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vizualiza£ní metodou sledování trasovacích £ástic pevného deuteria o mikrome-
trové velikosti se zam¥°ením na míru podobnosti £i rozdílnosti mezi He I, které
je klasickou viskózní kapalinou, a He II, jeº je supratekuté a jehoº cirkulace je
kvantovaná. V práci jsou popsány výsledky trojice experiment·: úplav za rela-
tivn¥ pomalu kmitající p°ekáºkou s relativn¥ velkým rozkmitem (srovnatelným
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pozorování, ºe odpovídající proud¥ní v He I a II si jsou na velkých m¥°ítkách vzá-
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nosti. Navíc v p°ípad¥ He II jsou tyto statistické vlastnosti univerzální ve smyslu
nezávislosti na druhu zkoumaného proud¥ní a jsou stejné jako v p°ípad¥ tepelného
protiproudu supratekuté a normální sloºky He II, coº je kvantový druh tepelné
konvekce nep°ipodobnitelný k ºádnému druhu konvekce kapalin klasických.
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rometer size solid deuterium particles as tracers has been applied to study oscil-
latory �ows of He II, which is a quantum �uid with quantized vorticity, as well
as �ows of He I, which is a classical viscous liquid, focusing on the similarities
and di�erences between the quantum and classical �ows. Three experiments are
described: the �ow past a large-amplitude low-frequency oscillating obstacle in
the form of a prism; the steady streaming �ow due to a small-amplitude large-
frequency oscillating quartz tuning fork - a widely used tool to study quantum
turbulence; and the production of cavitation in the vicinity of a fast-oscillating
tuning fork. The main outcome is the observation that these �ows are similar
in He I and in He II at large length-scales, whereas at small scales, they exhibit
totally di�erent statistical properties. Moreover, in He II, these small scale sta-
tistical properties are universal in that they do not depend on the type of the
imposed mean �ow of the super�uid and normal component and are the same
as in thermal counter�ow � a pure quantum type of thermal convection with no
classical counterpart.
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Preface

This Thesis mainly follows the author's work on the 3-years project of GAUK
(Grantová Agentura Univerzity Karlovy) number 1968214: Studium oscila£ních

proud¥ní a kavitace v kapalném héliu vizualiza£ními metodami solved during his
4-year doctoral study at the Faculty of Mathematics and Physics of the Charles
University. The Thesis does not track the entire work performed by the author
- it rather attempts to provide a comprehensive report on experimental studies
of mechanically driven oscillatory �ows in both normal viscous liquid 4He and in
super�uid 4He, focusing on the similarities and di�erences between the classical
and quantum �ows. It is motivated, among others, by questions if macroscopic
vortices can exist in the wake (we found that yes), if the mechanically driven
co�ow of both components mimics the classical turbulence up to such a level that
they are indistinguishable (we found that no) and additionally, if higher order
e�ects such as viscous streaming can take place in super�ows (we found that yes).

The structure of the Thesis is as follows: in the Introduction the reader �nds
a short story about the helium itself, then three widely used descriptions of su-
per�uid hydrodynamics are introduced, and, �nally, a short discussion of the
particle-based visualization methods follows. As a short introduction in the cor-
responding classical hydrodynamics is a part of each of following experimental
chapters, we skip this in the Introduction. The second chapter describes the used
apparatus and methods: a large space is devoted to those parts of the appara-
tus that were built by the author personally (namely the driving mechanism of
the obstacle) and to the data analysis, which has been developed mainly by the
author, especially to the idea of the PTV-based pseudovorticity. It is followed
by a short chapter summarizing and comparing the experimental conditions of
presented experiments including the dimensionless numbers used in this thesis
and their de�nitions. Next three chapters describe the experiments: the wake
�ow past an oscillating obstacle of a shape of a prism, the viscous streaming due
to the oscillating quartz tuning fork and the cavitation due to the fast oscillating
fork. The last chapter presents one of the most interesting results achieved jointly
by the entire research group of the visualization Laboratory � the universality of
quantum �ows observed at small length-scales.
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Chapter 1

Introduction

1.1 Helium

Helium is the second most abundant element in the Universe, most of it born
together with the entire Universe in the recombination age short after the Big
Bang, the rest was produced inside cores of massive short living stars, which
already �nished their lives before the Solar System was formed. According to
the spectroscopic observations of both, the solar photosphere1 and the CI-type
carbonaceous meteorites2, it is though that the helium abundance in the nebula,
Solar System was build of, i. e. a protosolar abundance, was 0.27 [1].

The estimation of the primordial helium abundance is much more complicated.
According to spectroscopic observations of very distant low-metalicity galaxies
close to the surface of last scattering, its primordial abundance has been estimated
to be about 0.24, see, among others, Izotov et al. [2].

Helium exists in the form of 2 stable isotopes, 3He and 4He, containing in the
core 2 protons and 1 neutron, 3He, and 2 neutrons, 4He, respectively. In the shell
it has 2 electrons �lling the orbital 1s, thus in this system there are 5, 3He, or 6
particles, 4He, with spin. The total absolute value of spin is then 1/2, 3He, or 0,
4He, (considering no excitations) and the system of helium atoms is consequently
governed by the Fermi-Dirac statistic, 3He, or by the Bose-Einstein statistic, 4He
respectively. These di�erent statistical distributions are responsible for the fact
that 3He and 4He have di�erent properties at low temperatures, although at high
temperatures they are very similar, because the high temperature limit of both
statistics is the Boltzmann statistics.

The protosolar ratio of two main helium isotopes 3He and 4He is determined
from the Jupiter's atmosphere to be n3/n4 = (1.66± 0.05) · 10−4 [3].

Although helium is generally not rare, on Earth it is. In addition, all helium,
which is available now, is a product of α-decay or it came with impacting me-
teorites, where it had been implanted into the surface materials by solar wind.
As helium is a noble gas, it does not create compounds and, as it is lighter than
all other gases in Earth's atmosphere, free helium goes up, until it leaves Earth

1Contemporary photosphere is depleted due to the sedimentation of heavier elements, on
the other hand, helium amount increases with time due to thermonuclear reactions, therefore
a solar model has to be used to properly correct this e�ects.

2These meteorites contain only little amount of helium, but the ratios of other elements is
believed to be the protosolar one.
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being blown away by the solar wind [4].
3He is instead the product of the decay of tritium with the decay half-time

of 12 years, which is mostly an arti�cial product used for the thermonuclear
weapons,

3
1H→3

2 He+ + e− + ν̄e, (1.1)

and, as 3He has a large cross section for trapping neutrons, it brakes the chain re-
action, therefore its attendance is unwanted and has to be periodically removed3.
For the same reason, 3He is industrially used for neutron detectors4.

Helium was discovered in 1868 in the spectral decomposition of the sunlight
as an element not previously known. It was called hélium from the word ó cήλιoς,
which means the sun in Greek.

Both isotopes do not form the solid state, at atmospheric pressure, until the
temperature reaches the absolute zero; both become liquid at few Kelvin, 4.215 K
for 4He and 3.19 K for 3He, [5], and both have the super�uid phase, which is
however generated by di�erent mechanisms. The isotope 4He has the transition
to the super�uid phase, called λ-transition, at the temperature Tλ = 2.1768 K,
at the saturated vapor pressure [6], while 3He, being a fermion, has to form
Cooper pairs, which have an integer absolute value of spin (equal to one). Its
super�uid transition temperature is 1000 times lower, 0.93 mK, at the saturated
vapor pressure [7].

1.2 Length-scale depending description

Depending on the length-scale, matter can be described by various ways,
highlighting the lack of detailed understanding of this very important part of
Nature and hence the need of further research looking not only for the answers,
but also for a new exciting questions. This section freely follows the excellent
article of Barenghi, L'vov and Roche [8].

1.2.1 From particles to waves

A classical description of a gas is a model of billiard balls displaying molecules
as a solid balls (or of other shape), which collide one with each other and between
the collisions move ballistically, being in�uenced by a longer-distance potential
of other molecules. According to the quantum-mechanical approach, each object
can be seen at the same time as a particle and as a wave. The corresponding
wavelength λ of such a wave is

λ =
h

p
≈ h√

mkBT
∼ T−

1
2 , (1.2)

where h = 6.6 ·10−34 Js is the Planck's constant [9], p is the momentum, which, in
thermal equilibrium, corresponds to

√
mkBT , m denotes the particles mass, T is

3It is not the aim of this Thesis to discuss politics, but the pleasing politics of disarm has
also another side: the lack of 3He leading to incredibly huge price and, naturally, to limiting
the research of this fascinating material.

4A large demand of this devices also increases the price of 3He.
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the temperature and kB = 1.4 · 10−23 J/K is the Boltzmann's constant [9]. Equa-
tion 1.2 is, roughly speaking, the reason why low temperatures are so interesting:
with decreasing temperature, the wavelength of particles in a thermodynamic
system increases until the waves overlap and start to interfere creating a single
macroscopic wave of matter displaying macroscopic quantum e�ects. It happens
when the wavelength 1.2 is larger than the mean interparticle distance d, which
can be estimated simply as d ∼ n−1/3, where n = ρ/m is the numerical density of
the system of density ρ consisting of particles of massm (of course, if the particles
are identical). Then, by setting

d ≈ λ⇒ Tq ∼
h2

kB

ρ2/3

m5/3
, (1.3)

which, explicitly, for liquid helium gives Tq ∼ 101 K, while for electrons in metal
it suggests Tq ∼ 106 K and for matter of a neutron star Tq ∼ 1011 K [10].

The equation 1.3 is not able to determine the exact temperature of transition
into quantum regime, but the correct order of magnitude suggests that the above
described explanation is not entirely wrong.

The macroscopic wave of weakly interacting bosonic gas is usually described
via the so called Gross-Pitaevskii equation [11] for the macroscopic order param-

eter Ψ (~x, t):

− i~∂Ψ

∂t
=

~2

2m
∇2Ψ− V0 |Ψ|2 Ψ + µΨ, (1.4)

where V0 is the strength of interbosonic interaction and µ is the chemical potential.
Other symbols have standard meaning [11]. Of course, this is an approximation of
1st order of the so called generalized non-linear Schrödinger equation [12], which
represents the nonlocal two-body interaction potential as a function V (|~r1 − ~r2|)
of the distance of two points ~r1 and ~r2, for which it can be installed, e. g.,
the Lenard-Jones potential5 [13]. The 3rd order polynomial expansion of the
equation of state installed into 1.4 (i. e. with terms up to |Ψ|6) has been used
in mathematical studies of instability of vortices and of cavitation at negative
pressures [14], showing qualitative agreement with experiment [15].

Equation 1.4 at non-zero temperatures can be qualitatively enhanced to a
dissipative Gross-Pitaevskii equation [16]:

i~
∂Ψ

∂t
= (1− iγ)

(
−~2∇2

2m
+ V0 |Ψ|2 + µ

)
Ψ. (1.5)

This equation was originally suggested phenomenologically by Pitaevskii [11],
although it is oversimpli�ed, Proukakis [16] used this phenomenological model
to study the Kolmogorov spectrum [17, 18] showing that 1.5 can capture key
features relevant to the turbulence [19].

1.2.2 Quantized vortices and vortex tangle

The Gross-Pitaevskii equation 1.4 can be solved numerically in two or three
dimensions [12], but, due to the non-linearity of the interaction term, it is not sol-
uble analytically (not talking abut the enhanced versions just mentioned). More-
over, the experimental access to these length-scales is limited only for trapped

5V (r) =
(
b1 + b2r

2 + b3r
4
)

e−B2r2 , r = |~r1 − ~r2| for the values of phenomenological param-
eters b1,2,3 and B see [13].
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atomic condensates [20], whose healing length, ξ = ~/
√

2mµ, where µ is the chem-
ical potential [10], is naturally larger than that of helium. Exact solution of the
Gross-Pitaevskii equation 1.4 can explain the existence of quantized vortices [21]
including their internal structure on a length-scale of the healing length ξ, but the
basic idea of quantization of vorticity can be judged from the basic fact, that the
order parameter Ψ has to be continuous and unequivocal, and from the Madelung

transformation relating Ψ = |Ψ| eiφ with local condensate density ρs and velocity
vs,

ρs = m |Ψ|2 ,

vs =
~
m
∇φ.

(1.6)

Therefore from the identity ∇×∇φ ≡ 0 we get that the vorticity

∇× vs = 0 (1.7)

everywhere in the bulk, except for the topological singularities called quantized

vortices, whose circulation Γ is quantized

Γ = n
~
m

= nκ ∼= n 9.98 · 10−8 m2/s, (1.8)

where κ is the quantum of circulation and n ∈ N. From energetic considerations6

it can be derived that in 4He the system prefers containing more vortices of n = 1
instead of single multiply quantized one. The size of quantized vortex core can
be estimated to be of order of the healing length ξ.

At scales much larger than the healing length, but still microscopic compared
with scales experimentally accessible in liquid 4He, the quantum turbulence is
usually described via so called vortex �lament model [23].

The equation 1.6 for velocity ~vs leads to vs (r) = κ/2πr at the distance r from
the vortex in the plane perpendicular to it. More generally, the Biot-Savart law
[24] around the quantized vortex represented as a in�nitesimally thin line reads:

~vs (~r, t) =
κ

4π

∫
~s′ × ~s− ~r

|~s− ~r|3
dζ, (1.9)

where ~s (ζ) is the vortex �lament parametrized by arc length ζ, ~s′ (ζ) = d~s/dζ
is the unit tangent vector and the line integration is along all the vortices. The
Biot-Savart law expresses the Euler dynamics in integral form by assuming a �uid
of constant density [25].

In numerical modeling, the vortices are usually considered to be thin and
the mass of the vortex core of diameter of the order of the healing length is
neglected [23]. Therefore, at zero temperature, vortices move according to the
local super�uid velocity ~vs, but at non-zero temperature, the e�ect of the normal
�uid is included phenomenologically by adding mutual friction coe�cients α and
α′ to the equation of �lament motion [23]:

~vL =
d~s

dt
= ~vs + α~s′ × (~vn − ~vs)− α′~s′ × [~s′ × (~vs − ~vn)] , (1.10)

6Lets look into the author's diploma thesis [22] or into [10].
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where vn is the normal component velocity, which is, usually in the numerical
studies prescribed arti�cially [26] in such a way that it obeys the classical Kol-
mogorov k−5/3 scaling [27].

When two vortices approach, they can reconnect, changing the overall topology
of the vortex tangle. The detailed mechanism of reconnection is a subject of,
mostly numerical, studies on the level of order parameter dynamics [12] and, in
the studies of the vortex tangle, they have to be prescribed arti�cially [23].

The statistical numerical studies of vortex tangle [27] show that the super�uid
energy spectrum is consistent with Kolmogorov [17] scaling between the quan-
tum length scale ` and the large length scale [28]. This result holds down to
zero temperature in agreement with the numerical studies of the Gross-Pitaevskii
equation [23].

It is found that the vortices are often not randomly distributed, but they
form local bundles of corotating vortices [29], which are associated with the Kol-
mogorov spectrum. It is possible to decompose the vortex tangle into the polarized
part of vortex line density L‖ and the random part L× [30], where just the L‖
seems to be responsible for the k−5/3 scaling [8], while L× exhibits a di�erent k−1

scaling [31].

1.2.3 Two-�uid model

It has been already mentioned above without any comprehensive statement
that, at non-zero temperatures, there exists a dissipative part of the super�uid
helium, which a�ects the behavior of He II signi�cantly. It is formed of thermal
excitations � phonons, whose energy E ∼ k at small k. An icon of the ballistic

regime at very low temperatures is the Andreev scattering [32] of excitations
(quasiparticles and quasiholes) on quantized vortices, which is a useful tool for
studies of super�uid 3He [33].

At larger temperatures and/or length-scales, the coarse-grained look on pho-
nons is smoothed creating the so called normal component of He II described as a
continuous �uid with non-zero viscosity coexisting with the super�uid component.
The existence of two more-or-less independent components of He II is responsible
for the wide range of strange experimental observations (such as �ow through
very small holes � superleaks, the existence of super�uid �lm, the mechanocaloric
e�ect, fountain e�ect, di�erent viscosity if measured in bulk or in a capillary,
reduction of momentum of inertia, enormous heat conductivity), which played
signi�cant role in the history of super�uidity.

Similarly, at larger length-scales the individual vortex lines are no more dis-
tinguished, rather they are considered as a continuum of vortices, so it is pos-
sible to de�ne a macroscopic vorticity �eld ~ωs by taking a small volume larger
than the mean intervortex distance `. This approach leads to the so called Hall-

Vinen-Bekarevich-Khalatnikov coarse-grained equations for two considered veloc-
ity �elds ~vs and ~vn of He II [10]:

ρs

[
∂~vs
∂t

+ (~vs · ∇)~vs

]
= −ρs

ρ
∇p+ ρsS∇T − ρs ~fns

ρn

[
∂~vn
∂t

+ (~vn · ∇)~vn

]
= −ρn

ρ
∇p− ρnS∇T + ρs ~fns + ρν∇2~vn,

(1.11)
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where ρn,s are the densities of normal and super�uid component, S is the entropy
per unit volume, T is temperature and ~fns is the mutual friction force usually
de�ned as

~fns = α~ω0
s × (~ωs × ~vns) + α′~ω0

s × ~vns −
ρn
2ρ
∇~v2

ns, (1.12)

where ~vns = ~vn − ~vs is the counter�ow velocity, ~ωs = ∇ × ~vs, ~ω0
s = ~ωs/ |~ωs|,

the coe�cients α and α′ are the same as in equation 1.10 and their temperature
dependent values together with the whole form of equation 1.12 is adapted for the
experiments in rotating cryostat [21]. The last term in equation 1.12 is usually
neglected, a stronger simpli�cation of 1.12 is just ~fns = −ακ~vns/`2 [8].

The second term on the right hand side of equation 1.11 corresponds to a very
interesting type of thermal convection with no classical counterpart � the thermal

counter�ow of the normal and the super�uid component of He II. Only the normal
component carries the entire entropy of the �uid, hence the heat transfer q is

~q = ρST~vn (1.13)

and, from the continuity equation, it is possible to determine the corresponding
velocity of the super�uid component (omitting vectors, in a narrow channel)

vs = −ρs
ρn
vn. (1.14)

Thermal counter�ow is not a subject of this Thesis, for more details we direct
the reader to [34].

Still, we mention here another interesting phenomenon connected with the
two-�uid nature and with the opposite reaction on thermal gradient � the second
sound. Second sound is a wave of temperature, or, in other words, of relative
normal �uid density, which can be excited by a heater or by a moving membrane
with superleak7, which is found to be a very useful tool for direct measurement
of the vortex line density L thanks to the attenuation by a tangle of quantized
vortices, as can be judged from equation 1.10 or from the literature [35].

It is important to bear in mind that the equation 1.11 has physical meaning
only at length-scales signi�cantly larger than the quantum length-scale repre-
sented by the intervortex distance `.

Direct numerical simulations of equation 1.11 show evidence of strong locking
of the super�uid and normal �uid (~vs ≈ ~vn) at large scales [36]. It was found that
even if one single �uid is forced at large scales, the locking is still very e�cient.
Indeed, a clear k−5/3 spectrum for both �uid components at large scales is found
at all temperatures [8].

Here we point out that the famous Kolmogorov scaling [18] is valid only for
a homogenous isotropic three-dimensional turbulence, therefore another cascades
[37] exist even in the classical turbulence, e. g., in a two-dimensional system the
so-called inverse cascade [38] is observed, which can, among others, explain the
existence of large-scale zonal �ows observed on gaseous planets [39] (if they are
shallow, which is not known yet [40]).

To summarize, turbulence in He II can be easier to understand, in such a way
that the quantized vortices, which the turbulence is built of, are clearly de�ned

7It means a porous membrane, through which only the super�uid component can pass.
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objects with constant circulation and quite �simple� rules of behavior (equations
1.9 and 1.10). On the other hand, at stronger forcing, both components become
turbulent in�uencing each other via the still mysterious mutual friction force
resulting into one of the most challenging objects of study ever.

1.3 Particles in �uid

Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)
are standard methods in classical hydrodynamic research based on suspending
small particles into the �uid and believing that these particles follow the motion
of the �uid. PIV can estimate the �uid velocity in a section of the �ow �eld,
by assuming a single, smoothly varying velocity �eld, i. e. the Eulerian point of
view is native for this technique. PTV allows the measurement of Lagrangean
quantities [41], i. e., the velocity and its derivatives [42], along the individual
trajectories of the tracked particles.

In both techniques, small particles are suspended in the �uid. They re�ect
the light of an appropriate source, e. g., a laser beam, and their time-dependent
positions are captured by suitable sensors, e. g., a digital camera, and processed
by purpose made software. PTV allows determining the Lagrangian trajectories
of the visualized particles, while PIV, which requires a larger number of particles,
does not allow the direct calculation of the velocity of each visualized particle but
provides a statistical estimate of the Eulerian velocity �eld in chosen locations,
called interrogation areas, with a small number (∼ 10) of particles.

Considering a small spherical particle in a classical liquid, the two main con-
tributions are the inertial forces depending on mass, i. e. ∼ r3, and the viscous
forces depending on the surface, i. e. ∼ r2, therefore the smaller particle is better
follower of the �ow. The shear of the �ow also a�ects a smaller particle less than
a bigger one and it vanishes at the Kolmogorov length-scale.

The movement of small spherical particle in the �ow-�eld can be numerically
modeled [43] via so-called Maxey-Riley equation [44], which, among others, con-
tains the added mass e�ect [45], the history of vortex separation, the Sa�man lift
force and Faxén corrections8. The inverse solution of such a complicated equation
is nearly impossible, hence the interpretation of experimentally obtained particle
movement data considers the dominance of the viscous term, i. e. that the parti-
cle follows the �ow, although some higher order e�ects are well known (e. g. the
settling or the preferential concentration e�ect).

On the other hand, for practical purposes the particle should be observable
by the used camera. The experience suggests that it ought to cover few pixels
of the acquired image [46], which, for example, is not ful�lled in majority of the
standard PIV measurements in air, where so small particles (droplets of oil or
glycerin) have to be used, that they are unobservable � only the inhomogeneous
density patterns are correlated [46].

In the case of He II, which is a super�uid quantum liquid containing quantized
vortices and described by the two-�uid model, the situation is more complicated
[47]. In the �rst order approach, the particle moves with the viscous normal

8We apologize for not reproducing here the entire equation, an interested reader can �nd in
the original form in [44] or in an improved form in [43].
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Figure 1.1: Left: the photograph of the transparent cylinder used in the experiment
[50] taken by a digital camera, the length scale is approximately valid in the focused
plane, temperature 2.16 K, H2 particles, note the �laments. Right: negative of image
of a �lament structure, which might be a quantized vortex, temperature 2.15 K, H2

particles.

component, while the super�uid component a�ects the particle motion only via
its shear due to the D'Alembert paradox. Additionally, the particle can be trapped
onto a quantized vortex [48], which allows direct vortex visualization [49], see
�gure 1.1.

The energy of quantized vortex line can be expressed as the kinetic energy of
super�uid component of He II orbiting the quantized vortex core,

E =

∫
1

2
ρsv

2
sd

3x = 2π
1

2
ρs

∫
v2
srdrdζ = πρsZ

R∫
ξ

κ2

r
dr =

=πκ2ρsZ ln
R

ξ
,

(1.15)

where ζ is the length element of the vortex, Z is the considered length saved by
passing through the particle (i. e. Z ≈ 2R), R is the radius of the particle and
ξ is the coherence length considered to be the vortex core radius. The passing
of the vortex core through the particle is energetically favorable and the particle
can be trapped on the vortex core. The latter depends on the previous velocity
of particle and on the drag force due to the normal component of He II acting on
the particle. The dissipative mechanisms, reducing the kinetic energy of particle
moving relatively to the vortex core and thus enabling the trapping, are not
entirely understood [51]. It is not known, for example, why the particles trapped
onto vortices are positioned equidistantly. In the experiment, it is not possible
to determine, if any particular particle is trapped or not. Note that the particle
is huge compared to the quantized vortex core (ξ ∼ 10−10 m, R ∼ 10−5 m, see
section 2.3), but it can be larger or smaller than the intervortex distance ` in
dependence on the �ow conditions.
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In the article [50], we have shown that the use of PIV technique in He II [52]
can give not fully trustworthy results, especially in thermal counter�ow, where
both components move in opposite directions. We have imposed the thermal
counter�ow by a heater placed at the bottom of optical cryostat (see following
chapter for more technical details about the apparatus) and we placed a cylinder
of diameter 3 mm into the channel far from the walls and the heater. Both
techniques were applied on the same data giving very di�erent results � the PIV
results obtained by the Dantec Dynamic Studio displays a smooth velocity �eld
with few macroscopic vortical structures, while, in the trajectory image, those
are not distinguishable, see �gure 1.2.

Explanation of this discrepancy is that only one peak in the image correlation
space calculated during the PIV processing is used to calculate the resulting
velocity vector, others are classi�ed as noise. If it corresponds to the particles
carried by the normal component, or to those trapped on quantized vortices, is
random, which can easily lead to spurious sheer or vortical patterns. On the
other hand, the backward recirculation of normal component is suggested also
by numerical simulations [53], suggesting that the results of [52] are correct, due
to the dominance of viscous drag due to the normal component on the bigger
particles9.

To conclude, the use of particle-based visualization is very useful tool [47], it
especially shows the similarities and di�erences between classical and quantum
�ows, but enormous care has to be taken when interpreting the results, namely
when we try to obtain spatially smooth quantities. It depends on the imposed
�ow type � the mechanically driven �ow, which is main topic of this Thesis, ex-
hibits co�ow of the normal and the super�uid component, therefore the use of
PIV technique might work properly in two distant limits: intervortex distance
comparable to the probed volume, when the particle is carried by the normal
component only (this is a hypothetical case, as just the planetary rotation pro-
duces decent number of vortices [19]), or very small intervortex distance, when
the vortex tangle behaves as a continuum, which, due to the mutual friction force,
locks the two components more rigidly. In between, even in the case of co�ow, the
particle generally moving with the normal component is a�ected by the quantized
vortices and their reconnections. Hence, anomalous particle behavior might not
be observed on the trajectory shape, but velocity statistics can clearly display
the quantum nature of the �ow [54].

9Viscous drag depends on particle surface, while the trapping potential on the diameter,
equation 1.15, therefore smaller particles better maps the quantized vortices, while bigger ones
do the normal component.
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Figure 1.2: Top: Hydrogen particle tracks obtained at temperature T = 2.02 K and
heat �ux q = 477 W/m2 (transparent cylinder, heater on bottom, switched on). Only
trajectories longer than 50 points are displayed. Note minority of particles going in
opposite direction than the majority, which is a typical e�ect observed in thermal coun-
ter�ow. 2000 images taken at camera frequency 100 Hz; �eld of view 13.2 × 8.2 mm.
Bottom: PIV results of the same data set. The square interrogation areas have 75%
overlap. The vector sizes and colors are proportional to the velocity magnitude, whose
maximum, shown is red, corresponds to about 4 mm/s. Note the clear vortex at coor-
dinates ∼ [2; 6].
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Chapter 2

Experimental setup

2.1 Cryostat with optical access

In order to keep helium in the liquid phase a cryostat, i. e., a suitable thermal
insulating vessel, is needed. In our laboratory we use a cryostat with 5 opti-
cal ports: it was designed at MFF UK and assembled by Precision Cryogenic
Systems. This device is well described in the previous work of my colleagues [55].

The cryostat can store more than 50 dm3 of liquid helium, which is enough
for a typical experimental run. It is usually not re�lled during the experiment as
this would most likely decrease the quality of images, due to increasing number
of spurious particles made of frozen air or water. Care is taken to ensure that
helium is as clean as possible, by �ushing the cryostat with puri�ed helium gas,
before each experiment.

The inner volume of the cryostat is thermally shielded by a cylindrical volume
of liquid nitrogen N2, as this reduces the radiant component of heat �ow accord-
ing to the Stefan-Boltzmann law P ∼ ∆T 4. There is an additional evacuated
volume, which reduces thermal conduction. This volume is regularly pumped
by a turbomolecular pump before each experiment, keeping the pressure in it
typically between 5 · 10−6 and 1 · 10−5 Torr1.

There are 3 windows for each of the 5 optical ports; the innermost windows
are made of sapphire, while the others are made of quartz. The cross-section of
the optical tail is square with side of 50 mm, while the largest part of the cryostat
has a cylindrical shape with inner diameter equal to 200 mm. The windows have
circular cross-section with diameter equal to 25 mm, see the draft of the bottom
part of the cryostat in �gure 2.1.

2.2 Accessing and measuring low temperatures

After liquid helium is transferred into the cryostat the helium bath has a
temperature of 4.2 K, which is the boiling temperature of helium at atmospheric
pressure. To decrease the temperature we decrease the bath pressure along the
saturated vapor pressure curve (see �gure 2.2). The pressure is monitored and

1 Torr is not a SI unit, 1 Torr = 133.322387415 Pa, 1 Torr is the hydrostatic pressure of
a column of height 1 mm of pure Hg in a standard gravity �eld of Earth g = 9.80655 m/s2

(exactly) [56].
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Figure 2.1: Draft of the bottom part of the cryostat used in the visualization laboratory
at MFF UK and assembled by Precision Cryogenic Systems. The volume �lled with
helium is highlighted by the blue color. Units are in mm. The vessel for liquid nitrogen,
thermally connected to the middle layer in order to shield parasitic thermal radiation,
is positioned higher up and not visible in the displayed part of the cryostat.

used to determine the bath temperature, see below.

2.2.1 Pumps

In order to pump the helium bath, we use two pumps connected in series: the
�rst one is a Roots pump, with maximum pumping rate of 324 m3/h, the other is
a mechanical rotary pump, with a maximum pumping rate of 36 m3/h. At higher
pressures, the automatic electronic control unit switches on the rotary pump only,
while at lower pressures it adds the Roots pump. The pumps are connected to
the cryostat via a bellows tube of 50 mm in diameter, via a computer-controlled
�butter�y valve� with a manually controlled bypass. The vibrations produced by
the pumps are reduced by a purpose-made bellows T-piece. To avoid spurious
electrical currents, the bellows tube is electrically insulated from the cryostat by
a plastic o-ring. The output of the pumps either enters the helium return line or
is open to the air, depending on the situation (cooling down the helium bath, the
former case, evacuating the cryostat, the latter case).

2.2.2 Temperature measurement

Temperature is an intense quantity, which makes sense only for a thermody-
namic system of large number of atoms or molecules. Mathematically, tempera-
ture is a parameter of the energy distribution in the system, which is represented
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at higher temperatures by the Planck's radiation law for the absolutely black body,
which at the same time serves as the de�nition of temperature:

dI (ω;T ) =
~
π2c2

ω3

e
~ω

kBT − 1
dω. (2.1)

Here dI (ω;T ) is the radiation intensity element as the function of angular fre-
quency ω = 2πf of the radiated light and at certain temperature T of the
black body. ~, c and kB are all constants with recommended values accord-
ing to [9]: Planck's constant ~ = 1.055 · 10−34 Js, the speed of light in vacuum
c = 299792458 m/s and Boltzmann constant kB = 1.381 · 10−23 J/K. The radia-
tion intensity is important only for higher temperatures. At temperature 2 K the
total intensity is

Itot (T ) =

∫
dI

dω
dω =

π2k4
B

60~3c2
T 4 = σT 4 = 0.9µW/m2. (2.2)

For comparison, the radiation intensity at room temperature 300 K is 460 W/m2

and at the melting point of gold 1337 K it reaches 180 kW/m2. The de�nition
2.1 is useful and practical at higher temperatures, while at low temperatures it
is nearly impossible to use.

Therefore the Bureau International des Poids et Mesures2 published the in-

ternational temperature scale ITS-90 [6], where the saturated vapor pressure of
4He vapor over the liquid bath is recommended as the primary thermometer for
the temperature range from 1.25 up to 5.0 K. The relation between the saturated
vapor pressure and the absolute temperature is unequivocal, but there is no sim-
ple theoretical relation between them, hence the de�nition 2.3 in ITS-90 is rather
complicated.

The conversion between the temperature T and the saturated vapor pressure
P according to [6] is

T = A0 +
8∑

k=1

Ak

(
lnP −B

C

)k
, (2.3)

where the coe�cients A0 to A8, B and C are tabulated 2.1 (copied from tabelau

III in [6]). The total dependence is shown in �gure 2.2.

2.2.3 Pressure measurement

The pressure is measured by the Barotron MKS 690A sensor connected to the
cryostat by a capillary of 8 mm inner diameter. According to the manufacturer,
the used sensor measures the pressure absolutely. It is connected to the signal
conditioner MKS 670, which communicates with the computer via a GPIB bus.

It is assumed that the measured pressure is not a�ected by the state of helium
gas in the tube. The di�erence in height between the sensor and level of liquid
helium in the cryostat is around 0.8 m. The level of liquid helium is, however,
changing during the experiment, as the temperature is lowered by pumping the va-
por, thus reducing the amount of liquid helium inside the cryostat. The di�erence

2Abbreviation BIPM.

15



Table 2.1: Table of coe�cients used in formula 2.3 copied from [6] and used in our
measurements to calculate temperature from the known saturated vapor pressure.

from 1.25 K from 2.1768 K
up to 2.1768 K up to 5.0 K

A0 1.392408 3.146631
A1 0.527153 1.357655
A2 0.166756 0.413923
A3 0.050988 0.091159
A4 0.026514 0.016349
A5 0.001975 0.001823
A6 −0.017976 −0.004325
A7 0.005409 −0.004973
A8 0.013259 0
B 5.6 10.3
C 2.9 1.9
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Figure 2.2: Saturated vapor pressure according to the formula 2.3 from [6].
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in height of the level of liquid helium is deemed not to a�ect signi�cantly the mea-
sured pressure due to the low density of gaseous helium, which is about 1.2 kg/m3

[57], hence the shift in pressure is approximately ∆P = ρg∆h ≈ 0.07 Torr.
The data on pressure, resistance of thermometers (used for estimating the

temperature during precooling) and heater power (used for thermal counter�ow
experiments) are recorded by programs written in LabView, which also enables us
to switch on and o� the heater, the fast needle valve for the injection of particles
(see below section 2.3), as well as control of the rotation speed of the motor used
for moving the obstacle (see below section 2.4). These programs were developed
in our laboratory by several people working here during the implementation of
the experimental set-up, including the author of this Thesis.

2.3 Seeding system

As liquid helium is a colorless and transparent substance, to visualize its
motion small �ow tracers are added to it. For this purpose we use solid hydrogen
and deuterium particles, which are generally of sizes of few µm (see �gure 2.4). To
obtain these particles we inject a mixture of helium, hydrogen and/or deuterium
gases into the bath at a pressure larger than that of the bath, typically 1.5 −
2.0 bar.

The density of solid hydrogen is 88 kg/m3 [58], which is less than that of liquid
helium (146 kg/m3 at temperatures between 1.0 and 2.5 K), and solid deuterium
has larger density 200 kg/m3 [58]. The initial idea was to mix this two isotopes
to obtain particles matching the density of liquid helium. It was found, however,
that this is not possible, due to the fact that hydrogen isotopes have di�erent
crystallization temperatures: particles made of hydrogen and particles made of
deuterium were observed, as they have di�erent settling velocities, and it does not
seem that in the ranges of used parameters buoyant particles of suitable size can
be obtained. This issue has recently been solved by adding a small bottle with
deuterium hydride HD, which has density in solid phase much closer to that of
liquid helium. The HD particles will be used in future experiments. The presented
experiments were performed by using deuterium particles, as they appeared more
suitable than hydrogen for visualization purposes as they gradually settle on a
bottom of the cryostat and can be reused simply by stirring them up. Hydrogen
particles �oat on the surface of the bath and stay attached on the walls while
the liquid helium is consumed for cooling, and therefore their amount rapidly
decreases.

There are four high-pressure gas bottles mounted on the seeding system metal-
lic support: the �rst one is �lled with helium gas, the second one with hydrogen
gas, the third one with deuterium gas and the last one with deuterium hydride,
see �gure 2.3. In the small mixing volume it is possible to mix gases at various
ratios. The obtained gaseous mixture is then diluted in the big mixing volume
by helium gas. This step is mainly needed to prevent the creation of a plug of
solid mixture in the tube. The ratio of helium gas in the �nal mixture also a�ects
the size of the obtained solid particles, together with other parameters, such as
the mixture pressure and the injection velocity. Various combinations of these
parameters were used and the ratio of 1 : 100 of D2 to He yields the most suitable
sized particles used in the majority of our experiments. Practical experience dic-
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Figure 2.3: Sketch of the seeding system. The small volume V1 is �lled with deuterium
D2 (or with H2 or HD, but these gases are not used in the presented experiments) at
chosen pressure (usually 0.75 bar), then it is moved into the 50× bigger volume V2,
where the deuterium is diluted by helium, in the molar ratio ≈ 1 : 100, i. e. the
pressure has to be 2× higher than in the small volume. This mixture is injected into
the cryostat via regulation valve and fast computer-controlled needle valve with pulse
duration of 100 ms.
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Figure 2.4: Example of distribution of particle radii obtained by their settling veloc-
ities, see equation 2.5. The red triangles pointing up represent hydrogen particles at
temperature 1.65 K, while the blue triangles pointing down stand for deuterium parti-
cles measured at temperature 1.77 K, of course, in both cases the injection was done in
He I at temperature about 2.2 K.
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tates that the injection has to be done in He I, because, if the injection is done in
He II, the particles are much bigger. Explanation of this e�ect is not clear, but
it seems that, if injected into He II, the mixture freezes inside the injection tube,
while, if injected into He I, it freezes in the bulk of liquid helium.

The size of the particles can be estimated from their settling velocities, as-
suming that the particles are spherical and that the gravitational force Fg and
buoyancy force Fvz are balanced by the Stokes drag force FS, due to the viscosity
of the normal component of He II, i. e.

FS =Fvz − Fg

6πµRpvy =
4

3
πR3

p (ρHe − ρp) g.
(2.4)

Here µ is the dynamic viscosity of the normal component of He II, Rp indicates
the radius of the particle and vy denotes its settling velocity; ρHe is the density of
helium, while ρp denotes the density of the particle and g indicates the acceleration
due to the gravity. The radius of the particle is �nally obtained as

Rp =

√
9µvy

2 (ρHe − ρp) g
. (2.5)

An example of distribution of particle radii calculated in this way is shown in
�gure 2.4.

2.4 Moving obstacle

The �ow pattern past a relatively big and relatively slowly moving obstacle
(chapter 4) was studied by using the obstacle in the shape of a prism, of dimen-
sions 3× 10× 27 mm, with the longest length perpendicular to the studied plane.
It is made of plexiglass3 in order to make it transparent for laser-light illuminat-
ing the tracer particles, because in one of our previous experiments [50] we found
that a non-transparent material is appreciably heated by the illuminating light,
producing a thermal counter�ow in the vicinity of the obstacle. This e�ect might
become so strong as to interfere with and a�ect the studied �ow.

The laser-plane crosses the prism approximately in a half of its length such
that from the camera's view it looks like a rectangle. The obstacle moves parallel
with its shortest (3 mm) side with amplitude of 5 or 10 mm. The prism is con-
nected on its farther (from the camera) end to the brass support of shape of Γ,
which is at its top end connected to the stainless steel thin wall tube of diameter
5 mm. At the top of the cryostat this tube is �lled and passes through a pair of
spring-tightened o-rings, which are at the nearly room temperature. The space
between these o-rings is �lled by slightly pressurized helium gas in order to avoid
air going inside this volume and eventually into the cryostat4.

The movement of the obstacle is realized by using an accurate stepper motor
made in Switzerland, whose rotational motion is transformed to the sliding motion

3Poly(methyl 2-methylpropenoate) or simpli�ed name poly(methyl methacrylate), summary
formula (C5O2H8)n.

4Air would freeze creating unexpected additional particles with di�erent density and sizes
than the used deuterium particles have.
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Figure 2.5: The connecting rod used for transforming the rotational motion to the
sliding motion. Left panel: sketch of the connecting rod, A = 5 or 10 mm is the
amplitude of the oscillations and Ab = 25 mm is the length of the connecting rod. Right
panel: comparison of the ideal harmonic motion (dashed lines) with that produced by
the mechanism on the left hand side (solid lines), blue color denotes the shift, while the
red one the velocity.

of the obstacle by a connecting rod of �xed length of 25 mm. This mechanism
transforms the ordinary rotation to the nearly harmonic slide motion. The time
(phase) dependence of its vertical shift is

y (ϕ) = A

(
cosϕ+

√
b2 + sin2 ϕ− b

)
, (2.6)

where ϕ is the current phase of the motion ϕ (t) = Ωt with the angular frequency
Ω, b is the ratio of the length of the connecting rod, in our case 25 mm, and the
distance of the connecting point to the axis A, which is in our case A = 5 or
10 mm respectively, hence b = 5 or 2.5. The corresponding vertical velocity v is

v (ϕ) = −AΩ sinϕ

(
1 +

cosϕ√
b2 + sin2 ϕ

)
. (2.7)

The comparison of functions 2.6 and 2.7 with sinϕ and cosϕ for the case b = 2.5
is shown in �gure 2.5.

The motor is computer controlled, which allows us to compensate this slightly
anharmonic behavior by changing the prescribed angular frequency Ω in real time
in dependence on the actual phase ϕ read out by the sensor, which is a part of
the motor. Then the motion ought to be harmonic. This option was prepared by
the author of this Thesis, but in fact rarely used, because this solution is strongly
dependent on the exact setting of the initial phase � a slightly incorrect initial
phase causes the real motion to be more away from the ideal harmonic one than
without this correction.
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Figure 2.6: The meaning of the dimensions of the quartz tuning fork. Length
L = 9.0 mm, width W = 0.9 mm and thickness T = 0.4 mm, for the fork used in
the streaming experiment, chapter 5, the fork used for cavitation experiment has di-
mensions: L = 19.7 mm, W = 2.2 mm and T = 0.8 mm.
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Figure 2.7: The scheme of the fork electrical connection. The alternating signal is
provided by a function generator, transformed up and checked by a voltmeter. The
current through the fork is measured by using a phase sensitive lock-in ampli�er as a
voltage drop on a 984 Ω resistor.

2.5 Quartz tuning fork

The fork used in the streaming �ow experiment (chapter 5) has length L =
9.0 mm, width W = 0.9 mm and thickness T = 0.4 mm, see �gure 2.6. The fun-
damental resonant frequency is fs = 8295 Hz at 2.2 K, while at lower temperature
1.3 K it is fs = 8302 Hz.

In the cavitation experiment (chapter 6) we have used a bigger fork with
length L = 19.7 mm, width W = 2.2 mm and thickness T = 0.8 mm, its resonant
frequency is fc = 4186 Hz at 2.1 K. In none of our measurements we use higher
harmonic modes.

The fork is driven electrically by using the Agilent 33210A function generator
with maximum sinusoidal output voltage 7.07 Vrms. This voltage is transformed
up and the exact value has to be checked by using a voltmeter. The achieved
transformed maximum voltage is Us

∼= 77.5 Vrms and Uc
∼= 130 Vrms valid for the

streaming experiment (chapter 5) and for the cavitation experiment (chapter 6)
respectively. The shielding of coaxial cables is connected to the metallic body of
the cryostat and a low-temperature coaxial cable is used also inside the cryostat
and it shields each wire separately. The current through the fork is measured
as a voltage drop on a 984 Ω resistor by the phase-sensitive lock-in ampli�er, see
�gure 2.7.

The fork motion is based on the piezoelectric e�ect: the applied electric volt-
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age U causes a mechanical tension (described as a force F ), the mechanical de-
formation causes an electrical charge, hence the velocity of deformation v causes
an electrical current I. The electromechanical properties of the fork are charac-
terized by a so-called fork constant a = 2∆F

∆U
= I

v
. Its knowledge is important

for determining the real force F acting on the fork prongs and for estimating the
approximate velocity v of the fork prong tip as

F =
1

2
a · U, (2.8)

v =
I

a
. (2.9)

By using this formulae we can estimate the velocity only with the accuracy of
around 20%, still, this is a commonly used method, see e. g. [59], [60] and many
other references. Hence the maximum obtained forces in our measurements are
Fs
∼= 42µNrms and Fc

∼= 2.2 mNrms, respectively.
The fork constant a is measured to be as = 1.1 · 10−6 C ·m−1 for the fork

used in the streaming experiment and ac = 3.4 · 10−5 C ·m−1 for the fork used
for cavitation experiment by using the standard methodology [60], [61], i. e. by
measuring the fork resonant curve in vacuum (an ideal case would be to measure
in vacuum at low temperatures). By �tting this curve by the Lorentz curve we
have got the resonant peak. An example resonant peak of the fork used for the
streaming experiment is shown in the �gure 2.8 with width ∆f = (87.6± 0.2) ·
10−3 Hz, and the current in resonance Ires = (4921± 6) · 10−12 A (only the real
part has been �tted) at the driving voltage 1 · 10−2 Vrms, hence the resistance at
the maximum is Rres = (2032± 3) · 103 Ω. Then the fork constant is calculated
by using the formula

a =

√
4π ·m ·∆fres

Rres

, (2.10)

where m is the e�ective mass of the fork prong and it is calculated as m =
0.25 · ρ · LWT [61], where ρ is the density of quartz ρ = 2659 kg ·m−3 and LWT
is the volume of one prong by using dimensions mentioned above. Analogically
for the second discussed fork.

In the cavitation experiment the fork velocity was determined also directly. As
the fork is illuminated from its side, some point-like surface features are clearly
visible. By measuring the elongation of such features when the fork moves we
can estimate the amplitude of the motion, hence the velocity, see �gure 2.9. The
correlation coe�cient is 84% with systematic dependence vel ∼ 0.74vopt. We
refrain from declaring which method is better.

In the streaming �ow experiment, the fork is situated inside the cryostat
horizontally, prongs pointing towards the camera in such a way that they are
visible as a pair of rectangles, see �gure 2.10. The laser sheet crosses the prongs
perpendicularly close to their ends, see again �gure 2.10, unfortunately, we are
not able to set this distance very accurately.

In the cavitation experiment, the fork is oriented almost vertically, slanted by
about 13◦, prongs pointing up and the illumination laser sheet touches the fork
from the side closer to the camera, see the left panel of �gure 2.9.

22



-3

-2

-1

 0

 1

 2

 3

 4

 5

 8457.4  8457.6  8457.8  8458  8458.2  8458.4  8458.6

I 
[µ

A
]

F [Hz]

real part
imaginary part

Figure 2.8: The electrical current trough the fork as a function of the frequency used
for the calculation of the fork constant, the applied driving voltage is U = 10 mVrms.
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Figure 2.9: Left: Photograph of the fork illuminated by the laser sheet from the side,
when the fork moves, which elongates the surface features in the direction parallel with
the motion. Right: the correlation of the velocity measured by using the electrical
current through the fork and the equation 2.9 vel and the velocity measured optically
vopt. The symbols represent cases when a bubble was observed, for details see chapter
5.
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Figure 2.10: Sketch of the fork illuminated by the laser sheet in the streaming �ow
experiment. The thickness of the laser sheet is approximately 1 mm and it is produced
from a laser beam disfocused by using a cylindrical diverging lens, as described in section
2.6.

2.6 Laser and camera

To illuminate the experimental volume, a continuous wave solid state laser
with tunable power RayPower 5000 is used, whose maximum power is declared
by the producer to be 5 W. Its dominant wave length is 532 nm (green color). The
power employed in the experiments is usually less than 200 mW in a continuous
regime. Larger power enables us to see smaller particles, but it disturbs the
results by generating thermal counter�ow in the vicinity of surfaces heated by
the incident light. This problem has been a subject of independent study and
detailed quantitative results are published in article [50], which however does
not �t the topic of this Thesis, although it has the same �rst author. On the
other hand, similar e�ect is observed and discussed in section 5.3 and similar
problem of heating the tracer particles and their acceleration due to the thermal
counter�ow was studied in detail experimentally and analytically by Jan Hodic
in his Bachelor thesis [62]. He found that this e�ect is unobservable in the range
of laser powers 20− 320 mW corresponding to �uxes 400− 6700 W/m2. At larger
imposed power the volume becomes overlighted due to re�ections from windows
and the measurement is not possible.

The laser sheet is produced by a cylindrical diverging lens from a focused laser
beam, see �gure 2.11. Just in front of the window, there is an aperture made of
paper to avoid re�ections on shiny window fringe and to limit the diverging beam
in height at the outgoing window in order to allow the maximum amount of light
to leave the cryostat and dissipate on a black paper far behind the window.

The optical part of the apparatus including the just described laser and the
camera described below is located on heavy stone tables to reduce vibrations.

The laser can run in a continuous regime or in a pulsed regime, in which the
laser shines only when triggered. This is useful in order to suppress the total
amount of heat incoming into the cryostat, but the duration of this laser pulse
cannot be controlled, it is always about ∼ 0.4 ms, which decreases the e�ectivity
of camera exposure.
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Figure 2.11: Sketch of the illumination part of the optical setup. The laser beam is
focused by using a so called �Galilean telescope� consisting of one converging and one
diverging lens and then defocused in the vertical plane by using a cylindrical diverging
lens (f = −15 mm). Units are in mm.

The used CMOS camera, Phantom v12.1, is very fast: its maximum frame
rate at its maximum resolution 1 Mpix (i. e. 1280 × 800 pix), is 6273 Hz (or fps
� frames per second). Its maximum frame rate, 1 MHz, can be achieved at the
lowest resolution, 128 × 80 pix. The camera is situated perpendicularly to the
illuminated plane and focused on the latter by using an appropriate telemetrical
macro lens, which can be enhanced by using a 2× extender. The �eld of view
has dimensions of about 13 × 8.2 mm on the focus plane (these dimensions vary
slightly, depending on the actual focusing in the experiment).

2.7 Data acquisition procedure

The Data acquisition procedure was as follows: �rst, there is an injection of
pure helium gas from room temperature under pressure around 1.5 bar by using
our seeding system, section 2.3. This injection stirs up the deuterium particles
seeded at the bottom of the cryostat and allows us to perform the measurements.
On the other hand, such injection creates a strong residual �ow, therefore we have
to wait until this �ow is dampened, or, at least, suppressed to the level appreciably
weaker than the studied �ow. After this injection we start the driving of the
�ow by the quartz tuning fork or by the moving obstacle and some reasonable
time after the injection we start acquiring images by the camera at the chosen
frequency, see table 3.1 for details. The laser illuminating the particles (and the
fork as well) is operated in a pulse regime at the same frequency as the camera,
the duration of one shot is ∼ 0.4 ms.

The movie usually consists of 2000 images. After this is completed, the data
transfer from the camera into the computer starts, which is provided by using the
commercial software Dynamic Studio, developed by the company Dantec. This
software also controls the camera and laser.

2.8 Image processing

Dynamic studio stores images in its own format image, which is inaccessible
for any other image processing software, therefore we were pushed to puzzle out
its structure, which is, fortunately, very simple: the �le has a header of constant
length followed by the pixel intensity information of 8-bit depth organized in
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Figure 2.12: The sum over the x -coordinate (i. e. the y-t-plot) of a whole movie with
the moving cylinder displayed in a standard 8-bpp-indexed palette for better contrast.
The temperature is 1.32 K, the camera frame rate is 100 Hz, the frequency of the cylinder
motion is 0.5 Hz. The �ne azure lines drawn by the program help the user to �t the
frequency phase-shift and exact y-position (x -position is not distinguishable in this
view). Other (mostly azure or pink) lines are the traces of particles. The colorful
periodical trace is that of the over-lighted cylinder, which has to be masked.

columns. A simple algorithm for extracting these images into a tiff format was
developed.

The need of having a program for movable masking emerged with the experi-
ments on the �ow around the moving cylinder, see chapter 4. The parameters of
the mask (its dimensions and position) and the parameters of the movement (fre-
quency, amplitude, shape and phase-shift) have to be inserted into the program by
hand, but, in order to �t these numbers, various functions are used: the sum over
the x-coordinate (see example in �gure 2.12), y-coordinate or time-coordinate of
the whole set of images.

2.9 Data processing

The Dantec software also o�ers a set of various techniques for data analysis
but mostly we do not employ them, as we use for the implementation of the
PTV technique other programs. One of them is an open-source add-on to the
image analysis software ImageJ. This is called Mosaic and was developed mostly
at ETH, Zurich, [63]. This algorithm �nds particle positions on the images and
connects them to form trajectories, on the basis of a set of chosen parameters,
and �nally generates a table with the particle positions.

2.9.1 Custom-made particle tracking algorithm

The author of this Thesis tried to write his own particle tracking algorithm.
Although this issue was only partly successful, he was motivated mainly by the
question, if the observed quantum signature in He II �ows, especially the wide
tails of the velocity distributions (for more detail see the authors Diploma thesis
[22] or the corresponding article [64]), which are naturally rare events, might not
be an artifact of the tracking algorithm.
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The �rst part is the particle detection. We de�ne a particle on the image
as the connected area of pixels having intensity larger than a certain manually
adjusted threshold. This algorithm has only one parameter: the global threshold
of the pixel intensity, although we can make this threshold a local one as there
are areas with less and more noise.

The most complicated issue of the described program is to connect the found
particles into the trajectories across images. The algorithm of particle connecting
cannot be written by using parallel computing in some simple way. It proceeds
frame by frame, by adding new points to the existing trajectories. It is also
possible to choose the time-orientation (from the �rst frame to the last one or
from the last frame to the �rst one), which can, in principle, give di�erent results.

First, the trajectory generates the expected position of a new point in the
next frame, then the frame selects some point, which is the nearest to the required
position, and, at the same time, has the smallest relative change of its size. Now, if
some point is suitable for more trajectories, the algorithm then prefers the longer
one (the possible future plans include checking this not very frequent situation
more carefully). The points, which do not �t any trajectory, are the starting
points of new trajectories.

This algorithm has several parameters: the maximum distance between the
expected new position and the found new position, the maximum relative change
of size of the particle, the number of frames, in which the trajectory looks for a
new point, and �nally the function for estimating the position of the new point
in the trajectory.

At this moment, we have two functions for estimating the next expected point:
the �rst variant just returns the position of the last point in the trajectory, hence
the algorithm minimizes the velocity. The second variant calculates the velocity
of the last point in the trajectory and uses it to obtain the new position (it means
that the new position is equal to the position of the last point plus its velocity
multiplied by the time between the last frame and the next one). This should
minimize the acceleration of the found particles, but, in practice, it ampli�es the
noise.

2.9.2 Evaluation of our tracking algorithm

We mostly focused on the statistical properties of quantum turbulence, hence
we are not interested in the exact shape of one particular trajectory; so the main
question at this moment is: how much the choice of the algorithm a�ects the
results from the statistical point of view? In �gure 2.13 we can see that for
small velocities the shape of the distribution does not depend much on the used
algorithm and its parameters but at the tails of the distribution (rare events) we
see strong dependence on the parameters, especially when the position of new
expected point is determined by using the velocity of the last one. In addition,
our algorithm produces shorter trajectories than ImageJ does, which is caused by
the restrictions on particle size, and it founds less particles due to using of global
threshold.
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Figure 2.13: Comparison of vertical velocities of particles found by our software with
those found by IamgeJ. dist means the maximum distance between the expected new
position and the found one; z denotes the maximum relative change of size (compared
to the smaller size, so it is always greater or equal to 1). The last parameter is the
used function for estimating the position of the next point � �NN�: nearest neighbor;
�1st ord� : �rst order estimation. The shown data are taken at 1.86 K, in thermal
counter�ow, with a heat �ux of 1700 W/m2; the camera frame rate is 100 Hz.

2.9.3 Statistics over trajectories

Another program written by the author calculates the statistical distributions
of velocities, accelerations, lengths and other quantities related to the connected
particle positions. The table of particle positions and their connections is the
input. The outputs are distributions of di�erent parameters of that data set
or subset, obtained by �ltering or smoothing, which are also performed by the
program.

For smoothing the input data the program uses the Kolmogorov-Zurbenko
algorithm [65], which averages over a chosen number of nearest neighbors along
the trajectories. Important procedure is adding missing points into the trajecto-
ries, which is done by the simplest possible way � linear extrapolation from the
nearest neighbors positions.

The velocity ~v is calculated numerically in Cartesian coordinates or in local
polar coordinates in a time-symmetric or time-asymmetric way with controlled
time-step ∆i, which was useful in the work [66] studying the transition from
quantum distribution to the classical one by changing this parameter of velocity
calculation. Hence, the velocity of i-th point of the trajectory is calculated in
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these two ways:

~vi =
~ri+∆i − ~ri−∆i

ti+∆i − ti−∆i

,

~vai =
~ri+∆i − ~ri
ti+∆i − ti

,

(2.11)

where i denotes the index in respect to the actual trajectory, the superscript a
means that the velocity is calculated in an asymmetric way. Note that the �rst
way already contains some smoothing. The �rst and last point of the trajectory
are unde�ned and they do not contribute for the statistical calculations. The
program also computes particle accelerations in an analogical way.

The main issue of this program is to calculate the statistical properties of the
set, namely the standard deviation, the skewness and the �atness of all trajec-
tory point quantities and plotting the whole distribution (of-course determined
numerically for the chosen number of bins). Advanced statistical functions are
the Lagrangian autocorrelation function A [q] (τ) and structure function Sn [q] (τ)
of any natural order n ∈ N:

A [q] (τ) = 〈q (t+ τ) q (t)〉 ,
Sn [q] (τ) = 〈|q (t+ τ)− q (t)|n〉 ,

(2.12)

where q is the chosen quantity of the trajectory point and τ is the time step.
A special care has been taken on the very important issue � the �ltering. The

�lter consists of many independent small �lters, which �lter according to any
feature of the individual trajectory point and the possible logic with respect to
the trajectory can be chosen from following set:

• each point is assessed individually;

• whole trajectory passes, if at least one point of the trajectory passes;

• whole trajectory is blocked, if at least one point of the trajectory is blocked;

• whole trajectory passes, if 50% of trajectory points has to pass;

• whole trajectory passes, if the mean of trajectory passes.

The term �pass� means to �t inside or outside of a chosen interval. In addition,
conditional checking is implemented, i. e., the small �lter applies or not according
to another small �lter (or set of �lters).

While writing the Thesis, various special needs emerged to be useful part of
this program, e. g. the calculation of vortex pro�les (section 4.3) or the PTV-
based pseudovorticity discussed in the following section.

2.10 PTV-based pseudovorticity

2.10.1 Regular vorticity

In the �uid-dynamic community, it is customary to use, among others, the
vorticity ~ω in order to characterize the �ow, e. g. [67]. It is introduced by the
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�rst Helmholtz theorem, which states that each movement of the �uid in an in-
�nitesimal neighborhood of a chosen point is separable into velocity of translation
vi, velocity of deformation ėik and velocity of rotation ω̇ik, that is

v′i (xj + dxj) = vi (xj) + ėik (xj) dxk + ω̇ik (xj) dxk, (2.13)

where the antisymmetric tensor ω̇ik, can also be seen as a pseudovector of rotation,

ωi = εijkω̇jk =
1

2
εijk

(
∂vj
∂xk
− ∂vk
∂xj

)
antisym.−−−−→ εijk

∂vj
∂xk

= (∇× ~v)i (2.14)

or simply
~ω = ∇× ~v. (2.15)

It is possible to write the Navier-Stokes equation for the vorticity by applying
the rotation operator as5:

D~ω

Dt
− (~ω · ∇)~v = ν∇2~ω, (2.16)

where D~ω
Dt

= ∂~ω
∂t

+(~v · ∇) ~ω is the material derivative. Equation 2.16 together with
the continuity equation, which is ful�lled for vorticity identically, shows, that the
amount of vorticity can be changed only via the viscosity mechanisms, or via the
process called vortex stretching, linked with the second term of 2.16. Therefore,
its presence is a signature of certain �ow patterns (vortices, shear layers, etc.) or
�ow processes (vortex stretching, boundary layer separation, etc.).

In a shortcut, the spatial distribution of vorticity and its magnitude can be
very interesting for describing the studied �ow, especially, if we believe, there
would be macroscopic vortices. Unfortunately, due to the character of our data,
which are in the form of individual particle trajectories, we are not able to calcu-
late the vorticity ω directly according to the de�nition 2.14, as we do not know
the �uid velocity everywhere at any time, but only along the trajectories and at
times of particle passing. In addition, there is the problem with the two-�uid
character of the He II �ows.

2.10.2 De�nition of pseudovorticity

Hence we introduce an experimentally observable approximation. We do not
venture to identify it with the proper vorticity, therefore we call it PTV-based

pseudovorticity and we denote it ϑ:

ϑ (~r; t) =

〈
(~ri − ~r)× ~vi
|~ri − ~r|2

〉
|t−ti|<T,|~ri−~r|<Rm

, (2.17)

where ~r and t denote the probed point position and time, ~ri and ti stand for
the position and time of i-th trajectory point, while ~vi is its velocity. The vector
product× results into a scalar as our vectors are only two-dimensional projections
or cuts of the real ones. The averaging is calculated only over such points, which

5The advective term (~v · ∇)~v has been rewritten as 1
2∇
∣∣v2∣∣ − ~v × ω and rotation operator

∇× has been applied; for more details see any book of �uid mechanics, e. g. [68].
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are located inside a circular area of chosen radius Rm and centered at the probed
point ~r. T is the duration of a time window centered at the probed time t.

Equation 2.17 is the general de�nition, however, in the experiment with large
slowly oscillating obstacle, chapter 4, we have used a phase of the obstacle motion
instead of time, while in the streaming experiment, chapter 5, we did not care
about time anymore, as the time resolution represented by the camera frame-rate
was ∼ 10× longer than the oscillation period and therefore we observed only the
steady component of the particle motion.

2.10.3 Convergence

Intuitive arguments for the construction of de�nition 2.17 are:

1. For the lack of better approach we have to consider that the set of trajectory
point velocities {~vi} are selected points of a continuous velocity �eld6, in
other words,

∑∫
~vi · d 2~r =

∑∫
~v (~r) δ (~r − ~ri) d 2~r, ~ri being the positions

of points with velocities ~vi and ~v is continuous.

2. The vector product (~ri−~r)
|~ri−~r| × ~vi represents the magnitude of the projection

of velocity vi into direction perpendicular to (~ri − ~r), i. e. projection to a
uniform spin around point ~r.

3. The second |~ri − ~r| in the denominator of de�nition 2.17 compensates the
geometrical fact that the amount of points in an annulus increases linearly
with the radius of such an annulus.

4. The studied �ow is steady (at least locally), therefore we do not care about
the fact that ω is an Eulerian quantity, while the velocities along trajectories
are Lagrangean quantities.

5. The physical unit of ϑ is [s−1], which is the same as the unit dimension of
regular vorticity ω.

To prove that under certain conditions ϑ converges to ω, let's start with the
circulation Γ and its relation with ω = ∇× ~v due to the Stokes theorem:

Γ =

∮
∂A

~v ·
−−→
d∂A =

∫
A

∇× ~vdA, (2.18)

where A is an area, e. g. A = {~ρ ∈ R2, |~ρ− ~r| < Rm}, or, if approximating7 real
numbers R with rational numbers Q, A = {~ρ ∈ Q2, |~ρ− ~r| < Rm}, then ~ρ can be
indexed by i ∈ N and therefore we can substitute the integration in the second
equality in 2.18 by summation over corresponding i and integration over whole
plane R2:

Γ ≈ 1

M

∫
R2

∑
i,~ri∈A

(∇× ~vi) δ (~ri − ~r)d 2~r = − 1

M

∫
R2

∑
i,~ri∈A

~vi ×∇δ (~ri − ~r)d 2~r,

(2.19)

6It is not necessary to be equal to the �ow velocity �eld, which would be ful�lled in the case
of tracking hypothetical �uid particles.

7Although this looks terrible for mathematicians, physics does not distinguish those sets.
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whereM is the number of points ~ri. The second equality is a standard step in the
theory of distributions. Gradient of δ-function is commonly used and it equals,
in the sense of distributions, in two-dimensional space, to

∇δ (~ri − ~r) =
~ri − ~r
|~ri − ~r|2

. (2.20)

Therefore we have
Γ ≈ − 1

M

∫
R2

∑
i,~ri∈A

~vi ×
~ri − ~r
|~ri − ~r|2

d 2~r (2.21)

and by using the ϑ de�nition 2.17 we get

=

∫
R2

ϑ (~r) d 2~r (2.22)

and therefore in the sense of distributions and within the classical limit Γ → ω
for A→ point we have

ϑ (~r)
Rm→0−−−−→ ω (~r) . (2.23)

2.10.4 Discussion of conditions

We summarize the conditions used above:

1. dense sampling (as dense as Q samples R),

2. ~vi being samples of a continuous �eld,

3. Rm → 0.

In practice, none of these conditions is ful�lled.
The violation of the �rst and the third conditions is closely connected. First:

the sampling is limited by the number of tracked particles, which, as we believe,
is better to keep lower, because, in the opposite case, serious problems can arise
with the trajectory connections, which (and this is the worst) do not need to be
distinguished during the data processing. Therefore, in the �nal data, there is lot
of �white places� , whose size limits the integration area size Rm. Let's imagine
an extreme case, that inside the region used for calculating ϑ there is only one
trajectory point, then ϑ (~r) = (~r1−~r)×~v1

|~r1−~r|2
and this value is just a random number

not representing vorticity.
The violation of the second condition is connected not only with the two-�uid

nature of He II, but more signi�cantly with the behavior of non-�uid particles
carried by the �ow. But, in the case of classical liquid, we could, at least, except
that for small buoyant particles their velocities would be close enough to the
continuous �ow velocity �eld. Hence, in the case of He II, we have to use as an
assumption one of our main long-term result, namely, that is that He II behaves
as a single �uid in all cases, where is no reason for di�erent forcing of individual
components (i. e. by viscosity near walls or by heat gradients), and that the
two-�uid behavior is displayed in bulk co-�ow only at small length-scales.

In addition, there is the problem with the time locality. The regular vor-
ticity is naturally an Eulerian quantity, while trajectories and their properties

32



are Lagrangean quantities. In the streaming experiment, chapter 5, this is by-
passed by studying only the steady component of the particle motion. In the case
of slowly oscillating obstacle, chapter 4, we assume that the problem is locally
steady within phase window of 15◦, which is a compromise between the precision
and the statistical quality.
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Chapter 3

Table of parameters

Table 3.1: Comparison of experimental conditions of three main experiments per-
formed by the author. The viscous penetration depth δ =

√
2ν/Ω, where we set ν = κ/6

according to [69] and Ω = 2πf , where f is frequency. The fork constant is calculated
according to the formula 2.10. The velocity is the root-mean-square-value, therefore, in
the case of the Obstacle experiment, vmax = A · Ωmax/

√
2, when the fork is used, this

velocity is measured via the electrical current according to the formula 2.9, hence it is
naturally rms; for the sake of clarity the peak maximum velocity is added, too.

· unit Obstacle Streaming Cavitation
Temperature range T [K] 1.3− 2.18 1.3− 2.22 2.14− 2.24
Tracer particles D2 D2 ·
Camera frame-rate [Hz] 100 800 400
Scale factor [µm/pix] 27.4 10.33 10.56
Obstacle shape @A � � u u
� visible size [mm] 10× 3 0.9× 0.4 2.2× 19.7
� third size [mm] 30 9.0 0.8
Obstacle frequency f [Hz] 0.05− 1.25 8298− 8303 4186
Amplitude A [mm] 5; 10 up to 0.01 up to 0.05
Maximum rms veloc-
ity vmax

[mm/s] 55.5 338 1075

Maximum velocity
vmax

[mm/s] 78 478 1520

Velocity changed by frequency force force
Fork constant a [C/m] · 1.1 · 10−6 3.4 · 10−5

Viscous penetration
depth δ

[µm] 64− 730 0.8 1.1

Various �ows of �uids at di�erent length- or velocity-scales can be successfully
characterized by carefully chosen dimensionless numbers, such as the Reynolds

number Re generally de�ned as

Re =
s · v
ν
, (3.1)

where s denotes a characteristic size of the problem � it can be the size of an
obstacle, the size of a channel, etc. Similarly, v stands for a characteristic veloc-
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ity of the �uid and its declaration again strongly depends on careful judgment.
Finally, the e�ective viscosity ν is again di�cult to chose due to the two-�uid
description of He II. Alternatively, Re can be seen as a ratio of inertial to friction
forces, which suggests the interpretation of its magnitude � �ows of small Re
are dominated by the viscosity, while at large Re the non-linear advection and
stretching processes are important, leading to turbulence.

The choice of characteristic sizes of the �ow can be justi�ed by various ways.
For consistency, we have chosen the visible size perpendicular to the obstacle
motion, explicitly, in the case of the study of �ow past a slowly moving obstacle,
chapter 4, it is the obstacle width s = 10 mm, and in the case of the study of the
streaming pattern, chapter 5, it is the thickness of the fork s = 0.4 mm.

The Reynolds number is a suitable parameter describing steady �ows. The
discussed here oscillatory �ows have to be characterized by a pair of dimensionless
parameters.

One example of such a dimensionless parameter is the Strouhal number, named
after the former professor active at our University �en¥k Strouhal and de�ned as

St =
sΩ

v
=

s

A
, (3.2)

where s is the just discussed characteristic size, Ω is the oscillation angular fre-
quency and v is a characteristic velocity, which is, in the case of �ow forced by
an oscillating obstacle, v = ΩA, where A is the oscillation amplitude. St was
originally dedicated for describing a little bit di�erent �ow problem: the self-
induced oscillations of an obstacle in a stream, therefore, the angular frequency
of oscillations was a measurable result, not a control parameter.

Similarly to the Strouhal number, there exists a Keulegan-Carpenter number

KC [70] de�ned as

KC =
2πA

s
, (3.3)

where again A and s are the amplitude and the characteristic size, respectively. A
similar parameter ε is introduced by the community studying viscous streaming
[71]:

ε =
A

s
, (3.4)

which di�ers from KC only by a factor of 2π and at the same time ε = 1/St.
Second parameter to make a pair is the Stokes number β de�ned as

β =
fs2

ν
, (3.5)

where f is the oscillation frequency and ν is the kinematic viscosity. Chong et
al. [43] de�ne the Reynolds number R̃e in a similar way, which again di�ers from
the Stokes number β only by a factor of 2π

R̃e =
Ωs2

ν
, (3.6)

where Ω = 2πf . We have used a �tilde� to avoid misunderstanding while talk-
ing about Reynolds number. The Chong's argument why to understand R̃e as
a Reynolds number is that, in the case of large St = s/A, the �uid has to be
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Table 3.2: Dimensionless numbers characterizing discussed experiments. For details in
de�nitions, see the text. For those dimensionless numbers, which are de�ned by using
viscosity, the approximate value ν = κ/6 = 1.66 · 10−8 m2/s is used. The peak values
of velocity and amplitude are used as needed.

· Obstacle Streaming
Strouhal number St 1; 2 44; 82
Keulegan-Carpenter number KC 3.1; 6.3 (8; 14) · 10−2

ε = 1/St = KC/2π 0.5; 1 (1.2; 2.3) · 10−2

Stokes number β (3− 75) · 102 8 · 104

R̃e = 2πβ (2− 47) · 103 5 · 105

Reynolds number Re (0.9− 38) · 103 (6; 12) · 103

Streaming Reynolds number Res (0.5− 38) · 103 75; 260

transported from one side of the obstacle to the opposite one around whole ob-
stacle in one half-period, hence the characteristic velocity is v ∼ Ωs. Both pairs
of dimensionless numbers remain consistent in the way that

Re = KCβ =
R̃e

St
=

ΩAs

ν
. (3.7)

In the case of a steady streaming, the streaming Reynolds number Res is
introduced [72]:

Res = 2π
β

St2
=

ΩA2

ν
(3.8)

and it characterizes the streaming pattern. At small Res, the steady �ow creates a
single boundary layer with open cells, while at larger ones ([73] reports Res → 37
as the critical one) the streaming cells close and the outer streaming pattern
arises. See the illustration in �gure 3.1 and the introductory section 5.1.

Table 3.2 summarizes ranges of dimensionless numbers in two our visualization
experiments and �gure 3.1 shows them in the phase diagram of St × β together
with the regions known from classical experimental and theoretical works as sum-
marized in [74] (which presents this diagram in the St×Re axes).
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Figure 3.1: Phase diagram of oscillatory �ows in the St × β space, Strouhal number
St = s/A, 3.2 and Stokes number β = fs2/ν, 3.5. Regions are denoted according
to [74]. Green squares and blue circles denote the moving obstacle experiment, see
chapter 4, red squares represent the streaming experiment, see chapter 5. Diagonal
line corresponds to streaming Reynolds number Res ∼ 1 separating region with a single
boundary layer from that with two boundary layers.
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Chapter 4

Oscillating obstacle

4.1 Introduction

The �ow past a blu� body is, for the case of cylinder, an often studied case,
see, e. g., the review [75], describing various regimes of the wake behavior in
dependence on the Reynolds number Re:

• Laminar Steady Regime (Re < 49), more details in [76],

• Laminar Vortex Shedding (50 < Re < 140− 195), see [77],

• Wake Transition Regime (Re ∈ [190, 260]), [78],

• Regime of increasing disorder in the �ne-scale three-dimensionalities, [79],

• Shear Layer Transition Regime (Re ∈ [103, 2 · 102]), PIV measurement [80],

• Asymmetric Reattachment (or Critical transition), meaning reattachment
of the separation bubble on only one side of the body, [81],

• Symmetric Reattachment (or Supercritical Regime), [82],

• Boundary Layer Transition Regime (or Postcritical Regime), the boundary
layer on the cylinder surface becomes turbulent, however, in [83] an evidence
of periodic vortex shedding is observed even in this regime.

This shows the beauty of the Nature, as there is such a diversity of regimes for
for such a relatively �simple� problem.

Oscillatory �ows of viscous �uids are generally more complicated than steady
�ows because a second length scale emerges in addition to the linear size of the
obstacle - the viscous penetration depth δ =

√
(2ν)/Ω, where Ω = 2πf is the

angular frequency of oscillations; thus two dimensionless parameters are needed
to describe the �ow. The viscous �ow past an oscillating body is di�erent from
that past uniformly moving body [84], especially in the case when the amplitude
is not much greater than the formation length of the wake [85], as the wake cannot
develop. The importance of the amplitude has been expressed by Keleugan and
Carpenter [70], who introduced what is now known as the Keleugan-Carpenter

number, which can be identi�ed with the Strouhal number in the case of forced
oscillations, see equations 3.2 and 3.3, but in the �uid dynamics community

39



the di�erence is respected in the sense that the Strouhal number describes the
oscillatory response of the system. In the article [86] Taneda and Honji studied the
wake past a plate oscillating in the direction perpendicular to its plane, which is
de�nitely closer to our case than the case of the circular cylinder, as the curvature
of the surface is important in the vortex formation, see, e. g., Tao [87]. Phan [67]
used the vorticity calculated from the particle motion for characterizing the �ow
patterns past oscillating cantilevers.

Flows of He II due to oscillating structures (which are widely used in quantum
turbulence research since the discovery of super�uidity, see Vinen and Skrbek [88]
or their review [89]) have not yet been extensively investigated by visualization
methods. This situation holds despite the fact that these techniques have already
been tested in experiments performed in Prague [90], besides of qualitative re-
sults of Luzuriaga [91] ,[92], and the time is ripe in order to adequately analyze
this important class of �ows of liquid 4He, in order, for example, to clarify the
mechanisms of vortex generation at the oscillator's edges.

This and the following chapters aim at giving a meaningful contribution to
this promising line of scienti�c inquiry by visualizing the �ow in the proximity
of a prism of rectangular cross section, oscillating in the quiescent liquid. Such a
shape of the oscillator was speci�cally chosen due to its similarity to the shape
of quartz tuning fork prong � the most common oscillators presently employed
in quantum turbulence studies [89], and to enhance the possibility of observing
large-scale vortices, compared to a circular cross section.

The macroscopic vortices or vortical structures in quantum �ows have been
already observed: in the wake behind a cylinder by Chagovets and Van Sciver
[93]; in the form of vortex rings by Murakami et al. [94], for a mechanically
generated �ow; and by Stamm et al. [95], for a thermally driven jet �ow; see also
the in�uential work by Zhang and Van Sciver [52] on thermal counter�ow past a
circular cylinder.

4.1.1 Brief setup description

The detailed description of our experimental setup was given above in chap-
ter 2. Here we present only a short recapitulation for clarity. The measurement
PTV technique is used with solid deuterium particles. The �ow is generated by
a oscillating solid transparent obstacle, of the shape of a prism, with dimensions
30 × 10 × 3 mm, with oscillation frequencies 0.05 − 1.25 Hz and amplitudes 5 or
10 mm. The longer side of the obstacle points to the camera and it is illuminated
from the side by a laser sheet produced by a solid state laser, whose beam is disfo-
cused in the vertical direction. The laser sheet crosses the obstacle approximately
in the middle of its length. The obstacle is moved by a motor via a connecting

rod, hence the motion is not strictly harmonic, see section 2.4 for more details.
The data acquisition procedure is as follows (assuming that the deuterium

particles had already been created in the helium bath by a procedure described
above): First, there is an injection of pure helium gas from room temperature
under pressure around 1.5 bar by using our seeding system, section 2.3. This
injection stirs up the existing deuterium particles seeded at the bottom of the
cryostat and allows us to measure. On the other hand, such an injection creates
a strong residual �ow, therefore we have to wait until this �ow is dampened,
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or, at least, suppressed to the level substantially weaker than the studied �ow.
We then start moving the obstacle and acquiring images by the camera at the
frame-rate 100 Hz. The laser illuminating the particles (and the obstacle as well)
is operated in the pulse regime at the same frequency as the camera. The movie
usually consists of 2000 images, hence its length is 20 s. When the recording is
completed, the data transfer from the camera into the computer begins.

The obtained gray-scale images are masked by using the program [96] written
by the author of this thesis in order to eliminate the overlighted moving obstacle
and re�ections around it. The particle's images are found and connected into
trajectories by using a open-source program ImageJ [63], for more details see the
chapter 2.

4.2 Observations

4.2.1 Phase averaging

In order to increase the statistical quality of the obtained data sets, the method
called phase averaging is utilized. It uses periodicity of the driving force, which,
as one may expect, should also cause periodicity of the response, i. e., f (t) ≈
f (t+ T ), where f (t) is the state of the system at the time t and T is the period
of the driving force. It is then possible to merge the data with the same phase,
constructing the function g (t) =

∑
i f (t+ iT ), which can be seen as a function

of the phase φ, g (φ) = g (2πt/T ). One example is shown in �gure 4.1, where the
traces of deuterium particles with the phase φ ≈ 90◦ are drawn, near the bottom
dead center of the obstacle motion. It is not a-priori evident that the phase

averaging should work, because, strictly speaking, the problem is non-linear,
especially near the beginning of the motion (the movies start usually 30 s after
the start of the obstacle motion). It is therefore purely experimental observation
that the phase averaging works; in fact it works quite well in He II and perhaps
a little bit worse in He I (will be discussed bellow).

Figure 4.1 shows a pair of macroscopic vortices shed in the wake behind the
moving obstacle in its bottom position, i. e. when the obstacle stops and reverses
its direction of motion. These data are taken at temperature 2.18 K in He I,
which is a classical liquid, the corresponding Reynolds number is Re = 9 · 103.
The same obstacle, same frequency and amplitude lead to the result displayed in
�gure 4.2, which was taken in He II � a super�uid quantum liquid.

Pairs of macroscopic �uid vortices of size comparable to the obstacle size can
be inferred from the observed trajectories of deuterium particles, both in He I
(�gure 4.1) and He II (�gure 4.2). The vortical structures seem to be similar to
those observed in the proximity of �at plates accelerating in viscous �uids, as
observed by Taneda [86]. However, the large-scale vortices generated in He II
appear to be more evident than those shed in He I, which is caused by two
reasons: First, there are stronger residual �ows in He I caused by the helium gas
injection steering the particles sedimented at the bottom of the cryostat; second,
there are less particles (or the number density of particles) due to larger liquid
volume at the earlier stages of the experiment, when we usually study the higher
temperatures. We usually try to adapt seeding settings for the best data quality
at the lower temperatures, which are more relevant for emphasizing quantum
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Figure 4.1: Trajectories of seeding particles in He I at temperature 2.18 K around the
obstacle moving with frequency f = 0.5 Hz and amplitude A = 5 mm. The trajectories
are phase averaged and only those recorded near the bottom obstacle position, with
phase φ = 90◦ ± 15◦, are displayed (those with phase 90◦ ± 8◦ are shown in darker
colors). All panels show the same data colored via the direction of velocity, the velocity
magnitude and horizontal and vertical component of velocity, respectively. The gray
rectangle represents the obstacle of dimensions 10 × 3 mm, while the bigger one does
the mask used during the data processing.

features of the �ow.
Unsteady �ows of viscous �uids can often be characterized by the vorticity ~ω,

which is a local derivative of the velocity �eld ~v of the �uid, ~ω (~r) = ∇ × ~v (~r).
This approach was used, for example, by Tao [87]. This (local) quantity can
be seen as a measure of the vortex strength in the �ow �eld of interest. It is a
pseudovector and therefore it can be seen, in three-dimensional space, as a vector,
or, in two-dimensional cut, as a scalar.

The vorticity cannot consequently be computed in our case, due to the fact
that the �uid velocity is not known everywhere at a given time, but only along
the trajectories; in addition, we do not measure the �uid velocity, but the particle
velocity. In order to quantify the magnitude of the shed vortices, we have used the
PTV-based pseudovorticity ϑ introduced in section 2.10, which we hope is closely
related to the �ow vorticity ω, more precisely, to its component perpendicular to
the studied plane.
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Figure 4.2: Trajectories of seeding particles in He II at temperature 1.24 K around the
obstacle moving with f = 0.5 Hz and A = 5 mm. The trajectories are phase averaged
and only those near the bottom most obstacle position with phase φ = 90◦ ± 15◦ are
displayed, and those with phase 90◦±8◦ are shown in darker colors. All panels show the
same data colored via the direction of velocity, the velocity magnitude and horizontal
and vertical component of velocity, respectively.

We ought to emphasize at this point that, as mentioned above, the contribu-
tions to the particle dynamics originating independently from the two postulated
�ow �elds of He II are at present di�cult to separate, as the used deuterium
particles, which are not tracers (i. e., �uid particles), generally interact simul-
taneously with both velocity �elds and their motions are additionally in�uenced
by quantized vortices, which interact with each other and therefore with both
mentioned continuous velocity �elds.

In �gure 4.3, maps of the ϑ (~r, φ) are shown, at temperature T = 1.24 K,
obstacle motion frequency f = 0.5 Hz, and amplitude A = 5 mm, for various
phases (φ) of the motion. The macroscopic vortices form in the wake, as visible
in the �gure at phases φ = 90◦ and 270◦, respectively. The vortex is a stable
structure, therefore it stays there even if the obstacle moves back (phases 135◦,
180◦, 315◦ and 0◦ respectively) and they are pushed by the obstacle, later along
the sides into the wake (phase 45◦), where they are neutralized by a new pair of
forming vortices of opposite spin.

Figures 4.4 and 4.5 show, in the form of the pseudovorticity ϑ maps, the
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Figure 4.3: PTV-based pseudovorticity ϑ at di�erent phases of the motion in He II
at temperature 1.24 K, frequency 0.5 Hz and amplitude 5 mm. The rectangles represent
the actual size of the obstacle and the mask size, respectively. The physical dimension of
each panel is 20×16 mm, one unit on both axes corresponds to 1 mm; the axis labels are
not displayed in order to save place. Note also that the motion is not strictly harmonic,
see �gure 2.5 in section 2.4.

macroscopic vortices shed at the bottom position of the obstacle in He II at
di�erent frequencies and both available amplitudes. In all cases the vortices are
evident, but the quality is strongly a�ected by the insu�cient camera frame rate
(which was 100 Hz) at the larger velocities, because the �ow is quite fast in the
wake. Then the trajectory connection did not work well and therefore there
are no velocity data in the wake, which causes that the vortices appear to be
weaker than they really are and become shifted away from their real position.
This problem would be �xed simply by increasing the camera frame-rate, which
is, unfortunately, impossible to do after the experiment. On the other hand, at
lower velocities, the �ow is disturbed by the residual �ow produced by the particle
stirring. This is even more evident in He I as shown in �gure 4.6. This problem is
not so easy to �x, as longer waiting times would imply lower amount of particles.
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Figure 4.4: PTV-based pseudovorticity ϑ in He II, amplitude 5 mm and di�erent
frequencies: 0.1 Hz, 0.2 Hz, 0.5 Hz and 1.0 Hz, respectively. All panels show the situation
near the bottom dead center of the obstacle motion. The rectangles represent the actual
size of the obstacle and the mask size. The lower strength of vortices in the right bottom
panel is caused arti�cially by the lack of quality trajectories as the particles moved too
fast in the wake, hence the trajectory connection failed there. That the location of the
obstacle is not stable is caused by the mechanical imperfection of the moving mechanism.

4.3 Macroscopic vortices

4.3.1 Vortex model

The observed macroscopic vortices in He II are very similar to those known
from the �ow of classical liquids, and, as already said, they are similar to those
observed in He I in this experiment. In order to quantify this similarity we can
examine their structure.

The simplest model of a real vortex in a classical �uid is the so called Rankine

vortex 1, which connects the two limiting cases � the rotation like a solid body and
the potential rotation � in such a way that the tangential component of the �uid

1William John Macquorn Rankine, 1820− 1872, Scottish.
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Figure 4.5: PTV-based pseudovorticity ϑ in He II, amplitude 10 mm and di�erent
frequencies: 0.1 Hz, 0.2 Hz, 0.5 Hz and 1.0 Hz, respectively. All panels show the situation
near the bottom dead center of the obstacle motion. The lower strength of vortices in
both bottom panels and even the worse resolution at the largest frequency is caused
arti�cially, by the lack of long trajectories as the trajectory connection did failed in such
areas due to the too fast motion of particles in the wake.

velocity u in the distance r from the center of the vortex is

u (r) =

{
Γ0

2π
r
R2

C
for r < RC

Γ0

2π
1
r

for r > RC ,
(4.1)

where RC is the vortex core radius2 and Γ0 is the circulation of this vortex which
represents the vortex strength. The inner part of the vortex (i. e. for r < RC) is
called the vortex core and it rotates like a solid body, while the outer part (i. e.
for r > RC) represents an inviscid potential vortex.

A more sophisticated model containing turbulence inside the core was intro-
duced by Amromin [97], who derived it from the Navier-Stokes equations for a
classical viscous �uid with small kinematic viscosity ν. The tangential component
u of the �uid velocity at the distance r from the vortex center has a following

2Not to be misunderstood with the quantized vortex core, which has the diameter in order
of 1 · 10−10 m.
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Figure 4.6: PTV-based pseudovorticity ϑ in He I, amplitude 5 mm and di�erent fre-
quencies: 0.1 Hz, 0.2 Hz, 0.5 Hz and 1.0 Hz, respectively. All panels show the situation
near the bottom dead center of the obstacle motion.

form:

u (r) =

Γ0

2π
r
R2

C
+
〈v′xv′y〉r

2ν
ln r

RC
for r < RC

Γ0

2π
1
r

for r > RC ,
(4.2)

where Γ0 and RC are, similarly to the previous case 4.1, constants representing
respectively the circulation of the vortex and a vortex core radius.

〈
v′xv

′
y

〉
is

the turbulent stress term, which is very di�cult to measure experimentally, but,
fortunately, it can be eliminated from the equation 4.2 by applying the condition
of continuity at r = RC , leading to

u (r) =

{
Γ0

2π
r
R2

C

(
1− ln r

RC

)
for r < RC

Γ0

2π
1
r

for r > RC .
(4.3)

The inner part of this model vortex (i. e. for r < RC) is called turbulent vortex

core while the outer part (i. e. for r > RC) represents an inviscid vortex. This
modi�cation to the Rankin model a�ects mainly the pro�le near the vortex cen-
ter. There are additional enhancements available, a�ecting mainly the crossover
between the core and the inviscid envelope based on the assumption of vortic-
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ity di�usion, for more details see [98] or the so called Burger's vortex (in the
Amromin's model, the transition is continuous but not smooth).

4.3.2 Vortex circulation pro�les

In a pure super�uid, the macroscopic rotation can be realized only via at least
partial polarization of the vortex tangle, which allows the super�uid to mimic the
macroscopic �ow of classical viscous liquid. This scenario is suggested by various
numerical models, including those studied in our group, see, e. g., Varga [26].

The similarity of the observed macroscopic vortices in He II with those in
classical �uids can be illustrated by the Amromin's theory applied to them; we
do so by comparing the theoretical dependence expressed by formula 4.3 with
measured circulation pro�les, see �gure 4.7. Again, it is important to remind that
we are observing the motion of particles, not a motion of normal or super�uid
component.

Because the value of the tangential component of velocity u near the the
vortex center is heavily in�uenced by noise, we decided to analyze the behavior
of ur = |~v × ~r| instead of u itself. We see that ur converges better for small
r but it does not behave as expected for larger r (i. e. it is not constant, as
the theory predicts), which is probably caused by the increasing in�uence of the
second oppositely oriented vortex and possibly by other �ow structures further
away.

The estimation of Γ/(2π) as a function of r was done in a following way: we
have determined the center of the vortex manually, then for each point of each
trajectory longer than 5 points we calculated the vector product ~v×~r, where ~v is
the actual velocity of the trajectory point determined by using the previous and
the next positions, and ~r is the position vector with respect to the center of the
vortex. We have sorted out these products according to the magnitude of ~r into
the sets representing the annuli and calculated the average and standard deviation
in each annulus thus obtaining the radial dependence of the macroscopic vortex
circulation (we call it pro�le). A non-trivial observation is that such pro�les do
not depend on temperature, therefore we venture to merge the data obtained at
di�erent temperatures in order to get a better statistics.

The circulation pro�les of the observed macroscopic vortices formed behind
the obstacle near its bottom position are shown in �gures 4.7 and 4.8. The
corresponding error bars are determined by a standard way as σ =

√
σ2

Γ + µ2
σ,

where σΓ is the standard deviation of the averaged values, while µσ is the average
of standard deviations of the partial pro�le points. It seems that this leads to
overestimation of the error bars, but, on the other hand, the partial pro�les before
averaging are signi�cantly scattered, sometimes up to a degree that in some data
sets their systematic structure is impossible to determine.

The equation 4.3 for the circulation can be rewritten in a dimensionless form

Γ′ (r′) = r′2 (1− ln r′) , (4.4)

where r′ = r/RC and Γ′ = Γ (r)/Γ0 = [2π (ur) (r)]/Γ0. The values of Γ0/(2π)
and RC for di�erent oscillation frequencies and amplitudes in He II are given in
table 4.1. During the �tting procedure, more weight has been given to the data
closer to the center. We have got less statistics in He I, hence the �tting does not
converge here so nicely and for this reason it is not displayed graphically.
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Figure 4.7: Circulation pro�les, i. e. the dependence of ur (r) = 1/(2π)Γ (r) on the
distance from the vortex center, at the bottom position of the obstacle. Amplitude A
and frequency f of the obstacle are indicated in each panel. The circles represent the
data obtained at di�erent temperatures in He II, averaged and weighted by the number
of used trajectory points as described in the text.
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Figure 4.8: Circulation pro�les at the bottom position of the obstacle. Amplitude A
and frequency f of the obstacle are indicated in each panel. The circles represent the
data obtained at di�erent temperatures in He II, averaged and weighted by the number
of used trajectory points as described in the text.
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Table 4.1: Summary of the �ts of observed macroscopic vortices by the Amromin
vortex model, equation 4.3. First two columns specify the parameters of the data
set averaged over entire temperature range in He II. RC is the radius of turbulent
vortex core, while Γ0/(2π) = (ur)0 represents the strength of the vortex, Γ0 being its
circulation. Displayed uncertainties of these values are only the uncertainties of the �t
of the averaged points, the scatter of these points (error bars in �gures 4.7 and 4.8) is
not included. Np stands for the total number of used trajectory points after �ltering
(in this case depending only on the length of the trajectory, as described in the text).

frequency amplitude RC
1

2π
Γ0 Np

[Hz] [mm] [mm] [mm2/s]
0.05 5 2.23± 0.23 6.6± 2.6 16512
0.1 5 3.04± 0.16 10.4± 2.1 7243
0.2 5 2.82± 0.12 14.9± 2.2 14965
0.5 5 1.92± 0.09 25.2± 4.4 9316
0.7 5 3.40± 0.42 36.3± 15.0 1454
1.0 5 2.99± 0.13 22.5± 3.5 12625
0.05 10 5.58± 2.84 13.8± 19.9 12158
0.1 10 3.75± 0.24 16.6± 3.9 16467
0.2 10 4.49± 0.18 34.4± 4.6 15510
0.5 10 4.26± 0.12 52.3± 5.4 10167
0.7 10 4.49± 0.17 64.9± 8.7 2394

4.4 Behavior of
〈
ϑ2
〉

In order to quantify how the magnitude of the shed vortices depends on the
experimental conditions, which are temperature T , frequency f , and amplitude
A, for each processed movie we compute the quantity 〈ϑ2〉, i. e., the ensemble
average of ϑ2 � it can be loosely interpreted as the square of the average �ow
vorticity ω. The reason for doing so is that the positive quantity 〈ϑ2〉 retains useful
quantitative information allowing the comparison of the visualized �ow �elds. The
second power has naturally two advantages: �rst, clockwise and anti-clockwise
rotations sum up, not subtract, second, the areas with faster rotation count more,
therefore the importance of the rest of the �ow �eld of view diminishes.

It is still true, however, that the areal average of this quantity on itself has
no sense, it has to be used in comparison with the data obtained in the same
experiment. In addition, the resulting 〈ϑ2〉 depends not only on the experimental
parameters like bath temperature, obstacle shape, size, frequency and amplitude,
the density of particle seeding or the size of the �eld of view, but also on param-
eters used in the calculation: the phase window width Φ, radius of integration
area Rm and, additionally, on the grid density that is used in any particular
calculation. The dependence on the calculation grid density for number of grid
points greater than 1 · 103 is however negligible, which is always ful�lled, as the
used grid resolution is 800× 600 ≈ 5 · 105. The dependence on the phase window
Φ is linearly decreasing with increasing Φ as with increasing time distance the
velocity correlation decreases. The chosen value Φ = 15◦ is a compromise be-
tween the time-locality and the statistical convergence. The dependence on Rm
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is decreasing with increasing Rm, see discussion 4.5.
While in the range of investigated parameters we do not observe any clear tem-

perature dependence of 〈ϑ2〉, it increases with the oscillation frequency. In other
words, it is not surprising that, as the motion strength increases, the magnitude
of the shed vortices also increases.

4.4.1 Dependence on Reynolds number

As it is customary in �uid dynamics, we show our results on the vortex
strength as a function of relevant Reynolds numbers Re, although we do not
observe any strong oscillation amplitude dependence of the data. In the case of
He I, we chose the (viscous) Reynolds number as

Re =
ΩAs

ν
, (4.5)

where Ω = 2πf and A are, respectively, the oscillation angular velocity and
amplitude, s is the characteristic size of the obstacle which we have chosen s =
10 mm, i. e., equal to the obstacle width that pushes the �uid, and ν stands for
the e�ective bulk kinematic viscosity � its values are taken from [5]. Another
de�nition of ν we employ here to characterize the obtained He II data follows the
work by L'vov et al. [69], where the kinematic viscosity of He I at the lambda
line was found to be ν = κ/6 = 1.66 · 10−8 m2/s and is assumed constant below
it. We therefore use this value for computing the (super�uid) Reynolds number
Reκ.

The corresponding Reκ range for our data (�gure 4.10) lies approximately
between 800 and 37000 and the viscous penetration depth δ =

√
κ/3Ω range

is between about 0.25 mm, at the smallest Reκ, and 0.05 mm, being therefore
always larger than our typical particle size (smaller than 0.01 mm). Although it
is larger than our pixel resolution 0.03 mm, the boundary layer is not resolved
due to overlighting of the area close to the obstacle, which forced us to mask the
raw images by using a mask somewhat greater than the boundary layer area, see
�gures above, where the masked area is highlighted.

For our He II data, the �rst (viscous-like) de�nition of Reynolds number
leads to 900 < Re < 83000 in the considered experimental conditions, which
corresponds to δ =

√
2ν/Ω ranging between approximately 0.23 and 0.04 mm,

respectively, see �gure 4.9.
Qualitatively similar �gures 4.9 and 4.10 display the overall mean of ϑ2 as

a function of the just introduced Reynolds numbers. The standard deviation of
the displayed points is up to 8× larger than the value, which is caused simply by
di�erent strength of ϑ in di�erent areas and phases; still, the data scatter cannot
be neglected here. The He II data points shown in both �gures 4.9 and 4.10
collapse to an increasing curve of both Reynolds numbers, Re = ΩAs/ν as well
as Reκ = 6ΩAs/κ. Similarly, despite the larger scatter, the He I data points also
display the tendency to collapse, but to another curve. The tendency to collapse
is slightly stronger for data points calculated from movies with larger number of
trajectory points (see the caption of �gures 4.9 and 4.10). The existence of these
two separate curves is a puzzling outcome.

Let us spell it even more clearly. The parameter 〈ϑ2〉 as displayed in �gures
4.9 and 4.10 appears to behave di�erently in He I and He II, as a function of the
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Figure 4.9: Plot of the dependence of
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case of He II (blue circles) based on the measured e�ective bulk viscosity tabulated in
[5]. Small symbols represent such datasets with less than 40 000 trajectory points (after
�ltering), while the bigger symbols represent those with more than 40 000 points. Red
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Reynolds number. This is on the �rst sight in contrast with the common assump-
tion that forced co�ows of He II at large enough length scales are closely similar
to viscous �ows of comparable magnitude, as discussed, e. g., by Chagovets, Xu
and Van Sciver [99], [93]. The existence of two distinct branches, at Reynolds
numbers smaller than approximately 104, but not above this value, although in-
�uenced by the relatively large data scatter, calls therefore for plausible physical
explanations, not related to the used data processing procedure.

One of the relevant di�erences between He I and He II is the fact that the
heat conductivity of He II is about 106× larger than that of He I, see [5], i. e., the
heat dissipates in He II much faster than in He I. If we take into account that the
helium gas injected into the cryostat in order to stir the sedimented particles (see
section 2.7) is very hot compared with the bath, then the incoming heat has to
dissipate, which may result in parasitic �ows that might partly mask the macro-
scopic vortices shed at the cylinder edges, especially at the lowest frequencies and
in He I. This is a contra-intuitive statement as one would expect that the residual
�ows created by the gas injection would dissipate faster in He I due to its larger
viscosity, but we believe that the amount of injected heat dominates the injected
kinetic energy. In other words, the observed residual �ows behave more like a
thermal convection. This explanation could be tested simply by repeating the
experiment with di�erent waiting times after the injection.

4.4.2 Length scales

Another reason that might contribute to explain the two obtained curves at
low Reynolds numbers is related to the di�erent ratio of probed length-scales to
those characteristic for the �ow. The probed length scale d can be viewed, both
in He I and He II, as the average distance traveled by a particle between two
consecutive frames. If we, for the sake of simplicity, assume that the average
particle velocity is of the order of the imposed cylinder velocity, we �nd that d
can be estimated as d ≈ ΩA/fcam (fcam = 100 Hz is the camera frame-rate).

On the other hand, we have to consider the small length scales characterizing
the �ow: the intervortex distance ` (to be discussed below) in the case of He II,
and the Kolmogorov length-scale η in the case of He I:

η ≈ 4

√
ν3

ε
. (4.6)

Here ε = −dE/dt is the energy decay rate and, if we assume that the average
vorticity ω2 ≈ 〈ϑ2〉, we can use the classical relation linking ε with the �ow
average vorticity ω:

ε = ω2ν (4.7)

getting

η ≈ 4

√
ν3

ε
≈ 4

√
ν2

〈ϑ2〉
. (4.8)

In the case of He II, we write the average vorticity ω due to the �ow of He II
with vortex line density L as

ω ≈ κL =
κ

`2
, (4.9)
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which is based on the assumption that the energy decay rate ε of the �ow is
proportional to the square of the quantized vortex length L per unit volume, also
known as the vortex line density. It follows that

ε = νeff (κL)2 . (4.10)

Although equation 4.10 lacks a rigorous theoretical justi�cation, being mainly
motivated by the analogy with the classical relation 4.7, it has been successfully
used to describe various He II �ows. For example, as recently discussed by Varga
and coworkers [100], mechanically generated �ows of He II can, on large enough
scales, be viewed as �ows of a single-component �uid possessing an e�ective
kinematic viscosity, which one can deduce from either temporal decay [101] or
even from the steady-state data [102].

Therefore, by using equations 4.7, 4.9 and 4.10, we get the mean intervortex
distance `:

`q ≈ 4

√
κ2

〈ϑ2〉
. (4.11)

This is closely similar to the classical relation 4.8, except for the factor
√

6 ≈
2.4. This analogy can be pushed further, by setting

`c ≈ 4

√
ν2

eff

〈ϑ2〉
, (4.12)

where νeff can be understood as an e�ective bulk kinematic viscosity, e. g., as
that published in [5] or as theoretically estimated value κ/6 in [69] and assume
that its temperature dependence over our range of investigated temperatures is
weak.

We can now de�ne the ratio R between the probed length-scale d and the �ow
characteristic length-scale:

R =

{
d/η for He I
d/` for He II.

(4.13)

The resulting ratio R is plotted as a function of Re and, respectively, Reκ, in
�gure 4.11. It is apparent that we are actually probing length scales larger than
the relevant �ow scale only at Reynolds numbers larger than about 104. In other
words, the two branches displayed in �gures 4.9 and 4.10 might possibly exist
due to the fact, that, at Reynolds numbers smaller than 104, we are investigating
scales smaller than the dissipative �ow scale in He I or the intervortex distance
in He II. While in He I below the Kolmogorov length-scale the �uid motion is
dissipated into heat by the action of the �nite viscosity, quantum �ows of He II
may exist all the way down to the scale � the size of the cores of quantized
vortices. We may say that quantum restrictions on the super�uid motion could
be the reason why, for Reynolds numbers smaller than 104, the parameter 〈ϑ2〉
behaves di�erently in He I and He II.

4.4.3 The quantum signature

The importance of the length-scale ratio R is additionaly illustrated by �gure
4.12, which shows the normalized distribution of horizontal velocity component

55



0.1

1

10

1000 10000 100000

He I, N < 40k
He I, N > 40k

He II ( ), N < 40k
He II ( ), N > 40k
He II ( ), N < 40k
He II ( ), N > 40k

He II ( /6), N < 40k
He II ( /6), N > 40k

Re, Reκ

R

κ

κ
κ

κ

ν
ν

Figure 4.11: Plot of the dependence of the ratio R on Reynolds number. Red squares
represent He I data, where Re and η are calculated according to classical approach,
equation 4.8, green circles correspond to He II data with `q calculated according to
equation 4.11 against Reκ. Blue circles denote He II data, where the estimation of
Re and `c (equation 4.12) is based on the experimentally measured e�ective kinematic
viscosity, see [5], while the cyan circles are the same He II data, but Reκ and `c are
calculated by using the approximation ν = κ/6, see [69]. Small symbols represent such
datasets with less than 40 000 trajectory points (after �ltering), while the bigger symbols
represent those with more than 40 000 points.

for selected movies having di�erent R both in He I and in He II. We can easily
notice that all distributions with R > 1 are more or less of a Gaussian shape3,
while those with R < 1 and in He II are wider, having tails comparable with the
v−3 shape observed in the thermal counter�ow experiment, see our publication
[64] and the author's diploma thesis [22]. This length-scale dependence is studied
in more detail in the article [54] and in the chapter 7 of this Thesis.

To summarize, we have identi�ed and discussed three possible reasons why
the parameter 〈ϑ2〉 at low Reynolds numbers behaves di�erently in He I and
He II: �rst, the data scatter, second, di�erent heat conductivities of He I and
He II, and, third, the fact that the probed length-scales are smaller than the
Kolmogorov scale in He I or the quantum length scale in He II, respectively.

4.5 Discussion

Neither table 4.1 nor �gure 4.8 display results for f = 1.0 Hz and A = 10 mm,
despite measurements were performed under these conditions. Similarly, the data
quality in �gures 4.4 and 4.5 in panels for higher velocities is very poor. The
reason is that the camera frame-rate was not su�ciently fast for a such rapid
�ow, especially in the back-�ow in the wake behind the obstacle, and therefore
connecting of trajectories does not work well. The velocity in the back-�ow in the
wake is approximately twice the obstacle velocity, i. e. vmax ∼ 2AΩ ≈ 125 mm/s,

3Intermittent e�ects cannot be observable with our statistics.
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which, at our resolution 27.4µm/pix and camera frame rate 100 Hz, corresponds
to about 45 pix/fr. This fact strongly suggests that, if this experiment is repeated,
higher camera frame-rate has to be used. Second possibility is to decrease the
number of particles, but then we would need longer movies to obtain comparable
statistics, which in the presented case is rather poor. This is always a problem �
better setup ideas come to mind after the analysis is done.

4.5.1 Choice of integration area radius

The calculation of the the PTV-based pseudovorticity ϑ is strongly dependent
on the choice of the integration area size, Rm. As it was already discussed in
section 2.10, ϑ converges to the proper vorticity ω of a single continuous �ow �eld,
if the size of integration area converges to zero, if the tracking particles are �uid
particles and if the density of seeding is in�nite. None of this conditions is ful�lled
in our real experiment, but we can, at least, try to optimize the plausibility and
validity of our results by optimizing the size of the integration area creating a
balance between the statistical quality and the locality. Figure 4.14 shows values
of ϑ2 and examples of its spatial distribution for di�erent values of the parameter
Rm.

With larger Rm, there are more terms with larger distance from the probed
point, hence of smaller magnitude, which results to systematically smaller ϑ2, see
�gure 5.12 panel A. Figure 5.12 panel B shows the dependence of ϑ2R2

m on Rm and
we can easily recognize there various regimes of ϑ scaling: �rst, if the number of
trajectory points inside the integration area is in order of ones, then the resulting
ϑ is more or less a random number depending on the exact relative positions of
the probed point ~r and the trajectory point ~ri, then ϑ scales as R−2

m , hence ϑ2R2
m

as R−2
m too4. If we imagine calculation of ϑ in an area with uniformly rotating

trajectories, we get ϑ scales as R−1
m , hence ϑ2R2

m scales as R0
m = 1, panel D. The

drop of ϑ2R2
m at Rm ∼ 2 − 4 mm is probably caused by covering less correlated

more distant areas inside the integration area. At larger Rm the in�uence of the
edge of the �eld of view increases, the edge produces a fake signal due to the lack
of data outside producing a virtual shear, and hence ϑ2R2

m slightly grows with
Rm. If Rm is larger than the �eld of view, ϑ is no more a�ected by its value and
ϑ2R2

m scales as R2
m (the last two points in the plot).

Finally, Rm = 5.0 mm has been chosen, which corresponds to the half of the
width of the obstacle, therefore we can expect similar size of the produced vortical
structures; additionally, there is a minimum in the plot of ϑ2R2

m (Rm) at this value
of Rm. This choice is consistent with the choice of Rm in the study of viscous
streaming, chapter 5, in the sense that the more important side is that pushing
the �uid. One can of course argue that we cheat a bit when selecting the size of
vortices we would like to see, but the existence of vortices of such a size is visible,
perhaps less clearly (in some cases they are partly covered by a kind of �ghosts�
appearing statistically in the data) also for di�erent choices of Rm.

4By the way, there are 148 856 trajectory points in the example dataset, 12 404 inside the used
phase window, which leads to mean interparticle distance 0.2 mm, hence the average number of
trajectory points used to calculate one ϑ-point is 23 at the smallest shown Rm = 0.5 mm (panel
C) in this dataset.
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Figure 4.14: The panel A shows the dependence of overall square of ϑ as the function
of Rm for the data taken in He II at obstacle frequency 0.5 Hz and amplitude 5 mm near
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m to neutralize
the scaling caused statistically. Other panels, C � G, show examples of the spatial
distribution of the pseudovorticity ϑ at di�erent values of Rm. As the �nal value of
Rm has been chosen Rm = 5.0 mm, which corresponds to the half of the width of the
obstacle (the side, which pushes the �uid), therefore we can estimate similar size of the
produced vortical structures.

4.6 Conclusion of the chapter

The behavior of macroscopic, millimeter-sized vortical structures, generated
by a body of rectangular shape oscillating in liquid 4He, has been studied by visu-
alizing the dynamics of micrometer-sized particles seeding the �uid. An obstacle
of rectangular cross section (3× 10 mm) performed quasiharmonic oscillations in
the liquid, at various frequencies (0.05− 1.25 Hz) and amplitudes (5 and10 mm),
at temperatures between about 1.2 and 3 K, resulting in Reynolds numbers up
to 105. Consequently, in the present experiments, a direct comparison between
similar, mechanically driven �ows of He I and He II was carried out. First of all,
our visualization study con�rms the existence of large vortical structures shed by
the oscillating body, which appear similar in viscous He I and super�uid He II.
Although this result is not surprising (for example, visualization of macroscopic
vortex rings was reported in [103] and in [104]), our investigation represents, to
the best of our knowledge, the �rst systematic visualization study of quantum
�ows due to an oscillating object. We note, additionally, that in viscous �uids
vortices are shed by accelerating plates at similar Re as the minimum Reynolds
numbers investigated here, as reported by Taneda and Honji [86].

At Reynolds numbers lower than approximately 104, a noticeable di�erence
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between the investigated He I and He II �ows is observed. More precisely, af-
ter thorough studies of the quality of the data sets and of the robustness of the
processing procedure, we found that the probed length-scales are, at these low
Reynolds number, smaller than the quantum (dissipative) scale of the �ow, de-
termined, in He II, by the average distance between quantized vortices ` and, in
He I, by the Kolmogorov dissipative scale η. For Reynolds numbers larger than
104, the e�ect vanishes and He II behaves similarly to He I, as it is expected
for mechanically driven co�ows of super�uid 4He at length scales exceeding the
average distance between quantized vortices. This suggests that, similarly to
thermal counter�ow [105], both viscous and quantum features can be observed in
mechanically driven �ows of He II, depending on the length scales at which the
quantum �ow is probed.

Note, however, that the observed e�ect might also be in�uenced by the much
larger thermal conductivity of He II, compared to that of He I, leading to di�erent
dissipation mechanisms of the parasitic energy input. Additionally, the obtained
〈ϑ2〉 values are a�ected by the data scatter, which cannot be neglected here. In
order to clarify the reported behavior, future studies should therefore be devoted
to increase the data set size, as this will likely lead to less uncertainty in the
evaluation of various physical quantities of interest.
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Chapter 5

Streaming �ow

5.1 Introduction

In the case of classical viscous �uid of kinematic viscosity ν, such as normal
liquid He I, near an obstacle oscillating with a relatively small1 amplitude A at
angular frequency Ω, inside the so-called Stokes layer, the �uid copies the motion
of the boundary up to a distance of the order of the viscous penetration depth
δ =

√
2ν/Ω [106], where the phase of the �uid motion slips due to its inertia and

the amplitude of its oscillatory motion decreases exponentially with the distance.
The mean displacement of the �uid particles over an oscillation cycle is close to
zero.

At time scales much longer than the oscillation period, however, the Reynolds
stresses and the viscous forces between the parts of �uid forced by di�erent parts
of the oscillating obstacle cause a slow steady �ow. Due to the mass conservation,
this �ow can create closed loops called streaming cells, as it is schematically
drawn in �gure 5.1 for a cylinder, which represents an often studied object [74]
in theoretical [107] as well as in experimental studies [108].

In the case of a translationally oscillating in�nite cylinder, as shown in �gure
5.1, it was found that, if the streaming Reynolds number Res = ΩA2/ν is smaller
than 37 [73], the steady streaming �ow is not closed. If Res is greater, the
streaming �ow closes [107], the streaming cells are formed and, at their outer
boundary, the subsequent outer streaming patterns can be formed via the viscous
induction [72]. They are oppositely oriented with respect to the inner ones and,
at su�ciently high Res, they can close, creating cells and the described process
can repeat itself. The thickness of the inner streaming cells δDC is always greater
than the oscillatory Stokes boundary layer thickness δAC =

√
ν/Ω =

√
2δ and

depends non-trivially on Res, exhibiting δDC ∼ s/
√
Res ∼ δAC/ε scaling, see [43].

The streaming problem is often theoretically studied in polar geometry around
an in�nite cylinder or a sphere [106, 107], see also the review [71], alternatively
near a stretched plane [109]. Because the curvature of the surface plays an im-
portant role [72], the corners are responsible for the streaming in the case of
a rectangle, as has been numerically shown by [110], whose results are freely
redrawn in �gure 5.2.

1Compared to the size of the body.

61



δAC

δDC

Oscillating
cylinder

s

A

 Outer cells exist at certain conditions

Figure 5.1: The drawing of the streaming problem as studied theoretically. A denotes
the amplitude of the obstacle motion, s is its size and δAC represents the thickness of
the Stokes layer, while δDC the thickness of the inner streaming cells, further details in
text. Dimensions are not to scale.

Oscillating
obstacle

s

A

outer streaming pa
tte

rn

45°

δDC

δAC

a b

Figure 5.2: The drawing of the streaming problem near a rectangle. The �gure is
drawn according to the numerical results of [110]. Similarly to the �gure 5.1, A denotes
the amplitude of the obstacle motion, s is its size and δAC represents the thickness of
the Stokes layer, while δDC the thickness of the inner streaming cells. Dimensions are
not to scale.
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5.2 Results

A detailed description of the experimental setup was given in chapter 2, here
is only a short recapitulation. The measurement PTV2 technique is used, with
solid deuterium particles. The �ow is generated by an oscillating quartz tuning
fork of main resonant frequency 8300 Hz at He II temperatures, the fork's prongs
point to the camera and are illuminated from side by a laser sheet produced
by a solid state laser, whose beam is disfocused in the vertical direction. The
laser sheet crosses the fork close to the tip, unfortunately, we do not know the
exact position. The fork is driven electrically with the ac voltage up to 77 Vrms

producing maximum velocity of the fork up to 340 mm/s; this value of the velocity
was measured as the electrical current through the fork, see equation 2.9, whose
result is trustworthy only approximately, see �gure 2.9 obtained in a di�erent
measurement.

The data acquisition procedure is as follows: �rst, there is an injection of pure
helium gas from room temperature under pressure around 1.5 bar by using our
seeding system, section 2.3. This injection stirs up the deuterium particles seeded
at the bottom of the cryostat and allows us to measure. On the other hand, such
injection creates a strong residual �ow, therefore we have to wait until this �ow
is dampened, or, at least, suppressed to the level weaker than the studied �ow.
After this injection we start driving the fork and 30 s after the injection we start
acquiring images by the camera at the frame-rate 800 Hz, which is 10× slower
than the fork oscillation frequency. The laser illuminating the particles (and the
fork as well) is operated in the pulse regime, at the same frequency as the camera.
The movie usually consists of 2000 images, hence its length is 2.5 s. After it is
completed, the data transfer from the camera into the computer starts.

5.2.1 Data sets

We have recorded several sets of movies in He I as well as in He II, at dif-
ferent drives. Tables 5.1 and 5.2 summarize the achieved velocities and numbers
of tracked trajectories, after data manipulations, such as: adding missing points
into the trajectories by linear interpolation; Komogorov-Zurbenko linear smooth-
ing [65] (not changing the number of points); removing trajectories shorter than
10 points to decrease noise; and, for movies recorded in He I at 2.2 K, also re-
moving fake trajectories produced by re�ections on a tiny bubble formed at the
illuminated side of the fork due to local overheating and boiling.

Examining the table 5.1, one can notice that the fork tip velocity vel measured
at higher drive in He I (Z77 group) is closer to the fork tip velocities at the low
drive in He II (groups F22, M22 and A22). This is caused by the higher damping
in He I, compared to that in He II.

The fork tip velocity values in He I (i. e. group Z77 in table 5.1) are rather
widely scattered, while the scatter in He II is reasonable (standard deviation
σHeII [vel] = (1−14)·10−3 m/s). This is most likely caused by the boiling/cavitation
occurring in He I and by worse temperature stabilization. The steep temperature
dependence of the sound velocity could be an additional factor, due to possible
damping or ampli�cation by acoustic resonance [111].

2Particle tracking velocimetry.
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Table 5.1: The data groups measured in the experiment and their physical conditions.
T stands for the temperature of the bath deduced from the measured saturated vapor
pressure, Fel is the electrical piezoelectric force driving the fork, set up by the applied ac
voltage, and 〈vel〉 is the fork tip velocity measured via the electrical current, see section
2.5. ν represents the e�ective bulk kinematic viscosity of the bath at corresponding tem-
perature, data taken from [5], Res is the streaming Reynolds number Res = (ΩA2)/ν,
where A is the oscillation amplitude estimated as A = 〈vel〉 /Ω. Following [43], ε is the
ratio of this amplitude and the characteristic size of the oscillator, which we choose to
be the thickness of the fork T ≈ 0.4 mm. The table continues below as table 5.2.

group T Fel 〈vel〉 ν Res ε
[K] [µNrms] [m/s] [m2/s]

Z77 2.22 41 2.1 · 10−1 1.9 · 10−8 4.5 · 101 1.0 · 10−2

F77 1.95 41 3.4 · 10−1 9.6 · 10−9 2.3 · 102 1.6 · 10−2

F22 1.95 12 1.7 · 10−1 9.6 · 10−9 5.8 · 101 8.4 · 10−3

M77 1.57 41 3.4 · 10−1 9.1 · 10−9 2.4 · 102 1.7 · 10−2

M22 1.57 12 1.8 · 10−1 9.1 · 10−9 7.1 · 101 8.9 · 10−3

A77 1.22 41 3.4 · 10−1 1.2 · 10−8 1.9 · 102 1.7 · 10−2

A22 1.22 12 1.9 · 10−1 1.2 · 10−8 6.0 · 101 9.3 · 10−3

S77 41 3.4 · 10−1

S22 12 1.8 · 10−1

Note also that, while the ratio of higher to lower drive force is 3.4, the ratio of
velocities is 1.88 ≈

√
3.4 = 1.85, because in the turbulent regime the drag force

depends on the velocity quadratically.
While examining the table 5.2 that shows the observed particles' velocities

(column 〈|v|〉), we have to realize that the camera acquisition frequency 800 Hz
is 10× smaller than the fork oscillation frequency, hence this fast contribution
can hardly a�ect the velocity calculated as the particle displacement between the
following frames. Secondly, an important notice is that the velocity values are
calculated from the whole �eld of view, in which the spatial distribution of particle
velocity is strongly inhomogeneous, see �gure 5.3-second panel, therefore it is not
possible to compare these values to the expected streaming �ow velocity Vs =
εΩA ≈ 5.4 mm/s de�ned in [43]. This statement holds also for other quantities
given in table 5.2 - they are however useful for comparison among di�erent groups.

5.2.2 Observations

The main quest of this chapter is to �nd out if the streaming pattern exists
in super�uid helium. For the start, we have to be sure that we are actually able
to see such a pattern with our experimental setup. Let us take as a �pilot� group
the Z77 data set, obtained in He I, which is a classical viscous liquid, at the
highest attainable drive. According to the electrical current through the fork, the
fork tip velocity vel ≈ 210 mm/s, the corresponding streaming Reynolds number

Res = (ΩA2)/ν = v2
el/(Ων) ≈ 45 might be large enough (according to [72] it ought

to be greater than 37) to close the incoming and outcoming streaming jets into
closed streaming cells (see �gure 5.1) at whose outer part the additional streaming
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Figure 5.3: Trajectories obtained in He I, at the highest attainable drive � group Z77
in table 5.1. All panels show the same data colored via the direction of velocity, mag-
nitude of velocity, horizontal component of velocity and vertical component of velocity,
respectively. Gray rectangles display the position of fork prongs, the area in shadow is
not highlighted.
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Figure 5.4: Map of the PTV-based Lagrangean pseudovorticity ϑ in He I, at the
highest attainable drive � group Z77 in table 5.1. Blue color corresponds to clockwise
dominant sense of rotation, while red one to the anticlockwise. The right panel shows
cuts of the ϑ map along four lines drawn in the left panel.
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Table 5.2: The second part of the table 5.1 � the measured properties of data groups.
Np and Ntr are the number of trajectory points and trajectories after the data ma-
nipulations, 〈|v|〉 is the average magnitude of the particle velocity, while σ [vy] is the
standard deviation of its vertical component (perpendicular to the movement of the
obstacle).

〈
ϑ2
〉
is the mean square value of the Lagrangean pseudovorticity, see section

2.10. All values of 〈|v|〉, σ [vy] and
〈
ϑ2
〉
are calculated from the whole �eld of view.

group Np Ntr 〈|v|〉 σ [vy] 〈ϑ2〉
[·103] [·103] [mm/s] [mm/s] [s−2]

Z77 596 14.3 3.3 3.3 11.7
F77 276 6.4 7.7 8.1 110.1
F22 166 3.5 3.4 3.5 40.5
M77 214 4.9 6.5 6.9 114.4
M22 241 4.7 3.4 3.4 26.6
A77 291 6.0 6.0 6.6 84.1
A22 184 2.9 3.6 3.3 36.8
S77 781 17.3 6.7 7.2 74.3
S22 591 11.2 3.4 3.4 17.3

cells might form. The thickness of the primary, or inner, streaming cells should
be of order of the δDC = 1

ε

√
ν
Ω
≈ 58µm � rather small � only about 6 pixels �

for our optical setup of resolution about 10.3µm/pix. At the same time we have
to bear in mind that the discussed theoretical model has been constructed for a
cylinder. Indeed as it follows from the theoretical works [74], [73], the curvature
plays a signi�cant role.

Let use examine our experimental �ndings. Figure 5.3 clearly demonstrates
that streaming cells are observable by using our optical setup. This is even more
apparent from the PTV-based Lagrangean pseudovorticity ϑ shown in �gure 5.4.
Therefore, we declare that we are able to resolve the streaming patterns and in
the following we shall examine them in more detail.

Figure 5.5 clearly shows that the macroscopic streaming pattern exists also in
He II, which is a quantum liquid. In this case the pattern is better recognizable
on the base of the colored trajectories. The reason is that, although in the
group F77 movies the fork is driven by the same force as in Z77, the achieved
velocity is larger, as well as the streaming Reynolds number Res evaluated using
the e�ective bulk kinematic viscosity. To calculate Res, we use the tabulated
viscosity [5]. Again, the pattern is better pronounced in the form of a Lagrangean
pseudovorticity map, see the right top panel of �gure 5.6.

Although the ratio between the normal and super�uid components of He II
varies in the probed temperature range substantially (from 50 : 50 at 1.95 K to
less than 5% of normal component at 1.25 K), the achieved fork tip velocities
remain similar, see table 5.1, as well as the measured average velocity of particles
in the datasets, see table 5.2. The directly observed streaming patterns also
look identical, see �gure 5.6, where the map of the pseudovorticity ϑ at all three
studied temperatures is shown. We believe that the displayed di�erences are
of statistical nature only, because they seem to be smaller than the di�erences
among individual streaming cells at symmetrical positions, which ought to be
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Figure 5.5: Trajectories obtained at 1.95 K (i. e., in He II) at the highest attainable
drive � group F77 in table 5.1. All panels show the same data colored via the direction of
velocity, magnitude of velocity, horizontal component of velocity and vertical component
of velocity, respectively.

the same due to the symmetry. Hence we decided to merge the data obtained
at the same drive at di�erent temperatures into one group, in order to increase
the statistical quality. Explicitly, groups F77, M77 and A77 are merged into the
group S77, while F22, M22 and A22 into the group S22, with resulting parameters
displayed in table 5.1.

The trajectories of the S77 group (i. e. the larger driving force in He II
independent on temperature) are shown in �gure 5.7 and the group S22 in �gure
5.9, respectively. The streaming cells are nicely visible based on these merged
trajectories, again even better as the pseudovorticity map, �gures 5.8 and 5.10.
We do not �nd it useful to show here all the particular data sets independently,
because, as it was said, they are similar; the reader can �nd them on the attached
CD.

The right panels of �gures 5.4, 5.8 and 5.10 show cuts of the pseudovorticity
spatial distribution highlighting the non-axisymmetric shape preventing us to use
the method of vortex pro�les described in the previous chapter. We see that the
pseudovorticity ϑ changes faster on the side closer to the obstacle. Further, we
see at the best only a weak evidence of a �plateau� of ϑ in the center of the vortex
predicted by Amromin [97]. This suggests that the core of the macroscopic vortex
is signi�cantly smaller than the integration area for calculating ϑ � its radius is
Rm = 0.4 mm.

Comparison of the estimated value of δDC (the distance of the streamline which
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68



0

1

2

3

4

0 1 2 3 4 5 6

0 20-20 10-10

vy [mm/s]

0 1 2 3 4 5 6 [mm]

0 20-20 10-10

vx [mm/s]

0

1

2

3

4

0 1 2 3 4 5 6

0 4020 3010

|v| [mm/s]

5 6 [mm]

S77

0 1 2 3 4

direction of velocity

Figure 5.7: Trajectories obtained in He II at the highest attainable drive 41µNrms, and
fork tip velocity 340 mm/s. All panels show the same data colored via the direction of
velocity, magnitude of velocity, horizontal component of velocity and vertical component
of velocity, respectively.

θ [s-1]
0 69.3-69.3 -20 20 40 60-40-60

0

1

2

3

4

[m
m

]

0 1 2 3 4 5 6 [mm]

S77

1 21.5 2.5 3.53
[mm]

0

-80

-40

40

80

θ 
[s

 -
1 ]

Figure 5.8: Map of PTV-based pseudovorticity ϑ in He II at the highest attainable
drive. Blue colors correspond to clockwise dominant sense of rotation, while red ones
to the anticlockwise. The right panel shows a cut of the ϑ along four lines marked in
the left panel.

69



0

1

2

3

4

0 1 2 3 4 5 60 1 2 3 4 5 6 [mm]

0

1

2

3

4

0 1 2 3 4 5 65 6 [mm]

S22

0 1 2 3 4

direction of velocity

0 10-10 5-5

vx [mm/s]

0 10-10 5-5

vy [mm/s]

0 2010

|v| [mm/s]

5 15

Figure 5.9: Trajectories obtained in He II at the smaller drive 12µNrms and fork
tip velocity ∼ 180 mm/s. All panels show the same data colored via the direction of
velocity, magnitude of velocity, horizontal component of velocity and vertical component
of velocity, respectively.

0

1

2

3

4

[m
m

]

0 1 2 3 4 5 6 [mm]

S22

θ [s-1]
0 34.6-34.6 -10 10 20 30-20-30

1 21.5 2.5 3.53
[mm]

θ 
[s

 -
1 ]

-30
-20
-10

-40
-50

0
10
20
30
40

Figure 5.10: Map of PTV-based pseudovorticity ϑ in He II at the smaller drive.
Blue colors correspond to clockwise dominant sense of rotation, while red ones to the
anticlockwise. The right panel shows a cut of the ϑ along four lines marked in the left
panel.

70



segregates the inner and outer streaming cells [43]) δDC = 1
ε

√
ν
Ω
≈ 26µm for

He II and 58µm for He I with the observed size of the streaming cells ∼ 0.7 mm,
which can be read from �gure 5.8, leads us to conclude that we observe the outer
streaming cells.

Examining �gure 5.6 one could perhaps imagine seeing an indication of the
inner cells of opposite orientation close to the fork. We want to warn that this is
more probably an artifact caused by the algorithm for calculating ϑ. In the area
covered by the obstacle, there are no data, hence the algorithm returns the result
as if the velocity there were zero, producing a fake signal of opposite sign inside

and near the covered area. This is more strongly apparent in the right panels of
�gures 5.4, 5.8 or 5.10, where there are peaks of ϑ inside the obstacle (indicated
by a grey area).

5.2.3 Summary of observations

There are strong outwards streaming jets both above and below the axis of
each fork prong, that perpendicular to the direction of oscillation; these jets are
compensated by suction jets from the sides with an angle of about 45◦, but,
between the prongs, the neighboring suction jets merge, creating a single one,
parallel with the primary outwards streaming jets and of lower intensity. Hence,
between neighboring (and oppositely oriented) jets, there are peaks of the PTV-
based pseudovorticity ϑ, as it is apparent from �gure 5.6. One naturally expects
that the �ow would close, creating streaming cells, but this is not directly demon-
strated from the particle trajectories (�gures 5.3, 5.5, 5.7 and 5.9). This might
be due to the insu�cient length of recorded trajectories, especially as we see only
2D projections of 3D �ows and the trajectories are e�ectively shortened simply
by the non-zero velocity component perpendicular to the illuminated plane.

5.3 Discussion

5.3.1 Number of streaming cells

In contrast to the �gure 5.1 displaying 4 streaming cells with 2 outcoming
jets around a circular cylinder, we have observed 6 cells and 3 outcoming jets
around each fork prong. This can be explained by the large curvature of the
prong corners, see �gure 5.11a. It is not important how exactly the obstacle
moves, but rather how moves the �ow past it � the �uid near the corner �ows
as the blue arrow in �gure 5.11a shows. Therefore, if we zoom in (�gure 5.11a),
the �ow around the corner is locally symmetric around the axis of the corner and
the oscillatory �ow around it generates the steady streaming due to the Reynolds
stresses with an outcoming jet pointing along the corner axis. But, this inner
(or primary) streaming pattern is invisible for us as discussed above, therefore
we see the complementary incoming jet in the outer streaming pattern and the
complementary outcoming jets located at the centers of the sides generated simply
due to the conservation of mass (or the equation of continuity). As the outcoming
jets are always stronger than the (wider) incoming ones, the �rst type dominate
the �ow, see the magnitude of velocity in �gure 5.11c.
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Figure 5.11: Panel Panel a: schematic view of the streaming �ow features in the
proximity of the fork top left corner (the fork oscillates in the horizontal direction).
Locally the �uid �ows past the corner symmetrically with respect to its axis. Panel
b: The closeup of the Lagrangian pseudovorticity map calculated from all the data
obtained in He II, with driving force F = 41µN. Panel c: corresponding particle
trajectories, color coded by velocity magnitude, see the top right panel of �gure 5.7.
The strong outgoing jets are shown with black arrows, as the weaker incoming jets,
orientated along the axes of the prong corners. Each corner generates one incoming jet
in the outer streaming pattern and 2 outer streaming cells (plus 2 invisible inner cells),
in total 8 cells for one prong, although the ones numbered 3 and 4 are barely visible
due to the lack of trajectory points in the shadow area.
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By using the symmetry argument, we claim that there are 8 streaming cells
around each prong, although the ones numbered 3, 4, 7 and 8 in the �gure 5.11b
are not directly observed due to the lack of data in the shadow area. In total, 16
streaming cells around the whole fork exist in the plane perpendicular to its axis.

5.3.2 Quantum length scale

In turbulent quantum �uids, an important length scale is the quantum length
scale, de�ned as the intervortex distance `. In the vicinity of our fork vibrating
at given experimental conditions in He II it can be estimated directly from the
second sound measurements [112] as ` ≈ 50µm. This estimate provides, however,
an average over a large �ow region in the neighborhood of a tuning fork similar to
ours and represents an upper limit of ` (note that, as reported in [54], ` can also be
obtained from the �atness of the particle velocity distributions). Other estimates
of ` in the closer vicinity of the fork have been discussed in [113], based on
considerations of energy dissipation by quantized vortices. They yield intervortex
distance `× ∼ 0.5− 2µm, for the unpolarized vortex tangle, while for the partly
polarized one, based on a classical Kolmogorov-like approach, `‖ ∼ 1− 3µm.

It follows that this study, at experimentally accessible length scales, shows the
behavior of He II in the �ow regime, when the number of quantized vortex lines
is so large that they dynamically lock the normal and the super�uid components
together, hence closely similar results in He I and in He II can indeed be expected.

5.3.3 Choice of Rm

The calculation of the PTV-based Lagrangean pseudovorticity ϑ is strongly
dependent on the choice of integration area size, Rm [114]. As it was already
discussed in section 2.10, ϑ converges to vorticity ω of a single continuous �ow
�eld, (i) if the size of the integration area converges to zero, (ii) if the tracking
particles are �uid particles and (iii) if the density of seeding is in�nite. None of
these conditions is ful�lled in our experiment. On the other hand, we can at least
aim to optimize the validity of our results, by maximizing the number of particles.
This was indeed achieved by merging multiple data sets, obtained at the same
or at least similar conditions, and by optimizing the size of the integration area
�nding a right balance between statistical quality and locality.

Figure 5.12 shows values of ϑ2 and examples of its spatial distribution for
di�erent values of the parameter Rm. With larger Rm, there are more data with
larger distance from the probed point, which results in systematically smaller ϑ2,
see panel A of �gure 5.12. In the case of random velocities, the sum of ϑ2 scales
as R−2

m . Panel B of �gure 5.12 shows compensation of this �rst order e�ect.
Another regime of scaling takes place at smaller values of Rm, when 〈ϑ2〉R2

m ∼
R−1
m , hence ϑ ∼ R

−3/2
m , which corresponds to spatial correlation in the integra-

tion area, but we lack any explanation. Additionally, it is possible to notice a
small �bump� in this regime at Rm ≈ 0.7 mm, which can be connected with the
strong coherent structures in the �ow �eld of the fork, which occupy a relatively
small area when compared with the background characterized by small random
velocities.

Finally, if we would increase Rm over the size of the �eld of view, ϑ might no
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Figure 5.12: The panel A shows the dependence of overall square of ϑ as the function
of Rm, while the panel B shows the same values multiplied by R2

m to neutralize the
statistically caused scaling. Other panels, C � G, show examples of the spatial dis-
tribution of the Lagrangean pseudovorticity ϑ in the M77 group at highlighted values
of the parameter Rm. Black circles indicate the actual size of the integration area for
calculating ϑ. For detailed analysis, Rm = 0.4 mm has been chosen, which corresponds
to the thickness of the tuning fork.

more depend on Rm as it were calculated using all data anyway. This regime is
not displayed in �gure 5.12.

Other panels of �gure 5.12 show that at larger values of Rm the map of ϑ tends
to highlight larger structures, which can easily be artifacts produced due to the
lack of data behind the boundary of the �eld of view. On the other hand, too
small Rm results into too small number of trajectory points used for calculating ϑ
in certain position, and the result is devalued. As the �nal value of Rm, we have
chosen Rm = 0.4 mm, which corresponds to the thickness of the tuning fork, i. e.
its side which pushes the �uid. This allows to recognize the produced vortical
structures of similar size.

A sceptic can argue that we cheat a bit when analyzing our results by favoring
the size of vortices we expect and would like to see, but the existence of vortices
of such a size is clearly visible also for di�erent choices of Rm. Moreover, their
size is also apparent from the recorded particle trajectories.

5.3.4 Resonance stability

Another e�ect, which rather strongly a�ects the precision of our velocity mea-
surement in all cases, is the sedimentation of the particles on the prongs of the
fork. It slightly increases their e�ective mass and decreases the resonant fre-
quency of the fork. A tiny increase of the e�ective mass, ∼ 3 · 10−11 kg, explains
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the observed downshift by ∼ 5 ·10−2 Hz, which is enough to move the fork slightly
o� resonance and change the fork tip velocity up to ∼ 30 mm/s during the time
between particles injection and measurement, i. e., within about 30 s. Estimated
change of mass corresponds to the sedimentation of around ∼ 300 particles of
mass of order of 1 · 10−13 kg on the surface of the fork, i. e., sedimentation rate
around 10 particles per second along whole length of the fork. In the data group
S77, 174 particles were observed to touch the fork, i. e., within the overall record-
ing time of the S77 data group � 45 s � sedimentation rate 4 particles per second
only on the illuminated length close to the tip of the fork has been directly ob-
served.

5.3.5 Thermal counter�ow
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Figure 5.13: Map of PTV-based Lagrangean pseudovorticity ϑ around stationary fork
� a �background� � at di�erent temperatures in both He I and He II. The color code,
the same for all panels, is highlighting the e�ect of thermal counter�ow produced at the
illuminated side of the fork. It is most pronounced at the lowest temperature, as the
counter�ow velocity grows rapidly with decreasing temperature.

Figure 5.13 summarizes the data with no applied drive to the fork, at four
studied temperatures. In all panels of �gure 5.13, one can recognize random
background �ow �eld produced by the residual motion after the particle injection.
At the lowest temperature 1.22 K, it is dominated by a counter�ow jet produced
at the illuminated side of the fork. As the ratio of normal component decreases
with decreasing temperature, its velocity increases rapidly in order to maintain
the total mass �ow zero, therefore the counter�ow jet is more apparent at the
lowest temperature, as the particles in this case (low vortex line density) are
mainly dragged away from the heated surface by the viscous normal component.
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Unfortunately, we are not aware of any possibility to compensate for the
counter�ow e�ect, since we lack any better approximation of the particle motion
in this area, as there is a shadow at the opposite side of the fork where only
very big particles are visible and the statistics there is poor, much worse than on
the illuminated side. On the other hand, comparing the actual magnitude of the
color map in �gure 5.13 with previous �gures displaying ϑ we venture to say that
this e�ect does not appreciably a�ect the observed pattern in He II.

The observed particle velocity at the lowest temperature (�gure 5.13, the last
panel) in the right of the illuminated side is about 8 mm/s, but it is di�cult
to determinate it as it is inhomogeneous and there are no particles close to the
source. Let us point out that it was observed in another experiment [115] not
described in this work that the particles leave the area close to the heater quite
fast. Here the used laser power is 170 mW in the whole beam, which is diverged
by the cylindrical diverging lens located 450 mm in front of the center of the
experimental volume, hence the total power �ux illuminating the discussed side
is about 3.5 mW/mm2. The surface of the fork in the discussed area is covered
by gold layer, the re�ectance3 of gold is 82% at the used wavelength 532 nm.
Assuming that all light, which is not scattered, is transformed into heat, the heat
�ux is 640 W/m2. The corresponding velocity of normal component is vn = q

ρST
=

55 mm/s, which would be valid in a narrow channel.

5.3.6 Bubble in He I

The laser heating an illuminated surface produces a boiling bubble in He I,
as its nucleation energy is not high when the working point is very close to
the saturated vapor pressure curve, separated from it only by the hydrostatic
overpressure by about 30 cm of liquid. This bubble scatters light, producing
chaotically moving re�ections, which are interpreted as particles by the tracking
algorithm. These re�ections move, therefore it is not possible to remove them by
subtracting the average, as it is done for the re�ections produced by the fork. We
use a �ruder� method to remove them. We remove all trajectories that stay in a
small volume close to the illuminated side for entire time over which the bubble
exists. The trajectory of a particle, which comes from far or leaves such a volume,
is considered to be real and is saved. We did not attempt to repair the particle
positions optically moved by the curved surface of the bubble.

5.4 Conclusion of the chapter

By using the particle tracking velocimetry technique, we have observed stream-
ing patterns in the bulk liquid surrounding an oscillating quartz tuning fork in
both He I, which is a classical viscous �uid, and He II, which is a quantum liquid
displaying the two-�uid behavior and super�uidity. At the experimentally probed
length scales, the observed �ow patterns are similar in both �uids and are found
to be consistent with those due to a square cylinder vibrating in water [110].

3In this spectral region gold changes its re�ectivity a lot from 40% under 450 nm to almost
100% above 650 nm.
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As our experimental length scale is signi�cantly larger than the viscous pene-
tration depth, any �ows inside the Stokes boundary layer are currently invisible
to us. At the probed length scale, larger than the quantum length scale � the
mean distance between quantized vortices, we do not observe any appreciable
in�uence of the quantization of vorticity in He II. We argue that this can be
understood based on the notion that the mechanically driven turbulent co�ow of
He II investigated here can be described as if it were a �ow of a single quasiclassi-
cal �uid characterized by an e�ective kinematic viscosity, due to the action of the
mutual friction force that at scales equal to or exceeding the probed one couples
the motions of the two components of He II [116, 88, 34, 66].

Last but not least, there are practical aspects to our investigation. Although
quartz tuning forks are employed as convenient probes in both 4He [59] and
3He [117] liquids, the very existence of a streaming �ow, generated by their fast
oscillations, its extent, and possible in�uence on their performance has not yet
been investigated in detail. In both normal He I and in super�uid He II we show
that, in the range of investigated parameters, a vibrating quartz tuning fork does
appreciably in�uence its �uid surroundings, at least up to a distance of the order
of its cross section size. Future studies could then focus on quantifying how
the performance of this valuable experimental tool as well as similar oscillating
objects used in super�uid hydrodynamics is a�ected by the generated streaming
�ows, existence of which our study demonstrates.
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Chapter 6

Cavitation

In this chapter we show that very intense oscillatory �ows of liquid helium
studied in this Thesis could eventually lead to an interesting physical phenomenon
known as cavitation. Generally, the cavitation, similarly as the boiling, is the pro-
cess of nucleation bubbles in a liquid. While the boiling is generally understood
to be caused by local overheating, the phenomenon of cavitation is a result of
local �underpressure � in the liquid.

6.1 Introduction

The understanding of cavitation in both classical and quantum liquids, or
more generally � detailed microscopic mechanism of bubble nucleation in them,
remains largely an open problem [118], although its phenomenological description
in classical viscous liquids [119] is valued for practical engineering purposes. The
di�culty of the detailed description of the nucleation mechanism lies in the area
between the validity of the continuum hypothesis and the individual particle
approach [120], hence quantum mechanics has to play an important role not only
in quantum �uids but even in the case of classical liquids [121]. To this end, liquid
helium o�ers a unique opportunity to study this problem both in He I, which is
a classical low density liquid possessing very low kinematic viscosity [59] and in
He II, which is a quantum liquid exhibiting the two-�uid behavior [34]. One can
hope to discern which aspects of cavitation are common and di�erent in classical
and quantum liquids and, subsequently, such studies ought to help in developing
the detailed microscopic description of the nucleation problem [121].

The presented experiment extends the previous investigations of cavitation
in liquid helium due to an oscillating quartz fork performed by our colleges and
published in [122], where it is shown that cavitation can easily be detected by
monitoring the frequency sweeps across the resonant frequency of the fork, as the
electrical response collapses when cavitation occurs. In article [123], the analysis
of their results based on the Bernoulli equation in He II suggested pure cavitation,
albeit heterogeneous in nature. Moreover, based on the measured temperature
dependence of the critical cavitation velocity that steeply increased (from about
0.6 m/s to about 2.1 m/s for a particular fork) on decreasing temperature within
about 20 mK below the super�uid transition in the bulk Blaºková et al. concluded
that in He I the vicinity of the fork is locally overheated and cavitation occurs
here at a higher temperature than that at which the surrounding helium bath
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Figure 6.1: An example of acquired images of the fork with no drive: A: in He II
� note small particles of dirt used to measure the velocity; B: in He I � the image
has been darkened in order to highlight the bubbles appearing due to boiling near the
fork surface overheated by the laser, con�rming the presence of He I. All photographs
presented here are displayed in negative.

is kept. They speculated that the steep increase of the cavitation threshold just
below the super�uid transition can be understood as a consequence of the high
convective heat transfer e�ciency in super�uid He II compared to He I. This
explains why, in accord with the previous observations [124], it is more di�cult
to reach the cavitation in He II than in He I.

Motivated by recent work by An Qu et al. [125] reporting di�erences in
the lifetime of bubbles in He I and in He II, in this chapter we focus on the
size and shape of the cavitation bubbles produced heterogeneously by the �ow
enhancement by excrescences on the surface of the oscillating quartz fork in He I
as well as in He II.

6.2 Experimental setup

The cavitation was produced by decreasing the local pressure by velocity
enhancement, by passing a moving object � a prong of the quartz tuning fork.
The cavitation is detected optically by camera and illumination laser. See more
details about the whole experimental setup and instruments in the chapter 2. The
used fork has length L = 19.7 mm, thickness T = 0.8 mm and widthW = 2.2 mm,
see the �gure 2.6 for meaning of these lengths. The main resonant frequency is
4186 Hz and the fork constant a = 3.4 · 10−5 C/m, see the chapter 3 for more
details.

The velocity of the fork prongs have been measured independently by two
ways: �rst the standard electrical measurement as described in section 2.5 or in
article [60], second a direct optical measurement of elongation of the projection
of small dust particles attached on the fork surface as visible in �gure 6.1. The
comparison of these two velocities is plotted in �gure 2.9 in section 2.5.

The overview of measured cases is plotted in �gure 6.2. Note that we were
not able to reach cavitation at lower temperatures, as our maximum attainable
velocity is up to 1 m/s, which is su�cient in He I but not in He II, in agreement
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Figure 6.2: Temperature and achieved velocity of the measured cases. Blue circles and
cyan squares denote the movies, where the cavitation has been observed in He II or He I
respectively; red crosses are cases when cavitation was not observed; and orange stars
denote movies with occasional appearance of tiny bubbles. The vertical line highlights
the temperature of the λ-transition Tλ. The inset shows results of the previous work
of our group [122]; it shows the critical velocity at which cavitation causes a collapse of
the resonance peak.

with previous results of our group [122], see inset of �gure 6.2.

6.3 Observations

The surprising observation is that there is a cluster of small bubbles instead of
one large nearly hemispherical bubble as minimization of the sum of the energy
of surface tension and volume Gibbs energy would suggest, see �gures 6.3 and
6.4. Note that although the camera exposure time, 9.998 ms, is much longer
than the fork cycle period, 0.24 ms, the scene is illuminated only during the laser
pulse, i. e. for ∼ 0.4 ms, corresponding to about 1.7 fork periods. This ensures
capturing of the entire fork period and, on the other hand, the captured image
is not a superposition of many periods. In He I we sometimes observe that the
bubbles live longer than one cycle; these bubbles then rise up as can be seen
in �gure 6.5. Such images strongly suggest that the observed bubbles form a
real cluster and we do not observe a superposition of di�erent bubbles produced
during di�erent fork cycles. In He II the situation is di�erent in that the bubbles
do not tear o� from the fork surface up to the highest attainable drive.

The velocity of the fork versus the driving force is plotted in �gure 6.6. The
fork moves fast enough to create the turbulent regime of �ow past it, where the
drag force FD depends more or less quadratically on the velocity, F = FD ∼ v2;
see the cases without cavitation in �gure 6.6. When cavitation occurs, the data
points lie below this dependence because creation of bubbles consumes energy
� this can be qualitatively interpreted as an additional braking force Fb � the
di�erence between the applied drive force and the force, which would be needed
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Figure 6.3: Fork under the same drive 129 Vrms in A: He II, rms velocity of the fork
tips 576 mm/s, and B in He I, rms velocity 528 mm/s.
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Figure 6.4: Images of the fork at the same bulk temperature 2.17 K, i. e. in He II,
but under di�erent drives: A 36.9 Vrms, rms fork tip velocity 309 mm/s; B, 129 Vrms,
576 mm/s.
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Figure 6.5: In He I at highest drives the bubbles live longer than one fork cycle, these
bubbles then rise up. The B frame follows 10 ms after the A frame.
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Figure 6.6: Measured velocity of prongs plotted versus applied force. The cases
when the cavitation did not occur (represented by red crosses) approximately follow the
expected dependence FD ∼ v2 (plotted as a dotted line) valid for the turbulent regime.

to get to the same velocity under the action of hydrodynamic drag force only,
i. e., Fb = F − Cv2, where the prefactor C ≈ 2.9 · 10−3 Ns2m−2 is the �tting
parameter using the data of �gure 6.6. Note in passing that in He II the maximum
energy losses can be carried away to the bulk by thermal counter�ow of typical
counter�ow velocity up to a fraction of mm/s, i. e., much lower than the velocity
of moving prongs.

We attempt to quantify the observed bubbles or clusters of bubbles by mea-
suring their area A on each frame (simply by counting the pixels brighter than a
chosen threshold). This leads to an e�ective radius reff , which the bubble would
have assuming its semispherical shape:

reff =

√
2A

π
. (6.1)

The e�ective radius of the bubble (or cluster of bubbles) is plotted versus the
additional braking force in �gure 6.7. Although there is a visible correlation,
the points are too scattered to discern any functional dependence. On the other
hand, the reported di�erence in cavitation properties in He I and in He II is
clearly visible: a �xed size bubble produces higher braking force in He II than in
He I. The reason of this di�erence is unclear but might be connected either with
the slightly larger surface tension of He II [5] or with quantized vortices attached
to cavitation bubbles.

6.4 Conclusion

By using the fast optical camera we have directly observed heterogeneous
cavitation in �ow of He I and He II due to oscillating quartz fork, on both sides
of the λ-transition. Typically a cluster of small bubbles is produced rather than
one bigger hemispherical bubble, the position, size and shape of such a cluster
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Figure 6.7: E�ective radius reff of observed cavitation bubbles as a function of the
added braking force Fb, evaluated as explained in the text.

changes from frame to frame. The produced bubbles are at �rst look similar in
He I and in He II, however, cavitation threshold is lower in He I than in He II.
Once nucleated, bubbles live longer in He I than in He II and can rise up in the
bulk from the place of their nucleation. Additionally, under otherwise identical
conditions the nucleated bubbles brake the motion of the fork's prongs more in
He II than in He I.
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Chapter 7

Small-scale similarity in quantum

turbulence

In this chapter we use the experimental data recorded when studying the
oscillatory �ows of normal and super�uid helium together with the data relevant
to our visualization studies of thermal counter�ow and analyze them in order
to investigate the idea of small-scale similarity in quantum turbulence. We do
not describe in any detail the history of measurements performed in thermal
counter�ow; the reader is directed to the published paper [54] which the author
of the thesis coauthored and the reprint of which is for convenience attached to
this Thesis.

7.1 Introduction

The interpretation of our visualization results (chapter 4, article [126]) led to
the conclusion that, at length scales larger than the quantum length-scale `q of the
probed �ow, de�ned as the intervortex distance, turbulent He II behaves as if it
were a viscous �uid, while its quantum nature becomes apparent at smaller scales.
More precisely, in thermal counter�ow, the velocity and acceleration distributions
of small particles suspended in the liquid have, at large enough scales, classical-like
shapes, while, at scales smaller than `q, they are characterized by power-law tails
emerging from the quantum description of He II [127, 128], similarly as in another
quantum system � the cold atomic Bose-Einstein condensate [20, 129, 130].

We investigate experimentally, by visualization, the �ow-induced dynamics of
relatively small particles of solid deuterium or hydrogen in thermally and me-
chanically driven �ows of He II, which appear distinctly di�erent at scales larger
than `q. Still, if the probed length-scale d (to be de�ned later) is smaller than
`q, we �nd that the tails of the particle velocity distributions (which indicate the
occurrence of rare events of large magnitude) are nearly identical, in the range
of investigated parameters. Our experimental result therefore supports the long-
held expectation that, at small enough length-scales, the dynamics of quantized
vortices does not depend on the type of imposed large-scale �ow. Additionally,
this property of quantum turbulence can be seen as analogous to the small-scale
universality observed in classical turbulent �ows of viscous �uids, see for example
[131], [132], [133] or [134] as it emerges from the pioneering work of Kolmogorov
[17, 18].
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7.2 Experimental setup

The experimental setup and methods of data analysis are already described
in chapter 2. The oscillating obstacle has been described in chapter 4, including
the results and a discussion of the observed quantum features. On the other
hand, the thermal counter�ow, to which we compare, is not a subject of this
Thesis, although it was subject of the author's Diploma thesis [22]. Therefore,
the counter�ow measurement needs to be introduced.

It is performed in a vertical glass channel of square cross section, of 25 mm
sides, and 100 mm long, a �at square heater is placed on the channel bottom to
generate the �ow in the vertical direction. The heater is a meander of resistive
Pb wire in a thin kapton layer. The heater is driven by applying DC voltage and
the actual power is measured by the 4-point method, as the quite long and thin
wires have non negligible resistance. Thermal counter�ow movies are recorded at
camera frequency fcam = 400 Hz, while oscillating obstacle movies are obtained
at fcam = 100 Hz. An example of thermal counter�ow movie is on the attached
CD.

The strength of thermally driven counter�ow is quanti�ed by the counter�ow
velocity [135]

vns = vn − vs =
q

ρST

(
1 +

ρn
ρs

)
=

q

ρsST
, (7.1)

where vn and vs indicate the normal �uid and super�uid velocities, respectively;
once the heater is switched on, the super�uid component moves toward the heat
source and the normal component �ows away from it [136], in order to conserve
the null mass �ow rate (we assume here that vn > 0 and vs < 0). The total
density ρ of the �uid, de�ned as the sum of the densities of its normal (ρn) and
super�uid (ρs) components, depends weakly on temperature, while the densities
ρn and ρs display much stronger temperature dependencies [5] (He II can be often
considered entirely super�uid at temperatures below 1 K); q is the applied heat
�ux, S denotes the entropy per unit mass, tabulated, together with other �uid
properties, in [5], and T indicates the temperature. We might emphasize that
the phenomenon of thermal counter�ow takes place only in He II; it is a pure
quantum type of thermal convection which has no classical analogue [89].

7.3 Length-scales

7.3.1 Probed length-scale

The probed length-scale d in our experiment we de�ne as the mean distance
traveled by the particle between two consecutive frames, as it is done in the
chapter 4. Let's note that it could be also the mean particle size, when this is
larger than the former value, as it is introduced in [54].

In the case of the thermal counter�ow experiments, we set d = vabst, where
vabs denotes the average particle velocity, obtained at the smallest time between
particle positions, and t indicates the time step between two consecutive particle
positions (t = 1/fcam = 2.5 ms), used for the calculation of the velocities [105, 66],
see the equation 2.11. Therefore we can calculate the velocity distribution at
di�erent length-scales d by using data of one movie only simply by changing this
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time step t in the multiples of the smallest time corresponding to the camera
frame rate used for video recording.

For the oscillating obstacle �ows, we set the length-scale d probed by the
particles equal to 2πfAt, where f is the obstacle motion frequency, A is its
amplitude and t = 1/fcam = 10 ms as already introduced in the chapter 4. In
this case we do not need to arti�cially increase the probed length-scale as just
described above, because we have got several movies at di�erent experimental
conditions (f and A) covering length-scales smaller and larger than the quantum
length-scale `q characterizing the investigated �ow.

7.3.2 Flow length-scale

We de�ne the ratio R = d/`q between the length scale probed by the particles
and the quantum length scale of the investigated �ow (that is, the average distance
between quantized vortices). The corresponding `q for the counter�ow data is
computed as detailed in article [66] by using relevant published data [48]. More
precisely, in the present conditions, i. e., at large enough heat �uxes, the imposed
counter�ow generates a tangle of vortex line density L ≈ γ2 (T ) vns

2, where the
parameter γ (T ) is known with su�cient accuracy (of about 30%, see, e. g., [35]
and references therein). We therefore experimentally select the quantum length
scale `q ≈ 1/

√
L, by tuning the heat �ux q, and we use the values of γ (T ) reported

in [48] to estimate the average distance `q between quantized vortices.
In order to estimate the corresponding `q in the oscillating obstacle experiment

we make a few additional assumptions and, as a �rst step, on the basis of the
results of the chapter 4, we take the de�nition of the Kolmogorov dissipative
scale η = (ν3/ε)

1/4 [17], where ν is the �uid kinematic viscosity and ε indicates
the mean dissipation rate of the �ow. The latter, in turbulent �ows of viscous
�uids, can be set equal to νω2, where ω is the average �ow vorticity, which is
calculated from the spatial derivatives of the �uid velocity and can be seen as
a measure of the �ow strength; consider also that, at scales larger than (or of
the order of) η, the related �ow behavior is expected to be universal, see, e. g.,
[18, 134, 131, 137]. The following step is to assume that ω2 is approximately
equal to the ensemble average of the experimentally obtained parameter ϑ2, see
section 2.10. We can now re-use the formula 4.12 (and now we identify `c with
`q), i. e., we assume that, for the studied oscillating obstacle �ows, the average
distance `q between quantized vortices is approximately equal to the length-scale
obtained by adequately applying the de�nition of the Kolmogorov length-scale to
�ows of He II.

For He I, which is a viscous �uid, ν is tabulated in [5]. The values of the
e�ective kinematic viscosity of turbulent He II reported in the literature (see, for
example, [100] and references therein) are, in the investigated range of temper-
atures, of the same order of magnitude of the kinematic viscosity value of He I
just above Tλ, that is, ν = 1.66 · 10−8 m2/s [5], which can also be expressed as
κ/6 [69]. Hence, for the sake of simplicity and consistency with the chapter 4, in
order to estimate from equation 4.12 `q for the oscillating cylinder data obtained
in He II, we set ν = κ/6.

More generally, the just given length-scale de�nitions are based on several
assumptions, whose main justi�cation is that they lead to positive comparisons
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Figure 7.1: Probability density function (PDF) of the normalized horizontal velocity
ux = (vx−〈v〉)/σ [v] of selected data sets of the oscillating obstacle experiment (compare
with �gure 4.12) with di�erent values of the ratio R, A denotes the oscillation amplitude
in mm, f is the frequency in Hz. The time step is t = 10 ms, all displayed data are
from He II.

with experimental data, as shown below and in our publications [66, 126], the
later also in chapter 4. However, the reader should not forget that they are
indeed approximations, which are therefore not expected to capture entirely the
physics of the problem.

7.4 Results

Our main result is shown in �gure 7.1 and 7.2, where the probability density
function (PDF) of the instantaneous horizontal component of particle velocity
vx normalized by its average and standard deviation, ux = (vx − 〈vx〉) /σ [vx], is
plotted. Here, 〈vx〉 and σ [vx] indicate the mean value and the standard deviation
of the particle horizontal velocity vx, respectively (vx is positive if directed from
the left to the right of the �eld of view, toward the laser). The �rst �gure 7.1
refers to the oscillating obstacle data, for more details about the conditions and
results see chapter 4, and the second �gure 7.2 contains the thermal counter�ow
data obtained far enough from the walls and the heater.

It is apparent that, at large particle velocities, both distributions, regardless
of the type of �ow, have the same power-law shape. To date, this feature was
only observed by Paoletti et al. [138], in decaying counter�ow, by us [64, 22],
in steady-state counter�ow, or in quantum turbulence in BEC by White et al.
[129]. In the case of solid particles, whose motions are generally in�uenced by the
quantized vortex tangle and by both velocity �elds, the outcome can be justi�ed
by considering that particles trapped onto vortices can probe the occurrence of
vortex reconnections [138, 139].
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Figure 7.2: Probability density function (PDF) of the normalized horizontal velocity
ux = (vx−〈v〉)/σ [v] of selected measurement of thermal counter�ow obtained at a rela-
tive counter�ow velocity of the normal and the super�uid component vns = 6.8 mm/s, t
is the time step in ms, the �rst data set is obtained with hydrogen particles, the second
with deuterium ones.

Note that the mechanically driven �ows, at large enough scales, are expected
to display features di�erent from those observed in thermally driven �ows [100].
This strongly suggests that, at length scales smaller than the quantum scale of
the �ow, particle motions are mainly in�uenced by quantized vortex dynamics.

The particle velocity distributions obtained from the oscillating obstacle ex-
periment are clearly more scattered compared to those calculated from the coun-
ter�ow experiments. This is likely due to the fact, that the total number of
particle positions obtained in the former case is about one order of magnitude
smaller than those corresponding to the latter one. That is caused by the lower
seeding density in the former case, which has been decided to use in order to
ensure correct trajectory connections as the spatial distribution of the velocity
magnitude is strongly inhomogeneous. Nevertheless, the form of the oscillating
obstacle distribution tails is consistent with the power-law shape expected in
quantum �ows, at small enough length-scales.

The result is reinforced by the observation that, at large R, the particle ve-
locity distributions are nearly Gaussian, as observed in classical �ows, see, for
example, [134] and references therein, regardless of the imposed �ow type.

This results are based on the statistical analysis of the particle velocities in
the horizontal direction because the latter is perpendicular to the preferential
direction of motion of the imposed �ows. It is therefore easier to highlight our
�ndings in the �ow direction that, on average, is less in�uenced by the large-
scale �ow. However, interested reader can �nd also plots of the vertical velocity
component distribution in the article [54] attached to this Thesis.

Figure 7.3 displays the distribution �atness, which is the 4th centered moment
of the distribution calculated from the particle velocities as F [vx] =

〈
(vx − 〈vx〉)4〉.

89



 0

 10

 20

 30

 40

 50

 0.01  0.1  1  10  100

F
la

tn
es

s

R

counterflow, H2
counterflow, D2
osc. obst., He II
osc. obst., He I

Figure 7.3: Flatness of the normalized horizontal velocity component ux = (vx −
〈v〉)/σ [v] in dependence on the ratio R. Horizontal line corresponds to the �atness
of Gaussian distribution. In the case of the counter�ow data, the ratio R is changed
arti�cially by increasing the time step t [66], while the di�erent R in the oscillating
obstacle data corresponds to di�erent experimental conditions.

Flatness of a Gaussian distribution can be analytically calculated to be equal to
3, while it diverges for the 1/v3 distribution. Hence, when calculated numerically
from the real obtained data, it depends on the large magnitude events, which
are indeed rare, connected to the small-scales. Therefore, the �atness value of
the power-law distribution has no sense itself, but it can be compared with with
values obtained at di�erent R as shown in �gure 7.3. We expect, however, that
for large enough data sets (substantially larger than the present ones) the same
(universal) �atness behavior should be observed at low R, when particle motions
are in�uenced solely by the vortex tangle dynamics, as shown by the power-law
form of the velocity distribution tails.

Nevertheless, the calculation of the velocity distribution �atness at various
length scales can be useful to estimate the average intervortex distance � the
quantum length-scale of the �ow, if the latter is not already known. Such a scale
should indeed be of the same order of the smallest scale at which the value of
the distribution �atness becomes approximately equal to three, as seen in �gure
7.3. In other words, visualization studies are capable of giving results that are
usually obtained by other means, such as the second sound attenuation technique
(see [140] or [141] and references therein). Additionally, as a consistency check,
the �atness values calculated for the investigated oscillatory �ows of He I do not
appear to depend on R. The particle velocity distributions have quasi-Gaussian
form at all scales, including those smaller than the dissipative scale η. To the best
of our knowledge, this statistical property of classical turbulent �ows has not been
reported previously, likely due to the facts that (i) such small scales are di�cult
to probe experimentally in �ows of viscous �uids, such as water or air, and that
(ii) the �ow behavior, at d < η, is not expected to be universal. However, this
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result is not the focus of the present work and further investigations should be
performed to address the issue in detail.

7.5 Conclusions of the chapter

Based on the analysis of the experimental data (both from thermal counter�ow
and from the �ows due to oscillating objects) we have shown that, similarly as
in classical (viscous) �uid turbulence, small-scale universality can be observed in
quantum turbulence. Since postulated by Kolmogorov [17, 18], a large number of
related studies has been performed in the �eld of classical turbulence, including
the recent numerical investigations showing that small-scale universality holds
already in various �ows of moderate Reynolds number [131]. In viscous �ows,
however, the small scales are larger than the Kolmogorov length-scale η, below
which the �uid motion is dissipated into heat by the action of the �uid viscosity,
while in quantum �ows the small scales are smaller than the average distance
between quantized vortices, below which �uid motion may exist all the way down
to the Å scale � the size of the quantized vortex core. Additionally, in both cases,
it is assumed that the �ow small scales are appreciably smaller than the large
scales of the �ow, which are of the order of the experimental volume size.

In other words, the small-scale universality we observe can be seen as anal-
ogous to that reported to occur in viscous �ows, but has also di�erent features,
as, to date, it is yet to be clari�ed how the Kolmogorov length-scale can be un-
equivocally linked to the average distance between quantized vortices, although
it appears that, in most cases, �ows of He II at scales larger than the quantum
length-scale of the �ow behave similarly to viscous �ows at scales larger than η.

If, at scales larger than the average distance between quantized vortices, but
still noticeably smaller than the �ow large scales, universal features of quantum
�ows were observed, it would be possible to claim that the quantum length-scale
of the �ow might indeed be the quantum analogue of the Kolmogorov length-scale,
and the latter could be possibly achieved by performing dedicated experiments,
e. g., by collecting data sets larger than those currently available. Neverthe-
less, our statistical study of the motions of small particles in mechanically and
thermally generated quantum �ows of super�uid 4He strongly suggests that the
concept of small-scale universality is a fruitful one for the deeper understanding
of the phenomenon of �uid turbulence in general.
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Chapter 8

Conclusion

The Thesis represents a systematic study of various oscillatory �ows of liquid
helium performed in the Prague Visualization Laboratory - the �rst European
laboratory capable of visualizing cryogenic �ows of both classical viscous He I
and super�uid He II using the methods of particle image velocimetry (PIV) and
particle tracking velocimetry (PTV) utilizing micrometer-sized seeding particles
of frozen hydrogen and deuterium. In order to keep the Thesis self contained and
comprehensive, the author decided to restrict its content to mechanically gener-
ated oscillatory �ows of cryogenic helium and to a detailed comparison of classical
and quantum cases, which is at the same time, the topic of the author's the 3-
year GAUK (Grantová Agentura Univerzity Karlovy) project number 1968214
Studium oscila£ních proud¥ní a kavitace v kapalném héliu vizualiza£ními meto-

dami. Additionally, the author contributed to studies of the acceleration of small
particles in quantum turbulence as well as visualization studies of steady coun-
ter�ows past a circular cylinder. He is a coauthor of several papers published
in impacted scienti�c journals - Physical Review B, Journal of Fluid Mechanics:
Rapid communication and Journal of Low Temperature Physics, see the List of
Publications and selected reprints attended to this Thesis.

The main results described in this Thesis can be characterized as follows:

1. We have observed that, in the case of mechanically driven co�ow of He II,
macroscopic vortical structures form in the wake of an oscillating obstacle
of the shape of a prism. These structures are similar to those observed in
He I, which is a classical viscous liquid. Their size is of the order of the
obstacle size and, additionally, their structure exhibits a turbulent vortex
core with an inviscid envelope, similar as in classical liquids [97]. (Chapter
4)

2. The author has introduced the PTV based pseudovorticity, a useful approx-
imation of vorticity calculated from the particle trajectory data, which on
one hand, highlights the classical-like vortical structures and, on the other
hand, it shows di�erent scaling with the Reynolds number, which is depen-
dent on the ratio of the characteristic lengths probed by the PTV visual-
ization and the characteristic small length-scales of classical and quantum
�ows, i. e. the Kolmogorov length η and the quantum length scale � the
intervortex distance `. (Chapter 4)
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3. We have observed the viscous streaming (a well known �ow in classical
hydrodynamics usually connected with the Reynolds stresses and the cur-
vature of the stream) generated in both He I and He II by a vibrating quartz
tuning fork, which is a widely used tool for studying quantum turbulence.
We have observed streaming cells of the order of the fork prong size situated
between the corner axes and the side axes; according to their orientation, we
have identi�ed them as outer streaming cells, which are classically explained
via viscous induction. (Chapter 5)

4. We have observed cavitation near an oscillating quartz tuning fork in He I
and in He II just below the λ-transition, con�rming previous results which
show the critical cavitation velocity at the λ-transition steeply increases.
The new result is that this heterogeneous cavitation produces a cluster of
small bubbles and that these bubbles brake the fork motion more in He II
than in He I. (Chapter 6)

5. We have found that in all studied quantum �ows of He II, the statistical
distribution of velocity exhibits a strong dependence on the ratio between
the length-scale probed by the particles, and the �ow characteristic length-
scale, which is the Kolmogorov length in He I or the quantum length scale
� the mean intervortex distance in He II. When the experimentally probed
length-scale is smaller than the intervortex distance, the probability density
distributions of turbulent velocity contain power-law tails, regardless of the
type of large scale mean �ow imposed, suggesting small scale similarity in
quantum turbulence. At larger probed length-scales, as well as in He I, we
have observed classical Gaussian-like distributions. (Chapter 7)

To summarize, the Thesis contributes to the general notion that super�uid
He II, which is a quantum liquid, behaves as a classical viscous liquid at length-
scales larger than the quantum length scale � mean intervortex distance � when
the individual quantized vortices can be considered as a continuum, while at
smaller length-scales, the quantum nature of such turbulence emerges, both in
thermally and mechanically driven �ows. It is shown that both these regimes
are experimentally accessible and can be studied by visualizing suitable tracer
particles, although the details of their interaction with the normal and super�uid
components of He II are still poorly understood.
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