.2.4)

lim
k→0+

σS
ii(k) = (2S + 1)πa2s +O(k2) , (6.2)
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Figure 6.1: Asymptotic values of the scattering cross sections for extremely low-energy scat-
tering on the ground state at symmetry L = Π = 0; they converge to (6.2). The left panel
contains results for the singlet state (S = 0), the right panel for the triplet state (S = 1).

which defines an effective size parameter as called the scattering length of the target state.
This value determined the elastic cross section for transition 1s− 1s at zero energy. The
article [71] contains the values 6.00 a0 and 1.77 a0 for singlet and triplet ground state
scattering, respectively, which agrees with the present results 6.00 a0 and 1.78 a0 within
one percent.

To obtain the values the scattering has been calculated for several energies expo-
nentially approaching the threshold from above and the evaluated scattering lengths have
been extrapolated using a linear fit. Results of the calculations are shown in the figure 6.1.

6.2 S-wave model

The S-wave model (L = ℓ1 = ℓ2 = 0, also known as the Temkin-Poet model) is very easy
to simulate, because the system contains just one block and thus no long-range angular
coupling. It has been used to verify the present ECS implementation. The figure 6.2
compares the cross sections obtained by hex-ecs and other programs.

The Temkin-Poet model is a useful tool for exploration of some basic properties of
the electron-hydrogen scattering problem. As a sub-topic of this thesis the asymptotic
behaviour of the cross section for highly excited states was analyzed. While the inelastic
cross sections exponentially decrease in the limit nf → +∞ due to the diminishing overlap
of the initial and final orbital, the elastic cross sections behave differently. The elastic
cross sections for the first approximately 100 atomic states have been investigated within
the Temkin-Poet model, see the figure 6.3. Results from elastic scattering calculations
came as a surprise; they so far seem to have an oscillatory character, even though a
monotonous behaviour might be expected. It is not clear whether the oscillations would
continue for even higher states. Also, this is a feature of the Temkin-Poet model. Its
significance for the physical, partial-wave-converged results is not obvious.
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Figure 6.3: Elastic cross sections on the hydrogen s-states at total energy Etot = 3 Ry within
the Temkin-Poet model, without spin weights. The difference between the results for singlet
and triplet configurations are noticeable only for n ≤ 5, for higher states the scattering becomes
spin-independent.

6.3 Resonances

The lowest possible total energy of the (e−, e−, p+) system is the only bound state of H−

with energy −14.35 eV. All other would-be bound states of H− are autoionizing double
excitations lying above the threshold of the H(1s) + e− scattering channel, which manifest
as Feshbach resonances and are clearly observable.

The resonances are mostly labeled by approximate two-electron configuration, e.g.
H−(2s2p). This scheme approximates the structure as a combination of an excited hy-
drogen atom H(nl), n ≥ 2, called the parent state [73], and a weakly attached electron in
an excited state e−(n′l′), n′ ≥ n, l′ ≥ l. In the approximation of independent electrons
it is exactly the binding energy of the attached electron that defines the position of the
resonance with respect to the excitation threshold of the hydrogenic level n. This nota-
tion is used in the figures, together with the total symmetry of the resonant state, i.e.
identification of the partial wave where the resonance appears. For example 1Se is the
singlet even-parity s-wave.

Resonances are marked only in the ground state elastic scattering datasets, figures
6.4, 6.6 and 6.13, but they are present in all transitions. Their positions were taken from
[74], [75], [76] and [77].

6.4 Results below the threshold n = 2

The easiest calculation is for total energies ranging from the lowest limit, Etot = −1 Ry, to
the first excitation threshold, Etot = −0.25 Ry. No other state than the gound state can
exist in this domain, so the calculation is single-channel, very fast and only one problem
must be solved for every energy. The collected elastic data are presented in the figure 6.4.

In the single-channel elastic scattering the relation (6.1) between the Hex’s T -matrix
and the canonical T -matrix reduces to

T ℓS
ii,ℓℓ =

i

2π

kiT
ℓS
ii,ℓ√

π(2ℓ+ 1)
.
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A plot of the expression |T ℓS
ii,ℓℓ + 1|2 − 1, which ideally tends to zero due to unitarity of

the S-matrix, is given in the figure 6.5 for partial waves 0 ≤ ℓ ≤ 2. The unitarity error is
always less than one part in a thousand, well within the desired accuracy of a few percent.
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Figure 6.4: The collision strengths for the lowest possible total energies below the first excit-
ation threshold. Only one channel H(1s) + e− is open. The area around the first resonance is
stretched to make the resonances apparent. Only the partial waves with ℓ = L = 0, 1, 2 are
visually distinguishable. Figure displays 4 partial waves in total.

6.5 Results between n = 2 and n = 3 thresholds

In the energy region between Etot = −0.250 Ry and Etot = −0.111 Ry the hydrogen atom
can exist in the ground state or in one of the excited states 2s or 2pm, allowing for collision-
induced transitions H(1s) → H(1s), H(1s) → H(2s), H(1s) → H(2pm), H(2s) → H(2s),
H(2pm) → H(2pm′) and their reverses. Due to the non-relativistic degeneracy of the
states with n = 2 the summed cross section for transition H(2s) → H(2pm) diverges; the
same holds for the reverse transition. All other transitions are finite and their partial wave
convergence is shown in the figures 6.6–6.8. It is noteworthy to point out the extreme
number of partial waves needed for convergence of elastic scattering on the excited states,
see figures 6.9 and 6.10. This is a problem of all excited states. The figures 6.33, 6.34
compare the calculated cross sections to other available results.

In this energy region it is also possible for the first time to check the reversibility,
the theorem of detailed balance. The theorem states exactly that Ωfi = Ωif . For elastic
transitions this is a trivial equivalence. For inelastic scattering there is some new informa-
tion. The collision strengths are compared in the figure 6.11, demonstrating very accurate
consistency of the two datasets.

Finally, it is possible to check that the cross sections sum to the total cross section
that is expected from the optical theorem (5.5). The comparison of the total cross section
for scattering on the ground state is in the figure 6.12.
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Figure 6.5: Unitarity error for three lowest partial waves for impact energies below the first
excitation threshold. The error is always less than or equal to approximately one part in a
thousand.

10

11

12

13

14

15

16

17

18

0.76 0.78 0.8 0.82 0.84 0.86 0.88

H−(3p3p)1De

H−(3s3s)1Se

H−(3s4s)1Se

H−(3s5s)1Se

H−(3s3p)1P o H−(3s4p)1P o

H−(3p3d)3F o

H−(3p3p)3De

H−(3s3d)1DeH− 1P o

co
lli
si
on

st
re
ng

th
[–
]

impact energy [Ry]

Figure 6.6: Partial wave convergence of the collision strengths for elastic scattering on the
ground state H(1s) at energies between the n = 2 and n = 3 thresholds. Figure displays 5
partial waves.
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Figure 6.7: Partial wave convergence of the collision strengths for excitation from the ground
state H(1s) to H(2s) between the n = 2 and n = 3 thresholds. Figure displays 5 partial waves.
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Figure 6.8: Partial wave convergence of the summed collision strengths for excitation from
H(1s) to the three magnetic sublevels of H(2p) between the n = 2 and n = 3 thresholds. Figure
displays 5 partial waves.
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Figure 6.9: Partial wave convergence of the collision strengths for elastic scattering on the
excited state H(2s) between the n = 2 and n = 3 thresholds. A considerably larger amount
of partial waves (20 displayed) is needed for converged values compared e.g. to the inelastic
transition in the figure 6.7. This is a direct consequence of the slow decay of the elastic partial
T -matrices, eq. (5.2).
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Figure 6.10: Partial wave convergence of the collision strengths for elastic scattering at the
excited state H(2p) between the n = 2 and n = 3 thresholds, summed over all initial and final
magnetic sublevels. Figure displays 20 partial waves.
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Figure 6.11: Comparison of the 1s − 2s and 2s − 1s transition data in terms of the detailed
balance theorem. The datasets are very close to each other.

Figure 6.12: Comparison of the (grand) total cross section of scattering on the ground state
calculated by summing cross sections for individual excitations and by employing the optical
potential (5.5). The two curves are visually indistinguishable; the relative difference (plotted in
the bottom half) is always smaller than 1 %.
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6.6 Between n = 3 and n = 4 thresholds

The number of possible states rapidly increases with rising energy of the system. It is
well-known that above the threshold of the n-th level there are n2 unique states |nl⟩, and
n(n + 1)(2n + 1)/6 unique states |nlm⟩. While in the region between n = 2 and n = 3
thresholds this evaluates to just 5 possible atomic states (including magnetic sub-levels),
above the n = 3 threshold the set of targets expands to 14 states.

The partial wave convergence of the results in this energy domain is shown in the
figures 6.13–6.30. Again, datasets for the elastic scattering needed a large amount of
partial waves to converge, figures 6.19, 6.23, 6.27, 6.29 and 6.30.
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Figure 6.13: Partial wave convergence of the collision strengths for elastic scattering on the
ground state H(1s) at energies between the n = 3 and n = 4 thresholds. To make the resonances
more apparent, the vertical scale has been adjusted; the lowest L = 0 partial wave is thus not
visible in the figure. Figure displays 7 partial waves.

6.7 Higher energies

Many calculations of the scattering at higher energies have been done to verify that the
codes work perfectly in the vicinity of the ionization threshold and above. However,
systematic treatment of further datasets did not finish before the end of this doctoral
project and thus are not present in this text. Still, the calculations are underway to
achive the intented goal and assemble the complete database (possibly limited to n ∼ 10)
that would be usable for plasma physics.

6.8 Differential cross section

Of the many differential scattering quantities that hex-db is able to calculate from the
T -matrices the differential cross section has been chosen for illustration. The figures 6.31
and 6.32 present the differential collision strengths for excitations from 1s to 2s and 2p,
respectively, for all scattering angles and all impact energies currently available in the
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Figure 6.14: Partial wave convergence of the collision strengths for excitation from the ground
state H(1s) to H(2s) between the n = 3 and n = 4 thresholds. Figure displays 8 partial waves.
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Figure 6.15: Partial wave convergence of the collision strengths for excitation from the ground
state H(1s) to H(2p) between the n = 3 and n = 4 thresholds. Figure displays 8 partial waves.
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Figure 6.16: Partial wave convergence of the collision strengths for excitation from the ground
state H(1s) to H(3s) between the n = 3 and n = 4 thresholds. Figure displays 8 partial waves.
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Figure 6.17: Partial wave convergence of the collision strengths for excitation from the ground
state H(1s) to H(3p) between the n = 3 and n = 4 thresholds, summed over final magnetic
sub-levels. Figure displays 8 partial waves.
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Figure 6.18: Partial wave convergence of the collision strengths for excitation from the ground
state H(1s) to H(3d) between the n = 3 and n = 4 thresholds, summed over final magnetic
sub-levels. Figure displays 8 partial waves.
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Figure 6.19: Partial wave convergence of the collision strengths for elastic scattering on the
excited state H(2s) at energies between the n = 3 and n = 4 thresholds. Figure displays 30
partial waves.
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Figure 6.20: Partial wave convergence of the collision strengths for excitation from the excited
state H(2s) to H(3s) between the n = 3 and n = 4 thresholds. Figure displays 8 partial waves.
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Figure 6.21: Partial wave convergence of the collision strengths for excitation from the excited
state H(2s) to H(3p) between the n = 3 and n = 4 thresholds, summed over final magnetic
sublevels. Figure displays 11 partial waves.
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Figure 6.22: Partial wave convergence of the collision strengths for excitation from the excited
state H(2s) to H(3d) between the n = 3 and n = 4 thresholds, summed over final magnetic
sublevels. Figure displays 11 partial waves.
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Figure 6.23: Partial wave convergence of the collision strengths for elastic scattering on the
excited state H(2p) at energies between the n = 3 and n = 4 thresholds, summed over initial
and final magnetic sublevels. Figure displays 30 partial waves.
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Figure 6.24: Partial wave convergence of the collision strengths for excitation from the excited
state H(2p) to H(3s) between the n = 3 and n = 4 thresholds, summed over initial magnetic
sublevels. Figure displays 11 partial waves.
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Figure 6.25: Partial wave convergence of the collision strengths for excitation from the excited
state H(2p) to H(3p) between the n = 3 and n = 4 thresholds, summed over initial and final
magnetic sublevels. Figure displays 11 partial waves.
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Figure 6.26: Partial wave convergence of the collision strengths for excitation from the excited
state H(2p) to H(3d) between the n = 3 and n = 4 thresholds, summed over initial and final
magnetic sublevels. Figure displays 11 partial waves.
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Figure 6.27: Partial wave convergence of the collision strengths for elastic scattering on the
excited state H(3s) at energies between the n = 3 and n = 4 thresholds. Figure displays 50
partial waves.
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Figure 6.28: Partial wave convergence of the collision strengths for degenerate (but non-dipole,
hence finite) transition from the excited state H(3s) to H(3d) between the n = 3 and n = 4
thresholds, summed over final magnetic sublevels. Figure displays 50 partial waves.
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Figure 6.29: Partial wave convergence of the collision strengths for elastic scattering on the
excited state H(3p) at energies between the n = 3 and n = 4 thresholds, summed over initial
and final magnetic sublevels. Figure displays 50 partial waves.
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Figure 6.30: Partial wave convergence of the collision strengths for elastic scattering on the
excited state H(3d) at energies between the n = 3 and n = 4 thresholds, summed over initial
and final magnetic sublevels. Figure displays 50 partial waves.

database. The differential scattering strength is proportional to the differential cross
section,

dΩji

dΩ
= k2i

dσji
dΩ

, (6.3)

where the symbols Ωij (collision strength) and Ω (solid angle) need to be distinguished.
Change of the angular distribution of the scattered electron at resonance energies can be
well observed.

6.9 Validation of new results against existing data

As mentioned in introduction, there had been a considerable effort to assemble electron-
hydrogen scattering data already in the last quarter of the 20th century. A legacy of that
time is a large amount of incoherent datasets, which have been reviewed in [78]. The
figures 6.33–6.43 in this section demonstrate agreement between the newly calculated data
and already existing data, where available.

The main source of reference data has been the atomic database Aladdin managed
by IAEA, containing most complete datasets. This database, though mostly aimed at
high-energy plasma physics, is also often used by astronomers. Results of the present
work should supplement and refine the data in Aladdin. Other reference data include
general close-coupling, R-matrix and PECS calculations listed in the introduction.

Elastic scattering on the ground state (figure 6.33) and excitations from the ground
state to states with nf = 2 (figure 6.34) are compared with many datasets of high ac-
curacy and there is hardly any discrepancy between the present calculation and available
calculations. The same agreement is observed in case of de-excitation from the states
with ni = 2 (figure 6.36).

The agreement is less apparent for excitation from the ground state to states with
nf = 3 (figure 6.35). While the PECS results almost perfectly coincide with current
calculation, the R-matrix calculation done by Aggarwal resulted in systematically higher
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Figure 6.31: Energy dependency of the differential collision strength for the elastic process
H(1s) → H(1s); top figure is for total S = 0, bottom for S = 1.
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Figure 6.32: Energy dependency of the differential collision strength for the excitation H(1s)
→ H(2s); top figure is for total S = 0, bottom for S = 1.
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collision strengths and the data from Aladdin are rather irregularly scattered along the
ECS results. Given the coincidence with PECS, it can be assumed that the present data
are equally accurate. Actually, thanks to the channel reduction method allowing a closer
approach to the threshold of the n = 3 channel, present results deliver wider energy range
than PECS.

The results of Aggarwal seem to match the present results much better for excitations
from n = 2 to n = 3 states, as shown in the figures 6.39 and 6.40, though the energy
range offered by hex-ecs proves superior.

For all other transitions only comparison with Aladdin datasets is possible. The
agreement is mostly acceptable for inelastic transitions. However, collision strengths
for elastic scattering on excited states provided by Aladdin differ strongly from those
calculated in this work, typically by more than 10 %. Elastic scattering at low energies is
dominated by polarization, as discussed above. Polarization is a long-range interaction, so
its accurate treatment needs inclusion of large space surrounding the atom. Because the
similarity between Aladdin and Hex data worsens when getting closer to the opening of
the scattering channel, it is likely that this long-range interaction had not been accounted
for very well in Aladdin. Furthermore, the partial wave convergence illustrations from
previous sections demonstrated that for elastic scattering the convergence is very slow.
The Aladdin data, located always below the Hex data, probably suffer from insufficient
convergence in terms of partial waves.

Considering the comparisons, it is possible to conclude that the results offered by this
thesis (and published in [78]) agree well with independent calculations and most probably
provide as accurate results even for energies where comparison was not possible.
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Figure 6.33: Elastic collision strengths on the ground state compared with calculations of
Callaway [8], Aggarwal [10], Bartschat [12] and with the data from Aladdin [16].
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Figure 6.34: Collision strengths for excitations of the hydrogen ground state to H(2s) and
H(2p), lower and upper curve, respectively, compared with the calculations of Callaway [8], [9],
Scholtz [79], Aggarwal [10], Bartschat [12], Bartlett [15], with the measurement of Williams [80]
and the data from the databases Aladdin [16] and NIST [19].
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Figure 6.35: Collision strengths for excitations of the hydrogen ground state to H(3s), H(3p)
and H(3d), from top to bottom, compared with the calculations of Callaway [9], Aggarwal [10],
Bartlett [15] and with the data from the database Aladdin [16].
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Figure 6.36: Collision strengths for de-excitation of H(2s) and H(2p) to H(1s), bottom and
top curves, respectively, compared to the data from the database Aladdin [16].
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Figure 6.37: Collision strengths for elastic scattering on H(2s) compared to the data from the
database Aladdin [16].
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Figure 6.38: Collision strengths for elastic scattering on H(2p) compared to the data from the
database Aladdin [16].
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Figure 6.39: Collision strengths for excitation of H(2s) to H(3s), H(3p) and H(3d) compared
to the calculation of Callaway [9], Aggarwal [10] and Anderson [14] and to the data from the
database Aladdin [16].
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Figure 6.40: Collision strengths for excitation of H(2p) to H(3s), H(3p) and H(3d) compared to
the calculation of Callaway [9] and Aggarwal [10] and to the data from the database Aladdin [16].
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Figure 6.42: Collision strengths for processes from H(3p) to H(1s), H(2s), H(2p) and H(3p)
compared to the data from the database Aladdin [16]. Some datasets (and Aladdin values) were
multiplied by a convenient factor to make the data better fit into the figure.
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Figure 6.43: Collision strengths for processes from H(3d) to H(1s), H(2s), H(2p), H(3s) and
H(3d) compared to the data from the database Aladdin [16]. Some datasets (and Aladdin values)
were multiplied by a convenient factor to make the data better fit into the figure.

94



Chapter 7

Conclusion

This thesis summarizes a several-year-long endeavour to produce reliable and complete
electron-hydrogen scattering data. Multiple methods have been tested, starting from the
simple first Born approximation, then using the published codes of various kind—the R-
matrix packages, semiclassical codes etc.—to the most accurate, but also most resource
intesive ab initio methods like the exterior complex scaling or converged close coupling.
Several million core hours have been spent to produce in total over fourty thousand
data points. Fourteen initial and final states have been included and over 150 allowed
transitions between these states for energy range from −1 Ry almost up to the ionization
threshold.

The results have been checked by several ways: Where available, they have been
compared to published data, both from earlier calculations by other researchers and from
experiments. Also, theoretical constraints arising from the conservation of flux and from
the detailed balance theorem were checked, to assure that the data are accurate within
a few per cent. From the comparisons it can be concluded that the desired accuracy has
likely been reached, sometimes leading to a significant improvement in contrast to the
previously available data.

The so far obtained datasets are not complete; however, further calculations are un-
derway and due to be published in the following years for the benefit of the plasma physics
community. The author would also like to join the appropriate IAEA CRP to produce
more data in cooperation with other plasma physics researchers.

Besides the results themselves the ECS code has been polished to a well usable form,
so that any of the data can be independently recalculated, or even some new data can
be added, e.g. for higher transitions, as soon as the computational technology sufficiently
advances. The code is written in a very dynamic manner, there are just a few hard-coded
constants and, as it is, it should allow for the solution of even much larger systems than
used in this work, which is something that the other freely available codes often lack.
This is a feature of the very robust ECS approach.

Further extensions of the method presented in this text is also envisioned. Namely, to
charged hydrogen-like ions, so that similar datasets for e.g. He II [81] can be independ-
ently verified and extended, to partially shielded atoms for description of scattering in
dense Debye plasmas [82], or to atoms with higher number of electrons (helium, lithium,
etc.). Both the Kronecker product approximation preconditioner and the channel reduc-
tion method introduced in this work are promising tools to face the so-called “curse of
dimensionality”—the exponential increase of computational work needed to solve higher-
dimensional (many-electron) problems.
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Appendix A

Chebyshev integration

On several places in this thesis an integration or approximaton of an oscillating function
is needed. A useful tool for this are the Chebyshev polynomials. Every function can be
expanded in a basis of Chebyshev polynomials,

f(r) =
N∑
k=0

CkTk(t(r)) , (A.1)

with the standard definition Tn(t) = cos(n arccos(t)). The polynomials are defined for
t ∈ ⟨−1, 1⟩, so first of all one has to compactify the interval of allowed coordinates r. A
useful form of compactification of radial coordinates is the mapping

r(t) = L
1 + t

1− t
, t ∈ ⟨−1, 1⟩ → r ∈ ⟨0,+∞) , (A.2)

t(r) =
r − L

r + L
, x ∈ ⟨0,+∞) → t ∈ ⟨−1, 1⟩ . (A.3)

The parameter L can be used to set the range of the compactification, i.e. which distances
will be considered “far”. The Chebyshev polynomial coefficients for the approximation of
the function f defined on ⟨−1, 1⟩ can be easily computed as [83]

Cj =
N−1∑
k=1

f(cos(xk))Tj(jxk), xk = π
k + ½
N

(A.4)

due to the special orthogonality

N∑
k=1

Tj(jxk)Tj′(jxk) = δjj′ (A.5)

with xk given in (A.4). The coefficients Cj for large index j with sufficient N decrease
exponentially and thanks to the boundedness of the function value of the Chebyshev
polynomials in the interval ⟨−1, 1⟩ the magnitude of the last coefficient is a good measure
of the approximation accuracy.

Evaluation of the integral, as all evaluations of any Chebyshev approximation in the
code, is done by the fast Clenshaw algorithm, which is summarized in the figure A.1.
Indefinite integral of the Chebyshev expansion can be written again as a Chebyshev ex-
pansion without any further loss of accuracy. Moreover, the expansion of the primitive
function can be trivially derived from the original expansion, see e.g. [83]. The integration
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by means of Chebyshev approximation is also called the (first) Fejér quadrature. It is
not “nested”, i.e. the evaluation points cannot be reused when the former evaluation
point count is (e.g.) doubled. A modification exists, though, called the Clenshaw-Curtis
quadrature, which can be nested in exchange for the necessity of evaluating the integrand
at the end points. That can be numerically difficult like in the case of compactified func-
tions. Nevertheless, in Hex the Clenshaw-Curtis quadrature has been used and actually
reimplemented from scratch to enable integrating complex-valued functions as well.

The Clenshaw-Curtis (or second Fejér) quadrature is∫ b

a

f(x)dx = (b− a)

(
1

2
a0 −

a2
3

− a4
15

− · · · − a2k
(2k)2 − 1

− · · · − 1

2

aN
N2 − 1

)
, (A.6)

with the coefficients

aj =
1

2
(f(y0) + (−1)jf(yN)) +

N−1∑
k=1

f(yk) cos(jkπ/N) , yk = cos(kπ/N) . (A.7)

There is N function evaluations in (A.7) and N2 evaluations of the cosine function. For
large N the cosine evaluation can be the bottleneck of the algorithm. Fortunately, the
mapping {f(yk)} → {aj} in (A.7) is precisely the DCT-I (discrete cosine transform of the
first kind), that can be implemented using the FFT (fast Fourier transform) algorithm by
doubling the array and mirroring the samples {f(yk)} about k = N ,

dct-i {f0, f1, . . . , fN−1} = fft {f0, f1, . . . , fN−1, 0, fN−1, . . . , f1} . (A.8)

FFT has only O(N logN) time complexity, thus is much faster than O(N2). For compu-
tation of the fast Fourier transform the routines from GSL [68] are used. Very similarly,
the computation of Chebyshev expansion coefficients (A.4), or in other form

Cj =
N−1∑
k=1

f(xk) cos (πj (k + ½) /N) , xk = cos(π(k + ½)/N) , (A.9)

is, apart from the normalization factor of 2/N , precisely DCT-II, the discrete cosine
transform of the second kind, which can be, again, computed by FFT. The formula is
now

dct-ii {f0, f1, . . . , fN−1} = fft {0, f0, 0, f1, . . . , 0, fN−1, 0, fN−1, . . . , 0, f0} . (A.10)

Both in (A.8) and (A.10) only N leading samples are taken from the output of FFT;
remaining chunks are mere reflections.
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dm+1 = dm = 0
for j = m− 1,m− 2, . . . , 1

dj = 2xdj+1 − dj+2 + cj
end
f(x) = d0 = xd1 − d2 + ½c0

Figure A.1: Clenshaw’s recurrent method adapted from [83] for evaluation of the function
f(x) given by its Chebyshev approximation {cj}. The final index m can be equal to N or lower
if the small trailing coefficients cj fall below some limit.
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Appendix B

Hex-ecs command line parameters

The program can be run from the command line and has many options that control the
solution method and memory requirements. If the input file “ecs.inp” is present in the
current working directory, it is sufficient to run the program without any arguments.

The input file contains all parameters that determine the solution. The command line
options, on the contrary, control the way how the solution will be obtained.

• --help, -h : Displays a simple usage infromation.

• --example, -e : Creates a sample input file for a test calculation. This test run is
suited for a common personal computer. The input file is full of comments that
explain individual entries. It can be used to create other input files.

• --input filename, -i filename : Use the given file as the calculation input file. If this
parameter is omitted, the filename “ecs.inp” is assumed and is searched for in the
current working directory.

• --zip filename xmin ymin xmax ymax xsamples ysamples, -z ... : This will use the
given B-spline expansion of the solution and produce a VTK surface (3D geometry)
for visualization in ParaView.1 Figures in this thesis come mostly from that program.

• --write-grid, -g : Write grid layout to a VTK file as a 2D mesh.

• --write-intermediate-solutions : After every finished iteration of the main PCOCG
solver write the solution estimate to a disk file. These files have custom binary
format, but can be converted to the universal HDF5 format using the utility hex-
hdf2hdf.

• --stg-integ, -a : Execute only the first part of the whole solution process, i.e. calculate
only the needed radial integrals.

• --stg-integ-solve, -b : Execute only the first two parts of the solution process, i.e.
calculate only integrals and the solution.

• --stg-extract, -c : Execute only the third part of the solution process, i.e. extract
only amplitudes. This option assumes that all needed solution files exist. If they do
not, some data will be missing.

1VTK (Visualization ToolKit) and ParaView are open-source products of Kitware, Inc.

103



• --preconditioner name, -p name : Block preconditioner to use; default is ILU. Avail-
able preconditioners are: ILU (drop-tolerance incomplete LU factorization), KPA
(Kronecker product approximation), GPU (essentially a KPA, run on OpenCL device;
see below), HYB (combination of ILU and KPA for channel reduction mode; the
former is used for angular states with non-zero number of asymptotic channels, the
latter for the rest), DOM (domain decomposition).

• --list-preconditioners, -P : List available preconditioners with a short description of
each. The availability of the preconditioners depends on the compile-time settings
(available libraries etc.), so no all of them may be present in the binary.

• --tolerance number, -T number : Set tolerance for the conjugate gradients solver
(default is 10−8).

• --prec-tolerance number, -t number : Set tolerance for the conjugate gradients pre-
conditioner (default is 10−8).

• --drop-tolerance number, -d number : Set drop tolerance for the ILU preconditioner
(default is 10−15).

• --dom-x-panels number : Number of domain decomposition panels along the x-axis.

• --dom-y-panels number : Number of domain decomposition panels along the y-axis.

• --dom-preconditioner name : Preconditioner for solution on the sub-domain.

• --lu name, -F name : Factorization library to use, one of: lapack, umfpack, mumps,
superlu and superlu dist. Default is umfpack. Availability of the factorizers depends
on the build options.

• --mumps-out-of-core : Use out-of-core mode for operation of the MUMPS LU de-
composition library. Useful for large factorization.

• --mumps-verbose number : Verbosity level of the MUMPS LU decomposition library
output, default is 0 and corresponds to no additional output.

• --fast-bessel : Use a faster (recurrent) formula for the Bessel functions when evalu-
ating the right-hand side. If not used, the stable but slow Steed’s formula is used.

• --channel-max-E number : Maximal energy (in Ry) of the states included in asymp-
totic expansion in the channel reduction mode.

• --mpi, -m : Use MPI, assuming that the program has been launched by mpiexec.

• --shared-scratch, -s : Assume a shared output directory for all processes of a MPI
task. This will let every MPI process calculate only a subset of shared radial integrals
and also prevent mutual overwriting of data by different processes of the task.

• --parallel-factorization : Factorize multiple blocks simultaneously. (One per OpenMP
thread.)

• --no-parallel-extraction : Disallow parallel extraction of the T -matrices. This is useful
when the whole solution does not fit into memory.
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• --groupsize number, -G number : How many processes factorize single LU; only used
for superlu dist factorizer.

• --extract-rho-begin number : Distance where to start evaluating the scattering T -
matrix.

• --extract-rho-end number : Distance where to end evaluating the scattering T -matrix.

• --extract-samples number : How many samples between the beginning and ending
radius to evaluate when extracting the T -matrix.

• --extract-extrapolate : Use inverse power extrapolation instead of averaging of the
samples.

The memory requirements of the program can be huge and it is often necessary to
sacrifice some performance in exchange for memory saving. The tradeoff can be minimized
by usage of fast storage, for example striped disk arrays (RAID 0) and/or solid state drives
(SSD). The combination of RAID 0 and SSD has a throughput over 1 GiB/s, which is
only about one order of magnitude slower than current RAM systems. The memory and
storage requirements can be tuned by the following options:

• --own-radial-cache, -w : Keep two-electron radial integrals not referenced by the
preconditioner only on disk (slows down only the initialization).

• --no-radial-cache, -r : Keep all two-electron radial integrals only on disk (slows down
also the solution process).

• --out-of-core, -o : Use hard disk drive to store most of intermediate data and thus
to save RAM (considerably slower).

• --out-of-core-continue, -O : Start solution from the existing intermediate files. This
is only applicable if the previous solution has been run with the --out-of-core option,
so that the files have been created.

• --whole-matrix, -W : In the above three cases: Always load the whole matrix from a
scratch file when calculating dot products. In the absence of this option only small
blocks are read. Application of this switch requires the matrix to fit in memory;
however, it may speed up the calculation.

• --scratch path : Path to a directory, where all out-of-core data will be placed. When
not set, but the environment variable SCRATCHDIR is defined, hex-ecs will use the
path contained in that variable. Otherwise all out-of-core data will be written in
the current working directory.

• --lightweight-full, -L : Avoid precalculating of all large matrices and only apply them
on the fly. This is rather slow, but it allows huge systems to be solved.

• --kpa-simple-rad, -R : Use a simplified radial integral matrix for nested KPA itera-
tions.

The program can be run on OpenCL platforms, for example on GPU units capable of
double precision calculations. Successfully tested were graphical units with AMD Tahiti
and NVidia Kepler chips and processors with Intel Haswell cores. GPUs are capable of
achieving a high memory bandwidth, which speeds up the sparse matrix calculation, see
the figure 4.11. Program options related to OpenCL are:
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• --cl-list : List all OpenCL platforms and devices available.

• --cl-platform index : Use the given OpenCL platform for the GPU preconditioner.

• --cl-device index : Use the given OpenCL device for the GPU preconditioner.

• --cl-use-host-memory : Keep large data in RAM instead of copying everything to the
compute device. This will slow down the solution on GPU.

If no OpenCL-related options are given and the GPU preconditioner is used, then the first
device of the first platform will be used.
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Appendix C

Hex-ecs input file

The input files are plain text files. Lines introduced by the hash symbol are comments
for better orientation in the input data. Otherwise the division into separate lines is
arbitrary; all data can be provided on a single line if desired. Only the order of the values
(characters) matters. A sample input file is given below:

# B-spline order.

4

# ECS rotation angle in radians.

0.63

# B-spline knots.

# a) Real knots of the basis that is common to atomic and projectile electron.

L 0.0 0.0 4

G 0.1 10.0 0.1 1.01

L 11 200 190

-1

# b) Knots of the real grid extension used for channel reduction , if desired.

L 0 800 801

-1

# c) Complex region knots.

G 0 50 1 1.02

-1

# Initial atomic states (ni, li, mi).

1 2 3 -1

* * *

* * *

# Final atomic states (nf , lf , *).

0 1 2 3 -1

* * * *

# Maximal energy of states included in asymptotic expansion.

-1

# Angular momenta.

# L S Pi nL limit exchange

0 * 0 4 -1 1

# Projectile charge.

-1

# Atom + projectile total energies in Rydbergs.

E 0.1 0.2 0.5 1.0 -1

-1

# Weak magnetic field in atomic units.

0
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The individual parameters are:

• B-spline order : A number that sets the degree of the B-spline basis. It has a huge
impact on the sparseness of the resulting matrices. Typical values are 4 or 5. For
the calculation of the data in this work the order equal to 4 has been used and this
value is generally recommended.

• ECS rotation angle : This is the parameter that controls how much the grid will be
rotated into the complex plane. Recommended value is π/5, the influence of this
parameter is rather weak.

• B-spline knots : This is a crutial section that defines layout of the knots and in turn
also the whole B-spline basis. Altogether there are three groups of knot sequences
to specify: (a) the real knot sequence for the inner problem, (b) additional knots
for the outer problem (channel reduction), and (c) the complex knots. Each of
these groups of sequences can be composed from multiple sub-sequences; their list
is terminated by “-1”. The subsequences can be either linear sequences (introduced
by “L”, followed by the starting knot position, ending knot position and number
of knots), geometric sequences (introduced by “G”, followed by the starting knot
position, ending knot position, initial distance between the knots and expansion ratio
of the knot distances) or simple explicit list of knots (introduced by “E”, followed
by the individual knot positions and terminated by “-1”). The first sub-sequence
within the group must always start with zero; it will be automatically shifted so
that its first knot coincides with the last knot of the last sub-sequence from the
preceding group, if any. In contrast, the sub-sequences within the group should not
share any knots. The example above ultimately builds a sequence that starts with
four zeros, then it geometrically expands up to r = 10 a.u. and from that radius it
continues with uniform spacing up to Ra = 200 a.u. and R0 = 1000 a.u., and then
again continues with geometrically increasing spacing in the complex grid part up
to Rmax = 1050 a.u.

• Initial atomic states : A list of initial principal quantum numbers of the target
terminated by “-1”, followed by a list of the initial orbital quantum numbers (of
the same count) and magnetic quantum numbers. Altogether these data can be
arranged into vertical triplets. If the asterisk symbol “*” is used for the orbital or
magnetic quantum number then all possible values will be assumed.

• Final atomic states : As for the initial atomic states, but without magnetic quantum
numbers (all allowed magnetic sublevel transitions will be extracted).

• Maximal energy of states included in asymptotic expansion : This limits the number
of asymptotic states used for expansion of the calculated wave function in the outer
region when using channel reduction approach. If “-1” is given, the program will
use all energetically allowed states for given impact energy. This parameter is not
used when no grid extension (knot sequence “(b)”) is set.

• Total angular momentum, total spin (or both if “*” is used), total parity and nL

control the setup of the angular basis.

• The parameters “limit” and “exchange” offer a way of further constraining the full
angular basis. In the presentation of the method in the section 4.1.1 the parameter
“limit” is denoted by n′L. When “limit” > −1 then all coupled angular momentum
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pairs (ℓ1, ℓ2) with ℓ1 > “limit” and ℓ2 > “limit” are omitted from the basis. This
is useful for high L, when only low values of ℓ1 and ℓ2 substantially contribute to
the physics of the atom. The other parameter “exchange” can be set to 0 or 1.
Whereas 1 is used for normal operation, setting to 0 will make the program discard
all angular states where ℓ2 > ℓ1, effectively ignoring exchange effects. This is, again,
very useful for reduction of the computational work in calculation of high partial
waves.

• Projectile charge can be either −1 for the electron, or +1 for the positron. While the
normal operation assumes electron projectile, it is possible to let the program flip
the sign in the proper places and possibly turn off exchange effects for simulation of
positron scattering on hydrogen atom. However, hex-ecs implements only a simple
single-centre method, which makes the positron scattering results work only for
extremely low energies.

• Total energies : Sequences that compose the list of total energies, for which to solve
the equations.

• Magnetic field : It is possible to add a first-order external magnetic field contribution
∆E = (mi−mf )B to the energy of the scattered electron. This parameter specifies
the strength of the magnetic field.

The output of the program is a few text files with the T -matrices and partial integral
cross sections. Apart from that, it also produces several binary files in a custom format
with the .hdf extension (“Hex data file”). This is not to be confused with the universal
HDF5 (“Hiearchical data format rev. 5”) storage. Nevertheless, a part of the Hex package
is the utility hex-hdf2hdf that can be used to convert the former to the latter and back.
The HDF5 format is not used directly by hex-ecs due to restrictions on parallel access to
the data file.
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