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Abstract:

A two-dimensional model of the resonant electron-molecule collision processes
with one nuclear and one electronic degree of freedom introduced by Houfek,
Rescigno and McCurdy [Phys. Rev. A 73, 032721 (2006)] and a similar two-
dimensional model of the dissociative recombination with potential proposed by
Hamilton [Ph.D. thesis, University of Colorado, (2003)] are formulated within
the time-dependent framework and solved numerically using the finite-element
method with the discrete variable representation basis, the exterior complex
scaling method and the generalized Crank-Nicolson method. On the model of
electron-molecule collisions we illustrate how the time-dependent calculations can
provide a deep insight into the origin of oscillatory structures in the vibrational
excitation cross sections if one evaluates the cross sections not only at sufficiently
large time to obtain the final cross sections, but rather at several characteristic
times which are given by the evolution of the system. With use of the time-
dependent calculations we demonstrate the complex nature of the dissociative
recombination model dynamics and we propose the interpretation of the recom-
bination process mechanism. We also propose few techniques for explanation
of the sharp structures in the dissociative recombination cross sections and we
study the populations of its final states for the first time in theoretical calcula-
tions. Numerical results are presented for N2-like, NO-like, and F2-like models
of the electron-molecule collisions and H+

2 -like model of the dissociative recom-
bination. The results are compared with ones obtained within time-independent
approach and in the electron-molecule case also within the local complex potential
approximation.
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Introduction

In the recent decades a demand for the estimation of accuracy and validity of
theoretical predictions arose from the scientific community, e.g. pubulished by
Editors [2011]. Such a demand is quite reasonable in the domain of atomic and
molecular physics. Since the dynamics in systems larger than a simple hydro-
gen atom leads to a many-body Schrödinger equation, only the approximative
techniques may be applied to obtain the theoretical predictions. The eventual
disagreement of the theoretical predictions with the experimental results often
originates from the inaccuracy or even invalidity of the approximations used in
the calculation.

In the paper Houfek et al. [2006], a simple two-dimensional model of resonant
electron collisions with diatomic molecules was introduced to study in detail va-
lidity of various approximate approaches for treating the nuclear dynamics that
plays an important role during these collisions, especially if one is interested in
processes such as vibrational excitation (VE) of a molecule by an electron impact

e− + AB(vi) → e− + AB(vf ) , (1)

and dissociative electron attachment (DA)

e− + AB(vi) → A + B− . (2)

The model has two degrees of freedom, the internuclear distance R and the elec-
tron distance r, with the potential energy chosen in such a way to reproduce
qualitatively the complex potential energy curve of a certain negative molecular
ion when fixed-nuclei calculations are performed. Three models for the molecules
N2, NO, and F2 were constructed in Houfek et al. [2006] and Houfek et al. [2008a].
The validity of the local complex potential (LCP) approximation to the nuclear
dynamics for these three systems was discussed in Houfek et al. [2006] and the
more elaborate nonlocal theory of the nuclear dynamics Domcke [1991] was con-
sidered later in Houfek et al. [2008a]. It was shown that the nonlocal theory is
much more accurate than the local complex potential approximation and works
well for all three studied systems.

In papers Houfek et al. [2006] and Houfek et al. [2008a], the time-independent
approach was used to solve the two-dimensional model of the electron-molecule
collisions and to calculate the cross sections of the processes (1) and (2) within
the full model and also within the LCP and nonlocal approximations.

A similar two-dimensional model can be constructed for low-energy collisions
of electrons with hydrogen cations H+

2 using the potentials introduced by Hamil-
ton [2003]. The potentials were originally intended for modelling the dynamics
of photoionization and photodissociation processes using the two-dimensional R-
matrix calculation. It was later suggested by C.W. McCurdy, T.N. Rescigno and
C.H. Greene [personal communication, 2008] that these potentials could be also
used for a model of the dissociative recombination (DR) process

e− + AB+(vi) → A + B , (3)

and possibly also the vibrational excitation process similar to (1). The model has
the same degrees of freedom and it differs from the electron-molecule collision
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model, apart from the shape of the interaction potential, in the presence of the
long-range Coulomb interaction between the electron and the hydrogen molecular
cation. This dissociative recombination model was solved in collaboration with
Hvizdoš [2016] in the time-independent approach to the model dynamics. As in
the electron-molecule case this model can be also used for testing the approxi-
mations, e.g. the frame transformation (Chang and Fano [1972]) method based
on the quantum defect theory. By its design the model of dissociative recombina-
tion enables to distinguish the final states in the possible recombination channels,
which is unlike any other theory of dissociative recombination. For more details
on the dissociative recombination see e.g. Florescu-Mitchell and Mitchell [2006]
or Larsson and Orel [2008].

The goal of this thesis is to solve the two-dimensional problem for both the
electron-molecule collisions model and the model of dissociative recombination
using the time-dependent approach to get a deeper insight into the dynamics of
the processes (1) and (2) in the electron-molecule case and (3) in the recombina-
tion model of H+

2 . We also compare the results of the time-dependent approach to
the model dynamics of electron-molecule collision with the time-dependent LCP
approximation.

We should note that time-dependent calculations for the same two-dimensional
model of electron-molecule collisions were performed also by Shandilya et al.
[2012] but their cross sections disagree with the previous results of the time-
independent calculations. For example, the structures in the VE cross sections are
much narrower than they should be (see Fig. 3.7). We should stress here that both
the time-dependent and time-independent approaches in the quantum mechanics
are equivalent for systems with the time-independent Hamiltonian. If a given
problem is in both approaches formulated consistently and solved properly the
final results (the cross sections in our case) must be the same as it is demonstrated
in this thesis. Therefore, we disagree with the claim of Shandilya et al. [2012] that
”these features [narrower oscillatory structures in the VE cross sections] could be
genuine and fresh experiments with better resolution are required to settle this
issue”. Furthermore, the 2D model introduced in Houfek et al. [2006] was not
developed and constructed for direct comparison with experiments although the
cross sections obtained from the 2D model resemble the experimental ones.

The results of the time-dependent calculations enabled us to discuss in de-
tails the origin of structures in the VE cross sections of the electron-molecule
collisions. In the literature, see e.g. Domcke [1991], Čuŕık and Čársky [2012]
and references therein, the cross sections are usually obtained within the time-
independent framework and an explanation of the origin of these features is very
often provided only within the boomerang model by Herzenberg [1968], Birtwistle
and Herzenberg [1971], Dubé and Herzenberg [1979]. This simple model assumes
that the boomerang structures in the cross sections result from the interference
of two processes, a direct decay of the resonant state of the negative molecular
ion without nuclear motion and a time-delayed release of the electron after one
vibrational motion of the nuclei. But such interference leads to a very regular
interference pattern in the VE cross sections and for a full explanation of details
of these structures, especially of highly asymmetrical peaks, it is necessary to con-
sider interference of several processes due to repeated vibrational motion. Within
the time-independent picture the detailed discussion of the resulting cross sec-
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tions can be sometimes quite complicated Houfek et al. [2008b]. Here we propose
a simple method how to determine the origin of these features which is based on
comparing the cross sections with contributions integrated up to a certain distinc-
tive time given by the dynamics of the system, in this case after each period of
the vibrational motion of the negative molecular ion, as discussed in the Sec. 3.4.
The results of the time-dependent approach to the dynamics of electron-molecule
collisions model along with the interpretation of the cross section structures were
also published in Váňa and Houfek [2017].

Another goal of this thesis is to calculate the cross sections of the individual
dissociative recombination channels. Currently there is no other theory which
allows to distinguish the final states of the dissociative recombination from each
other and calculating their populations. However in general experiments such
populations are already being measured, e.g. measurements of the dissociative
recombination with LiH+ by Krohn et al. [2001].

As in papers Houfek et al. [2006] and Houfek et al. [2008a] we give all relations
and values in tables and figures in atomic units, in which

~ = me = e =
1

4πε0
= 1. (4)

Internuclear distances are given in units of the Bohr radius a0 = 5.291 772 ×
10−11 m, cross sections in units of a2

0 = 2.800 285 × 10−21 m2, and energies in
units of hartrees, where 1 hartree = 4.359 748× 10−18 J. The atomic unit of time
is 1 a.u. = 2.418 884× 10−17 s ' 0.024 fs.
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1. Theoretical background

This chapter contains a few notes on the general scattering theory, a detailed
description of presented models, their solutions in both time-dependent and time-
independent approaches and a brief description of an approximative method used
for comparison with the electron-molecule collision model.

1.1 Multichannel scattering

Before introducing the models we summarize a few important relations from the
general scattering theory. The purpose of this section is simply to provide a solid
background to relations presented later in the text. For further details see e.g.
Taylor [1991].

If we start with a system consisting of two or more subsystems with some
internal degrees of freedom, then the process of scattering may be generally for-
mulated as mapping of some initial state of the system, where subsystems are
separated, to a set of possible final states, for example

AB + C −→ AB∗ + C,

−→ AC + B,

−→ A + B + C,

... etc. (1.1)

where the A, B, C stand as labels of system components. In the following text we
will confine ourselves to cases where only two subsystems are present in the initial
and all of the final states. The initial and final states are labeled by channels and
we assume that they are asymptotically described by their channel Hamiltonians
Hγ

0 , where γ labels the channel. We denote the initial state as |ψαin〉, where α
denotes the chosen initial channel. If there would be no interaction between
subsystems, the evolution of the state in the channel α would be provided by the
evolution operator Uα

0 (t) derived from the unperturbed Hamiltonian Hα
0 as

Uα
0 (t) = e−iH

α
0 t (1.2)

To any initial state |ψαin〉 at t = 0 in the channel α corresponds the actual physical
state |ψ+

α 〉 at t = 0 which may be produced by evolving the initial state backwards
in time by the channel evolution operator Uα

0 (t) and then evolving it back by the
evolution operator U(t) derived from the full problem Hamiltonian H,

|ψ+
α 〉 = lim

t�−∞
U †(t)Uα

0 (t)|ψαin〉, (1.3)

Similarly we can define the actual physical state |ψ−β 〉 for any final state |ψβout〉 in
the final channel β. We define the Møller operators as

Ωγ
± = lim

t�±∞
U †(t)Uγ

0 (t) = lim
t�±∞

eiHte−iH
γ
0 t. (1.4)

The Møller operators are isometric

Ωγ†
±Ωγ

± = 1, (1.5)
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and in the absence of bound states also unitary (see Taylor [1991])

Ω†± = Ω−1
± . (1.6)

Starting with the initial energy eigenstates |ψα,E〉 we can produce the actual
states with energy E by

|ψ±α,E〉 = Ωγ
±|ψα,E〉. (1.7)

Crucial to the following text is the definition of the scattering operator

Sα→β = Ωβ†
− Ωα

+, (1.8)

and therefore

〈ψ−β,E|ψ+
α,E〉 = 〈ψβ,E|Ωβ†

− Ωα
+|ψα,E〉 = 〈ψβ,E|S|ψα,E〉, (1.9)

with the elements of the S matrix satisfying (thanks to the conservation of energy)

〈ψβ,E′|Ωβ†
− Ωα

+|ψα,E〉 = Sα→β(E)δ(E − E ′). (1.10)

We should emphasize that all of the information about the scattering process is
given by the Sα→β(E) matrix elements.

1.2 Two-dimensional model of resonant electron

molecule collisions

In this section we give a brief description of the two-dimensional model as it was
introduced by Houfek et al. [2006] and Houfek et al. [2008a]. The model has two
degrees of freedom, one nuclear R and one electronic r. Its full Hamiltonian reads

H = − 1

2µ

∂2

∂R2
− 1

2

∂2

∂r2
+ V (R, r), (1.11)

where µ denotes the reduced molecular mass and V (R, r) is the model potential

V (R, r) = V0(R) +
l(l + 1)

2r2
+ Vint(R, r), (1.12)

where l denotes the electron angular momentum chosen to correspond to the
incoming electron partial wave with the largest contribution to the cross section
in a real system, V0(R) is the potential energy describing vibrational motion of
the neutral molecule when the electron is at large distances, i.e.

V0(R) = lim
r→∞

V (R, r), (1.13)

and Vint(R, r) describes the interaction between the two degrees of freedom given
by two functions λ(R) and α(R) as

Vint(R, r) = λ(R)e−α(R)r2 , (1.14)

chosen to obtain various models each similar to a different real system. The
molecular potential is approximated by the Morse potential

V0(R) = D0

(
e−2α0(R−R0) − 2e−α0(R−R0)

)
, (1.15)
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where D0 controls the depth of the potential well, α0 its width and R0 its posi-
tion. The model does not consider rotational excitation of the molecule, thus no
centrifugal barrier of the form J(J+1)

2µR2 corresponding to the angular momentum
quantum number J is present in the molecular potential, though it is straightfor-
ward to generalize the model to include them.

For three models introduced in Houfek et al. [2006] and Houfek et al. [2008a]
it is not necessary to consider α as a function of R, thus we put

α(R) = αc. (1.16)

At last we specify the function λ(R), which was chosen in such a way to have a
bound electronic state for large internuclear distances R and a resonant state for
small R. For all models investigated in this paper it has the following form

λ(R) = λ∞ +
λ0

1 + eλ1(R−Rλ)
, (1.17)

λ0 = (λc − λ∞)(1 + eλ1(Rc−Rλ)). (1.18)

The parameter λ∞ controls the potential as R→∞, the parameter λc determines
the value of λ(R) at the crossing point Rc of the potential curve V0(R) and
the potential energy curve Eres(R) (see Eq. (1.63) below) corresponding to the
internuclear distance where the resonant state becomes a bound state.

Table 1.1: Constants and potential parameters for the N2-like, NO-like and F2-
like models given in atomic units, so that the resulting potential is in hartrees.

constant N2-like NO-like F2-like
µ 12 766.36 13 614.16 17 315.99
l 2 (d-wave) 1 (p-wave) 1 (p-wave)
D0 0.75102 0.2363 0.0598
α0 1.15350 1.5710 1.5161
R0 2.01943 2.1570 2.6906
λ∞ 6.21066 6.3670 18.8490
λ1 1.05708 5.0000 3.2130
Rλ -27.9833 2.0843 1.8320
λc 5.38022 6.0500 18.1450
Rc 2.40500 2.2850 2.5950
αc 0.40000 1.0000 3.0000

1.2.1 Channel Hamiltonians and eigenstates

Before we introduce both the time-independent and time-dependent approaches
to the model dynamics, it is convenient to introduce the unperturbed Hamil-
tonians for the vibrational excitation (VE) and dissociative attachment (DA)
channels, which are

HVE
0 = −1

2

∂2

∂r2
+
l(l + 1)

2r2
− 1

2µ

∂2

∂R2
+ V0(R), (1.19)

HDA
0 = −1

2

∂2

∂r2
− 1

2µ

∂2

∂R2
+ Vb(r), (1.20)
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where the potential Vb(r) is given by the limit

Vb(r) = lim
R→∞

V (R, r). (1.21)

The first Hamiltonian HVE
0 describes the system when the molecule is in a certain

vibrational state and the electron is far from the molecule. The second Hamilto-
nian HDA

0 describes the system when the electron is attached to one component
of the molecule and the components are far from each other.

As in Houfek et al. [2008a], we define the unperturbed energy-normalized
(E = k2/2) electronic continuum states with the angular momentum l as

J l
k(r) =

√
2k

π
rjl(kr), (1.22)

where jl is the spherical Bessel function of the first kind (see Abramowitz and
Stegun [1972] for details), and the unperturbed energy-normalized (E = K2/2µ)
molecular-anion continuum state as

EK(R) =

√
2µ

πK
sin(KR). (1.23)

The energy-normalized incident eigenstate of HVE
0 with the total energy E =

Evi + k2
i /2 is then given by

ϕin
vi

(E,R, r) = χvi(R)J l
ki

(r), (1.24)

where χvi(R) is the initial vibrational state of the molecule, the solution of(
− 1

2µ

∂2

∂R2
+ V0(R)

)
χvi(R) = Eviχvi(R). (1.25)

The energy-normalized outgoing eigenstate for the final vibrational state vf is

ϕout
vf

(E,R, r) = χvf (R)J l
kf

(r) (1.26)

and the outgoing eigenstate in the DA channel with the total energy E = Eb +
K2/2µ is

ϕout
DA(E,R, r) = EK(R)φb(r), (1.27)

where φb(r) denotes the electronic bound state in the potential Vb(r) (we currently
assume there is only one such state which is true for all models of electron molecule
collisions investigated in this thesis).

1.3 Time independent solution

With the Hamiltonian (1.11), the system e−+AB at a given energy E is described
by the solution of the Schrödinger equation

HΨ+
E(R, r) = EΨ+

E(R, r) (1.28)

where Ψ+
E(R, r) satisfies appropriate boundary conditions. We are interested in

vibrational excitation and dissociative attachment, and for these two processes the
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initial state of the model system Ψ0
vi

(R, r) is given by (1.24). To solve Eq. (1.28),
we partition the full wave function, Ψ+

E, into incident and scattered parts,

Ψ+
E(R, r) = Ψ0

vi
(R, r) + Ψsc(R, r) . (1.29)

The unknown scattered part of the wave function, Ψsc(R, r), then satisfies a driven
Schrödinger equation

(E −H)Ψsc(R, r) = Vint(R, r)Ψ
0
vi

(R, r) , (1.30)

and the boundary conditions for which are

Ψsc(R, r) −→
r→∞

∑
vf

fVE
vi→vfχvf (R)

√
2kf

π
rh

(1)
l (kfr) , (1.31)

Ψsc(R, r) −→
R→∞

fDA
vi
φb(r)

√
2µ

πKDA

Rh
(1)
0 (KDAR) (1.32)

where h
(1)
l is the spherical Hankel function (see Abramowitz and Stegun [1972]).

Note that we do not consider the situation where both R→∞ and r →∞.
The scattering amplitude for vibrational excitation, fVE

vi→vf , and for dissociative
attachment, fDA

vi
, are related to the T matrices for these processes which we will

define below.
The sum in Eq. (1.31) runs over all open vibrational excitation channels, for

which χvf (R) is the final vibrational state of the molecule with energy Evf and
kf denotes the final momentum of the electron. Eq. (1.32) is the asymptotic
condition for the dissociative attachment channel (if it is open). We suppose here
that the model potential in Eq. (1.12) supports only one bound state, φb(r), of
the electron as R→∞,(

−1

2

∂2

∂r2
+
l(l + 1)

2r2
+ Vb(r)

)
φb(r) = Ebφb(r) , (1.33)

which is appropriate for all models of electron-molecule collisions we will treat
here. The binding energy, Eb, is related to the electron affinity, Ea, of the atom
B by Ea = −Eb. The relative momentum, KDA, of A and B− in the dissociative
attachment channel is given by

E =
K2

DA

2µ
+ Eb . (1.34)

Finally, we give the expressions for the cross sections in terms of the T matrices
defined for the vibrational excitation and dissociative attachment channels in
terms of the matrix elements of the channel interaction potentials,

TVE
vi→vf (E) =

fVE
vi→vf (E)

2kef

= 〈Ψ0
vf
|VVE|Ψ+

E〉

=

∞∫
0

dR

∞∫
0

drΨ0
vf

(R, r)VVE(R, r)Ψ+
E(R, r) , (1.35)

11



TDA
vi

(E) =
fDA
vi

(E)

2µkDA

= 〈Ψ0
DA|VDA|Ψ+

E〉

=

∞∫
0

dR

∞∫
0

drΨ0
DA(R, r)VDA(R, r)Ψ+

E(R, r) . (1.36)

The unperturbed final states in the vibrational excitation channels Ψ0
vf

(R, r) are
given by (1.26), the final state in the dissociative attachment channel Ψ0

DA(R, r)
is given by (1.27), the interaction potential in the vibrational excitation channel
is the interaction between the electron and molecule, given in Eq. (1.14),

VVE(R, r) = Vint(R, r) (1.37)

and in the dissociative attachment channel we define

VDA(R, r) = V0(R) + Vint(R, r)− lim
R→∞

Vint(R, r) . (1.38)

The resulting formulae for the cross sections can then be written as

σVE
vi→vf (E) =

4π3

k2
i

∣∣TVE
vi→vf (E)

∣∣2 , (1.39)

σDA
vi

(E) =
4π3

k2
i

∣∣TDA
vi

(E)
∣∣2 . (1.40)

1.4 Time-dependent solution

The time-dependent approach may be roughly summarized as computing the
elements of the scattering matrix from the evolution of a physical state incoming
from a specified channel and outgoing to all possible final channels.

As an initial state of the time evolution we take the molecule in a certain initial
vibrational state χvi(R) and the incoming electron described by a Gaussian wave
packet of the width σ placed at r0 in the asymptotic region, i.e.

Ψin
vi

(R, r) =
1

(πσ2)
1
4

χvi(R)e−
(r−r0)

2

2σ2
−ip0r, (1.41)

where p0 denotes the mean momentum of the incoming electron. The elements
of the S matrix are defined in terms of the asymptotic eigenstates (1.24), (1.26)
and (1.27) of the channel Hamiltonians (1.19) and (1.20). For a given channel the
eigenstates form a complete basis. In the initial vibrational excitation channel
we can thus expand the wave function into the basis (1.24) as

Ψin
vi

(R, r) =

∞∫
0

ηin
vi

(ε)χvi(R)J l
k(r)dε, (1.42)

where k denotes the electron momentum given by k =
√

2ε =
√

2(E − Evi) with
Evi being the energy of the initial vibrational state and the coefficients ηin

vi
(E) are

ηin
vi

(E) =

∞∫
0

∞∫
0

ϕin
vi

(E,R, r)∗Ψin
vi

(R, r)drdR. (1.43)
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The propagation of the wave function is given by application of the unitary
evolution operator

ψ(t+ t0) = U(t)ψ(t0) = e−iHtψ(t0). (1.44)

The evolved wave function will be outgoing into all accessible channels and we
need to calculate the S matrix from these outgoing waves. For this purpose we
have tested three methods for the evaluation of the S-matrix elements.

1.4.1 Correlation function

The first is the correlation function approach described by Tannor and Weeks
[1993]. Here we give only a brief overview and necessary formulas. The complete
derivation using the spectral method or from the relations of completeness may
be found in Tannor and Weeks [1993]. The method is based on the integration
over time of the overlap of the evolved wave function with a test function placed
in a channel of interest. In the vibrational excitation channels we assume the test
functions to be a product of the final vibrational state χvf (R) and an outgoing
Gaussian wave packet in the electronic degree of freedom

Φout
vf

(R, r) =
1

(πσ2)
1
4

χvf (R)e−
(r−r0)

2

2σ2
+iq0r. (1.45)

In the dissociative attachment channel we assume the test function to be a product
of the attached electron bound state φb(r) and an outgoing Gaussian wave packet

Φout
DA(R, r) =

1

(πσ2)
1
4

φb(r)e−
(R−R0)

2

2σ2
+iQ0R. (1.46)

As mentioned above, the elements of the S matrix are defined in terms of the
asymptotic eigenstates (1.26) and (1.27), thus decompositions of the test functions
similar to (1.43) can be utilized. If we introduce the correlation function as an
overlap of the evolved wave function with the test function in one of the possible
channels

Cβ(t) =

∞∫
0

∞∫
0

(Φout
β (R, r))∗ψ(R, r, t) dr dR, (1.47)

where β stands for vf or DA, then the S-matrix elements for both processes can
be obtained from

ST&W
vi�β (E) =

(2π)−1(
ηout
β (E)

)∗
ηin
vi

(E)

∞∫
−∞

Cβ(t)eiEtdt. (1.48)

where E is the same for all channels and it is the total energy of the system

E =
k2
i

2
+ Evi =

k2
f

2
+ Evf =

K2

2µ
+ Eb. (1.49)

Although the above relations provide a proper mean to calculate the S-matrix
elements, in practice one can encounter some numerical difficulties if the test func-
tions are narrow and placed improperly. Since the test functions may in general

13



contain contributions of incoming as well as outgoing waves and the eigenstates
(1.26, 1.27) do not distinguish the orientation of impulse, one should place the
test functions closer to the interaction region than the incident wave packet (at
least in the initial channel). In the following we choose a different approach
considering only the outgoing part of the test functions, however we must now
place the test functions further from the interaction region than the incident wave
packet to guarantee there is no overlap with the incoming waves. The coefficients
ηout
vf

(E) and ηout
DA(E) can then be calculated as

ηout
vf

(E) =

∞∫
0

∞∫
0

ϕ̃out
vf

(E,R, r)∗Φout
vf

(R, r) drdR , (1.50)

and

ηout
DA(E) =

∞∫
0

∞∫
0

ϕ̃out
DA(E,R, r)∗Φout

DA(R, r) drdR. (1.51)

where ϕ̃out
vf

(E,R, r) and ϕ̃out
DA(E,R, r) denotes only the outgoing part of the func-

tions (1.26, 1.27), i.e.

ϕ̃out
vf

(E,R, r) = χvf (R)

√
kf
2π
rh+

l (kfr), (1.52)

ϕ̃out
DA(E,R, r) =

√
µ

2πK
eiKRφb(r), (1.53)

where h+
l (kfr) denotes the outgoing spherical Hankel function.

1.4.2 Modified correlation function

The second method for computation of the S-matrix elements is based on the
previous one and can be derived simply by using the δ-function at some distance
r0 or R0 instead of the Gaussian wave packet in the test functions (1.45, 1.46).
As in the previous case we consider only the outgoing part of the δ-function
decomposition and the corresponding coefficients then read

η′out
vf

(E) =

√
kf
2π
r0h

+
l (kfr0)∗ , (1.54)

η′out
DA (E) =

√
µ

2πK
e−iKR0 . (1.55)

The elements of the S matrix for the vibrational excitation channels are then
given by

Sδvi�vf (E) =
(2π)−1(

η′out
vf

(E)
)∗
ηin
vi

(E)

∞∫
−∞

∞∫
0

dtdR eiEtχvf (R)∗ψ(R, r0, t) , (1.56)

and for the dissociative attachment channel by

Sδvi�DA(E) =
(2π)−1(

η′out
DA(E)

)∗
ηin
vi

(E)

∞∫
−∞

∞∫
0

dtdr eiEtφb(r)∗ψ(R0, r, t) . (1.57)
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Note that the spatial integration is reduced to the channel internal degree of
freedom thanks to the δ-function. This is the main advantage of this approach,
since it is computationally much simpler. Also note that using the original ap-
proach with full decompositions into (1.26) and (1.27) would lead to zero values
of ηout

β (E) at some energies, thus resulting in numerical instabilities.

1.4.3 Probability flux function

The third method of the evaluation of the S matrix may be derived from the
time-independent formulation via projection of the flux on the given final state.
Again we choose the outgoing waves approach and put ϕ̃out

vf
(R, r) given by (1.52)

as the final state in the VE channels and ϕ̃out
DA(R, r) given by (1.53) in the DA

channel. The S-matrix elements can be calculated from the flux at the distance
r0, or R0, far enough from the interaction zone. In the VE channels we obtain

SF
vi�vf (E) =

1

2ηin
vi

(E)

1

2i

∞∫
−∞

∞∫
0

dtdR eiEt

×
[

(ϕ̃out
vf

)∗
(
∂ψ(t)

∂r

)
− ψ(t)

(
∂(ϕ̃out

vf
)∗

∂r

)]
r=r0

, (1.58)

where we have omitted the spatial arguments (R,r) of the functions in the inte-
grand for brevity. The S-matrix element for the DA channel is given by

SF
vi�DA(E) =

1

2ηin
vi

(E)

1

2iµ

∞∫
−∞

∞∫
0

dtdr eiEt

×
[
(ϕ̃out

DA)∗
(
∂ψ(t)

∂R

)
− ψ(t)

(
∂(ϕ̃out

DA)∗

∂R

)]
R=R0

. (1.59)

1.4.4 The T -matrix elements and cross sections

Formulas for the cross sections depend on the wave function normalization (see
Taylor [1991]). Here we used the same normalization as in the paper Houfek et al.
[2008a], thus we have

σvi�β(E) =
4π3

k2
i

|Tvi→β(E)|2, (1.60)

where β stands again for vf or DA and the T -matrix element is related to the
S-matrix element by

Tvi→β(E) =
Svi→β(E)− δvi,β

2πi
. (1.61)

1.5 Local complex potential approximation

As in Váňa and Houfek [2017] we compare the results from the 2D model of the
electron molecule collisions to a simple method called the local complex potential
(LCP) approximation (Domcke [1991]). Here we summarize the time-dependent
formulation of the approximation. The time-independent formulation may be
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found in Houfek et al. [2006]. The LCP approximation solves the nuclear dy-
namics in the complex molecular anion potential Vres(R), defined as poles of the
fixed-nuclei scattering matrix shifted by the neutral potential V0(R). The poles
may be obtained as resonance or bound energies of the electronic Hamiltonian

Hel(r;R) = −1

2

∂2

∂r2
+ V (R, r), (1.62)

which is parametrically dependent on the internuclear distance R. The complex
potential Vres(R) can be written in the form

Vres(R) = Eres(R)− i

2
Γ(R), (1.63)

where the imaginary part is expressed using the resonance width Γ(R). The
imaginary part is nonzero only in the region where V0(R) < Eres(R).

We assume that the molecule is in an initial vibrational state χvi(R) and as an
initial wave packet within the LCP approximation we can take the initial vibra-
tional state modified by a square root of the resonance width (see e.g. Domcke
[1991] for details)

ΨLCP(R, t = 0) =

√
Γ(R)

2π
χvi(R). (1.64)

The motion of the wave packet is given by the evolution operator (1.44) but now
with the Hamiltonian given by

HLCP(R) = − 1

2µ

∂2

∂R2
+ Eres(R)− i

2
Γ(R). (1.65)

The elements of the T -matrix for the VE and DA processes may be expressed as
(see Domcke [1991])

T LCP
vi�vf (E) =

1

i

∞∫
0

dt

∞∫
0

dR eiEt χ∗vf (R)

√
Γ(R)

2π
ΨLCP(R, t), (1.66)

T LCP
vi�DA(E) =

√
K

2πµ
lim
R�∞

e−iKR
∞∫

0

dt eiEtΨLCP(R, t). (1.67)

and the cross sections then read

σLCP
vi�β(E) =

4π3

k2
i

|T LCP
vi→β(E)|2, (1.68)

where β stands for any of vf = v0, v1, ... or DA, ki denotes the momentum of the
incoming electron, and E is the total energy of the system given by the equation
(1.49).

1.6 Projection on a diabatic state

One of the goals of this thesis is comparison of the nuclear dynamics of the full
two-dimensional model with the LCP approximation. In order to be able to
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compare not only the resulting cross sections but also the evolution of the wave
packets we use a projection of the 2D wave packet on a certain electronic state
to obtain a function dependent only on the internuclear distance.

The LCP approximation can be derived from the more general nonlocal theory
of the nuclear dynamics of the resonant electron-molecule collisions Domcke [1991]
that is based on a choice of the so-called discrete electronic state and thus on
separation of the electronic Hilbert space into a resonant and background part.
If the projection on this discrete state is made one gets the nuclear wave function
corresponding to the resonant nuclear motion. Several possibilities how to choose
the discrete state were discussed in the paper Houfek et al. [2008a]. We decided to
project the 2D wave packet onto the physical choice of the discrete state φd(R, r)
described in Houfek et al. [2008a], the energy of which is very close to the real part
of the local complex potential. The detailed discussion of the nonlocal theory is
out of the scope of this thesis and for details we refer to the papers cited above.

The physical choice of the discrete state is obtained as eigenstates of the
fixed-nuclei electronic Hamiltonian corresponding to the bound state for larger
internuclear distances and the resonance for smaller internuclear distances. Since
the discrete state must be from the L2(R) Hilbert space for each R the resonance
eigenstates have to be smoothly suppressed for larger electronic distances. As the
suppressing function we have used

f(r) = 1− 1

1− e−(r−rd)
, (1.69)

where rd is the middle point of the region where the functions are suppressed.
For further use we define a projection onto the discrete state as the integration
of the overlap of the two-dimensional wave function with the discrete state over
the electronic coordinate, i.e.

Ψd(R, t) =

∞∫
0

dr Ψ(R, r, t)φ∗d(R, r). (1.70)

The discrete state is parametrically dependent on R due to dependence of the
electronic Hamiltonian (1.62) on the internuclear distance.

1.7 Model of dissociative recombination

As a straightforward extension of the model of electron-molecule collisions intro-
duced in Sec. 1.2 we introduce the model of electron collision with the simplest
diatomic cation H+

2 with the potential proposed by Hamilton [2003]. We will
use this model to investigate the process of dissociative recombination (3). The
original two-dimensional model has to be modified, apart from changing the in-
teraction potential, by adding the Coulomb interaction potential for the incoming
electron.

The full Hamiltonian of the model can be divided in three parts

H(R, r) = H ion
0 (R) +Hel

0 (r) + Vint(R, r). (1.71)
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Table 1.2: Parameters of the model for the e− + H+
2 system given in atomic

units, so that the resulting potential energy is in hartrees.

Parameter Value/a.u.
µ 918.076
l 1 (p-wave)
a0 0.1027
α 0.69
R0 2.0
a1 1.6435
a2 6.2
a3 0.0125
a4 1.15

The first term is the Hamiltonian of the vibrational motion of the molecular
cation

H ion(R) = − 1

2µ

∂2

∂R2
+ V0(R), (1.72)

where µ is the reduced mass of the cation and the potential energy in our model
is again taken simply as the Morse potential (1.15) with parameters adjusted to
approximate closely the lowest electronic state of the molecular cation. For the
1Σ+

g state of H+
2 the parameters are given in Tab. 1.2.

The second term in the full Hamiltonian (1.71) reads

Hel
0 (r) = −1

2

∂2

∂r2
+
l(l + 1)

2r2
− 1

r
(1.73)

and describes an incoming electron with angular momentum l attracted by the
Coulomb field of the molecular ion. The last term in (1.71) is the interaction
potential which provides the coupling between the nuclear and electronic degrees
of freedom. For the e− + H+

2 system it is taken from Hamilton [2003] and reads

Vint(R, r) = −a1

(
1− tanh

a2 −R− a3R
4

7

)(
tanh

R

a4

)4
e−

r2

3

r
, (1.74)

with parameters given in Tab. 1.2. For large electron distances the interaction
potential vanishes, but for large internuclear distances it is convenient to define
the limit of the interaction potential as

V ∞int (r) = lim
R�∞

Vint(R, r) = −2a1
e−

r2

3

r
. (1.75)

1.7.1 The channel Hamiltonians and eigenstates

As in the electron-molecule case it is convenient to write down channel Hamil-
tonians. For vibrational excitations the channel Hamiltonian consist of the first
two terms from equation (1.71), i.e.

HVE
0 = H ion

0 (R) +Hel
0 (r) (1.76)
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and describes the vibrational motion of the nuclei and the electron motion in the
ion Coulomb field.

The dissociative recombination channel Hamiltonian

HDR
0 (R, r) = − 1

2µ

∂2

∂R2
+Hel

0 (r) + V ∞int (r), (1.77)

describes the motion of free nuclei and the electron trapped in the Coulomb
potential corrected by remaining part of the interaction potential. Note that for
consistency reasons the spectrum of last two terms of the equation (1.77) should
be close to the electronic spectrum of the hydrogen atom. As it was pointed
out by Hamilton [2003] the spectrum is well approximated with exception of the
lowest DR state which is unphysical. However, this does not harm the results as
we will discuss later.

Before presenting the channel continuum states, we define the solution to the
Coulomb problem. Provided the coefficient η = −Z/k, where Z stands for charge
and variable ρ = kr the Coulomb problem is given by the equation(

∂2

∂ρ2
+ 1− 2η

ρ
− l(l + 1)

ρ2

)
ωl(ρ) = 0, (1.78)

with regular solution Fl(η, ρ) and irregular solution Gl(η, ρ). The normalization
is fixed by conditions for behavior in the asymptotic region

Fl(η, ρ)
ρ�∞−−−→ sin

[
ρ− η log(2ρ)− lπ

2
+ arg Γ(l + 1 + iη)

]
+O(ρ−1), (1.79)

Gl(η, ρ)
ρ�∞−−−→ cos

[
ρ− η log(2ρ)− lπ

2
+ arg Γ(l + 1 + iη)

]
+O(ρ−1). (1.80)

Now we can define the energy-normalized electron continuum states with angular
momentum l as the regular spherical Coulomb function for the charge Z = 1

F lk(r) =

√
2

kπ
rFl(
−1

k
, kr), (1.81)

thus the energy-normalized incident eigenstate of Hamiltonian from the Eq. (1.76)
with the total energy E = Evi + k2

i /2 is given by

ϕin
vi

(E,R, r) = χvi(R)F lki(r), (1.82)

where χvi(R) is again the vibrational eigenstate, the solution of Eq. (1.25).
Contrary to the dissociative attachment case, where only one channel was

assumed, the dissociative recombination permits infinity of outgoing states, since
there is an infinity of bound states of the hydrogen atom. In the dissociative
recombination channels we assume the continuum eigenstate to be described by
the same state as for dissociative attachment, i.e. EK(R) given by eq. (1.23). The
energy-normalized eigenstates of dissociative recombination channel Hamiltonian
HDR

0 then reads
ϕout

DRn(E,R, r) = EKDRn
(R)ξn(r) , (1.83)

where ξn(r) is the n-th bound state of(
−1

2

∂2

∂r2
+
l(l + 1)

2r2
− 1

r
+ V ∞int (r)

)
ξn(r) = εnξn(r) , (1.84)
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As it was mentioned above, in the physical reality the states ξn should coincide
with the Rydberg states of the hydrogen atom, as well as the energies εn should
coincide with the Rydberg energy levels.

1.7.2 Time-independent solution

Solving the model in the time-independent approach is very similar to the pre-
vious electron-molecule case with only slight modifications. We start with the
Schrödinger equation (1.28) with the Hamiltonian (1.71). As the initial state Ψ0

E

we take the incident eigenstate (1.82) and we compute the scattered part Ψsc of
the physical wave function Ψ+

E given from Eq. (1.30). The first difference appears
in the required boundary conditions for the scattered wave function, i.e.

Ψsc(R, r) −→
r→∞

∑
vf

fVE
vi→vfχvf (R)

√
2

kfπ
rH+

l (
−1

kf

kfr) , (1.85)

Ψsc(R, r) −→
R→∞

∑
DRn

fDRn
vi

ξn(r)

√
2µ

πKDRn

Rh
(1)
0 (KDRnR), (1.86)

where the functions H+
l (−1

kf
, kfr) are derived from the spherical Coulomb functions

in the similar way as the spherical Hankel functions from the spherical Bessel and
Neumann functions (Abramowitz and Stegun [1972])

H±l (η, ρ) = Gl(η, ρ)± iFl(η, ρ). (1.87)

The elements of the T matrix in dissociative recombination channels are then
given by a similar equation as (1.36),

TDRn
vi

(E) =
fDRn
vi

(E)

2µKDRn

= 〈Ψ0
DRn
|VDR|Ψ+

E〉

=

∞∫
0

dR

∞∫
0

drΨ0
DRn

(R, r)VDR(R, r)Ψ+
E(R, r) . (1.88)

provided the channel state Ψ0
DRn

= ϕout
DRn

(E,R, r) and the interaction potential
in the dissociative recombination channel is

VDR(R, r) = V0(R) + Vint(R, r)− V ∞int (r) . (1.89)

Using the above defined energy normalization, the cross sections are then given
by the same relation as in the eq. (1.40),

σDRn
vi

(E) =
4π3µ

k2
i

∣∣TDRn
vi

(E)
∣∣2 . (1.90)

1.7.3 Time-dependent solution

As for the time-independent approach the time-dependent method is also very
similar to the previous model of electron-molecule collisions. We choose the initial
state of the system to be exactly the same, i.e. given by the eq. (1.41). We com-
pute the coefficients of the expansion to energy-normalized channel eigenstates
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as in the eq. (1.43), only as the basis we take the initial states (1.82). The only
investigated method for the dissociative recombination was the correlation func-
tion approach. The test functions are defined in a similar way as in the eq. (1.46),
i.e.

Φout
DRn

(R, r) =
1

(πσ2)
1
4

ξn(r)e−
(R−R0)

2

2σ2
+iQ0R. (1.91)

The decomposition coefficients then read

ηout
DRn

(E) =

∞∫
0

∞∫
0

ϕ̃out
DRn

(E,R, r)∗Φout
DRn

(R, r) drdR (1.92)

provided the basis functions ϕ̃out
DRn

are given as

ϕ̃out
DRn

(E,R, r) =

√
µ

2πKDRn

eiKDRnRξn(r). (1.93)

We use the correlation functions in the same form as in the eq. (1.47). Substitut-
ing the decomposition coefficients we can use the S-matrix definition (1.48). The
definition of T -matrix elements (1.61) is also the same and the cross sections are
defined in the same way as for the time-independent solution, see the eq. (1.90).
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2. Numerical solution

To obtain the numerical solution of the dynamics of either electron-molecule
collision models or dissociative recombination model in both the time-independent
and time-dependent approach we have to choose a suitable discretization and
assure the proper boundary conditions.

It is quite obvious that all of the studied models have to be confined to some fi-
nite region of both the electronic and the nuclear coordinate. To assure the proper
boundary conditions and to avoid the reflections of the outgoing wave functions
from the finite boundaries we employ the exterior complex scaling method (ECS)
described by McCurdy and Stroud [1991] for both coordinates.

As the discretization method we have chosen the finite elements method com-
bined with discrete variable representation (FEM-DVR) introduced by Rescigno
and McCurdy [2000] (see also McCurdy et al. [2004] for further details).

To solve the evolution within the time-dependent formulation we use the gen-
eralized Crank-Nicolson method (van Dijk and Toyama [2007]). The following
text should serve only as an overview of the method, details can be found in the
cited papers.

2.1 Exterior complex scaling

In the previous chapter we have introduced the boundary conditions for the scat-
tered wave function within the time-independent approach, i.e. for the electron-
molecule collision models in (1.31) and (1.32) and for the model of dissociative re-
combination in (1.85) and (1.86). For the time-dependent approach to the model
dynamics of the studied models the boundary conditions have to assure that no
outgoing waves are reflected back from the finite boundary of the coordinates.

In both cases we use the same method based on bending the real electronic,
r, and the nuclear, R, coordinate into the complex plane at some finite point r0

and R0, respectively, in the following manner,

r′(r) =

{
r, r < r0 ,
r0 + (r − r0)eiθr , r ≥ r0 ,

(2.1)

R′(R) =

{
R, R < R0 ,
R0 + (R−R0)eiθR , R ≥ R0 .

(2.2)

As a result for θ ∈ (0, π
2
) the complex scaled region suppresses the amplitude of

the outgoing waves as

eikr
′

=
r>r0

eik(r0+(r−r0)eiθ) = eik(r0+(r−r0) cos θ)e−k(r−r0) sin θ −→
r→∞

0. (2.3)

Therefore we can use the Dirichlet boundary condition at some large enough
distance rmax and Rmax, respectively. The main advantage of this method lies in
the fact that on the real part of the coordinates the solution remains identical to
the solution of the real problem as it was demonstrated in McCurdy and Stroud
[1991]. However the proper choice of r0 and R0 depends on several aspects of the
model which will be discussed later.
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2.2 Finite elements method

The finite elements method is one of the most common methods used in compu-
tational physics. The theory behind this method is very elegant but also quite
complex. Here we summarize only the absolute basics to provide consistent pic-
ture of the numerical solution. For details please see e.g. Johnson [1987].

We will demonstrate the principles of method on a one-dimensional example
of the driven Schrödinger similar to (1.30). The extension to multiple dimensions
or to other equations is straightforward and will be discussed in the following
sections. We assume the equation(

E − V (x) +
1

2µ

∂2

∂x2

)
Ψsc(x) = Vint(x)Φ(x) (2.4)

on a confined region Ω with the Dirichlet boundary conditions. We consider this
equation in its weak form as∫

Ω

φ∗(x)(E − V (x))Ψsc(x) dx

+
1

2µ

∫
Ω

∂φ∗(x)

∂x

∂Ψsc(x)

∂x
dx =

∫
Ω

φ∗(x)Vint(x)Φ(x) dx (2.5)

which must be satisfied for any testing function φ(x) ∈ HD(Ω), where HD(Ω)
consists of all continuous functions with at least piecewise continuous derivatives
on Ω with the Dirichlet boundary conditions. By choosing a basis φj in HD(Ω),
we may decompose the solution Ψsc(x) into this basis

Ψsc(x) =
∑
j

cjφj(x). (2.6)

By substituting the decomposition into (2.5) and by using the basis functions
φi(x) as test functions we can get a matrix equation for the coefficients cj∑

j

(E − Vij − Tij)cj = bi, (2.7)

where

Tij = − 1

2µ

∫
Ω

∂φ∗i (x)

∂x

∂φj(x)

∂x
dx, (2.8)

Vij =

∫
Ω

φ∗i (x)V (x)φj(x) dx, (2.9)

and the right hand side is

bi =

∫
Ω

φ∗i (x)Vint(x)Φ(x) dx . (2.10)

The finite elements method is based on the approximation of the infinite basis φj
by a finite set of functions with a compact support, which provide computational
efficiency since a lot of the matrix elements (2.8) and (2.9) may be equal to zero.
To build the FEM representation we divide the coordinate to a finite set of M
adjacent intervals [xm, xm+1] which we refer to as elements. Elements may differ
in their lengths which can be also used for computational efficiency.
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2.3 Discrete variable representation

It is obvious that the matrix elements (2.8), (2.9) and the right-hand side (2.10)
may become quite difficult to evaluate. An efficient way to simplify the evaluation
of the potential matrix elements (2.9) is to use the discrete variable representation.

The method is based on use of a set of coordinate discretization points xj ∈ Ω
and a corresponding set of basis functions φj(x) for which the coordinate operator
X is diagonal, i.e. ∫

Ω

xφ∗i (x)φj(x) dx = δijxj. (2.11)

One way to build this representation is to diagonalize the X operator in any basis
and construct a new basis from the computed eigenstates.

Another and probably more simple way is to choose the basis functions in such
a way that the X operator is effectively diagonal with respect to some quadrature
INq . We use the Gauss-Lobatto quadrature of the order Nq on each element, i.e.
on the m-th element [xm, xm+1] we have

xm+1∫
xm

f(x) dx '
Nq∑
n=1

wmn f(xmn ), (2.12)

where xmn are the quadrature points and wmn are the quadrature weights. Appar-
ently the quadrature points overlap for adjacent elements, i.e. xmNq

= xm+1
1 . We

define the set of coordinate discretization points xj as the union of the quadrature
points from all elements, where the overlapping points are identified and counted
only once,

xj = xmn , (2.13)

n = mod(j,Nq − 1) + 1 , (2.14)

m =
j − n+ 1

Nq − 1
+ 1 , (2.15)

for j = 1, . . . , Nb with Nb = M(Nq − 1) − 1 since we discard both first and last
point of the discretization because of the Dirichlet boundary conditions.

To construct the basis functions we define the Lagrange interpolation polyno-
mials through the quadrature points xmn ,

`mn (x) =

Nq∏
k=1
k 6=n

x− xmk
xmn − xmk

, (2.16)

for all x ∈ [xm, xm+1] and identically zero otherwise. Important attribute of the
functions `mn (x) is the fact that only one of these functions on given element
is nonzero in the corresponding quadrature point xmn . The corresponding basis
functions are then constructed from `mn (x) as

φj(x) =


1√

wmNq
+wm+1

1

(
`mNq

(x) + `m+1
1 (x)

)
1√
wmn
`mn (x)

for mod (j,Nq) = 0,
otherwise

(2.17)
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Figure 2.1: An example of the FEM-DVR basis on a sample interval [0, 3] with
three elements of unit size and the quadrature order Nq = 6. The dashed, dotted
and dash-dotted curves are basis functions on the first, second and third element,
respectively. The solid line curves are the bridging basis functions.

where indices n, m are given by (2.14), (2.15) respectively and the normalization
factors are in fact given by the quadrature weights. We show an example of the
basis functions on sample discretization in Fig. 2.1. Arranging the weights to

wj =

{
wmNq

+ wm+1
1 ,

wmn ,
for mod (j,Nq − 1) = 0,
otherwise,

(2.18)

we may rewrite (2.11) as∫
Ω

xφ∗i (x)φj(x)dx u
Nb∑
k=1

wkxkφ
∗
i (xk)φj(xk) = xjδij. (2.19)

Since the representation of X operator is diagonal, any function of x is diagonal
as well and thus we may write the potential matrix elements (2.9) as

Vij = V (xi)δij (2.20)

and similarly for the right hand side coefficients (2.10)

bi =
√
wiVint(xi)Φ(xi). (2.21)

Since the basis functions are defined as polynomials, the kinetic energy matrix
(2.8) is also easy to evaluate and even though it is dense on each element, the
resulting matrix is still very sparse.
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Figure 2.2: The examples of the kinetic energy matrix T structure in one and two
dimensions. The left panel shows one-dimensional example Tx for x-coordinate
discretization with five elements and the quadrature order Nq = 8. The right
panel shows a two-dimensional example T2D constructed by (2.23) with Tx from
the previous example and Ty for y-coordinate discretization with three elements
and the quadrature order Nq = 6. The orange color marks the one-dimensional
building block Tx for the first y-coordinate basis function.

Extending the FEM-DVR discretization into multiple dimensions consists of
generating the multi-dimensional basis functions via outer product of the above
defined one-dimensional bases, e.g. for two coordinates x, y

φij(x, y) = φi(x)φj(y), (2.22)

for all i = 1, . . . , Nx
b and j = 1. . . . , Ny

b . The matrix representation of the kinetic
energy operator is then given by the sum of the tensor product of one-dimensional
kinetic energy matrix representations with identity matrix in the other dimension,
in our case

T2D = Tx ⊗ 1y + 1x ⊗Ty. (2.23)

Examples of the one-dimensional kinetic energy matrix and its extension in two
dimensions are shown in Fig. 2.2. Note that the actual structure of the two-
dimensional matrix T2D depends on the ordering of the two-dimensional basis
(2.22). We have chosen the natural ordering by repeating the x-coordinate basis
for each y-coordinate basis function. The matrix representation of the potential
terms is still diagonal in the multi-dimensional case.

2.4 Evolution operator approximation

Solving the time-dependent dynamics numerically also requires an accurate ap-
proximation of the evolution operator. For this purpose we use the generalized
Crank-Nicolson method with the Padé approximant expressed as a product of
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simple rational terms which are applied subsequently to the wave function,

ψ(t+ ∆t) = e−iH∆tψ(t) ≈
N∏
i=1

(1 + cjH∆t)

(1− c∗jH∆t)
ψ(t), (2.24)

where cj denotes the j-th root of the Padé approximant, N is the order of the
approximation and ∆t the evolution time step.

Since we use the FEM-DVR discretization, the matrices representing the
Hamiltonian are very sparse, however the resulting Padé approximation does
not have to keep the sparsity. For this reason it is convenient to keep the ap-
proximation in the product form (2.24) and apply the respective participants
subsequently. Furthermore the application of the inversed terms (1 − c∗jH∆t)
may be performed via specialized LU decomposition and back substitution for
sparse matrices (Intel MKL, SuperLU).

Using a sufficiently small time step ∆t and a sufficiently high order of the
Padé approximation leads to accurate results of the evolution, see Formánek
et al. [2010]. The integrations over time in (1.48), (1.56) and other equations
were approximated by the Simpson rule. Since the infinite integrations over time
are approximated by finite integrations we may expect inaccuracies for kinetic
energies of the incoming electron very close to zero.

Note that since we use the exterior complex scaling, the matrix representing
the Hamiltonian is no longer a hermitian and the evolution operator is no longer
unitary for the wave function is suppressed beyond the complex scaling border.

2.5 Model parametrizations

Here we specify the parameters of the FEM-DVR-ECS discretization for all three
studied models of electron-molecule collisions (N2-like, NO-like and F2-like) and
for the dissociative recombination model of H+

2 . At the end of this section we
also specify the parametrization of the time evolution. All quantities are given in
atomic units.

Table 2.1: The parametrization of FEM-DVR-ECS grids for both nuclear and
electronic coordinates for N2-like and NO-like models.

N2-like NO-like
electronic nuclear electronic nuclear
nq = 10 nq = 12 nq = 8 nq = 14

r n R n r n R n
5.0 5 1.0 1 1.0 1 1.0 1
7.0 1 1.5 1 3.0 1 1.6 1
10.0 1 3.0 10 6.0 1 9.0 37
90.0 20 4.0 2 10.0 1 - -
- - 5.0 1 90.0 1 - -

θ = 35.0 θ = 35.0 θ = 35.0 θ = 45.0
nc = 15 nc = 10 nc = 15 nc = 10

For a simpler construction of the grids we have used the same quadrature
order nq on each FEM-DVR element of a given coordinate, but the order nq
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may differ for different coordinates and models. The individual lengths of the
elements were chosen with respect to the shape of the potential energy surface
V (R, r), i.e. the density of the discretization is increased in the areas where the
potential energy surface has deeper wells. The detailed images of the potential
energy surfaces may be found in Chap. 3, for the N2-like model in Fig. 3.1, the
NO-like model in Fig. 3.8 and the F2-like model in Fig. 3.15, and in Chap. 4 for
the dissociative recombination H+

2 -like model in Fig. 4.1.
We have used the exterior complex scaling for both coordinates in all investi-

gated models. The lengths of complex scaled elements were set with exponential
increment, with exception of the first two elements. The positions of the element
endpoints of the elements are given by increasing sequence of nc values, given by

r′m =

{
r0 +mheiθ,
r′m−1 + eα(m−2)heiθ,

for m = 1, 2 ,
for m = 3, . . . , nc ,

(2.25)

where r0 stands for the point of the coordinate bending into the complex plane,
h is the scaled element length, α is the real exponential scaling argument, m is
the element index counting from the point of bending into the complex plane, θ
is the complex scaling angle and i is the imaginary unit. The real exponential
scaling parameter is set uniformly for all investigated models to α = 0.2, the
scaled element length h is always the length of the last real element and r0 is the
last real element endpoint.

Table 2.2: The parametrization of the FEM-DVR-ECS grids for both nuclear
and electronic coordinates for F2-like and H+

2 -like models.

F2-like H+
2 -like

electronic nuclear electronic nuclear
nq = 12 nq = 20 nq = 8 nq = 8

r n R n r n R n
1.5 6 1.8 9 1.1 10 1.0 5
2.0 1 2.0 1 4.1 10 14.05 90
4.0 1 2.5 5 20.1 16 14.5∗ 3
10.0 2 2.5969 4 100.1 20 - -
90.0 20 2.7 4 1300.1 120 - -
- - 10.7 4 - - - -

θ = 40.0 θ = 35.0 θ = 5.0 θ = 22.0
nc = 15 nc = 15 nc = 25 nc = 25

The parameters used in our calculations for all studied models are arranged in
the Table 2.1 and Table 2.2. All grids started at the origin of the coordinates and
the number of elements n next to a certain distance is the number of elements
on the interval from the previous distance to the specified one. We should note
that we had to increase the density of the discretization in the real region of the
nuclear coordinate for the NO-like and F2-like models to be sufficiently dense for
placing the DA channel test function. The density was significantly reduced for
the model of dissociative recombination of H+

2 since we will confine ourselves on
a smaller energy range, the model has significantly smaller reduced mass and its
coordinate ranges are significantly larger.
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For the time evolution operator we used the diagonal Padé approximation
(2.24). For the electron-molecule collisions models we used the order of the Padé
approximation N = 3 which is sufficiently accurate with the time step ∆t = 1.0,
which is about 0.024 fs. For the dissociative recombination model we have used
a larger time step ∆t = 10.0 but also a higher order of the Padé approximation
N = 5.

2.6 Visualization of 2D complex wave function

Since the complex numbers have two components it is quite a challenge to dis-
play the whole two-dimensional wave function. The common procedure is to
either split the real and the imaginary parts into separate figures or to display
the probability density only, discarding the complex phase. Both possibilities
are inconvenient in their own way. The result is either too complicated or the
displayed information is not complete. This problem becomes even more aching
within the time-dependent computations since time itself is another dimension to
display. A convenient solution to the problem is to identify the complex numbers
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Figure 2.3: Examples of the HSV complex mapping. The left panel shows the
simple legend of the HSV mapping near the origin of the complex plane. The
right panel shows the examples of two Gaussian wave packets. The wave packet
on top has zero horizontal impulse and is real positive, the bottom wave packet
has positive horizontal impulse and it is outgoing to the right side of the figure.

with specific colors. For this purpose we have chosen a simple mapping of the
complex plane to the HSV color space. The color space has three components,
hue, saturation and value, each defined on the real range [0, 1]. Since the hue pa-
rameter is cyclic, it can be naturally assigned to an angular coordinate. Therefore
we first express the complex values in polar coordinates

ρ = |z| , ρ ∈ [0,∞) , (2.26)

ϕ = arctan z+z̄
z−z̄ , ϕ ∈ [0, 2π) . (2.27)
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The mapping of ϕ to the hue parameter is done by simple rescaling. For the
mapping of the radial coordinate, we are left with two remaining dimensions of
the color space. We choose to divide the mapping by parameter ζ and map each
part to one dimension while maintaining the other constant, at its maximum.
Together we get

H = ϕ
2π
, (2.28)

S =

{ ρ
ζ
,

1.0,

forρ ≤ ζ,
forρ > ζ,

(2.29)

V =

{
1.0,
ζ
ρ
,

forρ ≤ ζ,
forρ > ζ.

(2.30)

This mapping assigns the white color to the origin and the black color to the
infinity, which is suitable for printed plots. Swapping the definition between
saturation and value inverts the scale and assigns the black color to the origin
and the white color to infinity which may be more suitable for screen projections.
The colors with zero saturation (gray scale) are reserved for text, markers and
contours.

As an example we show the unit square region around the complex plane origin
as the HSV color image in the left panel of the Fig. 2.3, which can be used as a
legend to all figures displaying the wave functions as an HSV image. In the right
panel of the same figure, we show two examples of simple wave functions. Closer
observation of the right panel reveals one important property of the HSV color
model. If the wave function represents a bound state, the HSV model displays
such a state in shades of only two colors, opposite to each other with respect to
the origin. Which colors are used depends solely on the complex phase factor.
Since the evolution of a bound state is given only by the phase factor e−iεt, the
wave function in the HSV image will simply change these two colors uniformly.
The order of the color change is given by a clockwise motion around the origin of
the legend (left panel). On the other hand, if the figure represents a moving wave
packet with sufficiently large momentum, the magnitude of the wave function
changes slowly while the complex phase changes rapidly. Thus the parts of the
wave function which are moving in a certain direction can by identified by stripes
of color change.

We conclude that within this visualization we may identify the impulse dis-
tribution. The local impulse vector is perpendicular to the contour of the same
color, the impulse direction is given by the color order and the impulse size is
given by the frequency at which the colors change.

2.7 Few notes on the implementation

The numerical solution of the two-dimensional model was implemented in C/C++
code with use of the Intel Math Kernel Library, mainly for vector, matrix and
sparse matrix calculus. The main work is done by the sparse linear solver, for
which we chose the Intel Parallel Direct Sparse Solver (PARDISO). All libraries
are linked in 64-bit integer arithmetics, since the total number of nonzero elements
in the LU decomposition of the matrix representation of the Hamiltonian in the
H+

2 -like model exceeds the upper bound for 32-bit integers.
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The Bessel functions and the Coulomb functions were computed with use of
the coulcc Fortran 77 library by Thompson and Barnett [1985]. We may note
that the package provides a good accuracy with exception of very small values of
the coordinate.

The HSV data were processed and plotted with use of the Python3 imple-
mentation of the Matplotlib package.
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3. Models of electron-molecule
collisions

In this chapter we give an overview of the results for three models introduced by
Houfek et al. [2006]. We focus on describing the evolution of the two-dimensional
wave functions and their comparison with the time-dependent LCP approxima-
tion and the comparison of the cross sections with the time-independent results.
Probably the best way how to observe the time evolution of any system is to
use animations. For the 2D models studied in this chapter such animations are
provided as attachments.

The interpretation of the cross section structures follows in Sec. 3.4. The
details of the numerical computations, such as the space discretization or the order
of the Padé approximation to the evolution operator were already summarized in
Sec. 2.5. For all three models we confine the investigated energy range to [0, 0.2]
a.u. in which resonant processes we are interested in take place.

3.1 N2-like model
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Figure 3.1: The full 2D potential energy surface of the N2-like model shown at
short distances.

The first model we will discuss is the N2-like model. The shape of the 2D model
potential in the interaction region is shown in Fig. 3.1 and the potential energy
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Figure 3.2: The potential energy curves of the LCP approximation for the N2-
like model. The solid blue line shows the potential V0(R) of the neutral molecule,
the solid orange line is the resonant energy curve Eres(R). The yellow shaded
area around the resonant energy curve shows the resonance width Γ(R). The
dashed blue lines with labels vi represent several vibrational levels of the neutral
molecule. The orange dashed lines with labels ωi represent the resonant energy
levels in the potential Eres(R).

curves of the LCP approximation obtained from the fixed-nuclei calculations for
this model are shown in Fig. 3.2.

We start the evolution of the 2D model at time t = 0 with an incoming wave
packet in the VE channel vi = 0 given by (1.41) placed at r0 = 45 with σ = 6.0
and p0 = 0.35. Note that the mean impulse corresponds to kinetic energy of
the electron p2

0/2 ' 0.06. The width of the Gaussian wave packet is chosen in
such a way that the Fourier-Bessel transform (1.43) covers the whole investigated
range but quickly becomes negligible beyond. We present a few snapshots of the
evolved two-dimensional wave function in Fig. 3.3 and an animation is attached
as Att. 1. At the beginning of the evolution the initial wave packet moves towards
the interaction region where a part of it tunnels through the potential barrier at
r ∼ 2 − 5 and is trapped in the well while the remaining part is reflected back
and moves to the VE channels. At sufficiently large distances it is absorbed by
the complex scaled part of the electronic coordinate to prevent reflections back
to the interaction region. The trapped part of the wave packet moves slowly
towards larger internuclear distances. Once it reaches distances R ∼ 2.2 − 2.6
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Figure 3.3: Snapshots of the evolved wave function in the HSV images. The
light gray contours show the shape of the potential (see Fig. 3.1), the dark grey
contours are the wave function amplitude levels and the colors show the complex
phase factor scaled to magnitude ζ (see Sec. 2.6 for details). The top panels show
the incoming wave packet (t = 60), the reflection and tunnelling through the
potential barrier (t = 100) forming a small wave packet behind this barrier and
its motion towards larger internuclear distances (t = 200) while the reflected part
leaves the interaction region. The middle panels show in detail the motion of the
trapped wave packet further along the internuclear coordinate (t = 300), near the
maximum of the first oscillation (t = 420) and its motion back (t = 600). The
bottom panels show the tunnelling back to VE channels (t = 700), further scaled
to smaller magnitude (t = 800), and near the maximum of the second oscillation
(t = 1040).
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Figure 3.4: The discrete state φd(R, r) as described in Sec. 1.6. The blue surface
is the real part and green surface is the imaginary part shifted by −1 on the z-axis.
The discrete state is chosen to be real for large values of the nuclear coordinate.
As it approaches interaction region the nonzero imaginary part emerges. Note
that the right panel axes are rotated from Fig. 3.1 for better visibility.

it is repelled back due to the increasing potential energy. At t ∼ 420 the wave
packet reaches the maximal value of the internuclear distance around R ∼ 2.4.
Since the dissociative channel is not accessible for the given energy range the
whole wave packet is reflected back towards the interaction region. This motion
is often referred to as the boomerang motion. In the interaction region a part of
the wave packet penetrates back to the VE channels and leaves the interaction
region. A small part of the wave packet remains behind the barrier and repeats
the motion in the nuclear coordinate.

To compare the evolution of the two-dimensional wave function with the evo-
lution of the wave function from the LCP approximation we project the 2D wave
function to the physical choice of the discrete state for each internuclear distance.
The real and imaginary parts of the discrete state are shown in Fig. 3.4. Note
that the imaginary part is nonzero only for internuclear distances smaller than
Rc, i.e. in the region where the energy of the fixed-nuclei electronic state Eres(R)
is above the neutral molecule potential energy V0(R). In Fig. 3.5 we present the
comparison of the time evolution of these projections with the LCP approxima-
tion wave function. Note that the figure provides only information about relative
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Figure 3.5: Comparison of the time-evolution of the 2D wave function projected
on the discrete state with the LCP wave function. The time is marked by the
color of the curve as indicated in the box on the right side of the panels. The
incident wave packets were synchronized by ∆LCP

t = 101. The LCP wave packet
was rescaled to match the projection normalisation at t = 419, i.e. multiplied by
factor 328 (see Fig. 3.22 and the Sec. 3.4 for details).

changes in time since the LCP wave packet was rescaled and synchronized to
the projections (see Sec. 3.4 for details). The significant differences occur at the
beginning of the evolution, since the process of the trapping in the potential well
is not included in the LCP approximation for it describes only the evolution of
the trapped wave packet. The shapes of the functions are very similar otherwise.

We have set the cutoff time to tcutoff = 4000 a.u. ' 100 fs since the wave func-
tion amplitude in the interaction region becomes negligible. As mentioned before
we have tested three methods for evaluation of the S-matrix elements. The test
functions for the Tannor & Weeks approach have to be placed far enough, not
only from the interaction region but also from the initial state so their overlap is
negligible. We have set the positions to r0 = 75 with the mean impulse q0 = 0.39
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Figure 3.6: The cross sections of the elastic and two inelastic processes at the
cut-off time tcutoff = 4000 obtained by three methods of S-matrix evaluation and
by the LCP approximation are compared with the time-independent approach
of the 2D model. The dashed orange lines with labels ωi marks positions of the
resonant energy levels in the potential Eres(R) (see Fig. 3.2 for details).

and the width σ = 6.0. The position of the δ-functions in the modified Tannor
& Weeks approach and of the surface flux integration were both set to r0 = 75
as well. The resulting cross sections for three selected VE transitions are shown
in Fig. 3.6 along with the time-independent calculation and LCP approxima-
tion results. The time-dependent calculation is in very good accordance to the
reference time-independent result for all three studied methods. Note that the
results are converged even at channel thresholds where the energy of outgoing
electron is close to zero (for example the VE 0 → 8 cross section in Fig. 3.6 at
the threshold energy E ' 0.096 goes to zero). The only noticeable inaccuracy
of the time-dependent approach appears in the elastic scattering process for very
low energies (not shown in Fig. 3.6). This inaccuracy results from Eqs. (1.60)
and (1.61) when evaluated numerically close to zero energy.
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Figure 3.7: Comparison of the VE 0 → 1 cross section for the N2-like model
with the result of Shandilya et al. [2012] and with the experimental result of Allan
[1985].

To complete the discussion of results for N2-like model we show in Fig. 3.7
a comparison of the VE cross section for transition 0 → 1 calculated using the
time-dependent approach presented in this thesis with the result of Shandilya
et al. [2012] and with the experimental cross section of Allan [2005a] multiplied
by a factor to have the same maximal value of the highest peak as our results.
Although the 2D model was not meant for direct comparison with experiment
one can see that the 2D N2-like model reproduces the basic features of the cross
section rather well. Lower frequency of the oscillations at higher energies is due to
a slightly incorrect shape of the potential energy curve of the molecular anion N−2
to which the model parameters were fitted. On the other hand, the cross section
of Shandilya et al. [2012] differs quite significantly from our and experimental
result although it should be the same as ours because the model is the same.
Because our time-dependent results agree perfectly with the time-independent
ones from Houfek et al. [2006] we believe that the calculations of Shandilya et al.
are incorrect. We should also note here that although it is not explicitly written in
the paper we suspect that Shandilya et al. [2012] also normalized their theoretical
cross sections (for each VE transition separately) to get the same maximal value
of the highest peak as in Houfek et al. [2006]) because their cross sections for all
VE transitions have always the same maximal value as results in Houfek et al.
[2006], which in our opinion makes further comparison of our results with their
cross sections useless.

3.2 NO-like model

The second investigated case is the NO-like model. As in the previous case we
show the image of the potential in the interaction zone in Fig. 3.8 and the derived
potentials V0(R) and Eres(R) in Fig. 3.9. Note that the minimum of Eres(R) is now
behind the crossing point of the potential curves forming an outer well (outside
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Figure 3.8: The full 2D potential energy surface of the NO-like model shown at
short distances.

the autodetachment region). Therefore a longer living states in this outer well can
be expected to form during the dynamics. Also note that since in this model the
DA channel is open for energies E & 0.175, we have to extend the discretization in
the internuclear coordinate, details may be found in Sec. 2.5. As in the previous
case we start the evolution with the initial state in the VE channel vi = 0 with
the initial position of the Gaussian wave packet placed at r0 = 45, with the mean
impulse p0 = 0.35 and the width σ = 6.0.

The beginning of the evolution is practically the same as in the previous case.
The initial wave packet reaches the interaction region where it hits the poten-
tial barrier. A part of the wave packet penetrates to the potential well and the
other part is reflected to the VE channels, leaves the interaction region and being
consumed by the imaginary part of the complex scaled electronic coordinate it
quickly vanishes. Meanwhile the trapped wave packet starts to move in the inter-
nuclear coordinate. We present images of the evolved wave function in Fig. 3.10
and Fig. 3.11 and also an animation is attached as Att. 3. The noticeable differ-
ence from the N2-like model appears at the end of the boomerang motion when
the returning wave packet penetrates back to the VE channels. The wave packet
has no longer one smooth peak in the internuclear coordinate. The second peak
appears at R ∼ 2.4 where the minimum of the potential energy curve Eres(R)
is, see Fig. 3.9. The difference is even more visible during the second oscillation
since the overall amplitude of the wave packet is significantly decreased by the
part which already left to the VE channel space. This observation suggests that
the second peak is a longer living part of the trapped wave packet.
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Figure 3.9: The potential energy curves V0(R) (solid blue line) and Eres(R)
(solid orange line) with the resonance width Γ(R) as the yellow shaded area
around Eres(R) for the NO-like model. The dashed blue lines with several labels
vi represent vibrational levels of the neutral molecule. The orange dashed lines
with labels ωi represent the resonant energy levels in the potential Eres(R).

That the dynamics of this model slightly differs from the N2-like model is
nicely visible from the projections onto the discrete state. This state is very sim-
ilar to the discrete state used in the N2-like case, with only small differences in
the interaction region where it changes slightly more rapidly with the decreas-
ing internuclear distance. Dependence of the discrete state on the internuclear
distance is shown in Fig. 3.12.

The evolution of the projections along with the LCP approximation wave
function may be observed in Fig. 3.13. The top panel shows the process of
initial electron capture into the resonant state and the motion of the captured
part of the wave packet towards larger internuclear distances. The capture is
again naturally missing in the LCP approximation. The LCP wave function was
rescaled and synchronized to match the projection at the maximal internuclear
distance (see again Sec. 3.4 for details). Note that the maximal mean internuclear
distance is slightly different for the projection (Rmax ' 2.75) and for the LCP
approximation (Rmax ' 2.7). However, this maximal distance for projections is
strongly dependent on the parameters of the initial wave packet (the higher the
mean energy of the wave packet the larger Rmax). The second pair of panels
shows the motion back to the interaction region and the process of decaying of
the resonant state. Another significant difference between the projections and
the LCP approximation is visible in the region around R ≈ 2.4, magnified in the
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Figure 3.10: Snapshots of the evolved wave function in the HSV images. The
top panels show the initial scattering (t = 100, t = 200) with tunnelling through
the potential barrier, the reflection to the vibrational excitation channels and
beginning of the first molecular oscillation (t = 300). The middle panels from top
show in detail the boomerang oscillation along the nuclear coordinate (t = 400,
t = 500) up to the point near the maximum of the first oscillation (t = 600)
around R ' 2.75. The bottom panels show the motion back to smaller nuclear
distances (t = 700, t = 800, t = 900) with visible deformation of the wave packet
close to the location of the outer potential well at R ∼ 2.4.
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Figure 3.11: Snapshots of the evolved wave function in the HSV images, contin-
uation from the Fig. 3.10. The top panels show the process of the tunnelling back
to the vibrational excitation channels (t = 1000, t = 1100, t = 1200) revealing the
second peak of the wave packet behind the potential barrier. The middle panels
show the forward motion during the second oscillation (t = 1300, t = 1400 and
t = 1500) displaying an even more pronounced deformation of the wave packet.
The bottom panels show the wave packet close to the second turning point of
the second oscillation (t = 1600 and t = 1700), where the second peak becomes
practically isolated revealing the location of the outer well minimum, and again
the backward motion towards smaller nuclear distances (t = 1800).
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Figure 3.12: The discrete state φd(R, r) as described in Sec. 1.6. The blue surface
is the real part and green surface is the imaginary part shifted by −1 on the z-axis.
The discrete state is chosen to be real for large values of the nuclear coordinate.
As it approaches interaction region the nonzero imaginary part emerges. Note
that the right panel axes are rotated from Fig. 3.8 for better visibility.

third pair of panels, which points to the failure of the LCP approximation.

As the evolution continues the two-dimensional wave function decays more
slowly suggesting presence of a long living state. The cutoff time was set to
tc = 35000 since the normalization of the two-dimensional wave function dropped
enough, below 10−9. We present the cross sections for a few VE channels and the
DA channel obtained by all three methods described above compared to the time-
independent calculation and LCP approximation in Fig. 3.14. Again the results
agree with the time-independent ones for almost all investigated energies. Small
distortions appear at the very low energies, as it should be expected since the time-
dependent calculation would need much longer time to provide accurate results,
and also in the DA cross section which is very small and all numerical inaccuracies
are enhanced. Surprisingly, some of the very low energy inaccuracies may also
originate from too large evolution time step ∆t if the Fourier-Bessel coefficients
decay too slowly with increasing energy. The very low energy contributions may
be distorted by contributions of high energies for which E1∆t ≈ E0∆t + 2π,
where E0 is some energy from the investigated range. This effect can be either
suppressed by a different choice of the initial wave packet energy distribution or
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Figure 3.13: Comparison of the time evolution of the 2D wave function projected
on the discrete state with the LCP wave function for the NO-like model. The
LCP wave packet was synchronized with the projection by ∆LCP

t = 176. For
better comparison we have rescaled the LCP wave packet to the projection in
time t = 637 by factor 287 (see Fig. 3.24 and Sec. 3.4 for explanation).
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Figure 3.14: The cross sections of the elastic process, vibrational excitation
0 → 1 and 0 → 8, and the dissociative attachment for the NO-like model at the
cutoff time tc = 35000 obtained by three methods of the S-matrix evaluation
along with the LCP approximation results compared to the time-independent
approach of the 2D model.
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by decreasing the time step. Even though the values of the DA cross sections
are very small the results agree well with the time-independent ones for all three
methods. The results could be even further improved by a better choice of the
initial parameters, but since we did not expect to get any new information from
such large computations we have not pursued the goal any further. We should
also note that the DA cross sections may be obtained more easily if computed
separately from the VE cross sections since the grid parameters and time step
may be chosen differently resulting in lower computational requirements and less
computational time.

3.3 F2-like model
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Figure 3.15: The full 2D potential energy surface of the F2-like model shown at
short distances.

The F2-like model significantly differs from the previous two models. As one
may see from Fig. 3.15 the full 2D potential forms a deep but very narrow well
close to the origin of the electronic coordinate, therefore the electronic grid was
refined mainly in the region [0, 1]. As one can see from the LCP approximation
potentials in Fig. 3.16 the DA channel is accessible for all energies and the negative
molecular ion potential Eres(R) crosses the neutral molecule potential V0(R) very
steeply resulting also in significant increase of nuclear coordinate grid density (see
Sec. 2.5 for details).

The parameters of the initial wave packet and time evolution were set to
the same values as in the NO-like model. We present a few snapshots from the
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Figure 3.16: The potential energy curves V0(R) (solid blue line) and Eres(R)
(solid orange line) with the resonance width Γ(R) as the yellow shaded area
around Eres(R) for the F2-like model. The dashed blue lines with several labels
by vi marks the positions of vibrational excitation levels, the orange dashed lines
with labels ωi marks the positions of levels in resonant potential Eres.

evolution of the wave packet for this model in Fig. 3.17 and an animation, which
is attached as Att. 5. After the wave packet hits the interaction region at t ' 80,
a part of it is reflected by the potential barrier, another part penetrates through
and becomes trapped creating a smooth peak close to r ∼ 0.5 and R ∼ 2.6.

After roughly around 50 units of evolution time a distortion of the trapped
wave packet appears. Since the trapped part of the wave packet is located in
the region of a steep potential slope in the nuclear coordinate, it starts to move
quickly towards larger internuclear distances. At the same time the part of the
wave function which is reflected to the VE channels is slowly withdrawing. Since
the complex phase of the outgoing waves to the VE channels changes slowly
with the nuclear coordinate and the complex phase of the waves outgoing to
the DA channel changes quickly, their presence in the same region results in an
interference. Once the trapped wave packet moves to larger internuclear distances
the interference is no longer visible. Since there is no potential barrier in the
direction of increasing internuclear distance, the wave packet cannot be reflected
back and therefore it moves further to the DA channel resulting in dissociation
of the molecule.

To compare the full dynamics with the LCP approximation, we again pro-
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Figure 3.17: Snapshots of the evolved wave function in the HSV images. The
top panels show the initial reflection of the incident wave packet (t = 80), which
is quite similar to the NO-like case, the deformation of the trapped wave packet
(t = 120 and t = 160) as the wave packet tunnels back to the vibrational exci-
tation channels and starts to move toward the dissociative attachment channel.
The middle panels show the interference between both processes forming two
peaks (t = 200) and even more peaks as the packet moves towards larger inter-
nuclear distances (t = 250 and t = 300). Note the high complex phase frequency
indicating the large impulse of the wave packet. The bottom panels show the
separation of the processes (t = 350) decreasing the interference and smoothen-
ing of the trapped wave packet (t = 400 and t = 500) and its motion towards the
dissociative attachment channel.
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Figure 3.18: The discrete state φd(R, r) as described in Sec. 1.6. The blue surface
is the real part and green surface is the imaginary part shifted by −1 on the z-
axis. The discrete state is chosen to be real for large values of nuclear coordinate.
As it approaches interaction region the nonzero imaginary part emerges Note that
the right panel axes are rotated from Fig. 3.15 for better visibility.

jected the 2D wave function on the discrete state, which is shown in Fig. 3.18. It
is clear that this state changes rapidly with decreasing internuclear distance once
the potential energy Eres(R) crosses the neutral molecule potential V0(R).

The interference described above in the 2D dynamics is also clearly visible
in the evolution of the projection on the discrete state in Fig. 3.19 where its
comparison with the LCP wave function is shown. Note that there is no inter-
ference in the LCP approximation, which is natural since the interaction with
the electronic continuum is approximated by a simple imaginary part of the local
potential Vres(R). As the evolution continues and the interference in the projec-
tions disappears, the wave packets seem to be similar although the projection is
much wider than the LCP wave function. Since the width of the trapped wave
packet is strongly dependent on the initial 2D wave packet, there is no physical
significance in this difference.

Since the motion is aperiodic the cutoff time tc = 15000 was chosen simply to
be large enough for the outgoing waves to leave the real region of the grid. The
cross sections in Fig. 3.20 show again a good accordance of the time-dependent
results with the time-independent ones for almost all energies. Only for very low
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Figure 3.19: Comparison of the 2D wave function projection on the discrete
state with the LCP wave function for the F2-like model. The LCP wave packet
was synchronized with the projection to match in the beginning of the outgoing
motion by ∆LCP

t = 177. The LCP wave packet was rescaled for better compari-
son. The evolution time is marked by the color of the curve corresponding to the
color bar on the right side of the panels.

energies the elastic and DA cross sections are slightly distorted. These inaccu-
racies are due to the initial setup of parameters and finite integration time and
could be further improved with cost of the computational resources. Again, since
we did not expect any new information to be obtained we have not pursued this
goal any further.

The comparison of the 2D model cross sections with the LCP approximation
results was already deeply investigated in Houfek et al. [2008a] and therefore we
leave the topic with a simple comment that the interference during the evolu-
tion of the 2D wave function manifests the nontrivial nature of the motion, i.e.
it is a direct result of breaking the Born-Oppenheimer approximation. It also
reveals the inability of the LCP approximation to describe such systems where
the process of the penetration through the barrier and initial repulsion is not
sufficiently separated in time, i.e. where there is a non-negligible overlap between
the outgoing waves to the VE channels and DA channel already in motion.
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Figure 3.20: The elastic, VE 0→ 1 and DA cross sections for the F2-like model
at the cutoff time tc = 15000 obtained by three approaches to the S-matrix
evaluation.

3.4 Interpretation of the cross sections

The actual vibrational excitation cross sections of resonant collisions of electrons
with diatomic molecules N2 (Berman et al. [1983], Huo et al. [1987], Allan [1985,
2005a]) and NO (Trevisan et al. [2005], Allan [2005b]) are very similar to ones
obtained using the N2-like and NO-like models shown in Fig. 3.6 and 3.14. The
oscillatory structures appearing in the VE cross sections are often explained as an
interference of the fast direct decay of the electronic resonant state of the negative
molecular ion in the autodetachment region (to the left from the crossing point of
the potential energy curves of the neutral molecule and the anion, see Fig. 3.2 and
3.9) with the time-delayed decay of this state due to vibrational motion out of the
autodetachment region and back. This mechanism is usually referred to as the
boomerang model (Birtwistle and Herzenberg [1971], Dubé and Herzenberg [1979])
which is a valid explanation of oscillatory structures in the VE cross sections for
certain systems (for example for H2 molecule Horáček et al. [2006]), but it does
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not explain the origin of irregularities in these structures. Most of the calculations
on real systems are actually performed within the time-independent framework
in which the explanation of the structures and especially of appearance of the
asymmetric peaks is much more complicated (see e.g. Houfek et al. [2008b]).

Here we take an advantage of the time-dependent formulation of the two-
dimensional model to study in detail the origin of the oscillatory structures in-
cluding the asymmetric peaks appearing in the VE cross sections in Fig. 3.6 and
3.14. We will demonstrate that the simple boomerang mechanism provides an
explanation only to a regular oscillatory structure but to explain asymmetry of
peaks one has to consider further vibrational motion of the negative molecular
ion and even long-lived states in the potential well outside the autodetachment
region.
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Figure 3.21: Comparison of the elastic scattering cross sections obtained by
three investigated methods at time t = 800 for the NO-like model (top panel)
and comparison of correlation function Cv0(t) and δ-modified correlation function
〈Ψ(t)|χv0〉 generating the cross sections.

Before we proceed with the interpretation of the cross sections we discuss the
comparison of the approaches to the S-matrix computation. Up to this point we
have treated all three investigated methods equally since the results at the cutoff
time were practically the same. The key difference arises once we try to compare
the results at early times. As an example we show the elastic cross section eval-
uated at t = 800 for the NO-like model in Fig. 3.21 along with two examples of
generating correlation functions up to the time of the evaluation of these cross
sections. Note that this time there is a significant difference between the three
methods. Both the Tannor & Weeks method with the δ-function and the prob-
ability flux approach oscillate while the original method of the Tannor & Weeks
oscillates only at higher energies. It is even possible to further improve the results
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of Tannor & Weeks method by modifying the parameters of the test functions or
of the initial state. We conclude that the time-energy Fourier transform in the
Tannor & Weeks method is much smoother. Therefore it is more suitable for the
early cutoff time computations and in this section we will show results only for
this method.

3.4.1 N2-like model
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Figure 3.22: The mean internuclear distance of the projections and the LCP
wave packet (top panel) and their normalization (bottom panel) as functions of
the evolution time for the N2-like model. The vertical dashed lines mark the
positions of the maxima of the mean internuclear distance. The position of the
first maximum at t = 419 was used to synchronize the evolution within the LCP
approximation by ∆LCP

t = 101 and also to adjust normalization of the LCP wave
packet for better comparison.

We start with results for the N2-like model. In Fig. 3.22 we show the evolution
of the mean internuclear distance and the normalization of both the projections
onto the discrete state and the LCP approximation wave packet. We have used
the position of the maximal value of the mean internuclear distance (marked by
vertical dashed lines) to synchronize the motion of the projections with the LCP
wave packet and we rescaled the normalization of the LCP wave packet for better
comparison. It is clear that the motion in the nuclear coordinate resembles the
motion of a damped harmonic oscillator. From the distance between two maxima
of the mean internuclear distance we were able to determine the period of the
nuclear motion to T ≈ 655 a.u. ≈ 16 fs. The normalization curves (bottom panel
of Fig. 3.22) show decrement only in the moments of minimal mean internuclear
distance. This behavior corresponds to the fact that the wave packet can tunnel
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Figure 3.23: The elastic and VE cross sections for two chosen transitions evalu-
ated at significant values of the evolution time for the N2-like model. The dashed
lines stand for the 2D model, the dotted lines for the LCP approximation.

through the potential barrier back to the VE channels only in the autodetachment
region close to the minimum of the neutral molecule potential V0(R), in this case
at R ∼ 2. Since at the time around t ∼ 400 − 500 the wave packet is at its
maximum mean internuclear distance around 2.4 and the normalization is almost
constant, forming a wide plateau, we may assume the contribution to the cross
sections from the passed evolution to be well separated from the subsequent
contributions. The cross sections of the full 2D model evaluated at the end of the
plateau at t = 650 are marked by dashed blue lines and for LCP at t = 320 by
orange dotted lines in Fig. 3.23. As we can see the initial reflection of the wave
function produces one wide and smooth peak in all VE cross sections except
unphysical peaks at threshold energies due to slower motion of corresponding
outgoing waves. A similar shape appears in the LCP cross sections although it is
slightly misplaced for the elastic scattering.

As the evolution continues another contribution from the so called boomerang
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motion is added to the cross sections. Since it is again well separated from
the subsequent contributions we may take a look at the updated cross sections
at the moment of the maximal mean internuclear distance at t = 1270 for the
2D model and at t = 940 for the LCP approximation. The results are shown
in Fig. 3.23 by the green dashed and red dotted curve for the 2D and LCP
model, respectively. This time a series of symmetrical peaks appears modulating
the previously obtained shape. Note that the time-independent results are still
slightly different from the ones obtained after the first vibrational period, mostly
where the structures are asymmetrical. Apparently at least one more contribution
(after another vibrational period) is needed to form the proper shape of the cross
sections.

During the further evolution the normalization quickly decreases. As the
normalization drops by 8 orders of magnitude around the time tc = 4000 further
contributions to the cross sections become negligible and there is no point in
evolving the wave functions any further. Thus we set tc as the cutoff time. The
resulting cross sections were already discussed in Sec. 3.1. The animation with
the above described process is attached as Att. 2.

3.4.2 NO-like model
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Figure 3.24: The mean internuclear distance of the projections and LCP wave
packet (top panel) and their normalization (bottom panel) as functions of the
evolution time. Both mean internuclear distance and normalization curves were
synchronized by the position of the first maximum of the mean internuclear dis-
tance at t = 637, with ∆LCP

t = 176.

Again we start with the comparison of mean internuclear distances and nor-
malization for both the projection of the 2D wave function onto the discrete
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Figure 3.25: The same as in Fig. 3.24 but for times up to 30000 a.u.

state and the LCP wave packet, which are arranged in Fig. 3.24 and 3.25. Note
that the motion in both models again resembles the damped harmonic oscilla-
tor. Also note that this time the frequency of the oscillations and the speed of
the normalization decrement differ significantly for the 2D model and the LCP
approximation which means that the nuclear dynamics for this system is not
properly described by the LCP approximation and leads to a failure of the LCP
approximation at lower energies (see Fig. 3.14). We have determined the period
of the nuclear motion of the 2D wave packet to T ≈ 971 a.u. ≈ 23 fs. The motion
takes place at distances from R ∼ 2.1 to R ∼ 2.8. The positions of the maximal
mean internuclear distance again served as the separation points of the contribu-
tions to the cross sections. Decrease of the normalization in the NO-like model
is much slower than in the N2 case and thus much more contributions have to
be included to obtain the converged cross sections. Another striking feature in
Fig. 3.25 is a long, linear (in logarithmic scale) tail of both 2D and LCP curves.
Such behavior points to an existence of a long-lived state which, as we will see,
is responsible for a high, narrow peak in the elastic cross section.

For clarity of figures we omit results obtained within the LCP approximation
in the following discussion. The interpretation of the structures within the LCP
approximation would be very similar. As in the N2 case the initial reflection
contribution to the cross section at t = 900 produces a wide smooth peak in each
VE channel shown as solid blue curves in Fig. 3.26 where the elastic (upper panels)
and VE 0→ 1 (lower panels) cross sections integrated up to particular times are
presented. The results obtained for short times show pronounced threshold peaks
due to slow motion of corresponding outgoing waves. These peaks later disappear
as more contributions from slower outgoing waves are included.

At the time t = 1800 there are two contributions in the cross sections (orange
dashed curve), the initial reflection of the wave packet without nuclear motion
is interfering with the wave packet leaving the autodetachment region after the

57



0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Electron energy [hartree]

0

200

400

600

800

C
ro

ss
se

ct
io

n
[a

2 0
] VE: 0→ 0

ω0 ω1 ω2 ω3 ω4

Time independent

t = 900

t = 1800

t = 2700

t = 3600

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Electron energy [hartree]

0

200

400

600

800

C
ro

ss
se

ct
io

n
[a

2 0
] VE: 0→ 0

ω0 ω1 ω2 ω3 ω4

Time independent

t = 4500

t = 6300

t = 9000

t = 15000

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Electron energy [hartree]

0

10

20

30

40

50

C
ro

ss
se

ct
io

n
[a

2 0
]

VE: 0→ 1

ω0 ω1 ω2 ω3 ω4

Time independent

t = 900

t = 1800

t = 2700

t = 3600

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Electron energy [hartree]

0

10

20

30

40

50

C
ro

ss
se

ct
io

n
[a

2 0
]

VE: 0→ 1

ω0 ω1 ω2 ω3 ω4

Time independent

t = 4500

t = 6300

t = 9000

t = 15000

Figure 3.26: The elastic and VE transition 0 � 1 cross sections at significant
values of the evolution time. All results are for the full 2D NO-like model. See
also Chap. Attachments. for videos of the cross sections as functions of time.
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Figure 3.27: The normalization of the projection of the 2D wave function on
the discrete state for the NO-like model and contributions to this normalization
of the first four quasi-bound vibrational states of the molecular negative ion as
functions of the evolution time.

boomerang motion. If there were no other contributions the resulting cross sec-
tions would consist of pure regular boomerang oscillations, but unlike in the
N2 case there are significant differences from the final (time-independent) cross
sections, especially the peaks at lower energies in the elastic cross section are
much narrower and higher and structures in the VE 0→ 1 cross section are very
asymmetrical.

As the evolution continues and more contributions are integrated we can ob-
serve formation of these asymmetrical and narrow structures. Each narrow peak
in the cross sections corresponds to a quasi-bound vibrational state of the molec-
ular negative ion (states in the dashed blue potential in Fig. 3.9). The lower the
energy of the state, the smaller its width, the larger its lifetime and the narrower
the corresponding structure. In the elastic cross section the maxima of boomerang
oscillations (t = 1800) are more or less at the same energies as the quasi-bound
states and peaks are rather regular. On the other hand in the VE 0 → 1 cross
section the maxima of boomerang oscillations are at different energies than these
quasi-bound states which results in highly asymmetrical structures. Their form-
ing in time can be observed in Fig. 3.26 from which we can estimate lifetimes of
quasi-bound vibrational states. For example the first peak in the VE 0→ 1 cross
section forms fully at t > 10000 and corresponds to the second vibrational state
in the potential Vres(R) of the NO-like model. The lowest lying state (the first
peak in the elastic cross section) has a lifetime of more than 30000. In Fig. 3.27
we show populations of quasi-bound vibrational states of the negative molecu-
lar ion (eigenstates in the potential energy Vres(R)) in the projection of the 2D
wave function on the discrete state as a function of time which we computed as
|〈ωi|Ψd(t)〉|2. We show only results for the first four vibrational states for clarity,

59



populations of higher states behave similarly as the population function for ω4

but decay even faster). We can observe in Fig. 3.27 that the higher lying vibra-
tional states are more populated at the beginning but decay rapidly, on the other
hand the low lying states survive for much longer time in accordance with the
long formation time of peaks in the VE cross sections. The animation with the
described process is attached as Att. 4.
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4. Model of dissociative
recombination of H+
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Figure 4.1: The full 2D potential energy surface of the H+
2 model shown at short

distances.

The model of the dissociative recombination for H+
2 is significantly different

in comparison to the electron-molecule collision models due to the presence of
the long-range interaction given by the Coulomb term −1

r
. We show the detail

of the potential energy surface in Fig. 4.1. The potential forms a deep well for
larger nuclear distances R & 5 close to the origin of the electronic coordinate
r ∼ 0.2. From R ∼ 10 the potential almost does not change. As a consequence to
the presence of the Coulomb interaction the electron energy spectrum obtained
by the fixed nuclei calculation should contain an infinite number of bound states
for any value of the internuclear distance R. For large values of the internuclear
distance, when the atoms are far from each other, the electron energy spectrum
should correspond to the spectrum of Rydberg states in the hydrogen atom. The
energy of the Rydberg state is given by the formula

ERyd
n =

1

2(n+ l + 1)2
(4.1)

provided that n is the electron radial quantum number and l the orbital quantum
number (in our case l = 1). We have arranged several calculated values of the
asymptotic electron energy labeled with index Ryn compared to the energies of
the Rydberg states in the hydrogen atom corresponding to the quantum number
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Table 4.1: Comparison of the asymptotic electron energy spectrum for recombi-
nation channels with the Rydberg states with the radial quantum number shifted
by one.

n ERyd
n−1 Ryn relative difference

0 - -1.38492776 -
1 -0.12500000 -0.12499996 0.00%
2 -0.05555556 -0.05481037 1.34%
3 -0.03125000 -0.03083211 1.34%
4 -0.02000000 -0.01976167 1.19%
5 -0.01388889 -0.01374327 1.05%
6 -0.01020408 -0.01010943 0.93%
7 -0.00781250 -0.00774780 0.83%
8 -0.00617284 -0.00612677 0.75%
9 -0.00500000 -0.00496609 0.68%
10 -0.00413223 -0.00410657 0.62%
20 -0.00113379 -0.00113000 0.33%
30 -0.00052029 -0.00051911 0.23%
40 -0.00029744 -0.00029693 0.17%
50 -0.00019223 -0.00019189 0.18%
51 -0.00018491 -0.00018499 0.05%
52 -0.00017800 -0.00017891 0.70%
53 -0.00017147 -0.00017150 1.87%
67 -0.00010813 -0.00000825 99.77%

n − 1 in Table 4.1. The values are very similar and therefore it is quite natural
to refer to the bound electronic states within this model as to Rydberg states.

The values in Table 4.1 were computed with the discretization specified in
Sec. 2.5. The first value, denoted as Ry0 is apparently unphysical and it is clearly
an artefact of the model potential. However, as stated by Hamilton [2003], the
energy of the state is so low, that it does not influence significantly the dynamics
in higher Rydberg states we are interested in. The model potential is chosen in
such a way to reproduce very closely the energy of first excited state 2p of H and
also the higher Ryberg states, which can be observed in Tab. 4.1 up to n ∼ 40
for which the relative difference is smaller than for n = 2. The value Ry1 is
very close to the first exited state of the hydrogen atom. The next few values
show a relative difference around 1% and with increasing quantum number n the
difference decreases, up to a certain point, where it starts to increase rapidly. For
states with n > 50 the energies are more and more incorrect due to the finite
discretization and there are actually only 67 bound states instead of infinity.
Moreover, for n & 30 a non-negligible imaginary part arises in the energies Ryn,
because of the exterior complex scaling, which results in absorption of the wave
function and therefore in inaccuracies of the computed cross sections. We expect
the size of the affected energy region to be roughly ∆err

E ≈ 0.001, which leaves
us with around twenty well described Rydberg states. The energy potential
curves of these states obtained via fixed-nuclei calculations are shown in Fig. 4.2
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Figure 4.2: The electron energy curves ERyn(R) obtained via fixed-nuclei cal-
culations, labeled with Ryn for the first few states. The top panel shows the
overview of the potential curves. The dashed curve is the unphysical ground
state Ry0. The bottom panel shows the same curves in more detailed energy
region. Note that the first Rydberg state curve Ry1 has lower asymptotic energy
than the minimum of V0(R) suggesting the corresponding recombination channel
DR1 will be opened for any value of kinetic energy of the incoming electron. The
investigated energy range is marked as space between the two red dotted lines.
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Figure 4.3: A detailed picture of the electron energy curves ERyn(R) for short
nuclear distances and within investigated energy range. The solid blue curve is the
cation potential energy V0(R), the horizontal solid blue lines show the positions of
the cation vibrational energy levels labeled with vi. The dashed horizontal lines
are the vibrational levels in the electron energy potential ERyj labeled with ωji ,
where i is the vibrational level and j stands for the corresponding Rydberg state
number. The pink shaded areas depict regions ∆err

E (see text) where we expect
inaccurate results due to the finite discretization.
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and in detail with marked vibrational levels in Fig. 4.3. Note that in this model
of dissociative recombination there is no crossing of the fixed-nuclei potential
energy curves with the cation vibrational potential V0(R) and thus no simple
approximation such as LCP can be applied.

4.1 Wave function evolution

We have set the incoming wave packet to be a product of the cation vibrational
ground state χv0 and the Gaussian wave packet located at r0 = 800 with p0 = 0.25
and σ = 8.0. The wave packet is located quite far from the interaction region
since we intend to keep the initial overlap between the incident wave packet and
the lower electronic Rydberg states as little as possible. The electronic coordinate
discretization had to be extended anyway to properly describe as many Rydberg
states as possible and therefore there is no significant computational resource
cost. The mean impulse p0 corresponds roughly to kinetic energy Ekin

0 ' 0.026
which is located near the middle of the investigated energy range Ekin ∈ (0, 0.05).

Note that the actual kinetic energy differs from the value E0 =
p20
2

.
= 0.031 since

the actual energy eigenstate basis is not given by planar waves but with Coulomb
functions and therefore the actual energy distribution also depends on the wave
packet position r0, however this does not have any effect on the dynamics of the
recombination process.

The parametrization of the evolution operator was set as described in Sec. 2.5.
The general idea behind this setting is that the correlation functions will be much
smoother than in the models of electron-molecule collisions since the investigated
range of energies is four times smaller. Therefore a more rough discretization in
time may be applied without loss of accuracy.

We show a few snapshots of the wave function evolution in Fig. 4.4 and
Fig. 4.5. At the beginning of the evolution the incoming wave packet moves
in the Coulomb potential towards short electronic distances. Naturally the wave
packet becomes very wide since the higher energies reach the interaction zone
earlier than the lower energies. As the wave packet hits the interaction zone a
dominant part of the wave packet is reflected back to the channel of elastic scatter-
ing. Unlike the electron-molecule collision models the dissociative recombination
model has no potential barrier for the incoming electron to penetrate and there-
fore there is no process of tunneling and trapping behind such a barrier. However
not the whole wave packet is reflected back. A smaller part of the wave packet
starts to move towards larger nuclear distances due to the interaction potential
Vint(R, r) coupling the two coordinates. Part of the wave packet then escapes to
the vibrational excitation channels and a very small part of the remaining wave
packet is transmitted directly to the recombination channels forming the scat-
tering background in time t ∼ 2000− 5000, dependent on the incoming electron
energy. Because of the redistribution of the kinetic energy into both coordinates
the wave packet is mostly captured in a temporary state given by a superposition
of Rydberg states in the electronic coordinate and vibrational states in the nu-
clear coordinate. The wave packet cannot easily escape to neither the vibrational
excitation channels nor the dissociative recombination channels, since the kinetic
energy distributed to their respective coordinates is too low. At this time the
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Figure 4.4: Snapshots of the full two-dimensional wave function Ψ(R, r; t) at
few moments of the evolution, in the HSV image model. The thick black dash-
dotted line marks splitting of the image for HSV magnification via parameter ζ.
The top panel shows the initial reflection, where outgoing waves to DR channels
are negligible. The second panel from top shows the wave function penetrating
directly to DR channels, forming the background shape of the cross sections. The
third panel from top shows the first significant vibrational motion in the nuclear
coordinate. The bottom panel shows the wave function no longer dominated by
cation vibrational ground state and a small wave packet leaving to DR channels.
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Figure 4.5: The second part of the full two-dimensional wave function Ψ(R, r; t)
snapshots in the HSV image model. The top snapshot shows the wave packet
leaving to the recombination channels, while the rest of the wave function is
located further in the electronic coordinate leaving only a smaller part in the
interaction region. The second panel from top shows the wave function located
at shorter electronic distances while penetrating to the recombination channels.
The third and fourth panels show the repetition of this motion.
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state of the system looks like an electronically and vibrationally excited state of
a neutral hydrogen molecule H∗2.

As the time passes the wave function reaches larger nuclear distances mean-
ing the higher molecular vibrational states are excited. Consequently the wave
packet exhibits more pronounced oscillations in the nuclear coordinate, while
the motion in the electronic coordinate becomes more compact. Once the wave
function reaches the region R & 10.0 a part of the wave function escapes to the
recombination channels. This double-oscillation process will repeat over and over
for a very long time. The shape of oscillations varies in time since the motion
period differs in the electronic and the nuclear coordinate, dependent on which
quasi-bound states ωji are currently occupied.

Note that the outgoing wave packets to the recombination channels are dom-
inated by the electronic state Ry1. The presence of the lower channel Ry0 is not
visible and the presence of the higher state Ry2 can be only estimated from the
slight oscillations in the electronic coordinate in the region beyond R ∼ 8. Higher
states than Ry2 are not visible, since they are not accessible in the given energy
range. The shape of the outgoing waves is however strongly dependent on the
setting of the initial wave packet and therefore we do not expect the shape itself
to bear much of the physical relevance.

4.2 Cross sections

To calculate the cross sections using the Tannor&Weeks method, we have placed
the test functions into three accessible recombination channels, even though the
lowest channel is unphysical. It is convenient to calculate the cross sections of
the unphysical state to validate the proposition that only negligible flux goes
to this channel and the other results are not disturbed by its presence. The
position R0 = 12.0 and wave packet thickness σ = 0.4 were set the same for
all test functions. The mean impulse was set to q0 = 60.0 for the DR0 channel
and q0 = 12.0 for the DR1 and DR2 channels. We show the absolute value of
correlation functions in logarithmic scale for the first 107 atomic units of time
in Fig. 4.6. The correlation functions oscillate quite wildly and chaotically. The
decrement of the correlation functions amplitudes is very slow and therefore the
evolution of the wave function had to be computed up to tc = 8 × 107 atomic
units of time to get the converged cross sections. With the evolution time step
set to ∆t = 10 it results in 8 × 106 iterations. An important observation which
can be made from Fig. 4.6 is that the correlation amplitude of the unphysical
channel DR0 is roughly six orders of magnitude below the first physical channel
DR1, validating the statement that the unphysical channel cannot significantly
influence the model dynamics in the channels of interest.

We present the cross sections computed at the cutoff time tc by the time-
dependent method in comparison to the time-independent reference results in
Fig. 4.7 and Fig. 4.8. Unlike the results of the electron-molecule collision models
we present the cross sections in logarithmic scale since the values often differ by
many orders of magnitude and in the linear scale the comparison would be quite
difficult.

Note that for the very low energies the cross sections of the DR0 and DR1

channels obtained by the time-dependent approach are still oscillating and in some
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Figure 4.6: The absolute value of the correlation function for the three investi-
gated dissociative recombination channels. All functions show heavy oscillations
from early evolution time. The frequency of the oscillations is reducing with time
as larger parts of the wave function leave the system.

places the values are still not converged. The DR0 channel cross section is mostly
of the same or a very similar shape as the DR1 channel however it is roughly
four orders of magnitude smaller and even in the areas where the shape changes
wildly the DR0 cross sections does not get closer than two orders of magnitude to
the DR1 channel cross sections. For energies grater than 0.037 the cross sections
of DR0 obtained by time-dependent calculation becomes different from the time-
independent reference. This difference originates from a poor choice of the test
function parametrization and it could be improved by tweaking the parameters.
However since we are not interested in this channel we did not attempt to improve
it.

The shapes of the cross sections show various interesting features, sharp local
maxima and minima, wider plateaus without any structures, double or even triple
peaks or cusps. In many cases the position of the feature coincides very well with
the position of some quasi-bound state energy level ωji and therefore we can
interpret such a feature as a resonance corresponding to this level, however not
all features seem to directly correspond to some resonances and more complex
analysis is required for their explanation.

Some of the features which do correspond to resonances are slightly shifted,
e.g. peaks near E ∼ 0.006, and for some features the shifting is so large that it is
nearly impossible to identify them with any nearby quasi-bound state solely by
its position, e.g. features near ω4

4 and ω3
5 at E ∼ 0.021. However the displacement

of these features may be expected since the energies of the quasi-bound states
are calculated in one-dimensional potential curves obtained from the fixed-nuclei
calculations. The actual resonance energies may be quite different, especially
in regions where several vibrational levels of different electronic states almost
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Figure 4.7: Comparison of the DR cross sections for the H+
2 -like model computed

by the time-dependent (blue for DR0, orange for DR1) and the time-independent
(red for DR0, purple for DR1) approach for the first three parts of the investi-
gated energy range. The curves from the time-dependent calculations show good
accordance to ones from the time-independent calculations except at very small
energies where the time-dependent results are not fully converged (left part of
the top panel). The dashed vertical lines mark the positions of the vibrational
levels ωji (see Fig. 4.3 for details).
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Figure 4.8: The second part of the comparison of the DR cross sections for the
H+

2 -like model computed by the time-dependent (blue for DR0, orange for DR1,
green for DR2) and the time-independent (red for DR0, purple for DR1, brown
for DR2) approach for the last three parts of the investigated energy range. The
time-dependent results show a good accordance to the time-independent ones
except for the DR0 channel at higher energies (middle and bottom panels) where
the cross section is very small. The dashed vertical lines mark the positions of
the vibrational levels ωji (see Fig. 4.3 for details).
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Figure 4.9: The wave function Ψ+(R, r;E) shown at short distances for two
energies corresponding to the sharp peaks in the DR cross section.

coincide.

As one approaches the vibrational excitation thresholds vi the density of the
features increases significantly. However at some point the cusps become sup-
pressed and vanish. These regions are marked by the red shading and correspond
to the regions ∆err

E in Fig. 4.3, where the results are inaccurate. It is obvious that
the density of the features should increase up to the threshold, however due to
the lack of the electronic bound states in this region, because of the finite grid in
our calculations, these features are entirely missing.

4.3 Interpretation of the results

Even though the model dynamics is quite complicated, some of the interesting
features in the DR cross sections may be easily explained with use of the time-
independent calculation results. The structures which are rather displaced from
the positions of the quasi-bound state energy levels ωji may be sometimes associ-
ated to these states simply by looking at the full two-dimensional physical wave
function Ψ+(R, r;E) at the energy E of the investigated feature. As an example
we investigate the double resonance near the energy levels ω9

1 and ω3
3. We show the

full two-dimensional wave functions for energies of the peaks near these levels in
Fig. 4.9. Apparently the wave function Ψ+(R, r;E = 0.00551) oscillates slightly
less in the nuclear coordinate and slightly more in the electronic coordinate than
the wave function Ψ+(R, r;E = 0.00566). This leads to proposition that the state
ω9

1 should be associated to the peak at E = 0.00551 and the state ω3
3 to the peak

at E = 0.00566. To validate this observation we simply perform a scalar product
of the full wave functions and the wave functions corresponding to the considered
levels. The comparison of the absolute values of the scalar products is shown in
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Table 4.2: Comparison of the absolute values of the scalar product of the full two-
dimensional wave functions Ψ+(R, r;E) at given energies with the quasi-bound
states ωji .

state |Ψ+(R, r; 0.00551)〉 |Ψ+(R, r; 0.00566)〉
〈ω9

1| 207.77 63.82
〈ω3

3| 43.31 232.92
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Figure 4.10: Comparison of the cross sections and S-matrix elements at energy
regions near the minima of the cross sections. Both the S-matrix elements and
cross sections were obtained from time-independent calculations.

Table 4.2. We conclude that the larger absolute value of the scalar product can
serve to identify the resonance with its corresponding quasi-bound state.

Other interesting features of the cross sections are the sharp local minima in
the regions where no quasi-bound state energy levels are present, e.g. the very
first minimum in the DR1 channel cross sections at Ekin ∼ 0.00034 or the two
minima between the ω8

1 and ω9
1 energy levels in the same channel (see the top

panel of Fig. 4.7). In both cases the nearby quasi-bound state energy levels are
quite far from the investigated features and these levels were already associated
with other features.

We do assume that these local minima are of different nature than e.g. the
minimum in the DR1 channel near the quasi-bound state energy level ω9

3 in the
bottom panel of Fig. 4.7. We show the detail of the DR1 cross section for two small
energy regions near the investigated features in Fig. 4.10 along with the detail
of the S-matrix energy dependence. The S matrix is smooth in these regions
and the minima result from simple crossing of the zero for both the real and the
imaginary part of the S matrix. For comparison we show the DR1 cross section
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Figure 4.11: Detail of the DR1 channel cross sections near the quasi-bound state
energy level ω9

3 along with the elements of the S matrix.

along with the S-matrix elements near the local minimum associated with the
quasi-bound state ω9

3 in Fig. 4.11. Note that this time not only the cross section
but also the S-matrix elements change wildly close to the position of the local
minimum. This behavior is to be expected if the feature is associated with a
corresponding quasi-bound state and thus interpreted as a resonance.

We conclude that the local minima which cannot be interpreted as resonances
are of a similar nature as the Ramsauer-Townsend minima observed in the colli-
sions of the electrons with atoms (see e.g. Townsend and Bailey [1922]).

As previously discussed the evolution of the wave function is quite complicated
and this complexity results in the cross sections with many sharp features. In
contrast with the electron-molecule collision models no straightforward interpre-
tation is possible if we observe the evolution of the wave packet in the setting from
which the complete cross sections may be determined. To obtain the results which
provide a more detailed insight into the evolution of the wave function, we confine
the incident wave packet to much smaller range of the incoming electron energies.
We have tested two more parametrizations of the incident Gaussian wave packet
in the initial state (1.41). We show the sets of wave packet parameters (II and III)

Table 4.3: Comparison of different parametrizations of the incident wave packet
in the electronic coordinate.

r0 p0 σ
I 800 -0.25 8.0
II 600 -0.11 25.0
III 600 -0.1 50.0
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Figure 4.12: Comparison of the correlation functions for different parametriza-
tions of the incident wave packet.

compared to the original values (I) in Table 4.3. The parametrization II covers
the region of the incoming electron energy Ekin ∈ (0, 0.01), the parametrization
III covers only a part of this region Ekin ∈ (0, 0.007). Note that we do expect dif-
ferent shapes of the evolved wave function and correlation functions, however we
do not expect significant differences in the final cross sections. The only possible
difference may occur in the partial time-integration of the correlation functions
due to the change of the initial position of the wave packet. This should how-
ever affect only the positioning of the significant contributions in time, not their
shape. We show the comparison of the correlation functions during the early part
of the evolution for the three different initial state parametrizations in Fig. 4.12.
From this comparison it is obvious that the original setting is not suitable for
the interpretation due to the vast amount of overlapping processes. We choose
the parametrization III to investigate the motion of the wave function, since the
correlation function is smooth enough.

To study the motion we have determined the population functions for the
first four vibrationally exited quasi-bound states in several electronic Rydberg
potentials. The population functions |〈ωji |Ψ(t)〉|2 compared to the shape of the
correlation function in the recombination channel DR1 are shown in Fig. 4.13.
Apparently the initial scattering populates mostly the lowest possible vibration.
The vibrational levels are however coupled together and the higher vibrations
become quickly populated as well. The system then oscillates between these
coupled states.

From the population functions we can make several other observations. Only

75



0 50000 100000 150000 200000 250000

time [a.u.]

0

2

4

6

|C
D

R
1
|2

×10−10

0 50000 100000 150000 200000 250000

time [a.u.]

0.00

0.01

0.02

|〈ω
j 1
|Ψ

(R
,r

;t
)〉
|2 ω1

1

ω2
1

ω3
1

ω4
1

ω5
1

ω6
1

ω7
1

ω8
1

0 50000 100000 150000 200000 250000

time [a.u.]

0.000

0.002

0.004

0.006

|〈ω
j 2
|Ψ

(R
,r

;t
)〉
|2 ω1

2

ω2
2

ω3
2

ω4
2

ω5
2

ω6
2

ω7
2

ω8
2

0 50000 100000 150000 200000 250000

time [a.u.]

0.0000

0.0005

0.0010

0.0015

|〈ω
j 3
|Ψ

(R
,r

;t
)〉
|2 ω1

3

ω2
3

ω3
3

ω4
3

ω5
3

ω6
3

ω7
3

ω8
3

0 50000 100000 150000 200000 250000

time [a.u.]

0.000000

0.000005

0.000010

|〈ω
j 4
|Ψ

(R
,r

;t
)〉
|2 ω1

4

ω2
4

ω3
4

ω4
4

ω5
4

ω6
4

ω7
4

ω8
4

Figure 4.13: Population functions of the quasi-bound states ωji for first four
vibrations and several Rydberg states compared to the shape of the DR1 channel
correlation function.
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Figure 4.14: Detail of population functions of the quasi-bound states ωj1 for the
first vibration in several Rydberg states in logarithmic scale.

the states with first vibrationally excited level are significantly populated from the
direct interaction with the incoming wave packet and during the rest of the evolu-
tion these populations are exponentially decaying as the wave function escapes to
the vibrational excitation channels. For convenience we show the ωj1 populations
in the logarithmic scale in Fig. 4.14. The exponential decay is however modu-
lated by oscillations which are in counter phase to the oscillations in population
functions of higher vibrationally excited states. We conclude that these states are
populated mainly by the coupling to the lower vibrationally excited states and
the oscillations result from presence of the reverse process repopulating the lower
vibrationally excited states. We also believe that the system is more likely to dis-
sociate from the higher vibrationally excited states. Together these observations
partially support the interpretation of the motion as so called ladder mechanism
of the dissociative recombination suggested by C.H. Greene [personal communica-
tion, 2017]. Within this mechanism the electron subsequently excites the higher
molecular vibrations while descending to lower Rydberg states up to the point
where the system can dissociate. However in our observation also the reverse
process is visible and the motion is mostly dominated by repeated oscillations
between the quasi-bound states. This mechanism of the dissociative recombina-
tion could be described as multiply indirect. The evolution of the wave function
along with few population levels in time are arranged in animation, provided as
Att. 6.

To give the complete picture of the features provided by the time-dependent
approach we also present the cross sections computed up to some significant
times of the evolution, which are shown in Fig. 4.15. For this purpose we have
chosen the initial state parametrization II since it covers well the whole region
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Figure 4.15: Comparison of the DR1 channel cross sections calculated by the
correlation function for several chosen times of the evolution. The top panel
shows the shapes for early moments, with recombination background evaluated
at time t = 6000 (blue line) and few first contributions from the initial oscilla-
tions, forming the base shape of the structures. The second panel shows further
contributions, where the splitting of the overlapping resonances is visible. The
third panel shows the contributions from further evolution, revealing that even
after more than 120,000 units of time the structures are still very different from
the time-independent reference.
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of Ekin ∈ (0, 0.01). The times of the evaluation were chosen to correspond to
the local minima of the correlation function amplitude for the DR1 channel. As
in the electron-molecule collision models the first contribution creates a smooth
background, provided by the direct mechanism of the dissociative recombination.
In the following contributions series of mostly smooth peaks appear, forming
the basic shape of the cross sections. The further contributions modulate this
shape to form the more narrow peaks. Even after more than hundred thousand
atomic units of time the shapes of the cross sections are far from converged. It
takes several millions of time units to provide the shape which resembles the
time-independent calculation cross section.
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Conclusion

We have investigated the two-dimensional model of the collisions of electrons with
diatomic molecules and the two-dimensional model of the dissociative recombi-
nation of the electron with the hydrogen cation H+

2 . We have solved the model
dynamics numerically in both time-independent and time-dependent approach.
The application of the time-dependent approach to the model dynamics of the
dissociative recombination model revealed the stability and accuracy of the gen-
eralized Crank-Nicloson method for large number of iterations. To extract the
elements of the S matrix from the time-dependent wave function we have tested
three different methods on the electron-molecule collision models and all results
for energies of interest are in a perfect agreement with the cross sections obtained
within the time-independent framework. The correlation function method was
also tested on the model of the dissociative recombination.

The results of the low-energy electron collisions with diatomic molecules pro-
vided a deep insight into the model dynamics and enabled us to find out the origin
of all structures in the vibrational excitation cross sections, discussed in details
in Sec. 3.4. For real systems one could perform similar time-dependent calcula-
tions within the local complex potential approximation or the nonlocal resonance
model and thus interpret the results in the same way. As we have shown, the vi-
brational excitation cross sections for diatomic molecules quite often result from
several contributions separated in time and their shape is given by the interfer-
ence between these contributions. More importantly the asymmetrical shapes in
the cross sections are produced by more than two contributions, thus the terms
boomerang motion and boomerang oscillations are not quite accurate. The terms
oscillatory motion and oscillatory structure are in this context more appropriate.

The results of the dissociative recombination model for the H+
2 cation provides

a deep insight into the dynamics of the indirect mechanism of the dissociative
recombination process. The results confirm the proposition that the most pop-
ulated final state is in the highest possible dissociative recombination channel
accessible for the given electron energy. The results also provide the explanation
of the many observed structures in the cross sections and allow the identification
of the resonant structures with corresponding quasi-bound states, discussed in
Sec. 4.3. The time-dependent approach to the model dynamics of the dissocia-
tive recombination model reveals the presence of long-living states or presence of
paired states between which the system oscillates for very long time.

As we have shown in Sec. 4.3 the observation of the Rydberg states popu-
lation during the evolution allowed us to interpret the recombination process as
multiply indirect mechanism, i.e. as dissociative recombination through repeated
transitions between many quasi-bound states in the Rydberg electronic poten-
tials. This interpretation also partially confirms the proposed ladder mechanism
(see Sec. 4.3 for details).

The results of both time-independent and time-dependent approach to the
dissociative recombination model dynamics allowed us to observe the populations
of the final states for the first time within theoretical calculations. As a result we
may confirm that the highest recombination channel possible for a given energy of
the incoming electron is also the most populated channel, which is in agreement
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with general experiments, e.g. measurements of the dissociative recombination
with LiH+ by Krohn et al. [2001].

The results of the dissociative recombination model of H+
2 will serve as a

benchmark for testing the approximative methods and are currently being pre-
pared for publication in collaboration with the group of R. Čuŕık, where they will
be compared to the results of the frame transformation approximation.
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List of Abbreviations

VE Vibrational excitation.

DA Dissociative Attachment.

DR Dissociative Recombination.

FEM Finite Element Method.

DVR Discrete Variable Representation.

ECS Exterior Complex scaling.
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Attachments

Attachment 1. N2 complex.mp4 A short animation showing the evolution
of the full 2D complex wave function in the interaction region of the N2-like
model. The wave function is displayed using the complex plane mapping to HSV
color space described in Sec. 2.6, with inverted radial mapping. The molecule is
initially in the ground state, i.e. the system incident wave function comes from
the vi = 0 vibrational excitation (VE) channel.

Attachment 2. N2 cs formation.mp4 An animation showing multiple quan-
tities determined from the evolution of two-dimensional model of N2-like system
starting from the initial ground state of the molecule (i.e. vi = 0). The top left
panel shows the mean internuclear distance of the projection onto the discrete
state (see the paper for details). The dotted line marks the position in time.
The bottom left panel shows the two-dimensional probability distribution given
by the complex wave function (Att. 1). Note that the z-axis is rescaled multiple
times during the evolution as visible on the z-axis tics. The rest of the panels
shows the current state of the VE cross sections integrated up to the given time,
i.e. the contribution of the part of the wave function which already left the real
part of the two-dimensional discretization grid. The forming of the structures in
the cross sections is nicely visible in all channels.

Attachment 3. NO complex.mp4 An animation showing the evolution
of two-dimensional complex wave function within the NO-like model displayed
through HSV mapping from Sec. 2.6, with inverted radial scale. The molecule is
initially in the vibrational ground state, i.e. vi = 0.

Attachment 4. NO cs formation.mp4 An animation showing multiple quan-
tities from the evolution of two-dimensional model of NO-like system starting
from initial ground state of the molecule (i.e. vi = 0). The top left panel shows
the mean internuclear distance of the projection onto the discrete state of the
system. The dotted line marks the position in time. The bottom left panel shows
the two-dimensional probability distribution given by the complex wave function
(Att. 3). Note that the z-axis is rescaled multiple times during the evolution as
visible on the z-axis tics. The rest of the panels shows the current state of the
VE cross sections integrated up to the given time, i.e. the contribution of the
part of the wave function which already left the real part of the two-dimensional
discretization grid. The forming of the structures in the cross sections is nicely
visible in all channels.

Attachment 5. F2 coplex.mp4 An animation showing the evolution of two-
dimensional complex wave function within the F2-like model displayed through
HSV mapping from Sec. 2.6, with inverted radial scale. The molecule is initially
in the vibrational ground state, i.e. vi = 0.

Attachment 6. H2p complex.mp4 An animation showing the evolution of
two-dimensional complex wave function within the H+

2 -like model of dissociative
recombination displayed through HSV mapping from Sec. 2.6, with inverted radial
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scale. The molecular cation is initially in the vibrational ground state, i.e. vi = 0.
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