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Introduction

There are at least two reasons why one might consider solving differential equation
in a spatially unbounded domain: one could hope to gain access to additional
symmetries or the Fourier transform or one might be interested in the dynamics
resulting from the unboundedness of the spatial domain. In this thesis we adopt
the latter approach.

Differential equations in unbounded domains have several specifics. The clas-
sical Lebesgue spaces do not contain constants nor other potentially interesting
functions, so one should consider the space of initial data. Historically, weighted
spaces have been used, see e.g. Abergel [1990]. Roughly in the last 20 years the
analysis has been carried out in so-called locally uniform spaces, see e.g. Mielke
and Schneider [1995], Feireisl [1996], Zelik [2001b] and Zelik [2001a], which on the
other hand are neither separable nor reflexive. One should also think about suit-
able generalizations of the notions of attractor since we cannot in general expect
these to be compact or have finite fractal dimension owing to the unboundedness
of the domain.

The unifying theme of this thesis is the asymptotic analysis of dissipative
evolution differential equations posed in unbounded domains. We establish the
existence of locally compact attractors for several equations and obtain upper
bounds on their Kolmogorov’s ε-entropy. We also study the infinite dimensional
exponential attractors and supply a sufficient and necessary condition for the
existence of such an attractor.

This thesis consist of two published paper and two preprints:

[I] D. Pražák and J. Slav́ık. Attractors and entropy bounds for a nonlinear
RDEs with distributed delay in unbounded domains. Discrete Contin. Dyn.
Syst. Ser. B, 21(4):1259–1277, 2016. ISSN 1531-3492. doi: 10.3934/dcdsb.
2016.21.1259.

[II] J. Slav́ık. A sufficient and necessary condition for infinite dimensional ex-
ponential attractor in locally uniform spaces. In preparation.

[III] M. Michálek, D. Pražák, and J. Slav́ık. Semilinear damped wave equation
in locally uniform spaces. Commun. Pure Appl. Anal., 16(5):1673–1695,
2017. ISSN 1534-0392. doi:10.3934/cpaa.2017080.

[IV] J. Slav́ık. Kolmogorov’s ε-entropy of the attractor of the strongly damped
wave equation in locally uniform spaces. In preparation.

The thesis is organised as follows: in Section 1 the reader may find basic
definitions of function spaces used in the above papers. Section 2 recalls some of
the objects of interest of asymptotic analysis of evolution equations in unbounded
domains. Section 3 contains a review of results obtained in the papers [I–IV].
Finally Sections 4–7 consist of the papers and preprints themselves.
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1. Function spaces

In this section we review definitions and basic properties of weighted spaces,
locally uniform spaces and their parabolic variant.

According to Arrieta et al. [2004] the locally uniform spaces have been first
introduced in Kato [1975] who studied hyperbolic equations in the unbounded
domain Rd, although he considered that only the coefficients of the equations are
locally uniform. However, locally uniform spaces are the more natural choice for
a phase space in the study of differential equations in unbounded domains mainly
for two reasons: first, the classical Lebesgue spaces over Rd are not nested, i.e.
Lp(Rd) ( Lq(Rd) and Lq(Rd) ( Lp(Rd) for 1 ≤ p, q ≤ ∞, p ̸= q, and secondly,
many solutions relevant to physical or biological applications and natural mathe-
matical techniques, such as travelling waves and constants, are not in Lp(Rd) for
any 1 ≤ p <∞.

In the theory of partial differential equations in unbounded domains the locally
uniform spaces are used as the space of initial data. The weighted spaces serve
mostly as an analytic tool, for example to obtain apriori estimates or describe
the continuity of the solution semigroup. The parabolic variant of the locally
uniform spaces plays the role of classical Bochner spaces which are essential for
the method of trajectories.

1.1 Weighted spaces

A bounded measurable function φ : Rd → (0,∞) is called a weight function of
growth rate µ ≥ 0 if

C−1
φ e−µ|x−y| ≤ φ(x)/φ(y) ≤ Cφe

µ|x−y|, ∀x, y ∈ Rd, (1.1)

for some Cφ > 0 and

|∇φ(x)| ≤ C̃φεφ(x), for a.a. x ∈ Rd, (1.2)

and for some C̃φ > 0. For x̄ ∈ Rd and ε > 0 we define

φx̄,ε(x) = e−ε|x−x̄|.

One can easily show that φx̄,ε is a weight function of growth ε.
For ε > 0, x̄ ∈ Rd and p ∈ [1,∞) we define the weighted Lebesgue space

Lp
x̄,ε(Rd) by

Lp
x̄,ε(Rd) = {u ∈ Lp

loc(R
d); ∥u∥p

Lpx̄,ε
=

∫

Rd
|u(x)|pφx̄,ε(x) dx <∞}.

For p = 2 we write ∥·∥x̄,ε instead of ∥·∥
L2
x̄,ε
. The corresponding Sobolev spaces are

defined in a straightforward manner. The weighted spaces Lp
x̄,ε(Rd) are clearly

separable and for 1 < p <∞ they are reflexive.
Concerning the embeddings of weighted spaces, first observe that the space

W k,p
x̄,ε (Rd) cannot be embedded into Lq

x̄,ε(Rd) for any q > p. However, we are able
to overcome this limitation once we allow different growth rates.
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Assume that k, l ∈ N0 and p, q ∈ [1,∞) are such that k ≥ l, q ≥ p and
W k,p(Rd) ↪→ W l,q(Rd), then for ε̃ = εq/p we have the continuous embedding
W k,p

x̄,ε (Rd) ↪→ W l,q
x̄,ε̃(Rd). If the embedding W k,p(B(0, 1)) ↪→↪→ W l,q(B(0, 1)) is

compact, then for ε̃ > εq/p the embedding W k,p
x̄,ε (Rd) ↪→↪→ W l,q

x̄,ε̃(Rd) is also
compact.

1.2 Locally uniform spaces

For a weight function φ and p ∈ [1,∞) we define the locally uniform space
Lp
b,φ(Rd) by

Lp
b,φ(R

d) = {u ∈ Lp
loc(R

d); ∥u∥p
Lpb,φ

= sup
x̄∈Rd

φ(x̄)

∫

B(x̄,1)

|u(x)|p dx}.

The corresponding Sobolev spaces are again defined in a straightforward manner.
One can also easily show that the norm ∥·∥

Lpb,φ
is equivalent to the norm

∥u∥p
Lpb,φ

≈ sup
k∈Zd

φ(k)

∫

C1
k

|u(x)|p dx, u ∈ Lp
loc(R

d), (1.3)

where CR
x denotes the cube in Rd of side R > 0 centred at x ∈ Rd. For p = 2 we

usually write ∥·∥b,φ instead of ∥·∥
L2
b,φ
. Moreover, if φ ≡ 1 we omit the dependence

on φ and write for example L2
b(Rd) instead of L2

b,1(Rd).
The locally uniform spaces are neither separable nor reflexive. Being in

L1
loc(Rd), the locally uniform functions are clearly distributions on Rd and one

can also show that locally uniform functions are actually tempered distributions.
To the best of our knowledge there are no results studying the locally uniform
spaces using the Fourier transform.

The locally uniform spaces have the pleasant property that whenever k, l ∈ N0

and p, q ∈ [1,∞) are such that the embedding W k,p(B(0, 1)) ↪→ W l,p((B(0, 1))
holds, then the embedding W k,p

b (Rd) ↪→ W l,q
b (Rd) also holds. However, none of

these embeddings are compact.
The weighted spaces and the locally uniform spaces are connected through

the following equivalence of norms. The proof can be found e.g. in Grasselli et al.
[2010]. Let k ∈ N0, p ∈ [1,∞), ε > 0. Let φ be a weight function of growth rate
0 ≤ µ < ε and u ∈ W k,p

loc (Rd). Then u ∈ W k,p
b,φ (Rd) if and only if u ∈ W k,p

x̄,ε (Rd) for

every x̄ ∈ Rd and
sup
x̄∈Rd

φ(x̄)1/p∥u∥
Wk,p
x̄,ε

<∞. (1.4)

Moreover, the left-hand side of (1.4) defines a norm equivalent to the W k,p
b,φ (Rd)-

norm.
We can also easily show that on L2

b(Rd)-bounded sets the L2
loc(Rd)-topology

is equivalent to the weighted topology.

Lemma 1.1. Let B ⊆ L2
b(Rd) and un, u ∈ B, then for every x̄ ∈ Rd and ε > 0

un → u in L2
x̄,ε(Rd) ⇔ un → u in L2

loc(Rd).
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For O ⊆ Rd we denote I(O) = {k ∈ Zd;C1
k ∩O ̸= ∅} and define the seminorm

W k,p
b,φ (O) by

∥u∥p
Wk,p
b,φ (O)

= sup
l∈I(O)

φ(l)∥u∥p
Wk,p(C1

l )
. (1.5)

1.3 Parabolic locally uniform spaces

Let ℓ > 0 be fixed and denote Qℓ = (0, ℓ)×Rd. For a weight function φ we define
the parabolic locally uniform space L2

b,φ(0, ℓ;L
2(Rd)) by

L2
b,φ(0, ℓ;L

2(Rd)) = {u : Qℓ → R; ∥u∥2L2
b,φ(0,ℓ;L

2) = sup
x̄∈Rd

φ(x̄)∥u∥2L2(0,ℓ;L2(C1
x̄))
<∞}.

It is easy to see

L2(0, ℓ;L2
b,φ(Rd)) ( L2

b,φ(0, ℓ;L
2(Rd)) ( L2

loc(Qℓ).

We also define the space L2
b,φ(0, ℓ;W

1,2(Rd)) by

L2
b,φ(0, ℓ;W

1,2(Rd)) = {u : Qℓ → R;
∥u∥2L2

b,φ(0,ℓ;W
1,2) = sup

x̄∈Rd
φ(x̄)∥u∥2L2(0,ℓ;W 1,2(C1

x̄))
<∞}

and finally the space L2
b,φ(0, ℓ;W

−1,2(Rd)) by

L2
b,φ(0, ℓ;W

−1,2(Rd)) = {u : Qℓ → R;
∥u∥2L2

b,φ(0,ℓ;W
−1,2) = sup

x̄∈Rd
φ(x̄)∥u∥2L2(0,ℓ;W−1,2(C1

x̄))
<∞}.

Similarly as for locally uniform space in (1.3) one may take the supremum over
k ∈ Zd instead of x̄ ∈ Rd and show that there is an equivalent norm relying on
the weight functions φx̄,ε. More precisely for a weight function φ of growth µ ≥ 0
and ε > µ, by Theorem 2.4 in Grasselli et al. [2010] the space L2

b,φ(0, ℓ;L
2(Rd))

admits an equivalent norm

∥u∥2L2
b,φ(0,ℓ;L

2) ≈ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd
|u(t, x)|2φx̄,ε(x) dx dt.

Similar equivalent norms can be found for the spaces L2
b,φ(0, ℓ;W

1,2(Rd)) and

L2
b,φ(0, ℓ;W

−1,2(Rd)).

For O ⊆ Rd we may also define the L2
b,φ(0, ℓ;L

2(O))-seminorm by

∥u∥2L2
b,φ(0,ℓ;L

2(O)) = sup
k∈I(O)

φ(k)∥u∥2L2(0,ℓ;L2(C1
k))

(1.6)

with obvious extensions to L2
b,φ(0, ℓ;W

1,2(O)) and L2
b,φ(0, ℓ;W

−1,2(O)).
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2. Attractors in locally uniform
spaces

In this section we briefly review the basic objects of interest in the asymptotic
analysis, namely the global attractor and the exponential attractor, and discuss
the issues arising in the context of locally uniform spaces.

The asymptotic properties of autonomous evolutionary equations are studied
using dynamical systems. In the rest of this section let (X, d) be a complete
metric space and let S(t) : X → X for every t ≥ 0. The pair (X,S(t)) is
called a dynamical system if S(t) is a semigroup, i.e. S(0) is an identity on X,
S(t+s) = S(t)S(s) = S(s)S(t) for every s, t ≥ 0, and the mapping (t, x) → S(t)x
is continuous. We will often call the set X the phase space of the dynamical
system (X,S(t)).

However, in the setting of locally uniform spaces we do not usually have the
continuity in the phase space, in fact the solutions are in general not even strongly
measurable. On the other hand the solution semigroup is usually continuous in
the weighted spaces.

Recall that the (non-symmetric) distance between sets A, B ⊆ X is defined
by

distX(A,B) = sup
a∈A

inf
b∈B

d(a, b).

2.1 Bi-space attractor

A set A ⊆ X is called the global attractor of the dynamical system (X,S(t)) if
A is compact, invariant with respect to S(t), i.e. S(t)A = A for all t ≥ 0, and A
attracts bounded subsets of X, more precisely for B ⊆ X bounded one has

lim
t→∞

distX(S(t)B,A) = 0.

Owing to the unboundedness of the spatial domain we cannot expect the
attractor of evolution equations in locally uniform spaces to be compact in the
locally uniform topology. This leads to the definition of the so-called bi-space
attractor.

Definition. Let (X, d) be a complete metric space and (X,S(t)) a dynamical
system. Let τ be a topology on X weaker than the topology generated by the
metric d. A set A ⊆ X is called a ((X, d), (X, τ))-attractor of the dynamical
system (X,S(t)) if

1. A is bounded in (X, d) and compact in (X, τ),

2. A is invariant w.r.t. S(t), in other words S(t)A = A for every t ≥ 0,

3. A attracts bounded subsets of (X, d) w.r.t. to the topology τ , i.e. for every
B ⊆ X bounded in (X, d) and for every O ∈ τ such that A ⊆ O there exists
TB > 0 such that S(t)B ⊆ O for all t ≥ TB.

6



In the context of differential equations in unbounded domains the space X
is usually a (Sobolev) locally uniform space, for now denoted by Φb, and the
topology τ is the respective local topology Φloc. We then speak of the (Φb,Φloc)-
attractor or the locally compact attractor. Also recall that by Lemma 1.1 the local
topology Φloc on Φb-bounded sets is equivalent to the weighted topology, which
further stresses out the importance of weighted spaces as a useful analytical tool.

It is well-known that the existence of the global attractor is equivalent to the
asymptotic compactness, i.e. the relative compactness of the set

{S(tn)xn;n ∈ N} for every tn → ∞ and {xn}∞n=1 ⊆ X bounded,

and dissipativity, i.e. the existence of a bounded (absorbing) set B, which is a set
such that for every bounded set B ⊆ X one has S(t)B ⊆ B for t ≥ tB = tB(B).
The existence criteria for the bi-space attractors are analogous, cf. Section 2 in
Babin and Vishik [1992].

2.2 Kolmogorov’s ε-entropy

The complexity of global attractors is often described by the fractal dimension.
Let A ⊆ X be precompact, then we define the fractal dimension of A by

dimf (A) = lim sup
ε→0

lnNε(A,X)

ln 1
ε

,

where Nε(A,X) is the smallest number of balls of diameter ε that cover A in X.
Owing to the noncompacntess of locally compact attractors in the locally uniform
topology, we see that the fractal dimension will not be of much use considering
problems posed in locally uniform spaces over unbounded domains.

The idea is to study the complexity of the locally compact attractor only
locally. To this end we define the Kolmorov’s ε-entropy Hε(A,X) by

Hε(A,X) = lnNε(A,X).

The finiteness of the fractal dimension of the global attractor is then replaced by
a particular bound on Kologorov’s ε-entropy of the locally compact attractor A
of the form

Hε

(
A|CRx̄ ,Φb(C

R
x̄ )
)
≤ C

(
R + L ln

ε0
ε

)d
ln
ε0
ε

(2.1)

holding for all x̄ ∈ Rd, R ≥ 1, ε ∈ (0, ε0) with constants C, L, ε0 > 0 independent
of x̄, R and ε. This type of bound has been shown to be optimal for the reaction-
diffusion equation and the wave equation, cf. Zelik [2001b] and Zelik [2001a].

2.3 Infinite dimensional exponential attractor

The global (or bi-space) attractor describes the limit asymptotic behaviour of
the dynamical system. On the other hand the global and bi-space attractor may
attract the solutions arbitrarily slowly and in general it is not possible to express
the rate of attraction in terms of the data of the problem. The lack of information
on the rate of attraction is solved by the concept of the exponential attractor.
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Recall that a set E ⊆ X is called the exponential attractor of the dynamical
system (X,S(t)) if E is compact, positively invariant, i.e. S(t)E ⊆ E for all t ≥ 0,
dimf (E) < ∞ and the set E exponentially attracts bounded subsets of X, more
precisely if there exist a monotone increasing function Q : [0,∞) → (0,∞) and
γ > 0 such that for every B ⊆ X bounded

distX(S(t)B, E) ≤ Q (∥B∥X) e−γt, t ≥ 0.

A necessary and sufficient condition for the existence of a discrete exponential
attractor has been given in Pražák [2003] by the means of uniformly good covering
of the images of the absorbing set.

Theorem (Theorem 2.1, Pražák [2003]). Let S : X → X be Lipschitz. Then a
discrete dynamica system (X,Sn) admits a discrete exponential attractor if and
only if there exist constants a, b > 0, η ∈ (0, 1) and K > 1 such that

Naηn(S
nB, X) ≤ bKn for all n ∈ N,

where B is the absorbing set of the discrete dynamical system (X,Sn).

An analogous concept to the exponential attractor in the context of evolu-
tion equations posed in locally uniform spaces over unbounded domains is the
infinite dimensional exponential attractor introduced in Efendiev et al. [2004] for
the reaction-diffusion equation. Compared to the classical exponential attractor,
one requires that the infinite dimensional exponential attractor is only locally
compact and that an entropy bound similar to (2.1) holds instead of finite fractal
dimension. The infinite dimensional exponential attractor as defined in Efendiev
et al. [2004] also has the advantage of attraction in the locally uniform norm
rather than only locally.

We will refrain from defining the infinite dimensional attractor in an abstract
setting in this section and rather refer the reader to Section 3.2, where we present
a rather obvious, nevertheless abstract definition of the infinite dimensional ex-
ponential attractor together with a sufficient and necessary condition on its exis-
tence. We also discuss the applicability of the abstract model on other equations.
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3. Review of the results

In this section we review the results of the papers [I], [II], [III] and [IV]. The
obtained results often rely in some way on the method of ℓ-trajectories described
in detail in Málek and Pražák [2002]. The method aims to study the asymptotic
properties of the solution semigroup through a different semigroup defined on the
space of trajectories of solutions over a finite1 time interval. This often allows us
to obtain results that can be directly obtained in a higher regularity phase space
even in a lower regularity setting.

We remark that in the rest of this section we assume that all the absorbing
sets are positively invariant. This can be done without any limitations by a
standard procedure. Also for every function space defined in the following by
taking supremum over x̄ ∈ Rd or k ∈ Zd, we automatically define respective
seminorms over O ⊆ Rd similarly as in (1.5) and (1.6).

3.1 Paper [I]

In [I] we have studied the nonlocal differential equation

ut − div a(∇u) + du = F (ut), (3.1)

where a : RN → RN represents a nonlinear diffusion, d, r > 0, ut ≡ u(t + θ) for
θ ∈ [−r, 0] and

F (ut) =

∫ 0

−r

(∫

RN
b(u(t+ θ, y))f(x− y)e−|x−y| dy

)
ξ(θ, u(t), ut) dθ,

where b, f and ξ are nonlinear functions specified later. The equation (3.1) is
supplemented with the initial data

u(0) = u0 ∈ L2
b(RN), u|(−r,0) = ψ ∈ L2

b(−r, 0;L2(RN)).

We assume that the nonlinear diffusion a ∈ C(RN ,RN) satisfies

a(0) = 0, (a(ζ)− a(η)) · (ζ − η) ≥ κ|ζ − η|2, ∀ζ, η ∈ RN , (3.2)

|a(ζ)− a(η)| ≤ κγ|ζ − η|, ∀ζ, η ∈ RN , (3.3)

ζ → a(ζ) · ζ is a convex function on RN , (3.4)

for some κ > 0, γ ≥ 1. The function b : R → R is assumed to be bounded and
Lipschitz continuous and the function f : RN − RN → R to be bounded. Let us
denote the natural phase space of the equation (3.1) by

H = L2
b(RN)× L2

b(−r, 0;L2(RN)).

The function ξ : (−r, 0) × H → R governing the distributed delay satisfies the
following two conditions:

1The method is sometimes called ”the method of short trajectories” to distinguish it from
methods working with whole trajectories over (−∞,∞) or [0,∞). However, when applied to a
wave equation (see for example [III]), these ”short” trajectories have to be sufficiently long.
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1. For every M > 0 there exists L = L(M) > 0 such that for every x̄ ∈ RN

and (vi, ψi) ∈ H, i = 1, 2, satisfying

∥vi∥2x̄,ε +
∫ 0

−r

∥ψi(θ)∥2x̄,ε dθ ≤M, i = 1, 2,

the estimate

∫ 0

−r

|ξ(θ, v1, ψ1)− ξ(θ, v2, ψ2)| dθ

≤ L

(
∥v1 − v2∥2x̄,ε +

∫ 0

−r

∥ψ1(θ)− ψ2(θ)∥2x̄,ε dθ
)1/2

holds for every ε > 0, x̄ ∈ RN .

2. The function ξ(·, v, ψ) is L2(−r, 0)-integrable in the first variable uniformly
w.r.t. (v, ψ) ∈ H, in other words

∥ξ(·, v, ψ)∥L2(−r,0) ≤ Cξ

for some Cξ > 0 and all (v, ψ) ∈ H.

The weak solution u satisfies the equation (3.1) in distributions over (0,∞)×
RN and has the regularity

u ∈ C([0, T ], L2
x̄,ε(RN)) ∩ L2(−r, 0;L2

x̄,ε(RN)) ∩ L2(0, T ;W 1,2
x̄,ε (RN))

for all ε > 0 sufficiently small, all x̄ ∈ RN and every weight function φ of growth
rate smaller than ε. However, the solution as a function u : [0, T ] → L2

b,φ(Rd) is
not in general strongly measurable.

In the paper we show that the equation (3.1) is well-posed and generates a
dissipative semigroup S(t). We also establish the existence of a locally com-
pact, more precisely a (L2

b(−r, 0;L2(RN)), L2
loc((−r, 0)×RN))-attractor A of the

dynamical system (X,S(t)), where

X = {u ∈ C([−r, 0], L2
x̄,ε(RN));u is a weak solution of (3.1)}

is the reduced phase space equipped with the L2(−r, 0;L2
x̄,ε(Rd))-topology for

arbitrary x̄ ∈ Rd and ε > 0 sufficiently small. We also show that the usual
entropy estimate

Hε

(
A|B(x̄,R), L

2
b(−r, 0;B(x̄, R))

)
≤ C

(
R + L̃ ln

ε0
ε

)N
ln
ε0
ε

(3.5)

holds for some C, L̃, ε0 > 0 and all R ≥ 1, x̄ ∈ RN and ε ∈ (0, ε0). We have used
the method of Grasselli et al. [2010] adapted to the delayed equation (3.1).

Let us discuss the method in more detail. As usual we restrict ourselves to
the dynamics on the absorbing set, in this case to the trajectories starting in the
absorbing set. We define the space of trajectories Bℓ by

Bℓ = {χ ∈ C([−r, ℓ], L2
x̄,ε(RN));χ solves (3.1) in [0, ℓ] and (χ(0), χ|(−r,0)) ∈ B},

10



where is ε > 0 sufficiently small, ℓ > 0 and x̄ ∈ RN are fixed and B ⊆ H
is an absorbing set of the semigroup S(t). We equip the space Bℓ with the
topology L2(−r, ℓ;L2

x̄,ε(RN)). By a variant of Lemma 1.12 the topology on Bℓ

is equivalent to the local topology L2
loc((−r, 0) × RN). The trajectory solution

semigroup L(t) : Bℓ → Bℓ and the end-point mapping e : Bℓ → B are then defined
by

[L(t)χ](s) = u(t+ s), s ∈ [−r, ℓ], e(χ) = [L(r + ℓ)χ]|[−r,0], χ ∈ Bℓ,

where u is the unique solution of (3.1) from the definition of Bℓ.
The mapping e : L2

b,φ(−r, ℓ;L2(RN)) → L2
b,φ(−r, 0;L2(RN)) is Lipschitz con-

tinuous and the mapping L = L(r+ ℓ) has a smoothing property, more precisely,
denoting

∥χ∥Wb,φ
= ∥χ∥L2

b,φ(−r,ℓ;W 1,2) + ∥∂tχ∥L2
b,φ(−r,ℓ;W−1,2),

that the mapping L : L2
b,φ(−r, ℓ;L2(RN)) → Wb,φ is Lipschitz continuous for a

weight function φ of sufficiently small growth.
We prove that the dynamical system (Bℓ, L(t)) has a global attractor Aℓ and

that A = e(Aℓ) is the (L2
b(−r, 0;L2(RN)), L2

loc((−r, 0) × RN))-attractor of the
dynamical system (X,S(t)). By the Lipschitz continuity of the end-point map-
ping e it suffices to establish an upper bound of the Kolmogorov’s ε-entropy of
the trajectory attractor Aℓ similar to (3.5). Such a bound can be obtained using
the smoothing property of the trajectory semigroup L and the following explicit
version of the Aubin-Lions lemma similar to the one in Zelik [2001b].

Lemma (Lemma 2.6, Grasselli et al. [2010]). Let ϕ be a weight function and let
O ⊆ RN satisfy

#(O) ≤ C0 vol(O). (3.6)

Let R > 0 and θ ∈ (0, 1). Then there exists C1 > 0 such that

HθR

(
LBR(χ;W)|O, L2

b,φ(−r, ℓ;L2(O)
)
≤ C1 vol(O).

The constant C1 depends on C0, ℓ, θ and the constants µ, Cφ, C̃φ in (1.1), (1.2)
but is independent of χ, R, r, O and the particular form of the function φ as long
as (1.1),(1.2) and (3.6) are satisfied.

We will see similar instances of this lemma in the following papers as they are
crucial in obtaining the entropy estimates.

3.2 Paper [II]

In Efendiev et al. [2004] the authors show that solution semigroup of the reaction-
diffusion equation

ut − a∆u+ (L,∇)u+ f(u) + λ0u = g

2In the paper [I] we use Lemma 2.9. However, there is an error in the paper as we in fact
require a slightly different version. Instead of the requirement that B ⊆ L∞(−r, ℓ;L2

b(Rd)),
which is not satisfied by the solutions, we should require that

sup
x̄∈Rd

sup
t∈(−r,ℓ)

∥u(t)∥x̄,ε ≤ CB, uniformly for u ∈ B.
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posed in the space W 2,p
b (Rd) with p > max{2, d/2}, where a ∈ Rd×d is a constant

diffusion matrix with positive symmetric part, L is a suitable vector field in Rd,
f : R → R is a suitable reaction function and g ∈ Lp

b(Rd) is an external force,
admits an infinite dimensional exponential attractor. The infinite exponential ex-
ponential attractor E ⊆ W 2,p

b (Rd) is by definition bounded in W 2,p
b (Rd), compact

in W 2,p
loc (Rd), positively invariant under S(t), exponentially attracts bounded sets

in W 2,p
b (Rd) in the locally uniform topology W 2,p

b (Rd) and satisfies the entropy
estimate

Hε

(
E|CRx̄ ,W

2,p
b (CR

x̄ ))
)
≤ C

(
R + L̃ ln

ε0
ε

)d
ln
ε0
ε

for some C, L̃, ε0 > 0 and all x̄ ∈ Rd, R > 0 and ε ∈ (0, ε0). The procedure relies
on the embedding W 2,p

b (Rd) ↪→ L∞(Rd). Two questions naturally occur: firstly,
whether the existence of an infinite dimensional exponential attractor can be
established working in the less regular phase space L2

b(Rd), and secondly whether
one can find a necessary and sufficient condition for the existence of the infinite
dimensional exponential attractor similar to the one in Pražák [2003] and apply
this criterion directly to different problems.

Using an abstract model of a locally uniform space described below we show
in [II] that there is indeed a necessary and sufficient condition for the existence of
an infinite dimensional exponential attractor that can be applied to the nonlinear
reaction-diffusion equation

ut − div a(∇u) + f(u) + h(·,∇u) = g (3.7)

posed in the phase space L2
b(Rd) with d ≤ 3, where the nonlinear functions

a ∈ C(Rd,Rd), f ∈ C(R,R), h : Rd×Rd → R are specified below and g ∈ L2
b(Rd)

is an external force. However, a direct application of the criterion to problems
such as the semilinear damped wave equation is not possible.

The nonlinear diffusion a is assumed to satisfy (3.2–3.4). The nonlinear reac-
tion f satisfies f(0) = 0 and

|f(r)− f(s)| ≤ C1 (1 + |r|+ |s|)p−2 |r − s|, for all r, s ∈ R,
(f(r)− f(s)) (r − s) ≥ −C2|r − s|2, for all r, s ∈ R,
C3|r|p − C4 ≤ f(r)r ≤ C5 (|r|p + 1) , for all r ∈ R,

for some p ∈ (2,∞) and Ci > 0. Finally the nonlinear drift h : Rd × Rd → R is
such that

the function ξ → h(x, ξ) is globally Lipschitz for a.e. x ∈ Rd,

the function x→ h(x, ξ) is measurable and essentially bounded for all ξ ∈ Rd.

We assume the following abstract model of a locally uniform space. Let Xk

be closed subsets of some Banach space X̃k for every k ∈ Zd and let Xb be an
abstract locally uniform space defined by

Xb =
∏

k∈Zd
Xk equipped with the norm ∥x∥Xb = sup

k∈Zd
∥x∥Xk .

For K ⊆ Zd we will denote

Xb(K) =
∏

k∈K
Xk with the corresponding seminorm ∥x∥Xb(K) = sup

k∈K
∥x∥Xk .
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We emphasize that the above definition implicitly assumes that for xk ∈ Xk

there exists x ∈ Xb such that x|{k} = xk for every k ∈ Zd, which allows for
splicing of local elements xk, k ∈ Zd, into one global element x ∈ Xb. This
requirement prevents the criterion stated below from direct application to the
wave equation posed in the space W 1,2

b (Rd)× L2
b(Rd), where one cannot join the

locally W 1,2-functions into a W 1,2
b -function without leaving the absorbing set, or

to the trajectory spaces, where we cannot expect that solutions on (spatially)
bounded domains with different initial data can be joined together into another
solution.

We define the local topology Xloc by

xn → x in Xloc ⇔ xn|K → x|K in Xb(K) for every K ⊆ Zd finite.

With a slight abuse of notation we denote the cubes of side R > 0 in Zd centred
in k ∈ Zd by

CR
k = {j ∈ Zd; max

i=1,...,d
|ji − ki| ≤ R/2}.

Let S : Xb → Xb be an operator. We define the discrete infinite dimensional
exponential attractor in the spirit of Efendiev et al. [2004].

Definition. A set E ⊆ Xb is called a discrete infinite dimensional exponential
attractor of the discrete dynamical system (Xb, S) if

1. E is bounded in Xb and compact in Xloc,

2. E is positively invariant under S, i.e. SE ⊆ E,

3. E exponentially attracts bounded sets in Xb, i.e. there exist γ > 0 and a
monotone increasing function Q : R+

0 → R+ such that for every B ⊆ Xb

bounded and n ∈ N one has

distXb(S
nB, E) ≤ Q(∥B∥Xb)e

−γn,

4. there exist ε0, C, L > 0 such that for every k ∈ Zd, R ≥ 1 and ε ∈ (0, ε0)
the estimate

Hε

(
E|CRk , Xb(C

R
k )
)
≤ C

(
#C

R+L ln ε0/ε
k

)
ln
ε0
ε

holds with constants C, L and ε0 independent of k, R and ε.

In Theorem 3.1 in [II] we give the abstract necessary and sufficient condition
on the existence of an exponential attractor similar to an analogous criterion for
exponential attractors from Pražák [2003], cf. Section 2.3. The proof is similar
to the original proof in Efendiev et al. [2004].

Theorem. Let S : Xb → Xb be Lipschitz continuous and let B ⊆ Xb be an
absorbing set of the discrete dynamical system (Xb, S), i.e. for every bounded
B ⊆ Xb there exists N = N(B) such that for every n ≥ N one has Sn(B) ⊆ B.
Let there exist α, L > 0 such that

∥Snu− Snv∥Xk ≤ Ln sup
l∈Zd

e−α|k−l|∥u− v∥Xl (3.8)
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for every k ∈ Zd, n ∈ N and u, v ∈ B. Then the dynamical system (Xb, S) has
a discrete infinite dimensional exponential attractor if and only if for some ε0,
L′ > 0 and θ ∈ (0, 1) and every n ∈ N and k ∈ Zd we have

Hε0θ−n
(
(SnB)|Cnk , Xb(C

n
k )
)
≤ C(#Cn+L′n)n (3.9)

with the constant L′ independent of n ∈ N and k ∈ Zd.

The assumption (3.8) quantifies the decay of the effect distant cubes have on
the cube C1

k . It is easy to show that for example a finite speed of propagation
implies the estimate (3.8). We note that estimates of the form (3.8), for which
we use the term ”exponentially finite speed of propagation”, arise naturally in
the equations in locally uniform spaces.

We then use the above criterion to show that the solution semigroup S(t) :
L2
b(Rd) → L2

b(Rd) of the nonlinear reaction-diffusion equation (3.7) admits an
infinite dimensional exponential attractor in the sense of the above definition
with Xb = L2

b(Rd) and Xloc = L2
loc(Rd). The crucial entropy bound (3.9) is

obtained by studying the properties of the trajectory semigroup L(t). For details
on the proof, see Theorem 4.4, [II].

3.3 Paper [III]

In [III] we have studied the semilinear wave equation with weak nonlinear damp-
ing

utt + g(ut)−∆u+ αu+ f(u) = h(t), (3.10)

where f : R → R and g : R → R are nonlinear functions, α > 0 and h ∈
L2
b(0,∞;L2(Rd)). The equation is coupled with initial data

u(0) = u0 ∈ W 1,2
b (Rd), ut(0) = u1 ∈ L2

b(Rd).

The nonlinearity f ∈ C1(R,R) is assumed to satisfy f ′ ≥ −β,

∀r ∈ R : |f ′(r)| ≤ γ1(|r|p−1 + 1), and lim inf
|r|→∞

f(r)/r > 0

for some β, γ1 > 0. The nonlinear damping g ∈ C1(R,R) is such that g(0) = 0,
g′ ≥ γ5 > 0 and

γ2|r|µ+1 − γ3 ≤ g(r)r ≤ γ4(|r|µ+1 + 1), ∀r ∈ R,

with γi > 0. We consider the following set of parameters:

p ∈
(
0,

d

d− 2

]
for d > 2, p ∈ (0,∞) for d = 2, µ ∈ [1,∞), (3.11)

Let us denote

Φb = W 1,2
b (Rd)× L2

b(Rd), Φloc = W 1,2
loc (R

d)× L2
loc(Rd). (3.12)

A weak solution u is defined to satisfy the equation in distributions over (0,∞)×
Rd and has the regularity

(u, ut) ∈ C([0,∞),W 1,2
x̄,ε (Rd)× L2

x̄,ε(Rd)), ut ∈ Lµ+1(0,∞;Lµ+1
x̄,ε (Rd)),
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for every ε > 0 and x̄ ∈ Rd. Again the solution (u, ut) : [0, T ] → Φb is in general
not measurable.

We prove that the equation (3.10) is well-posed in the full spectrum of parame-
ters (3.11) and, under additional assumptions, generates a dissipative semigroup
S(t). More precisely we show the semigroup S(t) has a (Φb,Φloc)-attractor if
either µ = 1, or µ ∈ (1, (d+ 2)/(d− 2)) and

−g(r)s ≤ κf(s)s+ C(g(r)r + 1) ∀r, s ∈ R

for some κ ∈ (0, 1) and C > 0. Even though this assumption allows the use of
polynomials such as

g(r) = r|r|µ−1, f(s) = s|s|p−1 − as, with µ ∈ [1, 3), p ∈ [µ, 3),

for a > 0 small and d = 3, it is far from optimal. Under yet another additional
assumptions, namely µ ∈ [1, 7/3) and

C(1 + |r|)µ−1 ≤ g′(r) ≤ C ′(1 + |r|)µ−1, r ∈ R,

we establish the usual entropy estimate

Hε

(
A|B(x̄,R),Φb(B(x̄, R))

)
≤ C

(
R + L̃ ln

ε0
ε

)d
ln
ε0
ε

(3.13)

holding for all x̄ ∈ Rd, R ≥ 1 and ε ∈ (0, ε0) with constants C, L̃, ε0 > 0. A
similar result for linear damping has been obtained in Zelik [2001a]. We also
remark that the well-posedness of the equation (3.10) for the full spectrum of the
parameters (3.11) and the existence of a (Φb,Φloc)-attractor for linearly bounded
damping g, i.e. with µ = 1, was shown in the diploma thesis of M. Michálek, one
of the authors of [III].

The well-posedness has been shown by a suitable approximation. The asymp-
totic results were again obtained using the method of trajectories. Compared to
the nonlocal equation in [I] or the reaction-diffusion equation in [II], the trajec-
tory semigroup does not possess a smoothing property. However, it is possible
to show that the trajectory semigroup has a squeezing property using the finite
speed of propagation. To this end we define a cone-version of locally uniform
spaces in the following way:

Let ℓ > 1 and v > 1 be fixed and let φ be a weight function. For k ∈ Zd

denote

Zk(t) = B(k, v(2ℓ− t)), t ∈ (0, 2ℓ), Z̃k(t) = B(k, v(3ℓ− t)), t ∈ (0, 3ℓ).

We define the cone-version of locally uniform spaces by

E ℓ,v
b,φ = {(χ, χt);χ : (0, ℓ)×R3 → R, ∥χ∥2Eℓ,vb,φ = sup

k∈Zd
φ(xk)

∫ ℓ

0

∫

Zk(t)

E[χ]dx dt <∞},

where E is the energy functional

E[u] =
1

2

(
|ut|2 + |∇u|2 + α|u|2

)
. (3.14)
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The space of trajectories is then defined by

Bℓ = {(χ, χt) ∈ E ℓ,v
b,φ;χ solves the equation (3.10) in [0, ℓ] with (χ(0), χt(0)) ∈ B},

where B again denotes the absorbing set of the solution semigroup S(t).
Similarly as before we define the operators e : Bℓ → B and L(t) : Bℓ → Bℓ by

e((χ, χt)) = (χ(ℓ), χt(ℓ)),

[L(t)(χ, χt)](s) = S(t+ s)(χ(0), χt(0)), s ∈ (0, ℓ),
(3.15)

and show that e : E ℓ,v
b,φ → Φb and L = L(ℓ) : E ℓ,v

b,φ → E ℓ,v
b,φ are Lipschitz continuous.

Using the finite speed of propagation we then prove that the trajectory semigroup
L has a locally uniform squeezing property, more precisely that for every weight
function φ and every θ > 0 there exist ℓ > 1, v > 1, κ > 0 and N ⊆ Zd∩B(0, 3vℓ)
such that for every k ∈ Zd, χ1, χ2 ∈ Bℓ and their respective solutions u1, u2 we
have

φ(k)

∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w] dx dt ≤ θ
∑

j∈N (k)

φ(j)

∫ ℓ

0

∫

Zj(t)

E[w] dx dt

+ κ

⎛
⎝φ(k)

∫ 2ℓ

ℓ

∫

Z̃k(t)

|w|2 dx dt+
∑

j∈N (k)

φ(j)

∫ ℓ

0

∫

Zj(t)

|w|2 dx dt

⎞
⎠ ,

where w = u1 − u2 and

N (k) = {j ∈ Zd; j = i+ k for some i ∈ N}.

Using the locally uniform squeezing property we prove the following covering
lemma which is then used to establish the entropy estimate (3.13) together with
the Lipschitz continuity of the end-point mapping e.

Lemma (Lemma 6.1, [III]). Let O ⊆ R3 be bounded and satisfy (3.6). Let ε > 0,
δ ∈ (0, 1) and (x0, x1) ∈ B. Also let φ be a weight function. Then there exist
ℓ, v > 1 such that

Hδε

(
(LB)

⏐⏐
O, E

ℓ,v
b,φ(O)

)
≤ C1 vol(O),

where B = Bε((χ0, χ1); E ℓ,v
b,φ)∩Bℓ is a ball centered around the ℓ-trajectory (χ0, χ1)

starting from (x0, x1). The constant C1 depends only on C0, ℓ and δ and is
independent of (x0, x1), ε and O as long as (3.6) is satisfied.

3.4 Paper [IV]

In [IV] we have studied the strongly damped wave equation

utt + βut − α∆ut −∆u+ f(u) = g, (3.16)

where α, β > 0 and f : R → R is a nonlinear function specified later, coupled
with the initial conditions

u(0) = u0 ∈ W 1,2
b (Rd), ut(0) = u1 ∈ L2

b(Rd).
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For simplicity we choose α = β = 1. We assume that f ∈ C1(R,R) and that
there exist C > 0 and 0 ≤ q ≤ 4/(d− 2) such that

|f(r)− f(s)| ≤ C|r − s| (1 + |r|q + |s|q) , ∀r, s ∈ R.

Moreover, let there exist k ≥ 1 and µ0 > 0 such that for every µ ∈ (0, µ0] we can
find Cµ, C0 ∈ R such that

kF (s) + µs2 − Cµ ≤ sf(s), ∀s ∈ R,
−C0 ≤ F (s), ∀s ∈ R,

where F (s) =
∫ s

0
f(r) dr. The nonlinearity is critical if q = 4/(d − 2) and sub-

critical if q < 4/(d− 2). We will use the notation (3.12) and define

Wb,φ = W 1,2
b,φ (R

d)×W 1,2
b,φ (R

d), Wloc = W 1,2
loc (R

d)×W 1,2
loc (R

d).

In Yang and Sun [2009] the authors show that the equation (3.16) is well-
posed in the space Φb and generates a dissipative semigroup S(t). Further, the
authors establish the existence of an invariant bounded closed setA ⊆ W 2,2

b (Rd)×
W 1,2

b (Rd) compact inWloc, which attracts bounded sets of Φb in theWloc-topology.
We show that in the subcritical case the locally compact attractor A satisfies the
entropy estimate

Hε

(
A|B(x̄,R),Wb(B(x̄, R))

)
≤ C

(
R + L̃ ln

ε0
ε

)d
ln
ε0
ε

(3.17)

holding for every R ≥ 1, ε ∈ (0, ε0) and x̄ ∈ Rd with the constants C, ε0, L̃ > 0
independent of x̄, ε, R.

The method is similar to the one used in [III] – we rely on some form of the
squeezing property. However, the strongly damped wave equation does not have
a finite speed of propagation, so the particular form of the squeezing property and
the covering lemma have to be slightly different. Again we define the trajectory
space by

Bℓ = {(χ, χt);χ ∈ L2
loc((0, ℓ)×Rd) solves (3.16) on (0, ℓ) with (χ(0), χt(0)) ∈ B},

where B is the absorbing set of the semigroup S(t), and define the end-point
mapping e : Bℓ → B and the trajectory semigroup L(t) by (3.15). Denoting

Φℓ
b,φ = L2

b,φ(0, ℓ;W
1,2(Rd))× L2

b,φ(0, ℓ;L
2(Rd)),

W ℓ
b,φ = L2

b,φ(0, ℓ;W
1,2(Rd))× L2

b,φ(0, ℓ;W
1,2(Rd)),

we show that e : Φℓ
b,φ → Wb,φ and L = L(ℓ) : Φℓ

b,φ → W ℓ
b,φ are again Lipschitz

continuous. We then establish that the operator L has a parabolic squeezing
property, more precisely that for a weight function φ of sufficiently small growth
there exists ε > 0 such that for every γ > 0 we may find ℓ, κ, R > 0 so that for
every χ1, χ2 ∈ Bℓ and their respective solutions u1 and u2 we have

sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

Rd

(
E[w] + |∇wt|2

)
φx̄,ε dx dt ≤ γ sup

x̄∈Rd
φ(x̄)

∫ ℓ

0

∫

Rd
E[w]φx̄,ε dx dt

+ κ

(
sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

B(x̄,R)

|wt|2 dx dt
)

+ κ

(
sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

B(x̄,R)

|wt|2 dx dt
)
,
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where w = u1 − u2 and E is the energy functional from (3.14) with α = 1.
The desired entropy estimate (3.17) is then obtained again by the Lipschitz

continuity of the end-point mapping e and the following version of the covering
lemma.

Lemma. Let O ⊆ Rd be bounded satisfying (3.6). Let ε > 0 and θ ∈ (0, 1). Let
(u0, u1) ∈ B and let (χ0, (χ0)t) be the trajectory starting from (u0, u1). Let φ be a
weight function such that the operator L has the parabolic squeezing property for
φ and denote B = Bε((χ0, (χ0)t); Φ

ℓ
b,φ) ∩X . Then there exist C1, ℓ > 0 such that

Hθε

(
(LB)|O,W ℓ

b,φ(O)
)
≤ C1 vol(O),

where the constant C1 depends only on C0 and θ and is independent of (u0, u1),
ε, φ and O as long as (3.6) holds and the constants in (1.1) and (1.2) remain
the same.
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Abstract

A nonlinear reaction-diffusion problem, with a general, both spatially and delay distributed
reaction term is considered in an unbounded domain RN . The existence of a unique weak
solutions is proved. A locally compact attractor together with entropy bounds is also estab-
lished.

1 Introduction

We are interested the equation of the form

∂tu− div a (∇u) + du =

∫ 0

−r

(∫

Ω

b(u(t+ θ, y))f(x− y)e−|x−y| dy

)
ξ(θ, u(t), ut) dt (1.1)

where d > 0 and ut(θ) ≡ u(t + θ) for θ ∈ [−r, 0]. The problem is posed in the unbounded
spatial domain x ∈ Ω = RN .

The equation can be seen as an abstract prototype of a nonlinear reaction diffusion sys-
tem, which combines three nontrivial mathematical features: (i) nonlinear diffusion term
−div a(∇u), (ii) temporally and spatially distributed delay terms and (iii) the setting of un-
bounded domains. We will begin by discussing the difficulties related to these three issues,
together with a selection of recent references.

Let us start with the last point (iii). It can be said that the dynamics in unbounded
domains has attracted a growing attention of the PDE community during the last decade.
The problem obviously has an inherent non-compactness or even non-separability. This calls
for a careful rethinking of the proper choice for the functional setting, so that the results
on the global attractor and its finite-dimensionality, which are generic in bounded domain
setting, can find a proper generalized expression. A natural choice seem to be some space of
uniformly locally integrable functions, see [4], [20], [2], [1]. In such a setting, the existence of
locally compact attractor admitting natural entropy estimates is the expected result; see also
[10] and [3].

Concerning the point (ii), we would remark that presence of temporally and spatially non-
local reaction lower order terms arise naturally in describing both living and non-living nature.
We can mention the birth-death dynamics of maturing population or the spread of infection
on the one hand, and the phenomena of yield or creep occurring in viscoelastic materials, or
nonlocal interactions in phase transitions, on the other hand. The available mathematical
techniques and results depend essentially on the complexity of non-local terms. In the case of

∗This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete and Continu-
ous Dynamical Systems - Series B following peer review. The definitive publisher-authenticated version is available
online at https://aimsciences.org/journals/displayArticlesnew.jsp?paperID=12434.
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linear delay of convolution type, linear techniques (theory of C0-semigroups, linear stability
results) can be used [7, 11, 5].

For a more general non-linear problems, perturbation and topological methods provide
sufficient conditions for the existence of robust nontrivial structures like travelling waves, see
[6], [18]. In the case of a bounded spatial domain, the existence of a global compact attractor
was shown for the equation (1.1) in [14] with a linear diffusion a(∇u) = ∇u; cf. also [13].
The existence of a global attractor for a similar linear equation in unbounded domain with
b(y, u(t + θ, y)) instead of b(u(t + θ, y)) was proved in [9]. However, the authors in [9] study
the equation in classical Sobolev spaces with ξ ≡ 1 and certain restrictions on d and r have to
be met to obtain the existence of a compact attractor. Another similar linear equation with
fixed delay and N = 1 was studied in [19] in the setting of bounded uniformly continuous
functions. The existence of generalized attractors for delayed systems in unbounded domains
was recently established in [17] and [16].

In the following we analyze the equation (1.1) in locally uniform spaces L2
b in the spirit

of [20]. The main advantage of this setting, as compared to standard Lebesgue or weighted
Lebesgue spaces, is the possibility to capture arbitrary spatial complexity of the dynamics,
including (spatially) periodic patterns. The spatial uniformity of L2

b spaces, however, makes
them similar to L∞ spaces and thus not a good choice as a target spaces for the underlying
dynamical system. For example, one cannot in general expect that the solution will be con-
tinuous with values in L2

b . Several auxiliary weaker spaces are thus necessary to be introduced
in the course of the analysis. Here in particular, following [8], we introduce a sort of parabolic
version of uniformly local spaces L2

b,1(0;T ;L
2) (see Section 2 below for definitions). The

smoothing property of the dynamics can be easily proved in this parabolic setting, very much
in the spirit of the so-called method of ℓ-trajectories. This leads to the existence and entropy
estimates of the global (locally uniform) attractor A. No higher order regularity estimates
and in particular, no restrictions on d or r other than r, d > 0 are needed. This low-cost
(in terms of regularity) approach also enables us to work with a more general assumption on
the diffusion term (i): a general non-linear elliptic diffusion is possible, further generalizing
the results common in the existing literature, where most often a linear dissipation (e.g. the
Laplace operator) is considered.

The paper is organized as follows: the locally uniform spaces, corresponding duals and
also their parabolic variants are briefly reviewed in Section 2. Existence and uniqueness of the
weak solution are proven in Section 3. Locally compact attractor and its entropy estimates
are established in Sections 4 and 5.

2 Function spaces and notation

Here we review the locally uniform spaces, following [20], [8].

Definition. Let x̄ ∈ RN and ε > 0. The weighted Lebesgue space L2
x̄,ε(Ω) is defined by the

norm

∥u∥2L2
x̄,ε(Ω) ≡ ∥u∥2x̄,ε =

∫

Ω

|u(x)|2e−ε|x−x̄| dx. (2.1)

Similarly the spaces W 1,2
x̄,ε (Ω) and W−1,2

x̄,ε (Ω) are defined by the norms

∥u∥2
W

1,2
x̄,ε (Ω)

=

∫

Ω

(
|∇u(x)|2 + |u(x)|2

)
e−ε|x−x̄| dx, (2.2)

∥u∥2
W

−1,2
x̄,ε (Ω)

= sup
v

∫

Ω

u(x)v(x)e−ε|x−x̄| dx, (2.3)

where the last supremum is taken over v ∈W 1,2
x̄,ε (Ω) with unit norm.

We use the notation

(u, v)ε,x̄ ≡
∫

Ω

u(x)v(x)e−ε|x−x̄| dx. (2.4)

Similarly we can define the weighted Lebesgue spaces for general p ∈ [1,∞] and the same
actually holds for all the spaces defined in the rest of this section.

Definition. The space of locally uniform L2 functions is defined by

L2
b(Ω) = {u ∈ L2

loc(Ω); sup
x0∈Ω

∥u∥L2(B(x0,1))
<∞}. (2.5)

2
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Here B(x0,r) stands for an r-ball centered in x0. Let xk, k ∈ N, enumerate the points
with half-integer coordinates, i.e. (Z/2)N , and let Ck = C(xk), k ∈ N, be the unit cubes,
centered in xk. Then clearly the space L2

b(Ω) has an equivalent norm

∥u∥L2
b
(Ω) ≡ ∥u∥b = sup

k∈N
∥u∥L2(Ck)

. (2.6)

Definition. Let µ ≥ 0. An admissible weight function of growth rate µ is a measurable
bounded function φ : RN → (0,∞) satisfying the inequalities

C−1e−µ|x−y| ≤ φ(x)/φ(y) ≤ Ceµ|x−y|, |∇φ(x)| ≤ |φ(x)| (2.7)

for some C ≥ 1 and every x, y ∈ RN .

A typical example of an admissible weight function is the exponential φ(x) = e−q|x−x̄|

with x̄ ∈ RN and q ∈ [0, 1]. Trivially, φ(x) ≡ 1 is and admissible weight function of growth
rate µ = 0. In fact we could define the locally uniform space in a more general manner and
arrive at similar relations between weighted Lebesgue spaces and (weighted) locally uniform
spaces. For more information see e.g. [2], Section 4.

Definition. Let φ be an admissible weight function. We define the space of weighted locally
uniform L2 functions L2

b,φ(Ω) by

L2
b,φ(Ω) = {u ∈ L2

loc(Ω); sup
x0∈Ω

φ(x0)
1/2∥u∥L2(B(x0,1))

<∞}. (2.8)

For φ ≡ 1, we simply write L2
b(Ω).

Similarly as in the non-weighted case one may observe that the space L2
b,φ(Ω) has an

equivalent norm
∥u∥L2

b,φ
(Ω) ≡ ∥u∥b,φ = sup

k∈N
φ(xk)

1/2∥u∥L2(Ck)
. (2.9)

Theorem 2.1 ([8], Theorem 2.1). Let φ be an admissible weight function. The space L2
b,φ(Ω)

admits an equivalent norm

∥u∥2b,φ = sup
x̄∈Ω

φ(x̄)1/2
∫

Ω

|u(x)|2e−ε|x−x̄| dx (2.10)

for every ε > 0 and u ∈ L2
b(Ω).

Following the notation of [8], we define the L2
b,φ seminorms corresponding to a subdomain

O ⊆ Ω. For O ⊆ Ω we define

I(O) = {k ∈ N;Ck ∩ O}, (2.11)

∥u∥L2
b,φ

(O) = sup
k∈I(O)

φ1/2(xk)∥u∥L2(Ck)
. (2.12)

We will need to use so called parabolic uniformly bounded spaces introduced in [8].

Definition. Let φ be an admissible weight function and ε > 0. We define the parabolic
locally uniform spaces by their respective norms

∥u∥L2
b,φ

(−r,ℓ;L2(Ω)) = sup
k∈N

φ(xk)
1/2∥u∥L2(−r,ℓ;L2(Ck))

, (2.13)

∥u∥L2
b,φ

(−r,ℓ;W1,2(Ω)) = sup
k∈N

φ(xk)
1/2∥u∥L2(−r,ℓ;W1,2(Ck))

, (2.14)

∥u∥L2
b,φ

(−r,ℓ;W−1,2(Ω)) = sup
k∈N

φ(xk)
1/2∥u∥L2(−r,ℓ;W−1,2(Ck))

. (2.15)

Once again, the symbol φ is dropped if φ = 1.

A simple variant of Theorem 2.4 from [8] implies that for φ of growth rate µ strictly smaller
than ε > 0, the parabolic locally uniform spaces admit equivalent norms

∥u∥2L2
b,φ

(−r,ℓ;L2(Ω)) ≈ sup
x̄∈Ω

φ(x̄)

∫

(−r,ℓ)×Ω

|u(t, x)|2e−ε|x−x̄| dx dt, (2.16)

∥u∥2L2
b,φ

(−r,ℓ;W1,2(Ω)) ≈ sup
x̄∈Ω

φ(x̄)

∫

(−r,ℓ)×Ω

(
|u(t, x)|2 + |∇u(t, x)|2

)
e−ε|x−x̄| dx dt, (2.17)

∥u∥2L2
b,φ

(−r,ℓ;W−1,2(Ω)) ≈ sup
v

sup
x̄∈Ω

φ(x̄)

∫

(−r,ℓ)×Ω

u(t, x)v(t, x)e−ε|x−x̄| dx dt, (2.18)

3
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where the first supremum in the last equivalence is taken over v ∈ L2
b,φ(−r, ℓ;W 1,2(Ω)) with

unit norm.
The parabolic uniformly bounded spaces and the Bochner spaces constructed over locally

uniform spaces are related in the following way:

L2(−r, ℓ;L2
b,φ(Ω)) ( L2

b,φ(−r, ℓ;L2(Ω)) ( L2
loc([−r, ℓ]× Ω). (2.19)

Recall that for ε > 0, a metric space M and a precompact set K ⊆ M the Kolmogorov
ε-entropy is defined by

Hε(K,M) = logNε(K,M),

where Nε(K,M) is the smallest number of balls of radius ε that cover the set K in M .

Lemma 2.2 ([8], Lemma 2.6). Let φ be an admissible weight function. Let O ⊆ Ω satisfy

#I(O) ≤ c1 vol(O). (2.20)

Denote Q = [−r, ℓ]× Ω and define

∥χ∥Wb,φ(Q) = ∥χ∥L2
b,φ

(−r,ℓ;W1,2(Ω)) + ∥∂tχ∥L2
b,φ

(−r,ℓ;W−1,2(Ω)). (2.21)

Let r > 0 and θ ∈ (0, 1). Then there exists c0 > 0 such that

Hθr

(
Br(χ;Wb,φ(Q)), L2

b,φ(−r, ℓ;L2(O)
)
≤ c0 vol(O), (2.22)

where Br(x0;X) denotes a ball in the space X with radius r centered at x0. The constant c0
depends on c1, ℓ, θ and µ, C in (2.7), but does not depend on χ, r and the particular form of
the weight function φ.

Observe that a ball in RN satisfies (2.20) with c1 independent of the radius r ≥ 1.
We conclude this section with four auxiliary lemmata. The proofs are elementary and

therefore omitted. Lemma 2.6 is the standard Lp-estimate for the convolution.

Lemma 2.3. Let ε > 0, x̄ ∈ Ω and let B ⊆ L2
b(Ω) be bounded. Then for every δ > 0 there

exists R > 0 such that ∫

Ω\B(0,R)

|u(x)|2e−ε|x−x̄| dx < δ

for every u ∈ B.
Lemma 2.4. Let B ⊆ L2

b(Ω) be bounded and let un, u ∈ B. Then

un → u in L2
x̄,ε(Ω) ⇔ un → u in L2

loc(Ω) (2.23)

for every x̄ ∈ Ω, ε > 0.

Lemma 2.5. Let B ⊆ L∞(−r, ℓ;L2
b(Ω)) be bounded and let un, u ∈ B. Then

un → u in L2(−r, ℓ;L2
x̄,ε(Ω)) ⇔ un → u in L2

loc((−r, ℓ)× Ω)

for every x̄ ∈ Ω, ε > 0.

Lemma 2.6. Let p ∈ [1,∞), x̄ ∈ RN , u ∈ Lpx̄,ε(RN ) and let G be a function such that
Gε/p ∈ L1(RN ), where

Gε/p(y) = G(y)eε/p |y|.

Then the estimate
∥u ∗G∥Lpx̄,ε(RN ) ≤ ∥u∥Lpx̄,ε(RN )∥Gε/p∥L1(RN ) (2.24)

holds true.
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3 Well-posedness

We impose the following assumptions on the nonlinearities: Let a : RN → RN be a continuous
function satisfying

a(0) = 0, (a(ζ)− a(η)) · |ζ − η| ≥ κ|ζ − η|, ∀ζ, η ∈ RN , (3.1)

|a(ζ)− a(η)| ≤ κc|ζ − η|, ∀ζ, η ∈ RN , (3.2)

ζ → a(ζ) · ζ is a convex function on RN , (3.3)

for some κ > 0, c ≥ 1.
Let b : R → R be bounded and Lipschitz, i.e.

b(0) = 0, |b(r)| ≤ Cb for every r ∈ R, (3.4)

|b(r)− b(s)| ≤ Cb|r − s| for every r, s ∈ R. (3.5)

Let f : (Ω− Ω) → R be bounded, i.e.

|f(x− y)| ≤ Cf for every x, y ∈ Ω. (3.6)

Finally, concerning the form of the distributed delay, we impose the following conditions:

(i) For every M > 0 and 0 < ε < 1 there exists L = L(M, ε) > 0 such that for every x̄ ∈ Ω
and (vi, ψi) ∈ H satisfying

∥vi∥2x̄,ε +
∫ 0

−r
∥ψi(θ)∥2x̄,ε ds ≤M2, i = 1, 2,

the following holds:

∫ 0

−r
|ξ(θ, v1, ψ1)− ξ(θ, v2, ψ2)|dθ

≤ L

(
∥v1 − v2∥2x̄,ε +

∫ 0

−r
∥ψ1(θ)− ψ2(θ)∥2x̄,ε dθ

)1/2

. (3.7)

(ii) There exists Cξ > 0 such that for every (v, ψ) ∈ H we have

∥ξ(·, v, ψ)∥L2(−r,0) ≤ Cξ. (3.8)

The space of initial conditions is defined as

H ≡ L2
b(Ω)× L2

b(−r, 0;L2(Ω)). (3.9)

Function u : [0, T ]×Ω → R will be called (weak) solution, if for every x̄ ∈ Ω and 0 < ε < 1

u ∈ C([0, T ];L2
x̄,ε(Ω)) ∩ L2(−r, 0;L2

x̄,ε(Ω)) ∩ L2(0, T ;W 1,2
x̄,ε (Ω)),

∂tu ∈ L2(0, T ;W−1,2
x̄,ε (Ω)), (3.10)

and u satisfies the variational formulation (here and in what follows, F (ut) denotes the right-
hand side of (1.1)):

−
∫ T

0

(u(t), ∂tψ(t)) dt+

∫ T

0

(a (∇u(t)) ,∇ψ(t)) dt

+ d

∫ T

0

(u(t), ψ(t)) dt =

∫ T

0

(
F (ut), ψ(t)

)
dt (3.11)

for every ψ ∈ D((0, T )× Ω) and the initial conditions

u(0) = u0 ∈ L2
b(Ω), u|(−r,0) = ϕ ∈ L2

b(−r, 0;L2(Ω)) (3.12)
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hold true. For arbitrary ε > 0 and x̄ ∈ Ω we may use a standard density argument and arrive
to the duality with respect to L2

x̄,ε(Ω):

(u(T ), ψ(T ))ε,x̄ −
∫ T

0

(u(t), ∂tψ(t))ε,x̄ dt+

∫ T

0

(
a (∇u(t)) ,∇ψ(t)− ε

x− x̄

|x− x̄|ψ(t)
)

ε,x̄

dt

+ d

∫ T

0

(u(t), ψ(t))ε,x̄ dt =

∫ T

0

(
F (ut), ψ(t)

)
ε,x̄

dt+ (u(0), ψ(0))ε,x̄ (3.13)

for any ψ ∈ L2(0, T ;W 1,2
x̄,ε (Ω)) ∩W 1,2(0, T ;L2

x̄,ε(Ω)). Indeed, one can replace ψ in (3.11) by

ψχne
−ε|x−x̄|, where χn is some sequence of cut-off functions such that χn → 1, ∇χn → 0 and

|χn|+ |∇χn| ≤ c a.e. It is clear that (3.13) in turn implies (3.11).

Theorem 3.1. Let (3.4) - (3.6) hold and let ξ : [−r, 0] × H → R satisfy conditions (i–ii).
Then for every T > 0 and (u0, ϕ) ∈ H there exists a unique u solution to (1.1).

Proof. The proof is a variant of the original proof for the linear case in a bounded domain (see
[14], Theorem 1). We need to handle the limit of nonlinear diffusion term (cf. [8], Theorem
3.2); otherwise, standard techniques for unbounded domains are used ([20]).

We approximate the problem (3.11) by a sequence of problems solvable on bounded domain
and then pass to the limit. Let Ωn = Bn(0) ⊆ RN and let ψn ∈ C∞(Ω, [0, 1]) satisfy ψn ≡ 1
on Ω̄n−1, suppψn ⊆ Ωn, and define u0,n = u0ψn and ϕn(θ) = ϕ(θ)ψn for θ ∈ [−r, 0]. Using
Theorem 2.1 and the Lebesgue dominated convergence theorem we immediately obtain

u0,n → u0 in L2
x̄,ε(Ω), ϕn → ϕ in L2(−r, 0;L2

x̄,ε(Ω)) (3.14)

for every 0 < ε < 1 and x̄ ∈ Ω. Next we define the operator

An :W 1,2
0 (Ωn) →W−1,2(Ωn), ⟨Anv, z⟩ =

∫

Ωn

a(∇v(x)) · ∇z(x)dx

and the approximate problem

∂tun +Anu+ dun =

∫ 0

−r

(∫

Ωn

b(un(t+ θ, y))f(x− y)e−|x−y|dy

)
ξ(θ, un(t), u

t
n)dθ. (3.15)

with the initial condition
un(0) = u0,n, un|(−r,0) = ϕn. (3.16)

A nonlinear variant of Theorem 1 from [14] implies that the equation (3.15) with the initial
equation (3.16) has a solution

un ∈ C([0, T ], L2(Ωn)) ∩ L2(−r, T ;L2(Ωn)) ∩ L2(0, T ;W 1,2
0 (Ωn)).

First we aim to show that

un
∗
⇀ u in L∞(0, T, L2

x̄,ε(Ω)) ∩ L2(0, T ;W 1,2
x̄,ε (Ω)) (3.17)

for some u ∈ L∞(0, T, L2
x̄,ε(Ω)) ∩ L2(0, T ;W 1,2

x̄,ε (Ω)). Let us extend un by zero outside of Ωn
(note that then un ∈ L∞(0, T ;L2

b(Ω))∩L2(0, T ;W 1,2
b (Ω)) and thus ξ(θ, un(t), u

t
n) makes good

sense) and test (3.15) by un(t, x)e
−ε|x−x̄| to get

1

2

d

dt

∫

Ω

|un(t, x)|2e−ε|x−x̄|dx

+

∫

Ω

a (∇un(t, x)) ·
(
∇un(t, x)− ε

x− x̄

|x− x̄|un(t, x)
)
e−ε|x−x̄|dx

+ d

∫

Ω

|un(t, x)|2e−ε|x−x̄|dx

=

∫

Ω

[∫ 0

−r

(∫

Ω

b(un(t+ θ, y)f(x− y)e−|x−y|dy

)
ξ(θ, un(t), u

t
n)dθ

]
un(t, x)e

−ε|x−x̄|dx.

(3.18)
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Observe that the integration in the previous equation is over Ω instead of Ωn. This is possible
since un ≡ 0 outside of Ωn and b(0) = 0, a(0) = 0. Using the boundedness of the functions b
and f , from (ii) it follows that

⟨F (vt), z⟩x̄,ε ≤ C∥z∥x̄,ε.

The previous estimate, (3.18), (3.1), (3.2) and Young’s inequality immediately give

d

dt
∥un(t)∥2x̄,ε + σ

(
∥∇un(t)∥2x̄,ε + ∥un(t)∥2x̄,ε

)
≤ C1∥un(t)∥2x̄,ε + C2 (3.19)

for some σ > 0. Gronwall’s inequality applied to

χn(t) = ∥un(t)∥2x̄,ε + σ

(∫ t

0

∥∇un(s)∥2x̄,εds+
∫ t

0

∥un(s)∥2x̄,εds
)
+ C2

gives
χn(t) ≤ (∥un(0)∥2x̄,ε + C2)e

C1t,

in other words

∥un(t)∥2x̄,ε +
∫ t

0

∥∇un(s)∥2x̄,ε +
∫ t

0

∥un(s)∥2x̄,εds ≤ (∥un(0)∥2x̄,ε + C2)e
C1t − C2. (3.20)

From (3.14) it follows that the sequence {un(t)}∞n=1 is bounded in L∞(0, T ;L2
x̄,ε(Ω)),

L2(0, T ;W 1,2
x̄,ε (Ω)) and using a standard argument we finally have (3.17). Observe that if

we take the supremum of (3.20) over x̄ ∈ Ω, using (2.10) and (2.17) we obtain

u ∈ L∞(0, T ;L2
b(Ω)) ∩ L2

b,1(0, T ;W
1,2(Ω)). (3.21)

Following a similar argument we can show

∂tun ⇀ ∂tu in L2(0, T ;W−1,2
x̄,ε (Ω)) (3.22)

and therefore we immediately have

u ∈ C([0, T ], L2
x̄,ε(Ω)). (3.23)

Also note that since the norms L2
x̄,ε(Ω) are equivalent for different x̄ ∈ Ω, the function u is

independent of x̄. Next we show

un → u in L2(0, T ;L2
x̄,ε(Ω)), (3.24)

The first step is to establish the convergence

un → u in L2(0, T ;L2(Ωm)) (3.25)

for m ∈ N fixed. We proceed similarly as in the proof of Theorem 3.1 from [8]. The weak
convergence (3.17) implies

un
∗
⇀ u in L∞(0, T, L2(Ωm)) ∩ L2(0, T ;W 1,2(Ωm)). (3.26)

Then we choose n > m and test the equation (3.15) with v ∈ L2(0, T ;W 1,2
0 (Ωm)) extended

by zero outside of Ωm to get

∂tun ⇀ ∂tu in L2(0, T ;W−1,2(Ωm)). (3.27)

The desired convergence (3.25) then follows from (3.26), (3.27) and the Aubin-Lions lemma.
Using the continuity of un and u and the estimate (3.21) we can find a set B ⊆ L2

b(Ω)
such that

un(t)− u(t) ∈ B for a.e. t ∈ [0, T ]

and B is bounded in L2
b(Ω). Choose δ > 0 and use Lemma 2.3 to find n0 ∈ N such that

∫

Ω\Ωn0

|un(t, x)− u(t, x)|2e−ε0|x−x̄| dx < δ

7
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for n ≥ n0. Since this estimate is uniform in n ≥ n0 and t ∈ [0, T ], from the strong convergence
in Ωn0(3.25) we thus obtain the desired convergence (3.24). We emphasize the convergence
(3.24) holds for all x̄ ∈ RN and 0 < ε < 1.

Now we will prove F (utn) → F (ut) in L2(0, T ;W−1,2
x̄,ε (Ω)). Let v ∈ L2(0, T ;W 1,2

x̄,ε (Ω)) be
fixed. We split the estimate into two separate integrals:

∫ T

0

⟨F̃ (utn)− F̃ (ut), v(t)⟩x̄,ε dt

=

∫ T

0

(∫

Ω

[∫ 0

−r

(∫

Ω

b(un(t+ θ, y))f(x− y)e−|x−y|dy

)
ξ(θ, un(t), u

t
n)dθ

−
∫ 0

−r

(∫

Ω

b(u(t+ θ, y))f(x− y)e−|x−y|dy

)
ξ(θ, u(t), ut)dθ

]
v(t, x)e−ε|x−x̄|dx

)
dt

=

∫ T

0

(∫

Ω

[∫ 0

−r

(∫

Ω

(b(un(t+ θ, y))− b(u(t+ θ, y))) f(x− y)e−|x−y|dy

)

·ξ(θ, un(t), utn)dθ
]
v(t, x)e−ε|x−x̄|dx

)
dt

+

∫ T

0

(∫

Ω

[∫ 0

−r

(∫

Ω

b(u(t+ θ, y))f(x− y)e−|x−y|dy

)

·
(
ξ(θ, un(t), u

t)− ξ(θ, u(t), ut)
)
dθ

]
v(t, x)e−ε|x−x̄|dx

)
dt ≡ I1 + I2.

The integral I1 can be estimated using the boundedness of f , Fubini’s theorem, the Lips-
chitz continuity of b, Hölder’s inequality and Lemma 2.6 with G(y) = e−|x−y| in the following
way (for convenience we denote ω(t, x) ≡ un(t, x)− u(t, x)):

I1 ≤ C3

∫ T

0

∫ 0

−r

[∫

Ω

(∫

Ω

|ω(t+ θ, y)|e−|x−y| dy

)
v(t, x)e−ε|x−x̄| dx

]
ξ(θ, un(t), u

t
n) dθ dt

≤ C3

∫ T

0

∥v(t)∥x̄,ε
∫ 0

−r

[∫

Ω

(∫

Ω

|ω(t+ θ, y)|e−|x−y| dy

)2

e−ε|x−x̄| dx

]1/2

· ξ(θ, un(t), utn) dθ dt

≤ C4

∫ T

0

∥v(t)∥x̄,ε
[∫ r

−0

(∫

Ω

|ω(t+ θ, x)|2e−ε|x−x̄| dx
)1/2

ξ(θ, un(t), u
t
n) dθ

]
dt

≤ C4

∫ T

0

∥v(t)∥x̄,ε
[∫ 0

−r

(∫

Ω

|ω(t+ θ, x)|2e−ε|x−x̄| dx
)
dθ

]1/2

·
[∫ 0

−r
|ξ(θ, un(t), utn)|2 dθ

]1/2

dt

≤ C5

(∫ T

0

∥v(t)∥2x̄,ε dt
)1/2 (∫ T

0

∫ 0

−r
∥ω(t+ θ)∥2x̄,ε dθ dt

)1/2

≤ C6

(
∥ϕn − ϕ∥L2(−r,0;L2

x̄,ε(Ω)) + ∥un − u∥L2(0,T ;L2
x̄,ε(Ω))

)
∥v∥L2(0,T ;L2

x̄,ε(Ω)). (3.28)

The integral I2 can be treated in a similar manner. Since b and f are bounded, the
condition (3.7) implies

I2 ≤ C7

∫ T

0

(∫

Ω

[∫ 0

−r
|ξ(θ, un(t), utn)− ξ(θ, u(t), ut)| dθ

]
v(t, x)e−ε|x−x̄| dx

)
dt

≤ C8

∫ T

0

(
∥un(t)− u(t)∥2x̄,ε +

∫ 0

−r
∥un(t+ θ)− u(t+ θ)∥2x̄,ε dθ

)1/2

∥v(t)∥L1
x̄,ε(Ω) dt

≤ C9

(
∥ϕn − ϕ∥L2(−r,0;L2

x̄,ε(Ω)) + ∥un − u∥L2(0,T ;L2
x̄,ε(Ω))

)
∥v∥L2(0,T ;L2(0,T ;L1

x̄,ε(Ω)). (3.29)

Using the definition of the L2(0, T ;W−1,2
x̄,ε (Ω))-norm and the continuous inclusion

8
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L2
x̄,ε(Ω) ↪→ L1

x̄,ε(Ω), the estimates (3.28) and (3.29) imply

∥F (utn)− F (ut)∥
L2(0,T ;W

−1,2
x̄,ε (Ω))

≤ C10

(
∥ϕn − ϕ∥L2(−r,0;L2

x̄,ε(Ω) + ∥un − u∥L2(0,T ;L2
x̄,ε(Ω))

)
. (3.30)

Also note that the argument leading to (3.28) and (3.29) shows the Lipschitz continuity of F

∥F (vt)− F (wt)∥
W

−1,2
x̄,ε (Ω)

≤ C∥v − w∥L2(t−r,t;L2
x̄,ε(Ω)) (3.31)

for v, w ∈ L2(t− r, t;L2
x̄,ε(Ω)).

To finish the proof of existence, we need to deal with the nonlinear diffusion. The process
is standard. We follow [8, Theorem 3.2]. First we observe that the convergence (3.17) and
the assumption (3.2) implies

a(∇un)⇀ α in L2(0, T ;L2
x̄,ε(Ω)) (3.32)

for fixed x̄ ∈ Ω. Note that at this stage α might depend on the choice of x̄. Test the equation
(3.15) by a fixed v ∈ L2(0, T ;L2

x̄,ε(Ω)) and take the limit with respect to n to obtain

∫

Ω

∂

∂t
u(t, x)v(t, x)e−ε|x−x̄| dx+

∫

Ω

α(t, x) ·
(
∇v(t, x)− ε

x− x̄

|x− x̄|v(t, x)
)
e−ε|x−x̄| dx

+ d

∫

Ω

u(t, x)v(t, x)e−ε|x−x̄| dx =

∫

Ω

F (ut)(t, x)v(t, x)e−ε|x−x̄| dx. (3.33)

Let us go back to (3.18), integrate over (0, T ) and take the limit superior with respect to
n→ ∞ to get

lim sup
n→∞

∫ T

0

∫

Ω

a (∇un(t, x)) · ∇un(t, x)e−ε|x−x̄| dx

≤− 1

2
lim inf
n→∞

∫

Ω

|un(T, x)|2e−ε|x−x̄| dx+
1

2
lim sup
n→∞

∫

Ω

|un(0, x)|2e−ε|x−x̄| dx

− lim inf
n→∞

d

∫ T

0

∫

Ω

|un(t, x)|2e−ε|x−x̄| dx dt

+ lim sup
n→∞

∫ T

0

∫

Ω

F (utn)(t, x)un(t, x)e
−ε|x−x̄| dx dt

+ lim sup
n→∞

ε

∫ T

0

∫

Ω

a (∇un(t, x)) x− x̄

|x− x̄|un(t, x)e
−ε|x−x̄| dx dt. (3.34)

Using (3.14), (3.17) and the lower semicontinuity of norms we immediately see that the first
three terms have a well defined limit. Also using (3.24) and (3.32) we have

lim
n→∞

ε

∫ T

0

∫

Ω

a (∇un(t, x)) x− x̄

|x− x̄|un(t, x)e
−ε|x−x̄| dx dt

= ε

∫ T

0

∫

Ω

α(t, x)
x− x̄

|x− x̄|u(t, x)e
−ε|x−x̄| dx dt (3.35)

Finally, the strong convergence (3.24) and Lipschitz continuity of F (3.31) imply
(
F (utn), un

)
x̄,ε

=
(
F (utn), un − u

)
x̄,ε

+
(
F (utn)− F (ut), u

)
x̄,ε

+
(
F (ut), u

)
x̄,ε

→
(
F (ut), u

)
x̄,ε
.

Now we are ready to compare (3.34) and (3.33) (with v = u) and integrated over time and
use arrive to

lim sup
n→∞

∫ T

0

∫

Ω

a (∇un(t, x)) · ∇un(t, x)e−ε|x−x̄| dx dt

≤
∫ T

0

∫

Ω

α(t, x)∇u(t, x)e−ε|x−x̄| dx dt. (3.36)

9
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Since a induces a maximal monotone operator on L2(0, T ;L2
x̄,ε(Ω)), a standard argument

leads us to the equality

α(t, x) = a (∇u(t, x))
(
e−ε|x−x̄| dx

)
-a.e. in Ω and a.e. in (0, T ). (3.37)

Clearly the equality (3.37) holds also a.e. with respect to the standard Lebesgue measure in
(0, T )× Ω and therefore α is independent of the choice of x̄. Therefore we may use (3.37) to
substitute in (3.33), which finishes the proof of existence.

The proof of the uniqueness is analogous to the proof for the bounded domain. Let u
and v be two solutions with the respective initial conditions (u0, ϕ), (v0, ψ) ∈ H and denote
w(t) = u(t)− v(t). Test the equations for u and v by w. Subtracting these and using similar
argument as in the derivation of the inequalities (3.28) and (3.29) we obtain

d

dt
∥w(t)∥2x̄,ε+σ∥w(t)∥2W1,2

x̄,ε (Ω)
≤ C10∥w(t)∥2x̄,ε + C11

∫ 0

−r
∥w(t+ θ)∥2x̄,ε dθ (3.38)

≤ C12

(
∥w(t)∥2x̄,ε + σ

∫ t

0

∥w(s)∥2
W

1,2
x̄,ε (Ω)

ds

)
+ C13

∫ 0

−r
∥w(θ)∥2x̄,ε dθ (3.39)

for some σ > 0. The Gronwall’s lemma applied to the function

Y (t) = ∥w(t)∥2x̄,ε + σ

∫ t

0

∥w(s)∥2
W

1,2
x̄,ε (Ω)

ds

implies

Y (t) ≤
(
Y (0) +

∫ 0

−r
∥w(θ)∥2x̄,ε dθ

)
C(t). (3.40)

The estimate can be rewritten in the form

sup
t∈[0,T ]

∥u(t)− v(t)∥2x̄,ε + σ

∫ t

0

∥u(s)− v(s)∥2
W

1,2
x̄,ε (Ω)

ds

≤ C(T )

(
∥u0 − v0∥2x̄,ε +

∫ 0

−r
∥ϕ(θ)− ψ(θ)∥2x̄,ε dθ

)
, (3.41)

which gives the uniqueness of the solutions.

Definition. We define the solution operator S(t) : H → H by

S(t)(u0, ϕ) =
(
u(t), ut

)
,

where u(t) is the solution from Theorem 3.1.

As is usual in locally uniform spaces, we cannot generally expect the solution u(t) be
continuous in the space L2

b(Ω). Continuity in L2
b(Ω) can be achieved for more regular initial

data; cf. [19]. In the following we will compensate for the lack of additional regularity by
working in weighted Lebesgue spaces and by using the method of ℓ-trajectories.

Corollary 3.2. The operator

S(t) : L2
x̄,ε(Ω)× L2(−r, 0;L2

x̄,ε(Ω)) → L2
x̄,ε(Ω)× L2(−r, 0;L2

x̄,ε(Ω))

is Lipschitz continuous on H uniformly with respect to t ∈ [0, T ] for every x̄ ∈ Ω and 0 < ε < 1.
The solution operator S(t) paired with H as its phase space form a dynamical system.

Proof. The continuity in time follows from the continuity of the solution and the locally
uniform Lipschitz continuity from (3.41).

10
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4 Locally compact attractor

Theorem 4.1. Let the assumptions of Theorem 3.1 hold and let φ be an admissible weight
function with growth rate smaller than 1. Then for t ≥ r we have the estimate

∥u(t)∥2L2
b,φ

(Ω) + C1∥u∥L2
b,φ

(t−r,t;W1,2(Ω)) ≤ ∥u0∥L2
b,φ

(Ω)e
−σ(t−r) + C2, (4.1)

where σ,C1, C2 > 0 are dependent of the data of the equation and independent of the initial
data u0, ϕ.

Proof. The proof follows the proof of Theorem 3.2 in [8]. Let u be the solution of (3.11),
(3.12). Then using the Cauchy-Schwartz and Young inequalities and (3.1) we have and for
ε > 0 small enough we obtain

d

dt
∥u(t)∥2x̄,ε + σ

(
∥∇u(t)∥2x̄,ε + ∥u(t)∥2x̄,ε

)
≤ C1 (4.2)

for some C1, σ > 0. The Gronwall lemma implies

∥u(t)∥2x̄,ε ≤ ∥u(0)∥2x̄,εe−σt + C2te
−σt ≤ ∥u(0)∥2x̄,εe−σt + C3

and integrating (4.2) from t− r to t we obtain

∥u(t)∥2x̄,ε + σ

∫ t

t−r

(
∥∇u(s)∥2x̄,ε + ∥u(s)∥2x̄,ε

)
ds ≤ ∥u0∥2x̄,εe−σ(t−r) + C4.

Finally we multiply the previous estimate by φ(x̄) and take the supremum over x̄ ∈ Ω. From
the definition of parabolic locally uniform spaces we obtain (4.1).

Corollary 4.2. The operator

S(t) : L2
x̄,ε(Ω)× L2(−r, 0;L2

x̄,ε(Ω)) → L2
x̄,ε(Ω)× L2(−r, 0;L2

x̄,ε(Ω))

admits a positively invariant bounded absorbing set W ⊆ H. Moreover, the absorbing set W
absorbs not only bounded subsets of H, but also the sets of the form B × L2

b(−r, 0;L2(Ω)),
where B ⊆ L2

b(Ω) is bounded.

Proof. The existence of the absorbing set W follows immediately from the previous theorem.
Then we find t0 > 0 such that S(t)W̃ ⊆ W̃ for every t ≥ t0 and set

W =
⋃

t≥t0

S(t)W̃ .

The fact that the setW absorbs even the sets of the form B×L2
b(−r, 0;L2(Ω)) for B ⊆ L2

b(Ω)
bounded follows immediately from the form of the estimate (4.1).

Since all the solutions from Theorem 3.1 are continuous for t ≥ 0 and we are interested in
the asymptotic dynamics, from now on we may assume that S(t) : X → X, where

X = {u ∈ C([−r, 0], L2
x̄,ε(Ω));u is a solution from Theorem 3.1} (4.3)

is equipped with L2(−r, 0;L2
x̄,ε(Ω)) topology for fixed x̄ ∈ Ω and 0 < ε < 1. Corollary 4.2

implies that the dynamical system (X,S(t)) admits a bounded absorbing set

B ⊆ L2(−r, 0;L2
x̄,ε(Ω)) ∩ L2

b,1(−r, 0;L2(Ω)).

Moreover, the continuity of the solutions allows us to assume

B ⊆ C([−r, 0];L2
x̄,ε(Ω)) ∩ L2

b,1(−r, 0;L2(Ω)).

Clearly all the interesting dynamics will take place in the absorbing set B. Now we may define
the space of short trajectories similarly as in [12].

11
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Definition. The space of short trajectories is

X = {χ ∈ C([−r, ℓ], L2
x̄,ε(Ω));

χ is a solution from Theorem 3.1 in [0, ℓ] with χ|[−r,0] ∈ B}, (4.4)

together with the L2(−r, ℓ;L2
x̄,ε(Ω)) topology. The evolution operator L(t) : X → X is defined

by
(L(t)χ) (s) = u(t+ s), s ∈ [−r, ℓ],

where u is the solution from Theorem 3.1 satisfying u|(−r,0) = χ.
Finally, the operator e : X → X is defined by

e(χ) = (L(r + ℓ)χ) |[−r,0]. (4.5)

We note that X in general is not complete with respect to its metric; we will see however
in Lemma 4.5 that L(t) is asymptotically compact on X .

Theorem 4.3. The translation operator L(t) : X → X is Lipschitz continuous uniformly
with respect to t ∈ [0, T ]. Moreover, the pair (X , L(t)) forms a dynamical system.

Proof. Let χ1, χ2 ∈ X and let u1 and u2 be the respective solutions from Theorem 3.1. Define
w(t) = u1(t)−u2(t). We start from the estimate (3.38), use the condition (3.2) and integrate
over τ ∈ [s, t], where s ∈ (0, ℓ), t ∈ (ℓ, ℓ+ T ), to obtain

∥w(t)∥2x̄,ε + σ

∫ t

ℓ

∥w(τ)∥2
W

1,2
x̄,ε (Ω)

dτ ≤ ∥w(s)∥2x̄,ε + C3

∫ t

s−r
∥w(τ)∥2x̄,ε dτ.

Then we integrate over s ∈ (0, ℓ) and get

∥w(t)∥2x̄,ε + σ

∫ t

ℓ

∥w(τ)∥2
W

1,2
x̄,ε (Ω)

dτ ≤ C4

(∫ ℓ

−r
∥w(τ)∥2x̄,ε dτ +

∫ t

ℓ

∥w(τ)∥2x̄,ε dτ
)
.

Again we apply the Gronwall’s lemma to the function

Y (s) = ∥w(s)∥2x̄,ε +
∫ s

ℓ

∥w(τ)∥2
W

1,2
x̄,ε (Ω)

dτ

and obtain the estimate

sup
t∈[0,T ]

∥w(t)∥2x̄,ε +
∫ ℓ+t

ℓ

∥w(τ)∥2
W

1,2
x̄,ε (Ω)

dτ ≤ C(T )

∫ ℓ

−r
∥w(τ)∥2x̄,ε dτ, (4.6)

in other words
sup
t∈[0,T ]

∥Lεχ1 − Lεχ2∥2Xε ≤ C(T )∥χ1 − χ2∥2Xε .

It remains to prove that (X , L(t)) is a dynamical system. The continuity of the operator
L(t) in time follows from the continuity of solutions and the continuity of L(t) in X follows
from the previous part of the proof.

Definition. We define the space W as the space X with the norm

∥χ∥2W =

∫ ℓ

−r
∥χ(s)∥2

W
1,2
x̄,ε (Ω)

ds+

∫ ℓ

−r
∥∂tχ(s)∥2W−1,2

x̄,ε (Ω)
ds.

Lemma 4.4. The mapping L(r + ℓ) : X → W is Lipschitz continuous.

Proof. Using the notation of the proof of Theorem 4.3, choosing t = r + ℓ in the estimate
(4.6) immediately gives

∫ 2ℓ+r

ℓ

∥w(s)∥2
W

1,2
x̄,ε (Ω)

ds ≤ C

∫ ℓ

−r
∥w(s)∥2x̄,ε ds. (4.7)

12
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From the equation we have

∫ 2ℓ+r

ℓ

⟨∂tw(s), ϕ(s)⟩x̄,ε ds = −
∫ 2ℓ+r

ℓ

(
a (∇u)− a (∇v) ,∇ϕ(s)− ε

x− x̄

|x− x̄|ϕ(s)
)

x̄,ε

ds

− d

∫ 2ℓ+r

ℓ

(w(s), ϕ(s))x̄,ε ds+

∫ 2ℓ+r

ℓ

⟨F (us)− F (vs), ϕ(s)⟩x̄,ε ds. (4.8)

Assuming that the L2(ℓ, 2ℓ + r;W 1,2
x̄,ε (Ω))-norm of ϕ is one, we can use (3.2) to obtain the

estimates
∫ 2ℓ+r

ℓ

(
a (∇u)− a (∇v) ,∇ϕ(s)− ε

x− x̄

|x− x̄|ϕ(s)
)

x̄,ε

ds ≤ C∥w∥
L2(ℓ,2ℓ+r;W

1,2
x̄,ε (Ω))

, (4.9)

∫ 2ℓ+r

ℓ

(w(s), ϕ(s))x̄,ε ds ≤ C∥w∥
L2(ℓ,2ℓ+r;W

1,2
x̄,ε (Ω))

, (4.10)

and similarly as in the proof of Theorem 3.1 we obtain

∫ 2ℓ+r

ℓ

⟨F (us)− F (vs), ϕ(s)⟩x̄,ε ds ≤ C∥w∥L2(ℓ,2ℓ+r;L2
x̄,ε(Ω)), (4.11)

which gives

∥∂tL(r + ℓ)χ1 − L(r + ℓ)χ2∥L2(−r,ℓ;W−1,2
x̄,ε (Ω))

≤ C
(
∥L(r + ℓ)χ1 − L(r + ℓ)χ2∥L2(−r,ℓ;W1,2

x̄,ε (Ω))
+ ∥χ1 − χ2∥X

)
. (4.12)

Combining (4.8) - (4.12) gives the desired continuity

∥L(r + ℓ)χ1 − L(r + ℓ)χ2∥W ≤ C∥χ1 − χ2∥X .

The previous lemma also implies that the mapping e : X → X is Lipschitz continuous,
since we have the inequality

∥e(χ)∥X ≤ ∥χ∥W ≤ C∥χ∥X . (4.13)

Lemma 4.5. The dynamical system (X , L(t)) is asymptotically compact.

Proof. Let χn ∈ X be a bounded sequence and tn → ∞. We aim to show

L(tn)χn → χ in L2(−r, ℓ, L2
x̄,ε(Ω)) (4.14)

where χ ∈ X , up to a subsequence.
From Theorem 4.1 and Lemma 4.4 we see that L(tn)χn is bounded in the norms

L2(−r, ℓ;W 1,2(B)), W 1,2(−r, ℓ;W−1,2(B)), where B ⊆ Ω is an arbitrary compact set. The
Aubins-Lions lemma implies that

L(tn)χn → χ in L2(−r, ℓ;L2(B))

and therefore L(tn)χn → χ in L2
loc((−r, ℓ) × Ω). Since the sequence is also bounded in

L∞(−r, ℓ;L2
b(Ω)), Lemma 2.5 immediately gives us the strong convergence (4.14).

Theorem 4.1 and Lemma 4.4 also imply

L(tn)χn ⇀ χ in L2(−r, ℓ;W 1,2
x̄,ε (Ω)), ∂tL(tn)χn ⇀ ∂tχ in L2(−r, ℓ;W−1,2

x̄,ε (Ω)), (4.15)

which together with the strong convergence (4.14), (3.2) and the Lipschitz continuity of F
(3.31) justifies taking a limit in the equation in a similar manner as in the proof of existence
(see Theorem 3.1) and thus χ ∈ X .

Theorem 4.6. The dynamical system (X,S(t)) has a
(
L2
b(−r, 0;L2(Ω)), L2

loc((−r, 0)× Ω)
)

attractor.

13
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Proof. First we observe that the dynamical system (X , L) has a global attractor Aℓ. By
Theorem 4.1 it has a bounded absorbing set; the asymptotic compactness was proved in
Lemma 4.5 and we apply a standard result (see e.g. [15, Theorem 23.12]). Define

A = e(Aℓ). (4.16)

It remains to check whether A is the desired attractor.
Observe that

S(t)e(χ) = e(L(t)χ),

therefore A is invariant under S(t). The compactness in L2
loc((−r, 0) × Ω) follows from the

compactness of Aℓ, the continuity of e : X → X and Lemma 2.5. To show that A attracts
bounded sets of X, we observe that

S(r + ℓ)B = e(Bℓ)

for B ⊆ X, where

Bℓ = {χ ∈ C([−r, ℓ];L2
x̄,ε(Ω));χ is a solution from Theorem 3.1

with the initial condition (ϕ(0), ϕ) for ϕ ∈ B}.

By Theorem 4.1, the set Bℓ is bounded in X for B bounded in X. Then we have the estimate

distX(S(t+ r + ℓ)B,A) = distX(S(t)S(r + ℓ)B,A) ≤ C1 distX(S(t)e(Bℓ),A)

= C1 distX(E(L(t)Bℓ,A) ≤ C2 distX (L(t)Bℓ,Aℓ),

where the last estimate uses the Lipschitz continuity of e.

5 Entropy estimates

We estimate the entropy of the attractor constructed in Theorem 4.6 using the general method
presented in [20], that has been adapted to the setting of ℓ-trajectories and parabolic uniform
spaces in [8]. Actually, the rest of the proof follows the latter article quite closely.

We need some preliminary results. First we formulate the Lipschitz continuity of the
operators L(t), e and the smoothing property in the context of parabolic uniformly bounded
spaces.

Corollary 5.1. Let ψ be an admissible weight function of growth rate smaller than 1. Then

1. L(t) : L2
b,ψ(−r, ℓ;L2(Ω)) → L2

b,ψ(−r, ℓ;L2(Ω)) is Lipschitz continuous uniformly with
respect to t ∈ [0, T ],

2. e : L2
b,ψ(−r, ℓ;L2(Ω)) → L2

b,ψ(−r, 0;L2(Ω)) is Lipschitz continuous,

3. the mapping L(ℓ+r) : L2
b,ψ(−r, ℓ;L2(Ω)) →Wb,ψ(Q), where Q = [−r, ℓ]×Ω andWb,ψ(Q)

is defined in (2.21), is Lipschitz.

The Lipschitz constants only depend on C and µ in (2.7) and not on the particular form of
the weight function ψ.

Proof. Multiply (4.6) by ψ(x̄) and take supremum over x̄ ∈ Ω to obtain

sup
x̄∈Ω

∫

(t−r,t+ℓ)×Ω

|w(s, x)|2e−ε|x−x̄| dx ds ≤ C(T ) sup
x̄∈Ω

ψ(x̄)

∫

(−r,ℓ)×Ω

|w(s, x)|2e−ε|x−x̄| dx ds.

The first assertion then follows from the equivalence of the norms (2.16).
The remaining assertions can be proved in a similar manner from a variant of (4.13), the

equivalence of norms (2.16)-(2.18) and from Lemma 4.4.

We will also need an auxiliary admissible weight function (cf. [20]). Let x0 ∈ Ω and R ≥ 1.
Then we define

ψ(x0, R) ≡ ψ(x0, R)(x) =

{
1 if |x− x0| ≤ R+

√
d,

e(R+
√
d−|x−x0|)/2 otherwise.

(5.1)

14
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Observe that ψ(x0, R) satisfies (2.7) with µ = 1/2 and some C > 0 independent of x0 ∈ RN
and R ≥ 1.

We also define
Ωx0,R = Ω ∩B(x0, R) ⊆ RN .

Lemma 5.2 ([8], Lemma 5.4). Let λ0 > 0. Then there exists c1 > 0 such that for every
x0 ∈ Ω, R ≥ 1, λ ∈ (0, λ0) and χ1, χ2 ∈ X we have

∥χ1 − χ2∥2L2
b,ψ(x0,R)

(−r,ℓ;L2(Ω)) ≤ max{∥χ1 − χ2∥L2
b,ψ(x0,R)

(−r,ℓ;L2(Ωx0,R(λ)))
, λ},

where

R(λ) = R+ c1

(
1 + log

1

λ

)
.

We are now ready to prove the entropy estimate.

Theorem 5.3. Let x0 ∈ Ω and R > 0. Then there exist c0, c1, λ0 > 0 such that for every
x0 ∈ Ω, R ≥ 1 and λ ∈ (0, λ0) the entropy estimate

Hλ

(
A, L2

b(−r, 0;L2(Ωx0,R))
)
≤ c0

(
R+ c1 log

1

λ

)N
log

1

λ
(5.2)

holds.

Proof. The proof follows the proof of Theorem 5.1 in [8] almost word by word. First we
observe that it suffices to prove a similar estimate for the global attractor of (Aℓ,X ), namely

Hλ

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)
≤ c0

(
R+ c1 log

1

λ

)N
log

1

λ
. (5.3)

The estimate (5.2) then follows immediately using the relation (4.16), the Lipschitz continuity
of e induced estimate

Hλ

(
A, L2

b,ψ(x0,R)(−r, 0;L2(Ω))
)
≤ Hλ/κ

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)
,

where κ > 0 is the Lipschitz constant of the mapping e from Corollary 5.1, and the obvious
estimate

Hλ

(
A, L2

b(−r, 0;L2(Ωx0,R))
)
≤ Hλ

(
A, L2

b,ψ(x0,R)(−r, 0;L2(Ω))
)
.

The proof of the estimate (5.3) relies on the recurrent estimate

Hα/2

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)

≤ Hα

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)
+ c0

(
R+ c1 log

1

α

)N
. (5.4)

Then we may choose λ0 > 0 large enough so that

Hλ0

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)
= 0

and for λ ∈ (0, λ0) we find k ∈ N such that 2−kλ0 ≤ λ ≤ 2−k+1. The estimate (5.3) then
follows from the recurrent estimate (5.4) and the inequality k ≤ c log 1/λ holding for all λ
sufficiently small:

Hλ

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)

≤ H2−kλ0

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)
−Hλ0

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)

≤
k∑

i=1

{
H2−iλ0

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)

−H2−i+1λ0

(
Aℓ, L

2
b,ψ(x0,R)(−r, ℓ;L2(Ω))

)}

≤
k∑

i=1

c0

(
R+ c1 log

2i−1

λ0

)N
≤ c0

(
R+ c1 log

1

λ

)N
log

1

λ
.
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Pražák, Slav́ık: Attractors and entropy of RDEs with delay

It remains to prove the recurrent estimate (5.4). Recall that the short trajectory attractor
Aℓ is compact in L2(−r, 0;L2

x̄,ε(Ω)), it is also compact in L2
b,ψ(x0,R)(−r, ℓ;L2(Ω)), therefore

for every α > 0 we may find m ∈ N such that

Aℓ ⊆
m⋃

i=1

Bα(χi;L
2
b,ψ(x0,R)(−r, ℓ;L2(Ω))).

Using Corollary 5.1 and the invariance of Aℓ we have

Aℓ ⊆
m⋃

i=1

Bκα(χ̃i;Wb,ψ(x0,R)(Q))

for some κ > 0. Lemma 2.2 now implies that

Hα/2

(
Bκα(χ̃i;Wb,ψ(x0,R)(Q)), L2

b,ψ(x0,R)(−r, ℓ; Ωx0,R(α/2))
)

≤ c̃0

(
R+ c̃1(1 + log

2

α
)

)N
≤ c0

(
R+ c1 log

1

α
)

)N
. (5.5)

From Lemma 5.2 it follows that an α/2-covering in L2
b,ψ(x0,R)(−r, ℓ;L2(Ωx0,R)) is also an

α/2-covering in L2
b,ψ(x0,R)(−r, ℓ;L2(Ω)), which finishes the proof.
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Abstract

An abstract criterion containing the sufficient and necessary condition
for the existence of a discrete infinite dimensional exponential attractor
in locally uniform spaces is shown and is applied to a nonlinear reaction-
diffusion equation posed in the space L2

b(Rd) with d ≤ 3.

1 Introduction

Exponential attractors are one of the objects of interest in asymptotic analysis of
differential equations. Compared to global attractors of finite fractal dimension,
exponential attractors provide additional control on the rate of attraction of
bounded sets while still retaining finite dimensionality. Exponential attractors
are thoroughly studied in the literature and the existence of the exponential
attractor has been established for many partial differential equations, see for
example [6], [8], [9], [5] and the references therein.

The natural extension of the exponential attractor to problems posed in un-
bounded domains, more precisely in the context of locally uniform spaces, is the
infinite dimensional exponential attractor introduced in [11]. Owing to the un-
boundedness of the spatial domain, the asymptotic properties of attractors can
often be described only locally and in general we cannot expect the attractors
to be globally compact. This is resolved by working with local topology and
using Kolmogorov’s ε-entropy instead of fractal dimension. In [11] the authors
studied the reaction-diffusion equation

ut − a∆u+ (L,∇)u+ f(u) + λ0u = g

posed in the spaceW 2,p
b (Rd) with p > max{2, d/2}, where a ∈ Rd×d is a constant

diffusion matrix with positive symmetric part, L ∈ (W 1,∞
b (Rd))d is a vector field

with sufficiently small divergence, f : R → R is a suitable reaction function,
λ0 > 0 and g ∈ Lpb(Rd) is an external force. The requirements on p assure

the embedding W 2,p
b (Rd) ↪→ L∞(Rd) and allow the authors to investigate the

necessary properties in L∞(Rd) while using the fact that the solution semigroup

1
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can be extended to the space L2
b(Rd). A natural question immediately occurs

– whether the same result can be obtained without the high regularity of the
phase space.

In this paper we establish a sufficient and necessary condition of the existence
of an infinite dimensional exponential attractor in an abstract setting suitable
for the reaction-diffusion equation

ut − div a(∇u) + f(u) + h(·,∇u) = g

posed in its natural energy space L2
b(Rd), where a, f , h and g are specified in

Section 4. The sufficient and necessary condition is similar to the one obtained
in [15] for exponential attractors. We also briefly comment on the fact that
this abstract setting is not directly extensible to the case of for example wave
equations.

The attractors of the reaction-diffusion equation in unbounded domains
posed in weighted spaces have been studied for example in [1], [4] and [3].
The attractors of the reaction-diffusion equation in locally uniform spaces have
been thoroughly examined in [16], where lower and upper bounds on the Kol-
mogorov’s ε-entropy of the attractor have been established. Other results in-
clude the study of spatio-temporal chaos in [17].

Apart from the above mentioned paper [11] the exponential attarctors of evo-
lution equations in locally uniform spaces have been also studied in [10], where
the authors study the infinite dimensional exponential attractor of a reaction-
diffusion equation with external force vanishing in infinity, and in [7], where the
existence of an infinite dimensional exponential attractor has been established
for a fourth order nonlinear parabolic equation in the space W 4,2

b (R3), a space
also embedded into L∞(R3).

The paper is organized as follows: Section 2 briefly reviews the locally uni-
form spaces and their properties. In Section 3 we establish the sufficient and
necessary condition for the existence of an infinite dimensional exponential at-
tractor in an abstract setting. Finally in Section 4 we apply the criterion from
Section 3 to a nonlinear reaction-diffusion equation.

2 Function spaces

A measurable bounded function φ : Rd → (0,∞) is called an admissible weight
function of growth rate ν ≥ 0 if

c−1
φ e−ν|x−y| ≤ φ(x)/φ(y) ≤ cφe

ν|x−y| (2.1)

for some cφ > 0 and all x, y ∈ Rd and further satisfies

|∇φ(x)| ≤ cνφ(x) (2.2)

for almost all x ∈ Rd and some c > 0. For ε > 0 and x̄ ∈ Rd we denote

φx̄,ε(x) = e−ε|x−x̄|.

Clearly φx̄,ε is an admissible weight function of growth rate ε. The particular
choice of the weight function φx̄,ε does not play any role in the following consid-
erations as long as certain decay properties are met (for more information see
[2, Section 4]).

2
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For p ∈ [1,∞), x̄ ∈ Rd and ε > 0 we define the weighted Lebesgue space
Lpε,x̄(Rd) by

Lpx̄,ε(Rd) = {u ∈ Lploc(R
d); ∥u∥p

Lpx̄,ε
=

∫

Rd
|u(x)|pφx̄,ε(x) dx <∞}.

The weighted Sobolev spaces are defined in a straightforward manner. We also

denote the dual to W 1,2
x̄,ε (Rd) by W

−1,2
x̄,ε (Rd) =

(
W 1,2
x̄,ε (Rd)

)∗
.

Let CRx denote a closed cube of side R > 0 in Rd centered at x ∈ Rd, i.e.

CRx =
d∏

i=1

[xi −R/2, xi +R/2], x ∈ Rd, R > 0.

For an admissible weight function φ and p ∈ [1,∞) we define the weighted
locally uniform space Lpb,φ(Rd) by

Lpb,φ(R
d) = {u ∈ Lploc(R

d); ∥u∥p
Lpb,φ

= sup
k∈Zd

φ(k)∥u∥p
Lp(C1

k)
<∞}.

If φ ≡ 1 we omit the subscript and write Lpb(Rd) instead of Lpb,1(Rd). The
Sobolev variant of the weighted locally uniform spaces is again defined in an
obvious manner.

The weighted Lebesgue spaces and the locally uniform spaces are connected
through the equivalence of the locally uniform norm. The following result is
standard and the proof may be found e.g. in [13, Theorem 2.1].

Theorem 2.1. Let ε > 0, 1 ≤ p <∞, k ∈ N0 and let φ be an admissible weight
function of growth rate µ < ε. Then u ∈W k,p

b,φ (Rd) if and only if

∥u∥p
W̃k,p
b,φ

= sup
l∈Zd

φ(l)∥u∥p
Wk,p
l,ε

<∞.

Moreover, the norm ∥·∥
W̃k,p
b,φ

is equivalent to the norm ∥·∥
Wk,p
b,φ

with constants

dependent on ε, µ− ε and cφ, where cφ is the constant from (2.1).

For O ⊆ Rd we denote

I(O) = {k ∈ Zd;C1
k ∩ O ≠ ∅}

and define the seminorms

∥u∥p
Lpb,φ(O)

= sup
k∈I(O)

φ(k)∥u∥p
Lp(C1

k)
(2.3)

with an obvious extension to the Sobolev spaces.
Denote Qℓ = (0, ℓ) × Rd. Let φ be an admissible weight function and p ∈

[1,∞). Then we define the parabolic locally uniform space Lpb,φ(0, ℓ;L
p(Rd)) by

Lpb,φ(0, ℓ;L
p(Rd)) = {u ∈ Lploc(Qℓ);

∥u∥p
Lpb,φ(0,ℓ;L

p)
= sup
k∈Zd

φ(k)∥u∥p
Lp(0,ℓ;Lp(C1

k))
<∞}.
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For p = 2 the Sobolev variant L2
b,φ(0, ℓ;W

1,2(Rd)) is given by

L2
b,φ(0, ℓ;W

1,2(Rd)) = {u ∈ L2
loc(Qℓ);

∥u∥2L2
b,φ(0,ℓ;W

1,2) = sup
k∈Zd

φ(k)∥u∥2L2(0,ℓ;W 1,2(C1
k))

<∞}.

We also define

L2
b,φ(0, ℓ;W

−1,2) = {u : Qℓ → R;
∥u∥2L2

b,φ(0,ℓ;W
−1,2) = sup

k∈Zd
φ(k)∥u∥2L2(0,ℓ;W−1,2(C1

k))
<∞}.

Similarly as for the weighted spaces one can show that parabolic locally
uniform spaces admit an equivalent norm utilizing the weighted spaces.

Theorem 2.2 ([13, Theorem 2.4]). Let ε > 0, p ∈ [1,∞) and let φ be an admis-
sible weight function of growth 0 ≤ ν < ε. Then the spaces Lpb,φ(0, ℓ;L

p(Rd)),
L2
b,φ(0, ℓ;W

1,2(Rd)) and L2
b,φ(0, ℓ;W

−1,2(Rd)) admit equivalent norms

∥u∥p
Lpb,φ(0,ℓ;L

p)
≈ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd
|u(t, x)|pe−ε|x−x̄| dx dt,

∥u∥2L2
b,φ(0,ℓ;W

1,2) ≈ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd

(
|u(t, x)|2 + |∇u(t, x)|2

)
e−ε|x−x̄| dx dt,

∥u∥2L2
b,φ(0,ℓ;W

−1,2) ≈ sup
v

sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd
u(t, x)v(t, x)e−ε|x−x̄| dx dt,

where the first supremum in the last equivalence is taken over all functions
v ∈ L2

b,φ(0, ℓ;W
1,2(Rd)) with less that unit norm, i.e.

sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd

(
|v(t, x)|2 + |∇v(t, x)|2

)
e−ε|x−x̄| dx ≤ 1.

Moreover, the constants of equivalence depend only on ε, ν − ε and cφ in the
notation of (2.1).

Similarly as in (2.3) for O ⊆ Rd we may define the respective seminorms

∥u∥p
Lpb,φ(0,ℓ;L

p(O))
= sup
k∈I(O)

φ(k)∥u∥p
Lp(0,ℓ;Lp(C1

k))

with a straightforward extension to the spaces L2
b,φ(0, ℓ;W

1,2(O)) and

L2
b,φ(0, ℓ;W

−1,2(O)).

3 Abstract criterion

Let Xk be closed subsets of some Banach space X̃k for every k ∈ Zd and let Xb

be the abstract locally uniform space defined by

Xb =
∏

k∈Zd
Xk equipped with the norm ∥x∥Xb = sup

k∈Zd
∥x∥Xk .
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For K ⊆ Zd we will denote

Xb(K) =
∏

k∈K
Xk with the corresponding seminorm ∥x∥Xb(K) = sup

k∈K
∥x∥Xk .

We emphasize that the above definition implicitly assumes that for given se-
quence xk ∈ Xk there exists x ∈ Xb such that x|{k} = xk for every k ∈ Zd,
which allows for splicing of local elements xk, k ∈ Zd, into one global element
x ∈ Xb.

We define the local topology Xloc by

xn → x in Xloc ⇔ xn|K → x|K in Xb(K) for every K ⊆ Zd finite.

With a slight abuse of notation, we denote the cubes in Zd of side R centred at
k ∈ Zd by

CRk = {j ∈ Zd; max
i=1,...,d

|ji − ki| ≤ R/2}.

In the rest of this section let S : Xb → Xb be an operator. Recall that for
a metric space M and a precompact set K ⊆ M we define the Kolmogorov’s
ε-entropy by

Hε (K,M) = lnNε(K,M),

where Nε(K,M) denotes the smallest number of ε-balls in M with centres in K
that cover the set K. Also for B ⊆ Xb we denote

∥B∥Xb = sup
b∈B

∥b∥Xb .

We define the discrete infinite dimensional exponential attractor in the spirit
of [11].

Definition. A set E ⊆ Xb is called a discrete infinite dimensional exponential
attractor of the discrete dynamical system (Xb, S) if

1. E is bounded in Xb and compact in Xloc,

2. E is positively invariant under S, i.e. SE ⊆ E,

3. E exponentially attracts bounded sets in Xb, i.e. there exist γ > 0 and a
monotone increasing function Q : R+

0 → R+ such that for every B ⊆ Xb

bounded and every n ∈ N one has

distXb(S
nB, E) ≤ Q(∥B∥Xb)e−γn,

4. there exist ε0, c, L > 0 such that for every k ∈ Zd, R ≥ 1 and ε > 0 the
estimate

Hε

(
E|CRk , Xb(C

R
k )
)
≤ c

(
#C

R+L ln ε0/ε
k

)
ln
ε0
ε

(3.1)

holds with the constants c, L, ε0 independent of k, R and ε.

Theorem 3.1. Let S : Xb → Xb be Lipschitz continuous and let B ⊆ Xb be a
bounded absorbing set, i.e. for every bounded B ⊆ Xb there exists N = N(B)
such that for every n ≥ N one has Sn(B) ⊆ B. Let there exist L > 0 such that

∥Snu− Snv∥Xk ≤ Ln sup
l∈Zd

e−α|k−l|∥u− v∥Xl (3.2)

5



Slav́ık: Infinite dimensional exponential attractor in locally uniform spaces

for every k ∈ Zd, n ∈ N and u, v ∈ B. Then the dynamical system (Xb, S) has
a discrete infinite dimensional exponential attractor if and only if for some ε0,
L′ > 0 and θ ∈ (0, 1) and every n ∈ N and k ∈ Zd we have

Hε0θ−n
(
(SnB)|Cnk , Xb(C

n
k )
)
≤ c(#Cn+L

′n
k )n (3.3)

with constant c, ε0, L
′ independent of n ∈ N and k ∈ Zd.

The estimate (3.2) corresponds to ”exponentially finite” speed of propaga-
tion of information. As we will see in the following section, estimates of this
type are natural for the solutions of dissipative evolution equations posed in
locally uniform spaces even in the case when the solution of a similar problem
posed in a bounded domain does not have a finite speed of propagation.

Proof. The structure of the locally uniform spaces is sufficiently similar to
L∞(Rd) that the proof of the theorem may closely follow the proof of [11,
Theorem 4.3] where a similar claim is shown in the space L∞(Rd). We will
briefly go through the main ideas of the proof and comment on those parts
which explicitly use the properties of the L∞(Rd)-norm.

Step 1 - The condition (3.3) is necessary. This part is standard. Assume
that E is a discrete infinite dimensional exponential attractor. Putting ε =
Q(∥B∥Xb)e−γn in (3.1) gives

HQ(∥B∥Xb )e
−γn

(
E|Cnk , Xb(C

n
k )
)
≤ c

(
#C

n+L ln
ε0e

γn

Q(∥B∥
Xb

)

k

)
ln

(
ε0e

γn

Q(∥B∥Xb)

)

≤ c′(#Cn+L
′n

k )n.

The set E attracts bounded sets in the topology Xb and thus

distXb(Cnk )((S
nB)|Cnk , E|Cnk ) ≤ distXb(S

nB, E) ≤ Q(∥B∥Xb)e−γn.

From this we readily observe

H2Q(∥B∥Xb )e
−γn

(
(SnB)|Cnk , Xb(C

n
k )
)
≤ C ′(#Cn+L

′n
k )n,

which is of the same form as (3.3) with θ = e−γ and ε0 = 2Q(∥B∥Xb).
Step 2 - Construction of the discrete infinite dimensional exponen-

tial attractor. Let n ∈ N be fixed and let ε0 > 0 be such that B ⊆ Bε0(0, Xb).
Let Mn ⊆ Zd be such that

Zd =
∞⋃

k∈Mn
Cnk , and Cnk ∩ Cnl = ∅ for k, l ∈ Mn, k ̸= l. (3.4)

For k ∈ Mn let

Vnk = {x ∈ Xb(C
n
k );x is a center of a ball of the covering

verifying (3.3) with ε = 2−nε0}.

Clearly

ln (#Vnk ) ≤ c
(
#CL

′′n
k

)
n. (3.5)

6



Slav́ık: Infinite dimensional exponential attractor in locally uniform spaces

Define
Ṽn = {x ∈ Xb;x|Cnk ∈ Vnk for all k ∈ Mn}.

We emphasize that this is precisely the moment where we need the splicing of
local elements into elements in Xb. As usual we throw out the elements of Ṽn
that are not sufficiently close to the elements of SnB in the locally uniform norm
and define

Vn = {x ∈ Ṽn; distXb(x, SnB) ≤ ε02
−n}.

For the sets Vn we have the estimate

distsymXb (Vn, SnB) ≤ ε02
−n, (3.6)

where distsymE (A,B) denotes the (symmetric) Hausdorff distance of sets A and
B in E. Also for m ∈ N we have

distXb(Vn+m,Vn) ≤ ε02
1−n. (3.7)

and the entropy estimate

Hε

(
Vn|CRk , Xb(C

R
k )
)
≤ c

(
#CR+L′′n

k

)
n (3.8)

for k ∈ Zd, R ≥ 1 and ε > 0. The proof is an abstract version of [11, Lemma
4.4]. The original proof carries over almost word for word with the following
difference: in the proof of (3.8) we require that for K1,K2 ⊆ Zd, K = K1 ∪K2

and B ⊆ Xb(K) relatively compact we have

Hε (B,Xb(K)) ≤ Hε (B|K1
, Xb(K1)) +Hε (B|K2

, Xb(K2)) . (3.9)

Indeed, if we have Ni ∈ N such that

Hε (B|Ki , Xb(Ki)) ≤ lnNi for i = 1, 2,

then by the definition of Xb(K), the number of required ε-balls to cover B in
Xb(K) is then N1N2, which verifies (3.9).

Returning to (3.8), let m = ⌈R/n⌉ + 1 and let K ⊆ Mn, where Mn is the
covering from (3.4), be the smallest finite subset such that

CRk ⊆ Cmnk ⊆
⋃

l∈K
Cnl .

Observe that #K ≤ md. Using (3.9) and (3.5) we estimate

Hε

(
Vn|CRk , Xb(C

R
k )
)
≤
∑

l∈K
Hε

(
Vn|Cnl , Xb(C

n
l )
)
=
∑

l∈K
ln(#Vn|Cnl )

≤ c
∑

l∈K

(
#Cn+L

′n
l

)
n ≤ c(#K)

(
#Cn+L

′n
k

)
n

≤ c′
(
#CR+L′′n

k

)
n.

Following a standard argument we set

Ẽd =
∞⋃

l=0

∞⋃

n=1

SlVn, Ed = clXloc
Ẽd,

7



Slav́ık: Infinite dimensional exponential attractor in locally uniform spaces

where clY A denoted the closure of the set A in the topology of the space Y .
It can be easily seen that the set Ed is positively invariant and exponentially

attracts bounded sets of Xb using the estimate (3.6). It remains to show that Ed
satisfies the entropy estimate (3.1), which in turn leads to the local compactness
of the closed complete set Ed.

Step 3 - entropy estimate and compactness. Let us now prove (3.1).
To this end we define the auxiliary set

V∞ =
⋃

n∈N
Vn.

Using exactly the same argument as in [11, Lemma 4.5] relying on the ”expo-
nentially finite” speed of propagation (3.2) and (3.6) we can show that

distXb(S
mVn,V∞) ≤ ε02

2−α(n+m) (3.10)

for some α > 0 and that the entropy bound

Hε

(
SmVn|CRk , Xb(C

R
k )
)
≤ c

(
#C

R+L′(n+m+ln ε0/ε)
k

)
n (3.11)

holds for every ε > 0, R > 0 and k ∈ Zd. A standard argument relying on the
properties of the distance and (3.7) and (3.10) leads to

distXb

⎛
⎝Ẽd,

⋃

l+n≤κ ln
ε0
ε

SlVn
⎞
⎠ ≤ ε

2

holding for some κ > 0 independent of ε > 0 sufficiently small. This justifies
the estimate

Nε

(
Ed|CRk , Xb(C

R
k )
)
≤

∑

n+m≤κ ln(ε0/ε)

Nε/2

(
SmVn|CRk , Xb(C

R
k )
)

and employing (3.11), we finally arrive at the desired entropy bound (3.1).
The compactness in the topology Xb(K) for K ⊆ Zd then immediately

follows from the entropy estimate (3.1) and the closedness of Ed.

From the proof of Theorem 3.1 we see that the assumption on splicing is
essential. Let for a moment Xb =W 1,2

b (Rd) and let xk ∈W 1,2(C1
k) be such that

sup
k∈Zd

∥xk∥W 1,2(C1
k)
<∞.

Then there obviously exists x ∈ L2
b(Rd) such that x|C1

k
= xk for every k ∈ Zd.

However, in general x /∈ W 1,2
b (Rd). It is also worth noting that this cannot be

solved by mollification since then we might easily escape the respective absorbing
set. In light of these findings it seems that the notion of an infinite dimensional
exponential attractor as defined in [11] might be too demanding in a more
general setting.
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4 Nonlinear reaction-diffusion equation

We will study the equation

ut − div a(∇u) + f(u) + h(·,∇u) = g in (0,∞)× Rd, (4.1)

where a represents a nonlinear diffusion, f is a reaction function, h is a convec-
tive term and g ∈ L2

b(Rd) is an external force. The equation (4.1) is supplied
with initial data

u(0) = u0 ∈ L2
b(Rd).

In this section we assume that ε = 1 in the definition of φx̄,ε and we will often
omit the symbol ε.

We assume that the function a ∈ C(Rd,Rd) satisfies a(0) = 0 and

(a(ξ)− a(η)) · (ξ − η) ≥ κ|ξ − η|2 for all ξ, η ∈ Rd,
|a(ξ)− a(η)| ≤ cκ|ξ − η|, for all ξ, η ∈ Rd,
the function ξ → a(ξ) · ξ is convex on Rd,

with suitable constants κ > 0 and c ≥ 1. The function f ∈ C(R,R) should be
such that f(0) = 0 and

|f(r)− f(s)| ≤ c (1 + |r|+ |s|)p−2 |r − s|, for all r, s ∈ R,
(f(r)− f(s)) (r − s) ≥ −c|r − s|2, for all r, s ∈ R,
c|r|p − c′ ≤ f(r)r ≤ c′′ (|r|p + 1) , for all r ∈ R,

for some p > (2,∞), c, c′, c′′ > 0. Finally the function h : Rd ×Rd → R is such
that

ξ → h(x, ξ) is globally Lipschitz for a.e. x ∈ Rd,
x→ h(x, ξ) is measurable and essentially bounded for every ξ ∈ Rd.

The weak solution is defined in the sense of distributions on (0,∞)×Rd and
has the regularity

u ∈ C([0, T ], L2
x̄(Rd)) ∩ L2(0, T ;W 1,2

x̄ (Rd)) ∩ Lp(0, T ;Lpx̄(Rd)),
ut ∈ L2(0, T ;W−1,2

x̄ (Rd)) + Lp
′
(0, T ;Lp

′

x̄ (Rd)),
(4.2)

for every x̄ ∈ Rd and T > 0. Moreover, for an admissible weight function φ of
growth rate µ ∈ [0, 1) and for a.e. t ≥ 0 one has

u(t) ∈ L2
b,φ(Rd), u ∈ L2

b,φ(t, t+ 1;W 1,2(Rd)) ∩ Lpb,φ(t, t+ 1;Lp(Rd)).

The existence and uniqueness of weak solution of the problem (4.1) is shown
in [13, Theorem 3.1] together with the existence of a closed positively invariant

absorbing set B̃. We also have the following regularity result.

Theorem 4.1 ([13, Theorem 3.8]). Let d ≤ 3. For every q ∈ (1,∞) there exists
a nonnegative function Q : R+ × R+

0 → R+ increasingly monotone in each of
its arguments such that

∥u(t)∥Lqb ≤ Q(τ−1, ∥u0∥L2
b
), t ≥ τ > 0, u0 ∈ L2

b(Rd),

where u(t) is a weak solution of (4.1) satisfying u(0) = u0.

9
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From now on let d ≤ 3. Theorem 4.1 allows us to find a closed positively
invariant absorbing set B = S(τ)B̃, where τ > 0 is fixed, such that for every
admissible weight function φ of growth rate µ ∈ [0, 1) and u0 ∈ B we have

∥u0∥2L2
b,φ

+ ∥u0∥pLpb + ∥u∥2L2
b,φ(0,t;W

1,2) ≤ ct,p, (4.3)

where u is a solution of (4.1) with u(0) = u0.
Let S(t) : L2

b(Rd) → L2
b(Rd) denote the solution semigroup of the equation

(4.1).
Again we define the infinite dimensional exponential attractor as in [11].

Definition. A set E ⊆ L2
b(Rd) is called an infinite dimensional exponential

attractor of the dynamical system (L2
b(Rd), S(t)) if

1. E is bounded in L2
b(Rd) and compact in L2

loc(Rd),

2. E is positively invariant w.r.t. S(t), i.e. S(t)E ⊆ E for every t ≥ 0,

3. the set E exponentially attracts bounded sets of L2
b(Rd) in the locally uni-

form topology L2
b(Rd), i.e. there exist γ > 0 and an increasing function

Q : R+
0 → R+ such that for every B ⊆ L2

b(Rd) bounded and t ≥ 0

distL2
b
(S(t)B, E) ≤ Q(∥B∥L2

b
)e−γt,

4. there exist ε0, c, L > 0 such that for R ≥ 1, x̄ ∈ Rd and ε ∈ (0, ε0) we
have the entropy estimate

Hε

(
E|CRx̄ , L

2
b(C

R
x̄ )
)
≤ c

(
R+ L ln

ε0
ε

)d
ln
ε0
ε

with constants c, L, ε0 independent of ε, x̄ and R.

Before we show that the dynamical system (L2
b(Rd), S(t)) has an infinite

dimensional exponential attractor, we need to define the trajectory semigroup
and review several of its properties. Let us define the trajectory space by

Bℓ = {χ : [0, ℓ]× Rd → R;χ is a weak solution of (4.1) with χ(0) ∈ B}.

The trajectory semigroup L(t) : Bℓ → Bℓ and the end-point mapping e : Bℓ → B
are defined by

[L(t)χ](s) = S(t+ s)χ(0), s ∈ [0, ℓ], e(χ) = χ(ℓ).

We summarize the properties of S, L and e in the following lemma. Let us
denote

∥χ∥Wb,φ
= ∥χ∥L2

b,φ(0,ℓ;W
1,2) + ∥∂tχ∥L2

b,φ(0,ℓ;W
−1,2).

Lemma 4.2. Let ℓ > 0 and let φ be an admissible weight function of growth
µ ∈ [0, 1). The following holds:

1. the operators S(t) : L2
b,φ(Rd) → L2

b,φ(Rd) and L(t) : L2
b,φ(0, ℓ;L

2(Rd)) →
L2
b,φ(0, ℓ;L

2(Rd)) are uniformly Lipschitz continuous w.r.t. t ∈ [0, T ],

10
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2. there exist c, α > 0 such that

∥S(nℓ)u− S(nℓ)v∥L2
b(C

1
k)

≤ cn sup
l∈Zd

e−α|l−k|∥u− v∥L2
b(C

1
l )

(4.4)

for every n ∈ N, k ∈ Zd and every u, v ∈ B,
3. the mapping e : L2

b,φ(0, ℓ;L
2(Rd) → L2

b,φ(Rd) is Lipschitz continuous,

4. the set Bℓ is positively invariant under L(t), i.e. L(t)Bℓ ⊆ Bℓ for every
t ≥ 0,

5. (smoothing property) there exist K > 0 such that for every χ1, χ2 ∈ Bℓ
one has

∥L(ℓ)χ1 − L(ℓ)χ2∥Wb,φ
≤ K∥χ1 − χ2∥L2

b,φ(0,ℓ;L
2). (4.5)

Moreover, the Lipschitz constants of L, S and e and the constant K in (4.5)
are independent of the particular form of φ as long as the constants µ and cφ
from (2.1) remain the same.

Proof. The set Bℓ is positively invariant immediately from the definitions. The
uniform Lispchitz continuity of S(t) and L(t) has been shown in [13, Theorem
5.2] by the means of the estimate

∫

Rd
|w(t, x)|2e−|x−x̄| dx ≤ c

∫

Rd
|w(s, x)|2e−|x−x̄| dx, 0 ≤ s ≤ t ≤ T ′,

where w = u − v and T ′ ≥ 0 is sufficiently large, and Theorems 2.1 and 2.2,
respectively. Let us now show (4.4). Clearly

c

∫

Cx̄

|w(t, x)|2 dx ≤
∫

Rd
|w(t, x)|2e−|x−x̄| dx

for some c > 0 independent of x̄ ∈ Rd. On the other hand by taking x̄ = k ∈ Zd
we have
∫

Rd
|w(s, x)|2e−|x−k| dx =

∑

l∈Zd

∫

C1
l

|w(s, x)|2e−|x−k| dx

≤
∑

l∈Zd

∫

C1
l

|w(s, x)|2e−|l−k|+|l−x| dx

≤ c sup
l∈Zd

(
e−|l−k|/2

∫

C1
l

|w(s, x)|2 dx
)⎛
⎝∑

l∈Zd
e−|l−k|/2

⎞
⎠

and the estimate (4.4) for n = 1 immediately follows by setting t = ℓ, s = 0,
since the last sum converges. For n > 1 the result follows from the Lipschitz
continuity of S(ℓ) and the case n = 1. The Lipschitz continuity of e follows in
a similar way. The smoothing property (4.5) has been shown in [13, Theorem
5.3].

For x̄ ∈ Rd and R ≥ 1 we define the auxiliary weight function ψ(x̄, R) by

ψ(x̄, R)(x) =

{
1, |x− x̄| ≤ R+

√
d,

exp
(
(R+

√
d− |x− x̄|)/2

)
, otherwise.
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Clearly ψ(x̄, R) is an admissible weight function of growth 1/2 for every x̄ ∈ Rd
and R ≥ 1. Also for B ⊆ L2

b(0, ℓ;L
2(Rd)), ε > 0, x̄ ∈ Rd and R ≥ 1 one has

Hε

(
B|CRx̄ , L

2
b(0, ℓ;L

2
b(C

R
x̄ )
)
≤ Hε

(
B,L2

b,ψ(x̄,R)(0, ℓ;L
2(Rd))

)
. (4.6)

Also it is easy to show that, using the notation of (2.1), cψ(x̄,R) = 1 for all

x̄ ∈ Rd and R ≥ 1.

Lemma 4.3 ([13, Lemma 5.4]). Let ν0 > 0 be such that

Bℓ ⊆ Bν0(χ0;L
2
b(0, ℓ;L

2(Rd))

for some χ0 ∈ Bℓ. Then for every x̄ ∈ Rd, R ≥ 1, ν ∈ (0, ν0) and χ1, χ2 ∈ Bℓ
we have

∥χ1 − χ2∥L2
b,ψ(x̄,R)

(0,ℓ;L2) ≤ max{ν, ∥χ1 − χ2∥
L2
b,ψ(x̄,R)

(0,ℓ;L2(C
n+ln(ν0/ν)

k ))
}.

We will also need the following explicit version of Aubin-Lions lemma.

Lemma 4.4 ([13, Lemma 2.6]). Let O ⊆ Rd satisfy

#I(O) ≤ c1 vol(O) (4.7)

and let r > 0 and θ ∈ (0, 1) be given. Then

Hθr

(
Br(χ,Wb,φ(Rd))|O, L2

b,φ(0, ℓ;L
2(O))

)
≤ c0 vol(O)

with the constant c0 depending on c1, r and ℓ and independent of χ, r, O and
φ as long as (4.7) holds and the constants in (2.1) and (2.2) remain the same.

We are now ready to prove the main theorem.

Theorem 4.5. The equation (4.1) possesses an infinite dimensional exponential
attractor.

Proof. The proof combines the abstract criterion from Theorem 3.1 with the
technique of [13, Theorem 5.1].

Let ℓ > 0 be arbitrary and let ε0 > 0 be such that B ⊆ Bε0(u, L
2
b(Rd))

for some u ∈ L2
b(Rd). First we show that the discrete dynamical system

(L2
b(Rd), S(2nℓ)) has a discrete infinite dimensional exponential attractor. The

”exponentially finite” speed of propagation and the Lipschitz continuity of S(2ℓ)
have been shown in Lemma 4.2, therefore by Theorem 3.1 it remains to establish
the entropy estimate (3.3), i.e.

Hε02−n
(
S(2nℓ)B|Cnk , L

2
b(C

n
k )
)
≤ c(n+R′n)dn (4.8)

for all n ∈ N and k ∈ Zd and some R′ > 0.
Let ν0 > 0 and χ0 ∈ Bℓ be such that

Bℓ ⊆ Bν0(χ0;L
2
b(0, 2ℓ;L

2(Rd)) and ν0 >
ε0

2ceK
,

where ce is the Lipschitz constant of e and K is the constant from the smoothing
property, cf. Lemma 4.2. For simplicity we assume that the constant K in the
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smoothing property (4.5) is the same for L(ℓ) and L(2ℓ) and K > 1/2. Since
S(2ℓnB) = e(L(2ℓ(n− 1) + ℓ)Bℓ), using (4.6) and the Lipschitz continuity of e
we observe

Hε02−n
(
S(2ℓnB)|Cnk , L

2
b(C

n
k )
)
≤ Hε02−n

(
S(2ℓn)B, L2

b,ψ(k,n)(R
d)
)

≤ Hε02−n/ce

(
L(2ℓ(n− 1) + ℓ)Bℓ, L2

b,ψ(k,n)(0, ℓ;L
2(Rd))

)
.

Therefore it suffices to establish the entropy bound

Hε02−n/ce

(
L(2ℓ(n− 1) + ℓ)Bℓ, L2

b,ψ(k,n)(0, ℓ;L
2(Rd))

)
≤ c(n+R′n)dn (4.9)

for some R′ > 0 and all n ∈ N and k ∈ Zd.
Denote ρ = ν0ce/ε0 and let n ∈ N and k ∈ Zd be fixed. By smoothing

property (4.5) we have

L(ℓ)Bℓ ⊆ BKν0(L(ℓ)χ0;Wb,ψ(k,n)(Rd)).

Using Lemma 4.4 with θ = ε0/2ceKν0 < 1 we get

Hε0/2ce

(
L(ℓ)Bℓ|Cn+ln(ρ2)

k

, L2
b,ψ(k,n)(0, ℓ;L

2(C
n+ln(ρ2)
k ))

)
≤ c(n+ ln(ρ2))d

and, since by Lemma 4.3 every ε02/ce-covering in L2
b,ψ(k,n)(0, ℓ;L

2(C
n+ln(ρ2)
k ))

is also an ε02/ce-covering in the space L2
b,ψ(k,n)(0, ℓ;L

2(Rd)), we obtain

Hε0/2ce

(
L(ℓ)Bℓ, L2

b,ψ(k,n)(0, ℓ;L
2(Rd))

)
≤ c(n+ ln(ρ2))d.

If n = 1 we are done, otherwise we proceed by finite induction. Assume that
for m < n the entropy bound

Hε02−m/ce

(
L(2ℓ(m− 1) + ℓ)Bℓ, L2

b,ψ(k,n)(0, ℓ;L
2(Rd))

)
≤ c(n+ ln(ρ2m))dm

holds, that is

L(2ℓ(m− 1) + ℓ)Bℓ ⊆
Nm⋃

j=1

Bε02−m/ce(χ
m
j ;L2

b,ψ(k,n)(0, ℓ;L
2(Rd)))

holds for some χmj ∈ L(2ℓ(m − 1) + ℓ)Bℓ and Nm ∈ N such that lnNm ≤
c(n + ln(ρ2m))dm. Applying L(2ℓ) to both sides of the above inclusion and
using the smoothing property (4.5) for L(2ℓ) we obtain

L(2ℓm+ ℓ)Bℓ ⊆
Nm⋃

j=1

BKε02−m/ce(L(2ℓ)χ
m
j ;Wb,ψ(k,n)(Rd)).

Invoking Lemma 4.4 with θ = 1/2K we get

Hε02−(m+1)/ce

(
BKε02−m/ce(L(2ℓ)χ

m
j ;Wb,ψ(k,n)(Rd))|Cn+ln(ρ2m+1)

k

,

L2
b,ψ(k,n)(0, ℓ;L

2(C
n+ln(ρ2m+1)
k ))

)
≤ c(n+ ln(ρ2m+1))d

13
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uniformly for 1 ≤ j ≤ Nm, which again by Lemma 4.3 leads to

Hε02−(m+1)/ce

(
BKε02−m/ce(L(2ℓ)χ

m
j ;Wb,ψ(k,n)(Rd)),

L2
b,ψ(k,n)(0, ℓ;L

2(Rd))
)
≤ c(n+ ln(ρ2m+1))d

uniformly for 1 ≤ j ≤ Nm. Now we arrive to

Hε02−(m+1)/ce

(
L(2ℓm+ ℓ)Bℓ, L2

b,ψ(k,n)(0, ℓ;L
2(Rd))

)

≤ Hε02−m/ce

(
L(2ℓ(m− 1) + ℓ)Bℓ, L2

b,ψ(k,n)(0, ℓ;L
2(Rd))

)

+ c(n+ ln(ρ2m+1))d

≤ c(n+ ln(ρ2m+1))d(m+ 1),

which finishes the proof of the entropy bound (4.9) and therefore also of the
desired entropy bound (4.8) with R′ = ln(ρ2). By Theorem 3.1 the discrete dy-
namical system (L2

b(Rd), S(2ℓn)) has a discrete infinite dimensional exponential
attractor Ed.

The extension to the continuous time is standard and follows the argument
of e.g. [12, Theorem 2.27]. We set

E =
⋃

0≤t≤2ℓ

S(t)Ed.

Then E is clearly bounded in L2
b(Rd) and positively invariant w.r.t. S(t). The

exponential attraction follows from the exponential attraction of the discrete
infinite dimensional exponential attractor Ed and the uniform Lipschitz conti-
nuity of S(t) on finite time intervals. To obtain the entropy estimate, we use
the additional regularity of the absorbing set B (4.3) and the regularity of the
solution (4.2) to get

∥S(t1)u− S(t2)v∥L2
x̄
≤ c∥u− v∥L2

x̄
+ c|t1 − t2|1/2, u, v ∈ B, t1, t2 ∈ [0, 2ℓ],

where the constant c > 0 is independent of x̄ ∈ Rd. Similarly as in Lemma 4.2
we get

∥S(t1)u− S(t2)v∥L2
b(C

R
x̄ ) ≤ max{ε, ∥u− v∥

L2
b(C

R+R′′ ln(ε0/ε)
x̄ )

}

+ c|t1 − t2|1/2, u, v ∈ B, t1, t2 ∈ [0, 2ℓ],

for all x̄ ∈ Rd and R ≥ 1 and some R′′ > 0 independent of x̄ and R. The desired
entropy bound then follows form a standard argument. The compactness of E
is then a direct corollary of finite entropy of E .
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results of this paper. This research was supported by the Charles University,
project GA UK No. 200716.

14



Slav́ık: Infinite dimensional exponential attractor in locally uniform spaces

References

[1] F. Abergel. Existence and finite dimensionality of the global attractor
for evolution equations on unbounded domains. J. Differential Equations,
83(1):85–108, 1990.

[2] J. M. Arrieta, A. Rodriguez-Bernal, J. W. Cholewa, and T. Dlotko. Linear
parabolic equations in locally uniform spaces. Math. Models Methods Appl.
Sci., 14(2):253–293, 2004.

[3] A. Babin and B. Nicolaenko. Exponential attractors of reaction-diffusion
systems in an unbounded domain. J. Dynam. Differential Equations,
7(4):567–590, 1995.

[4] A. V. Babin and M. I. Vishik. Attractors of partial differential evolution
equations in an unbounded domain. Proc. Roy. Soc. Edinburgh Sect. A,
116(3-4):221–243, 1990.

[5] L. Dung and B. Nicolaenko. Exponential attractors in banach spaces. Jour-
nal of Dynamics and Differential Equations, 13(4):791–806, 2001.

[6] A. Eden, C. Foias, B. Nicolaenko, and R. Temam. Exponential attractors
for dissipative evolution equations, volume 37 of RAM: Research in Applied
Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.

[7] M. Efendiev. Infinite-dimensional exponential attractors for fourth-order
nonlinear parabolic equations in unbounded domains. Math. Methods Appl.
Sci., 34(8):939–949, 2011.

[8] M. Efendiev, A. Miranville, and S. Zelik. Exponential attractors for a
nonlinear reaction-diffusion system in R3. C. R. Acad. Sci. Paris Sér. I
Math., 330(8):713–718, 2000.

[9] M. Efendiev, A. Miranville, and S. Zelik. Infinite dimensional exponential
attractors for a non-autonomous reaction-diffusion system. Math. Nachr.,
248/249:72–96, 2003.

[10] M. Efendiev, A. Miranville, and S. Zelik. Global and exponential attractors
for nonlinear reaction-diffusion systems in unbounded domains. Proc. Roy.
Soc. Edinburgh Sect. A, 134(2):271–315, 2004.

[11] M. Efendiev, A. Miranville, and S. Zelik. Infinite-dimensional exponential
attractors for nonlinear reaction-diffusion systems in unbounded domains
and their approximation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci., 460(2044):1107–1129, 2004.
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Abstract

We study a damped wave equation with a nonlinear damping in the
locally uniform spaces and prove well-posedness and existence of a locally
compact attractor. An upper bound on the Kolmogorov’s ε-entropy is
also established using the method of trajectories.

1 Introduction

We study the semilinear damped wave equation

utt + g(ut)−∆u+ αu+ f(u) = h, t > 0, x ∈ Rd, (1.1)

where f and g are nonlinear continuous functions described in more detail in
Section 3, with initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rd.

We focus on proving the well-posedness of the problem in the context of
locally uniform spaces, the existence of a locally compact attractor and mainly
on establishing an upper bound on the Kolmogorov’s ε-entropy. We use the
method of trajectories introduced in [15], which has been previously used in
a similar context for showing the finite dimensionality of the global attractor
of (1.1) in bounded domains in [17]. However, the approach applied to the
bounded domain problem cannot be used directly due to a different nature of
embeddings in weighted spaces and requires a slightly different technique. To
this end, we introduce a variant of locally uniform spaces which seems suitable
for equations with a finite speed of propagation. Also as usual in locally uniform
spaces, the problem has an inherent non-compactness and non-separability. In

∗This is a pre-copy-editing, author-produced PDF of an article accepted for publica-
tion in Communications on Pure and Applied Analysis following peer review. The defini-
tive publisher-authenticated version will be available online at the journal webpage https:
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MSC 2010: Primary: 37L30; Secondary: 35B41, 35L70.
Keywords: Damped wave equations, nonlinear damping, unbounded domains, locally

compact attractor, Kolmogorov’s entropy.
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order to obtain the dissipation of energy, we formulate additional assumptions
that allow for the nonlinearities in the equation to be superlinear. One could
expect that a suitable control of dispersion could yield dissipative estimates
under still weaker growth restrictions on the nonlinearities.

This equation has been intensely studied in the setting of bounded domains.
The existence of a global attractor with supercritical nonlinearities has been
shown in [8] and for critical nonlinearities in [19] with less restrictive conditions
on the damping. The finite dimensionality has been discussed in [17] and has
been achieved even for critical nonlinearities in [4] and [12]. In the case of linear
damping, the results include the existence of a global attractor on manifolds
[11], asymptotic regularity of solutions of perturbed damped wave equation
with nonlinearity of arbitrary growth [21] and recently in [10] the existence and
smoothness of a global attractor for the equation with critical nonlinearity in
d = 3.

In the context of locally uniform spaces, a linearly damped wave equation
has been studied in [7] and [22]. In [22] the author has also established an
upper bound on the Kolmogorov’s ε-entropy of the locally compact attractor.
Some results, including well-posedness and the existence of a locally compact
attractor, have also been shown for a strongly damped wave equation in [20]
and recently for a wave equation with fractional damping in [18]. To the best
of our knowledge, nonlinear damping in this setting has not yet been studied.

The paper is organized as follows: In Section 2 we review the locally uniform
spaces. In Section 3, the well-posedness of the equation (1.1) is established. In
Section 4, we discuss additional assumptions that lead to dissipative estimates.
In Section 5, we introduce the trajectory setting and prove a local variant of
squeezing property, which is used in Section 6 to establish the existence of the
locally compact attractor and an upper bound on its Kolmogorov’s ε-entropy.

2 Function spaces

In this section we review the basic facts about weighted Sobolev spaces and
locally uniform spaces. These spaces and their relations have been studied in
[23] and [2].

By an admissible weight function of growth rate ν ≤ 0 we understand φ :
Rd → (0,+∞) measurable and bounded satisfying

C−1
φ e−ν|x−y| ≤ φ(x)/φ(y) ≤ Cφe

ν|x−y| (2.1)

for some Cφ ≥ 1 and every x, y ∈ Rd.
For x̄ ∈ Rd and ε > 0 we define the weight function φx̄,ε with center in x̄

and decay rate ε by
φx̄,ε(x) = e−ε|x−x̄|. (2.2)

Then clearly for every multiindex α there exists Cα > 0 such that

|Dαφx̄,ε| ≤ Cαε
|α|φx̄,ε. (2.3)

We emphasize that, thanks to [2, Proposition 4.1], the particular choice of the
weight function (2.2) does not play any role in the definition of the locally
uniform spaces below as long as certain decay properties are met. Also note

2
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that by the above definition, φx̄,ε is an admissible weight function with growth
ε.

For p ∈ [1,∞) we define the weighted Lebesgue space Lpx̄,ε(Rd) by

Lpx̄,ε(Rd) = {u ∈ Lploc(R
d); ∥u∥Lpx̄,ε(Rd) :=

(∫

Rd
|u|pφx̄,ε dx

)1/p

<∞}.

In the special case p = 2 we use the notation

∥u∥x̄,ε ≡ ∥u∥L2
x̄,ε(Rd).

We denote the scalar product on L2
x̄,ε(Rd) by (·, ·)x̄,ε. The scalar product on

L2(Rd) will be denoted by (·, ·). We will sometimes omit the space domain Rd
in the notation of function spaces.

Clearly the embedding Lpx̄,ε1(R
d) ↪→ Lpx̄,ε2(R

d) holds for ε1 ≤ ε2.
The weighted Sobolev spaces are defined in an obvious manner and allow

the continuous embedding

W k,p
x̄,ε (Rd) ↪→W l,q

x̄,ε̃(R
d)

with k ≥ l and q ≥ p such that W k,p(Rd) ↪→W l,q(Rd) and ε̃ = εq/p. We stress
out that the embedding

W 1,p
x̄,ε (Rd) ↪→ Lqx̄,ε(Rd)

does not hold for any q > p.
The weighted spaces also allow certain compact embeddings. More precisely,

let k ≥ l and q ≥ p be such that W k,p(B(0, 1)) ↪→↪→ W l,q(B(0, 1)). Then we
have the compact embedding

W k,p
x̄,ε (Rd) ↪→↪→W l,q

x̄,ε̃(R
d)

with ε̃ > εp/q, which gives that for example the embedding

{u ∈ L∞(0, T0;W
1,2
x̄,ε ), ut ∈ L∞(0, T0;L

2
x̄,ε̃)} ↪→↪→ Lm(0, T0;L

s
x̄,ε̃), (2.4)

where 1 < m < ∞ and 1 ≤ s < 2d/(d − 2), is compact and continuous for
s = 2d/(d− 2).

Let Ck denote a closed unit cube in Rd centered at xk ∈ (Z/2)d, i.e.

Ck =

d∏

i=1

[xk,i − 1/2, xk,i + 1/2], k ∈ N.

The weighted locally uniform Lebesgue space Lpb,φ for p ∈ [1,∞) and an
admissible weight function φ is defined by

Lpb,φ(R
d) = {u ∈ Lploc(R

d); ∥u∥Lpb,φ(Rd) = sup
k∈N

φ1/p(xk)∥u∥Lp(Ck) <∞}.

If φ ≡ 1, we omit the subscript and write for example L2
b instead of L2

b,1.
For p = 2 we use a simplified notation

∥u∥b,φ ≡ ∥u∥L2
b,φ(Rd)

.

3
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The spaces Lpb,φ(Rd) are neither separable nor reflexive.
Locally uniform Sobolev spaces are again constructed in a straightforward

manner. The standard embeddings holding on bounded domains also hold for

locally uniform spaces, namely W 1,2
b (Rd) ↪→ L

2d/(d−2)
b (Rd). However, none of

these embeddings are compact.
The weighted Lebesgue spaces and the locally uniform spaces are connected

through the equivalence of the locally uniform norm. The following lemmata
are standard and their proofs can be found e.g. in [2, 9] and [23].

Lemma 2.1. Let ε > 0, 1 ≤ p < ∞, k ∈ N0 and let φ be an admissible weight
function with growth ν < ε. Then u ∈W k,p

b,φ (Rd) if and only if

sup
x̄∈Rd

φ(x̄)∥u∥p
Wk,p
x̄,ε (Rd)

<∞.

Moreover, the norm

∥u∥p
W̃k,p
b,φ (Rd) := sup

x̄∈Rd
φ(x̄)∥u∥p

Wk,p
x̄,ε (Rd)

is equivalent to the original W k,p
b,φ (Rd)norm.

Lemma 2.2. Let p ∈ [1,∞), ε > 0 and x̄ ∈ Rd. Then there exist constants C1

and C2 such that

C1

∫

Rd
φx̄,ε(x)|u(x)|p dx

≤
∫

Rd
φx̄,ε(x)

∫

B(x,1)

|u(y)|p dy dx ≤ C2

∫

Rd
φx̄,ε(x)|u(x)|p dx.

Finally we define so-called parabolic locally uniform space Lpb(0, T ;L
p(Rd))

by

Lpb(0, T ;L
p) = {u : (0, T )× Rd → R;

∥u∥Lpb (0,T ;Lp) := sup
k∈N

∥u∥Lp(0,T ;Lp(Ck))
<∞}.

These spaces and their weighted variants have been studied in [9].

3 Well-posedness for locally uniform data

In this section we prove the existence and uniqueness of weak solutions of (1.1)
for infinite energy data. We will make use of the following energy spaces which
arise in the case of (1.1) in unbounded domains

Φx̄,ε =W 1,2
x̄,ε × L2

x̄,ε, Φb =W 1,2
b × L2

b , Φloc =W 1,2
loc × L2

loc.

We consider Φb as the phase space for the asymptotic analysis. However, it is
well known that the locally uniform spaces are not separable, hence there are
problems with attaining the initial conditions and approximating less regular
data. There are at least two ways how to overcome this inconvenience. The
first one is to consider Sobolev spaces with the weight functions like φx̄,ε with
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better properties. The second way is to use a phase space which is defined as
closure of smooth functions in ∥ · ∥Φb (such approach was considered e.g. in
[16]). Both settings combined with the finite speed of propagation property of
wave equations lead to the uniqueness and existence result. We have chosen the
second approach.

Let us denote Lploc(I;W
k,p
loc (Ω)) the set of measurable functions u on I × Ω

such that for any compact J ⊆ I and K ⊆ Ω we have u ∈ Lp(J ;W k,p(K)).
Particularly, u ∈ L∞

loc(0,∞;X) means that u is strongly (Bochner) measurable
on (0,∞) and u ∈ L∞

loc(0, T ;X) for any T > 0.
We impose the following requirements on the nonlinearities of studied equa-

tion:

(F1) f ∈ C1(R),

(F2) ∀r ∈ R : |f ′(r)| ≤ γ1(|r|p−1 + 1),

(F3) f ′ ≥ −β,

(F4) lim inf |r|→∞ f(r)/r > 0,

(G1) g ∈ C1(R), g(0) = 0,
g′ ≥ γ5 > 0 for some γ5 > 0,

(G2) for every r ∈ R :

γ2|r|µ+1 − γ3

≤ g(r)r ≤ γ4(|r|µ+1 + 1),

where γj , β > 0. In what follows, we consider the following set of parameters:

p ∈
(
0,

2∗

2

]
for d > 2, p ∈ (0,∞) for d = 2, µ ∈ [1,∞), (3.1)

where 2∗ = 2d/(d− 2).
Also from (G1) we observe

γ5|u− v|2 ≤ (g(u)− g(v)) (u− v) (3.2)

holds for every u, v ∈ R.
We use the notation

E[u](t) =
1

2

(
|∂tu(t)|2 + |∇u(t)|2 + α|u(t)|2

)
,

F [u](t) = E[u](t, x) + F (u(t)),

where F (r) =
∫ r
0
f(s) ds. Also note that by (F3) we have

F (r) =

∫ r

0

f(s) + βs ds− β

2
r2 ≤ f(r)(r) +

β

2
r2 (3.3)

and from (F4) we obtain f(r)r ≥ ηr2 − Cη for η > 0 sufficiently small. Com-
bining this with (3.3) gives

f(r)r = κf(r)+(1−κ)f(r)r ≥ κF (r)−
(
βκ

2
+ η (1− κ)

)
r2−Cη(1−κ) (3.4)

for κ ∈ [0, 1], η > 0.
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Definition. Let u0, u1 ∈ Φb and h ∈ L2
b(0,∞;L2). We call u : [0,∞)×Rd → R

a weak solution of (1.1) if for every ε > 0 and x̄ ∈ Rd we have

(u, ut) ∈ C([0,∞),Φx̄,ε), ut ∈ Lµ+1
loc (0,∞;Lµ+1

x̄,ε (Rd)),
u(0) = u0, ut(0) = u1, ∥u∥2

W 1,2
b (Rd) + ∥ut∥2L2

b(Rd)
∈ L∞

loc((0,∞)) (3.5)

and the equality

−
∫ ∞

0

(ut(t), ψt(t, ·)) dt+
∫ ∞

0

(∇u(t),∇ψ(t, ·)) dt+
∫ ∞

0

(αu(t), ψ(t, ·)) dt

+

∫ ∞

0

(g(ut(t)), ψ(t, ·)) dt+
∫ ∞

0

(f(u(t)), ψ(t, ·)) dt =
∫ ∞

0

(h(t), ψ(t, ·)) dt
(3.6)

holds for every test function ψ ∈ D((0,∞) × Rd) (or equivalently for every
Lipschitz compactly supported function ψ).

The identity (3.6) has an equivalent version closely connected to the energy
space Φε,x̄. By using ψφε,x̄ with ψ ∈ D((0,∞)×Rd) as a test function in (3.6),
we obtain

−
∫ T

0

(
ut(t), ∂tψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
g(ut(t)), ψ(t, ·)

)
x̄,ε
dt

+

∫ T

0

((
∇u(t),∇ψ(t, ·)

)
x̄,ε

+
(
αu(t), ψ(t, ·)

)
x̄,ε

)
dt

+

∫ T

0

(
f(u(t)), ψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
∇u(t), ψ(t, ·)∇φx̄,ε

)
dt

=

∫ T

0

(
h(t), ψ(t, ·)

)
x̄,ε
dt (3.7)

By a standard density argument, the identity (3.7) holds also for any function
ψθ where θ = θ(t) is a smooth function compactly supported in (0,∞) and

ψ ∈ L∞
loc(0,∞;W 1,2

x̄,ε (Ω)) ∩W 1,2
loc (0,∞;L2

x̄,ε(Rd)) ∩ Lµ+1
loc (0,∞;Lµ+1

x̄,ε (Rd)).

Moreover, if

ψ ∈ C([0,∞);W 1,2
x̄,ε (Ω)) ∩ Lµ+1

loc (0,∞;Lµ+1
x̄,ε (Rd)) (3.8)

then

−
∫ T

0

(
ut(t), ∂tψ(t, ·)

)
x̄,ε
dt+

(
ut(T ), ψ(T, ·)

)
x̄,ε

−
(
ut(0), ψ(0, ·)

)
x̄,ε

+

∫ T

0

(
∇u(t),∇ψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
g(ut(t)), ψ(t, ·)

)
x̄,ε
dt

+

∫ T

0

(
αu(t), ψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
f(u(t)), ψ(t, ·)

)
x̄,ε
dt

=

∫ T

0

(
h(t), ψ(t, ·)

)
x̄,ε
dt−

∫ T

0

(
∇u(t), ψ(t, ·)∇φx̄,ε

)
dt.

(3.9)
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is satisfied for every T ∈ (0,∞). To this end, we test (3.7) by ψθn with

θ′n(t) = nη

(
n

(
t− 1

n

))
χ(0, 2n )

− nη

(
n

(
t− T +

1

n

))
χ(T− 2

n ,T)
, θn(0) = 0

where η is the standard non-negative mollifier compactly supported in (−1,1)
and χI denotes the characteristic function of I ⊂ R. Observe that θ′ ⇀∗ δ0−δT
in the space of Radon measures on [0,T ] and θ → 1 in Ls([0,T ]) for all s ∈ [1,∞).
Hence, we conclude (3.9) by letting n → ∞ and using the continuity of ψ with
respect to time. The weak formulation is therefore equivalent to (3.9) with test
functions (3.8).

The lack of regularity of ut with respect to the space variables prevents us
from using it as a test function in (3.9). On the other hand, one can test the
weak formulation (3.9) by the time difference

Dτu(t,x) =
u(t+ τ,x)− u(t− τ,x)

2τ

where we take u(s,x) = u(0,x) for s < 0. Indeed, as u ∈ AC([0,∞),L2
x̄,ε) we

have for a fixed t ∈ (0,∞)


u(t+ τ,x)− u(t,x)

τ


µ+1

Lµ+1
x̄,ε

=


1

τ

(∫ t+τ

t

ut(s) ds

)
µ+1

Lµ+1
x̄,ε

≤ 1

τ

∫ t+τ

t

∥ut(s)∥µ+1

Lµ+1
x̄,ε

ds,

thus Dτu ∈ Lµ+1
loc

(
0,∞;Lµ+1

x̄,ε

)
. In the rest of the paper, with an obvious abuse

of terminology, we will use the phrase ”testing by ut” instead of taking the time
differences as test functions and sending τ → 0+. For more details see e.g. [13].

Theorem 3.1. Let µ and p be as in (3.1), i.e. µ ∈ [1,∞) and p ∈ (0, 2∗/2]
for d > 2 or p ∈ (0,∞) for d = 2. Then for every (u0, u1) ∈ Φb and h ∈
L2
b(0,∞;L2) there exists a unique weak solution of (1.1) which satisfies the

energy equality

∫

Rd
F [u](t2)φx̄,ε dx−

∫

Rd
F [u](t1)φx̄,ε dx

+

∫ t2

t1

(
g(ut), ut

)
x̄,ε
dt+

∫ t2

t1

(
∇u, ut∇φx̄,ε

)
dt =

∫ t2

t1

(
h(t), ut

)
x̄,ε
dt (3.10)

for every 0 ≤ t1 < t2 <∞, x̄ ∈ Rd and ε > 0.

We remark that both existence and uniqueness of solutions can be shown
even in the so-called super-critical case, particularly when µ ∈ [1,∞) and

p ∈
(
2∗

2
,2∗ − 1

)
, p ≤ 2∗µ

µ+ 1
, f ∈ C2(R), |f ′′(r)| ≤ γ1(|r|p−2 + 1).

The existence part remains as is below. Uniqueness follows by combination
of the approach presented in [3] for bounded domains with the localisation
technique developed in [1, Section 7].

7
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As usual in the context of locally uniform spaces, one cannot expect the
strong time continuity of solutions in the phase space Φb. Taking d = 1, one
can check that

u(t,x) = e−t/2θ(x− t)

with

θ(x) =

∫ x

0

∞∑

n=1

(−1)n+1nχn,n+ 1
n2

(y) dy

is a weak solution of

utt − uxx + ut +
1

4
u = 0,

(u(0,x),ut(0,x)) =

(
θ(x),− θ

2
(x)− θ′(x)

)
∈ Φb.

However,

∥u(t1)− u(t2)∥W 1,2
b

≥ 1

2e
,

holds for all t1, t2 ∈ (0,δ), t1 ̸= t2, provided δ > 0 is small enough. Hence,
u : [0,δ) →W 1,2

b is not continuous as the range of u is not separable. Moreover,
the function u is not strongly (Bochner) measurable.

Proof of Theorem 3.1. Assume that ε > 0 and x̄ are given. It is sufficient to
show existence of solutions on (0,T ) for fixed T ∈ (0,∞) independent on the
initial data together with time continuity, particularly (u,ut) ∈ C([0,T ]; Φx̄,ε).
The existence of global solutions then follows from a continuation argument.

Step 1 - approximations and solutions on bounded domains. We
approximate the nonlinear term f by Lipschitz functions and the initial data by
compactly supported data. Let {fk}k be a sequence of functions such that for
every k ∈ N the function fk ∈ C1(R) is globally Lipschitz, satisfies (F1)-(F4),
fk → f pointwise, fk(t) = f(t) for t ∈ (−k,k) and |fk| ≤ |f |.

For k ∈ N, we define function

φk(x) =

⎧
⎪⎨
⎪⎩

1 for x ∈ B(0,k),

k + 1− |x| for x ∈ B(0,k + 1)\B(0,k),

0 for x ∈ B(0,k + 1)c.

Let uk0 = ηk ∗ (u0φk), uk1 = ηk ∗ (u1φk), hk = ηk ∗ (hφk) where ηk = kdη(k|x|)
and η is the standard mollifier. We get

(uk0 ,u
k
1) → (u0,u1) in Φx̄,ε, ∥(uk0 ,uk1)∥Φx̄,ε ≤ ∥(u0,u1)∥Φx̄,ε (3.11)

hk → h in L2((0,T );L2
x̄,ε), ∥hk∥L2

x̄,ε
≤ ∥h∥L2

x̄,ε
(3.12)

as a direct consequence of approximation by mollifiers and decay of φx̄,ε.
Existence and uniqueness of strong solutions on bounded domains is a well

known result (see e.g. [14]). The finite speed of propagation holds as the source
term fk is Lipschitz. Hence, for every k ∈ N we can construct

uk ∈W 1,2
loc ([0,∞);L2(Rd))∩L2

loc([0,∞);W 2,2(Rd)), ut ∈ Lµ+1
loc ([0,∞);Lµ+1(Rd))

8
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which is a global strong solution (the equation (3.13) is satisfied almost every-
where in (0,T )× Rd) of

uktt + g(ukt )−∆uk + αuk + fk(u) = hk, t > 0, x ∈ Rd (3.13)

satisfying the initial conditions

uk(0, x) = uk0(x), ukt (0, x) = uk1(x), x ∈ Rd.

Moreover, uk(t,·) is compactly supported for any t ∈ [0,∞) and

(uk,ukt ) ∈ C([0,T ];W 1,2(Rd)× L2(Rd)) ↪→ C([0,T ]; Φx̄,ε).

Step 2 - uniform estimates in weighted Lebesgue spaces. Let us
multiply both sides of (3.13) by ukt φx̄,ε and integrate the resulting equality
w.r.t. x over Rd. We get

d

dt

∫

Rd

(
E[uk] + F k(uk)

)
φx̄,ε dx+

∫

Rd
g(ukt )u

k
t φx̄,ε dx

=

∫

Rd
hkukt φx̄,ε dx−

∫

Rd
∇ukukt∇φx̄,ε dx

≤
∫

Rd
E[uk]φx̄,ε dx+

1

2

∫

Rd
|hk|2φx̄,ε dx,

where F k is the primitive function of fk such that F k(0) = 0. From Gronwall’s
lemma and condition (G3), we obtain

∥uk(τ)∥2
W 1,2
x̄,ε

+ ∥ukt (τ)∥2L2
x̄,ε

+ γ2

∫ τ

0

∥ukt (t)∥µ+1

Lµ+1
x̄,ε

dt

≤ eτ
(
∥uk(0)∥2

W 1,2
x̄,ε

+ ∥ukt (0)∥2L2
x̄,ε

+ ∥F k(uk(0))∥L1
x̄,ε

+

∫ τ

0

1

2
∥hk(t)∥2L2

x̄,ε
dt+ τ

∫

Rd
γ3φx̄,ε dx

)
(3.14)

for arbitrary τ ∈ (0,T ). Therefore,

sup
τ∈(0,T )

(
∥uk(τ)∥2

W 1,2
x̄,ε

+ ∥ukt (τ)∥2L2
x̄,ε

)
+

∫ T

0

∥ukt (t)∥µ+1

Lµ+1
x̄,ε

dt ≤ C

for some C > 0 depending only on u0, u1, h and T . Applying the basic weak
compactness arguments and (2.4), there is a subsequence of {uk}n∈N (not rela-
belled) and measurable functions u, f̄ , ḡ such that

(uk,ukt )⇀
∗ (u,ut) in L∞((0,T ); Φx̄,ε),

ukt ⇀ ut in Lµ+1((0,T );Lµ+1
x̄,ε ),

uk ⇀∗ u in L∞
(
(0,T );L2∗

x̄, 2
∗
p ε

)
,

fk(uk)⇀∗ f̄ in L∞
(
(0,T );L

2∗
p

x̄, 2
∗
p ε

)
, (3.15)

g(ukt )⇀ ḡ in L(µ+1)/µ
(
(0,T );L

(µ+1)/µ
x̄,ε

)
, (3.16)

uk → u almost everywhere in (0,T )× Rd. (3.17)

9
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Using supremum over x̄ ∈ Rd on both sides of (3.14) gives us (cf. Lemma
2.1)

sup
t∈(0,T )

(
∥uk(t)∥2

W 1,2
b

+ ∥ukt (t)∥2L2
b

)
+ sup
x̄∈Rd

∫ T

0

∥ukt (t)∥µ+1

Lµ+1
x̄,ε

dt ≤ C (3.18)

where C > 0 depends only on ∥(u0,u1)∥Φb , ∥h∥L2
b(0,∞;L2) and T > 0. Thus,

using (3.17), (3.15) and assumptions on fk together with the embedding

W 1,2
b ↪→ L2∗

b ↪→ L2∗
x̄,ε,

we have fk(uk) uniformly bounded in L∞
(
(0,T );L

2∗
p

x̄,ε

)
, therefore

fk(uk) → f(u) in Lr
(
(0,T );Lqx̄,ε

)
(3.19)

for any q ∈
[
1, 2

∗

p

)
and r ∈ [1,∞), hence f̄ = f(u).

Step 3 - stability in C([0,T ]; Φx̄,ε) and existence. Let us subtract the
equation for ul from the equation for uk, multiply the difference by (ukt −ult)φx̄,ε
and integrate over Rd with respect to x. Using the monotonicity of g and
standard estimates, we obtain

∥uk(τ)− ul(τ)∥2
W 1,2
x̄,ε

+ ∥ukt (τ)− ult(τ)∥2L2
x̄,ε

≤ ∥uk(0)− ul(0)∥2
W 1,2
x̄,ε

+ ∥ukt (0)− ult(0)∥2L2
x̄,ε

+ ∥hk − hl∥2
L2((0,τ);L2

x̄,ε)

+ ∥fk(uk)− f l(ul)∥
L(µ+1)/µ

(
(0,τ);L

(µ+1)/µ
x̄,ε

)∥ukt − ult∥Lµ+1((0,τ);Lµ+1
x̄,ε )

+ C

∫ τ

0

(
∥uk(t)− ul(t)∥2

W 1,2
x̄,ε

+ ∥ukt (t)− ult(t)∥2L2
x̄,ε

)
dt.

for every τ ∈ (0,T ). From Gronwall’s lemma, we infer that

sup
τ∈(0,T )

∥uk(τ)− ul(τ)∥2
W 1,2
x̄,ε

+ ∥ukt (τ)− ult(τ)∥2L2
x̄,ε

≤ C(T )
(
∥uk(0)− ul(0)∥2

W 1,2
x̄,ε

+ ∥ukt (0)− ult(0)∥2L2
x̄,ε

+ ∥hk − hl∥L2(0,τ ;L2
x̄,ε)

)

+ C(T )∥fk(uk)− f l(ul)∥
L(µ+1)/µ

(
(0,τ);L

(µ+1)/µ
x̄,ε

)∥ukt − ult∥Lµ+1((0,τ);Lµ+1
x̄,ε )

.

(3.20)

Observe that (3.20) together with (3.11), (3.12), (3.16) and (3.19) gives

(uk,ukt ) → (u,ut) in C([0,T ]; Φx̄,ε). (3.21)

Finally, we conclude that ukt → ut almost everywhere in (0,T ) × Rd which in
combination with (3.16) implies that ḡ = g(ut). Summing up the results on
convergence given above and noting that uk satisfies (3.6), we can pass to the
limit in (3.9).

The energy equality (3.10) holds for uk and using the convergence results
above, in particular (3.21), it follows that it holds also for u. The relation (3.5)
follows from Gronwall’s lemma and taking supremum over x̄ ∈ Rd (see also
estimates leading to (3.18)).

10
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Step 4 - uniqueness of weak solutions. Let us test the weak formulation
for u1 and u2 by (u1−u2)t keeping in mind that actually we test by Dτ [u

1−u2]
and send τ → 0. Subtracting both equalities. we obtain the energy equality in
the following form:

∫

Rd
E(u1(τ)− u2(τ))φx̄,ε dx+

∫ τ

0

∫

Rd

(
f(u1)− f(u2)

)
(u1t − u2t )φx̄,ε dx dt

+

∫ τ

0

∫

Rd

(
g(u1t )− g(u2t )

)
(u1t − u2t )φx̄,ε dx dt

=

∫ τ

0

∫

Rd

(
∇u1 −∇u2

)
(u1t − u2t )∇φx̄,ε dx dt

for any τ ∈ (0,T ); hence, we have

∫

Rd
E(u1(τ)− u2(τ))φx̄,ε dx

≤ 2

∫ τ

0

∫

Rd
E(u1(t)− u2(t))φx̄,ε dx dt+

1

2

∫ τ

0

∫

Rd
|f(u1)− f(u2)|2φx̄,ε dx dt

according to the monotonicity of g. Using assumptions (F2) and (3.5), we get

∫

Rd
E(u1(τ)− u2(τ))φx̄,ε dx ≤ C

∫ τ

0

∫

Rd
E(u1(t)− u2(t))φx̄,ε dx dt. (3.22)

Indeed, the inner integral containing f can be estimated using Lemma 2.2 as
follows:

∫

Rd

⏐⏐f(u1(t,x))− f(u2(t,x))
⏐⏐2 φx̄,ε dx

≤ C1

∫

Rd
φx̄,ε(x)

f(u1(t,·))− f(u2(t,·))
2
L2(B(x,1))

dx

≤ C2

∫

Rd
φx̄,ε(x)

u1(t,·)− u2(t,·)
2
L2∗ (B(x,1))

dx

≤ C3

∫

Rd
φx̄,ε(x)

u1(t,·)− u2(t,·)
2
W 1,2(B(x,1))

dx

≤ C4

∫

Rd
E(u1(t)− u2(t))φx̄,ε dx,

where C2 = C2

(
∥u1∥L∞((0,T );W 1,2

b ),∥u2∥L∞((0,T );W 1,2
b )

)
.

Hence, u1(t) = u2(t) ∈ Φx̄,ε almost everywhere in [0,T ] as a consequence of
Gronwall’s lemma.

Theorem 3.2. The solution operator S(T ) : Φb → Φb defined by

S(T )(u0, u1) = (u(T ), ut(T ))

where (u(T ), ut(T )) is the weak solution of (1.1) with (u(0), ut(0)) = (u0, u1),
is locally Lipschitz. Moreover, if B ⊆ Φb is bounded, then S(T ) : (B, ∥·∥Φx̄,ε) →
(Φb, ∥·∥Φx̄,ε) is Lipschitz.

11
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Proof. Assume that (u0,u1), (v0,v1) ∈ B. Following the same line as in the proof
of uniqueness, we obtain (3.22). Standard application of Gronwall’s lemma gives

∥(u− v)(T )∥Φx̄,ε ≤ C(T,B)∥(u− v)(0)∥Φx̄,ε . (3.23)

Finally, applying supremum over x̄ ∈ Rd on both sides of (3.23), from Lemma
2.1 we infer

∥(u− v)(T )∥Φb ≤ C̃(T,B)∥(u− v)(0)∥Φb .

4 Dissipation of energy

In contrast to the bounded domain case, the energy of the solutions does not
necessarily decrease over time. This may be attributed to the last element in
(3.7) and the absence of the embeddings between the weighted spaces of the
same weight. Thus, it seems that an additional assumption has to be made in
order to show any dissipation of energy. As we will see below, we can either have
linearly bounded g and possibly superlinear function f , or we can ensure the
dissipation by connecting the growths of the functions f and g. By a dissipation
assumption, we understand one of the following:

(D1) µ = 1,

(D2) µ ∈ (1, (d+ 2)/(d− 2)) and there exists κ ∈ (0, 1) and C > 0 such that

−g(r)s ≤ κf(s)s+ C (g(r)r + 1) ∀r, s ∈ R.

The assumption (D1), i.e. linearly bounded damping, is well studied in the
case of the bounded domain. The assumption (D2) is a variant of an assumption
from [5] and allows for example the use of the functions

g(r) = r|r|µ−1, f(s) = |s|p−1s− as, where µ ∈ [1, 3) and p ∈ [µ, 3) (4.1)

with d = 3 and 0 < a < α. However, we remark that the assumption (D2)
implicitly gives restriction on the admissible growth exponent µ, for instance in
the example (4.1) we observe that µ ≤ 3, though formally we allow µ < 5. The
assumption (D2) seems to be unnatural since it prohibits the following simple
choice of nonlinearities f(s) = 0, g(r) = r|r|. In the future, we hope that a less
restrictive condition than (D2) will be obtained.

We emphasize that the upper entropy bound established the last section
does not depend on the particular choice of the dissipation condition.

Lemma 4.1. Let either of the conditions (D1), (D2) hold. Then there exist
ε, ζ > 0, C0, C1 > 0 such that for every weak solution (u(t), u′(t)) with initial
condition (u0, u1) ∈ Φb the estimate

∫

Rd
F [u](T )φx̄,ε dx ≤ C1e

−ζT
∫

Rd
F [u](0)φx̄,ε dx+ C0 (4.2)

holds for all T > 0.

12
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Proof. Let T > 0 and t1, t2 ∈ [0, T ], t1 < t2. We test the equation by ut + δu,
where δ > 0 will be determined later. We obtain the equality

∫

Rd
F [u](t2)φx̄,ε dx+ δ

(
ut(t2), u(t2)

)
x̄,ε

−
∫

Rd
F [u](t1)φx̄,ε dx

− δ
(
ut(t1), u(t1)

)
x̄,ε

+

∫ t2

t1

(
g(ut(t)), ut(t)

)
x̄,ε
dt− δ

∫ t2

t1

∥ut(t)∥2x̄,ε dt

+ δ

∫ t2

t1

(
f(u(t)), u(t)

)
x̄,ε
dt+ δ

∫ t2

t1

∥∇u(t)∥2x̄,ε + α∥u(t)∥2x̄,ε dt

=

∫ t2

t1

(
h(t), ut(t) + δu(t)

)
x̄,ε
dt− δ

∫ t2

t1

(
g(ut(t)), u(t)

)
x̄,ε
dt

−
∫ t2

t1

(
∇u(t), (ut(t) + δu(t))∇φx̄,ε

)
dt. (4.3)

For δ1 ∈ (0, 1) and η > 0, we use (3.4) to get

∫ t2

t1

(
f(u(t)), u(t)

)
x̄,ε
dt ≥ δ1

∫ t2

t1

∫

Rd
F (u(t))φx̄,ε dx dt

−
(
δ1β

2
+ η (1− δ1)

)∫ t2

t1

∥u(t)∥2x̄,ε dt− Cη(1− δ1)Cε(t2 − t1) (4.4)

for some Cη > 0. Also for δ2 > 0 we have

∫ t2

t1

(
h, ut(t) + δu(t)

)
x̄,ε
dt

≤ 1

2δ2

∫ t2

t1

∥h(t)∥2x̄,ε dt+ δ2

∫ t2

t1

∥ut(t)∥2x̄,ε + δ2∥u(t)∥2x̄,ε dt. (4.5)

Other elementary estimates and (2.3) give

∫ t2

t1

(
∇u(t), (ut(t) + δu(t))∇φx̄,ε

)
dt

≤ Cε

∫ t2

t1

∥∇u(t)∥2x̄,ε + ∥ut(t)∥2x̄,ε + δ2∥u(t)∥2x̄,ε dt (4.6)

and

−δδ3
∫ t2

t1

(
ut(t), u(t)

)
x̄,ε
dt ≥ −δδ3

2

(∫ t2

t1

∥ut(t)∥2x̄,ε dt+
∫ t2

t1

∥u∥2x̄,ε dt
)
. (4.7)

Assume that (D1) holds. Then

− δ

∫ t2

t1

(
g(ut(t)), u(t)

)
x̄,ε
dt

≤ γ24δ

α

∫ t2

t1

∥ut(t)∥2x̄,ε dt+
δα

2

∫ t2

t1

∥u(t)∥2x̄,ε dt+
γ24δ

α
Cε(t2 − t1). (4.8)

13
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The assertion the follows by inserting the estimates (G2), (4.4–4.8) and (3.2)
into (4.3) and finishing the argument by choosing the constants δ1, δ, κ, δ2, ε, δ3
(possibly in this order) sufficiently small and by Gronwall’s lemma applied to

ζ(t) =

∫

Rd
F [u](t)φx̄,ε dx+ δ

(
ut(t), u(t)

)
x̄,ε
.

Under the assumption (D2), we have

− δ

∫ t2

t1

(
g(ut(t)), u(t)

)
x̄,ε
dt

≤ δ

(
κ

∫ t2

t1

(
f(u(t)), u(t)

)
x̄,ε
dt+

∫ t2

t1

(
g(ut(t)), ut(t))

)
x̄,ε
dt+ CCε

)
.

The conclusion is then reached similarly as in the case (D1) using (3.2) multi-
plied by 1− δ.

Theorem 4.2. Let the assumptions of Lemma 4.1 hold. Then there exists a
closed positively invariant absorbing set B ⊆ Φb bounded in Φb.

Proof. Let ε, ζ, C0, C1 > 0 be as in Lemma 4.1. Using the standard embedding
W 1,2
b (Rd) ↪→ Lp+1

b (Rd) and the equivalence of weighted and locally uniform
norms in Lemma 2.1 we have

∫

Rd
F1(u0)φx̄,ε dx ≤ C∥u0∥p+1

W 1,2
b (Rd) + CCε.

Inserting into (4.2) we obtain

∫

Rd
F [u](T )φx̄,ε dx ≤ e−ζTQ

(
∥u0∥W 1,2

b (Rd), ∥u1∥L2
b(Rd)

)
+ C

which leads to

sup
x̄∈Rd

∫

Rd
E[u](T )φx̄,ε dx ≤ e−ζTQ

(
∥u0∥W 1,2

b (Rd), ∥u1∥L2
b(Rd)

)
+ C̃

Set B̃ = B(0, C̃) ⊆ Φb and find t0 > 0 such that S(t)B̃ ⊆ B̃. We define

B =
⋃

t≥t0
S(t)B̃

Φloc

and observe that B is positively invariant, cf. Theorem 3.2.

5 Locally uniform squeezing property

In this section we introduce the trajectory setting and prove that the solution
operator in the space of trajectories satisfies a local variant of the so-called
squeezing property (cf. [6]), which will in turn lead to the asymptotic com-
pactness and an upper bound on Kolmogorov’s ε-entropy. To achieve this, we
require additional assumptions on µ and the damping nonlinearity g. We note
that one can obtain the asymptotic compactness required for the existence of a

14
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locally compact attractor also without these additional assumptions by means
of a standard decomposition argument.

From now on, let h ≡ 0 and for simplicity we assume d = 3. In addition, we
require

µ ∈ [1, 7/3), p ∈ [0, 3),

C(1 + |r|)µ−1 ≤ g′(r) ≤ C(1 + |r|)µ−1 ∀r ∈ R.

These assumptions and the properties of f lead to the estimates

|f(r)− f(s)| ≤ C(1 + (|r|+ |s|)p−1)|r − s|,

(g(r)− g(s))(r − s) ≥ C

∫ 1

0

(1 + |tr + (1− t)s|µ−1)|r − s|2 dt,

|g(r)− g(s)| ≤ C

∫ 1

0

(1 + |tr + (1− t)s|µ−1)|r − s| dt,

|g(r)− g(s)| ≤ (1 + (|r|+ |s|)µ−1)|r − s|.

(5.1)

Let ℓ > 1 and v > 1 be fixed and let φ be an admissible weight function. We
define the space of trajectories by

Eℓ,vb,φ = {(χ, χt);χ : Qℓ → R, ∥u∥2Eℓ,vb,φ = sup
k∈N

φ(xk)

∫ ℓ

0

∫

Zk(t)

E [u]dxdt <∞},

Bℓ = {(χ, χt) ∈ Eℓ,vb,φ;
χ is a weak solution to the equation (1.1) in [0, ℓ] with (χ(0), χt(0)) ∈ B}.

where we denote Qℓ = (0, ℓ)× R3 and

Zk(t) = B(xk, v(2ℓ− t)), t ∈ (0, 2ℓ), K(xk) = {(t, x) ∈ Qℓ : x ∈ Zk(t)},
Z̃k(t) = B(xk, v(3ℓ− t)), t ∈ (0, 3ℓ), K̃(xk) = {(t, x) ∈ Q2ℓ : x ∈ Z̃k(t)}.

Note that the half-cone {(t, x) ∈ K̃(0); 0 < t < ℓ} can be covered by a finite
number of cones K(xj), j ∈ N , xj ∈ B(0, 3vℓ). We emphasize that the size of
N is independent of ℓ.

We define the operators e : Bℓ → Φb and L(t) : Bℓ → Bℓ by

e((χ, χt)) = (χ(ℓ), χt(ℓ)),

[L(t)(χ, χt)](s) = S(t+ s)(χ(0), χt(0)), s ∈ (0, ℓ).

Let O ⊆ R3 and let φ be an admissible weight function. We define

∥u∥2Φb,φ(O) = sup
k∈I(O)

φ(xk)

∫

Ck

|u|2 + |∇u|2 + |ut|2 dx,

∥u∥2Eℓ,vb,φ(O)
= sup
k∈I(O)

φ(xk)

∫ ℓ

0

∫

Zk(t)

E[u] dx dt,

where
I(O) = {k ∈ N;Ck ∩ O ≠ ∅}.

Again, if φ ≡ 1 we write Φb(O) instead of Φb,1(O).

15
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Lemma 5.1. Let ℓ, v > 1 and φ be arbitrary weight function. The following
holds:

1. L = L(ℓ) : Bℓ → Bℓ is Lipschitz continuous,

2. e : Bℓ → Φb is Lipschitz continuous,

3. Bℓ is positively invariant under L(t), i.e. L(t)Bℓ ⊆ Bℓ for every t ≥ 0.

Proof. The proof follows from the finite speed of propagation and is similar to
[17, Lemma 2.1].

Assume for u is a sufficiently smooth solution of (1.1). Then using a standard
result on differentiation, integration by parts and the equation (1.1) we obtain

d

dt

∫

Z̃k(t)

E[u](t) dx =

∫

Z̃k(t)

∂tE[u](t) dx− v

∫

∂Z̃k(t)

E[u](t) dSx

=

∫

Z̃k(t)

ut (utt −∆u+ au) dx+

∫

∂Z̃k(t)

ut∇u · n− vE[u] dSx

=

∫

Z̃k(t)

ut (g(ut) + f(u)) dx+

∫

∂Z̃k(t)

ut∇u · n− vE[u] dSx, (5.2)

where n denotes the outward normal to Z̃k(t) in the space domain R3.
Let χ1, χ2 ∈ Bℓ and let u1, u2 be the respective weak solutions. Set w =

u1 − u2 and let 0 < t1 < t2 < 2ℓ. Integrating the identity (5.2) over t ∈ (t1, t2),
approximating by more regular data and by mollification, we get to the equation

∫

Z̃k(t2)

E[w](t2) dx−
∫

Z̃k(t1)

E[w](t) dx+

∫ t2

t1

∫

Z̃k(t)

(
g(u1t )− g(u2t )

)
wt dx dt

= −
∫ t2

t1

∫

Z̃k(t)

(
f(u1)− f(u2)

)
wt dx dt+

∫ t2

t1

∫

∂Z̃k(t)

wt∇w·n−vE[w] dSx dt,

where n is denotes the outward normal to ∂Z̃k(t). Since v > 1, the boundary
integral is non-positive and using (G1) and a similar estimate on the first element
on the right-hand side of the previous equation as in the proof of uniqueness,
we arrive to

∫

Z̃k(t2)

E[w](t2) dx ≤
∫

Z̃k(t1)

E[w](t) dx+ C

∫ t2

t1

∫

Z̃k(t)

E[w] dx dt.

Invoking Gronwall’s lemma we get
∫

Z̃k(t)

E[w](t) dx ≤
(
1 + C(t− s)eC(t−s)

)∫

Z̃k(s)

E[w](s) dx

for 0 < s < t < 2ℓ. Integrating over s ∈ (0, ℓ) and t ∈ (ℓ, 2ℓ) leads to

∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w] dx dt ≤ C
∑

j∈N

∫ ℓ

0

∫

xk+Zj(t)

E[w] dx dt.

We multiply the equation by φ(xk) and use the property (2.1) to get

φ(xk)

∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w] dx dt ≤ C#N max
j∈N

φ(xj)

∫ ℓ

0

∫

xk+Zj(t)

E[w] dx dt. (5.3)
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The Lipschitz continuity of L in Eℓ,vb,φ follows by taking supremum over k ∈ N and
estimating the maximum on the right-hand side by the supremum over j ∈ N.
The Lipschitz continuity of e can be obtained in a similar manner.

The positive invariance of Bℓ follows immediately from the definitions.

Definition. We say that the mapping L : Bℓ → Bℓ has a locally uniform
squeezing property (LUSP) for an admissible weight function φ if for every
θ > 0 there exists ℓ > 1, v > 1, κ > 0 and N ⊆ N such that xj ∈ B(0, 3vℓ) ⊆ Rd
for every j ∈ N and for every k ∈ N and χ1, χ2 ∈ Bℓ and the respective solutions
u1, u2 we have

φ(xk)

∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w] dx dt ≤ θ
∑

j∈N (k)

φ(xj)

∫ ℓ

0

∫

Zj(t)

E[w] dx dt

+ κ

⎛
⎝φ(xk)

∫ 2ℓ

ℓ

∫

Z̃k(t)

|w|2 dx dt+
∑

j∈N (k)

φ(xj)

∫ ℓ

0

∫

Zj(t)

|w|2 dx dt

⎞
⎠ , (5.4)

where
N (k) = {j ∈ N;xj = xi + xk for some i ∈ N}.

The above definition contains a slight abuse of terminology as one has to first
choose θ > 0 and only then find suitable ℓ and v to get the squeezing property
of L = L(ℓ) : Bℓ → Bℓ. However, this will not be of any concern later on as
θ > 0 will be chosen only once.

Lemma 5.2. The operator L = L(ℓ) has (LUSP) for every admissible weight
function.

Proof. The proof in similar to [17, Lemma 3.1]. Let us restrict ourselves to the
case µ ∈ (1, 7/3) and p ∈ (1, 3) since the remaining cases are similar or easier.

Let τ ∈ (0, ℓ), χ1, χ2 ∈ Bℓ with the respective solutions u1, u2 and denote
w = u1 − u2. Similarly as in the proof of Lemma 5.1 we get

∫

Z̃k(2ℓ)

E[w](2ℓ) dx dt+

∫ 2ℓ

τ

∫

Z̃k(t)

(g(u1t )− g(u2t ))wt dx dt

+

∫ 2ℓ

τ

∫

Z̃k(t)

(f(u1)− f(u2))wt dx dt

=

∫

Z̃k(τ)

E[w](τ) dx+

∫ 2ℓ

τ

∫

∂Z̃k(t)

wt∇w · n− vE[w] dSx dt,

(5.5)

∫ 2ℓ

τ

∫

Z̃k(t)

|∇w|2 + α|w|2 dx dt+
∫ 2ℓ

τ

∫

Z̃k(t)

(f(u1)− f(u2))w dxdt

+

∫

Z̃k(2ℓ)

wwt dx dt =

∫ 2ℓ

τ

∫

Z̃k(t)

|wt|2 − (g(u1)− g(u2))w dxdt

+

∫

Z̃k(τ)

wwt dx+

∫ 2ℓ

τ

∫

∂Z̃k(t)

w∇w · n− vwtw dSx dt

(5.6)
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Using the estimates (5.1) in (5.5) we have

∫

Z̃k(2ℓ)

E[w](2ℓ)−
∫

Z̃k(τ)

E[w](τ) dx+ C1

∫ 2ℓ

τ

∥wt∥2L2(Z̃k(t))
dt

+ C1

∫ 2ℓ

τ

J (t) dt ≤
∫ 2ℓ

τ

∫

∂Z̃k(t)

wt∇w · n− vE[w] dSx dt

+ C

∫ 2ℓ

τ

∫

Z̃k(t)

(1 + (|u1|+ |u2|)p−1|w||wt| dx dt, (5.7)

where

J (t) =

∫

Z̃k(t)

∫ 1

0

(1 + |su1t + (1− s)u2t |µ−1)|wt|2 ds dx.

We estimate the first element on the right-hand side using the dissipation of
energy by

C

∫ 2ℓ

τ

∫

Z̃k(t)

(1 + (|u1|+ |u2|)p−1|w||wt| dx dt

≤ C

∫ 2ℓ

τ

∥1 + |u1|+ |u2|∥p−1

L(p−1)r1 (Z̃k(t))
∥wt∥L2(Z̃k(t))

∥w∥
Lr2 (Z̃k(t))

dt

≤
∫ 2ℓ

τ

C1/2∥wt∥2L2(Z̃k(t))
+ C∥w∥2

Lr2 (Z̃k(t))
dt, (5.8)

where we put r1 = 6/(p − 1) and 1/r1 + 1/r2 = 1/2, therefore r2 ∈ (2, 6).
Combining (5.7) and (5.8) we arrive to

∫

Z̃k(2ℓ)

E[w](2ℓ) dx−
∫

Z̃k(τ)

E[w](τ) dx+
C1

2

∫ 2ℓ

τ

∥wt∥2L2(Z̃k(t))
dt

+ C1

∫ 2ℓ

τ

J (t) dt ≤ C

∫ 2ℓ

τ

∥w∥2
Lr2 (Z̃k(t))

dt

+

∫ 2ℓ

τ

∫

∂Z̃k(t)

wt∇w · n− vE[w] dSx dt. (5.9)

Returning to (5.6), by the estimates (5.1) we have

∫ 2ℓ

τ

∥∇w∥2
L2(Z̃k(t))

+ α∥w∥2
L2(Z̃k(t))

dt

≤
∫ 2ℓ

τ

∥wt∥2L2(Z̃k(t))
dt+ C

∫

Z̃k(2ℓ)

E[w](2ℓ) dx+ C

∫

Z̃k(τ)

E[w](τ) dx

+ C

∫ 2ℓ

τ

∫

Z̃k(t)

∫ 1

0

(1 + |su1t + (1− s)u2t |µ)|wt||w|φx̄,ε ds dx dt

+ C

∫ 2ℓ

τ

∫

Z̃k(t)

(1 + (|u1|+ |u2|)p−1)|w|2φx̄,ε dx dt

+

∫ 2ℓ

τ

∫

∂Z̃k(t)

w∇w · n− vwtw dSx dt. (5.10)
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Similarly as in (5.8) we estimate the fourth element on the right-hand side of
(5.10) as

C

∫ 2ℓ

τ

∫

Z̃k(t)

∫ 1

0

(1 + |su1t + (1− s)u2t |µ−1)|wt||w|φx̄,ε ds dx dt

≤ C

∫ 2ℓ

τ

J dt+ C

∫ 2ℓ

τ

∥w∥2
L2s2 (Z̃k(t))

dt, (5.11)

where we use the dissipation of energy and set s1 = 2/(µ−1) and 1/s1+1/s2 = 1,
therefore 2s2 ∈ (2, 6). Similarly the fifth element (5.10) is estimated by

C

∫ 2ℓ

τ

∫

Z̃k(t)

(1 + (|u1|+ |u2|)p−1)|w|2 dx dt ≤ C

∫ 2ℓ

τ

∥w∥2
L2z2 (Z̃k(t))

dt, (5.12)

where we again used the dissipation estimate and set z1 = 6/(p − 1) and
1/z1 + 1/z2 = 1, therefore 2z2 ∈ (2, 3). Set s = max(2s2, 2z2). Combining
the estimates (5.10–5.12) we obtain

∫ 2ℓ

τ

∥∇w∥2
L2(Z̃k(t))

+ α∥w∥2
L2(Z̃k(t))

dt

≤
∫ 2ℓ

τ

∥wt∥2L2(Z̃k(t))
dt+ C

(∫

Z̃k(2ℓ)

E[w](2ℓ) dx+

∫

Z̃k(τ)

E[w](τ) dx

)

+ C

∫ 2ℓ

τ

J dt+ C

∫ 2ℓ

τ

∥w∥2
Ls(Z̃k(t))

dt+

∫ 2ℓ

τ

∫

∂Z̃k(t)

w∇w · n− vwtw dSx dt.

(5.13)

Define r = max(s, r2). Multiply (5.13) by δ > 0, add it to (5.9) and choose
v ≥ (1 + δ)/(1− δ) and δ > 0 small enough to get

ζ

∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w](t) dx dt ≤ C

∫ 2ℓ

0

∥w∥2
Lr(Z̃k(t))

dt+ 2

∫

Z̃k(τ)

E[w](τ) dx

for some ζ > 0 and integrate by τ from 0 to ℓ to obtain

ζℓ

∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w](t) dx dt

≤ Cℓ

∫ 2ℓ

0

∥w∥2
Lr(Z̃k(t))

dt+ 2

∫ ℓ

0

∫

Z̃k(t)

E[w](t)φx̄,ε dx dt. (5.14)

Now split the integral

∫ 2ℓ

0

∥w∥2
Lr(Z̃k(t))

dt =

∫ ℓ

0

∥w∥2
Lr(Z̃k(t))

dt+

∫ 2ℓ

ℓ

∥w∥2
Lr(Z̃k(t))

dt

and divide the equation (5.14) by ζℓ. Next we employ Ehrling’s lemma, namely

∥w∥2Lr(Ω) ≤ γ∥w∥2W 1,2(Ω) + C∥w∥2L2(Ω)

for Ω = B(x,R) ⊆ Rd with x ∈ Rd, R > 0, γ > 0 arbitrary and C = C(γ,R), on
the arguments of the split integrals. Indeed, this is possible since the diameters
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of the domains in question, i.e. Z̃k(t) for t ∈ (0, 2ℓ), are bounded. Combining
these estimates with (5.14) we obtain

(
1− Cγ

ζ

)∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w] dx dt ≤
(

2

ζℓ
+
Cγ

ζ

) ∑

j∈N (k)

∫ ℓ

0

∫

Zj(t)

E[w] dx dt

+
C

ζ

⎛
⎝
∫ 2ℓ

ℓ

∫

Z̃k(t)

|w|2 dx dt+
∑

j∈N (k)

∫ ℓ

0

∫

Zj(t)

|w|2 dx dt

⎞
⎠ , (5.15)

where N (k) ⊆ N is a finite set of size N such that the union of cones K(xj) over

j ∈ N covers the cone K̃(xk). Now let θ̃ > 0 be such that θ̃Cφ exp(ν3vℓ) < θ,
where ν > 0 is the growth of the admissible function φ. By choosing ℓ sufficiently
large and γ sufficiently small we get

∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w] dx dt ≤ θ̃
∑

j∈N (k)

∫ ℓ

0

∫

Zj(t)

E[w] dx dt

+ C

⎛
⎝
∫ 2ℓ

ℓ

∫

Z̃k(t)

|w|2 dx dt+
∑

j∈N (k)

∫ ℓ

0

∫

Zj(t)

|w|2 dx dt

⎞
⎠ . (5.16)

It remains to insert the weight function with sufficiently small growth which
is easily done by multiplying (5.16) by ψ(xk), invoking (2.1) and using the
restriction on θ̃.

The critical case p = 3 contains essential difficulties and would be an inter-
esting problem for the consideration in future.

6 Locally compact attractor and entropy esti-
mate

Let M be a metric space and K ⊆ M be relatively compact. Let Nε(K,M)
denote the smallest number of balls of radii ε that cover K in M . We define
the Kolmogorov’s ε-entropy by

Hε(K,M) = lnNε(K,M).

A number of typical examples of upper and lower bounds on the Kolmogorov’s
ε-entropy in various situations can be found e.g. in [22].

The following lemma is crucial for the estimate of Kolmogorov’s ε-entropy
and considerably simplifies the proof of asymptotic compactness. We note that
an estimate of this kind may be used to establish an infinite dimensional expo-
nential attractor. We postpone this issue to a subsequent paper together with
an abstract criterion and applications to other equations.

Lemma 6.1. Let O ⊆ R3 be bounded and satisfy

#I(O) ≤ C0 vol(O). (6.1)
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Let ε > 0, δ ∈ (0, 1) and (x0, x1) ∈ B. Also let φ be an admissible weight
function. Then there exist ℓ, v > 1 such that

Hδε

(
(LB)

⏐⏐
O, E

ℓ,v
b,φ(O)

)
≤ C1 vol(O), (6.2)

where B = Bε((χ0, χ1); Eℓ,vb,φ) ∩ Bℓ is a ball centered around the ℓ-trajectory
(χ0, χ1) starting from (x0, x1). The constant C1 depends only on C0, ℓ and δ
and is independent of (x0, x1), ε and O as long as (6.1) is satisfied.

Proof. The proof adapts the techniques from [17, Lemma 4.1] and [9, Lemma
2.6], the main difference being working with hyperbolic trajectories space instead
of parabolic ones.

Without loss of generality, assume that 0 ∈ N . First find ℓ, v > 1 such that
(5.4) holds for θ > 0 satisfying 4θ#N < δ2 and fix λ > 0 for which

4θ#N + κλ2(#N + 1) < δ2.

Let k ∈ I(O). Define

P (χ, χt) =
(
φ(xj)χ|K(xj)

)
j∈N ∪

(
φ(xk)Lχ|K(xk)

)
, (χ, χt) ∈ Bℓ,

X = {P (χ, χt); (χ, χt) ∈ B} .
We equip the space X with the norm

∥y∥2X = max

{
max
j∈N (k)

{∫ ℓ

0

∫

Zj(t)

|yj |2 dx dt
}
,

∫ ℓ

0

∫

Zk(t)

|z|2 dx dt
}
,

where y = (yj ; j ∈ N (k)) ∪ (z) ∈ X. Since Bℓ (and thus B) is uniformly
bounded on every cone K(xi), i ∈ N, by Aubin-Lions lemma there exists N ∈ N
and (χi, χit) ∈ B, i = 1, . . . , N , such that

X ⊆
N⋃

i=1

Bλε
(
P (χi, χit);X

)
.

It is important to note that N is independent of k and ε, which follows from
the estimate

∥y∥2X ≤ Cε2

holding uniformly for ε > 0 and k ∈ I(O) with C depending only on the Lipschitz
constant of L.

Choose (χ, χt) ∈ B. Then P (χ, χt) ∈ Bελ(P (χ
i, χit);X) for some 1 ≤ i ≤ N .

Let u and ui be the respective solution for χ and χi and let w = u− ui. Using
(LUSP) we may estimate

φ(xk)

∫ 2ℓ

ℓ

∫

Z̃k(t)

E[w] dx dt

≤ θ
∑

j∈N (k)

∫ ℓ

0

∫

Zj(t)

E[w] dx dt+ κ
∑

j∈N (k)

φ(xj)

∫ ℓ

0

∫

Zj(t)

|w|2 dx dt

+ κφ(xk)

∫ 2ℓ

ℓ

∫

Z̃k(t)

|w|2 dx dt

≤ 4θε2#N + κε2λ2(#N + 1) < δ2ε2,
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therefore we have
Hδε

(
(LB)|Ck , Eℓ,vb,φ(Ck)

)
≤ lnN

uniformly for every k ∈ I(O).

The final estimate follows directly from (6.1) since for covering in Eℓ,vb,φ(O),

one needs to consider the product of all the coverings in Eℓ,vb,φ(Ck), k ∈ I(O).

Proposition 6.2. The dynamical system (S(t),Φb) is asymptotically compact
in the local topology Φloc.

Proof. Let {xn} ⊆ Φb be bounded, let tn → ∞ and let K ⊆ Rd be compact.
Without loss of generality we may assume xn ∈ B. Find ℓ, v > 1 such that (6.2)
holds for φ ≡ 1 and θ = 1/2. Let B ⊆ Rd be a sufficiently large ball such that
K ⊆ B and N (k) ⊆ B for every k ∈ I(K).

Passing to a subsequence we may find χn ∈ Bℓ such that S(tn)xn = e(Lnχn).
Using (6.2) we are able to recurrently find a Cauchy subsequence {Lnχn} in

Eℓ,vb,φ(B). The proof will be finished once we show that the sequence e(Lχn)
is Cauchy in Φb(K) and this follows from (5.3) by taking supremum over k ∈
I(K).

Using the dissipation of energy and the local asymptotic compactness we
are able to show the existence of a locally compact attractor. The proof of the
following theorem follows exactly as in [7] or [22] and will be omitted here.

Theorem 6.3. There exists a unique set A ⊆ Φb invariant under S(t) and
compact in Φloc such that A attracts sets bounded in Φb in the local topology
Φloc, i.e. for every B ⊆ Φb bounded

lim
t→∞

distΦloc
(S(t)B,A) = 0.

We denote

Aℓ = {χ ∈ Eℓ,vb,φ;χ solves the equation in [0, ℓ] with (χ(0), χt(0)) ∈ A}.

It is clear that e(Aℓ) = A and L(Aℓ) = Aℓ.
Before we proceed to the entropy estimate, we define an auxiliary weight

function in the spirit of [22]. Let x0 ∈ Rd, R > 0 and ν > 0 be fixed. We define

ψ(x0, R) = ψ(x0, R)(x) =

{
1, |x− x0| ≤ R+

√
d,

eν(R+
√
d−|x−x0|), otherwise.

Clearly ψ(x0, R) is an admissible weight function with growth ν and one has

Hε (A,Φb(B(x0, R)) ≤ Hε

(
A,Φb,ψ(x0,R)(Rd)

)
. (6.3)

The statement of the following lemma is formally the same as in [9]. However,
we should keep in mind that we are working with a different trajectories norm,
even if the proof of the lemma runs exactly in the same way as in the original
proof.
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Lemma 6.4 ([9, Lemma 5.4]). For every ε0 > 0 there exist C > 0 such that

for every x0 ∈ R3, R ≥ 1, ε ∈ (0, ε0) and χ1, χ2 ∈ Eℓ,vb,ψ(x0,R) it holds that

∥χ1 − χ2∥Eℓ,v
b,ψ(x0,R)

≤ max

{
∥χ1 − χ2∥Eℓ,v

b,ψ(x0,R)
(B(x0,Rε))

, ε

}
,

where

R(ε) = R+ C

(
1 + ln

1

ε

)
.

Theorem 6.5. There exists C0, C1, ε0 > 0 such that for every x0 ∈ R3, R ≥ 1
and ε ∈ (0, ε0) one has the bound

Hε

(
A|B(x0,R),Φb (B (x0, R))

)
≤ C0

(
R+ C1 ln

1

ε

)3

ln
1

ε
.

Proof. The proof uses a similar technique to [9, Theorem 5.1] and is standard.
Let ℓ, v > 1 and let ψ(x0, R) have sufficiently small growth such that Lemma
6.1 holds with δ = 1/2 and for ψ(x0, R). By (6.3), the Lipschitz continuity of e
shown in Lemma 5.1 and the fact that Ck ⊆ Bk(ℓ) allows us to estimate

Hε (A,Φb (B (x0, R))) ≤ Hε

(
A,Φb,ψ(x0,R)

)
≤ Hε/Lip(e)

(
Aℓ, Eℓ,vb,ψ(x0,R)

)
.

We find ε0 > 0 and χ ∈ Aℓ such that Aℓ ⊆ Bε0(χ; Eℓ,vb,ψ(x0,R)), in other words

Hε0

(
Aℓ, Eℓ,vb,ψ(x0,R)

)
= 0.

The proof will be finished once we establish the bound

Hε02−k

(
Aℓ, Eℓ,vb,ψ(x0,R)

)
≤ kC0

(
R+ C(1 + ln

2k

ε0
)

)3

(6.4)

since then for ε ∈ (0, ε0) we find k ∈ N such that 2−kε0 ≤ ε < 2−k+1ε0 and the
desired entropy bound follows from k < C ln 1/ε holding for ε sufficiently small.

To prove the recurrent estimate (6.4) we use induction. Let first k = 1.
Then from Lemma 6.1 we have

Hε0/2

(
Aℓ|B(x0,R(ε0/2)), Eℓ,vb,ψ(x0,R)(B(x0, R(ε0/2)))

)

≤ C0

(
R+ C(1 + ln

2k

ε0
)

)3

.

By Lemma 6.4 the ε0/2-covering in the space Eℓ,vb,ψ(x0,R)(B(x0, R(ε0/2))) is also

a ε0/2-covering in Eℓ,vb,ψ(x0,R).

Now let the bound (6.4) hold for k > 1, i.e.

Aℓ ⊆
N⋃

i=1

Bε02−k
(
χi; Eℓ,vb,ψ(x0,R)

)
(6.5)
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for some χi ∈ Aℓ. Apply the mapping L to (6.5) to get

L(Aℓ) = Aℓ ⊆
N⋃

i=1

BLip(L)ε02−k

(
Lχi; Eℓ,vb,ψ(x0,R)

)
, (6.6)

where we used the invariance of Aℓ under L from Lemma 5.1. By Lemma 6.1
each of the balls on the right-hand side of (6.6) can be covered by balls with

radii ε0/2
−(k+1)in Eℓ,vb,ψ(x0,R)(B(x0, R(ε02

−k+1))) so that

Hε02−(k+1)

(
Aℓ|B(x0,R0(ε0/2−(k+1))), Eℓ,vb,ψ(x0,R)

(
B
(
x0, R0(ε0/2

−(k+1))
)))

≤ Hε02−k

(
Aℓ, Eℓ,vb,ψ(x0,R)

)
+ C

(
R0 + C(1 + ln

2k+1

ε0
)

)3

≤ (k + 1)C

(
R0 + C(1 + ln

2k+1

ε0
)

)3

.

The proof is finished by another use of Lemma 6.4 as in the step k = 1.
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Abstract

We establish an upper bound on the Kolmogorov’s entropy of the
locally compact attractor for strongly damped wave equation posed in
locally uniform spaces in subcritical case using the method of trajectories.

1 Introduction

We are interested in the asymptotic properties of the strongly damped wave
equation

utt + βut − α∆ut −∆u+ f(u) = g, t > 0, x ∈ Rd, (1.1)

where f : R → R is a nonlinear function specified later and α, β > 0, supple-
mented by the initial datum

u(0) = u0 ∈W 1,2
b (Rd), ut(0) = u1 ∈ L2

b(Rd).

The strongly damped wave equation has a number of relevant physical applica-
tions, see e.g. [5].

The asymptotic properties of the equation (1.1) posed in a bounded domain
has been thoroughly studied in the literature. Let us only briefly mention some
of the results. In [2] the authors established the existence of a global attactor
for the critical case. The existence of an exponential attractor for the subcrit-
ical, resp. critical case, has been show in [10], resp. [14]. The existence of a
global attractor for critical and supercritical exponents has been also shown
for a variant of the strongly damped wave equation with memory in [5]. The
finite dimensionality of the attractor has been shown in [6]. The situation in
supercritical case is studied in detail in [8].

In unbounded domains the results are more scarce. In [1] and [4] the authors
study the equation (1.1) posed in the classical spaceW 1,2(Rd)×L2(Rd) and show
the existence of a connected universal attractor in the subcritical and critical
case. In the context of locally uniform spaces, the wave equation with weak
linear damping, i.e. with α = 0, has been studied in detail in [15]. The strongly

1
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damped wave equation has been studied in [3], where the well-posedness of the
equation in a subspace of locally uniform space Ẇ 2,p

b (Rd) × L̇pb(Rd), p > d/2,
p ≥ 2, of functions continuous w.r.t. spatial translations in the locally uniform
norm and the existence of a locally compact attractor has been shown for the
critical case. In [13] the authors generalized these results to the space of locally
uniform functions W 1,2

b (Rd)× L2
b(Rd) and obtained a result on the asymptotic

regularity of the solutions. The results of [13] will be reviewed in more detail
at the end of this section as they serve as a starting point of our investigation.
In [12] the author studies a variant of the strongly damped wave equation with
fractional damping and shows the existence of a locally compact attractor in
the critical case together with space-time regularity of the solutions.

The aim of this paper is to establish an upper bound on the Kolmogorov’s
ε-entropy of the attractor of the equation (1.1) in the subcritical case. To this
end we use the method of trajectories and a technique similar to the ones used
for a wave equation with nonlinear damping in [11] for bounded domains, resp.
in [9] for unbounded domains. In [9] the result is achieved using a local squeez-
ing property obtained from finite speed of propagation. However, with strong
damping the equation (1.1) no longer has a finite speed of propagation and the
argument must be slightly adapted. Compared to the equation studied in [12],
the strongly damped wave equation does not posses a smoothing property.

Let φ be an admissible weight function, x̄ ∈ Rd and ε > 0. We denote

Φx̄,ε =W 1,2
x̄,ε (Rd)× L2

x̄,ε(Rd), Wx̄,ε =W 1,2
x̄,ε (Rd)×W 1,2

x̄,ε (Rd),

Φb,φ =W 1,2
b,φ (R

d)× L2
b,φ(Rd), Wb,φ =W 1,2

b,φ (R
d)×W 1,2

b,φ (R
d),

Wloc =W 1,2
loc (R

d)×W 1,2
loc (R

d),

with the convention that we omit the subscript φ if φ ≡ 1 and write for example
Φb instead of Φb,1. For definitions of admissible weight functions and weighted
and locally uniform spaces see Section 2.

For simplicity let us choose α = β = 1. The nonlinear term f ∈ C1(R,R)
satisfies the following conditions:

• (growth condition) there exist C > 0 and 0 ≤ q ≤ 4/(d− 2) such that

|f(r)− f(s)| ≤ C|r − s| (1 + |r|q + |s|q) , ∀r, s ∈ R.

The nonlinearity is critical if q = 4/(d−2) and subcritical if q < 4/(d−2).

• (dissipation condition) there exist k ≥ 1 and µ0 > 0 such that for every
µ ∈ (0, µ0] there exist Cµ, C0 ∈ R such that

kF (s) + µs2 − Cµ ≤ sf(s), ∀s ∈ R,
−C0 ≤ F (s), ∀s ∈ R,

where F (s) =
∫ s
0
f(r) dr.

These conditions are the same as in [3] and [13].
The weak solution of (1.1) is defined in the sense of distributions on (0,∞)×

Rd and has the regularity

(u, ut) ∈ C([0, T ]; Φx̄,ε), ∥u∥2
W 1,2
b

+ ∥ut∥2L2
b
∈ L∞((0, T )),

2
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for every T > 0, x̄ ∈ Rd and ε > 0. Using a standard density argument it can
be shown that a weak solution u satisfies

(
ut(T ), ϕ(T )

)
x̄,ε

−
(
ut(0), ϕ(0)

)
x̄,ε

−
∫ T

0

(
ut(t), ϕt(t)

)
x̄,ε
dt

+

∫ T

0

(
ut(t), ϕ(t)

)
x̄,ε
dt+

∫ T

0

(
∇ut(t),∇ϕ(t)

)
x̄,ε
dt

+

∫ T

0

(
∇u(t),∇ϕ(t)

)
x̄,ε
dt+

∫ T

0

(
f(u(t)), ϕ(t)

)
x̄,ε
dt

+

∫ T

0

(
∇ut(t), ϕ∇φx̄,ε

)
dt+

∫ T

0

(
∇u(t), ϕ∇φx̄,ε

)
dt =

∫ T

0

(
g, ϕ(t)

)
x̄,ε
dt

for every T > 0, x̄ ∈ Rd, ε > 0 and every function

ϕ ∈ L2(0, T ;W 1,2
x̄,ε (Rd)) ∩W 1,2(0, T ;L2

x̄,ε(Rd)).

The existence and uniqueness of weak solutions has been shown in [13, Section 3]
using semigroup theory in the subspace of more regular initial data continuous
with respect to spatial to translations. We also have the following dissipative
estimates: there exist t0, C > 0 such that for every t > t0 we have

∥u∥
W 1,2
b

+ ∥ut∥W 1,2
b

+ ∥utt∥L2
b
≤ C. (1.2)

For proofs see [13, Section 4]. Let us denote the absorbing set by B and assume
that B is closed and positively invariant.

In [13], the authors also show the existence of a locally compact attractor
in the critical case, namely the existence an invariant set A ⊆ Φb bounded
and closed in W 2,2

b (Rd) ×W 1,2
b (Rd) and compact in Wloc, which attracts the

bounded sets of Φb in theWloc-norm, and the asymptotic regularity, namely the
existence of a closed and bounded set B1 ⊆ W 2,2

b (Rd) ×W 1,2
b (Rd), a constant

ν > 0, and a positive monotonically increasing function Q(·) such that for every
bounded B ⊆ Φb we have

distΦb (S(t)B,B1) ≤ Q(∥B∥Φb)e−νt ∀t > 0.

For proofs see [13, Theorem 1.1 and 1.2]. It is worth noting that the technique
presented in this paper do not rely on the asymptotic regularity of the attractor.

This paper is organized as follows: in Section 2 we review the basic definitions
of function spaces used in the rest of the paper. In Section 3 we define the
trajectory spaces and the trajectory semigroup and show that the trajectory
semigroup has a parabolic squeezing property which is then used in Section 4
to establish an upper estimate on the locally compact attractor of the equation
(1.1).

2 Function spaces

A function φ : Rd → (0,∞) is called an admissible weight function of growth
µ ≥ 0 if

C−1
φ e−µ|x−y| ≤ φ(x)/φ(y) ≤ Cφe

µ|x−y| (2.1)

3
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for some Cφ ≥ 1 and all x, y ∈ Rd and

|∇φ(x)| ≤ C̃φµφ(x) (2.2)

for almost all x ∈ Rd and some C̃φ > 0. For x̄ ∈ Rd and ε > 0 we denote

φx̄,ε(x) = exp(−ε|x− y|).

Clearly φx̄,ε is an admissible weight function of growth ε.
For p ∈ [1,∞), x̄ ∈ Rd and ε > 0 we define the weighted Lebesgue space

Lpx̄,ε(Rd) by

Lpx̄,ε(Rd) = {u ∈ Lploc(R
d); ∥u∥p

Lpx̄,ε
=

∫

Rd
|u(x)|pφx̄,ε(x) dx <∞}.

In the case p = 2 we use the notation ∥·∥
L2
x̄,ε

≡ ∥·∥x̄,ε and denote the scalar

product in L2
x̄,ε(Rd) by (·, ·)x̄,ε. The weighted Sobolev spaces are defined in an

obvious manner.
Concerning the embeddings of weighted spaces, first observe that the space

W k,p
x̄,ε (Rd) cannot be embedded into Lqx̄,ε(Rd) for any q > p. However, this

limitation no longer stands once we allow different growth rates. Assume that
k, l ∈ N0 and p, q ∈ [1,∞) are such that k ≥ l, q ≥ p andW k,p(Rd) ↪→W l,q(Rd),
then for ε̃ = εq/p we have the continuous embedding W k,p

x̄,ε (Rd) ↪→W l,q
x̄,ε̃(Rd). If

the embedding W k,p(B(0, 1)) ↪→↪→W l,q(B(0, 1)) is compact, then for ε̃ > εq/p

the embedding W k,p
x̄,ε (Rd) ↪→↪→W l,q

x̄,ε̃(Rd) is also compact.
Let φ be an admissible weight function and p ∈ [1,∞). We define the

weighted locally uniform space Lpb,φ(Rd) by

Lpb,φ(R
d) = {u ∈ Lploc(R

d); sup
x̄∈Rd

φ(x̄)1/p∥u∥Lp(C1
x̄)
<∞},

where CRx denotes the cube in Rd of side R > 0 and centred at x ∈ Rd. We
equip the space with a norm equivalent to supx̄∈Rd φ(x̄)

1/p∥u∥
Lp(C1

x̄)
defined by

∥u∥Lpb = sup
k∈Zd

φ(k)1/p∥u∥Lp(C1
k)
. (2.3)

Also one can see that if we take any bounded neighbourhood of x̄ in (2.3) instead
of C1

k , we again obtain an equivalent norm.
The weighted spaces and locally uniform spaces are connected through the

following equivalence of norms. For proof see e.g. [7, Theorem 2.1].

Theorem 2.1. Let k ∈ N0, p ∈ [1,∞) and ε > 0. Let φ be a weight function

of growth rate 0 ≤ µ < ε and u ∈ W k,p
loc (Rd). Then u ∈ W k,p

b,φ (Rd) if and only if

u ∈W k,p
x̄,ε (Rd) for every x̄ ∈ Rd and

sup
x̄∈Rd

φ(x̄)1/p∥u∥
Wk,p
x̄,ε

<∞. (2.4)

Moreover, the left-hand side of (2.4) defines a norm equivalent to the W k,p
b,φ (Rd)-

norm.

4
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For O ⊆ Rd denote

I(O) = {k ∈ Zd;C1
k ∩ O ≠ ∅}.

We define the W k,p
b,φ (O)-seminorm by

∥u∥
Wk,p
b,φ (O)

= sup
l∈I(O)

φ(l)1/p∥u∥Wk,p(C1
l )
. (2.5)

We will need the following estimate.

Lemma 2.2 ([15, Proposition 1.2]). For 1 ≤ p <∞ and ε > 0 fixed there exist
C1, C2 > 0 such that for x̄ ∈ Rd and u ∈ Lpx̄,ε(Rd) with we have

C1

∫

Rd
φx̄,ε(x)|u(x)|p dx

≤
∫

Rd
φx̄,ε(x)

(∫

B(x,1)

|u(y)|p dy
)
dx ≤ C2

∫

Rd
φx̄,ε(x)|u(x)|p dx.

Let ℓ > 0 and let φ be an admissible weight function. We define the parabolic
locally uniform space L2

b,φ(0, ℓ;L
2(Rd)) by

L2
b,φ(0, ℓ;L

2(Rd)) = {u : (0, ℓ)× Rd → R;
∥u∥2L2

b,φ(0,ℓ;L
2) = sup

x̄∈Rd
φ(x̄)∥u∥2L2(0,ℓ;L2(C1

x̄))
<∞},

and the space L2
b,φ(0, ℓ;W

1,2(Rd)) by

L2
b,φ(0, ℓ;W

1,2(Rd)) = {u : (0, ℓ)× Rd → R;
∥u∥2L2

b,φ(0,ℓ;W
1,2) = sup

x̄∈Rd
φ(x̄)∥u∥2L2(0,ℓ;W 1,2(C1

x̄))
<∞}.

Similarly as for the locally uniform spaces one can show that there exists
an equivalent norm on the parabolic locally uniform spaces using the weighted
norm.

Lemma 2.3 ([7, Theorem 2.4]). Let ε > 0 be fixed and let φ be an admissible
weight function of growth rate µ ∈ [0, ε). Then

∥u∥2L2
b,φ(0,ℓ;L

2) ≈ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd
|u(x, t)|2φx̄,ε(x) dx dt,

∥u∥2L2
b,φ(0,ℓ;W

1,2) ≈ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd

(
|u(x, t)|2 + |∇u(x, t)|2

)
φx̄,ε(x) dx dt.

In particular the previous lemma implies that for an admissible weight func-
tion φ of growth rate µ ∈ [0,min{ε1, ε2}) for some ε1, ε2 > 0 one has

sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd
|u(x)|2φx̄,ε2(x) dx dt

≈ ∥u∥2L2
b,φ(0,ℓ;L

2) ≈ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd
|u(x)|2φx̄,ε1(x) dx dt

5
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and similarly in the case of L2
b,φ(0, ℓ;W

1,2).

For O ⊆ Rd we can define the L2
b,φ(0, ℓ;L

2(O)) and L2
b,φ(0, ℓ;W

1,2(O)) semi-
norms similarly as in (2.5).

Lemma 2.4 (Ehrling’s lemma). Let p, q ≥ 1 and ε, ε̃ > 0 be such that the
embedding W 1,p

x̄,ε (Rd) ↪→↪→ Lqx̄,ε̃(Rd) holds. Then for every θ > 0 and 1 ≤ α < q

there exist C, R > 0 such that for every u : (0, ℓ)× Rd → R one has

∫ ℓ

0

∥u(t)∥αLqx̄,ε̃ dt ≤ θ

∫ ℓ

0

∥u(t)∥α
W 1,p
x̄,ε

dt+ C

∫ ℓ

0

∫

B(x̄,R)

|u(t, x)|α dxdt. (2.6)

We remark that for an admissible weight function φ one can get a parabolic
locally uniform version of Ehrling’s lemma by multiplying (2.6) by φ(x̄) and
applying supremum over x̄ ∈ Rd.

Proof. The proof is standard. Observe that it suffices to show the stationary
case

∥u(t)∥αLqx̄,ε̃ ≤ θ∥u(t)∥α
W 1,p
x̄,ε

+ C

∫

B(x̄,R)

|u(t, x)|α dx for a.a. t ∈ (0, ℓ),

since the desired result follows by integration over t ∈ (0, ℓ). For contradiction,
assume that there exist a sequence un such that, after renormalization,

1 = ∥un∥αLqx̄,ε̃ > θ∥un∥αW 1,p
x̄,ε

+ n

∫

B(x̄,n)

|un(x)|α dx.

Clearly the sequence un is bounded in W 1,p
x̄,ε (Rd) and therefore by the compact-

ness of the embedding we have un → u in Lqx̄,ε̃(Rd) for some u ∈ Lqx̄,ε̃(Rd) with
unit norm, in particular u ̸= 0. Taking the limit for n→ ∞ leads to un → 0 in
Lαloc(Rd). However, since the convergence in Lqx̄,ε̃(Rd) implies the convergence

in Lαloc(Rd), we arrive to a contradiction. Indeed, let B ⊆ Rd be bounded with
nonempty interior and let C > 0 be such that Cφx̄,ε̃ ≥ 1 in B. Then by Hölder’s
inequality we have

∫

B

|un(x)− u(x)|α dx ≤ C

∫

B

|un(x)− u(x)|αφx̄,ε̃(x) dx

≤ C

(∫

B

|un(x)− u(x)|qφx̄,ε̃(x) dx
)α
q
(∫

B

φx̄,ε̃(x) dx

) q−α
q

≤ C ′
(∫

Rd
|un(x)− u(x)|qφx̄,ε̃ dx

) q
α

= C ′∥un − u∥αLqx̄,ε̃ .

3 Squeezing property

We define the energy functional by

E[u](t, x) =
1

2

(
|ut(t, x)|2 + |u(t, x)|2 + |∇u(t, x)|2

)
.

6
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Let us define the space of trajectories

X = {(χ, χt);χ ∈ L2
loc((0, ℓ)×Rd) solves (1.1) on (0, ℓ) with (χ(0), χt(0)) ∈ B}.

Let ℓ > 0 be fixed. The trajectory semigroup L(t) : X → X and the end-
point operator e : X → Φb are given by

(L(t)(χ, χt))(s) = (S(t)χ(s), ∂tS(t)χ), s ∈ (0, ℓ), e(χ) = (χ(ℓ), χt(ℓ)).

Let us also denote L ≡ L(ℓ). For an admissible weight function φ we also define

Φℓb,φ = L2
b,φ(0, ℓ;W

1,2(Rd))× L2
b,φ(0, ℓ;L

2(Rd)),

W ℓ
b,φ = L2

b,φ(0, ℓ;W
1,2(Rd))× L2

b,φ(0, ℓ;W
1,2(Rd))

and define respective seminorms similarly as in (2.5) for the parabolic spaces.

Lemma 3.1. There exists µ0 > 0 such that for all admissible weight functions
of growth µ ∈ [0, µ0) and all ℓ > 0 the operators L : Φℓb,φ →W ℓ

b,φ and e : Φℓb,φ →
Wb,φ are Lipschitz continuous on X .

We remark that for the asymptotic analysis in the next section we will use
a weaker version of Lemma 3.1, more precisely the Lipschitz continuities L :
W ℓ
b,φ → W ℓ

b,φ and e : W ℓ
b,φ → Wb,φ, both of which follow from the proof by

adding ∥∇wt(s)∥2x̄,ε to the right-hand side of (3.1). A similar remark also applies
to Lemma 4.1.

Proof. Let χ1, χ2 ∈ X , let u1 and u2 be the respective solutions and denote
w = u1 − u2. By Lemma [13, Lemma 9.2] the semigroup S(t) : Φx̄,ε → Wx̄,ε is
Lipschitz continuous on B uniformly w.r.t. t ∈ [0, T ], i.e.

∥w(t)∥2x̄,ε + ∥∇w(t)∥2x̄,ε + ∥wt(t)∥2x̄,ε + ∥∇wt(t)∥2x̄,ε
≤ Ct,s

(
∥w(s)∥2x̄,ε + ∥∇w(s)∥2x̄,ε + ∥wt(s)∥2x̄,ε

)
(3.1)

for 0 < s < t and ε > 0 sufficiently small. The Lipschitz continuity of L then
follows by integration over s ∈ (0, ℓ), t ∈ (ℓ, 2ℓ), multiplication by φ(x̄), applying
supremum over x̄ ∈ Rd to both sides of the estimate and using the equivalence
of norms from Lemma 2.3. The Lipschitz continuity of e follows in a similar
manner.

Definition. The mapping L : X → X has a parabolic squeezing property for
an admissible weight function φ if there exists ε > 0 such that for every γ > 0
we may find ℓ, κ, R > 0 so that for every χ1, χ2 ∈ X and their respective
solutions u1 and u2 we have

sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

Rd

(
E[w] + |∇wt|2

)
φx̄,ε dx dt

≤γ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd
E[w]φx̄,ε dx dt

+ κ

(
sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

B(x̄,R)

|wt|2 dx dt
)

+ κ

(
sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

B(x̄,R)

|wt|2 dx dt
)
,

(3.2)

7
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where w = u1 − u2.

Lemma 3.2. Let the nonlinear term f be subcritical, i.e. let 0 ≤ q < 4/(d− 2).
Then for every admissible function φ of sufficiently small growth the operator L
has the parabolic squeezing property.

Proof. The proof is similar to [11, Lemma 3.1]. Let χ1, χ2 ∈ X and let u1, u2
be the respective solutions. Let 0 < τ < ℓ and denote w = u1 − u2. We test
both the equations for u1 and u2 by wt + w/2 to get

1

2

(
∥wt(2ℓ) +

1

2
w(2ℓ)∥2x̄,ε +

1

8
∥w(2ℓ)∥2x̄,ε +

3

4
∥∇w(2ℓ)∥2x̄,ε

)
+

1

2

∫ 2ℓ

τ

∥wt∥2x̄,ε dt

+

∫ 2ℓ

τ

∥∇wt∥2x̄,ε +
1

2
∥∇w∥2x̄,ε dt+

∫ 2ℓ

τ

(
f(u1)− f(u2), wt +

1

2
w
)
x̄,ε
dt

+

∫ 2ℓ

τ

(
∇wt, (wt +

1

2
w)∇φx̄,ε

)
+
(
∇w, (wt +

1

2
w)∇φx̄,ε

)
dt

=
1

2

(
∥wt(τ) +

1

2
w(τ)∥2x̄,ε +

1

8
∥w(τ)∥2x̄,ε +

3

4
∥∇w(τ)∥2x̄,ε

)
. (3.3)

Using Hölder’s inequality and the growth estimates on the nonlinearity f we
obtain

I ≡
⏐⏐⏐⏐
∫

Rd
(f(u1)− f(u2))wtφx̄,ε dx

⏐⏐⏐⏐

≤
(∫

Rd
|f(u1)− f(u2)|p1φx̄,ε dx

) 1
p1
(∫

Rd
|wt|p2φx̄,ε dx

) 1
p2

≤ C1

(∫

Rd
|w|p1 (1 + |u1|q + |u2|q)p1 φx̄,ε dx

) 1
p1
(∫

Rd
|wt|p2φx̄,ε dx

) 1
p2

.

For Ehrling’s lemma we will need the compact embedding W 1,2(B(0, 1)) ↪→↪→
Lp2(B(0, 1)) and thus we require

1 ≤ p2 <
2d

d− 2
and p1 >

2d

d+ 2
.

By Lemma 2.2 we get

I ≤ C2

(∫

Rd
φx̄,ε

(∫

B(x,1)

|w|p1 (1 + |u1|q + |u2|q)p1 dy
)
dx

) 1
p1

·
(∫

Rd
|wt|p2φx̄,ε dx

) 1
p2

with C2 > 0 dependent of ε. Employing Hölder’s inequality again we get

I ≤ C3

(∫

Rd
|wt|p2φx̄,ε dx

) 1
p2

(∫

Rd
φx̄,ε

(∫

B(x,1)

|w|p1r1 dy
) 1
r1

·
(∫

B(x,1)

1 + |u1|p1r2q + |u2|p1r2q dy
) 1
r2

dx

) 1
p1

8
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To have the embeddings W 1,2(B(x, 1)) ↪→ Lp1r1(B(x, 1)) and W 1,2(B(x, 1)) ↪→
Lp1r2q(B(x, 1)) we require

1 ≤ p1r1 ≤ 2d

d− 2
and 1 ≤ p1r2q ≤

2d

d− 2
. (3.4)

For θ = p1 − (d+ 2)/(d− 2) this leads to the choice of r1 to satisfy

1 ≤ r1 ≤
(
1− θ(d+ 2)

2d+ θ(d+ 2)

)
d+ 2

d− 2
and thus r2 >

d+ 2

4 + θ d
2−4
2d

. (3.5)

It is easy to check that (3.4) is still holds for r2 sufficiently close to the bound
in (3.5) and θ sufficiently small. Returning to the estimate of the integral I
we again use Hölder’s inequality, the embeddings above and the dissipation
estimates (1.2) to get

I ≤ C4

⎛
⎝
∫

Rd
φx̄,ε

(∫

B(x,1)

|w|2 + |∇w|2 dy
) p1s1

2

dx

⎞
⎠

1
p1s1

·
(∫

Rd
|wt|p2φx̄,ε dx

) 1
p2

.

We choose s1 in such a way that

p1s1
2

= 1, in another words s1 =
d+ 2

d+ θ d+2
d

.

Clearly s1 > 1 for θ sufficiently small. Using a standard embedding and the
estimate from Lemma 2.2 we get

I ≤ C5

(∫

Rd

(
|w|2 + |∇w|2

)
φx̄,ε dx

) 1
2
(∫

Rd
|wt|p2φx̄,ε dx

) 1
p2

.

Finally we use Young’s inequality to obtain

I ≤ η

∫

Rd

(
|w|2 + |∇w|2

)
φx̄,ε dx+ C6

(∫

Rd
|wt|p2φx̄,ε dx

) 2
p2

for η > 0 determined later. Similarly we have

⏐⏐⏐⏐
∫

Rd
(f(u1)− f(u2))wφx̄,ε dx

⏐⏐⏐⏐ ≤ η
(
∥w∥2x̄,ε + ∥∇w∥2x̄,ε

)
+ C∥w∥2

L
p2
x̄,ε
.

We can also estimate
(
∇w,wt∇φx̄,ε

)
≤ Cε

(
∥∇w∥2L2

x̄,ε
+ ∥wt∥2L2

x̄,ε

)
,

(
∇wt, wt(t)∇φx̄,ε

)
≤ Cε

(
ν∥∇wt∥2L2

x̄,ε
+ Cν∥wt∥2L2

x̄,ε

)
,

9
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with ν > 0 and Cν > 0. Putting the previous estimates into (3.3) and choosing
ε, η, ν sufficiently small we get

C

(
∥wt(2ℓ) +

1

2
w(2ℓ)∥2x̄,ε + ∥w(2ℓ)∥2x̄,ε + ∥∇w(2ℓ)∥2x̄,ε

)

+ ζ

∫ 2ℓ

ℓ

∥wt∥2x̄,ε + ∥∇wt∥2x̄,ε + ∥∇w∥2x̄,ε + ∥w∥2x̄,ε dt

≤
∫

Rd
E[w](τ)φx̄,ε dx+ C

∫ 2ℓ

0

∥w∥2x̄,ε + ∥wt∥2Lp2x̄,ε + ∥w∥2
L
p2
x̄,ε
dt

for some ζ > 0. We note that from now on the value of ε will not change. We
integrate over τ ∈ (0, ℓ) to get

ζℓ

∫ 2ℓ

ℓ

∫

Rd

(
E[w] + |∇wt|2

)
φx̄,ε dx dt

≤
∫ ℓ

0

∫

Rd
E[w]φx̄,ε dx dt+ Cℓ

∫ 2ℓ

0

∥w∥2x̄,ε + ∥w∥2
L
p2
x̄,ε

+ ∥wt∥2Lp2x̄,ε dt.

Applying the weighted version of Ehrling’s lemma (Lemma 2.4) to the functions
w(t) and wt(t) both on the time intervals (0, ℓ) and (ℓ, 2ℓ) we get

ζℓ

∫ 2ℓ

ℓ

∫

Rd

(
E[w] + |∇wt|2

)
φx̄,ε dx dt

≤
∫ ℓ

0

∫

Rd
E[w]φx̄,ε dx dt+ Cℓ

∫ 2ℓ

0

∥w∥2x̄,ε dt+ Cℓθ

(∫ ℓ

0

∥w∥2
W 1,2
x̄,ε̃

dt

+

∫ ℓ

0

∥wt∥2W 1,2
x̄,ε̃

dt+

∫ 2ℓ

ℓ

∥w∥2
W 1,2
x̄,ε̃

dt+

∫ 2ℓ

ℓ

∥wt∥2W 1,2
x̄,ε̃

dt

)

+ Cℓ

(∫ ℓ

0

∫

B(x̄,R)

|w|2 + |wt|2 dx dt+
∫ 2ℓ

ℓ

∫

B(x̄,R)

|w|2 + |wt|2 dx dt
)

for some R > 0 fixed, θ > 0 determined later and some ε̃ > 0 such that
W 1,2
x̄,ε̃ (Rd) ↪→↪→ Lqx̄,ε(Rd), i.e. 2ε/q > ε̃. If we restrict ourselves to admissible

functions φ of growth µ ∈ [0,min{ε, ε̃}), multiply by φ(x̄) and apply supremum
over x̄ ∈ Rd, then by Lemma 2.3 and by choosing θ sufficiently small we obtain

ζ̃ℓ sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

Rd

(
E[w] + |∇wt|2

)
φx̄,ε dx dt

≤ C sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

Rd
E[w]φx̄,ε dx dt

+ Cℓ

(
sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ ℓ

0

∫

B(x̄,R)

|wt|2 dx dt
)

+ Cℓ

(
sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ 2ℓ

ℓ

∫

B(x̄,R)

|wt|2 dx dt
)
.

for some 0 < ζ̃ < ζ. The conclusion follows by dividing by ζ̃ℓ and choosing ℓ
sufficiently large.
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4 Entropy estimate

Let X be a metric space and let K ⊆ X be precompact. We define the Kol-
mogorov’s ε-entropy by

Hε (K,X) = lnNε(K,X),

where Nε(K,X) is the smallest number of ε-balls in X with centres in K that
cover the set K.

Lemma 4.1. Let O ⊆ Rd be bounded and let

I(O) ≤ C0 vol(O) (4.1)

for some C0 > 0. Let ε > 0 and θ ∈ (0, 1). Let (u0, u1) ∈ B and let (χ0, (χ0)t)
be the trajectory starting from (u0, u1). Let φ be an admissible weight function
such that the operator L has the parabolic squeezing property for φ and denote
B = Bε((χ0, (χ0)t); Φ

ℓ
b,φ) ∩ X . Then there exist C1, ℓ > 0 such that

Hθε

(
(LB)|O,W ℓ

b,φ(O)
)
≤ C1 vol(O),

where the constant C1 depends only on C0 and θ and is independent of (u0, u1),
ε, φ and O as long as (4.1) holds and the constants in (2.1) and (2.2) remain
the same.

Proof. The proof combines the technique of [11, Lemma 4.1] and [7, Lemma 2.6]
and adapts these to the squeezing property at hand. We will prove the assertion
for φ ≡ 1. The general case then follows by the same argument as in [7, Lemma
2.6], namely by showing that

∥χ∥L2
b,φ(0,ℓ;W

1,2(O)) ≈ ∥Fχ∥L2
b,1(0,ℓ;W

1,2(O))

with F : χ→ φ1/2χ.
First fix 0 < γ < θ2 and using Lemma 3.2 find κ, ℓ > 0 such that L has

the squeezing property for the weight function φ and γ. Let δ > 0 be such that
γ + 4κδ2 < θ2. For x1, x2, x3, x4 ∈ Rd fixed we denote

Px1,x2,x3,x4
((χ, ∂tχ)) =

(
χ|B(x1,R), ∂tχ|B(x2,R), Lχ|B(x3,R), ∂tLχ|B(x4,R)

)
,

where R > 0 comes from the parabolic squeezing property (3.2). Employing the
standard Aubin-Lions lemma and the Lipschitz continuity of L we observe that
the set

X(x1, x2, x3, x4) = {Px1,x2,x3,x4
((χ, ∂tχ)) ; (χ, ∂tχ) ∈ B}

equipped with the product topology

4∏

i=1

L2(0, ℓ;L2(B(xi, R)))

can be covered by N balls of diameter δε with N independent of ε and xi.
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Let now χ1, χ2 ∈ B, let u1, u2 be their respective solutions and set w =
u1 − u2. Then we find xMi ∈ Rd such that

sup
x̄∈Rd

∫ ℓ

0

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

∫ ℓ

0

∫

B(x̄,R)

|wt|2 dx dt

+ sup
x̄∈Rd

∫ 2ℓ

ℓ

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

∫ 2ℓ

ℓ

∫

B(x̄,R)

|wt|2 dx dt

≤
∫ ℓ

0

∫

B(xM1 ,R)

|w|2 dx dt+
∫ ℓ

0

∫

B(xM2 ,R)

|wt|2 dx dt

+

∫ 2ℓ

ℓ

∫

B(xM3 ,R)

|w|2 dx dt+
∫ 2ℓ

ℓ

∫

B(xM4 ,R)

|wt|2 dx dt+
1

M

with M ∈ N large enough to have γε2 +4κδ2ε2 + κ/M ≤ θ2ε2. By the previous
observation we may cover the set X(xM1 , x

M
2 , x

M
3 , x

M
4 ) by δε-balls centered at

PxM1 ,xM2 ,xM3 ,xM4

((
χi, ∂tχ

i
))

for some (χi, ∂tχ
i) ∈ B, i = 1, . . . , N . For arbitrary

(χ, ∂tχ) ∈ B we may now find (χi, ∂tχ
i) ∈ B such that

∥PxM ((χ, ∂tχ))− PxM
((
χi, ∂tχ

i
))
∥X(xM1 ,xM2 ,xM3 ,xM4 ) < δε.

The squeezing property now leads to the estimate

sup
x̄∈Rd

∫ 2ℓ

ℓ

∫

Rd

(
E[w] + |∇wt|2

)
dx dt ≤ γε2 + 4κδ2ε2 +

κ

M
≤ θ2ε2,

which finishes the proof.

Using the previous lemma one can show that in the subcritical case the
dynamical system (S(t),Φb) is asymptotically compact in the spaceWloc (details
can be found in [9, Proposition 6.2]). We remark that in [13] the authors obtain
the same result even in the critical case using a suitable decomposition.

We will use the following auxiliary function in the spirit of [15]: let x̄ ∈ Rd,
R > 0 and ν > 0. Define

ψ(x̄, R) = ψ(x̄, R)(x) =

{
1, |x− x̄| ≤ R+

√
d,

exp
(
ν
(
R+

√
d− |x− x̄|

))
, otherwise.

The function ψ(x̄, R) is clearly an admissible weight function of growth ν with,
in the notation of (2.1), Cψ(x̄,R) = 1 for every x̄ ∈ Rd and R > 0. Also we have

Hε

(
B|B(x̄,R),Wb(B(x̄, R))

)
≤ Hε

(
B,Wb,ψ(x̄,R)

)
, (4.2)

where Wb(B(x̄, R)) is a seminorm defined similarly as in (2.5) and B ⊆W ℓ
b .

Lemma 4.2 ([7, Lemma 5.4]). For every ε0 > 0 we there exists R′ > 0 such
that for every x̄ ∈ Rd, R ≥ 1, ε ∈ (0, ε0) and χ1, χ2 ∈W ℓ

b,ψ(x̄,R) one has

∥χ1 − χ2∥W ℓ
b,ψ(x̄,R)

≤ max
{
ε, ∥χ1 − χ2∥W ℓ

b,ψ(x̄,R)
(B(x̄,R+R′ ln(ε0/ε)))

}
.

Recall that A ⊆ W 2,2
b (Rd) ×W 1,2

b (Rd) is the locally compact attractor of
the set (1.1) defined in Section 1.

12
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Theorem 4.3. There exist constants C0, C1, ε0 > 0 such that for every ε ∈
(0, ε0), x̄ ∈ Rd and R ≥ 1 one has the estimate

Hε

(
A|B(x̄,R),Wb(B(x̄, R))

)
≤ C0

(
R+ C1 ln

ε0
ε

)d
ln
ε0
ε
.

Proof. The proof is standard and runs in almost the same way as in [9, Theorem
6.5] and [7, Theorem 5.1] with only minor differences.

Let x̄ ∈ Rd, R ≥ 1 and let ψ(x̄, R) be of sufficiently small growth such that
L has the squeezing property for ψ(x̄, R) and let ℓ > 0 be such that Lemma 4.1
holds with θ = 1/2Lip(L) < 1, where Lip(L) denotes the Lipschitz constant of
L from Lemma 3.1. The smallness of growth of ψ(x̄, R) can always be achieved
by choosing ν small in the definition of ψ(x̄, R). By the Lipschitz continuity of
e and the property of the weight function ψ(x̄, R) (4.2) we get

Hε

(
A|B(x̄,R),Wb(B(x̄, R))

)
≤ Hε

(
A,Wb,ψ(x̄,R)

)
≤ Hε/Lip(e)

(
Aℓ,W

ℓ
b,ψ(x̄,R)

)
,

where
Aℓ = {(χ, χt) ∈ Φℓb; (χ(0), χt(0) ∈ A}.

By the dissipation estimates (1.2) and the invariance of A we observe that
actually Aℓ ⊆W ℓ

b and Aℓ is invariant w.r.t. L(t). Also the dissipation estimates
(1.2) imply that for some χ ∈ Aℓ and ε0 > 0 sufficiently large we have

Aℓ ⊆ Bε0/Lip(e)((χ, χt);W
ℓ
b,ψ(x̄,R)),

in other words
Hε0/Lip(e)

(
Aℓ,W

ℓ
b,ψ(x̄,R)

)
= 0.

The key proof of the proof is to show that for k ∈ N ∪ {0} one has

Hε02−k/Lip(e)

(
Aℓ,W

ℓ
b,ψ(x̄,R)

)
≤ C

(
R+ C ′ ln 2k

)d
k (4.3)

for some C ′ > 0. Indeed, once we have established (4.3) for given ε ∈ (0, ε0) we
may find k ∈ N such that 2−kε0 ≤ ε < 2−k+1ε0 and the desired entropy bound
follows.

The estimate (4.3) clearly holds for k = 0. Assume that (4.3) holds for
k ≥ 0, i.e.

Aℓ ⊆
Nk⋃

i=1

Bε02−k/Lip(e)

(
(χi, χit);W

ℓ
b,ψ(x̄,R)

)
(4.4)

for some Nk ∈ N such that lnNk ≤ C(R + C ′ ln 2k)dk and (χi, χit) ∈ Aℓ for
1 ≤ i ≤ Nk. Applying L to (4.4) and recalling the invariance of Aℓ under L and
the Lipschitz continuity of L, we get

Aℓ = L(Aℓ) ⊆
N⋃

i=1

BLip(L)ε02−k/Lip(e)

(
(Lχi, ∂tLχ

i);W ℓ
b,ψ(x̄,R)

)
(4.5)

By Lemma 4.1 with θ = 1/2Lip(L) each of the balls on the right-hand side
of (4.5) localized to the spatial domain B(x̄, R +R′ ln 2k+1) can be covered by

13
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ε02
−(k+1)-balls in the space W ℓ

b,ψ(x̄,R) in such a way that

Hε02−(k+1)/Lip(e)

(
Aℓ|B(x̄,R+R′ ln 2k+1),W

ℓ
b,ψ(x̄,R)(B(x̄, R+R′ ln 2k+1))

)

≤ Hε02−k/Lip(e)

(
Aℓ,W

ℓ
x̄,ψ(x̄,ε)

)
+ C

(
R+R′ ln 2k+1

)d

≤ C
(
R+R′ ln 2k+1

)d
(k + 1).

The proof is finished since by Lemma 4.2 every ε02
−(k+1)/Lip(e)-covering in

the space W ℓ
b,ψ(x̄,R)(B(x̄, R(ε02

−(k+1)))) is also an ε02
−(k+1)/Lip(e)-covering

in W ℓ
b,ψ(x̄,R) .
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