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Summary 

Adipose tissue (AT) is a complex organ specialised in safe storage and release of 

energy as lipids. The adipose organ is therefore essential for the maintenance of energy 

homeostasis. The prototypical cells of AT are adipocytes, emerging from the precursors in a 

process called adipogenesis. Adipogenesis itself is tightly connected with lipogenesis, i.e. 

with the synthesis of fatty acids and triglycerides. Various stimuli can disturb adipocyte 

differentiation and lipogenesis and thus contribute to AT dysfunction and development of 

associated metabolic diseases.  

This thesis was focused on the investigation of lipogenesis in the context of 

endoplasmic reticulum stress (ERS), calorie restriction and aging. 

 In Project A, we showed that exposition of adipocytes to high acute ERS inhibits 

expression of lipogenic genes and glucose incorporation into lipids. Moreover, chronic  

exposure of preadipocytes to ERS impaired both, lipogenesis and adipogenesis. On the other 

hand, chronic low ERS had no apparent effect on lipogenesis in adipocytes. These effects of 

ERS could therefore contribute to the worsening of AT function seen in obesity.  

The capacity of AT to store lipids decreases in aging, possibly due to the 

accumulation of senescence cells or higher ERS. In Project B, we investigated lipogenic 

capacity of human AT in relation to senescence and markers of ERS. AT and adipose cells 

from young and elderly women were investigated. While mRNA expression of major 

senescent markers was increased in AT from the elderly compared to young individuals, 

mRNA expression of lipogenic enzymes and chaperones was decreased in AT from elderly 

individuals. These results were also partly observed in vitro in differentiated adipocytes from 

AT of the same individuals suggesting the reduced capability to cope with ERS in aging. 

Very-low calorie diet (VLCD) is first line lifestyle intervention to achieve rapid 

weight loss. The improvement of whole body insulin sensitivity can be seen as soon as after 2 

days of VLCD. However, little is known about AT metabolic changes in those early days. 

Thus, in Project C, we compared metabolic and inflammation-related characteristics of 

subcutaneous AT in the early (2 days) and later (28 days) phase of a VLCD. In the early 

phase of VLCD, the expression of lipolytic genes was increased, whereas the expression of 

lipogenic genes was suppressed. The inflammatory markers remained unchanged in AT. The 

changes in AT gene expression in the early phase of VLCD could not explain the effect of 

short calorie restriction on the improvement of insulin sensitivity. At the later phase, 

expression of genes involved in lipogenesis and β-oxidation was markedly suppressed, 
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whereas the expression of inflammatory markers was increased. Thus, we found that the early 

and later phases of VLCD differ with respect to metabolic and inflammatory responses in 

subcutaneous AT. 

In Project D, we compared and defined the effects of moderate calorie restriction on 

preadipocytes and in vitro differentiated adipocytes in two groups of obese men: juniors and 

seniors.  We did not observe any effect of the intervention on metabolism of preadipocytes in 

either group. However, we observed an intervention-driven improvement in adipocyte 

metabolism selectively in the group of seniors. Therefore, our data suggest that moderate 

calorie restriction could initiate positive changes in metabolism of adipocytes in seniors. 

In conclusion, this thesis brought several pieces of evidence that lipogenesis in human 

AT can be inhibited by ER stress, severe caloric restriction and aging. 
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Résumé 

Le tissue adipeux (TA) est un organe complexe specialisé dans le stockage et la 

libération d´énergie sous forme de lipides. Cet organe adipeux est essentiel pour le maintien 

de l´homéostasie énergétique. Les adipocytes sont les cellules prototypiques du TA. Elles se 

forment durant la différenciation de précurseurs, un processus appelé adipogenèse. 

L’adipogenèse est intimement associée à la synthèse des acides gras et de triglycérides lors de 

la lipogenèse. Néanmoins, divers facteurs peuvent perturber l’adipogénèse et la lipogenèse, 

contribuant au dysfonctionnement du TA et au développement des maladies métaboliques. 

Le but de cette thèse a été d´étudier la lipogenèse dans le contexte du stress du 

réticulum endoplasmiques (SRE), de la restriction calorique et du vieillissement. 

 Dans le projet A, nous avons montré que l´exposition d’adipocytes à un SRE aigu 

inhibe l´expression des gènes liés à la lipogenèse et empêche l´incorporation du glucose dans 

les lipides. En plus, l´exposition des préadipocytes à un SRE chronique, détériore à la fois la 

lipogenèse et l´adipogenèse. Par contre, pour les adipocytes, un SRE chronique mais modéré 

n´a pas d´effet évident sur la lipogenèse. Ces effets du SRE pourraient contribuer à la 

détérioration de la fonction de TA vue dans l´obésité. 

La capacité du TA à stocker des lipides diminue avec l´âge, probablement à cause de 

l´accumulation de cellules sénescentes ou un SRE plus élevé. Dans le projet B, nous avons 

étudié la capacité lipogénique du TA humain en relation à la sénescence et aux marqueurs du 

SRE au sein d’une cohorte de femmes obèses jeunes ou âgées. Tandis que l´expression des 

principaux marqueurs de la sénescence était augmentée dans le TA des femmes âgées, 

l´expression génique des enzymes de lipogenèse et des chaperonnes était diminuée dans le 

TA des personnes âgées. Ces résultats étaient partiellement retrouvés dans les adipocytes 

differenciés in vitro des mêmes individus ce qui suggère une moins bonne capacité à faire 

face au SRE lors du vieillissement. 

Le régime à très basses calories (VLCD) est souvent prescrit en première intention 

pour une rapide perte de poids. L’amélioration de la sensibilité à l’insuline se voit dès 2 jours 

de VLCD. Néanmoins, on ne sait quasiment rien des modifications métaboliques du TA 

survenant durant les premiers jours. Dans le projet C, nous avons donc comparé les réponses 

métaboliques et inflammatoires du TA sous-cutané précocément (2 jours) et plus tardivement 

(28 jours) lors d’un VLCD. A 2 jours de régime, l´expression des gènes lipolytiques était 

augmentée, alors que l´expression des gènes lipogéniques était diminuées. Les marqueurs 

d´inflammation n´étaient pas changés dans le TA. Néanmoins, les changements d´expression 
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dans le TA lors de la phase précoce du régime ne pouvait pas expliquer l´effet de ce régime 

court à l´amélioration de la sensibilité à l´insuline. Dans la phase tardive, l´expression des 

gènes impliqués dans la lipogenèse et la β-oxydation était largement réduite, tandis que 

l´expression des marqueurs inflammatoires était augmentée. Nous avons donc montré que les 

réponses métaboliques et inflammatoires du TA sous-cutané à 2 jours et 28 jours de VLCD 

sont différentes. 

Dans le projet D, nous avons comparé et défini les effets de la restriction calorique 

modérée sur la physiologie des préadipocytes et des adipocytes différenciés in vitro chez des 

jeunes obèses ou des personnes âgées obèses. De façon surprenante, on n´a observé aucun 

effet de l´intervention sur le métabolisme des préadipocytes dans les deux groupes. Par 

contre,  un effet bénéfique de l’intervention sur le métabolisme adipocytaire n’a été observé 

que chez les personnes âgées. Nos données montrent donc qu’une restriction calorique 

modérée peut avoir un effet positif sur le métabolisme adipocytaire des séniors. 

Pour conclure, cette thèse montre que la lipogenèse dans le TA humain peut être 

inhibée par le SRE, la restriction calorique sévère et le vieillissement. 
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Shrnutí 

Tuková tkáň (TT) je komplexní orgán specializovaný pro bezpečné skladování a 

uvolňování energie ve formě lipidů. TT je tedy nezbytná pro udržování energetické 

homeostázi. Základní funkční jednotky TT se nazývají adipocyty a vznikající z 

prekurzorových buněk procesem adipogeneze. Adipogeneze jako taková je velmi úzce 

spojena s lipogenezí, neboli syntézou mastných kyselin a triglyceridů. Nejrůznější faktory 

mohou ovšem narušit diferenciaci a lipogenezi adipocytů a přispívat tak k dysfunkci TT a 

rozvoji metabolických onemocnění. 

Proto byla tato dizertační práce zaměřena na zkoumání lipogeneze v kontextu stresu v 

endoplasmatickém retikulu (ER), kalorické restrikce a stárnutí. 

V projektu A jsme ukázali, že vystavení adipocytů silnému akutnímu stresu ER 

snižuje expresi lipogenních genů a inkorporaci glukózy do lipidů. Chronický stres ER 

negativně ovlivňoval jak lipogenezi, tak vlastní diferenciaci preadipocytů, i když v již 

maturovaných adipocytech neměl chronický stres ER na lipogenezi zjevný efekt. Tyto efekty 

stresu ER na lipogenezi a adipogenezi tak mohou přispívat ke zhoršení funkce TT 

pozorované u obézních jedinců. 

Kapacita TT skladovat lipidy se snižuje s věkem, pravděpodobně kvůli akumulaci 

senescentních buněk nebo zvýšenému stresu v ER. V projektu B jsme zkoumali lipogenní 

kapacitu lidské TT ve vztahu k senescenci a markerům stresu ER. K analýze byly použity 

vzorky TT a adipocyty mladších žen a seniorek. Zatímco mRNA exprese hlavních 

senescentních markerů byla zvýšená v TT seniorek ve srovnání s mladšími ženami, mRNA 

exprese lipogenních enzymů a šaperonů ER byla v TT u seniorek snížena. Tyto výsledky 

byly částečně potvrzeny v in vitro diferencovaných adipocytech z TT identických žen. Tyto 

výsledky naznačují sníženou odpověď na stres v ER ve stáří. 

Velmi přísná nízkoenergetická dieta (VLCD, z anglického very low-calorie diet) patří 

mezi primární intervence používané k rapidnímu poklesu hmotnosti u obézních. Zlepšení 

celotělové inzulinové sensitivity je možno pozorovat již po 2 dnech VLCD. Nicméně o 

změnách probíhajících v TT během těchto prvních dnech diety se neví prakticky nic. V 

projektu C jsme proto srovnávali metabolické a zánětlivé charakteristiky subkutánní TT 

během rané (2 dny) a pozdější (28 dní) fáze VLCD. Během rané fáze VLCD došlo ke zvýšení 

exprese lipolytických genů, kdežto exprese lipogenních genů byla potlačena. Zánětlivé 

markery zůstaly v TT nezměněny. Změny na úrovni genové exprese v TT v rané fázi VLCD 

nicméně nevysvětlily efekt krátké kalorické restrikce na zlepšení inzulinové sensitivity. V 
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pozdější fázi byla exprese genů zapojených do lipogeneze a β-oxidace markantně snížena, 

zatímco exprese zánětlivých markerů byla zvýšena. Tento projekt ukázal, že raná a pozdější 

fáze VLCD se liší s ohledem na metabolickou a zánětlivou odpověď subkutánní TT. 

V projektu D jsme srovnávali a definovali efekty mírné kalorické restrikce na 

preadipocyty a in vitro diferencované adipocyty u dvou skupin obézních mužů: mladších 

mužů a seniorů. Zatímco jsme nepozorovali žádný efekt intervence na metabolismus 

preadipocytů v žádné ze dvou skupin, ve skupině seniorů jsme po intervenci zaznamenali 

zlepšení metabolismu adipocytů. Naše výsledky tedy naznačují, že mírná kalorická restrikce 

může vest k zahájení pozitivních změn v metabolismu adipocytů u seniorů. 

Závěrem je možné shrnout, že tato dizertační práce přinesla několik důkazů o tom, že 

lipogeneze v lidské TT může být inhibována stresem ER, přísnou kalorickou restrikcí a 

stárnutím. 
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1 Introduction into biology of adipose tissue 

Traditional perception of adipose tissue (AT) as a passive organ dedicated to energy 

storage, insulation and thermoregulation has changed dramatically in the last decades, when 

the extraordinary complex role of AT in various physiological processes started to be 

recognised and appreciated. Nowadays, it is known that apart from the regulation of whole 

body energy homeostasis AT is involved in inflammation, angiogenesis, reproduction, 

atherogenesis or regeneration (Figure 1). These pleiotropic functions of AT rely not only on 

the paracrine communication between various cell types within AT itself but also on the 

cross-talk with distant organs through secreted factors, called adipokines and lipokines.  

In the introductory section of this thesis, two elementary types of AT and its cellular 

composition will be described at first. Next, the most important physiological functions of 

AT and adipocytes will be explained. Lipogenesis, the process of lipid synthesis, will be 

described in detail, as it is the main subject of this thesis. Third part of the theoretical 

introduction will be dedicated to the description of processes which contribute to AT 

dysfunction in obesity and aging. The last part will briefly outline the possibilities of fight 

against obesity through lifestyle and dietary interventions. 

 

 

 

 

 

 

 

Figure 1: Adipose tissue is an organ with a plethora of functions. This picture illustrates some of principal 
physiological and metabolic processes with which adipose tissue is involved through the secretion of various adipokines 
from adipocytes. The interactions may be autocrine, paracrine, or endocrine. Adapted from [7]. 
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1.1. Adipose tissue 

1.1.1 White adipose tissue 

AT organ, in some individuals the largest organ in the body, is distributed in many 

different depots throughout the body. Different cellular characteristics and anatomical 

location predetermine specific properties of each depot and its particular function. In 

mammals, the AT pool is composed of at least two functionally and histologically distinct 

types of fat: white and brown. Major white AT (WAT) depots are situated in subcutaneous 

region in both, the upper (superficial and deep abdominal) and lower (gluteal-femoral) body, 

as well as in the visceral region (omental, mesenteric, mediastinal and epicardial depot) 

(Figure 2) [2]. 

 

 

 
 

Subcutaneous WAT, a major energy storing depot, is located under the skin to provide 

a layer of insulation preventing heat loss and protecting against mechanical stress. On the 

other hand, visceral WAT coats vital organs within the peritoneum and rib cage. In addition, 

WAT can be found in many other areas, including retro-orbital space, on the face and 

extremities, and within the bone marrow [8]. 

Fat distribution is markedly altered by many factors, such as sex, hormonal status, age 

and disease state [9]. Female body type tends to be a pear shape, because subcutaneous fat is 

Figure 2: White adipose tissue depots in humans, shown in orange. Major subcutaneous white adipose tissue 
includes superficial and deep abdominal depots and gluteal-femoral depot. Major visceral white adipose tissue includes 
epicardial, omental and mesenteric. Adapted from [2, 3]. 
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preferentially deposited around the hips and thighs [10, 11]. Pregnancy often emphasizes this 

sexually dimorphic fat distribution [12]. In contrast, men (and postmenopausal women) 

accumulate fat around the waist (so called apple shape) and tend to accumulate more visceral 

fat [13, 14]. Gradually, these gender-based differences in the AT deposition become less 

prominent later in life due to decreasing influence of steroid hormones.  

Also, the aging per se affects the distribution of body fat mass. The peak of fat depot 

sizes is reached by middle or early old age (40-70 years), followed by a substantial decline in 

advanced old age (>70 years) [15]. The volume of subcutaneous fat declines first, followed 

much later by loss of fat in visceral depots. However, the observed decrease in total body fat 

with old age does not coincide with a decline in percent body fat, which may remain constant 

or even increase. The age-associated decline in sizes of adipose depots is accompanied by the 

accumulation of fat outside AT and loss of lean body mass (particularly muscle). Ectopic fat 

accumulation occurs in bone marrow, muscle, liver and at other sites. This ectopic fat 

deposition causes lipotoxicity and worsens age-dependent dysfunction of these tissues. 

1.1.2 Brown and brite adipose tissue  

In comparison with WAT, that is present in humans throughout whole lifetime, brown 

AT (BAT) is in human present mainly in newborns, predominantly in the interscapular 

region. BAT uses the chemical energy from lipids and glucose to produce heat through non-

shivering thermogenesis via mitochondrial uncoupling [16]. This is possible by the presence 

of uncoupling protein 1 (UCP1) that uncouples electron transport from ATP production, 

leading to the generation of heat [17]. Because of the high mitochondria content and dense 

vascularisation, BAT appears brown compared to WAT.  

For many years it was generally accepted that BAT 

postnatally disappears and that BAT depots are absent in 

human adults. Nevertheless, a few years ago, the use of 

18
F-fluorodeoxyglucose led to discovery of small areas of 

tissue functionally resembling BAT in the thorax region, 

chest and abdomen in adult humans (Figure 3) [1]. This 

metabolically active tissue responds to temperature 

similarly as BAT, however it is still distinct from the 

dorsal interscapular BAT in children. Subsequent studies 

suggested that brown fat cells might be interspersed 

within the WAT (brown in white, i.e. brite, or beige AT). 

Figure 3: Sites of 
18

F- 

fluorodeoxyglucose uptake 
corresponding to BAT in adult 

humans. The black areas are those 

that are most frequently described; 

the gray areas are not always found, 

even in humans positive in the black 

areas. Adapted from [1].   
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This brite AT is considered as a subtype of WAT that has adopted features of BAT upon the 

stimulation by low temperatures in a process known as browning. Brite AT occurrence and 

activity in adult decrease with age and higher adiposity [18]. These results suggest that the 

decreased BAT activity might be associated with the accumulation of classical WAT with 

age. 

1.1.3 Cellular composition of white adipose tissue 

Histologically, AT is composed of adipocytes, i.e. the mature fat cell, and stromal-

vascular fraction (SVF), comprising stem cells, preadipocytes, immune cells, endothelial cells 

and extracellular matrix (ECM). 

1.1.3.1 Adipocytes 

White adipocytes are rounded cells containing a single large lipid droplet that occupies 

usually over 90% of the cell volume. The cytoplasm and organelles, such as nucleus and 

mitochondria, are displaced to the periphery of the cell. Lipids stored in the droplet are 

primarily triglycerides (or triacylglycerols, TAG) and cholesteryl esters. The degree of lipid 

accumulation determines adipocyte size which is in average 80-90 µm but can reach up to 

200 µm [19]. 

1.1.3.2 Stromal vascular fraction 

1.1.3.2.1 Adipose tissue stem cells 

Adipose tissue stem cells (ASCs) are precursors of adipocytes, and as such they are 

prerequisite to hyperplastic growth of AT mainly in the early childhood and puberty. In 

adulthood, when the total number of adipocytes remains relatively constant [20], they ensure 

replenishment of aged non-functional adipocytes. In fact, lifespan of adipocytes was 

estimated to be approximately 10 years. ASCs tend to be associated with blood vessels and 

may be derived from AT pericytes (cells that wrap around endothelial cells) [21-23]. Since 

ASCs are multipotent cells, they are capable to differentiate not only into brown and white 

adipocytes through the precursor stage of preadipocytes but also to other cell types, including 

macrophages, muscle or bone progenitors [24-28]. 

1.1.3.2.1.1 From ASC to mature adipocyte: An insight into adipocyte differentiation 

The process of adipocyte differentiation from ASC to mature adipocytes includes many 

cellular intermediates. Although there have been efforts to describe these distinct 

intermediates, they have been difficult to characterise at the molecular level. Therefore, 
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adipogenesis is generally presented as a two-phase process including determination and 

terminal differentiation phase. 

Determination involves the commitment of a pluripotent stem cell to the adipocyte 

lineage [29]. This stage results in the conversion of the stem cell to a preadipocyte. 

Preadipocyte cannot be distinguished morphologically from its precursor cell but has lost the 

potential to differentiate into other cell types. 

During terminal differentiation, the preadipocyte acquires the characteristics of mature 

adipocyte. These include building machinery necessary for lipid transport and synthesis, 

insulin sensitivity and the secretion of adipocyte-specific proteins.  

The molecular regulation of terminal differentiation is more extensively characterised 

than determination. It is known that differentiation requires the activation of numerous 

transcription factors that are responsible for coordinated expression or silencing of more than 

2000 genes related to the regulation morphology and physiology of adipocyte [30].  

Two members of CCAAT/enhancer-binding proteins (C/EBPs), C/EBPβ and C/EBPδ, are 

dramatically induced during the first stage of adipogenesis, at least in vitro, in response to the 

exposition of cells to hormonal differentiation cocktail [31]. Their primary function in 

adipogenesis is to provoke expression of peroxisome proliferator-activating receptor γ 

(PPARγ) and C/EBPα, the key transcriptional regulators of adipocyte differentiation [32, 33]. 

PPARγ and C/EBPα initiate a positive feedback loop in which they induce their own 

expression and expression of a large number of adipocyte specific genes.  

 PPARγ, the master regulator of adipogenesis, is a member of the nuclear-receptor 

superfamily. It was shown that PPARγ is both necessary and sufficient for adipogenesis, as 

C/EBPα or other transcription factors cannot promote adipogenesis in its absence [34, 35]. 

In addition to PPARγ and C/EBPs, several other transcription factors are likely to play an 

important role in the molecular control of adipogenesis. In general, pro-adipogenic factors 

seem to function at least in part by inducing PPARγ expression or enhancing its activity. 

These include certain Krüppel-like factors (KLFs), such as KLF4, 5, 6, 9 and 15. On the other 

hand, KLF2, 3 and 7 are anti-adipogenic [36]. GATA2 and GATA3 also belong to anti-

adipogenic factors. They are expressed in preadipocytes and downregulated during terminal 

maturation [37]. Constitutive expression of GATA2 and GATA3 blunts adipocyte 

differentiation and trap cells at the stage of preadipocyte. Therefore, the process of adipocyte 

differentiation is a result of a balance between these intervening factors. Their expression can 

be influenced by the present cellular state. For example, in the experimental part A of this 

thesis, we show that adipocyte differentiation is blunted by stress of endoplasmic reticulum 
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(ER).  If the milieu for adipogenesis is favourable, newly formed adipocyte gain a rounded-

cell shape with one lipid droplet inside and the whole machinery for handling and synthesis 

of lipids. 

1.1.3.2.2 Immune cells 

Immune cells, which reside in AT, include almost the full spectrum of known immune 

cell types. Their primary physiological role is to maintain AT homeostasis. This includes 

ECM remodelling, angiogenesis, activation of inflammatory response, removal of molecular 

debris and apoptotic cells [38, 39]. 

The most abundant population of AT immune cells are macrophages [40]. Although the 

spectrum of macrophage phenotypes is continuous, there is no nomenclature that could 

provide all of the required definitions. Thus investigators generally accept the simplified 

consensus which distinguishes two principal phenotypes: M1-like (classically activated) and 

M2-like (alternatively activated). The function of both phenotypes is different: resident M2-

like AT macrophages have a role in AT homeostasis, whereas recruited M1-like macrophages 

contribute to inflammation and insulin resistance, described later. Nevertheless, it should be 

noted that this M1-/M2-like distinction is artificial and macrophages can possess features of 

both phenotypes [41]. 

Neutrophils are myeloid cells with short lifetime that are essential for the initial response 

to bacterial infections and injury [42, 43]. This is because they facilitate the recruitment of 

macrophages, dendritic cells and lymphocytes into the site of infection. In metabolically 

healthy animals, neutrophils represent less than 1 % of total AT immune cells [43]. Dendritic 

cells are the major antigen presenting cells and can induce proliferation of lymphocyte 

population. Their gene expression profile is very similar to that one of macrophages [43], yet 

dendritic cells are still probably the least characterized myeloid cells of AT. Mast cells are 

known to mediate allergic reactions [44]. They can modulate AT inflammation and possibly 

fibrotic state found in obesity and diabetes [45]. Eosinophils are classic effectors of anti-

helminth responses. In the context of AT, they can assist the induction into M2-like 

macrophages via interleukin 4 (IL-4) [46]. Other cells originating from lymphoid lineage 

found in AT are B cells, T cells, nature killer (NK) cells and their numerous subtypes. 

Activities of T and B lymphocytes rely on the antigen recognition and include diverse 

populations of cells with proinflammatory or regulatory functions. In human AT, T cells, B 

cells, NK cells, NKT cells and innate lymphoid cells, group 2 account for up to 10% of non-

adipocyte cells [47]. 
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The dynamic nature of immune cells in AT during the progression of obesity is briefly 

mentioned in 1.3.2.4 Inflammation. 

1.1.4 Extracellular matrix 

Each adipocyte is surrounded by a thick ECM, also called basal lamina. Basal lamina can 

decrease the mechanical stress by spreading the forces over a larger area of the tissue and 

therefore protect adipocyte/lipid droplet from disruption. 

The composition of ECM depends on the developmental stage of preadipocyte and/or 

adipocyte, viability and subtype of the adipocyte, but the two main classes of ECM proteins 

are proteoglycans and fibrous proteins. Major component of basal lamina is collagen IV [48]. 

Compared to other ECM components, collagen VI seems to be more specific for adipocytes 

and there is evidence of its contribution to the pathology of obesity-related disease [49, 50]. 

Importantly, even in mature adipocyte, ECM is under constant turnover. ECM remodelling is 

an energy demanding process mediated by a balance between various remodelling enzymes 

and their enhancers or inhibitor. It is regulated not only by mechanical forces but also by 

insulin, redox status of the cell and activity of ER [51]. 

 

 

 

 

 

 

 

  

This chapter summarised various function and anatomical location of adipose tissue. Two 

main types of adipose tissue, white and brown, were introduced. White adipose tissue has 

plethora of functions, but primarily it is dedicated to safe storage and release of lipids. 

Brown adipose tissue uses the chemical energy from lipids and glucose to produce heat. 

Adipose tissue is composed from adipocytes and stromal-vascular fraction which includes 

stem cells, preadipocytes, immune cells, endothelial cells and extracellular matrix. The 

physiological function of AT will be the subject of the next chapter. 
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1.2 Physiology of adipocytes and adipose tissue 

Besides the thermogenic and mechanical protection, AT serves as a biological 

reservoir of calories that expands in response to overnutrition and releases lipids in response 

to lack of energy. Thus, two main metabolic processes – lipogenesis and lipolysis – help to 

maintain energetic demands of organism. 

1.2.1 Lipogenesis 

High fat and/or carbohydrate intake stimulate lipogenesis, a process of fatty acid and 

TAG synthesis. Fatty acids are synthesised from acetyl-CoA and TAGs are formed by 

esterification of free fatty acids to glycerol. The majority of fatty acids used for TAG 

synthesis in AT are derived from the diet. 

1.2.1.1 Fatty acid transport 

 Dietary fat (TAG), when ingested with food, is absorbed by the gut. Because of 

hydrophobic nature of lipids, they are transported in plasma mostly as parts of specific 

lipoprotein complexes. Dietary lipids are transported by chylomicrons, whereas endogenous 

fat and cholesterol are carried by lipoproteins of different densities (very-low density 

lipoproteins: VLDL, intermediate-density lipoproteins: IDL, low-density lipoproteins: LDL, 

high-density lipoproteins: HDL). At the site of AT beds, fatty acids are liberated from these 

complexes through the action of lipoprotein lipase (LPL) that is secreted by adipocytes. 

Released fatty acids are bound by albumin and in this form they are available for the uptake 

by adipocytes where the TAG are resynthesized and stored in cytoplasmic lipid droplets 

(Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Systemic transport of lipids and 

lipoproteins. Dietary lipids are transported by 

chylomicrons, whereas lipids from liver are 

trasported to other tissues via VLDL. At the site of 

mammary, muscle or AT beds, fatty acids are 

liberated from lipoprotein complexes by the action 

of lipoprotein lipase. Then, free fatty acid bind to 

albumin (not shown) and can be uptaken inside 

the cell. Remnants of VLDL may transform to IDL 

or LDL, travelling back to the liver or became (in 

the case of LDL) another source of lipids for 

extragepatic tissues. HDL deliver cholesterol to 

the liver. Adapted from [4].  
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The transport of fatty acids across the adipocyte plasma membrane appears to be 

highly complex but still somehow elusive process. There is an evidence for two different (but 

not mutually exclusive) processes: diffusion and protein-mediated uptake. Proteins implicated 

in fatty acid transport are plasma membrane fatty acid binding protein (FABPpm) and fatty 

acid translocase (CD36). FABPpm is a 43 kDa protein which is expressed on the surface of 

various cell types, including adipocytes [52]. Evidence supporting the role of FABPpm in 

adipocyte fatty acid uptake came from the finding that anti-FABPpm antibodies selectively 

inhibit uptake of oleate in 3T3-L1 adipocyte without alteration of 2-deoxyglucose uptake 

[53]. CD36 is a transmembrane glycoprotein which belongs to a family of class B scavenger 

receptor. In addition to fatty acids, it is thought to bind a wide variety of hydrophobic 

molecules such as thrombospondin, sickle cell erythrocytes, collagen, apoptotic cells and 

oxidized LDLs [54, 55]. Except for FABPpm and CD36, also other proteins like caveolin-1, 

fatty acid transport protein (FATP) or acyl-CoA synthetase (ACSL) have been found to be 

functionally linked to fatty acid transport [56-58]. 

Once inside the adipocyte, fatty acids can be converted into acyl-CoA by acyl-CoA 

synthetase [56, 57], bound and sequestered by intracellular fatty-acid binding proteins, 

FABP4 and FABP5, and oriented into diverse metabolic pathways, including restoration of 

TAG. 

1.2.1.2 Triglyceride formation 

 TAG synthesis involves the activation of three molecules of fatty acids through 

formation of acyl-CoA and then the synthesis of monoacylglycerol (MAG) and 

diacylglycerol (DAG) by reacting with glycerol-3-phosphate (G3P) [59]. In AT, the main 

source of G3P is catabolism of glucose via glycolysis since the activity of glycerokinase 

(GK), the enzyme that transforms glycerol into G3P, is low. 

1.2.1.3 De novo lipogenesis 

Biochemical process of fatty acid and TAG synthesis from non-lipid precursors is 

called de novo lipogenesis (DNL). DNL takes place primarily in the liver and AT [60, 61]. 

The contribution of AT to DNL was considered for a long time negligible, but newer methods 

have shown that DNL contributes to the synthesis of approximately 20% TAG [61]. 

Insulin, a peptide hormone secreted by the β cells of the pancreatic Langerhans islets, 

is a potent regulator of carbohydrate, lipid and protein metabolism [62]. At the level of 

adipocytes, insulin promotes all steps necessary for lipid synthesis. Therefore, before going 

further, insulin signalling will be described in brief. Insulin acts through insulin receptor that 
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becomes autophosphorylated and thus forms binding sites for docking proteins such as IRS1 

[63]. Tyrosine phosphorylation of IRS1 is then necessary for the activation of 

phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B (PKB) pathway, resulting in the 

translocation of glucose transporter 4 (GLUT4)-containing vesicles to the cell surface and 

glucose transport inside the cells [64]. Glucose can be then used in both, fatty acid as well as 

in TAG synthesis. Because carbohydrate metabolism, especially that of glucose, is the most 

commonly involved in the supplementation of carbon units for DNL, we will use glucose as 

an example of a primary source to describe DNL pathway. 

Following glucose transport into adipocyte, glucose is converted via glycolysis into 

pyruvate. Pyruvate from cytosol enters mitochondria where it is converted into citrate by 

citrate synthase (CS). Citrate then passes through the inner mitochondrial membrane by the 

citrate transporter into the cytosol. There, citrate cleavage by ATP citrate lyase (ACLY) 

regenerates acetyl-CoA. Thus, ACLY represents a first enzyme of DNL, linking the 

metabolism of carbohydrates and the production of fatty acids. Acetyl-CoA then serves as a 

substrate for acetyl-CoA-carboxylase (ACC). This enzyme, containing a biotin prosthetic 

group, catalyses the conversion of acetyl-CoA into malonyl-CoA in two-step reaction. 

Malonyl-CoA is a substrate for fatty acid synthase (FAS), a multienzyme complex 

responsible for the formation of long carbon chains of fatty acids by a repetition of four-step 

sequence. A saturated acyl group produced by this set of reactions becomes the substrate for 

subsequent condensation with an activated malonyl group. With each passage through the 

cycle, the fatty acyl chain is extended by two carbons until the chain reaches 16 carbons 

length. Then the product (palmitate, 16:0) leaves the cycle. 

 The further destiny of palmitate can vary. In ER, palmitate can be elongated by fatty 

acid elongases (ELOVLs) and desaturated at the ∆9 position by stearoyl-CoA desaturase 

(SCD). In mice, four SCD isoforms (SCD1-SCD4) have been found, whereas only two SCD 

isoforms have been identified in human (SCD1 and SCD5) [65]. In human AT, only SCD1 

isoform is expressed [66]. The presence of at least one functional isoform is critical, as SCD 

is a rate-limiting enzyme in the production of monounsaturated fatty acids, specifically oleate 

and palmitoleate [67]. Importantly, the degree of fatty acid unsaturation in cell membrane 

lipids determines membrane fluidity whose alteration has been implicated in a variety of 

diseases [68]. SCD1 has been found to be located in proximity with another DNL enzyme – 

diacylglycerol acyltransferase (DGAT) [69]. DGAT is enzyme that catalyses the final 

reaction in the synthesis of TAG. Two DGAT genes, DGAT1 and DGAT2, have been 

identified [70, 71]. Although these enzymes catalyse similar reactions, their nucleotide and 
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Figure 5: Simplified pathway of de novo lipogenesis. Glucose enteres inside the cell and undergoes 

glycolysis. Pyruvate enters mitochondria, where it is metabolised to citrate. In cytoplasm, citrate is converted to 

acetyl-CoA, metabolised by acetyl-CoA-carboxylase (ACC) into malonylCoA. MalonylCoA is utilised by fatty-acid 

synthase (FAS) to create palmitate, which enters into endoplasmic reticulum where it can be modified by 

elongase (ELOVL) or stearoyl-CoA-desaturase (SCD) and finally incorporated into various kind of lipids, 

including TAG. Glucose also serves as a main source of glycerol-3-phosphate, which subsequently provides 

backbone of TAG. TAG (triacylglycerides), DGAT (diacylglycerol acyl-transferase), GPDH (glycerophosphate 

dehydrogenase), GPAT (glycerol-3-phosphate acyltransferase), AGPAT (acylCoA acylglycerol-3-phosphate 

acyltransferase), PAP (phosphohydrolase). 

 

 which is the main source of glycerol-3-phosphate, serving later as a glycerol backbone for TAG. Pyruvate 

amino acid sequence differ [72]. Studies performed on mice lacking DGAT1 (DGAT
-
/
-
) have 

suggested that DGAT1 does not have a profound effect on TAG metabolism in general and is 

not essential for life [73]. In contrast, mice with a disruption of the DGAT2 gene (DGAT2
-
/
-
) 

have severely reduced TAG content in their tissues and survive only early postnatal periods 

[72]. These results demonstrate that DGAT2 is essential for the fundamental synthesis of 

TAG in mammals and is crucial for survival. 

The overall pathway of DNL is depicted on Figure 5. The analysis of mRNA 

expression changes of major DNL enzymes in response to calorie deficit is described in the 

result part C of this thesis. 
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1.2.1.3.1 Transcriptional regulation of de novo lipogenesis 

As master regulators of DNL, two transcriptional factors have been identified – sterol 

regulatory element binding protein 1c (SREBP1c) and carbohydrate response element 

binding protein (ChREBP). 

 SREBP1c belongs to the basic-helix-loop-helix leucine zipper (bHLH/LZ) family of 

transcription factors and is synthesized as an inactive precursor bound to the membrane of the 

ER [74]. To become a mature transcription factor, SREBP1c must undergo proteolytic 

cleavage to liberate its N-terminal domain from the membrane. The cleaved fragment then 

moves to the nucleus to initiate transcription of target genes. 

 ChREBP (also known as MondoB or MLXIPL), similarly as SREBP1c, belongs to the 

family of bHLH/LZ transcription factor. Recently, a novel ChREBPβ isoform have been 

discovered [75]. ChREBPβ more potently induces DNL genes and its expression in human 

AT correlates with insulin sensitivity. 

Interestingly, although both of these DNL transcriptional factors regulate expression 

of key lipogenic genes such as FASN or ACC [76], they are activated by different 

mechanisms. Experiments showed that SREBP1c gene expression is strongly stimulated by 

insulin [74, 77, 78], whereas ChREBP activity is regulated by glucose and other 

carbohydrates [79, 80]. Nevertheless, the distinct regulation and functional roles of SREBP1c 

and ChREBP in AT are still being worked out. 

1.2.1.3.2 Relevance of de novo lipogenesis 

Considering the huge quantities of lipids stored in adipocytes, DNL is unlikely to 

contribute essentially to the lipid mass of AT. Thus the intrinsic engagement of adipocytes in 

fatty acid synthesis raises the possibility that in comparison with their dietary counterparts, 

adipocyte-derived fatty acids may have unique functions beyond energy storage and may be 

involved in important biological processes. 

Indeed, recent research revealed that lipids have wide-ranging actions as signalling 

molecule and that particularly the products of DNL can be essential for metabolic 

homeostasis. 

Work of Cao et al. led to the identification of AT-derived lipokine palmitoleate 

(C16:1n7) which directly links DNL to beneficial systemic effects [81]. Similarly, another 

independent group has shown insulin-sensitizing effects of palmitoleate on muscle [82]. 

Considering the clinical research, numerous studies which assessed serum palmitoleate in 

humans have revealed both positive and negative associations with metabolically adverse 
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conditions [83-86]. These discrepant results could be related to the measurement of various 

forms of palmitoleate: while the free fatty acid form of palmitoleate seems to act as a lipokine 

with systemic beneficial effects, esterified palmitoleate probably loses this distinct function 

or may simply reflects the hepatic output [87]. 

Notably, palmitoleate is not the only mediator which provides systemic beneficial 

effects of elevated AT DNL. Recently, a novel class of AT-derived lipids was described: fatty 

acid-hydroxy-fatty acids (FAHFAs). FAHFAs were found to be elevated 16-18 fold mice 

which overexpress GLUT4 transporter in adipocytes and have elevated lipogenesis [88]. The 

concentration of one specific isomer of FAHFAs, consisting of palmitic acid and stearic acid 

(PAHSA), was correlated with improved insulin sensitivity. Remarkably, exogenous PAHSA 

treatment improved glucose tolerance and overall glucose metabolism in mice. In addition, 

PASHA administration exerted anti-inflammatory effects on AT-resident immune cells. 

Finally, PAHSA levels were reduced in the serum and subcutaneous AT of insulin resistant 

human subjects. 

 In addition to DNL products, many other lipid species as sphingolipids [89], 

cardiolipins [90] and prostaglandins [91, 92] also act as mediators of metabolism with both 

beneficial and deleterious effects and undoubtedly many more wait to be discovered. 

 

1.2.2 Lipolysis 

Lipolysis is a catabolic pathway that promotes fat mobilization from AT to peripheral 

tissues. Lipolysis involves hydrolysis of TAG that results in the release of fatty acids and 

glycerol into the circulation. Complete hydrolysis of TAG requires actions of three different 

lipases [93]. The first step, involving TAG hydrolysis into diacylglycerol (DAG) and one free 

fatty acid, is catalysed by adipose triglyceride lipase (ATGL). Next, hormone-sensitive lipase 

(HSL) cleaves DAG into MAG. Complete hydrolysis accomplishes monoacylglycerol lipase 

(MGL) by the conversion of MAG into fatty acid and glycerol. 

1.2.2.1 Regulation of lipolysis 

In response to changing metabolic conditions and nutrient intake, nutritional 

regulation of lipolysis occurs at multiple levels. Insulin inhibits lipolysis [94], whereas fasting 

and exercise acutely stimulate lipolysis and the primary activators are catecholamines 

(norepinephrine, epinephrine) [95, 96]. Norepinephrine binds to β-adrenergic receptors on the 

plasma membrane of adipocytes. These receptors are coupled with Gs-proteins that transmit a 
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stimulatory signal to adenylyl cyclase in order to generate cyclic adenosine monophosphate 

(cAMP). cAMP activates protein-kinase A (PKA) [97]. PKA phosphorylates HSL on 

multiple sites, which causes activation and subsequent translocation of HSL from cytosol to 

lipid droplet [98-100]. Except for HSL, PKA also phosphorylates perilipin, a major lipid 

droplet coating protein in adipocytes. As a result, perilipin moves away from the lipid droplet 

[101]. This increases the area on the surface available for lipolytic attack of the droplet [102]. 

Moreover, phosphorylated perilipin assists in the translocation of HSL from cytosol to lipid 

droplet [103]. 

Insulin is a suppressor of lipolysis and this regulation involves cAMP-dependent, as 

well as cAMP-independent mechanisms. cAMP-dependent suppression of lipolysis involves 

activation of phosphodiesterase 3B which degrades cAMP in adipocytes [104]. The second 

mechanism involves the stimulation of protein phosphatase-1. This enzyme, when activated, 

rapidly dephosphorylates and deactivates HSL, causing a fall in the rate of lipolysis [100, 

105-107]. 

 

1.2.3 Secretory function of adipose tissue 

AT functions as an active endocrine organ and releases multiple bioactive molecules 

known as lipokines [87] and adipokines [5, 108, 109]. Via these molecules, AT is able to 

communicate with distinctly located metabolically active organs and influence the systemic 

metabolism. As lipokines were already mentioned in the section below (1.2.1.3.2), the text 

will continue directly with adipokines.  

1.2.3.1 Adipokines 

A group of cytokines secreted by AT, i.e. adipokines, comprises today hundreds of 

molecules, including both anti-inflammatory (f.e. adiponectin) and pro-inflammatory 

mediators (f.e.tumor necrosis factor α: TNFα, monocyte chemoattractant protein 1: MCP1, 

interleukin 6: IL6). Key adipokines, their source and function are depicted in Table 1. 

Because issue of adipokines exceeds the scope of this thesis, only selected adipokines will be 

mentioned in more detail. 
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Adipokine Primary source Function 

Adiponectin Adipocytes Insulin sensitizer, anti- inflammatory 

Angiopoietin-like protein 2 Adipocytes, other cells Local and vascular inflammation 

C-X-C motif chemokine ligand 5 SVF cells (macrophages) Antagonism of insulin signalling through the JAK-STAT pathway 

Interleukin 18 SVF cells Broad-spectrum inflammation 

Interleukin 6 Adipocytes, SVF cells, liver, muscle Changes with source and target tissue 

Leptin Adipocytes Appetite control through the central nervous system 

Lipocalin 2 Adipocytes, macrophages Promotes insulin resistance and inflammation through TNF secretion from adipocytes  

Monocyte chemotactic protein 1 Adipocytes, SVF cells  Monocyte recruitment 

Nicotinamide 

phosphoribosyltransferase 
Adipocytes, macrophages, other cells Monocyte chemotactic activity 

Retinol Binding Protein 4 Liver, adipocytes, macrophages Implicated in systemic insulin resistance 

Resistin 
Monocytes/macrophages (human), adipocytes 
(rodent) 

Promotes insulin resistance and inflammation through IL6 and TNF secretion from 
macrophages 

Secreted Frizzled Related Protein 5 Adipocytes Suppression of pro- inflammatory WNT signalling 

Tumor necrosis factor SVF cells, adipocytes Inflammation, antagonism of insulin signalling 

Table 1: Adipokines, their primary source and function. SVF (stromal vascular fraction). Adapted from [5]. 
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Adiponectin 

Adiponectin is almost exclusively produced by adipocytes and is present at high levels 

in blood (3-30 µg/ml) [108]. It has a collagen-like domain followed by a globular domain [5]. 

Adiponectin forms trimers, through collagen-like domain interactions, that can further 

associate to form stable multimeric oligomers (hexamers and a high molecular weight form). 

All three forms are detectable in the blood. Plasma levels of adiponectin are negatively 

associated with the accumulation of body fat, particularly visceral fat [110] and with plasma 

levels of IL6 and C-reactive protein (CRP) [111, 112], i.e. adiponectin levels in plasma are 

lowered in obese individuals with signs of systemic inflammation. On the other hand, 

bodyweight reduction in obese women through calorie restriction and lifestyle changes is 

associated with an increase in adiponectin levels. Thus, adiponectin is a unique adipokine 

expressed at the highest levels by the functional and insulin-sensitive adipocytes and 

downregulated in dysfunctional adipocytes frequently found in obese body [113]. 

 

Leptin 

 Leptin is the product of the obese gene (ob; also known as lep), which was identified 

in ob/ob mice by the method of positional cloning [114]. This adipokine is important in 

regulating feeding behaviour through central nervous system. Leptin levels, contrary to 

adiponectin levels, correlate positively with adiposity and thus, leptin functions as a measure 

of long term energy reserves. The ob/ob mice, which lack leptin, suffer from hyperphagia 

leading to obesity and insulin resistance [115]. Administration of recombinant leptin in leptin 

deficient animals or humans reverses these changes. Nevertheless, in diet induced obesity, 

increased leptin levels do not exert the expected anorexic responses that would be capable to 

prevent further weight gain which indicates the occurrence of leptin resistance [116]. 

 In addition, leptin has multiple roles in the immune system. It is an inflammatory 

molecule that is capable of activating both adaptive and innate immunity [117]. 

  

Interleukin 6 

IL6 belongs to a group of pro-inflammatory cytokines. It is estimated that AT 

produces approximately one-third of total circulating IL6 [118]. Clinically, plasma IL6 levels 

positively correlate with the degree of adiposity in human populations [118] and weight loss 

leads to a reduction in IL6 levels [112, 119]. Plasma levels of IL6 are also increased in type 2 

diabetic patients and elevated IL6 plasma concentration predicts the development of type 2 

diabetes [120]. Increased secretion of IL6 may disturb proper insulin signalling [121] and 
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thus diminish not only glucose uptake by insulin-sensitive tissues but also increase AT 

lipolysis, which can contribute to ectopic lipid accumulation and lipotoxicity [122]. 

 

In healthy AT, the expression of anti-inflammatory and pro-inflammatory adipokines 

is balanced. However, in most obese humans, the expression of pro-inflammatory adipokines 

predominate and promote insulin resistance which is manifested by decreased insulin-

stimulated glucose transport and metabolism in adipocytes and skeletal muscle and by 

impaired suppression of hepatic glucose output [123]. In addition to pro-inflammatory 

adipokines, various pathological conditions may disturb well-ordered AT milieu. Next 

chapter will introduce the global problem of obesity and analyse some of the possible culprits 

AT dysfunction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Adipocytes are specialised to safely energy storage and release. This is due to lipogenesis 

and lipolysis. Lipogenesis is the process of fatty acid and triglyceride synthesis. The term 

de novo lipogenesis means fatty acid formation from non-lipid precursors. These 

precursors come from a various cellular pathways, most commonly from carbohydrate 

metabolism. Lipolysis is the opposite process, responsible for the breakdown of 

triglycerides stored in lipid droplets. Newly synthetised and released lipids can serve as 

signalling molecules. In addition to lipokines, adipocytes and others cells of adipose 

tissue secrete plethora of molecules called adipokines with anti-inflammatory or pro-

inflammatory properties. However, pro-inflammatory environment, which is often seen in 

obesity, can disrupt proper functions of adipocytes and adipose tissue. 
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1.3 Pathophysiology of adipocytes and adipose tissue 

1.3.1 Obesity 

Conditions of excess calorie intake and prolonged food abundance result in the 

excessive storage of fat, eventually leading to obesity, defined as body mass index (weight in 

kilograms divided by the square of the height in m2) over 30 kg/m
2
 [124, 125].  

World Health Organisation (WHO) reported that since 1980 obesity has doubled and 

now kills more people than undernourishment. In 2014, more than 1.9 billion adults were 

overweight (BMI 25-30 kg/m2) and over 600 million were obese. The alarming point is that 

obesity spreads rapidly not only among adults, but also in children and the elderly. This poses 

a major public health issue, since obesity is a major contributor to the global burden of 

chronic diseases [126]. In fact, obesity is associated with an increased risk of developing 

insulin resistance [127] and is a major risk factor for many diseases such type 2 diabetes 

(which is predicted to become the 7
th
 cause of death in 2030) [128, 129], atherosclerosis, 

hypertension, stroke, depression, infertility, obstructive sleep apnoea and several types of 

cancer [130, 131]. 

Several decades of research have brought a huge amount of evidence that a cornerstone in the 

pathogenesis of obesity-related diseases is indeed a dysfunction of AT. 

 

1.3.2 Adipose tissue dysfunction 

1.3.2.1 Insulin resistance 

AT and adipocyte dysfunctions play a crucial role in the pathogenesis of obesity-

related insulin-resistance, the most commonly known metabolic complication of obesity 

[132]. Insulin resistance is defined clinically as the inability of a known quantity of 

exogenous or endogenous insulin to increase glucose uptake and utilisation in an individual 

as much as it does in a normal population [133]. Disability to react on insulin stimuli leads 

inevitably to deterioration of adipocyte metabolic function. On the body level, insulin 

resistance manifests itself as a hyperinsulinemia and dyslipidaemia, accompanied by 

hyperglycaemia in postprandial state. 

1.3.2.2 Adipocyte hypertrophy 

In obesity, AT expands in order to safely store lipids. This can occur through two 

processes: recruitment of new adipocytes (hyperplasia) or/and expansion of existing 
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adipocytes in size (hypertrophy). Hypertrophic, rather than hyperplastic, obesity is known to 

be related to insulin resistance and metabolic syndrome [134-136] and is an independent 

predictor for development of type 2 diabetes [137, 138].  

Therefore, it was hypothesized that adipocytes are able to effectively and safely store 

lipids only until they reach certain size. This “critical” size is probably related to the degree 

of various stress conditions affecting expanding adipocytes, including increased mechanical 

stress, hypoxia, mitochondria stress and associated production of reactive oxygen species 

(ROS) and ER overload [139]. It was suggested that these stresses contribute to the 

deterioration of basic physiologic function of adipocytes, i.e. lipogenesis, and at the same 

time they initiate processes leading to higher production of pro-inflammatory adipokines and 

eventually to cell death by apoptosis [126]. Furthermore, enlarged adipocytes of obese 

subjects are resistant to antilipolytic effect of insulin. Deregulated lipolysis leads to an 

increased release of fatty acids into the circulation [140], resulting in the ectopic deposition 

of lipids in nonadipose tissues (where lipids cause so called “lipotoxicity”) and the promotion 

of systemic insulin resistance. 

As one of the aims of this thesis is dedicated to the effects of ER stress on adipocytes, 

ER stress is described in greater details in following subchapter. 

1.3.2.3 Endoplasmic reticulum stress 

The ER is a type of specialized cytosolic organelle in which various metabolic signals 

and pathways are integrated to regulate lipid, glucose, cholesterol and protein metabolism. 

The ER is a principal site of synthesis of all secretory and integral membrane proteins. Within 

the lumen of the ER, protein chaperones such as BiP, known also as glucose regulated protein 

78 (GRP78), or heat shock protein family A member 5 (HSPA5), calnexin and calreticulin 

assist in the proper folding of de novo peptides and prevent the aggregation of unfolded or 

misfolded precursors. Once folded into the right conformation, the proteins are released to the 

Golgi for final modifications and transported to their cellular destinations. In addition to 

protein synthesis, the ER is also the site of lipid biosynthesis and triglyceride droplet 

formation [141-143]. 

When the ER function becomes insufficient or is chronically disturbed, the 

accumulation of unfolded proteins creates ER stress. Various factors have been reported to 

contribute to ER stress [144]. For example, disturbances in cellular redox regulation (as a 

consequence of oxidants), hypoxia or reducing agents affect the formation of protein 

disulphide bonds in the ER lumen, which can lead to improper protein folding. Deprivation of 
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glucose disrupts N-linked protein glycosylation in the ER and disruption of Ca
2+

 impairing 

the functions of Ca
2+

-dependent chaperons, including HSPA5. Importantly, high fat diet was 

also shown to cause ER stress [145]. 

In obesity, the capacity of adipocyte for protein and lipid synthesis is challenged and 

has to be enhanced to meet the increased demands. ER stress activates a stress response 

signalling network known as the unfolded protein response (UPR). The overall goal of the 

UPR is to restore the normal functions of the ER and therefore the functions of the cell [146]. 

The UPR acts via three signalling arms or branches, denoted by three stress-sensing proteins 

found in the ER membrane: PKR-like eukaryotic initiation factor 2a kinase (PERK), inositol-

requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6). 

These transmembrane proteins are normally bound in ER by the chaperone HSPA5 in 

their intraluminal domains. When client (i.e. unfolded proteins) bound by HSPA5 with higher 

affinity than UPR sensors accumulates within ER, less HSPA5 is available for binding UPR 

sensors. Without HSPA5 anchor, free PERK and IRE1 auto-oligomerize and undergo 

autophosphorylation, which leads to the activation of downstream signalling. ATF6 is 

released to the Golgi where it undergoes two subsequent proteolytic cleavages, thereby 

producing an active transcription factor. 

Immediate result of PERK activation is repression of protein translation through 

inhibitory phosphorylation of eukaryotic translational factor 2α (eIF2α) (at serine 51). This 

phosphorylation also results in a selectively increased translation of several target genes 

including ATF4, which induces expression of many genes including those involved in ER 

redox control [endoplasmic reticulum oxidoreductase 1 (ERO1)] [147], inflammation [148], 

apoptosis [C/EBP homologous protein (CHOP) ] [149], and the negative feedback release of 

eIF2α inhibition [growth arrest and DNA damage-inducible protein (GADD34)] [150]. 

In addition to nonselective inhibition of de novo protein synthesis that minimizes the 

acute ER burden, the UPR induces the production of chaperones to assist with the unfolded 

protein load. Activated ATF6 translocates to the nucleus where it enhances transcription of 

chaperones genes such as HSPA5, CALR, and GRP94 [151, 152]. At the same time, the 

process of ER-associated degradation (ERAD) is upregulated to facilitate the clearance and 

degradation of excess client proteins from the ER lumen. This is mediated by ATF6 induced 

expression of ER degradation-enhancing α-mannosidase-like protein (EDEM), which is 

involved in this process. Importantly, ATF6 upregulates X-box protein 1 (XBP1) mRNA, 

which is further processed and specially regulated by the IRE1 response arm [153]. 
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IRE1 activation by the UPR contributes to the increase in protein chaperone content, 

ER biogenesis and enhanced secretory capacity through the activation of XBP1. IRE1 acts as 

an endoribonuclease and cleaves a 26bp segment out of the mRNA of XBP1, creating a 

spliced mRNA which is translated into an active form of the transcription factor (XBP1s) 

[153]. XBP1s, in turn, induces the expression of chaperones and proteins involved in ER 

biogenesis and secretion. Thus, XBP1s is a key element of one of the major pathways 

regulating ER function and folding capacity.  

The process of the UPR activation and its consequences on cell function is depicted in 

Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the effort to restore the ER homeostasis, ER stress-induced IRE1 

phosphorylation leads to the recruitment of tumor necrosis factor receptor-associated factor 2 

(TRAF2) and apoptosis signal-regulating kinase 1 (ASK1) to the cytosolic leaflet of the ER 

membrane [154]. This leads to the phosphorylation and activation of c-Jun-N-terminal kinase 

(JNK). JNK activity may lead to a variety of downstream effects depending on the cellular 

context, some of which include apoptosis, cell survival, insulin resistance and inflammation. 

Since the effect of ER stress on differentiation of preadipocytes and lipogenesis 

remains unknown, we have tried to shed more light into this topic in Project A and B. 

Figure 6: Activation of unfolded protein response. UPR is initiated through three paralelle signaling arms: IRE-1, 

PERK and ATF6. UPR activation stimulates protein degradation, selectively attenuates protein synthesis and increases 

the production of chaperons. When the ER stress is not resolved, the cell can undergo apoptosis. Adapted from [6]. 

 



39 

1.3.2.4 Inflammation 

Obesity is accompanied by chronic low-grade inflammation. This inflammation 

differs from “classical” inflammation, as there are no typical signs of inflammation as rubor  

(heat), calor (pain), dolor (redness) and tumor (swelling). On the other hand, the pro-

inflammatory mediators and signalling pathways are the same for both types of inflammation 

[155]. 

 In obesity, stressed or damaged cells release damage-associated molecular patterns 

which are sensed by pattern-recognition receptors, thereby inducing inflammation [156]. For 

example, free fatty acids released from hypertrophied adipocytes can report, as a danger 

signal, their diseased state to macrophages via Toll-like receptor 4 (TLR4) complex. 

Similarly, production of pro-inflammatory cytokines by dysfunctional adipocytes attracts and 

activates immune cells. Stressed hypertrophic adipocytes produce TNFα that stimulates 

preadipocytes and endothelial cells to secrete MCP1 [157]. MCP1 belongs to one of the 

critical factors attracting macrophages to adipocytes [158]. Thus, as obesity develops, AT 

became progressively infiltrated by macrophages [157, 159]. Increased secretion of leptin 

(and/or decreased production of adiponectin) by adipocytes may also stimulate adhesion of 

macrophages to endothelial cells [160] and infiltration of macrophages into AT [161]. Local 

proliferation of macrophages also contributes to obesity-associated AT inflammation [162]. 

Whatever the initial stimulus to recruit macrophages into AT is, once these cells are present 

and active, they could perpetuate along with adipocytes and other cell types a vicious cycle of 

macrophages recruitment, production of inflammatory cytokines and impairment of adipocyte 

function [163]. 

 Macrophage population and function are highly heterogeneous, depending on the 

surrounding environment. This has led to their characterization and classification. As noted 

earlier (chapter 1.1.3.2.2 Immune cells), macrophages can exert M1 phenotype, identified as 

the pro-inflammatory or “classically”-activated state, secreting various pro-inflammatory 

cytokines (TNFα, IL6, IL1b) and the M2 phenotype referred as to the anti-inflammatory or 

“alternatively”-activated state, which is characteristic by the production of IL10, remodelling 

capacities and lipid handling [164]. It has been shown that macrophages recruited during a 

diet-induced obesity exhibit an inflammatory M1 profile compared to resident AT 

macrophages [165]. 

The majority of these macrophages aggregate in so-called “crown-like structure”, 

which surround dead adipocytes and serve to scavenge adipocyte debris [166]. In rodents, 
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these macrophages can comprise up to 40% of the cells in obese adipose tissue [159]. These 

accumulated macrophages are the further source of pro-inflammatory cytokines [167, 168]. 

 Although the rise in macrophage population was recognized as first, the metabolic 

state of AT alters the composition of other immune cell populations. Neutrophils participate 

in the progression of immune response by facilitating the recruitment of macrophages, 

dendritic cells and lymphocytes [43]. Contrary, obesity is linked with the reduction in 

eosinophil numbers [46]. 

 Pro-inflammatory cytokines (such as IL6 and TNFα) and saturated free fatty acids 

belong to the major contributors to the establishment of insulin resistance [169, 170]. These 

factors activate various ser/thr kinases such as nuclear factor-κB (NF-κB) signalling pathway, 

JNK or PKC [170, 171].  

NF-κB is normally kept in the cytoplasm by the inhibitor of κB (IκB). Activation of 

IKK leads to phosphorylation of IκB and subsequent release of NF-κB which translocates to 

the nucleus. As a transcriptional factor, NF-κB binds to the promoters of pro-inflammatory 

genes and initiates transcription of its target genes [172].  

Activation and phosphorylation of JNK leads to the phosphorylation of c-Jun 

homodimers. Upon phosphorylation, c-Jun binds c-Fos in order to form c-Jun-c-Fos 

heterodimeres. These heterodimers bind to promoter sequences of proinflammatory genes 

and activate their transcription. JNK activation also directly inhibits insulin signalling 

pathways through serine-threonine phosphorylation of IRS1 [173]. The consequences of this 

phosphorylation event are numerous. Interaction of IRS1 with the insulin receptor is blocked, 

tyrosine phosphorylation is prevented and IRS1 can be marked for proteasome-mediated 

degradation [174]. The simplified pathway from macrophages accumulation in obese AT to  

insulin resistance is depicted on Figure 7. 

Notably, proinflammatory cytokines not only interfere with insulin signalling, but also 

induce cellular senescence. TNFα, interferon (IFN) γ and β induce cellular senescence in 

epithelial cells by producing ROS and activating the ATM/p53/p21 signalling pathway [175]. 

C-X-C Motif Chemokine Receptor 2, a chemokine receptor, induces cellular senescence of 

fibroblast [176]. Thus, imbalance of pro- and anti-inflammatory factors in obese AT 

additionally supports the accumulation of senescent cells, which is considered as a hallmark 

of aging [177, 178]. 
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1.3.2.5 Senescence 

 Cellular senescence is defined as an irreversible growth arrest that occurs in response 

to various cellular stressors, such as telomere shortening, DNA damage, oxidative stress or 

oncogenic activation [179]. Thus, depending on the type of stressor, several “subtypes” of 

cellular senescence have been identified [178]. These include: 

 

 Oncogene-induced senescence 

 Stress-induced premature senescence 

 Replicative senescence 

 

In obesity, senescent cells could be classified within stress-induced premature senescence. 

Irrespective of the origin, all senescent cells adopt several unique characteristics (Figure 8), 

which includes large and flattened morphology in culture, upregulation of cell cycle 

inhibitors such as p16, p21 and p53, accumulation of DNA damage foci, higher production of 

ROS and the shift of pH optimum for lysosomal senescent associated β-galactosidase 

(SAβgal) activity [180, 181]. This activity is based on the increased lysosomal content of 

senescent cells, which enables the detection of lysosomal βgal at a suboptimal pH (pH 6.0) 

[182].  In fact, histochemical detection of β-galactosidase activity at pH 6.0 (referred to as 

senescence associated-βgal) is probably the most widely used assay for senescence detection 

[183]. Nevertheless, to define senescence both in culture cells and in tissues, a collection of 

markers in combination should be used [184]. 

Figure 7: Obesity-induced macrophage 

infiltration into AT causes insulin 

resistance. In AT in a lean state, most 

resident macrophages are M2 macrophages 

that contribute to insulin sensitivity. High fat 

diet and/or lack of exercise cause hypertrophy 

of adipocytes. These produce TNFα making 

preadipocytes to secrete MCP1 into the 

circulation, leading to the recruitment of 

circulating monocytes to AT. These infiltrated 

monocytes differentiate into activated M1 

macrophages, which robustly secrete 

proinflammatory cytokines such as TNFα, IL6, 

and MCP1, thus contributing to local low-

grade inflammation. At the same time, these 

cytokines are transported through the 

bloodstream causing insulin resistance in 

insulin-sensitive tissues. 
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Although senescent cells are unable to divide, they are metabolically active. This high 

metabolic activity is pointed to a complex pro-inflammatory response known as senescence-

associated secretory phenotype (SASP) [185-188] The SASP is mediated by the transcription 

factors NF-κB and C/EBPβ and includes the secretion of pro-inflammatory cytokines (IL6, 

IL8), chemokines and macrophage inflammatory proteins (MCP1, macrophage migration 

inhibitory factor), growth factors (TGFβ), granulocyte-macrophage colony-stimulating factor 

(GM-CSF) and proteases [178]. The secretion of these pro-inflammatory agents by senescent 

cells causes inflammation that, at least in some cases, may be pivotal for the clearance of 

senescent cells by phagocytosis [189, 190]. 

1.3.2.5.1 Senescence in the context of adipose tissue 

Interestingly, even a low absolute number of senescent cells in a tissue may be able to 

exert systemic effects through the SASP [179]. In this way, senescent cells within AT could 

contribute to chronic low-grade inflammation in obesity. Furthermore, senescent cells can 

also trigger senescence in neighbouring cells through SASP component, most notably TGFβ, 

through a mechanism that generates ROS and DNA damage [191-193]. Thus, the 

accumulation of senescent cells within obese AT could represent another important step in 

development and progression of type 2 diabetes [194, 195]. 

 Preadipocytes belong to the cells known to be susceptible to the development of 

cellular senescence [196, 197]. Intriguingly, it was shown that the abundance of senescent 

preadipocytes is greater in obese subjects compared with lean age-matched counterparts, even 

Figure 8: Characteristics of senescent cell 

are represented by the use of several 

molecular markers. Such molecular markers 

can represent expression of senescent-

associated β-galactosidase, expression of 

secretory factors (e.g. IL6, IL8), the activation 

of immune surveillance-related genes and 

possible regulators for their pro-survival 

response (p-Akt, p-Erk, not shown), the 

activation of the pathways that regulate the 

secretory phenotype (e.g. p-p65 or p-p38),  

lack of cellular proliferation [e.g. lack of 

bromodeoxyuridine (BrdU) incorporation], the 

cell cycle arrest machinery (e.g. p16, p53, 

p21), activation of the DNA damage 

response [e.g. histone H2AX 

phosphorylation (γH2AX)]. Inspired by [3]. 
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in young individuals and this burden can be over 30-fold more in extremely obese subjects 

[196]. Moreover, AT SA-βgal activity and p53 increase with BMI [196]. Abundance of SA-

βgal+ cells also increases in fat tissue in diabetes. Importantly, mRNA and protein expression 

of p53 and mRNA expression of p21 are increased in the fat cell fraction from subjects with 

diabetes [198]. Also, it was found that a higher level of DNA oxidation and a reduction in 

telomere length in AT of mice on a high-fat diet leads to the activation of the p53 pathway in 

adipocytes [199].This suggests that a senescent-like state might occur in also differentiated 

adipocytes, even though these cells are post mitotic and therefore would not fit the usual 

definition of senescence [196]. The exact functional consequences of the senescence in 

adipocytes remain rather elusive. However, when the adipocytes in vitro were exposed to 

doxorubicin, the drug frequently used to experimentally induce premature senescence, they 

exhibited deteriorated glucose uptake and increased lipolysis. All this suggests that obesity is 

linked with accelerated cellular aging within AT that could partly explain worsened AT 

functions. Therefore, a relationship of possible senescence-like state in adipocytes/AT and 

DNL was investigated in Project B.  

1.3.2.5.2 Therapeutic clearance of senescent cells 

Based on the above discussed facts, it was hypothesized that the clearance of 

senescent cells might provide a new possibility to treat obesity-associated dysfunctions. As 

noted earlier (1.3.2.5.1 Senescence in the context of adipose tissue), SASP itself is believed to 

attract immune cells, which carry out the clearance of senescent cells [189, 200]. However, 

the functions of immune system decline with aging, which lead to progressive accumulation 

of senescent cells [201-203]. Similarly, the effectivity of immune cells might be affected by 

components of the metabolic syndrome, including abdominal obesity, diabetes, hypertension, 

and atherosclerosis, which may be the reason for increased senescent cell burden [196, 198, 

204]. Nevertheless, the role of immune cells in the clearance of senescent cells in these 

diseases is less clear. Up to now, clearance of senescence cells has been studied mainly on 

mice models of aging and this approach shows promising results. For example, the clearance 

of p16+ senescent cells (including those in AT) delayed ageing-associated disorders in a 

progeroid mouse model [205]. In humans, any possible treatment to remove senescent cells 

has not been approved yet. Nevertheless, new senolytic agents, which are small molecules 

selectively inducing death in senescent cells, are currently being investigated [206-208]. For 

example, ABT263 showed to be a potent senolytic agent and a specific inhibitor of the anti-

apoptotic proteins BCL-2 and BCL-XL [207]. Oral administration of ABT263 to irradiated or 
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normally aged mice led to the effective depletion of senescent cells, including senescent bone 

marrow hematopoietic stem cells and senescent muscle stem cells. 

 Nevertheless, one should be careful with complete depletion of senescence cells, 

because although cellular senescence plays a negative role in the function of various tissue 

including AT, senescence is also involved in normal embryogenesis, development, wound 

repair and protection from the cancer [178]. Elimination of senescent cells generally remove 

only a portion of senescent cells, and the effect of removing all senescent cells from the tissue 

is unknown [209]. However, reduction of 30-70% of senescent cells does not appear to have 

detrimental effects on health in experimental animals [205, 210]. Thus, strategies targeting 

senescent cells could improve metabolic function of obese AT, as well as aged AT. 

1.3.2.6 Aging  

Similarly as obesity, chronological aging is associated with ectopic fat accumulation 

causing lipotoxicity [211], chronic-low grade inflammation [212] and indeed, with the 

accumulation of senescent cells.  

 With aging, extensive changes in preadipocyte function occur [196]. The in vitro 

replicative potential of preadipocytes declines, as well as subsequent adipogenic potential. 

Preadipocytes are more susceptible to lipotoxicity, because of reduced expression of enzymes 

required for fatty acids processing [213] and show pro-inflammatory phenotype [196]. 

Interestingly, these preadipocyte changes progress at different rates and to different extends 

depending on the fat depot. Age-dependent decline in replication and differentiation remains 

evident in most clones derived from single preadipocyte cultured in parallel from animals of 

different ages [214, 215].  

 Preadipocytes from old individuals have lower expression of C/EBPα, PPARγ and 

their target genes than in preadipocytes from young individuals [216-218]. Expression of 

these adipogenic transcription factors is also lower in serially passaged human preadipocytes 

when the cells are exposed to differentiation-inducing medium [219]. Interestingly already 

six population doublings is sufficient to detectably impair adipogenesis [220, 221]. Adipocyte 

metabolism (e.g. lipolysis) is negatively affected by aging as well [222]. 

Although processes triggered by obesity may accelerate aging of AT, aging per se can 

drive mechanistic pathways leading to aggravating of age-related dysfunction both 

independently and synergistically with obesity [223]. As mentioned, aging is associated with 

a pro-inflammatory state in metabolic tissues. However, age-related insulin resistance may be 

also differentially regulated. Bapat et al. performed comparative adipo-immune profiling that 
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revealed accumulation of T regulatory cells (TREG) in aged AT, but not in obese AT [224]. 

Furthermore, mice deficient in TREG specifically in fat area were protected against age-

associated insulin resistance, but remained susceptible to obesity-associated insulin 

resistance. Finally, selective depletion of AT TREG increased AT insulin sensitivity, although 

the exact mechanism remains unclear. 

Together, many classical aging mechanisms, such as cellular senescence or chronic 

inflammation, occur in AT and are accelerated in obese AT. Therefore, interventions that 

target fundamental aging mechanisms should have beneficial effect on AT. One of possible 

interventions includes lifestyle changes. Next chapter is devoted to the problematic of diets 

and lifestyle interventions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Obesity usually leads to pathophysiological behaviour of cells within adipose 

tissue. Adipocytes that expand by hypertrophy are exposed to various stressors. Unability 

to cope with calorie overload leads to endoplasmic reticulum stress and unfolded protein 

response. The activation of unfolded protein response through three arms (PERK, ATF6 

and IRE1α) should resolute the endoplasmic reticulum stress. However, the outcomes 

may vary, depending on the severity of the stress. Usual consequence is the activation of 

inflammatory pathway. Adipocytes and surrounding cells start to release many pro-

inflammatory cytokines to attract macrophages and other immune cells into adipose 

tissue. Inflammation, reactive oxygen species and other stressors can induce in 

neighbouring cells senescence, an irreversible growth cell arrest. Senescent cells are 

characterised, among others, by increased mRNA expression of p16 and p21, detection of 

β-galactosidase at pH 6.0 and senescence-associated secretory phenopyte. Adipose tissue 

of obese individuals favors the accumulation of senescent cells and especially 

preadipocytes are very susceptible to the development of senescence. Recent data suggest 

that senescent-like state might occur even in differentiated adipocytes. Today, no methods 

enabeling the removal of senescent cells have been approved in human. Therefore, 

senescent cells accumulate with age in many tissues, including adipose tissue. Hence, 

interventions that target fundamental aging mechanisms should have an effect on adipose 

tissue. 
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1.4 Obesity management 

Typically, strategies for obesity treatment can be divided into the following categories: 

 Non-pharmacological (diet and lifestyle intervention) 

 Pharmacological (anti-obesity drugs such as orlistat and others) 

 Surgical (bariatric surgeries) 

 

Pharmacological treatment is recommended just for short-term use, because of the 

frequent side effects and rather low efficacy [225]. Today, Food and Drug Administration 

allowed only five pharmacological agents, which influence absorption of neurotransmitters or 

lipids [226]. Therefore, another option for the treatment of obese patients may be bariatric 

surgery. The success rate (usually defined as >50% excess weight loss, i.e. total weight loss 

divided by baseline excess weight, that is maintained for at least five years from the surgery) 

from surgical treatment ranges from 40% to >70% in the complex operations [227]. 

Nevertheless, because of inherent complications from surgeries and high cost, this option is 

usually considered only for morbidly obese patients or moderately obese individuals with 

comorbidities [228-230]. Moreover, patients undergoing any kind of bariatric surgery need 

lifelong medical monitoring and nutritional supplements. Therefore, hypocaloric diets and 

lifestyle modifications remain the key components of weight-reducing treatment of obesity 

and obesity-related disorders. 

 

1.4.1 Dietary and lifestyle interventions 

1.4.1.1 Hypocalorie diets 

Very-low calorie diet (VLCD) is defined as a diet comprising the daily energy intake 

of 400-800 kcal per day (1600-3500 kJ). VLCD is usually administrated for 4-8 weeks and 

can result in significant weight loss [231-234]. The most striking decrease of weight is during 

the first week (2-8 kg), the later weight loss is moderate (maximally 2 kg/week) [235]. There 

is a number of commercially available VLCDs (Cambridge Weight Plan TM, Modifast, 

Optifast, Ultra Eat and Loose, Ultra Fit and Slim, Slim fast), frequently in the form of liquid 

diet. VLCDs are considered safe and effective when used under careful medical surveillance 

[236]. The diets are designed for patients with a BMI ≥30kg/m
2
,i.e. subjects with increased 

risk of cardiovascular morbidity and mortality. 
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In contrast to VLCD, low-calorie diet (LCD) comprises of 800-1500 kcal per day 

(3500-5000 kJ), consists of natural foods and is commonly administrated for 2-3 months. 

To avoid regaining the weight after the diet, weight-maintenance phases are important 

and represent the stabilization of body adaptation to a new energy balance [237]. This 

adaptation may be reached and evaluated in several months after the end of calorie restriction 

phase of diet. 

It is worthy to mention that these diets performed under professional guidance are 

designed to reduce mainly the amount of fat mass without the reduction (or with the minimal 

reduction) of lean mass. While acute energy deficit of VLCD leads to the improvement of 

whole body metabolic parameters, AT demonstrate higher inflammation and decrease 

expression of metabolic genes [238-240]. However, after the long-term adaption to VLCD, 

the inflammation decreases under the prior values and expression of metabolic genes is 

normalised. However, no information is available on the very early reaction of AT to severe 

energy deficit. Therefore, in Project C, we compared AT response after 2 and 28 days of 

VLCD. 

1.4.1.2 Lifestyle modification 

Lifestyle modification includes three primary components: diet, exercise and 

behaviour therapy. The instructions are provided by trained interventionist, typically health 

professionals. Complex interventions are designed to induce a weight loss of approximately 

0,5-1 kg/week for the first 12 weeks, with more gradual weight loss thereafter, until weight 

loss stagnates at 6-9 months [241]. 

1.4.1.2.1 Diet 

The Obesity Guidelines recommend a deficit of 500-750 kcal per day (i.e. LCD as 

described above in 1.4.1.1 Hypocalorie diets) in a diet to get loss of 0.5-1 kg per week [228]. 

Therefore, diets with 1200-1500 kcal/day and 1500-1800 kcal/day are often prescribed for 

women and men, respectively. The calorie intake can be adjusted accordingly if patients do 

not achieve the expected weight loss. Interestingly, the Guidelines also acknowledge the 

benefit of restricted consumption of a specific macronutrient to induce an energy deficit.  

1.4.1.2.2 Physical activity 

Lifestyle interventions typically prescribe 150-180 min per week of aerobic activity, 

such as brisk walking, or other types of moderate-intensity aerobic exercise [228]. Regular 
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aerobic activity is associated with many health benefits such as improvements in lipid levels, 

decrease of blood pressure and visceral fat [242] and improved fitness [243].  

As physical activity per se (without dietary restriction) has no or only marginally 

effect on weight loss [244, 245], obese individuals should engage in physical activity for its 

cardiovascular benefits or as a prevention of sarcopenia in the elderly rather than its effects 

on weight [246]. 

1.4.1.2.3 Behaviour therapy 

 Behaviour therapy provides a set of strategies and techniques to modify diet and 

patters of physical activity [228]. The cornerstone of behaviour change is self-monitoring of 

food and calorie intake, along with recording physical activity and weight [241]. Individuals 

who engage in frequent self-monitoring of eating and weight achieve the largest weight 

losses [247-249]. 

1.4.1.3 Weight loss in the elderly 

The general recommendations for weight loss and maintenance of a healthy body 

weight in order to improve quality of life and decrease obesity-related health risks are clear 

and definite in the young and middle age groups. However, there is a little evidence about 

application of these guidelines in the group of elderly. This represents a new challenge, 

because increased life expectancy and declining fertility has dramatic shifted the age structure 

worldwide [250]. Large populations are getting old and this has become a global social and 

major health burden. As a consequence of aging, a progressive decline in muscle mass and 

strength, collectively termed sarcopenia, develop [251]. The reported prevalence of 

sarcopenia varies widely depending on the definition and methods of assessment: it ranges 

from 8% to 40% of people aged over 60 years [250]. Sarcopenia results in frailty, loss of 

independence, physical disability and increased mortality in older adults [252, 253]. The 

combination of sarcopenia and obesity led to a term of sarcopenic obesity which is associated 

with more physical functional decline than simple obesity [254]. People with sarcopenic 

obesity may be more insulin resistant, and have a higher risk for metabolic syndrome and 

atherosclerosis than simply obese. 

Today, there is a little evidence for outweigh of benefits over the risks from weight 

loss in the obese and possible sarcopenic elderly. Weight loss could aggravate further 

sarcopenia and frailty. Therefore, weight loss prescription should ensure treatment that avoid 

loss muscle mass and bone in the elderly [255, 256]. Comorbidities, frailty, sarcopenia, 

mobility and functional limitations and influence of social and living environments make the 
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practical recommendation for weight management very complex and challenging. Thus, 

further research should be done in this group of population. Indeed, a clinical study described 

in Project D was designed with the aim to clarify the effects of weight loss in the elderly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-pharmacological strategies to obesity treatment include diets and lifestyle 

interventions. Very-low calorie diet comprises 400-800 kcal per day, wheather low-

calorie diet 800-1500 kcal per day. Weight maintenance phase is aimed to stabilise 

adaptation of the body to new weight. Lifestyle interventions are more complex: apart 

from a diet include physical activity and behavioural therapy. Better recommendations for 

weight loss and maintenance of health body weight should be defined for the elderly, 

because little is known about the ratio benefits/risk from weight loss in this group liable to 

sarcopenia. 
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2 Aims 

 The overall aim of this thesis was to assess lipogenesis, the fundamental metabolic 

pathway in the adipocyte differentiation and physiology, in the context of ER stress, calorie 

restriction and aging. Therefore, four specific projects dedicated to this problematic were 

established, each with specific scientific aim (below). 

 

PROJECT A: 

Aim: To assess the impact of ER stress on differentiation and lipogenic capacity of human 

adipocytes. 

 

PROJECT B: 

Aim: To evaluate the effect of aging on lipogenic potential of human subcutaneous AT and 

adipocytes in relation to senescence and ER stress markers. 

 

PROJECT C: 

Aim: To compare the effects of 2 days and 28 days of VLCD on metabolic and inflammation-

related indices in subcutaneous AT and their possible relationship with systemic 

inflammatory and metabolic status in moderately obese women. 

 

PROJECT D: 

Aim: To investigate and compare the effects of moderate calorie restriction on preadipocytes 

and adipocytes from young and elderly obese men. 
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3 Material and methods 

3.1 Material 

3.1.1 Cohorts, clinical investigation and intervention protocols 

In all projects, volunteers were informed on the corresponding study and written 

informed consent was obtained before participation in the study. The studies were performed 

according to the Declaration of Helsinki and approved by the respective Ethical Committees.  

Project A: Cells were derived from obese women that were recruited at the Third Faculty of 

Medicine of Charles University, University Hospital Kralovske Vinohrady, Czech Republic, 

and Toulouse University Hospitals, France. 

Project B: Two groups of women (aged 36.6±1.8 and 72.1±1.32, n=15 in each group) were 

recruited at the Third Faculty of Medicine of Charles University and University Hospital 

Kralovske Vinohrady, Prague, Czech Republic. Exclusion criteria were diagnosed cancer, 

diabetes, cardiovascular diseases, liver and renal diseases. Long term medications to lower 

inflammation (anti-rheumatics and analgesics affecting cyclooxygenases, 100 mg of anopyrin 

daily was acceptable in the group of elderly). Subjects taking medication to lower cholesterol 

levels and blood pressure (representing 70-90 % of elderly population) were admitted to the 

study. Clinical investigation was performed after an overnight fasting. Anthropometric 

measurements and blood sampling were performed as previously described in [257]. 

Project C: Seventeen metabolically healthy obese women (aged 35±7.1, mean BMI 32.6±3.6 

kg/m
2
) were recruited for the study. All subjects were drug free and healthy, as determined by 

medical history and laboratory findings, and had a stable weight for at least 3 months prior to 

inclusion. All subjects underwent a VLCD intervention program, during which they received 

800 kcal/d (liquid formula diet Redita; representing an intake of 52.0 g of protein, 118.0 g of 

carbohydrates, and 12.9 g of fat per day). Patients consulted a dietitian once a week. The 

evaluation of physical activity was performed before the start of the study by the International 

Physical Activity Questionnaire, and the subjects were recommended not to change their 

habitual activity during the study. Clinical investigation was carried out at day 0 (baseline), 

day 2 (2 d of the VLCD), and day 28 of the VLCD. During these investigations the subjects 

were examined at 8:00 AM after overnight fasting. Body weight and waist and hip 

circumferences were measured, and body composition was assessed by bioimpedance 

(QuadScan 4000; Bodystat). In addition to needle biopsy of subcutaneous AT, the samples of 

peripheral blood were taken. 
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Project D: Twenty two men (n=11 aged 35.8±0.7 and n=12 aged 64.5±1.1) were recruited by 

Centre d’Investigation Clinique Inserm – Hôpitaux de Toulouse (CIC). Exclusion criteria was 

obesity less than 2-3 years, type 1 or 2 diabetes, previous cardio-vascular disease or bariatric 

surgery, pathologies interfering with the realisation of planned physical activity, treatment by 

GLP1 agonists or insulin secretagogues and medication interfering with autonomous nervous 

system and lipid metabolism (diuretics, thiazides, beta-blockers and fibrates). Both groups 

underwent a dietary intervention, consisting of moderate calorie restriction (at least 20 % of 

everyday energetic needs) and 30-60 min of physical activity led by professional trainer least 

5 times per week. The subjects consulted clinical specialist once a week by telephone. 

3.1.2 List of used chemicals 

List of used chemicals is depicted in Table 2. 

 

Chemical Supplier Country of origin Used for 

2-deoxy-D-[3H] glucose PerkinElmer USA Transport of glucose 

3,3,5-Triiodo-L-thyronine sodium salt 

(T3) 
Sigma Aldrich USA Cell culture 

Acetic acid sodium salt Sigma Aldrich USA De novo lipogenesis 

acetic acid sodium salt [1-14C] PerkinElmer USA De novo lipogenesis 

Bafilomycin A Santa Cruz Biotechnology USA Induction of pH 6.0 

BSA Sigma Aldrich USA 
De novo lipogenesis, transport of 
glucose 

C12 FDG Thermo Fisher Scientific USA Analysis of βgal activity 

Collagenase I Serva Germany Isolation of primary cultures 

Cortisol Sigma Aldrich USA Cell culture 

deoxy-D-glucose, 2-[14C(U) PerkinElmer USA De novo lipogenesis 

Dexamethasone Sigma Aldrich USA Cell culture 

DMEM/F12 Lonza Std Switzerland Cell culture 

DMEM-no glucose medium* Gibco USA De novo lipogenesis 

FBS qualified for MSC Thermo Fisher Scientific USA Cell culture 

Gentamycin Lonza Std Switzerland Isolation of primary culture 

Glucose Sigma Aldrich USA Transport of glucose 

H2O2 
Provided by hospital 
pharmacy 

Czech Republic Induction of senescence 

Hepes Lonza Std Switzerland Cell culture 

Insulin Sigma Aldrich USA Cell culture 

Isobutylmethylxanthine Sigma Aldrich USA Cell culture 

Oil Red O Sigma Aldrich USA Cell proliferation 

Phosphate buffer saline (PBS)* Gibco USA Washing or isolation of cells 

Phosphate buffer saline (PBS)** Lonza Std Switzerland Washing or isolation of cells 

Quiazol Lysis Reagent Qiagen Germany Isolation of RNA 

rhEGF Immunotools Germany Cell culture 

rhFGF Immunotools Germany Cell culture 

Rosiglitazone  Cayman Estonia adipogenesis 

Thapsigargin Alexis Switzerland ER stress induction 

Transferrin Sigma Aldrich USA Cell culture 

Trypsin in EDTA (0,05%) Gibco USA Trypsinisation 

Tunicamycin LKT Laboratories, Inc. USA ER stress induction 

Wst-1 Sigma Aldrich USA Cell proliferation 

 

  

Table 2: List of used chemicals. *Used in Project D, **used in Projects A, B, C. 
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3.2 Methods 

3.2.1 Explant cultures of adipose tissue 

AT samples obtained by needle biopsy were washed in PBS and an aliquot of approx. 

400 mg was cut into small pieces. The explants were incubated in 4 ml Krebs Ringer buffer 

(pH 7.4) supplemented with 20 g/l of BSA and 1 g/l of glucose at 37°C in a shaking water 

bath with air as the gas phase. After 4 hours of incubation the conditioned medium was 

collected, cellular debris was removed by centrifugation and the cell free supernatant was 

stored at -80°C until further analysis. IL6, IL8, IL10, MCP1 and TNFα were measure in 

conditioned media with Multiplex immunoassay at the MagPIX or Luminex 200 and leptin 

was measured with Human Adipocyte Kit according to manufacturer instructions (Merck-

Millipore, USA). 

 

3.2.2 Analysis of metabolites and cytokines in plasma 

Plasma samples were prepared from uncoagulated peripheral blood by centrifugation. 

Plasma glucose and insulin were assessed in certified laboratories as a paid service. β-

hydroxybutyrate, glycerol and free fatty acids were analysed by enzymatic colorimetric assays 

according to manufacturer guidelines (Randox Laboratories Ltd., Crumlin, UK). Multiplex 

immunoassay at the MagPIX or Luminex 200 was used to analyse plasma levels of IL6, IL8, 

IL10 and TNFα (High Sensitivity Human Cytokine Milliplex panel; Merck-Millipore, USA). 

Circulating levels of MCP1, leptin, FGF21, and CRP were quantified by ELISA kits 

according to manufacturer protocols (eBioscience, USA; RaD, USA). 

 

3.2.3 Cell culture 

3.2.3.1 Isolation and culture of stromal-vascular cells 

Subcutaneous abdominal AT obtained by needle biopsy technique was cleaned from 

blood vessels and fibrous material, cut into small pieces (≤2 mm
3
) and digested in 1.5 volume 

of collagenase (from Serva for Projects A, B and from Sigma Aldrich for Project D) diluted 

on 300 units/ml for 60 min in 37ᵒC shaking water bath. Digested tissue was filtered through 

250 μm strainer to get rid of undigested scraps, diluted with PBS/gentamycin and centrifuged 

at 1300 rpm for 5 min. Pellet containing cells from the stromal vascular fraction was 

incubated in erythrocyte lysis buffer for 10 min at room temperature. Cells were then filtrated 

through 100 μm strainer, centrifuged, resuspended in PM4 medium [258] with 132 nmol/L 
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insulin and plated into 35 mm Petri dish. PM4 was replaced every second day. Cells were 

subcultivated at 70% confluence. Experiments were performed at passage 3 or 4. 

Differentiation of 2-day post-confluent cells was induced by Dulbecco's modified Eagle's/F12 

medium supplemented with 66 nmol/L insulin, 1 mol/L dexamethasone, 1 nmol/L T3, 0.1 

μg/ml transferrin, 0.25 mmol/L isobutylmethylxanthine, and 1 μmol/L rosiglitazone. After 6 

days, rosiglitazone and isobutylmethylxanthine were omitted and dexamethasone was 

replaced 

with 0.1 μmol/L cortisol. The procedure is depicted on Figure 9. 

 

 

 

 

 

3.2.3.2 Wst-1 assay 

Preadipocytes were seeded at the density of 2000 cells/cm
2
 in 100µl PM4/well in 96-

well plate in quadruplicates. After 6 hours of seeding, 10µl of Wst-1 reagent was added into 

each well. Formazan formation was measured after 2 hours at 440 nm on spectrophotometer 

(Spectra MD, Dynex) and subsequently 48, 96 and 144 hours after seeding. Results are 

presented as a fold change of formazan production related to the day of seeding. 

3.2.3.3 Sensitivity of preadipocytes to proliferative stimuli 

Preadipocytes were seeded at the density of 10 000 cells/cm
2
 and let grow for 2 days, when 

the confluence reached 20-40%. Then, cells were washed twice with PBS and serum/insulin 

starved in basal media with 0.1mg/mL transferrin overnight. The next day, preadipocytes 

were exposed to basal medium and PM4 for 10 min and collected for Western blot analysis.  

3.2.3.4 Analysis of senescence 

Preadipocytes were seeded at the density of 100 000 cells/well (for 

control/autofluorescence and P3/P4) or 300 000 cells/well (for peroxide treatment and P11). 

Subject AT biopsy 
SVF 

isolation 

In vitro 
differentiation  

Preadipocyte 

proliferation 

Figure 9: Isolation of stromal-vascular cells and culture. AT obtained by needle biopsy technique was digested 
with collagenase, enabeling dissociation of adipocytes and SVF. Culture media allowed the proliferation of 
preadipocytes and specific cocktail of factors their differentiation into adipocytes. 
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The next day, cells were treated with 100 µM H2O2 for 2.5 hours. After the treatment, medium 

was replaced by fresh PM4 in all wells for 72 hours. At the day of experiment, cells were 

pretreated with 100 nM bafilomycin A1 for 1 hour in fresh medium supplemented with 2.5% 

serum. Next, C12FDG was added in the final concentration of 33 µM for 2 hours. Then, cells 

were washed twice with PBS, trypsinised, spinned at 300g for 5 min and resuspended in 500 

µl of PBS. Cells were analysed on BD FACS Verse cytometer and BD FACSuite Software 

(BD Biosciences, USA). Two parameters were taken into account during the analysis: % of β-

galactosidase positive cells (determined on FITC channel) and cellular size (determined by 

Forward Scatter). The threshold was determined according to a random subject (cells at P3/4 

after the intervention) and the same threshold was then applied to all other subjects. Four 

populations were obtained: βgal negative cells, βgal positive cells, BIG βgal positive cells and 

BIG cells. Non-treated cells were used as a negative control and preadipocytes treated with 

H2O2 and preadipocytes at passage 11 served as positive controls. The number of non-

senescent and senescent populations was expressed as percentage of gated events. 

Background was set up to 2.5 % of positive autofluorescence cells. 

3.2.3.5 Sensitivity of adipocytes to insulin 

Experiment was performed on differentiated adipocytes at day 13. Cells were washed 

twice with PBS and serum/insulin starved in basal media with 0.1mg/mL transferrin 

overnight. The next day, adipocytes were exposed to basal medium supplemented with or 

without 100nM insulin for 10 min and collected for Western blot analysis. 

3.2.3.6 Oil-Red-Oil staining 

Differentiated adipocytes were fixed directly by adding 10% formaldehyde in culture 

media for 10 min, washed once with PBS and fixed for another 20 min. Cells were washed 

properly with PBS and 60% isopropanol and stained for  20 min with 60% Oil Red O. Then 

the excessive Oil Red O stain was removed by washing with tap water and cells were 

photographed. Oil Red O was then eluted with 100% isopropanol and absorbance of eluates 

was measured at 500 nm (Spectra MD, Dynex). To normalize the data, standard curve from 

Oil Red O stock solution was used. 

3.2.4 Gene expression 

3.2.4.1 RNA isolation 

AT samples obtained by needle biopsy were washed in PBS and separated to several 

aliquots. Two aliquots (200-500 mg) were snap frozen in liquid nitrogen for subsequent gene 
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expression analysis. RNeasy lipid tissue RNA minikit (Qiagen, Germany) was used to 

isolated total RNA from AT and RNeasy Mini kit (Qiagen, Germany) was used to isolate total 

RNA from in vitro cultivated cells. The RNA concentration was measured using 

Nanodrop1000 or 2000 (Thermo Fisher Scientific, USA). 

3.2.4.2 Gene expression analysis 

To remove genomic DNA, deoxyribonuclease I (Invitrogen, USA) treatment was 

applied. Total RNA was reverse transcribed using a high-capacity cDNA reverse transcription 

kit (Applied Biosystems, USA). Equivalent of 5 ng of RNA was then used for Real Time PCR 

reactions using TaqMan® Fast Advanced Master Mix (Applied Biosystems, USA) or by 

Power Sybr Green Master Mix (Applied Biosystems, USA). All samples were run in 

duplicates. TaqMan Gene expression assays (Applied Biosystems, USA) are listed in Table 3. 

For aP2, XBP1 full-length and spliced variants, sequences of primers are depicted in Table 4. 
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Table 3: List of TaqMan Gene expression assays. Names of proteins coded by detected mRNA, their function and involvement in the Projects A, B, C or D are depicted. 

Gene symbol Assay ID Protein Function, notes Project 

Adipogenesis 

 
 

  ADIPOQ Hs00605917_m1 Adiponectin Control of fat metabolism and insulin sensitivity D 

APOM Hs00219533_m1 Apolipoprotein M Involved in lipid transport D 

CEBPA Hs00269972_s1 CCAAT/Enhancer Binding Protein Alpha Transcription factor, coordinates adipocyte differentiation D 

CEBPB Hs00270923_s1 CCAAT/Enhancer Binding Protein Beta Transcription factor, coordinates adipocyte differentiation D 

CEBPD Hs00270931_s1 CCAAT/Enhancer Binding Protein Delta Transcription factor, coordinates adipocyte differentiation D 

DLK1 Hs00171584_m1 Delta Like Non-Canonical Notch Ligand 1 Adipocyte differentiation D 

FABP4 Hs01086177_m1 Fatty acid protein binding 4 Lipid transport in adipocytes D 

GPD1 Hs00193386_m1 Glycerol-3-Phosphate Dehydrogenase 1 Links carbohydrate metabolism and lipid metabolism D 

LEP Hs00174877_m1 Leptin Regulation of energy balance and body weight control C, D 

PPARγ Hs01115513_m1 Peroxisome proliferator-activated receptor gamma Master regulator of adipogenesis and glucose and lipid metabolism of adipocytes A, C 

PPARγ Hs00234592_m1 Peroxisome proliferator-activated receptor gamma Master regulator of adipogenesis and glucose and lipid metabolism of adipocytes D 

Lipogenesis 

 
 

  ACC=ACACA Hs01046047_m1 Acetyl-CoA carboxylase alpha Synthesis of malonyl-CoA B, D 

ACLY Hs00982738_m1 ATP citrate lyase Synthesis of acetyl-CoA D 

DGAT1 Hs01017541_m1 Diacylglycerol O-Acyltransferase 1 Re-esterification of fatty acids C 

DGAT1 Hs00201385_m1 Diacylglycerol O-Acyltransferase 1 Re-esterification of fatty acids D 

DGAT2 Hs01045913_m1 Diacylglycerol O-Acyltransferase 2 Triglyceride synthesis A, B, D 

ELOVL6 Hs00225412_m1 Elongation of very long chain fatty acids protein 6 Elongation of 2 carbons to the chain of long- and very long-chain fatty acids B, C 

ELOVL6 Hs00907564_m1 Elongation of very long chain fatty acids protein 6 Elongation of 2 carbons to the chain of long- and very long-chain fatty acids D 

FASN Hs01005622_m1 Fatty acid synthase Synthesis of palmitate A, B, C 

FASN Hs00188012_m1 Fatty acid synthase Synthesis of palmitate D 

CHREBP Hs00263027_m1 Carbohydrate-Responsive Element-Binding Protein Transcription factor regulating de novo lipogenesis and glucose metabolism C 

ChREBP Hs00975714_m1 Carbohydrate-Responsive Element-Binding Protein Transcription factor regulating de novo lipogenesis and glucose metabolism D 

SCD1 Hs01682761_m1 Stearoyl-CoA desaturase 1 Catalyses the insertion of a double bond into fatty acyl-CoA substrates A, B, D 

SREBP1c Hs01088691_m1 Sterol regulatory element binding protein 1c Transcription factor regulating de novo lipogenesis and glucose metabolism A, C 

SREBP1c Hs01088679_g1 Sterol regulatory element binding protein 1c Transcription factor regulating de novo lipogenesis and glucose metabolism D 
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Oxidation 

 
 

  ACADM Hs00936580_m1 Acyl-CoA Dehydrogenase First step of β-oxidation pathway of medium long chain-fatty acids C 

ACOX1 Hs01074241_m1 Acyl-CoA Oxidase 1, Palmitoyl First step of β-oxidation pathway of very long chain-fatty acids C, D 

COX4I1  Hs00971639_m1 Cytochrome C Oxidase Subunit IV Isoform 1 Terminal enzyme of the mitochondrial respiratory chain D 

CPT1B Hs03046298_s1 Carnitine Palmitoyltransferase 1B Conversion of the long-chain acyl-CoA to long-chain acylcarnitine C 

CPT1b Hs00993896_g1 Carnitine Palmitoyltransferase 1B Conversion of the long-chain acyl-CoA to long-chain acylcarnitine D 

CS Hs02574374_s1 Citrate Synthase Synthesis of citrate from oxaloacetate and acetyl coenzyme A D 

CYC1 Hs00357717_m1 Complex III Subunit IV  Part of Complex III in electron transport chain D 

FABP3 Hs00997360_m1 Fatty acid protein binding 3 Intracellular transport of long-chain fatty acids and their acyl-CoA esters D 

NDUFA11 Hs00418300_m1 NADH:Ubiquinone Oxidoreductase Subunit A11  Part of the membrane-bound mitochondrial complex I D 

PLIN5 Hs00965990_m1 Perilipin 5 Protection of lipid droplets in tissues with high lipid oxidative metabolism D 

PPARGC1A=PGC1 Hs01016719_m1 Peroxisome proliferator-activated receptor gamma coactivator 1 alpha Cofactor of PPARγ, involved in thermogenesis and energy metabolism C 

PPARα Hs00947539_m1 Peroxisome Proliferator Activated Receptor Alpha Transcription factor regulating glucose and lipid metabolism C 

PPARα Hs00231882_m1 Peroxisome Proliferator Activated Receptor Alpha Transcription factor regulating glucose and lipid metabolism D 

SDHA Hs00188166_m1 Succinate Dehydrogenase Complex Flavoprotein Subunit A  Part of complex II of the mitochondrial respiratory chain D 

UQCRC2 Hs00996395_m1 Ubiquinol-Cytochrome C Reductase Core Protein II Complex III, part of the mitochondrial respiratory chain D 

Lipolysis 

 
 

  ATGL Hs00982040_g1 Adipose triglyceride lipase Triglyceride hydrolysis C, D 

CGI58=ABHD5 Hs01104373_m1 Lipid Droplet-Binding Protein CGI-58=Abhydrolase Domain Containing 5 Cofactor of ATGL C, D 

FAT/CD36 Hs00169627_m1 Fatty acid translocase Transport and regulation of fatty acid transport across the cell membranes C, D 

G0S2 Hs00274783_s1 G0/G1 Switch 2 (cofactor ATGL) ATGL inhibitor (lipolysis inhibitor) C, D 

HSL=LIPE Hs00943404_m1 Hormone sensitive lipase=Lipase E, Hormone Sensitive Type Diglyceride hydrolysis C, D 

MGLL Hs00200752_m1 Monoglyceride lipase Monoglyceride hydrolysis C, D 

PLIN1 Hs00160173_m1 Perilipin 1 Coating of lipid droplets, inhibitor of lipolysis A, C, D 

Senescence 

 
 

  BRINP1=DBC1 Hs01089686_m1      BMP/Retinoic Acid Inducible Neural Specific 1 Unknown function, possible marker of adipocyte senescence D 

DLC1 Hs01089686m1 Deleted In Liver Cancer 1 Protein Regulation of small GTP-binding proteins B 

E2F7 Hs00403170_m1     E2F Transcription Factor 7 Transcription factor, upregulated by p53 D 

GDF15 Hs01379108m1 Growth Differentiation Factor 15 Secreted ligand of the TGFβ, universal marker of senescence B 

GLB1 Hs01035168_m1       Galactosidase beta 1 Hydrolysis of a terminal beta-linked galactose residue D 

http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=20371
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=10680
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NOX4 Hs01379108_m1 NADPH Oxidase 4 Generates reactive oxygen species (ROS) from molecular oxygen, mRNA marker of senescence D 

NOX4 Hs00171132 NADPH Oxidase 4 Oxygen sensor, catalyses the reduction of molecular oxygen to various ROS B 

p16=CDKN2A Hs00923894_m1 Cyclin Dependent Kinase Inhibitor 2A (=CDKN2A) Inhibits the activity of cyclin-CDK4 and -CDK6 complexes (-> cell cycle arrest in G1 and G2 phases) B, D 

p21=CDKN1A Hs00355782_m1 Cyclin Dependent Kinase Inhibitor 1A Inhibits the activity of cyclin-CDK2, -CDK1, and -CDK4/6 complexes (-> regulation at G1 and S phase) D 

p27=CDKN1B Hs00153277_m1 Cyclin Dependent Kinase Inhibitor 1B Inhibits the activity of cyclin-CDK2 or -CDK4 complexes (-> regulation at G1) B, D 

SIRT1 Hs01009006_m1 Sirtuin 1 NAD+-dependent protein deacetylase, downregulated in senescent cells D 

Inflammation 

 
 

  ACP5 Hs00356261_m1 Acid phosphatase 5, tartrate resistant Belongs to the metallophosphoesterase superfamily C 

CCR2 Hs00356601_m1 MCP1 receptor Mediates chemotactic perception for monocytes and basophils C 

CD163 Hs00174705_m1 Cluster of differentiation 163 Scavenger receptor C 

CD68 Hs00154355_m1 Cluster of differentiation 68 Scavenger receptor C 

FCGBP Hs00175398_m1 IgGFc-binding protein Function unknown C 

IL10 Hs00961622_m1 Interleukin 10 Regulation of inflammatory response C 

IL1RN Hs00893626_m1 Interleukin 1 receptor antagonist Natural inhibitor of the pro-inflammatory IL1 cytokine C 

IL1ß Hs00174097_m1 Interleukin 1 beta Mediator of inflammatory response D 

IL6 Hs00985639_m1 Interleukin 6 (interferon, beta 2) Cytokine stimulating immunologic response and regulating energy metabolism C, D 

IL8 Hs00174103_m1 Interleukin 8 Causes chemotaxis of immune cells and induce phagocytosis C, D 

INHBA Hs01081598_m1 Inhibin Beta A Subunit (=Activin A) Negative regulator of adipocyte differentiation D 

IRF5 Hs00158114_m1 Interferon regulatory factor 5 Transcription factor regulating induction of inflammatory cytokines C 

ITGAX Hs00174217_m1 
Integrin, alpha X (complement component 3 receptor 4 subunit) 
(CD11C) 

Mediates cell-cell interaction during inflammation C 

MCP1 Hs00234140_m1 Monocyte chemoattractant protein 1 Attracts inflammatory cells to the inflammatory site C, D 

MMP3 Hs00968305_m1 Matrix Metalloproteinase 3 Breakdown of extracellular matrix D 

MSR1 Hs00234007_m1 Macrophage scavenger receptor 1 Class A macrophage scavenger receptor C 

TNFα Hs00174128_m1 Tumor necrosis factor alpha Proinflammatory cytokine regulating also lipid and carbohydrate metabolism C 

Endoplasmic reticulum stress 
 

  
ATF4 Hs00909569_g1 Activating Transcription Factor 4 

Transcription factor, influences autophagy, amino acid metabolism, anti-oxidant machinery and 
apoptosis  

A, B, D 

CALR Hs00189032_m1 Calreticulin Calcium-binding chaperone D 

DNAJC13 Hs00967069_m1 DnaJ Heat Shock Protein Family (Hsp40) Member C13 Chaperon cofactor D 

DNAJC3 Hs00534483_m1 DnaJ Heat Shock Protein Family (Hsp40) Member C3 Co-chaperone of HSPA8/HSC70 B 

EDEM1 Hs00976004_m1 ER Degradation Enhancing Alpha-Mannosidase Like Protein 1 Targets misfolded glycoproteins for degradation A, B, D 
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GADD34=PPP1R15A  Hs00169585_m1 Growth Arrest And DNA-Damage-Inducible 34 Dephosphorylation of p-eIF2α B, D 

HSPA5 Hs99999174_m1 Heat Shock Protein Family A (Hsp70) Member 5 (=GRP78) Folding and assembly of proteins in the endoplasmic reticulum A, B, D 

HYOU1 Hs00197328_m1 Hypoxia Up-Regulated 1 Chaperon from heat shock protein 70 family B, D 

CHOP Hs01090850_m1 C/EBP homologous protein (=GADD153) Transcription factor: Pro-inflammatory response and apoptosis B, D 

PERK Hs00984006_m1 PRKR-Like Endoplasmic Reticulum Kinase Initiate PERK arm of the UPR pathway  B, D 

Antioxidant genes 

 
 

  NQO1 Hs00168547_m1 NAD(P)H dehydrogenase, quinone 1 Reduces quinones to hydroquinones D 

SOD2 Hs00167309_m1 Mitochondrial superoxide dismutase 2 Binds to the superoxide byproducts of oxidative phosphorylation D 

Specific WAT markers 
 

  DPT Hs00355056_m1 Dermatopontin Extracellular matrix protein with possible functions in cell-matrix interactions and matrix assembly D 

TCF21 Hs00162646_m1 Transcription Factor 21 Transcription factor, manages cell-fate specification during development D 

Specific "Brown-brite" markers 
 

  CIDEA Hs00154455_m1 Cell Death-Inducing DFFA-Like Effector A Transcriptional coactivator, thermoregulatory marker D 

CITED1 Hs00918445_g1 Cbp/P300-Interacting Transactivator 1 Transcriptional coactivator, thermoregulatory marker D 

CKMT1a Hs00179727_m1 Creatine Kinase, Mitochondrial 1A Transfer of high energy phosphate from mitochondria to creatine D 

CKMT2 Hs00176502_m1 Creatine Kinase, Mitochondrial 2 Transfer of high energy phosphate from mitochondria to creatine D 

ELOVL3 Hs00537016_m1 Elongation Of Very Long Chain Fatty Acids Protein 3 Elongation of long chain fatty acids for the synthesis of sphingolipids and ceramides D 

GK Hs02340010_g1 Glycerol kinase Formation of glycerol-3-phosphate D 

PDK4 Hs01037712_m1 Pyruvate Dehydrogenase Kinase 4 Regulates glucose metabolism D 

PGC1alpha Hs00173304_m1 PPARG Coactivator 1 Alpha Transcriptional coactivator regulating genes involved in energy metabolism D 

TMEM26 Hs00415619_m1 Transmembrane Protein 26 Selective surface protein, marker of brite/beige adipocytes D 

UCP1 Hs00222453_m1 Uncoupling protein1 Key function in thermogenesis D 

Specific BAT 
marker 

 

 

  SIRT3 Hs00202030_m1 Sirtuin 3 Influences mitochondrial energy metabolism and function D 

Insulin sensitization 

 
 

  FFAR4=GPR120 Hs00699184_m1 Free Fatty Acid Receptor 4  Anti-inflammatory and insulin-sensitizing effects of omega 3 fatty acids D 

GLUT1 Hs00892681_m1 Glucose transporter 1 Basal glucose uptake C, D 

GLUT4 Hs00168966_m1 Glucose transporter 4 Stimulated glucose uptake C, D 

IRS1 Hs00178563_m1 Insulin receptor substrate 1 Transmits signal from insulin and IGF-1 receptor downstream C, D 
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Fibrosis 

 
 

  COL1A1 Hs00164004_m1 Collagen type I alpha 1 Major component of type I collagen C, D 

COL6A3 Hs00365098_m1 Collagen, type VI, alpha 3 Constitute alpha chain of type VI collagen C 

COL6A3 Hs00915126_m1 Collagen, type VI, alpha 3 Constitute alpha chain of type VI collagen D 

LOX Hs00942480_m1   Lysyl oxidase Cross-links collagens and elastins C, D 

LUM Hs00929860_m1 Lumican May regulate collagen fibril organization and tissue repair D 

MMP9 Hs00234579_m1 Matrix metallopeptidase 9 Catalysis breakdown of ECM (in normal physiological processes) C, D 

TGFb1 Hs00171257_m1 
  

D 

TGFβ1 Hs00998133_m1 Transforming growth factor beta 1 Pro-fibrotic factor C 

TLR4 Hs01060206_m1 Toll-like receptor 4 Endotoxin receptor mediating the development of AT fibrosis C, D 

TNC Hs01115665_m1 Tenascin C Extracellular matrix protein, myriad of functions D 

Others 

 
 

  HP Hs00978377_m1 Haptoglobin Binds free plasma haemoglobin D 

ORM1 Hs01590791_m1 Orosomucoid 1 Transport protein in the blood stream, increased during inflammation  D 

ORM2 Hs01037491_m1 Orosomucoid 2 Key acute phase plasma protein with non-specific function D 

Reference genes 

 
 

  GUSB Hs00939627_m1 Glucuronidase Beta Hydrolysis of β-D-glucuronic acid A, C, D 

HPRT1 Hs02800695_m1 Hypoxanthine-Guanine Phosphoribosyltransferase Converts hypoxanthine to inosine monophosphate and guanine to guanosine monophosphate D 

LRP10 Hs01047362_m1 LDL Receptor Related Protein 10 Involved in the internalization of lipophilic molecules and/or signal transduction D 

PPIA Hs04194521_s1 Peptidylprolyl isomerase A (cyclophilin A) Cis-trans isomerization of proline imidic peptide bonds C, D 

PUM1 Hs00472881_m1 Pumilio homolog 1 Translational regulator C, D 

RPS13 Hs01011487_g1 Ribosomal Protein S13 Component of the 40S subunit of ribosome A, B 

 

 

https://en.wikipedia.org/wiki/Type_I_collagen
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 Table 4: List of genes and primer sequences of mRNA analysed by SYBR Green technology. 

Gene symbol Protein Function Project 

aP2/FABP4 Fatty acid protein binding 4 Lipid transport in adipocytes A 

XBP1t X-box binding protein 1, total Non-active transcription factor, part of unfolded protein response A, B 

XBP1s X-box binding protein 1, spliced Active transcription factor, part of unfolded protein response A, B 

    Gene symbol Primer Sequence 

 aP2/FABP4 Forward: 5´-GCATGGCCAAACCTAACATGA-3´ 

 
 

Reverse: 5´-CCTGG CCCAGTATGAAGGAAA-3´ 

 XBP1t Forward: 5´-CGCTGAGGAGGAAACTGAA-3´ 

 
 

Reverse: 5´-CACTTGCTGTTCCAGCTCACTCAT-3´ 

 XBP1s Forward: 5´-GAGTCCGCAGCAGGTGCA-3´ 

 
 

Reverse: 5´-ACTGGGTCCAAGTTGTCCAG-3´ 

  

 

Project A: Gene expression of target genes was normalized to expression of GUSB or 

RPS13 and fold change of expression was calculated using ∆∆ Ct method. 

Project B: Because of lack of RNA from AT, 2 ng of cDNA was preamplified (as in Project 

C) to detect expression of p16, p27, NOX4, GDF15 and DLC1. Gene expression of target 

genes was normalized to expression of RPS13 and fold change of expression was calculated 

using ∆∆ Ct method. 

Project C: For microfluidics, 4 ng of cDNA was preamplified within 16 cycles to improve 

detection of target genes during subsequent real-time quantitative PCR (qPCR; TaqMan Pre 

Amp master mix kit; Applied Biosystems, USA). For the preamplification, 20xTaqMan gene 

expression assays of all target genes were pooled together and diluted with water to the final 

concentration 0.2 for each probe. The real-time qPCR was performed in duplicates on 

Biomark real-time qPCR system using 96.96 array (Fluidigm). In addition, the mRNA 

expression of CD36, PPARγ, ATGL, HSL, DGAT-2, IL-6, IL-8, IL-10, MCP-1, TNF-α, and 

leptin was quantified by qPCR without preamplification on an ABI PRISM 7500 (Applied 

Biosystems). Data were normalized to reference gene PPIA, which proved to be superior over 

two other measured reference genes, PUM1 and GUSB. The method of 2
(-∆Ct)

 was calculated 

for statistical analysis, and the final values for the figures were expressed as fold change 

related to mean basal value. 

Project D: Expression of mRNA for p16 in preadipocytes was quantified by qPCR on an 

ABI PRISM 7500 (Applied Biosystems). Gene expression from adipocytes differentiated in 

vitro was assessed using microfluidics. cDNA was preamplified as a paid service by the 

technical facility for Transcriptomics at the Institute of Cardiovascular and Metabolic 
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Diseases (I2MC, UMR1048) in Toulouse. The real-time qPCR using 96.96 array (Fluidigm) 

was performed as a paid service as well. Five genes (GUSB, HPRT1, LRP10, PPIA and 

PUM1) were used as the reference genes. Data were normalized to reference gene PPIA, 

which proved to be superior over four other measured reference genes. Results are expressed 

as a fold change calculated using ∆∆ Ct method. 

3.2.4.3 Western blot 

Cells were washed twice with cold PBS, collected in RIPA buffer (hand-made or 

Sigma Aldrich, USA) supplemented with proteases and phosphorylases inhibitors (Complete, 

PhosStop from Roche, Mannheim, Germany or Protease Inhibitor Cocktail, Phosphatase 

Inhibitor Cocktail 2 and 3, Sigma Aldrich, USA) and frozen in liquid nitrogen. Protein 

content was determined by Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, USA) 

according to manual instructions. Denaturized proteins were separated on 4-20% gradient 

SDS-PAGE gels (Bio-Rad), blotted onto nitrocellulose membranes and incubated with 

following primary antibodies: pAkt S473 (4060L, Cell Signaling, USA), Akt (C67E7, Cell 

Signaling, USA), pIRS-1 Y612 (44-816G, Invitrogen, USA), IRS-1 (D23G12, Cell Signaling, 

USA), pERK Thr202/Tyr204 (4370P, Cell Signaling, USA), ERK (4695P, Cell Signaling, 

USA), GAPDH (7074S, Cell Signaling, USA), eIF2α (2103S, Cell Signaling, USA) and 

peIF2α (3398, Cell Signaling, USA). Antigen-antibody complexes were detected using 

secondary anti-rabbit antibody coupled with horseradish peroxidase and the ECL detection 

system (Pierce) via ChemiDoc MP System (Bio-Rad). For quantification of the signal, Image 

Lab software (Bio-Rad) was used. 

3.2.5 Analysis of metabolites 

3.2.5.1 De novo lipogenesis 

To determine rate of DNL, cells were deprived from insulin overnight. Next day, cells 

were washed twice and incubated for 3 hours in Krebs Ringer buffer supplemented with 2% 

BSA, 10 mM HEPES, 66 nM insulin, 2 mM glucose and 2 mCi D-[
14

C(U)]glucose or 5 mM 

acetic acid and 2 mCi [1-
14

C]-Acetic Acid Sodium Salt. After incubation, cells were washed 

twice in PBS and scraped into 0.1% SDS in PBS. Neutral lipids were isolated using 

methanol/chloroform (1:2) extraction. Organic phase was dried under nitrogen and 

hydrolysed in 1 mL 0.25N NaOH in methanol/chloroform (1:1) for 1 h at 37°C. Next, 500 µL 

0.5N HCl in methanol was added to neutralize the solution. Organic and aqueous phases were 

separated by adding 1.7 mL chloroform, 860 µL water, and 1 mL methanol/chloroform (1:2). 
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Incorporation of 
14

C into fatty acids was determined by liquid scintillation counting on Tri-

Carb2100TR (Packard). Specific activity was counted and used to determine the quantity of 

incorporated radioisotope equivalent. Results from metabolic measurements were normalized 

to total protein content of cell extracts. 

3.2.5.2 Separation of lipid species by thin layer chromatography 

Neutral lipids were isolated as described above. Lipids were separated by thin-layer 

chromatography on Silica Gel plates developed in Heptane:Isopropylether:Acetic acid 

mixture (60:40:4) for 1 h, visualized by iodine vapour and quantitatively scraped from plate. 

Distribution of de novo incorporated 
14

C among major lipid species was analysed by liquid 

scintillation counting on Tri-Carb2100TR (Packard). Specific activity was counted and used 

to determine the quantity of incorporated radioisotope equivalent. Results from metabolic 

measurements were normalized to total protein content of cell extracts. 

3.2.5.3 Glucose transport 

Adipocytes were deprived of insulin overnight. Next day, cells were washed twice 

with PBS and cultivated with or without 100nM insulin in Krebs Ringer buffer supplemented 

with 12.5 mM Hepes and 1% BSA (the pH was adjusted to 7,4) for 50 min at 37°C. Then, 

125 mM 2-deoxy-D-glucose and 0.4 mCi 2-deoxy-D-[
3
H] glucose per well were added for 10 

min. After that, culture plates were placed on ice and washed with cold 10 mM glucose in 

PBS. Cells were collected into 0.05N NaOH. Uptake of 2-deoxy-D-[
3
H] glucose was 

measured by liquid scintillation counting of cell lysate and normalized to protein level. 

Protein quantity was measured in duplicates using 10 µl of cell lysate and Bradford assay 

(Bio-Rad, USA) following the manufacture instructions. 

3.2.6 Statistical analysis 

Data were analysed using GraphPad Prism 6.0 software using Wilcoxon matched-pair 

signed rank, Mann Whitney test, one-way ANOVA with repeated measures, followed by post 

hoc pairwise comparisons with Bonferroni adjustment for multiple testing or two-way 

ANOVA with Bonferroni adjustment for multiple testing, as appropriate. Correlations were 

assessed by Spearman or Pearson’s correlation (if the values were logaritmated). The level of 

significance was set at ***p < 0.001, **p < 0.01, *p < 0.05. 
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4 Results 

4.1 Experimental part A 

4.1.1 Introduction to experimental part A 

Adipocytes are cells highly specialized for storage of neutral lipids. They are 

equipped with dedicated receptors and transporters necessary for an uptake and transport of 

free fatty acids and with enzymatic cascade enabling their incorporation into TAG. Moreover, 

adipocytes are able to synthetize lipids de novo, from glucose [61]. Glucose is necessary also 

for the synthesis of glycerol phosphate, the backbone of TAG. Thus lipogenic activity of 

adipocytes directly influences fatty acid and glucose plasma levels and this homeostatic effect 

is regulated by many factors [259, 260]. Paradoxically, obesity impairs capacity of adipocytes 

to synthetize and store lipids [261, 262], which further contributes to high plasma free fatty 

acids levels, a putative cause of obesity-related hepatic and muscle insulin resistance [263]. 

The reason for the deterioration of lipogenic activity of adipocytes remains unclear. Notably, 

several enzymatic steps of lipogenesis and the formation of lipid droplets take place in the 

(ER, an organelle also essential for calcium homeostasis and protein folding [264, 265]. The 

situation when the folding and other metabolic capacities of ER are overwhelmed is referred 

to as ER stress. ER stress activates a defense mechanism called UPR in order to enhance ER 

capacity and restore ER homeostasis [266]. The signs of chronic ER stress have recently been 

found in obese and insulin resistant subjects [267, 268]. The significance of ER stress for 

metabolic health was confirmed by experiments on rodents corroborating ER stress as a 

trigger of insulin resistance and other metabolic disturbances caused by obesity [145]. 

Importantly, ER stress and consequently UPR were found to be important regulators of 

lipogenesis in liver [269]. But there is a lack of comprehensive studies that would investigate 

whether metabolic stress sensed through ER controls lipogenesis also in human adipose 

tissue. Thus, we aimed at investigating the effect of ER stress on lipogenesis in human 

adipose cells.  
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4.1.2 Results: experimental part A 

Acute high intensity ER stress reduces adipogenesis and lipogenesis of human 

preadipocytes and adipocytes. To evaluate the effect of acute ER stress on lipogenic 

capacity of adipocytes, we exposed in vitro differentiated adipocytes from 15 donors to two 

commonly used ER stressors, thapsigargin (TG) and tunicamycin (TM), for 24 hours. Both, 

100 nM TG and 1 µg/ml TM [270], dramatically enhanced expression of major ER chaperone 

HSPA5 (heat shock 70 kDa protein 5), a marker of ER stress (Figure 10A). The same 

treatment decreased mRNA levels of genes involved in lipogenesis, i.e. fatty acid synthase 

(FASN), stearoyl desaturase (SCD1), and diacylglycerol O-acyltransferase 2 (DGAT2) 

(Figure 10A). The suppressive effect of ER stress on lipogenesis was confirmed by a 

decreased capacity of adipocytes treated with TG to incorporate glucose carbon into lipids 

(Figure 10B, C). Thus, in adipocytes, acute high intensity ER stress lowers lipogenic capacity 

of adipocytes on both transcriptional and enzymatic level.  

In addition, we tested an effect of acute ER stress on adipogenic capacity of 

preadipocytes. In order to limit ER stress only to preadipocytes we employed reversibly 

acting TM in high-dose (1µg/ml). Confluent preadipocytes were treated with TM for 4 hours, 

then washed by PBS several times and subjected to standard 12 day adipogenic procedure 

using media free of ER stress inducer. This treatment resulted in approximately 60% 

reduction of neutral lipid content compared to control conditions (Figure 10D) without 

apparent effect on the viability of cells. Moreover, the effect of TM-pretreatment of 

preadipocytes on adipogenesis was detectable already after 3 days of differentiation when 

mRNA levels of aP2, PPARγ and perilipin were reduced compared to control conditions 

(Figure 10E).  

 

Chronic low ER stress impairs adipogenesis and associated lipogenesis. Obesity leads to 

chronic low intensity rather than acute high intensity ER stress [267, 271]. Therefore, we 

aimed at imitating chronic ER stress in adipose cells by the use of TG dose capable of 

activating the UPR without acute induction of downstream effectors [272]. To determine such 

a dose, we exposed both preadipocytes and mature adipocytes to 1, 2.5, 5 and 100 nM TG for 

1, 4 and 24 hours and then analyzed expression of genes representing early and late markers 

of UPR. Neither dose of TG caused appearance of hypodiploid apoptotic preadipocytes within 

24 hours (not shown). Early marker of UPR activation, i.e. phosphorylated eIF2α (PERK arm 

of the UPR), was induced already by 2.5 nM TG (Figure 11A) within 1 hour, while an 
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induction of expression of downstream ER stress effectors (ATF6 arm- HSPA5[151], PERK 

arm- ATF4 [273], IRE1 arm- EDEM1, XBP1 splicing [274]) within 4 and 24 hours required 

higher TG concentrations (5 or 100 nM TG) (Figure 11B-D). Therefore, 2.5 nM TG was 

selected for chronic treatments of cells.  

We investigated whether low intensity but chronic ER stress reduces adipogenic 

conversion of preadipocytes similarly as acute high intensity ER stress. Preadipocytes were 

differentiated in the absence or presence of 2.5 nM TG. Chronic treatment of cells with TG 

led to a mild increase of mRNA levels of HSPA5, ATF4 and EDEM1 during the whole time 

course of differentiation (Figure 12A). Capacity to accumulate neutral lipids was lowered by 

more than 50% in TG-treated adipocytes as detected by ORO staining (Figure 12B, C). This 

was accompanied by diminished mRNA levels of differentiation markers (i.e. a key 

adipogenic factor, PPARγ, transcription factor SREBP-1c and late adipogenic markers, aP2 

and perilipin) (Figure 12D, E). mRNA expression of the lipogenic genes SCD1, DGAT2 and 

FASN was also lowered (Figure 12F). 

To determine a critical period of time for ER stress to exert inhibitory effect on 

adipogenesis, preadipocytes were differentiated in the presence of 2.5 nM TG for various 

days (0-6, 1-12, 3-12, 6-12, 9-12). Capacity to store neutral lipids evaluated by ORO staining 

was strongly impaired in adipocytes exposed to TG between days 0-6 and 1-12, mildly 

between days 3-12 and not between days 6-12 and 9-12 of differentiation (Figure 12G, H). 

Lipogenesis measured as 
14

C-glucose carbon incorporation into lipids was also not altered 

when cells were exposed to 2.5 nM TG at day 6-12 of differentiation (not shown). 

 

Lipogenic capacity of mature adipocytes is not influenced by chronic low ER stress. 

Next, we analyzed the effect of chronic (6 days) low ER stress on adipocytes differentiated for 

12 days. Accumulation of neutral lipids (
14

C-glucose carbon incorporation) was not affected 

by 2.5 nM TG (Figure 13A), similarly as seen when TG was applied between day 6 and 12 of 

adipogenesis. Only expression of perilipin was decreased while other lipogenic genes 

remained unaffected by this treatment (Figure 13B).  
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Figure 10: Acute ERS lowers lipogenesis in human adipocytes and adipogenesis of preadipocytes. 
Preadipocytes were differentiated for 12 days and then incubated for 24 hours with DMSO or 100 nM TG or 1µg/ml TM. A. mRNA expression of HSPA5, FASN, 
SCD1 and DGAT2 was measured by qRT-PCR and normalized to GUSB expression (n=15). B. Glucose carbon (14C) incorporation into lipids (hydrolyzed into fatty 
acids (FA) and glycerol) during 3 hour incubation was determined by liquid scintillation and normalized to protein content (n=3). C. Distribution of de novo 
incorporated 14C in lipid species was analyzed after TLC separation of extracted lipids (n=2). D. Preadipocytes were exposed to 1µg/ml TM for 4 hours and then 
differentiated in the absence of TM for 12 days. Quantification of neutral lipids accumulation is expressed as a relative fold change to control (n=5). E. 
Preadipocytes were exposed to 1µg/ml TM for 4 hours and then differentiated in the absence of TM for 3 days. mRNA expression of adipogenic markers was 
analyzed by qRT-PCR and normalized to RPS13 (n=5). Data are means ±SE, *p<0.05, ** p<0.01, *** p<0.001. 
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Figure 11: Determination of TG dose appropriate for experiments with chronic low ERS. Cells were incubated with DMSO or 1, 2.5, 5, 100 nM TG for indicated time. A. 
Western blotting analysis of eIF2α activation (n=3, the representative image is shown). B-D. mRNA expression of HSPA5, EDEM1 and ATF4 was measured by qRT-PCR 
and normalized to GUSB expression. mRNA expression of XBP1-spliced was normalized to XBP1-total expression (n=4). Data are means ±SE, *p<0.05, ** p<0.01. 
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Figure 12: Chronic low ERS impairs adipogenesis and associated lipogenesis. Preadipocytes (PA) were 
differentiated for 12 days in the absence or presence of 2.5 nM TG. Cells were harvested upon indicated days 
for mRNA analysis or at day 12 for ORO staining. mRNA expression of UPR effectors (A), adipogenic (D, E) 
and lipogenic markers (F) was measured by qRT-PCR and normalized to RPS13 expression (n=4, ND-not 
detectable). B. Representative image of cells staining with ORO at day 12. C. Quantification of neutral lipids 
accumulation is expressed as a relative fold change to control (n=5). G. Preadipocytes were differentiated and 
2.5 nM TG was added to the differentiat ion media for indicated days. Representative image of  cells staining 
with ORO at day 12. H. Preadipocytes were differentiated and 2.5 nM TG was added to the differentiation 
media for indicated days. Quantification of neutral lipids accumulation is expressed as a relative fold change to 
control (n=5). Data are means ±SE, *p<0.05, ** p<0.01. 
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Figure 13: Effect of low ERS stress on mature adipocytes. Mature adipocytes (12 days after onset of differentiation) were exposed for next 6 days to 2.5 nM 
TG. A. Glucose (14C) incorporation into lipids (hydrolyzed into fatty acids FA and glycerol) during 3 hour incubation of adipocytes treated as in Fig 1B. was 
determined by liquid scintillation and normalized to protein content (n=3). B. mRNA expression of HSPA5, adipogenic and lipogenic markers was measured by 
qRT-PCR and normalized to RPS13 expression (n=5). Data are means ±SE, *p<0.05, ** p<0.01. 
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4.2 Experimental part B 

4.2.1 Introduction to experimental part B 

Subcutaneous AT is an organ specialized for the synthesis and metabolically safe 

storage of lipids through process of lipogenesis and thus it is indispensable for the 

maintenance of whole-body energy homeostasis [275]. For lipogenesis, AT utilizes mainly 

dietary lipids but it can synthetize fatty acids de novo from glucose or other acetyl/malonyl 

CoA sources in the processes of DNL. Emerging data implicate DNL in the maintenance or 

improvement of insulin sensitivity, as DNL generates insulin sensitizing lipokines and 

enhances fluidity of membranes necessary for insulin signaling [88, 262, 276-278]. 

In aging, however, the capacity of subcutaneous AT to synthetize and store lipids 

progressively decreases and this may contribute to metabolically unfavorable fat 

redistribution, dyslipidemia, insulin resistance and metabolic syndrome [196]. Despite 

substantial health impact of this subcutaneous AT dysfunction in the elderly, its cellular and 

molecular triggers remain unclear. It has been suggested that the age-related dysfunction of 

various tissues can be partly related to the accumulation of senescent cells.  Senescence is an 

irreversible cell-cycle arrest that can be induced by various stimuli, such as telomere 

shortening, DNA damage, oncogene activation, and/or metabolic stress [180]. Senescent cells 

cannot fulfil their original function and moreover, they exert highly pro-inflammatory 

phenotype described as SASP that can profoundly affect the function of bystander cells [179]. 

Another possible inhibitor of lipogenesis in aging adipocytes can be stress of ER, an 

organelle essential for lipid synthesis. ER stress, the condition when ER folding or synthetic 

capacity becomes overwhelmed, leads to the activation of a signaling network known as UPR. 

The general aim of the UPR is to restore the ER homeostasis mainly through the 

reinforcement of ER capacity by the induction of ER chaperons. At the same time, IRE-1 

branch of the UPR leads to the phosphorylation and activation of JNK [279]. JNK activity 

may lead to a variety of downstream effects depending on the cellular context, some of which 

include apoptosis, cell survival, insulin resistance and inflammation [280]. Indeed, the 

experiments on rodents established ER stress as a trigger of insulin resistance and other 

metabolic disturbances caused by obesity [281]. In line with this, we showed recently that ER 

stress impairs DNL in adipocytes and differentiation of preadipocytes [282]. In addition, ER 

stress appears to be higher in subcutaneous AT from aged mice [283]. Therefore, our goal was 

to compare the lipogenic capacity in subcutaneous AT of young and elderly women, in 

relation to senescence and ER stress markers. 
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4.2.2 Results: experimental part B 

Clinical characteristics. Clinical data of young and elderly subjects are depicted in Table 5. 

The two groups differed in age (35.3±2.0 years for the young and 70.8±1.4 years for the 

elderly), but were matched for the amount of fat mass ( 37.3% and 38.9% for the young and 

the elderly, respectively). The matching for fat mass was selected since this relative value 

related to AT mass is less biased by age-related sarcopenia than other general anthropometric 

measures as weight and BMI. Metabolically, both groups had similar insulin  sensitivity 

calculated as HOMA-IR despite the differences in fasting glucose and insulin levels.  

 

Expression of lipogenic genes in subcutaneous AT decreases with age. To compare 

lipogenic potential of subcutaneous AT of the young and the elderly, we analyzed mRNA 

expression of six major lipogenic genes. Subcutanoues AT mRNA transcripts of FASN, a rate 

limiting enzyme in DNL, and DGAT2, an enzyme catalyzing final step of the triglyceride 

synthesis, were decreased significantly in the elderly group (p<0,05; Figure 14A). Levels of 

mRNA for these two genes were strongly correlated (Figure 14D). The tendency to decreased 

expression was also observed for mRNA of ACACA and SCD1, even though the difference 

was not statistically significant. mRNA expression of ACLY and ELOVL6 did not differ 

between the two groups. 

 

Elderly subcutaneous AT display more senescent phenotype than subcutaneous AT from 

young individuals. To analyze the level of senescence in the subcutaneous AT samples, we 

measured expression of p16, an inhibitor of cell cycle progression and well-established 

marker of senescence, and 3 other senescent markers in both groups. Elderly subcutaneous 

AT expressed more p16 and NOX4 mRNA transcript compared to subcutaneous AT from 

young group (p<0,05; Figure 14B) and these two transcripts positively correlated (Figure 

14D). The expression level of p27 was similar in the two groups. Even though mRNA 

expression of an additional senescence marker, GDF15, was also not different in 

subcutaneous AT from the two groups of women, the negative correlation between its 

expression and mRNA expression of all analyzed lipogenic markers was found (Figure 14D 

and not shown). 

 

ER chaperones are not elevated in elderly subcutaneous AT, despite increased 

expression of XBP-1s and PERK. To determine the level of ER stress, we measured the 
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mRNA expression of 9 UPR markers. Despite higher expression of XBP1s, an essential 

transcription factor activated by IRE1-UPR branch, and PERK, one of the stress sensors, in 

the elderly, the expression of ER chaperones HSPA5, DNAJC3, and HYOU3 and phosphatase 

GADD34 were significantly decreased in subcutaneous AT of the elderly group (Figure 14C). 

Expression of HSPA5 and other chaperones correlated well with that of FASN and DGAT2 

(Figure 14D and not shown). mRNA expression of other ER genes involved in the UPR, 

specifically ATF4, CHOP,  EDEM1, CALR, were not different between the groups.  

 

Lower lipogenic potential of the elderly is manifested also in in vitro differentiated 

adipocytes and is negatively linked to GDF15 expression. To assess adipocyte-specific 

age-related differences in lipogenic, ER and senescence markers we used subcutaneous AT 

derived in vitro differentiated adipocytes. Adipose precursors were isolated from 

subcutaneous AT biopsies in the subgroups of volunteers (n=11 for each young and elderly), 

subcultivated for 3 passages and then differentiated into adipocytes. The accumulation of 

neutral lipids measured by Oil Red O staining was similar in adipocytes from both groups 

(33.9% ± 2.09 of ORO standard in the young, vs. 33.66% ± 1.626 in the elderly). 

Similarly as seen in subcutaneous AT, in vitro differentiated adipocytes from the elderly 

exerted a co-regulated reduction of mRNA level for lipogenic genes (FASN, DGAT2, SCD1) 

compared to the cells from young group (Figure 15A, D and not shown) and the expression 

of all lipogenic markers was strongly correlated with the expression of GDF15 (Figure 15D 

and not shown). Also HSPA5 and DNAJC3 mRNA were less expressed in adipocytes from the 

elderly on the background of higher XBP1s expression. However, in adipocytes mRNA levels 

of chaperones did not correlate with the expression of lipogenic markers (Figure 15C and not 

shown). 

In contrast to subcutaneous AT, the expression of senescent markers p16 and NOX4 was not 

different between the cells from two age-differing groups, while adipocytes from the elderly 

expressed 3 times more mRNA levels of GDF15 compared to cells from the young (Figure 

15B). Another difference between expression patterns in subcutaneous AT vs. adipocytes was 

higher and co-regulated expression of ATF4, a transcription factor important for the 

expression of ER chaperones, EDEM1, a marker of ER-associated degradation of misfolded 

glycoproteins (ERAD), and a proapoptotic transcription factor CHOP, in adipocytes from the 

elderly compared to cells from the young (Figure 15C, D and not shown).  
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  YOUNG ELDERLY p 

  Obese Overweight   

Number 15 15   

Age (year) 36.6 ± 1.8 72.1 ± 1.3 **** 

Weight (kg) 86.2 ± 2.1 70.4 ± 1.0 **** 

Fat mass (%) 37.2 ± 1.0 38.9 ± 1.0 NS 

Fat mass (kg) 32.2 ± 1.5 27.5 ± 0.9 * 

Waist circumference (cm) 97.1 ± 2.3 84.9 ± 1.2 *** 

Hip circumference (cm) 116.0 ± 1.7 104.7 ±1.2 **** 

Waist to Hip ratio 0.8 ± 0.0 0.8 ± 0.0 NS 

BMI (kg/m2) 31.0 ± 0.6 27.0 ± 0.5 **** 

Cholesterol (nmol/l) 5.1 ± 0.2 4.9 ± 0.2 NS 

HDL (nmol/l) 1.8 ± 0.1 1.7 ±0.1 NS 

Triglycerides (nmol/l) 1.1 ± 0.1 0.9 ± 0.1 NS 

Fasting glucose (nmol/l) 5.3 ± 0.1 6.0 ± 0.2 * 

Fasting insulin (mU/l) 9.2 ± 0.8 6.8 ± 0.6 * 

HOMA-IR 2.2 ± 0.2 1.9 ± 0.2 NS 

 

 

 

 

 

 

 

 

 

 

Table 5: Clinical characteristics of young and elderly subjects. Abbreviations: BMI, body mass index; HDL, high-
density cholesterol; HOMA-IR, homeostasis model assessment for insulin resistance; Data are presented as mean  ±  
SEM.   
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Figure 14: mRNA expression in AT 
from young and elderly subjects. (A) 
Lipogenic genes. (B) Senescent markers. 
(C) ER stress markers. (D) Selected 
correlations between mRNA expression of 
lipogenic genes, ER stress and/or 
senescent markers. Data are presented 
as fold change ±SEM; n=15 in each 
group. Analysed by Mann-Whitney test or 
Spearman correlation. 
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Figure 15: mRNA expression in adipocytes differentiated in vitro from young and elderly subjects. (A) Lipogenic 
genes. (B) Senescent markers. (C) ER stress markers. (D) Selected correlations between mRNA expression of lipogenic 
genes, ER stress and/or senescent markers. Data are presented as fold change ± SEM; n=11 in each group. Analysed 
by Mann-Whitney test or Spearman correlation.  
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4.3 Experimental part C 

4.3.1 Introduction to experimental part C 

VLCD are often prescribed in obesity treatment to achieve rapid weight loss. 

Generally, this type of dietary intervention consists of 500-800 kcal per day during 1-2 

months, and leads to improvement in metabolic profile (such as plasma total cholesterol, 

triglycerides, HDL, insulin etc.) and insulin sensitivity [237]. A study that compared the 

effects of VLCD and bariatric surgery has shown that VLCD drives almost the same 

improvements of insulin sensitivity, β-cell function and lipid parameters as bariatric surgery 

when the same reduction of body weight and fat mass is achieved [284]. However, some of 

the positive effects of severe calorie restriction are observed already before the loss of fat 

mass is accomplished. Whole body/hepatic insulin resistance measured by homeostasis model 

assessment for insulin resistance (HOMA-IR) or quantitative insulin sensitivity check index 

QUICKI improved as soon as after two days of VLCD [285, 286]. Similarly the beneficial 

effects of bariatric surgery on carbohydrate metabolism were observed within several days 

after bariatric operation in type 2 diabetic patients, before significant weight loss has occurred 

[287]. Mechanisms of the beneficial metabolic effects of the calorie restriction per se are not 

well understood. It might be hypothesized that modifications of immune and metabolic 

characteristics of AT might occur and play a role in this process, in spite of the fact that there 

is no change in AT mass. While the response of inflammation-related cytokines during 1 

month VLCD was investigated in a number of studies (reviewed in [237, 288]), the effects of 

a very short calorie restriction was studied rarely [285]. Similarly, it was shown that the 

expression of metabolism-related genes in AT was reduced after 1 month of VLCD [257], but 

the response to shorter calorie restriction (e.g. several days) was not thoroughly studied. 

Therefore, in this longitudinal study we compared the effects of 2 days and 28 days of 

VLCD on metabolic and inflammation-related indices in subcutaneous abdominal AT 

(SAAT) and their possible relationship with systemic inflammatory and metabolic status in 

moderately obese women. We investigated expression of the respective genes in SAAT as 

well as secretion of cytokines in SAAT explants. The design of the study is on Figure 16. 

According to recent studies, the diet- induced metabolic changes might be partially 

controlled by FGF21. FGF21 is released by liver and stimulates fatty acid oxidation and 

ketogenesis [289]. Recently, it was shown, in mice and in cell cultures that FGF21 may affect 

adipose tissue metabolic pathways (lipogenesis, lipolysis) [290, 291]. Thus, FGF21 levels and 

their association with changes in SAAT were also investigated. 
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4.3.2 Results: experimental part C 

Effect of dietary intervention on clinical and laboratory characteristics of obese women. 

Anthropometric and biochemical parameters of subjects before and during two stages of the 

diet are presented in Table 1. At day 2 of VLCD the subjects  ́body weight was reduced by 

1.4%, while fat mass was not changed. After 28 days of VLCD a body weight loss of 9.2% 

was achieved, associated with a decrease of 16.5% of fat mass (kg).  

Plasma glucose levels and TAG were not changed significantly during any phase of the 

intervention. FFA and β-hydroxybutyrate levels were elevated both after 2 days and 28 days 

of VLCD. Total cholesterol and HDL cholesterol levels decreased after 28 days of VLCD. 

Insulin and insulin resistance estimated by HOMA-IR decreased after 2 days of the diet by 

13.7% and 16.4 %, while at the day 28 these variables decreased by 40 % and 44 %, 

respectively (Table 6). 

 

Effect of dietary intervention on mRNA gene expression in SAAT. 

Genes regulated after 2 days of VLCD 

Among all the genes analyzed, those that were downregulated at day 2 were: three lipogenic 

genes (SCD1, FASN, and ELOVL6), lipogenic transcription factor SREBP1c, and fibrotic 

enzyme – lysyl oxidase (LOX). 

Figure 16: The design of the study. 17 obese pre-menopausal women were included in the study. Clinical 
examination, needle biopsy of SAAT and blood collection were performed at indicated  days (day 0 - before the start 
of VLCD, day 2 – after 2days of VLCD, day 28 – at the end of one-month VLCD). Samples from needle biopsies and 
plasma were used for further analysis of inflammatory and metabolic characteristics during the intervention.  
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Upregulated genes at day 2 were: lipases (ATGL, HSL), ATGL coactivator CGI58, 

transcription factor PPARγ and fatty acid translocase CD36. mRNA expression of glucose 

transporter GLUT1 had tendency to increase after 2 days of VLCD (p=0.09). 

 All other genes were not changed at day 2 of VLCD, explicitly I would mention the genes 

involved in β-oxidation (CPT1B, ACOX, ACADM, PPARα, PCG1) (Figure 17C), the genes 

involved in fibrosis (TLR4, collagens, TGFβ1, MMP9) (Figure 17E), and in inflammation 

(macrophage markers and cytokines) (Figure 17F), and several genes related to lipogenesis 

and lipolysis. 

Genes regulated after 28 days of VLCD 

Genes downregulated after 28 days of VLCD were: all lipogenic enzymes (SCD1, FAS, 

DGAT2, ACLY, ACACA, ELOVL6) and two lipogenic transcription factors (SREBP1c, 

ChREBP) (Figure 17A); lipolytic genes and regulators - MGL, G0S2 (an inhibitor of ATGL), 

PLIN1 (an inhibitor of HSL), and DGAT1 (an enzyme involved in the re-esterification of 

fatty acids and in lipogenesis) (Figure 17B); genes associated with β-oxidation of fatty acids 

– CPT1, ACOX1 and ACAD (Figure 17C); insulin stimulated glucose transporter (GLUT4) 

(Fig 2D); leptin (Fig 2D), and fibrotic enzyme - lysyl oxidase (Figure 17E). 

Genes upregulated after 28 days of VLCD were some macrophage markers, namely CD163, 

MSR1, IRF5, and CCR2. The increase of mRNA expression of other markers (ACP5, 

FCGBP, ITGAX) and cytokines (IL8, MCP1, TNFα, IL6 and IL10) was observed but it did 

not reach statistical significance (Figure 17F) 

Expression of all other genes was not significantly modified at the end of 28 days of the 

dietary intervention, specifically: genes involved in lipolysis: HSL, ATGL, CGI58, CD36 

(Figure 17B), transcription factor PPARα, PPARγ and PPARγ coactivator PGC1α, IRS1, and 

genes involved in fibrosis (Figure 17E). 

Correlations of the diet-induced changes in gene expression in SAAT and in metabolic 

parameters during VLCD intervention 

2-days changes: Changes of circulating free fatty acids and glycerol after 2 days of VLCD 

correlated with changes in mRNA expression of CGI58 (Suppl. Fig 1.). The changes of 

glycerol after 2 days of VLCD correlated with expression changes of HSL and ATGL (Suppl. 

Figure 1). The changes of HOMA-IR after 2 days of VLCD tended to correlate with changes 

of HSL and ATGL expression (data not shown). 

28-days changes: The changes in mRNA expression of leptin and LOX correlated positively 

with the changes of mRNA expression of lipolytic and lipogenic enzymes, β-oxidation, and 

IRS1 during 28 days of VLCD (Suppl. Table 1). The changes of HOMA-IR correlated with 
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changes of plasma levels and secretion of leptin (Suppl. Figure 1, Suppl. Table 1). Changes 

of cholesterol, insulin and TAG correlated with the changes of expression of several lipolytic 

and lipogenic genes (i.e. HSL, SCD1, FASN, DGAT2) (Suppl. Figure 1). 

Changes of plasma FGF21 correlated positively with corresponding changes of β-

hydroxybutyrate (r=0.537, p=0.048), and negatively with corresponding fold changes of 

ATGL, DGAT2, PPARγ and GLUT4 expression (Suppl. Figure 1, data not shown). 

 

Secretion of cytokines/adipokines in SAAT during VLCD. In vitro secretion of cytokines 

IL6 and MCP1 from SAAT explants did not change after 2 days of VLCD but increased after 

28 days of VLCD. Secretion of IL8 and TNFα was not significantly changed after 2 days, and 

tended to be increased after 28 days of VLCD (p=0.053; p=0.066; respectively). Secretion of 

IL10 was not significantly changed in either VLCD phase (Figure 18). Secretion of leptin 

was not changed after 2 days of VLCD but decreased significantly after 28 days of VLCD 

(Figure 18).  

 

Plasma levels of cytokines, CRP, FGF21, and leptin during VLCD 

Plasma concentration of cytokines IL6 and MCP1 increased after 2 days of VLCD, and 

returned to baseline after 28 days of VLCD (Figure 19). Similarly, CRP concentration had a 

tendency to increase after 2 days of VLCD (p=0.07) and decreased under the baseline values 

after 28 days of VLCD (Fig 4). IL8, IL10, TNFα and cortisol levels were not significantly 

changed either after 2 or 28 days of VLCD. The average plasma leptin levels did not change 

significantly after 2 days of VLCD (decrease by 21%, p=0.21), however, the response showed 

a high interindividual variability. After 28 days of VLCD the decrease of leptin was markedly 

pronounced (by 49%, p<0.001). FGF21 was not changed after 2 days of VLCD and was 

elevated after 28 days of VLCD (Figure 19). 
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 Before diet 2 days VLCD 28 days VLCD 

Weight (kg) 93.5 ± 2.3 92.1 ± 2.3a 84.9 ± 2.3a 

BMI (kg.m
-2

) 32.7 ± 0.9 32.2 ± 0.9a 29.7 ± 0.8a 

Fat mass (kg) 38.9 ± 2.0 38.6 ± 1.9 32.3 ± 1.6a 

Fat free mass (%) 59.6 ± 1.2 59.3 ± 1.2 63.5 ± 1.1b 

Waist  circumference (cm) 99.9 ± 1.7 98.6 ± 1.6b 92.6 ± 1.6a 

Glucose (mmol.l
-1

) 5.0 ± 0.1 5.1 ± 0.1 4.9 ± 0.2 

Insulin (mU.l
-1

) 10.2 ± 1.0 8.0 ± 0.6c 5.3 ± 0.6a 

Free fatty acids (µmol.l
-1

) 820 ± 56 1156 ± 119c 1115 ± 70b 

Glycerol (µmol.l
-1

) 124 ± 16 147 ± 14 113 ± 10 

Triglycerides (mmol.l
-1

) 1.12 ± 0.12 1.04 ± 0.07 0.93  ± 0.10 

HDL (mmol.l
-1

) 1.25 ± 0.05 1.21 ± 0.06 1.06  ± 0.04a 

Total Cholesterol (mmol.l
-1

) 4.82 ± 0.20 4.86 ± 0.18 3.87  ± 0.13a 

β-Hydroxybutyrate  (mmol.l
-1

) 114 ± 19 379 ± 63b 603 ± 124b 

HOMA -IR 2.3 ± 0.2 1.8 ± 0.1c 1.3 ± 0.2a 

QUICKI 0.342 ± 0.005 0.354± 0.004c 0.386 ± 0.009a 

Table 6: Clinical characteristics of 17 obese women before the diet, after 2 days and after 28 days of 
VLCD. Abbreviations: BMI, body mass index; HOMA-IR, homeostasis model assessment for insulin resistance; 
HDL, high-density cholesterol, QUICKI, Quantitative insulin sensit ivity check index  
Data are presented as mean  ±  SEM.   
a p < 0.001 when compared with baseline (before the diet) values (one way ANOVA with repeated measures, 
followed by post hoc pairwise comparisons with Bonferroni adjustment for multiple testing); 
b p < 0.01 when compared with baseline (before the diet) values (one way ANOVA with repeated measures, 
followed by post hoc pairwise comparisons with Bonferroni adjustment for multiple testing); 
c p < 0.05 when compared with baseline (before the diet) values (one way ANOVA with repeated measures, 
followed by post hoc pairwise comparisons with Bonferroni adjustment for multiple testing); 

; 
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Figure 17: mRNA expression of genes in subcutaneous AT of obese women before the diet (white), 2 days after VLCD (grey) and 28 days after VLCD 
(black). (A) lipogenesis, (B) lipolysis, (C) β-oxidation, (D) insulin/glucose receptors and leptin, (E) fibrosis, (F) inflammation.  Data are presented as fold change ± 
SEM, related to mean basal (before diet) gene expression; normalized to PPIA expression (n=16).  
* p <0.05; ** p< 0.01; ***p< 0.001 compared to pre-diet levels or values at 2 days of VLCD (One-way ANOVA with repeated measures, followed by post-hoc 
pairwise comparisons with Bonferroni adjustment for multiple testing). 
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Figure 18: Secretion of cytokines / adipokines from subcutaneous adipose tissue of obese women before the diet (white), 2 days after VLCD (grey) and 
28 days after VLCD (black). Data are presented as concentration of secreted protein (pg/ml per 4h) ± SEM (n=16); * p <0.05; ** p< 0.01; ***p< 0.001 compared to 
pre-diet levels or values at 2 days of VLCD (One-way ANOVA with repeated measures, followed by post-hoc pairwise comparisons with Bonferroni adjustment for 
multiple testing). 
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Figure 19: Plasma levels of cytokines and hormones in obese women before the diet (white), 2 days after VLCD (grey) and 28 days after VLCD (black).  
Data are presented as mean ± SEM, (n=17); * p <0.05; ** p< 0.01; ***p< 0.001 compared to pre-diet values or values at 2 days of VLCD (One-way ANOVA with 
repeated measures, followed by post-hoc pairwise comparisons with Bonferroni adjustment for multiple testing).  
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Supplementary figure 1: Correlations of selected mRNA gene expression in AT and fold changes of selected metabolic 
factors after A) 2 days and B) 28 days of VLCD. Analysed by linear regression, Pearson correlation coefficient is 

presented (n=16).  
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2 days of VLCD 

mRNA 

(except of HOMA-

IR) 

Leptin 

(mRNA) 

Leptin  

(secretion) 

LOX  

(mRNA) 

CD36  

(mRNA) 

ATGL 0.662
b
 0.276 0.284 0.746

c
 

HSL 0.647
b
 0.135 0.469 0.776

c
 

MGL 0.636
a
 -0.092 0.176 0.121 

SCD1 0.645
c
 0.297 0.189 0.430 

FASN 0.668
c
 0.250 0.513 0.522

a
 

ACOX1 0.363 -0.194 0.207 0.051 

ACADM 0.551
a
 0.335 0.254 0.256 

PPARγ 0.607
b
 -0.104 0.534

a
 0.841

c
 

PLIN 0.384 0.229 0.593
a
 0.239 

GLUT4 0.386 0.408 0.608
a
 0.173 

IRS1 0.300 0.300 0.664
b
 -0.248 

SREBP 0.322 0.465 0.551 -0.047 

ChREBP 0.550
a
 0.191 0.501 0.035 

HOMA-IR 0.273 0.782
c
 -0.064 0.182 

 

28 days of VLCD 

mRNA 

(except of HOMA-

IR) 

Leptin 

(mRNA) 

Leptin  

(secretion) 

LOX  

(mRNA) 

CD36  

(mRNA) 

ATGL 0.706
a
 0.593

a
 0.658

b
 0.645

b
 

HSL 0.712
c
 0.607

a
 0.641

b
 0.636

b
 

MGL 0.709
a
 0.583

a
 0.756

c
 0.248 

SCD1 0.702
b
 0.596

a
 0.431 0.507

a
 

FASN 0.512
a
 0.497 0.589

a
 0.488 

ACOX1 0.414 0.332 0.604
a
 0.108 

ACADM 0.372 0.347 0.817
c
 0.279 

PPARγ 0.641
b
 0.757

a
 0.077 0.819

c
 

PLIN 0.594
a
 0.423 0.846

c
 0.346 

GLUT4 0.593
a
 0.591

a
 0.493 0.165 

IRS1 0.554
a
 0.388 0.668

b
 0.280 

SREBP 0.507 0.503 0.470 0.249 

ChREBP 0.475 0.374 0.689
c
 0.242 

HOMA-IR 0.445 0.550
a
 -0.426 0.439 

 
Supplementary table 1: Correlations between diet-induced changes of selected genes/factors. Correlations between 
fold changes of metabolic factors during during 2 days and 28 days of VLCD ((value at 2 days/ baseline) or (value at 28 
days/ baseline)). Pearson’s correlation coefficient is presented (n=16). ap<0.05 ; bp≤0.01; cp≤0.001. 
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4.4 Experimental part D 

4.4.1 Introduction to experimental part D 

Obesity is one of the greatest challenge of the 21
th
 century. As a serious medical 

complication, obesity impairs quality of life and constitutes one of a major economic burden 

worldwide. Another important contributor to the growing prevalence of the metabolic 

syndrome is the aging of the population [292, 293]. In fact, the median age of the population 

is increasing almost as dramatically as obesity. In 2015, the worldwide population of the 

elderly rose by 55 million thus reaching 8.5 % of the total population. As a result the median 

age of the total population is currently at the highest peak in human history (28 years in 2010) 

[294, 295].  

Importantly, elderly population lives in the same obesogenic environment as other age 

groups and this poses a new health challenge: obesity in the elderly. Compared to obese 

children and adults in their productive age who can profit from obesity treatment, there is no 

evidence that weight loss has beneficial effects on AT of the elderly. Furthermore, appropriate 

treatment for obesity in older persons is controversial because weight loss in the elderly could 

have potential harmful effects, such as sarcopenia (the loss of skeletal muscle and function), 

thus exacerbating the age-related frailty. 

Therefore, the aim of the project was to compare and define effects of moderate 

calorie restriction on in vivo and in vitro physiology of AT in two groups of obese men: 

juniors and seniors, with a special attention to biology of preadipocytes differentiated into 

adipocytes in vitro (Figure 20). 

 

 

 

 

 

 

 

 

 

Figure 20: Design of the study. Obese juniors (age 30-40) and seniors (age 60-70) underwent eight weeks of calorie 

restriction (at least 20 % reduction of energetic need per day) in order to reach moderate weight loss. To prevent 

sarcopenia, subjects performed physical activity with professional sport trainer at least three times a week for 45-60 min. 

Needle biopsies of subcutaneous AT were taken before and after the intervention and used to isolate preadipocyte. To 

determine possible impact of the intervention, experiments/analysis were performed on preadipocytes and adipocytes 

differentiated in vitro. 

 



89 

4.4.2 Results : Experimental part D 

 

Note: Experiments performed in Project D vary with number of subjects. That is because cells 

from all subjects were not available for all the experiments. For comparison between juniors 

and seniors, only results from paired subjects are shown. In most cases, results from 

comparison within maximum number of subjects are not shown. These results did not differ 

statistically significantly from results analysed with only paired subjects. 

 

Clinical and laboratory characteristics of subjects 

Anthropometric and biochemical parameters of subjects (juniors vs. seniors, before vs. after 

the intervention) are presented in Table 7. The two groups did not differ in any parameter 

except for age (35.82 ± 0.70 and 64.50 ± 1.10) and glucose disposal rate (GDR; 4.86 ± 0.38 

and 3.79 ± 0.41).  

The intervention induced weight loss in both groups. Compared with baseline values, the 

subject´s body weight decreased by 4.32 % in a group of juniors and 5.67 % in a group of 

seniors. BMI and fat mass (kg) decreased similarly in both groups. Lean body mass (%) 

increased significantly only in the group of juniors. The intervention decreased levels of 

cholesterol and LDL in both groups. 

 

Preadipocyte proliferation 

The rate of proliferation of preadipocytes assessed by Wst-1 assay did not differ between 

juniors and seniors (Figure 21A) and was not affected by the intervention in either group. 

(Figure 21B, C). Also, levels of another marker of proliferative status of preadipocytes, i.e. 

Akt phosphorylation at S473 in response to growth hormones, insulin, serum and other 

growth factors, were not different between the groups, either before and after the intervention 

(Figure 22).  

 

Senescence status of preadipocytes  

To determine quantitatively the level of senescence in preadipocytes in passage 3 or 4 (P3/4), 

activity of βgal at pH 6.0 and cellular size, two frequently used senescence markers, was 

analysed using flow cytometer. Representative images of the results and gating strategy are 

depicted on Figure 23. No difference in the percentage of βgal positive and large cells was 

between juniors and seniors, and before/after the intervention (Figure 24). Similarly, no 
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difference in mRNA expression of p16, a prototypical marker of senescence, was found 

between the groups and in response to the intervention (Figure 25). 

 

Differentiation and metabolic capacity of adipocytes differentiated in vitro 

As detected by ORO staining, no statistically significant difference in capacity to accumulate 

neutral lipids was found between juniors and seniors, even though there was a tendency to 

accumulate less lipids in the group of seniors (Figure 26). Similarly, the intervention did not 

increase significantly the capacity to accumulate the lipids in any of the groups. Metabolic 

assay using radioactive 2-deoxy glucose did not show any difference in the capacity of insulin 

stimulated glucose transport between juniors and seniors (Figure 27). However, the 

intervention improved the capacity of glucose uptake exclusively in the group of seniors. To 

confirm this result, Western blot was performed to quantify the phosphorylation of IRS1 and 

Akt upon insulin stimulation. Nevertheless, no difference was found between juniors and 

seniors, before or after the intervention (Figure 28 and Figure 29). 

 

Gene expression of adipocytes differentiated in vitro 

In total, mRNA gene expression of 91 genes involved in adipogenesis and lipogenesis 

(Figure 30), fatty acid oxidation and lipolysis (Figure 31), senescence and inflammation 

(Figure 32), ER stress, anti-oxidant reaction and insulin sensitivity (Figure 33), 

browning/whitening (Figure 34), fibrosis and other genes (Figure 35) was analysed. There 

was no statistically significant difference in the mRNA level encoding any of analysed genes 

between juniors and seniors prior the intervention. Interestingly, the intervention led to the 

increase of PPARγ and ChREBP mRNA levels in the group of seniors. Similarly, the 

expression of genes involved in fatty acid oxidation (Succinate Dehydrogenase Complex 

Flavoprotein Subunit A or SDHA, Ubiquinol-Cytochrome C Reductase Core Protein II or 

UQCRC2, PPARα), lipolysis (ATGL, HSL, CD36) and browning of AT (GK, ELOVL3) was 

increased after the intervention in the group of seniors. Interestingly, mRNA expression of 

DPT (marker of WAT) was decreased significantly when compared only the effect of 

intervention in seniors by Wilcoxon test. Similarly, mRNA expression of genes involved in 

brightening/browning (CITED, TMEM26, PDK4, SIRT3) was increased significantly in 

seniors when analysed by Wilcoxon test. mRNA expression of the other genes stayed 

unchanged and expression of DLK1 and MMP9 was not detected.                                                                                        

http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=10680
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=10680
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  JUNIORS SENIORS 
JUNIORS X 

SENIORS 

JUNIORS X 

SENIORS 

  Before After 
Before X 

after 
Before After 

Before X 

after 
Before After 

Age (year) 35.82 ± 0.70 35.13 ± 0.74 NS 64.50 ± 1.10 64.25 ± 1.21 NS *** *** 

Weight (kg) 107.29 ± 3.42 102.96 ± 4.05 ** 101.50± 3.41 96.59 ± 3.64 *** NS NS 

BMI 33.53 ± 0.53 32.41 ± 0.77 *** 33.98 ± 0.50 32.22 ± 0.64 *** NS NS 

Fat mass (kg) 40.01 ± 2.18 36.65 ± 3.18 *** 36.65 ± 2.02 33.46 ± 2.42 ** NS NS 

Muscular mass (kg) 35.06± 1.21 34.43 ± 1.54 NS 31.70 ± 0.61 30.95 ± 0.64 NS NS NS 

Lean body mass (%) 59.46 ± 1.31 61.25 ±2.10 ** 60.84 ± 0.81 62.22 ± 1.19 NS NS NS 

TAG (nmol/l) 1.90 ± 0.23 1.41 ± 0.22 NS 1.84 ± 0.14 1.24 ± 0.21 NS NS NS 

Cholesterol (mmol/l) 5.06 ± 0.24 4.51 ± 0.29 * 5.09 ± 0.32 4.39 ± 0.78 * NS NS 

HDL (mmol/l) 1.03 ± 0.07 1.04 ±0.07 NS 1.12 ± 0.04 1.11 ± 0.05 NS NS NS 

VLDL (nmol/l) 0.86 ± 0.10 0.64 ± 0.10 NS 0.84 ±0.06 0.57 ±0.10 NS NS NS 

LDL (mmol/l) 3.17 ± 0.26 2.89 ± 0.24 * 3.13 ± 0.30 2.68 ± 0.52 * NS NS 

GDR (mg/min/kg) 4.86 ± 0.38 5.63 ± 0.26 NS 3.79 ± 0.41 4.20 ± 0.37 NS * * 

Table 7: Clinical characteristics of obese juniors (n=11) and seniors (n=10) before and after the intervention.  Data are presented as mean ±  SEM.  The comparison 
was done in each group for 8 paired subjects which did not differ from the whole group of juniors or seniors, respectively. Analysed by two-way ANOVA. *p<0.05, **p<0.01. 
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A B C 

Figure 1 

Juniors 

Seniors 

  -      +       -      +          -      +     -     +      

Before Before After After 

Representative 

subject 1 
Representative 

subject 2 

Figure 21: Proliferation rate of preadipocytes measured by Wst-1 assay. (A) Comparison of juniors (n=11) and seniors (n=10). Impact of the intervention is depicted in (B) for 

juniors (n=8) and in (C) for seniors (n=8). Expressed as a fold change  (related to the absorbance in the day of seeding). Analysed by two-way ANOVA, ±SEM. 

. 

Figure 22: Sensitivity of preadipocytes to proliferative stimuli. (A) Quantitative bar graphs of S473-Akt phosphoryation in juniors (n=3) and seniors (n=7), before and after 

the intervention. Data are expressed as a fold change of induction. (B) Representative western blot. (C) Phosphorylation was related to total protein load. Analysed by two-

way ANOVA, ±SEM. 
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Figure 23: Gating strategy for the detection of senescence preadipocytes. Activity of βgal at pH 6.0 was 

determined on preadipocytes at P3/P4 using flow cytometer. Two parameters were taken into account during the 

analysis: % of β-galactosidase posit ive cells (determined on FITC channel) and cellular size (determined by Forward 

Scatter, FSC). Four populations were obtained: βgal negative cells, βgal positive cells, BIG βgal positive cells and 

BIG cells. Non-treated cells were used as a negative control and preadipocytes treated with H2O2 and preadipocytes 

at passage 11 served as positive controls. A. Representative images of junior before and after the intervention. B. 

Representative images of seniors before and after the intervention. 
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Figure 24: Senescence status of preadipocytes. Detected activity of βgal at pH 6.0 and cellular size were taken into account to determine percentage of 
senescent preadipocytes at P3/P4, P3/P4 treated with H2O2 and P11. Analysed by two-way ANOVA with Bonferroni adjustement for multiple testing; n=4-6 in 
each group; 
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Figure 25: mRNA expression level of p16 in preadipocytes.  Analysed by two-way ANOVA with Bonferroni 
adjustement for multiple testing; n=6 in each group; 
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Figure 26: In vitro differentiation of preadipocytes. Cells were differentiated for 12 days and then the accumulation of 
lipids was analysed using Oil-Red O staining. (A) Comparison of level of differentiation between juniors and seniors (n=7 
in each group) and the impact of the intervention. (B) Representative photographs of junior (J) and  senior (S). Analysed 
by Mann-two-way ANOVA, ±SEM. 
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Figure 27: Glucose transport in adipocytes differentiated in vitro. Cells were differentiated for 12 days and deprived from insulin overnight. The next day, glucose 
transport in response to 100nM insulin was determined using radiolabelled 2-deoxyglucose. Comparison between juniors and seniors, before and after the intervention 
(n=7 in each group). Analysed by two-way ANOVA, ±SEM; *p<0.05. 
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Figure 28: Insulin sensitivity determined by phosphorylation of IRS1. Cells were differentiated for 12 
days and deprived of insulin overnight. The next day, 100 nM insulin was added for 10 min. Phosphorylation 
of Y612-IRS1 was determined using Western blot. (A) Bar graphs of comparison between juniors (n=7) and 
seniors (n=8), before and after the intervention. (B) Representative images from western blot. Analysed by 
two-way ANOVA, ±SEM. 
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Figure 29: Insulin sensitivity determined by phosphorylation of Akt. Cells were differentiated for 12 days 
and deprived of insulin overnight. The next day, 100 nM insulin was added for 10 min. Phosphorylation of 
S473-Akt was determined using Western blot. (A) Bar graphs of comparison between juniors and seniors (n=8 
in each group), before and after the intervention. (B) Representative images from western blot.  Analysed by 
two-way ANOVA, ±SEM. 
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Figure 30: mRNA expression of genes involved in adipogenesis and lipogenesis from adipocytes differentiated in vitro 
of obese juniors and seniors before and after the intervention Data are presented as fold change ± SEM, normalized to 
PPIA expression; n=8 in each group. Analysed by two-way ANOVA. 
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Figure 31: mRNA expression of genes involved in fatty acid oxidation and lipolysis from adipocytes differentiated in 
vitro of obese juniors and seniors before and after the intervention Data are presented as fold change ± SEM, normalized 
to PPIA expression; n=8 in each group. Analysed by two-way ANOVA. *p<0.05, **p<0.01. 
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Figure 32: mRNA expression of genes involved in senescence and inflammation from adipocytes differentiated in vitro 
of obese juniors and seniors before and after the intervention Data are presented as fold change ± SEM, normalized to 
PPIA expression; n=8 in each group. Analysed by two-way ANOVA. 
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Figure 33: mRNA expression of genes involved in endoplasmic reticulum stress, anti-oxidant reactions and insulin 
sensitisation from adipocytes differentiated in vitro of obese juniors and seniors before and after the intervention Data 
are presented as fold change ± SEM, normalized to PPIA expression; n=8 in each group. Analysed by two-way ANOVA. 
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Figure 34: mRNA expression of genes – markers of BAT, WAT and genes involved in browning/brightening from 
adipocytes differentiated in vitro of obese juniors and seniors before and after the intervention Data are presented as 
fold change ± SEM, normalized to PPIA expression; n=8 in each group. Analysed by two-way ANOVA. *p<0.05. 
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Figure 35: mRNA expression of genes involved in fibrosis and other genes from adipocytes differentiated in vitro of 
obese juniors and seniors before and after the intervention Data are presented as fold change ± SEM, normalized to PPIA 
expression; n=8 in each group. Analysed by two-way ANOVA. 
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5 Discussion 

5.1 Discussion to experimental part A 

Pathways activated by ER stress represent primarily an adaptive homeostatic process 

that aims at protecting cellular metabolism disturbed by various insults. Extreme severity or 

chronicity of ER stress is however linked with poor cellular survival and suboptimal 

metabolic performance [296]. This study brings evidence that severe ER stress substantially 

reduces lipogenic capacity of adipocytes while chronic low ER stress impairs lipogenesis 

through inhibition of adipogenic conversion of preadipocytes. As adipocytes are cells 

primarily dedicated to synthesis of lipids, the inhibition of lipogenesis represents a major 

disturbance of their metabolic function. Indeed, lipogenesis is repressed in obese AT [297], 

whose demands for the synthetic and secretory activity are enhanced and result in persistent 

deficiency of ER capacity. Notably, adipocytes used in this study were differentiated and 

exposed to ER stressors in fatty acid free medium, so the described effects of ER stress on 

lipogenesis actually represents effects on DNL. In vivo significance of DNL in AT was 

considered negligible until recent discovery that in lean subjects, up to 20 % of TAG were 

synthetized in AT de novo [61]. As we did not observe any effect of ER stress on 

mitochondria OXPHOS capacity (data not shown), the impact of ER stress on lipogenesis in 

adipocytes appears to be direct and not exerted through suppression of mitochondrial 

function. 

Lipogenesis has been previously found to be regulated by activity of UPR components 

in liver [269, 298]. While UPR activation by glucose deprivation blocks lipogenesis in liver 

cells [299], under non-limiting glucose inflow in vivo ER stress induced formation of lipid 

droplets leading to hepatic steatosis [300, 301]. Thus, the negative effect of ER stress on 

lipogenesis in the presence of glucose - as observed in this study - seems to be specific for 

AT. Despite this tissue specific effect of ER stress, a pathophysiological outcome of 

unresolved ER stress is the same in both adipose and liver cells, i.e. a deterioration of their 

primary metabolic specialization. Thus, eliciting ER stress in both AT and liver at the same 

time may explain a vicious circle leading to profound disturbance of the whole body lipid 

metabolism in obese. Notably, opposing effects of ER stress on lipogenesis in adipocytes 

versus liver cells fits well with fact that DNL seems to be regulated in AT and liver in an 

opposing manner. This disparity is probably based on differential activation of two key 

transcription factors SREPB1c and ChREBP in both tissues, since expression of both of them 



 

107 

has been shown to be lower in AT but higher in liver from obese compared to lean subjects 

[261, 302]. Nevertheless, chronic ER stress of low intensity that more closely imitates in vivo 

conditions was inefficient to diminish lipogenesis in mature adipocytes. This suggests that 

chronic ER stress seen in obesity could have an impact rather on the newly recruited 

preadipocytes and thus could impair necessary renewal of AT. This hypothesis is supported 

by our observation that ER stress activating all arms of the UPR strongly inhibits adipogenic 

conversion of preadipocytes when present prior or in early stages of this process. Sensitivity 

of adipogenesis to low ER stress was reported also by Kim et al. [303]. Early effect of ER 

stress on adipogenesis suggests a regulation of a key adipogenic factor PPARγ or its upstream 

regulators. Indeed, cells pretreated with TM prior induction of adipogenesis were unable to 

enhance PPARγ expression as much as cells exposed to regular adipogenic medium for 3 

days. Moreover, expression and transcriptional activity of PPARγ in 3T3-L1 cells was 

recently found to be inhibited by ATF3, a transcriptional inhibitor inducible by ER stress 

[304]. Nevertheless, it remains unclear whether ATF3 plays a role in adipogenesis also under 

conditions of low chronic ER stress. Interestingly, expression of ER stress marker HSPA5 

was increased 24 hours after onset of differentiation by TG dose that does not have this effect 

in quiescent preadipocytes (compare Fig. 2C and Fig. 3A). These data suggest that hormonal 

stimulation to adipogenesis represents in fact additional ER stress above the one induced by 

low doses of TG.  

In conclusions, we found that acute ER stress is a powerful inhibitor of lipogenesis in 

adipocytes, both at the level of mRNA expression and de novo TAG synthesis, while low 

intensity ER stress blocked lipogenesis through an impairment of adipogenesis. These effects 

of ER stress could therefore contribute to decreased lipogenic capacity of adipose tissue seen 

in obesity. 
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5.2 Discussion to experimental part B 

Accumulation of TAG in subcutaneous adipocytes is regulated mainly by the balance 

between lipolytic and lipogenic activity of these cells. In aging, accumulation of TAG in 

subcutaneous AT is diminished, but the molecular basis of this phenomenon remains elusive. 

In fact, to our knowledge, no analysis of the activity of lipogenic or lipolytic genes in 

subcutaneous AT in respect to aging was ever done in humans. Because aging is in general 

characterized by the progressive functional decline of various cellular processes, we 

hypothesized that lower deposition of TAG in aged subcutaneous AT is driven mainly by 

decreased lipogenesis.  To test our hypothesis, we analyzed gene expression in subcutaneous 

AT from two age differing groups of women. Since subcutaneous AT consists of a variety of 

cells including stem, endothelial and immune cells, we employed a model of in vitro 

differentiated adipocytes originating from the same donors to analyze aging-related changes 

in expression pattern specifically in adipocytes.  

Our study brought the evidence of a prerequisite for lower capacity of aged 

subcutaneous AT to accumulate fat, i.e. lower mRNA expression of two major lipogenic 

genes (one of them linked to DNL) in both, whole tissue and adipocytes, from the elderly 

(Figure 14A, 15A). Indeed, lower activity of lipogenic enzymes and lower accumulation of 

TAG mirrors lower mRNA expression of lipogenic markers in adipocytes as previously 

documented by tracer studies performed in our and other laboratories [305, 306].  

Since lipogenesis occurs in the ER and can be regulated by ER stress [264, 269, 305], a 

condition that was also proposed as one of the hallmarks of aging [307], we quantified mRNA 

expression of ER stress markers and correlated it with lipogenic gene expression. In contrast 

to aged murine AT [283], aged human subcutaneous AT exhibited lower expression of major 

ER chaperone HSPA5, together with lower expression of  its co-chaperone DNAJC3 and 

ATP/ADP exchange factor HYOU1 (Figure 14C,15C) [308, 309]. It is possible that higher 

expression of HSPA5 and other markers in AT of aged mice reflected not only the aging 

process but also aging-related alterations of body composition, because the groups in the mice 

study were not matched for fat mass parameters that could substantially differ in young (4-6 

months) vs. old animals (18-20 months). On the other hand, the results of our study are in 

accordance with several other studies performed on various (but not adipose) tissues showing 

aging-related reduction of the expression and activity of many ER chaperones and enzymes. It 

was suggested that their functional decline results in chronic ER stress [307, 310, 311].  Thus, 

it is possible that with aging, levels of ER chaperones become mildly reduced, which leads to 
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chronic but low intensity ER stress that cannot fully activate IRE1 branch of the UPR 

necessary to restore ER homeostasis. This hypothesis is supported by our observations that 

mRNA expression of HSPA5 and its co-chaperones was decreased despite higher levels of 

XBP1s, a powerful transcription factor controlling the expression of a cluster of genes related 

to folding (Figure 14C, 15C), while the ability of adipocytes from the elderly to upregulate 

HSPA5 expression in response to acute ER stress (triggered by high doses of thapsigargin or 

tunicamycin) remained fully preserved (data not shown) [312]. On the other hand, we found 

higher expression of both ATF4 and its target gene CHOP [313] in adipocytes from the 

elderly, and thus, low intensity ER stress in aging adipocytes appears to be sufficient to 

trigger PERK-ATF4 axis of the UPR. 

Although the expression of major chaperone HSPA5 and its co-chaperones in 

subcutaneous AT correlated with expression of lipogenic markers, this relationship was not 

found in adipocytes, which implies an involvement of other AT resident cells in this 

relationship. Indeed, both immune and endothelial cells are sensitive to ER stress and upon 

activation of the UPR they can produce a number of proinflammatory cytokines [314, 315] , 

which were implicated in the worsened physiological functions of adipocytes [168]. Besides, 

we have previously observed that lipogenic capacity of mature adipocytes is not influenced by 

experimentally induced chronic low ER stress that could resemble the type of ER stress 

occurring in aging [305].   

To address the impact of accumulation of senescent cells on AT lipogenesis, we 

analyzed several markers of senescent cells, namely CDK inhibitors and markers of oxidative 

stress and mitochondrial dysfunction that are considered also as markers of senescence [316-

318]. Concomitantly increased levels of p16 mRNA and NOX4 are indeed suggestive of 

higher numbers of senescent cells in subcutaneous AT from the elderly.  The lack of 

correlation between the expression of these two markers and lipogenic genes, however, does 

not corroborate the existence of cause-effect relationship between the accumulation of 

dysfunctional senescent cells and decreased lipogenesis in aged subcutaneous AT. Indeed, 

cells contributing to increased p16 and NOX4 expression in aged SAT were probably not 

adipocytes, i.e. the cells exerting strong downregulation of lipogenic gene expression.  

Nevertheless, GDF15 expression, one of the genes implicated in aging, was strongly 

correlated with lipogenic markers in both subcutaneous AT and adipocytes. GFD15 is a 

cytokine that might be induced by various cellular stresses, including mitochondrial 

dysfunction that may contribute to senescence and aging [318]. Indeed a down regulation of 

mitochondrial enzymes in adipose tissue with aging was shown in mice [319]. Thus, the 
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strong negative relationship between GDF15 expression and lipogenesis could suggest that 

the aging-related decline of lipogenesis in subcutaneous AT is related to mitochondrial 

dysfunction in adipocytes. Indeed, lipogenesis is an ATP-demanding process and thus it could 

be limited by any disturbance of oxidative phosphorylation [320]. 

Major limitation of this study is the fact that it is based only on the analysis of mRNA 

levels of marker genes and as such it cannot provide strong conclusions on subcutaneous AT 

expression and activity of certain UPR proteins that are regulated mostly post-

transcriptionally. Nevertheless, mRNA levels of lipogenic, ER chaperones and p16/NOX4 are 

quite strong determinants of actual protein levels as discussed above [317, 318]. 

Another limitation of the presented study is the discordance of BMI and weight 

between the groups, which appears to be driven by difference in fat free mass. This 

discordance is rather impossible to overcome when comparing the young and the elderly, 

because both factors (lean and fat mass) are changing with age. Thus, we believe that the 

matching for fat mass instead of weight and BMI is more suitable to analyze aging-dependent 

changes in adipose tissue.  

In conclusions, decreased capacity of subcutaneous AT adipocytes to accumulate TAG 

appears to be linked to diminished expression of lipogenic enzymes in the elderly that is 

probably driven by mitochondrial dysfunction and not by enhanced ER stress and 

accumulation of senescent cells.  
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5.3 Discussion to experimental part C 

The aim of this study was to elucidate metabolic and immune effects of the calorie 

restriction per se, when compared with the restriction accompanied with the body fat mass 

loss. Therefore, in moderately obese women, whole body and AT characteristics were 

compared between the early (2 days) and later phase (28 days) of VLCD. The main finding is 

that the responses of metabolic and inflammation-related characteristics in SAAT and in 

plasma differed markedly between the two phases of the diet.  

The 2 days of calorie restriction modified genes involved in lipolysis and lipogenesis 

in SAAT, while the inflammatory status of AT was not changed. The increased levels of free 

fatty acids and β-hydroxybutyrate in plasma reflect enhanced AT lipolysis and hepatic 

ketogenesis, similarly as seen in fasting [321]. Increased expression of major AT lipases in 

SAAT - HSL, ATGL, with its cofactor CGI58 could contribute to higher release of free fatty 

acids from AT to plasma, as reviewed by Nielsen et al. [322]. Indeed, in this study the 

increase in plasma free fatty acids and glycerol after 2 days of VLCD correlated with the 

changes in expression of CGI58, and the changes in plasma glycerol correlated with SAAT 

lipases –ATGL and HSL. In addition, increased mRNA expression of CD36 - fatty acid 

transporter in SAAT was found at the early phase of VLCD and this expression correlated 

with increased free fatty acid plasma levels. This goes in line with published studies showing 

that the expression of CD36 in AT increases in response to the acute increase of free fatty acid 

plasma levels induced by lipid infusion [323] and also in response to chronic elevation of free 

fatty acid plasma levels in obese subjects with metabolic syndrome [324]. On the other hand, 

in the study of Hames et al. [325], CD36 was shown to facilitate the free fatty acids uptake by 

AT when the levels of free fatty acids in plasma are low, i.e. after consumption of 

carbohydrate-containing meal. Thus, the higher expression of CD36 observed after 2 days of 

calorie restriction could provide AT better free fatty acid absorption capacities for the 

anticipated refeeding phase. Also, it was suggested that free fatty acids released from 

adipocyte by lipolysis are immediately taken back by CD36 to secure cycling of free fatty 

acids, and this mechanism may prevent excessive release of free fatty acids under condition of 

stimulated lipolysis [326]. The up-regulation of CD36 in our study is likely driven by PPARγ 

activation. Indeed, PPARγ mRNA expression was elevated during the early VLCD phase and 

this change correlated with the changes of mRNA expression of CD36 and with changes of 

lipolytic genes (HSL, ATGL) in this study. Up-regulated PPARγ expression and activity 
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might be associated by enhanced availability of lipolysis-derived fatty acids (PPARγ ligands), 

as suggested by Haemmerle et al [327, 328].  

In contrast to the effect of 2 days of calorie restriction on lipolytic genes, expression of 

lipogenic enzymes in SAAT was reduced. This reduction was likely linked to a 

downregulation of SREBP1c - one of the lipogenic transcription factors, which is regulated by 

insulin [329].  The improvement in insulin sensitivity during the early phase of VLCD was 

not associated with the metabolic gene expression in SAAT, except borderline correlation 

with several lipolytic genes (i.e. HSL, ATGL). Thus, changes occurring in AT in response to 

short calorie restriction do not appear to play major role in the metabolic improvement 

induced by 2 days of VLCD. Therefore, the potential role of other insulin sensitive organs in 

the diet- induced metabolic changes must be taken into account. Lara-Castro et al. [330] 

demonstrated that the decrease of the intramyocellular lipids after 6 days of VLCD was 

closely related to insulin resistance. In contrast to that, Jazet et al. [331] found no changes in 

markers of insulin signaling and glucose transport in skeletal muscle after 2 days of VLCD 

but they found a diet-induced decrease of endogenous glucose production. The latter points to 

the role of the liver in the very short VLCD-induced metabolic changes. 

As no significant change in gene expression and secretion of pro-inflammatory (IL6, 

IL8, TNFα, MCP1) and anti-inflammatory (IL10, IL1Ra, TGFβ1) cytokines, and macrophage 

markers (CD68, CD163, IRF5, MSR1, ACP5, CCR2, FCGBP, ITGAX) in SAAT were 

observed after two days of VLCD, it may be concluded that the early improvement of insulin 

sensitivity (metabolic changes) was not related to changes of immune status of AT. Indeed, 

several studies using opposite dietary intervention, i.e. short overfeeding in healthy men, 

showed similar dichotomy between AT inflammation and insulin sensitivity under conditions 

of mild weight gain when insulin sensitivity was impaired despite no induction of 

inflammatory cytokines and macrophage activation in SAAT [332, 333].  

In contrast to the changes induced by 2 days of VLCD, after 28 days of severe calorie 

restriction mRNA expression of lipolytic genes (ATGL, HSL, MGL, PLIN1, CGI58) returned 

to the pre-diet levels. The no change in ATGL or HSL mRNA expression after 1 month of 

VLCD– when compared to the pre-diet condition - is in agreement with some of the previous 

studies of our and other teams [237, 334]. However, the decrease in expression of lipolytic 

genes in day 28 compared to day 2 does not essentially mean that lipolysis is attenuated. Free 

fatty acid levels in plasma were elevated at 28 day similarly to day 2 indicating maintenance 

of higher lipolytic rate. The decrease to baseline in expression of lipases at late phase of 

VLCD was accompanied by a decrease of G0S2, which has been shown as dominant inhibitor 
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of ATGL in adipocytes [335], and by reduction in DGAT1, which is responsible for free fatty 

acid re-esterification. Reduced inhibition of ATGL together with reduced re-esterification can 

thus still ensure the free fatty acid release needful to cover the energy demand of the 

organism. Thus, our data supports the hypothesis that G0S2 acts predominantly as a long-term 

regulator of ATGL, while CGI58 is more important for the regulation of acute lipolytic 

response [322]. Furthermore, at day 28 a marked decrease of lipogenic genes, genes of β-

oxidation, and insulin stimulated glucose transport (GLUT4) in SAAT was observed. These 

processes probably prevent excessive breakdown as well as storage of free fatty acids in 

adipocytes during longer-term shortage and secure its adequate release from AT to serve as 

substrates for other organs.  

The increase in SAAT inflammatory state after 28 days of VLCD is in agreement with 

published results of our and other groups [285, 336-338]. Previously we have shown that 28 

days VLCD was not associated with an increase in macrophage content in SAAT [339]. Thus 

it might be assumed that the observed increase of macrophage marker expression in response 

to strong calorie restriction reflects stimulation of macrophage activation rather than their 

accumulation. The increase of pro-inflammatory (IL6, IL8, MCP1, TNFα) but also anti-

inflammatory (IL10, IL1Ra) cytokines together with M1 (IGTAX, CCR) and M2 (CD163) 

macrophage markers is in accordance with the published findings that macrophages in SAAT 

are of mixed phenotype [340]. The role of the increase in inflammatory state in SAAT after 

28 days of severe calorie restriction is still unclear.  

Interestingly, the only gene identified to be significantly downregulated in both phases 

of VLCD was lysyl oxidase (LOX), one of the genes involved in fibrosis and ECM 

remodeling. LOX catalyzes the cross-linking of collagens in AT and, thus, it is one of a key 

factors contributing to the fibrosis of AT observed in obesity [341]. Inhibition of LOX also 

resulted in the improvement of several metabolic parameters – ameliorated glucose and 

insulin levels, decreased HOMA index and reduced plasma TAG level in obese rats [341]. 

Indeed, the decrease of LOX expression found in our study was associated with changes in 

SAAT metabolism genes (Suppl. Table 1). Importantly, the reduction of lipogenesis and 

fibrosis observed during weight loss in our study represent the opposite processes to those 

found in the overfeeding studies [332, 333].  

Leptin appeared as the only adipokine for which a quantitative relationship with the 

diet-induced changes of HOMA-IR was found. In addition, leptin changes were correlated 

also with a number of metabolic-related genes in adipose tissue and with plasma FGF21 

levels. Leptin was shown to act on peripheral tissues by regulation of fatty acid oxidation and 
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energy expenditure through activation of AMPK, induction of free fatty acid oxidation genes 

and increased transport of free fatty acids to mitochondria [342]. It might be suggested that 

this adipokine is a sensor of metabolic changes in SAAT and the signal which mediates the 

metabolic interplay with other organs during calorie restriction. Further studies in this issue in 

obese humans should be warranted. 

After 28 days of VLCD, the diet induced improvement of metabolic indices (TAG, 

insulin, cholesterol) was correlated with changes in lipogenic genes (e.g., SCD1, FASN, 

DGAT2). It was shown in mice that decrease of SCD1 expression (in liver or systemic level) 

was correlated with improvement of metabolic profile and insulin sensitivity [343, 344]. Thus, 

we may hypothesize that the decrease of lipogenic genes in AT is paralleled with the decrease 

of lipogenesis in liver, which is probably one of important contributors to the improvement of 

metabolic profile and IS during VLCD. 

FGF21 was shown to act as a metabolic regulator during fasting through stimulating 

ketogenesis and fatty acid oxidation in liver in mice [289]. In addition, in mice and 3T3-L1 

adipocytes the role of FGF21 in down-regulation of lipogenesis and lipolysis in SAAT was 

shown [289-291]. In line with this, we observed negative correlation between the increase of 

plasma FGF21 during the 28 days VLCD and the changes in mRNA expression of genes 

involved in SAAT lipogenesis (FASN, DGAT2) and glucose uptake (GLUT4). As FGF21 

plasma levels are increased only in later phase of the diet [345] it might be suggested that 

FGF21 plays a role in the regulation of a switch from a short-term to a longer-term calorie 

restriction. The down-regulation of lipogenesis in association with insulin-stimulated glucose 

transport into AT supports the role of FGF21 in the saving of substrates for other organs 

during famine. 

In conclusion, our findings show that the early (2 days) and later (28 days) phases of 

VLCD differ in respect to metabolic and inflammatory response in SAAT. Although in both 

phases the effects of severe calorie restriction represent the reaction to shortage of 

calories/nutrients (i.e. induced lipolysis, reduced storage of lipids), the expression of 

regulatory cofactors involved in these processes is different in the early and later phase of 

VLCD. The diet-induced modifications in metabolic and inflammation-related functions of 

AT did not appear to play a pivotal role in the improvement of insulin sensitivity at early 

phase of VLCD. The processes observed after 28 days of VLCD probably contribute to 

adaptation of SAAT to prolonged calorie restriction through saving of substrates. Moreover, 

the correlation of the changes in metabolic genes in SAAT with metabolic indices and FGF21 

suggest the possible cross-talk of SAAT with liver function during VLCD. 
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5.4 Discussion to experimental part D 

Little is known about the calorie restriction in the elderly due to its potential harmful 

effects, e.g. sarcopenia. Therefore, in this unique study we compared the effect of mild eight 

week calorie restriction accompanied with exercise to maintain the muscle mass on certain 

aspects of AT biology in two groups of obese men differing in age (juniors vs. seniors).  

Aging is associated with AT redistribution and with a relative loss of subcutaneous 

AT. Nevertheless, the mechanism of subcutaneous fat loss within aging is not completely 

understood. Observations in rodents suggest that this decline in peripheral body fat is 

associated with a deteriorated ability of preadipocytes to differentiate [215, 216]. Since new 

fat cells are continuously produced from preadipocytes [61], age-related alterations in the 

number of preadipocytes may also contribute to the loss of fat. In the study of Van Harmelen 

et al., a negative correlation between donor age and proliferation of subcutaneous cells was 

found [346]. Our results, however, do not prove that the capacity of preadipocytes to replicate 

or the sensitivity to proliferative stimuli is decreased in the group of seniors. This could be 

given by the fact that in the study of Van Harmelen, the age of subjects range was from 17-61 

and the study included 29 subjects. Nevertheless, in our results we observed a trend showing 

the handicap for the cells from the group of seniors. Therefore, a group including more 

subjects could give more evidence to our results. 

Calorie restriction may reverse typical cellular features of aging, e.g. cellular 

senescence, telomere erosion, epigenetic alterations, mitochondrial dysfunction, genomic 

instability and impaired nutrient sensing among others [347]. Considering that these changes 

apply also on preadipocytes, one would predict faster proliferation after calorie restriction. 

However, our results showed that a moderate calorie restriction does not influence 

preadipocyte capacity to proliferate. This is in agreement with the results of study performed 

by Tomlinson et al., on 12 obese subjects undergoing VLCD for ten weeks, when no 

improvement in proliferation or in the number of cells division over the period of seven days 

was observed [348]. Similarly, previous data from our laboratory showed that three months 

dietary intervention including 23 obese women did not change the number of days for which 

the preadipocytes were in culture (from the establishment of culture up to the first passage), 

neither the total yield of cells in passage 3 [349]. In vitro preadipocytes are exposed to overly 

optimal conditions which do not enable to see the possible impact of the intervention. A 

different methodological approach is required. For instance, immunohistochemical detection 

of proliferative markers in SVF could give us better answer. However, it would therefore be 

https://www-ncbi-nlm-nih-gov.gate2.inist.fr/pubmed/?term=Van%20Harmelen%20V%5BAuthor%5D&cauthor=true&cauthor_uid=15131769
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difficult to distinguish preadipocytes from other SVF-cells. Another explanation may be 

related to the type and duration of calorie restriction. Here, we used moderate calorie 

restriction combined to physical exercise follow up of the patients in order to prevent loss of 

skeletal muscle mass in elderly obese patients. 

There is mounting evidence that senescent cells contribute to ageing and age-related 

pathologies. Therefore, it is surprising that we did not observe a difference in numbers of 

senescent cells or p16 expression in preadipocytes between juniors and seniors. The relatively 

low age and relatively healthy status of the seniors group could be the reason of this 

discrepancy. Another reason for this could be that the original precursors which were already 

senescent did not multiply in the culture, making impossible to detect them at confluence 

state. On the other hand, senescent cells arise in culture by repeated passaging (replicative 

senescence). This prerequisite is correct as we obtained more βgal positive and big cells at 

P11 compared to P3/P4. 

Obesity is also associated with accumulation of senescent cells [199]. Therefore, it 

was logical to assume that weight loss could lead to the opposite process: elimination of 

senescent cells. However, there has not been much evidence for support of this hypothesis up 

to now. Recently, it was shown that exercise prevents the accumulation of senescent cells in 

mice fed on high fed diet and consequently nullifies the damaging effects of fast-food diet on 

health [350]. This effect accompanied by a decrease of expression of inflammatory cytokines 

was observed, except of other organs, in visceral AT. It is possible that the changes within 

subcutaneous AT are less pronounced. Of course, a final conclusion cannot be drawn without 

deeper analysis of SASP of preadipocytes. Therefore, gene expression analysis using 

microarrays is warranted. 

It has been hypothesized that metabolic complications in obesity are related to the 

dysfunction of hypertrophic adipocytes or to the inability of AT to meet increased energetic 

surplus by hyperplastic growth, i.e. by recruitment and differentiation of new adipocytes. 

Evidence for the latter came from the study in which insulin-resistance type 2 diabetic 

subjects exhibited decreased expression of genes involved in differentiation when compared 

with healthy controls [351]. In addition, it was shown that insulin-sensitizing drug 

rosiglitazone, a member of the thiazolidinedione class of glucose-lowering medicines, 

markedly increases the differentiation of adipose progenitors into adipocytes [352]. 

Surprisingly, we did not confirm statistically significant difference in differentiation capacity 

of preadipocytes between juniors and seniors. However, the trend for worsened adipogenesis 

in seniors was obvious. Interestingly, higher intrinsic ability of preadipocytes to differentiate 
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after weight loss which was found in our previous clinical study performed on obese women 

[349] was not achieved in this study. The reason for this discrepancy could be the degree of 

weight loss and overall length of the intervention. In the previous study, the subjects 

underwent calorie restriction for three months that was further followed by 3 month weight 

maintenance phase and the decrease of weight was 9.7 %, whereas in this study weight loss 

did reach only 4.3 % in a group of juniors and 5.7 % in a group of seniors. The study of 

Magkos et al. clearly show that moderate 5 % weight loss of the previous body weight 

influences positively insulin sensitivity in AT [353], but the effect of short dietary 

intervention resulting in lower weight loss on AT has not been much studied. Therefore, it is 

possible that the level of weight loss was not sufficient to lead to any detectable effects, which 

would explain most of the results in a group of juniors (no impact of the intervention on any 

of the measured parameters). On the other hand, observed changes were seen exclusively in a 

group of seniors. It is not clear why the intervention impacted the adipocyte biology in the 

group of seniors. The decrease of fat mass in % was the same in both groups (data not 

shown). Physical exercise was led by a professional trainer 3 times a week. All participants 

were encouraged to engage in physical activity (walking) at least 5 days a week in bouts 

lasting at least 45 min in duration. It can be hypothesized that the group of seniors exercised 

more. No matter the reason for the improvement in adipocyte metabolism in seniors, it is clear 

that this group was positively impacted by the intervention. Therefore, the following 

discussion will take into account only this group. An obvious trend showing higher level of 

differentiation in a group of seniors after the intervention is in compliance with higher degree 

of weight loss. When using qPCR for gene expression analyses, a method more precise than 

ORO, the mRNA expression of PPARγ, an essential adipogenic regulator, was increased as 

well.  

One of the critical characteristics of mature adipocyte phenotype is the expression of 

GLUT4 and its translocation to the membrane upon insulin stimulation [354]. The effect of 

insulin, either in vivo or in vitro, on glucose transport requires proper post-receptor signalling. 

In our study, we observed only a trend toward lower IRS1 phosphorylation at Y612 (that 

activates insulin signalling) in seniors compared to juniors, but no impact of the intervention 

on the level of IRS1 or Akt phosphorylation in either group. However, we observed increased 

insulin-stimulated glucose uptake measured by 2-deoxy glucose (without increased Glut4 

mRNA expression). It was shown that insulin treatment can accelerate the rate of GLUT4 

exocytosis [355]. Recently, TUSC5 was identified as an AT-specific protein that is involved in 

proper protein recycling, including insulin-mediated glucose uptake [356]. Furthermore, 
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TUSC5 was shown to be a PPARγ target. It would be intriguing to measure TUSC5 mRNA 

expression. Surely, we saw an increase in mRNA levels of PPARγ in seniors after the 

intervention. Thus, our data suggest that the increase in glucose uptake is due to accelerated 

rate of GLUT4 trafficking in response to insulin treatment. 

We observed increased expression of genes involved in fatty acid oxidation (SDHA, 

UQCRC2, PPARα) and lipolysis (CD36, ATGL, HSL). This suggests an increased fatty acid 

handling: increased cycling and utilization reaction to negative energy balance. The last 

includes increased ability to oxidize substrates and increased lipolysis. Studies in which the 

subjects underwent weight loss (by VLCD or gastric bypass) showed also upregulation of 

ATGL [357] or increased mitochondrial respiratory capacity [358]. Another action that 

enhances oxygen consumption in mitochondria and is therefore associated with enhanced 

fatty acid metabolism is browning/brightening of AT. Recently, the role of BAT in lipid 

metabolism was explored in humans and it was shown that cold-induced BAT activation is 

associated with increased whole-body lipolysis, TAG-free fatty acid cycling, free fatty acid 

oxidation and AT insulin sensitivity. Cold also upregulated the expression of genes involved 

in lipid metabolism specifically in BAT [359]. Barquissau et al. showed that conversion of 

human white fat cells into brite adipocytes resulted in a major metabolic reprogramming 

inducing fatty acid anabolic and catabolic pathways [360]. Our results suggest that increased 

fatty acid metabolism could be caused by “briter” phenotype of cells. In brown/brite 

adipocytes, glucose oxidation is diminished and glucose is redirected towards 

glyceroneogenesis and favours TAG synthesis. Obviously, we observed increased level of GK 

mRNA. Notably, the mRNA level of ELOVL3 which was shown to have a role during 

increased fatty acid oxidation and is under the control of PPARα [361], was increased in a 

group of seniors after the intervention when compared to juniors. Nevertheless, the UCP1 is a 

protein necessary to sustain thermogenesis via high mitochondrial oxidative capacities. In our 

study, we did not observe a marked increase of UCP1. However, it was reported that human 

mature white adipocytes can acquire brown-like fat cell properties upon PPARγ and PPARα 

activation, both of them increased in our study. Therefore, it is possible that the intervention 

was too short or light or both to see UCP1 mRNA upregulation at the end of the intervention 

and without weight maintenance period. Other brite markers showed a trend to be increased. 

All data together would suggest that the intervention and moderate weight loss can lead to 

higher fatty acid oxidation capacity due to gradual starting of AT britening.  
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In conclusion, we show that if weight loss of at least 5.7 % is achieved by a moderate 

calorie restriction combined with exercise in seniors, it can have beneficial effects on 

metabolism in adipocytes, possibly because fat cells acquire more oxidative features. 
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6 Conclusions and future perspectives 

This thesis focused on the study of biology of human AT, preadipocytes and 

ER stress, calorie adipocytes. The special attention was dedicated to regulation lipogenesis by 

restriction and aging. 

 First Project A assessed the impact of ER stress on differentiation and lipogenic  

capacity of human adipocytes. We showed that acute but not chronic low ER stress weakens 

lipogenic capacity of adipocytes. However, chronic exposure of preadipocytes to ER stress 

impaired both, lipogenesis and adipogenesis. These effects of ER stress could therefore 

contribute to the worsening of AT function seen in obesity. 

Second Project B investigated the lipogenic capacity of human subcutaneous AT in 

relation to aging. By analysis of subcutaneous AT and adipocytes from two groups of women, 

the young and the elderly, we found that decreased capacity of subcutaneous AT adipocytes to 

accumulate triglycerides appears to be linked to diminished expression of lipogenic enzymes 

in the elderly that is probably not driven by the ER stress in adipocytes or accumulation of 

senescent cells. On the other hand, a strong relationship between the expression of lipogenic 

markers and GDF15 suggests that lipogenesis in the elderly might be reduced as a 

consequence of mitochondrial dysfunction.   

 Third Project C aimed at comparing metabolic and inflammation-related 

characteristics of subcutaneous AT in the early (2 days) and later (28 days) phase of a VLCD. 

Our results showed that the early and later phases of a VLCD differ with respect to metabolic 

and inflammatory responses in subcutaneous AT. The expression changes in subcutaneous 

AT in the early phase of the VLCD could not explain the effect of short calorie restriction on 

the improvement of insulin sensitivity. 

The last Project D aimed to compare the effects of moderate calorie restriction on 

preadipocytes and adipocytes differentiated in vitro from obese juniors and seniors. Although 

wwe did not observe any effect of the intervention on metabolism of preadipocytes in either 

group, we observed an intervention-driven improvement in adipocyte metabolism selectively 

in the group of seniors. Therefore, our data suggest that moderate calorie restriction could 

initiate positive changes in metabolism of adipocytes in seniors. 

In conclusion, this thesis brought evidence that lipogenesis in human AT can be 

inhibited by ER stress, severe caloric restriction and aging. 
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The findings of the thesis bring new questions and hypotheses. Even though calorie 

restriction has a clearly beneficial effects on AT, it seems that it cannot relieve ER stress in 

AT. This potential was, however, attributed to exercise, as a study of Khadir et al. showed that 

exercise itself (without calorie restriction and weight loss) is able to alleviate ER stress in 

obese individuals [362]. ER stress is also induced in aging in response to decline of ER 

chaperone levels, as suggested by our results and other studies.  Intriguingly, exercise can 

normalize also this age-driven ER chaperone decline as shown in rats [363]. Furthermore, 

recent research proved that exercise prevents the accumulation of senescent cells and the 

expression of the SASP while nullifying the damaging effects of the fast food diets on 

parameters of health [350]. This study also demonstrated that exercise initiated after long-

term fast food diet feeding reduces senescent phenotype markers in visceral AT while 

attenuating physical impairments. Thus, exercise may provide restorative benefit by 

mitigating accrued senescent burden. However, these studies were performed in animals, not 

in humans. Exercise could also mitigate mitochondrial dysfunction in AT that, based on our 

results, appears to be strongly linked to decreased lipogenesis in AT. Therefore, it can be 

suggested that long-time exercise could restore chaperones induction, alleviate ER stress, 

reduce numbers of senescent cells, relieve mitochondrial dysfunction and thus improve AT 

lipogenesis in obese individuals, as well as in the elderly. The clinical study dedicated to the 

investigation of long-time exercise on AT in the elderly women is currently under way in our 

laboratory. Thus, this longitudinal study employing advanced analyses of cellular composition 

and transcriptome, lipidome of AT, combined with the in vitro experiments on adipocytes 

could shed more light on the effects and functional mechanisms of exercise on AT in the 

elderly.   

 

  



 

122 

7  Bibliography 

1. Nedergaard, J., T. Bengtsson, and B. Cannon, Unexpected evidence for active brown adipose 
tissue in adult humans. Am J Physiol Endocrinol Metab, 2007. 293(2): p. E444-52. 

2. Kwok, K.H., K.S. Lam, and A. Xu, Heterogeneity of white adipose tissue: molecular basis and 
clinical implications. Exp Mol Med, 2016. 48: p. e215. 

3. Burton, D.G. and V. Krizhanovsky, Physiological and pathological consequences of cellular 
senescence. Cell Mol Life Sci, 2014. 71(22): p. 4373-86. 

4. Nelson, L.D.a.M.M., Cox Lehninger Principles of Biochemistry. 2008, New York. 
5. Ouchi, N., et al., Adipokines in inflammation and metabolic disease. Nat Rev Immunol, 2011. 

11(2): p. 85-97. 
6. Hotamisligil, G.S., Endoplasmic reticulum stress and atherosclerosis. Nat Med, 2010. 16(4): p. 

396-9. 
7. Trayhurn, P., Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev, 

2013. 93(1): p. 1-21. 
8. Gesta, S., Y.H. Tseng, and C.R. Kahn, Developmental origin of fat: tracking obesity to its 

source. Cell, 2007. 131(2): p. 242-56. 
9. Tchkonia, T., et al., Mechanisms and metabolic implications of regional differences among fat 

depots. Cell Metab, 2013. 17(5): p. 644-56. 
10. Wells, J.C., P. Treleaven, and T.J. Cole, BMI compared with 3-dimensional body shape: the UK 

National Sizing Survey. Am J Clin Nutr, 2007. 85(2): p. 419-25. 
11. Jackson, A.S., et al., The effect of sex, age and race on estimating percentage body fat from 

body mass index: The Heritage Family Study. Int J Obes Relat Metab Disord, 2002. 26(6): p. 
789-96. 

12. Sidebottom, A.C., J.E. Brown, and D.R. Jacobs, Jr., Pregnancy-related changes in body fat. Eur 
J Obstet Gynecol Reprod Biol, 2001. 94(2): p. 216-23. 

13. Pulit, S.L., T. Karaderi, and C.M. Lindgren, Sexual dimorphisms in genetic loci linked to body 
fat distribution. Biosci Rep, 2017. 37(1). 

14. Garaulet, M., et al., Body fat distribution in pre-and post-menopausal women: metabolic and 
anthropometric variables. J Nutr Health Aging, 2002. 6(2): p. 123-6. 

15. Cartwright, M.J., T. Tchkonia, and J.L. Kirkland, Aging in adipocytes: potential impact of 
inherent, depot-specific mechanisms. Exp Gerontol, 2007. 42(6): p. 463-71. 

16. Lidell, M.E. and S. Enerback, Brown adipose tissue--a new role in humans? Nat Rev 
Endocrinol, 2010. 6(6): p. 319-25. 

17. Bartelt, A. and J. Heeren, Adipose tissue browning and metabolic health. Nat Rev Endocrinol, 
2014. 10(1): p. 24-36. 

18. Yoneshiro, T., et al., Age-related decrease in cold-activated brown adipose tissue and 
accumulation of body fat in healthy humans. Obesity (Silver Spring), 2011. 19(9): p. 1755-60. 

19. Majka, S.M., et al., Analysis and isolation of adipocytes by flow cytometry. Methods Enzymol, 
2014. 537: p. 281-96. 

20. Spalding, K.L., et al., Dynamics of fat cell turnover in humans. Nature, 2008. 453(7196): p. 
783-7. 

21. Gupta, R.K., et al., Zfp423 expression identifies committed preadipocytes and localizes to 
adipose endothelial and perivascular cells. Cell Metab, 2012. 15(2): p. 230-9. 

22. Tang, W., et al., White fat progenitor cells reside in the adipose vasculature. Science, 2008. 
322(5901): p. 583-6. 

23. Tran, K.V., et al., The vascular endothelium of the adipose tissue gives rise to both white and 
brown fat cells. Cell Metab, 2012. 15(2): p. 222-9. 

24. Schulz, T.J., et al., Identification of inducible brown adipocyte progenitors residing in skeletal 
muscle and white fat. Proc Natl Acad Sci U S A, 2011. 108(1): p. 143-8. 



 

123 

25. Cornelius, P., O.A. MacDougald, and M.D. Lane, Regulation of adipocyte development. Annu 
Rev Nutr, 1994. 14: p. 99-129. 

26. Charriere, G., et al., Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol 
Chem, 2003. 278(11): p. 9850-5. 

27. Rodriguez, A.M., et al., Adipocyte differentiation of multipotent cells established from human 
adipose tissue. Biochem Biophys Res Commun, 2004. 315(2): p. 255-63. 

28. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 
2002. 13(12): p. 4279-95. 

29. Rosen, E.D. and O.A. MacDougald, Adipocyte differentiation from the inside out. Nat Rev Mol 
Cell Biol, 2006. 7(12): p. 885-96. 

30. Farmer, S.R., Transcriptional control of adipocyte formation. Cell Metab, 2006. 4(4): p. 263-
73. 

31. Ramji, D.P. and P. Foka, CCAAT/enhancer-binding proteins: structure, function and regulation. 
Biochem J, 2002. 365(Pt 3): p. 561-75. 

32. Tang, Q.Q., et al., Sequential phosphorylation of CCAAT enhancer-binding protein β by MAPK 
and glycogen synthase kinase 3β is required for adipogenesis. Proc Natl Acad Sci U S A, 2005. 
102(28): p. 9766-71. 

33. Moreno-Navarrete JM, F.-R.J., Adipocyte differentiation, in Adipose Tissue Biology, M.E. 
Symonds, Editor. 2012, Springer-Verlag New York: New York. p. 17-38. 

34. Rosen, E.D., et al., Transcriptional regulation of adipogenesis. Genes Dev, 2000. 14(11): p. 
1293-307. 

35. Rosen, E.D., et al., C/EBPalpha induces adipogenesis through PPARgamma: a unified 
pathway. Genes Dev, 2002. 16(1): p. 22-6. 

36. Wu, Z. and S. Wang, Role of kruppel-like transcription factors in adipogenesis. Dev Biol, 2013. 
373(2): p. 235-43. 

37. Tong, Q., et al., Function of GATA transcription factors in preadipocyte-adipocyte transition. 
Science, 2000. 290(5489): p. 134-8. 

38. Maurizi, G., et al., Adipocytes Properties and Crosstalk with Immune System in Obesity-
related Inflammation. J Cell Physiol, 2017. 

39. Lolmede, K., et al., Immune cells in adipose tissue: key players in metabolic disorders. 
Diabetes Metab, 2011. 37(4): p. 283-90. 

40. Ferrante, A.W., The Immune Cells in Adipose Tissue. Diabetes Obes Metab, 2013. 15(0 3): p. 
34-8. 

41. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for 
reassessment. F1000Prime Rep, 2014. 6. 

42. Galli, S.J., N. Borregaard, and T.A. Wynn, Phenotypic and functional plasticity of cells of innate 
immunity: macrophages, mast cells and neutrophils. Nat Immunol, 2011. 12(11): p. 1035-44. 

43. Elgazar-Carmon, V., et al., Neutrophils transiently infiltrate intra-abdominal fat early in the 
course of high-fat feeding. J Lipid Res, 2008. 49(9): p. 1894-903. 

44. Galli, S.J., S. Nakae, and M. Tsai, Mast cells in the development of adaptive immune 
responses. Nat Immunol, 2005. 6(2): p. 135-42. 

45. Divoux, A., et al., Mast cells in human adipose tissue: link with morbid obesity, inflammatory 
status, and diabetes. J Clin Endocrinol Metab, 2012. 97(9): p. E1677-85. 

46. Wu, D., et al., Eosinophils sustain adipose alternatively activated macrophages associated 
with glucose homeostasis. Science, 2011. 332(6026): p. 243-7. 

47. McLaughlin, T., et al., Role of innate and adaptive immunity in obesity-associated metabolic 
disease. J Clin Invest, 2017. 127(1): p. 5-13. 

48. Pierleoni, C., et al., Fibronectins and basal lamina molecules expression in human 
subcutaneous white adipose tissue. Eur J Histochem, 1998. 42(3): p. 183-8. 

49. Iyengar, P., et al., Adipocyte-derived collagen VI affects early mammary tumor progression in 
vivo, demonstrating a critical interaction in the tumor/stroma microenvironment.  J Clin 
Invest, 2005. 115(5): p. 1163-76. 



 

124 

50. Khan, T., et al., Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI.  Mol 
Cell Biol, 2009. 29(6): p. 1575-91. 

51. Mariman, E.C. and P. Wang, Adipocyte extracellular matrix composition, dynamics and role in 
obesity. Cell Mol Life Sci, 2010. 67(8): p. 1277-92. 

52. Potter, B.J., et al., Isolation and partial characterization of plasma membrane fatty acid 
binding proteins from myocardium and adipose tissue and their relationship to analogous 
proteins in liver and gut. Biochem Biophys Res Commun, 1987. 148(3): p. 1370-6. 

53. Zhou, S.L., et al., Mitochondrial aspartate aminotransferase expressed on the surface of 3T3-
L1 adipocytes mediates saturable fatty acid uptake. Proc Soc Exp Biol Med, 1995. 208(3): p. 
263-70. 

54. Febbraio, M. and R.L. Silverstein, CD36: implications in cardiovascular disease. Int J Biochem 
Cell Biol, 2007. 39(11): p. 2012-30. 

55. Hazen, S.L., Oxidized phospholipids as endogenous pattern recognition ligands in innate 
immunity. J Biol Chem, 2008. 283(23): p. 15527-31. 

56. Hall, A.M., A.J. Smith, and D.A. Bernlohr, Characterization of the Acyl-CoA synthetase activity 
of purified murine fatty acid transport protein 1. J Biol Chem, 2003. 278(44): p. 43008-13. 

57. Hall, A.M., et al., Enzymatic properties of purified murine fatty acid transport protein 4 and 
analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem, 2005. 
280(12): p. 11948-54. 

58. Ehehalt, R., et al., Uptake of long chain fatty acids is regulated by dynamic interaction of 
FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts).  BMC Cell Biol, 
2008. 9: p. 45. 

59. Saponaro, C., et al., The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in 
Metabolic Homeostasis. Nutrients, 2015. 7(11): p. 9453-74. 

60. Shrago, E., J.A. Glennon, and E.S. Gordon, Comparative aspects of lipogenesis in mammalian 
tissues. Metabolism, 1971. 20(1): p. 54-62. 

61. Strawford, A., et al., Adipose tissue triglyceride turnover, de novo lipogenesis, and cell 
proliferation in humans measured with 2H2O. Am J Physiol Endocrinol Metab, 2004. 286(4): 
p. E577-88. 

62. Wilcox, G., Insulin and insulin resistance. Clin Biochem Rev, 2005. 26(2): p. 19-39. 
63. Freychet, P., J. Roth, and D.M. Neville, Jr., Insulin receptors in the liver: specific binding of ( 

125 I)insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci 
U S A, 1971. 68(8): p. 1833-7. 

64. Lazar, D.F. and A.R. Saltiel, Lipid phosphatases as drug discovery targets for type 2 diabetes. 
Nat Rev Drug Discov, 2006. 5(4): p. 333-42. 

65. Wang, J., et al., Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to 
primates. Biochem Biophys Res Commun, 2005. 332(3): p. 735-42. 

66. Kaestner, K.H., et al., Differentiation-induced gene expression in 3T3-L1 preadipocytes. A 
second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem, 1989. 
264(25): p. 14755-61. 

67. Paton, C.M. and J.M. Ntambi, Biochemical and physiological function of stearoyl-CoA 
desaturase. Am J Physiol Endocrinol Metab, 2009. 297(1): p. E28-37. 

68. Kim, Y.C. and J.M. Ntambi, Regulation of stearoyl-CoA desaturase genes: role in cellular 
metabolism and preadipocyte differentiation. Biochem Biophys Res Commun, 1999. 266(1): 
p. 1-4. 

69. Man, W.C., et al., Colocalization of SCD1 and DGAT2: implying preference for endogenous 
monounsaturated fatty acids in triglyceride synthesis. J Lipid Res, 2006. 47(9): p. 1928-39. 

70. Cases, S., et al., Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a 
key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A, 1998. 95(22): p. 13018-23. 

71. Cases, S., et al., Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and 
related family members. J Biol Chem, 2001. 276(42): p. 38870-6. 



 

125 

72. Stone, S.J., et al., Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol 
Chem, 2004. 279(12): p. 11767-76. 

73. Smith, S.J., et al., Obesity resistance and multiple mechanisms of triglyceride synthesis in mice 
lacking Dgat. Nat Genet, 2000. 25(1): p. 87-90. 

74. Ferre, P. and F. Foufelle, Hepatic steatosis: a role for de novo lipogenesis and the 
transcription factor SREBP-1c. Diabetes Obes Metab, 2010. 12 Suppl 2: p. 83-92. 

75. Herman, M.A., et al., A novel ChREBP isoform in adipose tissue regulates systemic glucose 
metabolism. Nature, 2012. 484(7394): p. 333-8. 

76. Postic, C. and J. Girard, Contribution of de novo fatty acid synthesis to hepatic steatosis and 
insulin resistance: lessons from genetically engineered mice. J Clin Invest, 2008. 118(3): p. 
829-38. 

77. Azzout-Marniche, D., et al., Insulin effects on sterol regulatory-element-binding protein-1c 
(SREBP-1c) transcriptional activity in rat hepatocytes. Biochem J, 2000. 350(Pt 2): p. 389-93. 

78. Dif, N., et al., Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-
1c) promoter through SRE motifs. Biochem J, 2006. 400(Pt 1): p. 179-88. 

79. Iizuka, K., Recent progress on the role of ChREBP in glucose and lipid metabolism. Endocr J, 
2013. 60(5): p. 543-55. 

80. Xu, X., et al., Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin 
Liver Dis, 2013. 33(4): p. 301-11. 

81. Cao, H., et al., Identification of a lipokine, a lipid hormone linking adipose tissue to systemic 
metabolism. Cell, 2008. 134(6): p. 933-44. 

82. Dimopoulos, N., et al., Differential effects of palmitate and palmitoleate on insulin action and 
glucose utilization in rat L6 skeletal muscle cells. Biochem J, 2006. 399(3): p. 473-81. 

83. Mozaffarian, D., et al., Circulating palmitoleic acid and risk of metabolic abnormalities and 
new-onset diabetes. Am J Clin Nutr, 2010. 92(6): p. 1350-8. 

84. Stefan, N., et al., Circulating palmitoleate strongly and independently predicts insulin 
sensitivity in humans. Diabetes Care, 2010. 33(2): p. 405-7. 

85. Paillard, F., et al., Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an 
independent marker of triglyceridemia and abdominal adiposity. Nutr Metab Cardiovasc Dis, 
2008. 18(6): p. 436-40. 

86. Vessby, B., S. Tengblad, and H. Lithell, Insulin sensitivity is related to the fatty acid 
composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. 
Diabetologia, 1994. 37(10): p. 1044-50. 

87. Yilmaz, M., K.C. Claiborn, and G.S. Hotamisligil, De Novo Lipogenesis Products and 
Endogenous Lipokines. Diabetes, 2016. 65(7): p. 1800-7. 

88. Yore, M.M., et al., Discovery of a class of endogenous mammalian lipids with anti-diabetic 
and anti-inflammatory effects. Cell, 2014. 159(2): p. 318-32. 

89. Choi, S. and A.J. Snider, Sphingolipids in High Fat Diet and Obesity-Related Diseases. 
Mediators Inflamm, 2015. 2015: p. 520618. 

90. Houtkooper, R.H. and F.M. Vaz, Cardiolipin, the heart of mitochondrial metabolism. Cell Mol 
Life Sci, 2008. 65(16): p. 2493-506. 

91. Fujimori, K., Prostaglandins as PPARgamma Modulators in Adipogenesis. PPAR Res, 2012. 
2012: p. 527607. 

92. Garcia-Alonso, V., et al., Prostaglandin E2 Exerts Multiple Regulatory Actions on Human 
Obese Adipose Tissue Remodeling, Inflammation, Adaptive Thermogenesis and Lipolysis. PLoS 
One, 2016. 11(4): p. e0153751. 

93. Langin, D., Adipose tissue lipases and lipolysis. Endocrinol Nutr, 2013. 60 Suppl 1: p. 26-8. 
94. Burns, T.W., et al., Insulin inhibition of lipolysis of human adipocytes: the role of cyclic 

adenosine monophosphate. Diabetes, 1979. 28(11): p. 957-61. 
95. Duncan, R.E., et al., Regulation of Lipolysis in Adipocytes. Annu Rev Nutr, 2007. 27: p. 79-101. 
96. Pequignot, J.M., L. Peyrin, and G. Peres, Catecholamine-fuel interrelationships during exercise 

in fasting men. J Appl Physiol Respir Environ Exerc Physiol, 1980. 48(1): p. 109-13. 



 

126 

97. Kim, C., N.H. Xuong, and S.S. Taylor, Crystal structure of a complex between the catalytic and 
regulatory (RIalpha) subunits of PKA. Science, 2005. 307(5710): p. 690-6. 

98. Anthonsen, M.W., et al., Identification of novel phosphorylation sites in hormone-sensitive 
lipase that are phosphorylated in response to isoproterenol and govern activation properties 
in vitro. J Biol Chem, 1998. 273(1): p. 215-21. 

99. Holm, C., Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem 
Soc Trans, 2003. 31(Pt 6): p. 1120-4. 

100. Stralfors, P. and R.C. Honnor, Insulin-induced dephosphorylation of hormone-sensitive lipase. 
Correlation with lipolysis and cAMP-dependent protein kinase activity. Eur J Biochem, 1989. 
182(2): p. 379-85. 

101. Clifford, G.M., et al., Translocation of hormone-sensitive lipase and perilipin upon lipolytic 
stimulation of rat adipocytes. J Biol Chem, 2000. 275(7): p. 5011-5. 

102. Maeda, N., et al., Adaptation to fasting by glycerol transport through aquaporin 7 in adipose 
tissue. Proc Natl Acad Sci U S A, 2004. 101(51): p. 17801-6. 

103. Sztalryd, C., et al., Perilipin A is essential for the translocation of hormone-sensitive lipase 
during lipolytic activation. J Cell Biol, 2003. 161(6): p. 1093-103. 

104. Langin, D., Control of fatty acid and glycerol release in adipose tissue lipolysis. C R Biol, 2006. 
329(8): p. 598-607; discussion 653-5. 

105. Olsson, H. and P. Belfrage, The regulatory and basal phosphorylation sites of hormone-
sensitive lipase are dephosphorylated by protein phosphatase-1, 2A and 2C but not by protein 
phosphatase-2B. Eur J Biochem, 1987. 168(2): p. 399-405. 

106. Ragolia, L. and N. Begum, Protein phosphatase-1 and insulin action. Mol Cell Biochem, 1998. 
182(1-2): p. 49-58. 

107. Zhang, J., et al., Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. 
Nature, 2005. 437(7058): p. 569-73. 

108. Ouchi, N., et al., Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol, 
2003. 14(6): p. 561-6. 

109. Ouchi, N., et al., Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-
kappaB signaling through a cAMP-dependent pathway. Circulation, 2000. 102(11): p. 1296-
301. 

110. Ryo, M., et al., Adiponectin as a biomarker of the metabolic syndrome. Circ J, 2004. 68(11): p. 
975-81. 

111. Ouchi, N., et al., Reciprocal association of C-reactive protein with adiponectin in blood stream 
and adipose tissue. Circulation, 2003. 107(5): p. 671-4. 

112. Esposito, K., et al., Effect of weight loss and lifestyle changes on vascular inflammatory 
markers in obese women: a randomized trial. Jama, 2003. 289(14): p. 1799-804. 

113. Lihn, A.S., S.B. Pedersen, and B. Richelsen, Adiponectin: action, regulation and association to 
insulin sensitivity. Obes Rev, 2005. 6(1): p. 13-21. 

114. Zhang, Y., et al., Positional cloning of the mouse obese gene and its human homologue. 
Nature, 1994. 372(6505): p. 425-32. 

115. Friedman, J.M. and J.L. Halaas, Leptin and the regulation of body weight in mammals. Nature, 
1998. 395(6704): p. 763-70. 

116. Cui, H., M. Lopez, and K. Rahmouni, The cellular and molecular bases of leptin and ghrelin 
resistance in obesity. Nat Rev Endocrinol, 2017. 13(6): p. 338-351. 

117. Naylor, C. and W.A. Petri, Jr., Leptin Regulation of Immune Responses. Trends Mol Med, 
2016. 22(2): p. 88-98. 

118. Fried, S.K., D.A. Bunkin, and A.S. Greenberg, Omental and subcutaneous adipose tissues of 
obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin 
Endocrinol Metab, 1998. 83(3): p. 847-50. 

119. Ziccardi, P., et al., Reduction of inflammatory cytokine concentrations and improvement of 
endothelial functions in obese women after weight loss over one year. Circulation, 2002. 
105(7): p. 804-9. 



 

127 

120. Pradhan, A.D., et al., C-reactive protein, interleukin 6, and risk of developing type 2 diabetes 
mellitus. Jama, 2001. 286(3): p. 327-34. 

121. Rotter, V., I. Nagaev, and U. Smith, Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 
adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells 
from insulin-resistant subjects. J Biol Chem, 2003. 278(46): p. 45777-84. 

122. Wueest, S., et al., Mesenteric Fat Lipolysis Mediates Obesity-Associated Hepatic Steatosis and 
Insulin Resistance. Diabetes, 2016. 65(1): p. 140-8. 

123. Reaven, G.M., Pathophysiology of insulin resistance in human disease. Physiol Rev, 1995. 
75(3): p. 473-86. 

124. Spiegelman, B.M. and J.S. Flier, Obesity and the regulation of energy balance. Cell, 2001. 
104(4): p. 531-43. 

125. Ravussin, E. and C. Bogardus, Relationship of genetics, age, and physical fitness to daily 
energy expenditure and fuel utilization. Am J Clin Nutr, 1989. 49(5 Suppl): p. 968-75. 

126. Goossens, G.H., The role of adipose tissue dysfunction in the pathogenesis of obesity-related 
insulin resistance. Physiol Behav, 2008. 94(2): p. 206-18. 

127. Kahn, S.E., R.L. Hull, and K.M. Utzschneider, Mechanisms linking obesity to insulin resistance 
and type 2 diabetes. Nature, 2006. 444(7121): p. 840-6. 

128. Qatanani, M. and M.A. Lazar, Mechanisms of obesity-associated insulin resistance: many 
choices on the menu. Genes Dev, 2007. 21(12): p. 1443-55. 

129. Savage, D.B., K.F. Petersen, and G.I. Shulman, Disordered lipid metabolism and the 
pathogenesis of insulin resistance. Physiol Rev, 2007. 87(2): p. 507-20. 

130. Pi-Sunyer, X., The Medical Risks of Obesity. Postgrad Med, 2009. 121(6): p. 21-33. 
131. Pasquali, R., L. Patton, and A. Gambineri, Obesity and infertility. Curr Opin Endocrinol 

Diabetes Obes, 2007. 14(6): p. 482-7. 
132. Rutkowski, J.M., J.H. Stern, and P.E. Scherer, The cell biology of fat expansion. J Cell Biol, 

2015. 208(5): p. 501-12. 
133. Lebovitz, H.E., Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes, 

2001. 109 Suppl 2: p. S135-48. 
134. Krotkiewski, M., et al., Impact of obesity on metabolism in men and women. Importance of 

regional adipose tissue distribution. J Clin Invest, 1983. 72(3): p. 1150-62. 
135. Arner, E., et al., Adipocyte turnover: relevance to human adipose tissue morphology. 

Diabetes, 2010. 59(1): p. 105-9. 
136. Yang, J., et al., The size of large adipose cells is a predictor of insulin resistance in first-degree 

relatives of type 2 diabetic patients. Obesity (Silver Spring), 2012. 20(5): p. 932-8. 
137. Weyer, C., et al., Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, 

predicts type II diabetes independent of insulin resistance. Diabetologia, 2000. 43(12): p. 
1498-506. 

138. Lonn, M., et al., Adipocyte size predicts incidence of type 2 diabetes in women. Faseb j, 2010. 
24(1): p. 326-31. 

139. Hummasti, S. and G.S. Hotamisligil, Endoplasmic reticulum stress and inflammation in obesity 
and diabetes. Circ Res, 2010. 107(5): p. 579-91. 

140. Jung, U.J. and M.S. Choi, Obesity and its metabolic complications: the role of adipokines and 
the relationship between obesity, inflammation, insulin resistance, dyslipidemia and 
nonalcoholic fatty liver disease. Int J Mol Sci, 2014. 15(4): p. 6184-223. 

141. van der Kallen, C.J., et al., Endoplasmic reticulum stress-induced apoptosis in the development 
of diabetes: is there a role for adipose tissue and liver? Apoptosis, 2009. 14(12): p. 1424-34. 

142. Martin, S. and R.G. Parton, Caveolin, cholesterol, and lipid bodies. Semin Cell Dev Biol, 2005. 
16(2): p. 163-74. 

143. Wolins, N.E., D.L. Brasaemle, and P.E. Bickel, A proposed model of fat packaging by 
exchangeable lipid droplet proteins. FEBS Lett, 2006. 580(23): p. 5484-91. 

144. Schroder, M., Endoplasmic reticulum stress responses. Cell Mol Life Sci, 2008. 65(6): p. 862-
94. 



 

128 

145. Ozcan, U., Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 Diabetes.  
Science, 2004. 306(5695): p. 457-461. 

146. Khan, S. and C.H. Wang, ER stress in adipocytes and insulin resistance: mechanisms and 
significance (Review). Mol Med Rep, 2014. 10(5): p. 2234-40. 

147. Sevier, C.S. and C.A. Kaiser, Ero1 and redox homeostasis in the endoplasmic reticulum. 
Biochim Biophys Acta, 2008. 1783(4): p. 549-56. 

148. Guthrie, L.N., et al., Attenuation of PKR-like ER Kinase (PERK) Signaling Selectively Controls 
Endoplasmic Reticulum Stress-induced Inflammation Without Compromising Immunological 
Responses. J Biol Chem, 2016. 291(30): p. 15830-40. 

149. Li, Y., et al., New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim 
Biophys Sin (Shanghai), 2014. 46(8): p. 629-40. 

150. Ma, Y. and L.M. Hendershot, Delineation of a negative feedback regulatory loop that controls 
protein translation during endoplasmic reticulum stress. J Biol Chem, 2003. 278(37): p. 
34864-73. 

151. Yoshida, H., et al., Identification of the cis-acting endoplasmic reticulum stress response 
element responsible for transcriptional induction of mammalian glucose-regulated proteins. 
Involvement of basic leucine zipper transcription factors. J Biol Chem, 1998. 273(50): p. 
33741-9. 

152. Belmont, P.J., et al., Regulation of microRNA Expression in the Heart by the ATF6 Branch of 
the ER Stress Response. J Mol Cell Cardiol, 2012. 52(5): p. 1176-82. 

153. Yoshida, H., et al., XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress 
to produce a highly active transcription factor. Cell, 2001. 107(7): p. 881-91. 

154. Gong, J., et al., Molecular signal networks and regulating mechanisms of the unfolded protein 
response. J Zhejiang Univ Sci B, 2017. 18(1): p. 1-14. 

155. Castro A.M., M.-d.l.C.L.E., Pantoja-Meléndez C.A., Low-grade inflammation and its relation to 
obesity and chronic degenerative diseases. Revista Médica del Hospital General de México, 
2016. 80(2): p. 101-105. 

156. Itoh, M., et al., Adipose Tissue Remodeling as Homeostatic Inflammation. Int J Inflam, 2011. 
2011. 

157. Xu, H., et al., Chronic inflammation in fat plays a crucial role in the development of obesity-
related insulin resistance. J Clin Invest, 2003. 112(12): p. 1821-30. 

158. Kamei, N., et al., Overexpression of monocyte chemoattractant protein-1 in adipose tissues 
causes macrophage recruitment and insulin resistance. J Biol Chem, 2006. 281(36): p. 26602-
14. 

159. Weisberg, S.P., et al., Obesity is associated with macrophage accumulation in adipose tissue. 
J Clin Invest, 2003. 112(12): p. 1796-808. 

160. Maeda, N., et al., Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat 
Med, 2002. 8(7): p. 731-7. 

161. Sierra-Honigmann, M.R., et al., Biological action of leptin as an angiogenic factor. Science, 
1998. 281(5383): p. 1683-6. 

162. Amano, S.U., et al., Local proliferation of macrophages contributes to obesity-associated 
adipose tissue inflammation. Cell Metab, 2014. 19(1): p. 162-71. 

163. Wellen, K.E. and G.S. Hotamisligil, Obesity-induced inflammatory changes in adipose tissue. J 
Clin Invest, 2003. 112(12): p. 1785-8. 

164. Caspar-Bauguil, S., et al., Fatty acids from fat cell lipolysis do not activate an inflammatory 
response but are stored as triacylglycerols in adipose tissue macrophages.  Diabetologia, 
2015. 58(11): p. 2627-36. 

165. Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel, Obesity induces a phenotypic switch in adipose 
tissue macrophage polarization. J Clin Invest, 2007. 117(1): p. 175-84. 

166. Cinti, S., et al., Adipocyte death defines macrophage localization and function in adipose 
tissue of obese mice and humans. J Lipid Res, 2005. 46(11): p. 2347-55. 



 

129 

167. Castoldi, A., et al., The Macrophage Switch in Obesity Development. Front Immunol, 2015. 6: 
p. 637. 

168. Makki, K., P. Froguel, and I. Wolowczuk, Adipose Tissue in Obesity-Related Inflammation and 
Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm, 2013. 2013. 

169. Zick, Y., Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends 
Cell Biol, 2001. 11(11): p. 437-41. 

170. Shi, H., et al., TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin 
Invest, 2006. 116(11): p. 3015-25. 

171. Ouchi, N., et al., Adipocyte-derived plasma protein, adiponectin, suppresses lipid 
accumulation and class A scavenger receptor expression in human monocyte-derived 
macrophages. Circulation, 2001. 103(8): p. 1057-63. 

172. Lackey, D.E. and J.M. Olefsky, Regulation of metabolism by the innate immune system. Nat 
Rev Endocrinol, 2016. 12(1): p. 15-28. 

173. Aguirre, V., et al., The c-Jun NH(2)-terminal kinase promotes insulin resistance during 
association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem, 
2000. 275(12): p. 9047-54. 

174. Gual, P., Y. Le Marchand-Brustel, and J.F. Tanti, Positive and negative regulation of insulin 
signaling through IRS-1 phosphorylation. Biochimie, 2005. 87(1): p. 99-109. 

175. Sasaki, M., et al., Proinflammatory cytokine-induced cellular senescence of biliary epithelial 
cells is mediated via oxidative stress and activation of ATM pathway: a culture study.  Free 
Radic Res, 2008. 42(7): p. 625-32. 

176. Bartek, J., Z. Hodny, and J. Lukas, Cytokine loops driving senescence. Nat Cell Biol, 2008. 
10(8): p. 887-9. 

177. Kirkland, J.L. and T. Tchkonia, Clinical strategies and animal models for developing senolytic 
agents. Exp Gerontol, 2015. 68: p. 19-25. 

178. Munoz-Espin, D. and M. Serrano, Cellular senescence: from physiology to pathology. Nat Rev 
Mol Cell Biol, 2014. 15(7): p. 482-96. 

179. Palmer, A.K., et al., Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. 
Diabetes, 2015. 64(7): p. 2289-98. 

180. Campisi, J. and F. d'Adda di Fagagna, Cellular senescence: when bad things happen to good 
cells. Nat Rev Mol Cell Biol, 2007. 8(9): p. 729-40. 

181. Qian, Y. and X. Chen, Senescence Regulation by the p53 Protein Family. Methods Mol Biol, 
2013. 965: p. 37-61. 

182. Kurz, D.J., et al., Senescence-associated (beta)-galactosidase reflects an increase in lysosomal 
mass during replicative ageing of human endothelial cells. J Cell Sci, 2000. 113 ( Pt 20): p. 
3613-22. 

183. Dimri, G.P., et al., A biomarker that identifies senescent human cells in culture and in aging 
skin in vivo. Proc Natl Acad Sci U S A, 1995. 92(20): p. 9363-7. 

184. Collado, M. and M. Serrano, The power and the promise of oncogene-induced senescence 
markers. Nat Rev Cancer, 2006. 6(6): p. 472-6. 

185. Evan, G.I. and F. d'Adda di Fagagna, Cellular senescence: hot or what? Curr Opin Genet Dev, 
2009. 19(1): p. 25-31. 

186. Campisi, J., Aging, cellular senescence, and cancer. Annu Rev Physiol, 2013. 75: p. 685-705. 
187. Coppe, J.P., et al., The senescence-associated secretory phenotype: the dark side of tumor 

suppression. Annu Rev Pathol, 2010. 5: p. 99-118. 
188. Kuilman, T. and D.S. Peeper, Senescence-messaging secretome: SMS-ing cellular stress. Nat 

Rev Cancer, 2009. 9(2): p. 81-94. 
189. Xue, W., et al., Senescence and tumour clearance is triggered by p53 restoration in murine 

liver carcinomas. Nature, 2007. 445(7128): p. 656-60. 
190. Hoenicke, L. and L. Zender, Immune surveillance of senescent cells--biological significance in 

cancer- and non-cancer pathologies. Carcinogenesis, 2012. 33(6): p. 1123-6. 



 

130 

191. Acosta, J.C., et al., A complex secretory program orchestrated by the inflammasome controls 
paracrine senescence. Nat Cell Biol, 2013. 15(8): p. 978-90. 

192. Nelson, G., et al., A senescent cell bystander effect: senescence-induced senescence. Aging 
Cell, 2012. 11(2): p. 345-9. 

193. Hubackova, S., et al., IL1- and TGFbeta-Nox4 signaling, oxidative stress and DNA damage 
response are shared features of replicative, oncogene-induced, and drug-induced paracrine 
'bystander senescence'. Aging (Albany NY), 2012. 4(12): p. 932-51. 

194. Esser, N., et al., Inflammation as a link between obesity, metabolic syndrome and type 2 
diabetes. Diabetes Res Clin Pract, 2014. 105(2): p. 141-50. 

195. Dandona, P., A. Aljada, and A. Bandyopadhyay, Inflammation: the link between insulin 
resistance, obesity and diabetes. Trends Immunol, 2004. 25(1): p. 4-7. 

196. Tchkonia, T., et al., Fat tissue, aging, and cellular senescence. Aging Cell, 2010. 9(5): p. 667-
84. 

197. Stout, M.B., et al., Growth hormone action predicts age-related white adipose tissue 
dysfunction and senescent cell burden in mice. Aging (Albany NY), 2014. 6(7): p. 575-86. 

198. Minamino, T., et al., A crucial role for adipose tissue p53 in the regulation of insulin 
resistance. Nat Med, 2009. 15(9): p. 1082-7. 

199. Vergoni, B., et al., DNA Damage and the Activation of the p53 Pathway Mediate Alterations 
in Metabolic and Secretory Functions of Adipocytes. Diabetes, 2016. 65(10): p. 3062-74. 

200. Lujambio, A., To clear, or not to clear (senescent cells)? That is the question. Bioessays, 2016. 
38 Suppl 1: p. S56-64. 

201. Pawelec, G., Immunosenescence: impact in the young as well as the old? Mech Ageing Dev, 
1999. 108(1): p. 1-7. 

202. Herbig, U., et al., Cellular senescence in aging primates. Science, 2006. 311(5765): p. 1257. 
203. Wang, C., et al., DNA damage response and cellular senescence in tissues of aging mice.  Aging 

Cell, 2009. 8(3): p. 311-23. 
204. Westhoff, J.H., et al., Hypertension induces somatic cellular senescence in rats and humans by 

induction of cell cycle inhibitor p16INK4a. Hypertension, 2008. 52(1): p. 123-9. 
205. Baker, D.J., et al., Clearance of p16Ink4a-positive senescent cells delays ageing-associated 

disorders. Nature, 2011. 479(7372): p. 232-6. 
206. Zhu, Y., et al., Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family 

of anti-apoptotic factors. Aging Cell, 2016. 15(3): p. 428-35. 
207. Chang, J., et al., Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem 

cells in mice. Nat Med, 2016. 22(1): p. 78-83. 
208. Zhu, Y., et al., The Achilles' heel of senescent cells: from transcriptome to senolytic drugs.  

Aging Cell, 2015. 14(4): p. 644-58. 
209. Palmer, A.K. and J.L. Kirkland, Aging and adipose tissue: potential interventions for diabetes 

and regenerative medicine. Exp Gerontol, 2016. 86: p. 97-105. 
210. Demaria, M., et al., An essential role for senescent cells in optimal wound healing through 

secretion of PDGF-AA. Dev Cell, 2014. 31(6): p. 722-33. 
211. Slawik, M. and A.J. Vidal-Puig, Lipotoxicity, overnutrition and energy metabolism in aging. 

Ageing Res Rev, 2006. 5(2): p. 144-64. 
212. Lopez-Otin, C., et al., The hallmarks of aging. Cell, 2013. 153(6): p. 1194-217. 
213. Guo, W., et al., Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. 

Am J Physiol Endocrinol Metab, 2007. 292(4): p. E1041-51. 
214. Djian, P., A.K. Roncari, and C.H. Hollenberg, Influence of anatomic site and age on the 

replication and differentiation of rat adipocyte precursors in culture. J Clin Invest, 1983. 72(4): 
p. 1200-8. 

215. Kirkland, J.L., C.H. Hollenberg, and W.S. Gillon, Age, anatomic site, and the replication and 
differentiation of adipocyte precursors. Am J Physiol, 1990. 258(2 Pt 1): p. C206-10. 

216. Karagiannides, I., et al., Altered expression of C/EBP family members results in decreased 
adipogenesis with aging. Am J Physiol Regul Integr Comp Physiol, 2001. 280(6): p. R1772-80. 



 

131 

217. Schipper, B.M., et al., Regional anatomic and age effects on cell function of human adipose-
derived stem cells. Ann Plast Surg, 2008. 60(5): p. 538-44. 

218. Hotta, K., et al., Age-related adipose tissue mRNA expression of ADD1/SREBP1, PPARgamma, 
lipoprotein lipase, and GLUT4 glucose transporter in rhesus monkeys. J Gerontol A Biol Sci 
Med Sci, 1999. 54(5): p. B183-8. 

219. Mitterberger, M.C., et al., Adipogenic differentiation is impaired in replicative senescent 
human subcutaneous adipose-derived stromal/progenitor cells. J Gerontol A Biol Sci Med Sci, 
2014. 69(1): p. 13-24. 

220. Tchkonia, T., et al., Fat depot-specific characteristics are retained in strains derived from 
single human preadipocytes. Diabetes, 2006. 55(9): p. 2571-8. 

221. Noer, A., L.C. Lindeman, and P. Collas, Histone H3 modifications associated with 
differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells Dev, 
2009. 18(5): p. 725-36. 

222. Lönnqvist, F., et al., Catecholamine-induced lipolysis in adipose tissue of the elderly. J Clin 
Invest, 1990. 85(5): p. 1614-21. 

223. Stout, M.B., et al., Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, 
and Frailty. Physiology (Bethesda), 2017. 32(1): p. 9-19. 

224. Bapat, S.P., et al., Depletion of fat-resident Treg cells prevents age-associated insulin 
resistance. Nature, 2015. 528(7580): p. 137-41. 

225. Kang, J.G. and C.Y. Park, Anti-Obesity Drugs: A Review about Their Effects and Safety. 
Diabetes Metab J, 2012. 36(1): p. 13-25. 

226. Dietrich, M.O. and T.L. Horvath, Limitations in anti-obesity drug development: the critical role 
of hunger-promoting neurons. Nat Rev Drug Discov, 2012. 11(9): p. 675-91. 

227. Fobi, M.A., Surgical treatment of obesity: a review. J Natl Med Assoc, 2004. 96(1): p. 61-75. 
228. Jensen, M.D., et al., 2013 AHA/ACC/TOS guideline for the management of overweight and 

obesity in adults: a report of the American College of Cardiology/American Heart Association 
Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol, 2014. 63(25 Pt 
B): p. 2985-3023. 

229. Burke, L.E. and J. Wang, Treatment strategies for overweight and obesity. J Nurs Scholarsh, 
2011. 43(4): p. 368-75. 

230. Nickel, F., et al., [The way from cost approval to bariatric surgery : Analysis of resource 
utilization in a maximum care hospital]. Chirurg, 2017. 

231. Saris, W.H., Very-low-calorie diets and sustained weight loss. Obes Res, 2001. 9 Suppl 4: p. 
295s-301s. 

232. Wadden, T.A., Treatment of obesity by moderate and severe caloric restriction. Results of 
clinical research trials. Ann Intern Med, 1993. 119(7 Pt 2): p. 688-93. 

233. Avenell, A., et al., Systematic review of the long-term effects and economic consequences of 
treatments for obesity and implications for health improvement. Health Technol Assess, 
2004. 8(21): p. iii-iv, 1-182. 

234. Tsigos, C., et al., Management of obesity in adults: European clinical practice guidelines. Obes 
Facts, 2008. 1(2): p. 106-16. 

235. Hainer, V., Velmi přísné nízkoenergetické diety (Very Low Calorie Diets - VLCD), in Základy 
klinické obezitologie. 2004, Grada Publishing, a.s.: Praha. p. 195-203. 

236. Very low-calorie diets. National Task Force on the Prevention and Treatment of Obesity, 
National Institutes of Health. Jama, 1993. 270(8): p. 967-74. 

237. Rossmeislova, L., et al., Adaptation of human adipose tissue to hypocaloric diet. Int J Obes 
(Lond), 2013. 37(5): p. 640-50. 

238. Mraz, M., et al., The effect of very-low-calorie diet on mRNA expression of inflammation-
related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients 
with type 2 diabetes mellitus. J Clin Endocrinol Metab, 2011. 96(4): p. E606-13. 



 

132 

239. Koppo, K., et al., Expression of lipolytic genes in adipose tissue is differentially regulated 
during multiple phases of dietary intervention in obese women. Physiol Res, 2013. 62(5): p. 
527-35. 

240. Malisova, L., et al., Expression of inflammation-related genes in gluteal and abdominal 
subcutaneous adipose tissue during weight-reducing dietary intervention in obese women. 
Physiol Res, 2014. 63(1): p. 73-82. 

241. Webb, V.L. and T.A. Wadden, Intensive Lifestyle Intervention for Obesity: Principles, Practices, 
and Results. Gastroenterology, 2017. 152(7): p. 1752-1764. 

242. Gaesser, G.A., S.S. Angadi, and B.J. Sawyer, Exercise and diet, independent of weight loss, 
improve cardiometabolic risk profile in overweight and obese individuals. Phys Sportsmed, 
2011. 39(2): p. 87-97. 

243. Barry, V.W., et al., Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc 
Dis, 2014. 56(4): p. 382-90. 

244. Slentz, C.A., et al., Effects of the amount of exercise on body weight, body composition, and 
measures of central obesity: STRRIDE--a randomized controlled study. Arch Intern Med, 2004. 
164(1): p. 31-9. 

245. Wing, R.R., et al., Lifestyle intervention in overweight individuals with a family history of 
diabetes. Diabetes Care, 1998. 21(3): p. 350-9. 

246. Palus, S., et al., Models of sarcopenia: Short review. Int J Cardiol, 2017. 238: p. 19-21. 
247. Wadden, T.A., et al., Randomized trial of lifestyle modification and pharmacotherapy for 

obesity. N Engl J Med, 2005. 353(20): p. 2111-20. 
248. Wing, R.R., et al., A self-regulation program for maintenance of weight loss. N Engl J Med, 

2006. 355(15): p. 1563-71. 
249. Steinberg, D.M., et al., Weighing every day matters: daily weighing improves weight loss and 

adoption of weight control behaviors. J Acad Nutr Diet, 2015. 115(4): p. 511-8. 
250. Jang, H.C., Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes Metab J, 2016. 40(3): p. 

182-9. 
251. Cruz-Jentoft, A.J., et al., Sarcopenia: European consensus on definition and diagnosis: Report 

of the European Working Group on Sarcopenia in Older People. Age Ageing, 2010. 39(4): p. 
412-23. 

252. Fried, L.P. and J.M. Guralnik, Disability in older adults: evidence regarding significance, 
etiology, and risk. J Am Geriatr Soc, 1997. 45(1): p. 92-100. 

253. Kim, J.H., et al., Sarcopenia: an independent predictor of mortality in community-dwelling 
older Korean men. J Gerontol A Biol Sci Med Sci, 2014. 69(10): p. 1244-52. 

254. Kohara, K., Sarcopenic obesity in aging population: current status and future directions for 
research. Endocrine, 2014. 45(1): p. 15-25. 

255. McTigue, K.M., R. Hess, and J. Ziouras, Obesity in older adults: a systematic review of the 
evidence for diagnosis and treatment. Obesity (Silver Spring), 2006. 14(9): p. 1485-97. 

256. Kumanyika, S.K., et al., Ethnic comparison of weight loss in the Trial of Nonpharmacologic 
Interventions in the Elderly. Obes Res, 2002. 10(2): p. 96-106. 

257. Capel, F., et al., Macrophages and adipocytes in human obesity: adipose tissue gene 
expression and insulin sensitivity during calorie restriction and weight stabilization.  Diabetes, 
2009. 58(7): p. 1558-67. 

258. Skurk, T., S. Ecklebe, and H. Hauner, A novel technique to propagate primary human 
preadipocytes without loss of differentiation capacity. Obesity (Silver Spring), 2007. 15(12): p. 
2925-31. 

259. Czech, M.P., et al., Insulin signalling mechanisms for triacylglycerol storage. Diabetologia, 
2013. 56(5): p. 949-64. 

260. Gathercole, L.L., S.A. Morgan, and J.W. Tomlinson, Hormonal regulation of lipogenesis. Vitam 
Horm, 2013. 91: p. 1-27. 

261. Diraison, F., et al., Increased hepatic lipogenesis but decreased expression of lipogenic gene in 
adipose tissue in human obesity. Am J Physiol Endocrinol Metab, 2002. 282(1): p. E46-51. 



 

133 

262. Roberts, R., et al., Markers of de novo lipogenesis in adipose tissue: associations with small 
adipocytes and insulin sensitivity in humans. Diabetologia, 2009. 52(5): p. 882-90. 

263. Samuel, V.T. and G.I. Shulman, Mechanisms for insulin resistance: common threads and 
missing links. Cell, 2012. 148(5): p. 852-71. 

264. Gregor, M.F. and G.S. Hotamisligil, Thematic review series: Adipocyte Biology. Adipocyte 
stress: the endoplasmic reticulum and metabolic disease. The Journal of Lipid Research, 2007. 
48(9): p. 1905-1914. 

265. Brostrom and M., Calcium dynamics and endoplasmic reticular function in the regulation of 
protein synthesis: implications for cell growth and adaptability. Cell Calcium, 2003. 34(4-5): p. 
345-363. 

266. Ron, D. and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein 
response. Nat Rev Mol Cell Biol, 2007. 8(7): p. 519-29. 

267. Sharma, N.K., et al., Endoplasmic reticulum stress markers are associated with obesity in 
nondiabetic subjects. J Clin Endocrinol Metab, 2008. 93(11): p. 4532-41. 

268. Boden, G., et al., Increase in Endoplasmic Reticulum Stress-Related Proteins and Genes in 
Adipose Tissue of Obese, Insulin-Resistant Individuals. Diabetes, 2008. 57(9): p. 2438-2444. 

269. Zheng, Z., C. Zhang, and K. Zhang, Role of unfolded protein response in lipogenesis. World J 
Hepatol, 2010. 2(6): p. 203-7. 

270. Hosoi, T., et al., Endoplasmic reticulum stress induces leptin resistance. Mol Pharmacol, 2008. 
74(6): p. 1610-9. 

271. Gregor, M.F., et al., Endoplasmic reticulum stress is reduced in tissues of obese subjects after 
weight loss. Diabetes, 2009. 58(3): p. 693-700. 

272. Rutkowski, D.T., et al., Adaptation to ER stress is mediated by differential stabilities of pro-
survival and pro-apoptotic mRNAs and proteins. PLoS Biol, 2006. 4(11): p. e374. 

273. Jiang, H.Y., et al., Activating Transcription Factor 3 Is Integral to the Eukaryotic Initiation 
Factor 2 Kinase Stress Response. Molecular and Cellular Biology, 2004. 24(3): p. 1365-1377. 

274. Lee, A.H., N.N. Iwakoshi, and L.H. Glimcher, XBP-1 regulates a subset of endoplasmic 
reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol, 2003. 
23(21): p. 7448-59. 

275. Rosen, E.D. and B.M. Spiegelman, Adipocytes as regulators of energy balance and glucose 
homeostasis. Nature, 2006. 444(7121): p. 847-53. 

276. Girousse, A., et al., Partial inhibition of adipose tissue lipolysis improves glucose metabolism 
and insulin sensitivity without alteration of fat mass. PLoS Biol, 2013. 11(2): p. e1001485. 

277. Lodhi, I.J., X. Wei, and C.F. Semenkovich, Lipoexpediency: de novo lipogenesis as a metabolic 
signal transmitter. Trends Endocrinol Metab, 2011. 22(1): p. 1-8. 

278. Smith, U. and B.B. Kahn, Adipose tissue regulates insulin sensitivity: role of adipogenesis, de 
novo lipogenesis and novel lipids. J Intern Med, 2016. 280(5): p. 465-475. 

279. Hetz, C., The unfolded protein response: controlling cell fate decisions under ER stress and 
beyond. Nat Rev Mol Cell Biol, 2012. 13(2): p. 89-102. 

280. Hotamisligil, G.S., Endoplasmic reticulum stress and the inflammatory basis of metabolic 
disease. Cell, 2010. 140(6): p. 900-17. 

281. Gregor, M.F. and G.S. Hotamisligil, Thematic review series: Adipocyte Biology. Adipocyte 
stress: the endoplasmic reticulum and metabolic disease. J Lipid Res, 2007. 48(9): p. 1905-14. 

282. Koc, M., et al., Stress of endoplasmic reticulum modulates differentiation and lipogenesis of 
human adipocytes. Biochem Biophys Res Commun, 2015. 

283. Ghosh, A.K., et al., Elevated Endoplasmic Reticulum Stress Response Contributes to Adipose 
Tissue Inflammation in Aging. J Gerontol A Biol Sci Med Sci, 2014. 

284. Jackness, C., et al., Very Low-Calorie Diet Mimics the Early Beneficial Effect of Roux-en-Y 
Gastric Bypass on Insulin Sensitivity and beta-Cell Function in Type 2 Diabetic Patients. 
Diabetes, 2013. 62(9): p. 3027-32. 

285. Clement, K., et al., Weight loss regulates inflammation-related genes in white adipose tissue 
of obese subjects. FASEB J, 2004. 18(14): p. 1657-69. 



 

134 

286. Jazet, I.M., et al., Two days of a very low calorie diet reduces endogenous glucose production 
in obese type 2 diabetic patients despite the withdrawal of blood glucose-lowering therapies 
including insulin. Metabolism, 2005. 54(6): p. 705-12. 

287. Mingrone, G. and L. Castagneto-Gissey, Mechanisms of early improvement/resolution of type 
2 diabetes after bariatric surgery. Diabetes Metab, 2009. 35(6 Pt 2): p. 518-23. 

288. Klimcakova, E., et al., Adipokines and dietary interventions in human obesity. Obes Rev, 2010. 
11(6): p. 446-56. 

289. Emanuelli, B., et al., Interplay between FGF21 and insulin action in the liver regulates 
metabolism. J Clin Invest, 2014. 124(2): p. 515-27. 

290. Adams, A.C., et al., The breadth of FGF21's metabolic actions are governed by FGFR1 in 
adipose tissue. Mol Metab, 2012. 2(1): p. 31-7. 

291. Arner, P., et al., FGF21 attenuates lipolysis in human adipocytes - a possible link to improved 
insulin sensitivity. FEBS Lett, 2008. 582(12): p. 1725-30. 

292. Dominguez, L.J. and M. Barbagallo, The biology of the metabolic syndrome and aging. Curr 
Opin Clin Nutr Metab Care, 2016. 19(1): p. 5-11. 

293. Villareal, D.T., et al., Obesity in older adults: technical review and position statement of the 
American Society for Nutrition and NAASO, The Obesity Society. Am J Clin Nutr, 2005. 82(5): 
p. 923-34. 

294. Wan He, D.G., Paul Kowal, An Aging World: 2015, in International Population Reports, 
P95/16. 2016, U.S. Census Bureau: Washington, DC. p. 175. 

295. Center, P.R., The Future of World Religions: Population  Growth Projections, 2010-2050. 2015. 
296. Tsang, K.Y., et al., In vivo cellular adaptation to ER stress: survival strategies with double-

edged consequences. J Cell Sci, 2010. 123(Pt 13): p. 2145-54. 
297. del Pozo, C.H., et al., Expression profile in omental and subcutaneous adipose tissue from lean 

and obese subjects. Repression of lipolytic and lipogenic genes. Obes Surg, 2011. 21(5): p. 
633-43. 

298. Glimcher, L.H. and A.H. Lee, From sugar to fat: How the transcription factor XBP1 regulates 
hepatic lipogenesis. Ann N Y Acad Sci, 2009. 1173 Suppl 1: p. E2-9. 

299. Zeng, L., et al., ATF6 modulates SREBP2-mediated lipogenesis. EMBO J, 2004. 23(4): p. 950-8. 
300. Flamment, M., et al., Endoplasmic reticulum stress: a new actor in the development of 

hepatic steatosis. Curr Opin Lipidol, 2010. 21(3): p. 239-46. 
301. Lee, J.S., et al., Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet 

formation. Am J Transl Res, 2012. 4(1): p. 102-13. 
302. Hurtado Del Pozo, C., et al., ChREBP expression in the liver, adipose tissue and differentiated 

preadipocytes in human obesity. Biochim Biophys Acta, 2011. 1811(12): p. 1194-200. 
303. Kim, K.S., H.I. Ji, and H.I. Yang, Taurine may not alleviate hyperglycemia-mediated 

endoplasmic reticulum stress in human adipocytes. Adv Exp Med Biol, 2013. 775: p. 395-403. 
304. Jang, M.K. and M.H. Jung, ATF3 inhibits PPARgamma-stimulated transactivation in adipocyte 

cells. Biochem Biophys Res Commun, 2015. 456(1): p. 80-5. 
305. Koc, M., et al., Stress of endoplasmic reticulum modulates differentiation and lipogenesis of 

human adipocytes. Biochemical and Biophysical Research Communications, 2015. 460(3): p. 
684-690. 

306. Collins, J.M., et al., De novo lipogenesis in the differentiating human adipocyte can provide all 
fatty acids necessary for maturation. J Lipid Res, 2011. 52(9): p. 1683-92. 

307. Martinez, G., et al., Endoplasmic reticulum proteostasis impairment in aging. Aging Cell, 
2017. 

308. Synofzik, M., et al., Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and 
multisystemic neurodegeneration. Am J Hum Genet, 2014. 95(6): p. 689-97. 

309. Behnke, J., M.J. Feige, and L.M. Hendershot, BiP and its nucleotide exchange factors Grp170 
and Sil1: mechanisms of action and biological functions. J Mol Biol, 2015. 427(7): p. 1589-608. 

310. Naidoo, N., ER and aging-Protein folding and the ER stress response. Ageing Res Rev, 2009. 
8(3): p. 150-9. 



 

135 

311. Bohnert, K.R., J.D. McMillan, and A. Kumar, Emerging roles of ER stress and unfolded protein 
response pathways in skeletal muscle health and disease. J Cell Physiol, 2017. 

312. Hussain, S.G. and K.V. Ramaiah, Reduced eIF2alpha phosphorylation and increased 
proapoptotic proteins in aging. Biochem Biophys Res Commun, 2007. 355(2): p. 365-70. 

313. Wek, R.C., H.Y. Jiang, and T.G. Anthony, Coping with stress: eIF2 kinases and translational 
control. Biochem Soc Trans, 2006. 34(Pt 1): p. 7-11. 

314. Lenna, S., R. Han, and M. Trojanowska, ER stress and endothelial dysfunction. IUBMB Life, 
2014. 66(8): p. 530-7. 

315. Grootjans, J., et al., The unfolded protein response in immunity and inflammation. Nat Rev 
Immunol, 2016. 16(8): p. 469-84. 

316. Mitterberger, M.C., et al., Adipogenic Differentiation Is Impaired in Replicative Senescent 
Human Subcutaneous Adipose-Derived Stromal/Progenitor Cells. J Gerontol A Biol Sci Med 
Sci, 2013. 

317. Hasan, A.U., et al., Increase in tumor suppressor Arf compensates gene dysregulation in in 
vitro aged adipocytes. Biogerontology, 2017. 18(1): p. 55-68. 

318. Fujita, Y., et al., Secreted growth differentiation factor 15 as a potential biomarker for 
mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int, 2016. 16 
Suppl 1: p. 17-29. 

319. Mennes, E., et al., Aging-associated reductions in lipolytic and mitochondrial proteins in 
mouse adipose tissue are not rescued by metformin treatment. J Gerontol A Biol Sci Med Sci, 
2014. 69(9): p. 1060-8. 

320. Solinas, G., J. Boren, and A.G. Dulloo, De novo lipogenesis in metabolic homeostasis: More 
friend than foe? Mol Metab, 2015. 4(5): p. 367-77. 

321. Fukao, T., et al., Ketone body metabolism and its defects. J Inherit Metab Dis, 2014. 37(4): p. 
541-51. 

322. Nielsen, T.S. and N. Moller, Adipose triglyceride lipase and G0/G1 switch gene 2: approaching 
proof of concept. Diabetes, 2014. 63(3): p. 847-9. 

323. Nisoli, E., et al., Induction of fatty acid translocase/CD36, peroxisome proliferator-activated 
receptor-gamma2, leptin, uncoupling proteins 2 and 3, and tumor necrosis factor-alpha gene 
expression in human subcutaneous fat by lipid infusion. Diabetes, 2000. 49(3): p. 319-24. 

324. Bonen, A., et al., The fatty acid transporter FAT/CD36 is upregulated in subcutaneous and 
visceral adipose tissues in human obesity and type 2 diabetes. Int J Obes (Lond), 2006. 30(6): 
p. 877-83. 

325. Hames, K.C., et al., Free fatty acid uptake in humans with CD36 deficiency. Diabetes, 2014. 
63(11): p. 3606-14. 

326. Zhou, D., et al., CD36 level and trafficking are determinants of lipolysis in adipocytes. FASEB J, 
2012. 26(11): p. 4733-42. 

327. Arner, P. and D. Langin, Lipolysis in lipid turnover, cancer cachexia, and obesity-induced 
insulin resistance. Trends Endocrinol Metab, 2014. 25(5): p. 255-62. 

328. Haemmerle, G., et al., ATGL-mediated fat catabolism regulates cardiac mitochondrial 
function via PPAR-alpha and PGC-1. Nat Med, 2011. 17(9): p. 1076-85. 

329. Deng, X., et al., Expression of the rat sterol regulatory element-binding protein-1c gene in 
response to insulin is mediated by increased transactivating capacity of specificity protein 1 
(Sp1). J Biol Chem, 2007. 282(24): p. 17517-29. 

330. Lara-Castro, C., et al., Effects of short-term very low-calorie diet on intramyocellular lipid and 
insulin sensitivity in nondiabetic and type 2 diabetic subjects. Metabolism, 2008. 57(1): p. 1-8. 

331. Jazet, I.M., et al., Effect of a 2-day very low-energy diet on skeletal muscle insulin sensitivity in 
obese type 2 diabetic patients on insulin therapy. Metabolism, 2005. 54(12): p. 1669-78. 

332. Alligier, M., et al., Subcutaneous adipose tissue remodeling during the initial phase of weight 
gain induced by overfeeding in humans. J Clin Endocrinol Metab, 2012. 97(2): p. E183-92. 



 

136 

333. Tam, C.S., et al., Short-term overfeeding may induce peripheral insulin resistance without 
altering subcutaneous adipose tissue macrophages in humans. Diabetes, 2010. 59(9): p. 
2164-70. 

334. Koppo, K., et al., Catecholamine and insulin control of lipolysis in subcutaneous adipose tissue 
during long-term diet-induced weight loss in obese women. Am J Physiol Endocrinol Metab, 
2012. 302(2): p. E226-32. 

335. Yang, X., et al., The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association 
with adipose triglyceride lipase. Cell Metab, 2010. 11(3): p. 194-205. 

336. Bastard, J.P., et al., Peroxisome proliferator activated receptor-gamma, leptin and tumor 
necrosis factor-alpha mRNA expression during very low calorie diet in subcutaneous adipose 
tissue in obese women. Diabetes Metab Res Rev, 1999. 15(2): p. 92-8. 

337. Salas-Salvado, J., et al., Subcutaneous adipose tissue cytokine production is not responsible 
for the restoration of systemic inflammation markers during weight loss. Int J Obes (Lond), 
2006. 30(12): p. 1714-20. 

338. Siklova-Vitkova, M., et al., Adipose tissue secretion and expression of adipocyte-produced and 
stromavascular fraction-produced adipokines vary during multiple phases of weight-reducing 
dietary intervention in obese women. J Clin Endocrinol Metab, 2012. 97(7): p. E1176-81. 

339. Kovacikova, M., et al., Dietary intervention-induced weight loss decreases macrophage 
content in adipose tissue of obese women. Int J Obes (Lond), 2011. 35(1): p. 91-8. 

340. Bourlier, V., et al., Remodeling Phenotype of Human Subcutaneous Adipose Tissue 
Macrophages. Circulation, 2008. 117(6): p. 806-815. 

341. Miana, M., et al., The lysyl oxidase inhibitor beta-aminopropionitrile reduces body weight 
gain and improves the metabolic profile in diet-induced obesity in rats. Dis Model Mech, 
2015. 8(6): p. 543-51. 

342. Lafontan, M. and N. Viguerie, Role of adipokines in the control of energy metabolism: focus 
on adiponectin. Curr Opin Pharmacol, 2006. 6(6): p. 580-5. 

343. Rahman, S.M., et al., Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and 
glycogen accumulation in brown adipose tissue. Am J Physiol Endocrinol Metab, 2005. 288(2): 
p. E381-7. 

344. Sampath, H. and J.M. Ntambi, The role of stearoyl-CoA desaturase in obesity, insulin 
resistance, and inflammation. Ann N Y Acad Sci, 2011. 1243: p. 47-53. 

345. Galman, C., et al., The circulating metabolic regulator FGF21 is induced by prolonged fasting 
and PPARalpha activation in man. Cell Metab, 2008. 8(2): p. 169-74. 

346. Van Harmelen, V., K. Rohrig, and H. Hauner, Comparison of proliferation and differentiation 
capacity of human adipocyte precursor cells from the omental and subcutaneous adipose 
tissue depot of obese subjects. Metabolism, 2004. 53(5): p. 632-7. 

347. Michan, S., Calorie restriction and NAD(+)/sirtuin counteract the hallmarks of aging.  Front 
Biosci (Landmark Ed), 2014. 19: p. 1300-19. 

348. Tomlinson, J.W., et al., Weight loss increases 11beta-hydroxysteroid dehydrogenase type 1 
expression in human adipose tissue. J Clin Endocrinol Metab, 2004. 89(6): p. 2711-6. 

349. Rossmeislová, L., et al., Weight Loss Improves the Adipogenic Capacity of Human 
Preadipocytes and Modulates Their Secretory Profile. Diabetes, 2013. 62(6): p. 1990-5. 

350. Schafer, M.J., et al., Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. 
Diabetes, 2016. 65(6): p. 1606-15. 

351. van Tienen, F.H., et al., Preadipocytes of type 2 diabetes subjects display an intrinsic gene 
expression profile of decreased differentiation capacity. Int J Obes (Lond), 2011. 35(9): p. 
1154-64. 

352. Tang, W., et al., Thiazolidinediones regulate adipose lineage dynamics. Cell Metab, 2011. 
14(1): p. 116-22. 

353. Magkos, F., et al., Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic 
Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab, 2016. 23(4): p. 591-
601. 



 

137 

354. Reusch, J.E. and D.J. Klemm, Nutrition and fat cell differentiation. Endocrinology, 1999. 
140(7): p. 2935-7. 

355. Olson, A.L., Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN Mol Biol, 2012. 
2012. 

356. Beaton, N., et al., TUSC5 regulates insulin-mediated adipose tissue glucose uptake by 
modulation of GLUT4 recycling. Mol Metab, 2015. 4(11): p. 795-810. 

357. Verhoef, S.P., et al., Physiological response of adipocytes to weight loss and maintenance. 
PLoS One, 2013. 8(3): p. e58011. 

358. Hansen, M., et al., Adipose tissue mitochondrial respiration and lipolysis before and after a 
weight loss by diet and RYGB. Obesity (Silver Spring), 2015. 23(10): p. 2022-9. 

359. Chondronikola, M., et al., Brown Adipose Tissue Activation Is Linked to Distinct Systemic 
Effects on Lipid Metabolism in Humans. Cell Metab, 2016. 23(6): p. 1200-6. 

360. Barquissau, V., et al., White-to-brite conversion in human adipocytes promotes metabolic 
reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab, 2016. 5(5): 
p. 352-65. 

361. Jakobsson, A., J.A. Jorgensen, and A. Jacobsson, Differential regulation of fatty acid 
elongation enzymes in brown adipocytes implies a unique role for Elovl3 during increased 
fatty acid oxidation. Am J Physiol Endocrinol Metab, 2005. 289(4): p. E517-26. 

362. Khadir, A., et al., Physical exercise alleviates ER stress in obese humans through reduction in 
the expression and release of GRP78 chaperone. Metabolism, 2016. 65(9): p. 1409-20. 

363. Kregel, K.C. and P.L. Moseley, Differential effects of exercise and heat stress on liver HSP70 
accumulation with aging. Journal of Applied Physiology, 1996. 80(2): p. 547-551. 

 

  



 

138 

 

 

 

 

 

Annexe 1 

 

 

Stress of endoplasmic reticulum modulates differentiation and 

lipogenesis of human adipocytes 

 

Michal Koc, Veronika Mayerová, Jana Kračmerová, Aline Mairal, Lucia Mališová,  

Vladimír Štich, Dominique Langin, Lenka Rossmeislová 

 

 

 

 

Biochemical and Biophysical Research Communications, 2015 March 24 

 

 

 

 

 

 

 

 

 

 

 



Stress of endoplasmic reticulum modulates differentiation and
lipogenesis of human adipocytes

Michal Koc a, b, Veronika Mayerov�a a, b, Jana Kra�cmerov�a a, b, Aline Mairal a, c,
Lucia Mali�sov�a a, b, Vladimír �Stich a, b, Dominique Langin a, c, d, e, Lenka Rossmeislov�a a, b, *

a Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic
b Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00, Czech Republic
c Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4, France
d University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4, France
e Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9, France

a r t i c l e i n f o

Article history:
Received 4 March 2015
Available online xxx

Keywords:
Endoplasmic reticulum stress
Thapsigargin
Tunicamycin
Adipocytes
Adipogenesis
Lipogenesis

a b s t r a c t

Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is
dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of
adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by
pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of
ERS on lipogenesis in adipose cells.
Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volun-
teers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG)
or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level
of eIF2a phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and
lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled
glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers.
Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 mg/ml) for 1e24 h enhanced
expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2a. This
acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose
incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during
the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis.
On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes.
Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS
diminished adipogenic potential of preadipocytes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Adipocytes are cells highly specialized for storage of neutral
lipids. They are equipped with dedicated receptors and trans-
porters necessary for an uptake and transport of nonesterified fatty
acids (NEFA) and with enzymatic cascade enabling NEFA

incorporation into triglycerides. Moreover, adipocytes are able to
synthetize lipids de novo, from glucose [1]. Glucose is necessary
also for the synthesis of glycerol phosphate, the backbone of tri-
glycerides. Thus lipogenic activity of adipocytes directly influence
fatty acid and glucose plasma levels and this homeostatic effect is
regulated by many factors [2,3]. Paradoxically, obesity impairs

Abbreviations: ER, endoplasmic reticulum; ERS, endoplasmic reticulum stress; NEFA, nonesterified fatty acids; TG, thapsigargin; TM, tunicamycin; UPR, unfolded protein
response.
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capacity of adipocytes to synthetize and store lipids [4,5], which
further contributes to high plasma NEFA levels, a putative cause of
obesity-related hepatic and muscle insulin resistance [6]. The
reason for the deterioration of lipogenic activity of adipocytes re-
mains unclear. Notably, several enzymatic steps of lipogenesis and
the formation of lipid droplets take place in the endoplasmic re-
ticulum (ER), an organelle also essential for calcium homeostasis
and protein folding [7,8]. The situation when the folding and other
metabolic capacities of ER are overwhelmed is referred to as
endoplasmic reticulum stress (ERS). ERS activates a defense
mechanism called unfolded protein response (UPR) in order to
enhance ER capacity and restore ER homeostasis [9]. The signs of
chronic ERS have recently been found in obese and insulin resis-
tant subjects [10,11]. The significance of ERS for metabolic health
was confirmed by experiments on rodents corroborating ERS as a
trigger of insulin resistance and other metabolic disturbances
caused by obesity [12]. Importantly, ERS and consequently UPR
were found to be important regulators of lipogenesis in liver [13].
But there is a lack of comprehensive studies that would investigate
whether metabolic stress sensed through ER controls lipogenesis
also in human adipose tissue. Thus, we aimed at investigating the
effect of ERS on lipogenesis in human adipose cells.

2. Materials and methods

2.1. Cells and chemicals

Cells were derived from needle biopsies of subcutaneous adi-
pose tissue from obese volunteers that were recruited at the Third
Faculty of Medicine of Charles University, University Hospital Kra-
lovske Vinohrady, Czech Republic, and Toulouse University Hospi-
tals, France. Isolation, expansion and differentiation of cells was
described previously [14]. The study was performed according to
the Declaration of Helsinki and was approved by the respective
Ethical Committees. Volunteers were informed on the study, and
written informed consent was obtained before participation in the
study.

Thapsigargin was supplied by Alexis (Lauzen, Switzerland),
tunicamycin by LKT Laboratories, Inc. (St. Paul, Maine, USA) and
Rosiglitazone by Cayman (Tallin, Estonia). Culture media were from
Lonza Std. (Basel, Switzerland). FBS (qualified for MSC) was from
ThermoFisher (Carlsbad, California, USA), FGFb and EGF from
Immunotools (Friesoythe, Germany). Other chemicals were from
Sigma Aldrich (St. Louis, Missouri, USA).

2.2. Gene expression analysis

Isolation of RNA, cDNA synthesis and qRT-PCR was described
previously [14]. TaqMan Gene expression assay for PPARg, SCD1,
FASN, DGAT2, SREBP1C, HSPA5, ATF4, EDEM1, PLIN1 were from
Applied Biosystems (Carlsbad, California, USA). aP2 and XBP1 full-
length and spliced were detected by specific primers (aP2-
forward 50-GCATGGCCAAACCTAACATGA-30, aP2-reverse 50 CCTGG
CCCAGTATGAAGGAAA-30, XBP1-total-forward 50- CGCTGAGGAG-
GAAACTGAA-30, XBP1-total-reverse 50- CACTTGCTGTTCCAGCT-
CACTCAT/30, XBP1-spliced-forward 50- GAGTCCGCAGCAGGTGCA-
30, XBP1-spliced reverse 50- ACTGGGTCCAAGTTGTCCAG-30) by Sybr
Green technology (Power Sybr Green Master Mix). Gene expression
of target genes was normalized to expression of GUSB or RPS13 and
fold change of expression was calculated using DD Ct method.

For western blotting, cells were harvested and lysates processed
as described previously [15]. Antibodies against total and phos-
phorylated eIF2a were from Cell Signaling (Danvers, MA, USA).

2.3. Apoptosis assay

Cells were exposed to 0, 2.5 and 100 nM TG for 24 h. Then they
were trypsinized and fixed in 70% ethanol at 4 �C overnight. After
two washes with PBS, cells were stained with 50 mg/ml Propidium
Iodide and treatedwith 0.1 mg/ml RNAse I diluted in PBS for 30min
at 37 �C. DNA content analysis was performed on FACSCalibur (BD
Biosciences, Franklin Lakes, NJ, USA) and analyzed with FlowJo 8.2
(Tree Star Inc, Ashland, OR, USA).

2.4. Oil red O (ORO) staining

12 days differentiated cells were fixed and stained as described
previously [14].

2.5. Glucose and acetic acid incorporation into lipids

Cells were incubated for 3 h in Krebs Ringer buffer or DMEM-no
glucose medium supplemented with 2% BSA, 10 mM HEPES, 66 nM
insulin, 2 mM glucose and 2 mCi D-[14C(U)]glucose (PerkinElmer) or
5 mM acetic acid and 2 mCi [1e14C]-Acetic Acid (PerkinElmer).
Neutral lipids were extracted and analyzed as described [16]. Dis-
tribution of de novo incorporated 14C among major lipid species
was analyzed after lipid separation by thin-layer chromatography
on Silica Gel plates developed in Heptane:Isopropylether:Acetic
acid mixture (60:40:4) for 1 h, visualized by iodine vapor, quanti-
tatively scraped from plate and analyzed by liquid scintillation
counting. Results from metabolic measurements were normalized
to total protein content of cell extracts.

2.6. Analysis of mitochondrial respiration

Oxygen consumption rates (OCR) was measured using an
extracellular flux analyzer XF24 (Seahorse Bioscience, Copenhagen,
Denmark). Preadipocytes were seeded at a density of 6000 cells per
well (XF24 Cell Culture Microplate) and allowed to reach conflu-
ence when the differentiation was started. At day 11 cells were
treated with ER stressors for 24 h. The culture medium was
replaced with the XF Assay medium supplemented with 4 mM L-
glutamine, 1 mM pyruvate and 5.5 mM glucose 1 h prior to mea-
surement. OCR measurements were obtained before and after
sequential additions of 1 mM oligomycin, 0.5 mM FCCP and 2 mM
rotenone/antimycin A to the medium.

2.7. Statistical analysis

Data were analyzed using GraphPad Prism 6.0 software using
Wilcoxon matched-pair signed rank or Mann Whitney test, as
appropriate. The level of significance was set at p < 0.05.

3. Results

3.1. Acute high intensity ERS reduces adipogenesis and lipogenesis
of human preadipocytes and adipocytes

To evaluate the effect of acute ERS on lipogenic capacity of ad-
ipocytes, we exposed in vitro differentiated adipocytes from 15
donors to two commonly used ER stressors, thapsigargin (TG) and
tunicamycin (TM), for 24 h. Both, 100 nM TG and 1 mg/ml TM [17],
dramatically enhanced expression of major ER chaperone HSPA5
(heat shock 70 kDa protein 5), a marker of ERS (Fig. 1A). The same
treatment decreased mRNA levels of genes involved in lipogenesis,
i.e. fatty acid synthase (FASN), stearoyl desaturase (SCD1), and
diacylglycerol O-acyltransferase 2 (DGAT2) (Fig. 1A). The suppres-
sive effect of ERS on lipogenesis was confirmed by a decreased
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capacity of adipocytes treated with TG to incorporate glucose car-
bon into lipids (Fig. 1B, C). Thus, in adipocytes, acute high intensity
ERS lowers lipogenic capacity of adipocytes on both transcriptional
and enzymatic level.

As lipogenesis in adipocytes was found to be dependent on
mitochondrial activity [18,19] that could be impaired by calcium
accumulation induced by ER stressors, we analyzed respiration ca-
pacity of adipocytes treatedwith 100 nM TG or 1 mg/ml TM for 24 h.
Acute ERShad no impact on the proton leak bymitochondria nor the
spare oxidative capacity (proton leak: control-116.4 ± 11.16, TG-
106.6±10.89, TM-94.94±10.18pmol/min; spareoxidative capacity:
control- 631.1± 39.11, TG-555.1± 54.85, TM-677± 54.01 pmol/min).

In addition, we tested an effect of acute ER stress on adipogenic
capacity of preadipocytes. In order to limit ERS only to pre-
adipocytes we employed reversibly acting TM in high-dose (1 mg/
ml). Confluent preadipocytes were treated with TM for 4 h, then
washed by PBS several times and subjected to standard 12 day
adipogenic procedure using media free of ERS inducer. This treat-
ment resulted in approximately 60% reduction of neutral lipid
content compared to control conditions (Fig. 1D) without apparent
effect on the viability of cells. Moreover, the effect of TM-
pretreatment of preadipocytes on adipogenesis was detectable
already after 3 days of differentiation when mRNA levels of aP2,
PPARg and perilipin were reduced compared to control conditions
(Fig. 1E).

3.2. Chronic low ERS impairs adipogenesis and associated
lipogenesis

Obesity leads to chronic low intensity rather than acute high
intensity ERS [10,20]. Therefore, we aimed at imitating chronic
ERS in adipose cells by the use of TG dose capable of activating
UPR without acute induction of downstream effectors [21]. To

determine such a dose, we exposed both preadipocytes and
mature adipocytes to 1, 2.5, 5 and 100 nM TG for 1, 4 and 24 h and
then analyzed expression of genes representing early and late
markers of unfolded protein response (UPR). Neither dose of TG
caused appearance of hypodiploid apoptotic preadipocytes
within 24 h (not shown). Early marker of UPR activation, i.e.
phosphorylated eIF2a (PERK arm of UPR), was induced already
by 2.5 nM TG (Fig. 2A) within 1 h, while an induction of
expression of downstream ERS effectors (ATF6 arm- HSPA5 [22],
PERK arm- ATF4 [23], IRE1 arm-EDEM1, XBP1 splicing [24])
within 4 and 24 h required higher TG concentrations (5 or
100 nM TG) (Fig. 2BeD). Therefore, 2.5 nM TG was selected for
chronic treatments of cells.

We investigated whether low intensity but chronic ERS reduces
adipogenic conversion of preadipocytes similarly as acute high in-
tensity ERS. Preadipocytes were differentiated in the absence or
presence of 2.5 nM TG. Chronic treatment of cells with TG led to a
mild increase of mRNA levels of HSPA5, ATF4 and EDEM1 during
the whole time course of differentiation (Fig. 3A). Capacity to
accumulate neutral lipids was lowered by more than 50% in TG-
treated adipocytes as detected by Oil Red O staining (Fig. 3B, C).
This was accompanied by diminished mRNA levels of differentia-
tion markers (i.e. a key adipogenic factor, PPARg, transcription
factor SREBP-1c and late adipogenic markers, aP2 and perilipin)
(Fig. 3D, E). mRNA expression of the lipogenic genes SCD1, DGAT2
and FASN was also lowered (Fig. 3F).

To determine a critical period of time for ERS to exert inhibitory
effect on adipogenesis, preadipocytes were differentiated in the
presence of 2.5 nM TG for various days (0e6, 1e12, 3e12, 6e12,
9e12). Capacity to store neutral lipids evaluated by ORO staining
was strongly impaired in adipocytes exposed to TG between days
0e6 and 1e12, mildly between days 3e12 and not between days
6e12 and 9e12 of differentiation (Fig. 3G, H). Lipogenesis measured

Fig. 1. Acute ERS lowers lipogenesis in human adipocytes and adipogenesis of preadipocytes. Preadipocytes were differentiated for 12 days and then incubated for 24 h with DMSO
or 100 nM TG or 1 mg/ml TM. A. mRNA expression of HSPA5, FASN, SCD1 and DGAT2 was measured by qRT-PCR and normalized to GUSB expression (n ¼ 15). B. Glucose carbon (14C)
incorporation into lipids (hydrolyzed into fatty acids (FA) and glycerol) during 3 h incubation was determined by liquid scintillation and normalized to protein content (n ¼ 3). C.
Distribution of de novo incorporated 14C in lipid species was analyzed after TLC separation of extracted lipids (n ¼ 2). D. Preadipocytes were exposed to 1 mg/ml TM for 4 h and then
differentiated in the absence of TM for 12 days. Quantification of neutral lipids accumulation is expressed as a relative fold change to control (n ¼ 5). E. Preadipocytes were exposed
to 1 mg/ml TM for 4 h and then differentiated in the absence of TM for 3 days. mRNA expression of adipogenic markers was analyzed by qRT-PCR and normalized to RPS13 (n ¼ 5).
Data are means ± SE, *p < 0.05, **p < 0.01, ***p < 0.001.
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as 14C-glucose carbon incorporation into lipids was also not altered
when cells were exposed to 2.5 nM TG at day 6e12 of differentia-
tion (not shown).

3.3. Lipogenic capacity of mature adipocytes is not influenced by
chronic low ERS

Next, we analyzed the effect of chronic (6 days) low ERS on
adipocytes differentiated for 12 days. Accumulation of neutral
lipids (14C-glucose carbon incorporation) was not affected by
2.5 nM TG (Fig. 4A), similarly as seenwhen TGwas applied between
day 6 and 12 of adipogenesis (not shown). Only expression of
perilipin was decreased while other lipogenic genes remained un-
affected by this treatment (Fig. 4B).

4. Discussion

Pathways activated by ERS represent primarily an adaptive
homeostatic process that aims at protecting cellular metabolism
disturbed by various insults. Extreme severity or chronicity of ERS
is however linked with poor cellular survival and suboptimal

metabolic performance [25]. This study brings evidence that severe
ERS substantially reduces lipogenic capacity of adipocytes while
chronic low ERS impairs lipogenesis through inhibition of adipo-
genic conversion of preadipocytes. As adipocytes are cells primarily
dedicated to synthesis of lipids, the inhibition of lipogenesis rep-
resents a major disturbance of their metabolic function. Indeed,
lipogenesis is repressed in obese adipose tissue [26], whose de-
mands for the synthetic and secretory activity are enhanced and
result in persistent deficiency of ER capacity. Notably, adipocytes
used in this study were differentiated and exposed to ER stressors
in fatty acid free medium, so the described effects of ERS on lipo-
genesis actually represents effects on lipogenesis de novo (DNL).
In vivo significance of DNL in adipose tissue was considered
negligible until recent discovery that in lean subjects, 20% of tri-
glycerides were synthetized in adipose tissue de novo [1]. As we
did not observe any effect of ERS on mitochondria OXPHOS ca-
pacity, the impact of ERS on lipogenesis in adipocytes appears to be
direct and not exerted through suppression of mitochondrial
function.

Lipogenesis has been previously found to be regulated by ac-
tivity of UPR components in liver [13,27]. While UPR activation by

Fig. 2. Determination of TG dose appropriate for experiments with chronic low ERS. Cells were incubated with DMSO or 1, 2.5, 5, 100 nM TG for indicated time. A. Western blotting
analysis of eIF2a activation (n ¼ 3, the representative image is shown). BeD. mRNA expression of HSPA5, EDEM1 and ATF4 was measured by qRT-PCR and normalized to GUSB
expression. mRNA expression of XBP1-spliced was normalized to XBP1-total expression (n ¼ 4). Data are means ± SE, *p < 0.05, **p < 0.01.
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Fig. 3. Chronic low ERS impairs adipogenesis and associated lipogenesis. Preadipocytes (PA) were differentiated for 12 days in the absence or presence of 2.5 nM TG. Cells were
harvested upon indicated days for mRNA analysis or at day 12 for ORO staining. mRNA expression of UPR effectors (A), adipogenic (D, E) and lipogenic markers (F) was measured by
qRT-PCR and normalized to RPS13 expression (n ¼ 4, ND-not detectable). B. Representative image of cells staining with ORO at day 12. C. Quantification of neutral lipids accu-
mulation is expressed as a relative fold change to control (n ¼ 5). G. Preadipocytes were differentiated and 2.5 nM TG was added to the differentiation media for indicated days.
Representative image of cells staining with ORO at day 12. H. Preadipocytes were differentiated and 2.5 nM TG was added to the differentiation media for indicated days.
Quantification of neutral lipids accumulation is expressed as a relative fold change to control (n ¼ 5). Data are means ± SE, *p < 0.05, **p < 0.01.
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glucose deprivation blocks lipogenesis in liver cells [28], under
non-limiting glucose inflow in vivo ERS induced formation of lipid
droplets leading to hepatic steatosis [29,30]. Thus, the negative
effect of ERS on lipogenesis in the presence of glucose e as
observed in this study e seems to be specific for adipose tissue.
Despite this tissue specific effect of ERS, a pathophysiological
outcome of unresolved ERS is the same in both adipose and liver
cells, i.e. a deterioration of their primary metabolic specialization.
Thus, eliciting ERS in both adipose tissue and liver at the same time
may explain a vicious circle leading to profound disturbance of the
whole body lipid metabolism in obese. Notably, opposing effects of
ERS on lipogenesis in adipocytes versus liver cells fits well with fact
that DNL seems to be regulated in AT and liver in an opposing
manner. This disparity is probably based on differential activation
of two key transcription factors SREPB-1c and ChREBP in both
tissues, since expression of both of them has been shown to be
lower in AT but higher in liver from obese compared to lean sub-
jects [4,31]. Nevertheless, chronic ERS of low intensity that more
closely imitates in vivo conditions was inefficient to diminish
lipogenesis in mature adipocytes. This suggests that chronic ERS
seen in obesity could have an impact rather on the newly recruited
preadipocytes and thus could impair necessary renewal of adipose
tissue. This hypothesis is supported by our observation that ERS
activating all arms of UPR strongly inhibits adipogenic conversion
of preadipocytes when present prior or in early stages of this
process. Sensitivity of adipogenesis to low ERS was reported also by
Kim et al. [32]. Early effect of ERS on adipogenesis suggests a
regulation of a key adipogenic factor PPARg or its upstream regu-
lators. Indeed, cells pretreated with TM prior induction of adipo-
genesis were unable to enhance PPARg expression as much as cells
exposed to regular adipogenic medium for 3 days. Moreover,
expression and transcriptional activity of PPARg in 3T3-L1 cells was
recently found to be inhibited by ATF3, a transcriptional inhibitor
inducible by ERS [33]. Nevertheless, it remains unclear whether
ATF3 plays a role in adipogenesis also under conditions of low
chronic ERS. Interestingly, expression of ERS marker HSPA5 was
increased 24 h after onset of differentiation by TG dose that does
not have this effect in quiescent preadipocytes (compare Figs. 2C
and 3A). These data suggest that hormonal stimulation to adipo-
genesis represents in fact additional ERS above the one induced by
low doses of TG.

In conclusions, we found that acute ERS is a powerful inhibitor
of lipogenesis in adipocytes, both at the level of mRNA expression
and de novo triglyceride synthesis, while low intensity ERS blocked
lipogenesis through an impairment of adipogenesis. These effects
of ERS could therefore contribute to decreased lipogenic capacity of
adipose tissue seen in obesity.
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Context: Beneficial metabolic effects of calorie restriction found in the early stage of hypocalorie
diets may be caused by the modulation of metabolic and endocrine function of adipose tissue.

Objective: The objective of the study was to compare metabolic and inflammation-related char-
acteristics of sc adipose tissue (SAAT) in the early (2 d) and later (28 d) phase of a very low calorie
diet (VLCD).

Design, Setting, Intervention, and Patients: Seventeen moderately obese premenopausal women
followed an 800 kcal/d VLCD for 28 days. Anthropometric measurements, blood sampling, and a
biopsy of SAAT were performed before the diet and after 2 and 28 days of the VLCD.

Main Outcome Measure(s): mRNA expression of 50 genes related to lipid metabolism, inflamma-
tion, and fibrosis were analyzed in SAAT. Secretion of adipokines was determined in SAAT explants
and adipokines, fibroblast growth factor 21 (FGF21) and C-reactive protein were measured in
plasma.

Results: In the early phase of the VLCD, the expression of lipolytic genes was increased, whereas
the expression of lipogenic genes was significantly suppressed. The inflammatory markers in SAAT
remained unchanged. At the later phase, expression of genes involved in lipogenesis and �-oxi-
dation was markedly suppressed, whereas the expression of inflammatory markers was increased.
The changes of lipogenic genes after 28 days of the VLCD correlated with FGF21 changes.

Conclusion: The early and later phases of a VLCD differ with respect to metabolic and inflammatory
responses in SAAT. The expression changes in SAAT in the early phase of the VLCD could not explain
the effect of short calorie restriction on the improvement of insulin sensitivity. An interplay of SAAT
with liver function during VLCD mediated by FGF21 might be suggested. (J Clin Endocrinol Metab
101: 5021–5029, 2016)
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Very low-calorie diets (VLCDs) are often prescribed in
obesity treatment to achieve rapid weight loss.

Generally, this type of dietary intervention consists of
500–800 kcal/d during 1–2 months and leads to an im-
provement in metabolic profile (such as plasma total cho-
lesterol, triglycerides, high-density lipoprotein [HDL]cho-
lesterol, insulin, etc) and insulin sensitivity (IS) (1). A study
that compared the effects of VLCD and bariatric surgery
has shown that VLCD drives almost the same improve-
ments of IS, �-cell function, and lipid parameters as bari-
atric surgery when the same reduction of body weight and
fat mass is achieved (2). However, some of the positive
effects of severe calorie restriction are observed already
before the loss of fat mass is accomplished. Whole-body/
hepatic insulin resistance measured by the homeostasis
model assessment for insulin resistance (HOMA-IR) or
quantitative insulin sensitivity check index improved as
soon as after 2 days of a VLCD (3, 4). Similarly the ben-
eficial effects of bariatric surgery on carbohydrate metab-
olism were observed within several days after bariatric
operation in type 2 diabetic patients, before significant
weight loss has occurred (5). Mechanism of the beneficial
metabolic effects of the calorie restriction per se are not
well understood. It might be hypothesized that modifica-
tions of immune and metabolic characteristics of adipose
tissue (AT) might occur and play a role in this process
despite the fact that there is no change in AT mass.
Whereas the response of inflammation-related cytokines
during a 1-month VLCD was investigated in a number of
studies (reviewed in references 1 and 6), the effects of a
very short calorie restriction was studied rarely (3). Sim-
ilarly, it was shown that the expression of metabolism-
related genes in AT was reduced after 1 month of a VLCD
(7), but the response to a shorter calorie restriction (eg,
several days) was not thoroughly studied.

Therefore, in this longitudinal study, we compared the
effects of 2 days and 28 days of a VLCD on metabolic and
inflammation-related indices in sc adipose tissue (SAAT)
and their possible relationship with systemic inflamma-
tory and metabolic status in moderately obese women. We
investigated the expression of the respective genes in
SAAT as well as the secretion of cytokines in SAAT
explants.

According to recent studies, the diet-induced metabolic
changes might be partially controlled by fibroblast growth
factor 21 (FGF21). FGF21 is released by the liver and
stimulates fatty acid oxidation and ketogenesis (8). Re-
cently it was shown, in mice and in cell cultures, that
FGF21 may affect adipose tissue metabolic pathways (li-
pogenesis, lipolysis) (9, 10). Thus, FGF21 levels and their
association with changes in SAAT were also investigated.

Subjects and Methods

Subjects, dietary protocol, and clinical examination
Seventeen metabolically healthy obese women (aged 35 � 7 y,

mean body mass index 32.6 � 3.6 kg/m�2) were recruited for the
study. All subjects were drug free and healthy, as determined by
medical history and laboratory findings. All patients had a stable
weight for at least 3 months prior to inclusion. All subjects un-
derwent a VLCD intervention program, during which they re-
ceived 800 kcal/d (liquid formula diet; Redita; representing an
intake of 52 g of protein, 118 g of carbohydrates, and 12.9 g of
fat per day). Patients consulted a dietitian once a week. The
evaluation of physical activity was performed before the start of
the study by the International Physical Activity Questionnaire,
and the subjects were recommended not to change their habitual
activity during the study. The design of the study is shown in
Figure 1. Clinical investigation was carried out at day 0 (base-
line), day 2 (2 d of the VLCD), and day 28 of the VLCD. During
these investigations the subjects were examined at 8:00 AM after
overnight fasting. Body weight and waist and hip circumferences
were measured, and body composition was assessed by bioim-
pedance (QuadScan 4000; Bodystat). The needle biopsy of SAAT
and the samples of peripheral blood were taken. The study was
approved by Ethical Committee of the Third Faculty of Medi-
cine, Charles University in Prague, and all subjects gave their
informed consent before the start of the study.

Secretion of cytokines from SAAT explants
AT samples obtained by biopsy were processed as previously

described (11). Briefly, AT was washed in saline and separated to
several aliquots. Two aliquots (200–500 mg) were snap frozen
in liquid nitrogen for subsequent gene expression analysis. An-
other aliquot of approximately 400 mg was cut into small pieces
and the explants were incubated in 4 mL of Krebs/Ringer phos-
phate buffer (pH 7.4) supplemented with 20 g/L of BSA and 1 g/L
of glucose at 37°C in a shaking water bath with air as the gas
phase. After 4 hours of incubation, the conditioned medium was
collected, the cellular debris was removed by centrifugation, and
the cell-free supernatant was stored at �80°C until analysis.

Analysis of plasma and SAAT conditioned media
Plasma samples were prepared from uncoagulated peripheral

blood by centrifugation. Plasma glucose was determined with a
glucose oxidase technique (Beckman Instruments). Plasma insu-
lin was measured using an Immunotech insulin immunoradio-
metric assay kit (Immunotech).

�-Hydroxybutyrate, glycerol, and free fatty acids (FFAs)
were analyzed by enzymatic colorimetric assays (Randox Lab-
oratories Ltd). A multiplex immunoassay at the MagPIX or Lu-
minex 200 was used to analyze the following: 1) plasma cyto-
kines IL-6, IL-8, IL-10, and TNF-� (high sensitivity human
cytokine Milliplex panel; Merck-Millipore); 2) cytokines in con-
ditioned media, IL-6, IL-8, IL-10, monocyte chemoattractant
protein-1 (MCP-1), TNF-�, and leptin (human adipocyte kit;
Merck-Millipore). The circulating levels of MCP-1, leptin,
FGF21, and C-reactive protein (CRP) were quantified by ELISA
kits (eBioscience and R&D Systems).

Gene expression analysis
Total RNA was isolated from 200- to 500-mg aliquots of AT

using an RNeasy lipid tissue RNA minikit (QIAGEN). The RNA
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concentration was measured using Nanodrop1000 (Thermo
Fisher Scientific). To remove genomic DNA, deoxyribonuclease
I (Invitrogen) treatment was applied. Six hundred nanograms of
total RNA were reverse transcribed using a high-capacity cDNA
reverse transcription kit (Applied Biosystems). For microfluidics,
4 ng of cDNA was preamplified within 16 cycles to improve
detection of target genes during subsequent real-time quantita-
tive PCR (qPCR; TaqMan Pre Amp master mix kit; Applied
Biosystems). For the preamplification, 20� TaqMan gene ex-
pression assays of all target genes (the list of genes in Supple-
mental Table 1) were pooled together and diluted with water to
the final concentration 0.2� for each probe. The real-time qPCR
was performed in duplicates on Biomark real-time qPCR system
using 96 � 96 array (Fluidigm). In addition, the mRNA expres-
sion of CD36, peroxisome proliferator-activated receptor
(PPAR)-�, adipose triglyceride lipase (ATGL), hormone-sensi-
tive lipase (HSL), diacylglycerol acyltransferase (DGAT)-2,
IL-6, IL-8, IL-10, MCP-1, TNF-�, and leptin was quantified by
qPCR without preamplification on an ABI PRISM 7500 (Ap-
plied Biosystems). Data were normalized to reference gene PPIA,
which proved to be superior over two other measured reference
genes, PUM1 and GUSB (not shown). The method of 2(-�Ct) was
calculated for statistical analysis, and the final values for the
figures were expressed as fold change related to mean basal
value.

Statistical analysis
Data are presented as means � SEM. Statistical analysis was

performed using GraphPad Prism 6 (GraphPad Software, Inc).
The comparison of the anthropometric, biochemical, and other
variables before the diet, at day 2, and at day 28 of the VLCD was
done using a one-way ANOVA with repeated measures, fol-
lowed by post hoc pairwise comparisons with Bonferroni ad-
justment for multiple testing. Correlations of fold changes of all
parameters during 2 days and 28 days of the VLCD (value at d
2/baseline) or (value at d 28/baseline) were assessed by Pearson’s
correlation. The difference of P � .05 was considered as statis-
tically significant.

Results

Effect of dietary intervention on clinical and
laboratory characteristics of obese women

Anthropometric and biochemical parameters of sub-
jects before and during two stages of the diet are presented

in Table 1. At day 2 of the VLCD, the
subjects´ body weight was reduced
by 1.4%, whereas fat mass was not
changed. After 28 days of the VLCD,
a body weight loss of 9.2% was
achieved, associated with a decrease
of 16.5% of fat mass (kilograms).

Plasma glucose levels and triglyc-
erides were not changed significantly
during any phase of the intervention.
FFA and �-hydroxybutyrate levels
were elevated after both 2 days and
28 days of the VLCD. Total choles-
terol and HDL cholesterol levels de-
creased after 28 days of the VLCD.

Insulin and insulin resistance estimated by HOMA-IR de-
creased after 2 days of the diet by 13.7% and 16.4%,
whereas at day 28 these variables decreased by 40% and
44%, respectively (Table 1).

Effect of dietary intervention on mRNA gene
expression in sc abdominal adipose

Genes regulated after 2 days of VLCD
Among all the genes analyzed, those that were down-

regulated at day 2 were as follows: three lipogenic genes
(SCD1, FASN, and ELOVL6), the lipogenic transcription
factor sterol regulatory element-binding protein-1c
(SREBP1c), and fibrotic enzyme-lysyl oxidase (LOX).

Up-regulated genes at day 2 were as follows: lipases
(ATGL, HSL), ATGL coactivator CGI58, transcription
factor PPAR�, and fatty acid translocase CD36. mRNA
expression of glucose transporter GLUT1 had a tendency
to increase after 2 days of the VLCD (P � .09).

All other genes were not changed at day 2 of the VLCD;
explicitly we would mention the genes involved in �-ox-
idation (CPT1�, ACOX, ACADM, PPAR�, PCG1) (Fig-
ure 2C), the genes involved in fibrosis (TLR4, collagens,
TGF�1, MMP9) (Figure 2E) and in inflammation (mac-
rophage markers and cytokines) (Figure 2F), and several
genes related to lipogenesis and lipolysis.

Genes regulated after 28 days of VLCD
Genes down-regulated after 28 days of VLCD were as

follows: all lipogenic enzymes (SCD1, FAS, DGAT2,
ACLY, ACACA, ELOVL6) and two lipogenic transcrip-
tion factors (SREBP1c, carbohydrate-responsive element
binding protein) (Figure 2A); lipolytic genes and regula-
tors, MGL, G0S2 (an inhibitor of ATGL), PLIN1 (an
inhibitor of HSL), and DGAT1 (an enzyme involved in the
reesterification of fatty acids and in lipogenesis) (Figure
2B); genes associated with �-oxidation of fatty acids,
CPT1, ACOX1, and ACAD (Figure 2C); insulin-stimu-

Figure 1. The design of the study. Seventeen obese premenopausal women were included in
the study. Clinical examination, needle biopsy of SAAT, and blood collection were performed at
indicated days (d 0, before the start of VLCD; d 2, after 2 d of VLCD; d 28, at the end of 1 mo of
VLCD). Samples from needle biopsies and plasma were used for further analysis of inflammatory
and metabolic characteristics during the intervention.
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lated glucose transporter 4 (GLUT4) (Figure 2D); leptin
(Figure 2D); and fibrotic enzyme LOX (Figure 2E).

Genes up-regulated after 28 days of VLCD were some
macrophage markers, namely CD163, MSR1, IRF5, and
CCR2. The increase of mRNA expression of other mark-
ers (ACP5, FCGBP, ITGAX) and cytokines (IL-8,
MCP-1, TNF�, IL-6, and IL-10) was observed, but it did
not reach statistical significance (Figure 2F).

Expression of all other genes was not significantly mod-
ified at the end of 28 days of the dietary intervention,
specifically the following: genes involved in lipolysis
(HSL, ATGL, CGI58, CD36) (Figure 2B), transcription
factors PPAR. PPAR�, and PPAR� coactivactor 1�, in-
sulin receptor substrate 1, and genes involved in fibrosis
(Figure 2E).

Correlations of the diet-induced changes in gene
expression in SAAT and in metabolic parameters
during VLCD intervention

Two-day changes
Changes of circulating FFAs and glycerol after 2 days of

the VLCD correlated with changes in mRNA expression
of CGI58 (Supplemental Figure 1). The changes of glyc-
erol after 2 days of the VLCD correlated with expression
changes of HSL and ATGL (Supplemental Figure 1, data
not shown). The changes of the HOMA-IR after 2 days of
the VLCD tended to correlate with changes of HSL and
ATGL expression (data not shown).

Twenty-eight-day changes
The changes in mRNA expression of leptin and LOX

correlated positively with the changes of mRNA expres-
sion of lipolytic and lipogenic enzymes, �-oxidation, and
insulin receptor substrate 1 during 28 days of the VLCD
(Supplemental Table 2). The changes of the HOMA-IR
correlated with changes of plasma levels and the secretion
of leptin (Supplemental Figure 1 and Supplemental Table
2). Changes of cholesterol, insulin, and triglycerides cor-
related with the changes of expression of several lipolytic
and lipogenic genes (ie, HSL, SCD1, FASN, DGAT2)
(Supplemental Figure 1).

Changes of plasma FGF21 correlated positively with
corresponding changes of �-hydroxybutyrate (r � 0.537,
P � .048) and negatively with corresponding fold changes
of ATGL, DGAT2, PPAR, and GLUT4 expression (Sup-
plemental Figure 1, data not shown).

Secretion of cytokines/adipokines in sc abdominal
adipose tissue during VLCD

In vitro secretion of cytokines IL-6 and MCP-1 from
SAAT explants did not change after 2 days of VLCD but
increased after 28 days of VLCD. Secretion of IL-8 and
TNF� was not significantly changed after 2 days and
tended to be increased after 28 days of the VLCD (P � .053
and P � .066, respectively). Secretion of IL-10 was not
significantly changed in either VLCD phase (Figure 3).
Secretion of leptin was not changed after 2 days of the

Table 1. Clinical Characteristics of 17 Obese Women Before the Diet and After 2 Days and After 28 Days of VLCD

Before Diet 2 Days of VLCD 28 Days of VLCD

Weight, kg 93.5 � 2.3 92.1 � 2.3a 84.9 � 2.3a

BMI, kg/m�2 32.7 � 0.9 32.2 � 0.9a 29.7 � 0.8a

Fat mass, kg 38.9 � 2.0 38.6 � 1.9 32.3 � 1.6a

Fat-free mass, % 59.6 � 1.2 59.3 � 1.2 63.5 � 1.1b

Waist circumference, cm 99.9 � 1.7 98.6 � 1.6b 92.6 � 1.6a

Glucose, mmol/L�1 5.0 � 0.1 5.1 � 0.1 4.9 � 0.2
Insulin, mU/L�1 10.2 � 1.0 8.0 � 0.6c 5.3 � 0.6a

FFAs, �mol/L�1 820 � 56 1156 � 119c 1115 � 70b

Glycerol, �mol/L�1 124 � 16 147 � 14 113 � 10
Triglycerides, mmol/L�1 1.12 � 0.12 1.04 � 0.07 0.93 � 0.10
HDL, mmol/L�1 1.25 � 0.05 1.21 � 0.06 1.06 � 0.04a

Total cholesterol, mmol/L�1 4.82 � 0.20 4.86 � 0.18 3.87 � 0.13a

�-Hydroxybutyrate, mmol/L�1 114 � 19 379 � 63b 603 � 124b

HOMA-IR 2.3 � 0.2 1.8 � 0.1c 1.3 � 0.2a

QUICKI 0.342 � 0.005 0.354 � 0.004c 0.386 � 0.009a

Abbreviations: BMI, body mass index; QUICKI, quantitative insulin sensitivity check index. Data are presented as mean � SEM.
a P � .001 when compared with baseline (before the diet) values (one way ANOVA with repeated measures, followed by post hoc pairwise
comparisons with Bonferroni adjustment for multiple testing)
b P � .01 when compared with baseline (before the diet) values (one way ANOVA with repeated measures, followed by post hoc pairwise
comparisons with Bonferroni adjustment for multiple testing).
c P � .05 when compared with baseline (before the diet) values (one way ANOVA with repeated measures, followed by post hoc pairwise
comparisons with Bonferroni adjustment for multiple testing).
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VLCD but decreased significantly after 28 days of the
VLCD (Figure 3).

Plasma levels of cytokines, CRP, FGF21, and leptin
during VLCD

Plasma concentration of cytokines IL-6, and MCP1 in-
creased after 2 days of the VLCD and returned to baseline
after 28 days of the VLCD (Figure 4). Similarly, CRP con-
centration had a tendency to increase after 2 days of the

VLCD (P � .07) and decreased under the baseline values
after 28 days of the VLCD (Figure 4). IL-8, IL-10, TNF�,
and cortisol levels were not significantly changed after
either2or28daysof theVLCD.Theaverageplasma leptin
levels did not change significantly after 2 days’ VLCD
(decrease by 21%, P � .21); however, the response
showed a high interindividual variability. After 28 days of
the VLCD, the decrease of leptin was markedly pro-
nounced (by 49%, P � .001). FGF21 was not changed

Figure 2. mRNA expression of genes in SAAT of obese women before the diet (white), 2 days after the VLCD (gray), and 28 days after the VLCD
(black). Lipogenesis (A), lipolysis (B), �-oxidation (C), insulin/glucose receptors and leptin (D), fibrosis (E), and inflammation (F) are shown. Data are
presented as fold change � SEM, related to mean basal (before diet) gene expression, normalized to PPIA expression (n � 16). *, P � .05, **, P �
.01, ***, P � .001, compared with prediet levels or values at 2 days of the VLCD (one way ANOVA with repeated measures, followed by post hoc
pairwise comparisons with Bonferroni adjustment for multiple testing).

Figure 3. Secretion of cytokines/adipokines from SAAT of obese women before the diet (white), 2 days after the VLCD (gray), and 28 days after
the VLCD (black). Data are presented as a concentration of secreted protein (picograms per milliliter per 4 h) � SEM (n � 16). *, P � .05, **, P �
.01, ***, P � .001, compared with prediet levels or values at 2 days of the VLCD (one way ANOVA with repeated measures, followed by post hoc
pairwise comparisons with Bonferroni adjustment for multiple testing).
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after 2 days of the VLCD and was elevated after 28 days
of the VLCD (Figure 4).

Discussion

The aim of this study was to elucidate metabolic and im-
mune effects of the calorie restriction per se, when com-
pared with the restriction accompanied with the body fat
mass loss. Therefore, in moderately obese women, whole-
body and AT characteristics were compared between the
early (2 d) and later phase (28 d) of VLCD. The main
finding is that the responses of metabolic and inflamma-
tion-related characteristics in SAAT and in plasma dif-
fered markedly between the two phases of the diet.

The 2 days of calorie restriction modified genes in-
volved in lipolysis and lipogenesis in SAAT, whereas the
inflammatory status of AT was not changed. The in-
creased levels of FFAs and �-hydroxybutyrate in plasma
reflect enhancedAT lipolysis andhepaticketogenesis, sim-
ilarly as seen in fasting (12). Increased expression of major
AT lipases in SAAT, HSL, ATGL, with its cofactor
CGI58, could contribute to a higher release of FFAs from
AT to plasma, as reviewed by Nielsen and Moller (13).
Indeed, in this study the increase in plasma FFAs and glyc-
erol after 2 days of the VLCD correlated with the changes
in expression of CGI58, and the changes in plasma glyc-
erol correlated with SAAT lipases, ATGL and HSL. In

addition, increased mRNA expression of CD36, a fatty
acid transporter in SAAT, was found at the early phase of
the VLCD, and this expression correlated with increased
FFA plasma levels. This is in line with published studies
showing that the expression of CD36 in AT increased in
response to the acute increase of FFA plasma levels in-
duced by lipid infusion (14) and also in response to chronic
elevation of FFA plasma levels in obese subjects with met-
abolic syndrome (15). On the other hand, in the study of
Hames et al (16), CD36 was shown to facilitate the FFA
uptake by AT when the levels of FFAs in plasma are low,
ie, after consumption of a carbohydrate-containing meal.
Thus, the higher expression of CD36 observed after 2 days
of calorie restriction could provide AT better FFA absorp-
tion capacities for the anticipated refeeding phase. Also, it
was suggested that FFAs released from adipocyte by li-
polysis are immediately taken back by CD36 to secure
cycling of FFA, and this mechanism may prevent excessive
release of FFA under condition of stimulated lipolysis (17).
The up-regulation of CD36 in our study is likely driven by
PPAR activation. Indeed, PPAR� mRNA expression was
elevated during the early VLCD phase, and this change
correlated with the changes of mRNA expression of CD36
and with changes of lipolytic genes (HSL, ATGL) in this
study. Up-regulated PPAR� expression and activity might
be associated by the enhanced availability of lipolysis-de-

Figure 4. Plasma levels of cytokines and hormones in obese women before the diet (white), 2 days after the VLCD (gray), and 28 days after the
VLCD (black). Data are presented as mean � SEM (n � 17). *, P � .05, **, P � .01, ***, P � .001, compared with prediet values or values at 2
days of the VLCD (one way ANOVA with repeated measures, followed by post hoc pairwise comparisons with Bonferroni adjustment for multiple
testing).
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rived fatty acids (PPAR� ligands), as suggested by Haem-
merle et al (18, 19).

In contrast to the effect of 2 days of calorie restriction
on lipolytic genes, the expression of lipogenic enzymes in
SAAT was reduced. This reduction was likely linked to a
down-regulation of SREBP1c, one of the lipogenic tran-
scription factors, which is regulated by insulin (20). The
improvement in IS during the early phase of the VLCD was
not associated with the metabolic gene expression in
SAAT, except a borderline correlation with several lipo-
lytic genes (ie, HSL, ATGL). Thus, changes occurring in
AT in response to short calorie restriction do not appear
to play major role in the metabolic improvement induced
by 2 days of a VLCD. Therefore, the potential role of other
insulin -sensitive organs in the diet-induced metabolic
changes must be taken into account. Lara-Castro et al (21)
demonstrated that the decrease of the intramyocellular
lipids after 6 days of a VLCD was closely related to insulin
resistance. In contrast to that, Jazet et al (22) found no
changes in the markers of insulin signaling and glucose
transport in skeletal muscle after 2 days of a VLCD, but
they found a diet-induced decrease of endogenous glucose
production. The latter points to the role of the liver in the
very short VLCD-induced metabolic changes.

Because no significant change in gene expression and
secretion of proinflammatory (IL-6, IL-8, TNF�, MCP-1)
andantiinflammatory (IL-10, IL-1Ra,TGF�1) cytokines,
and macrophage markers (CD68, CD163, IRF5, MSR1,
ACP5, CCR2, FCGBP, ITGAX) in SAAT were observed
after 2 days of the VLCD, it may be concluded that the
early improvement of IS (metabolic changes) was not re-
lated to changes of immune status of adipose tissue. In-
deed, several studies using opposite dietary intervention,
ie, short overfeeding in healthy men, showed similar di-
chotomy between AT inflammation and IS under condi-
tions of mild weight gain when IS was impaired despite no
induction of inflammatory cytokines and macrophage ac-
tivation in SAAT (23, 24).

In contrast to the changes induced by 2 days of a VLCD,
after 28 days of severe calorie restriction mRNA expres-
sion of lipolytic genes (ATGL, HSL, MGL, PLIN1,
CGI58) returned to the prediet levels. The no change in
ATGL or HSL mRNA expression after 1 month of the
VLCD, when compared with the prediet condition, is in
agreement with some of the previous studies of our and
other teams (1, 25). However, the decrease in expression
of lipolytic genes on day 28 compared with day 2 does not
essentially mean that lipolysis is attenuated. FFA levels in
plasma were elevated at 28 day similarly to day 2, indi-
cating maintenance of higher lipolytic rate. The decrease
to baseline in expression of lipases at the late phase of the
VLCD was accompanied by a decrease of G0S2, which has

been shown as a dominant inhibitor of ATGL in adi-
pocytes (26), and by a reduction in DGAT1, which is
responsible for FFA reesterification. Reduced inhibition of
ATGL together with reduced reesterification can thus still
ensure the FFA release needful to cover the energy demand
of the organism. Thus, our data support the hypothesis
that G0S2 acts predominantly as a long-term regulator of
ATGL, whereas CGI58 is more important for the reg-
ulation of acute lipolytic response (13). Furthermore, at
day 28 a marked decrease of lipogenic genes, genes of
�-oxidation, and insulin-stimulated glucose transport
(GLUT4) in SAAT was observed. These processes prob-
ably prevent excessive breakdown as well as storage of
FFAs in adipocytes during longer-term shortage and se-
cure its adequate release from AT to serve as substrates for
other organs.

The increase in a SAAT inflammatory state after 28
days of the VLCD is in agreement with published results
of our and other groups (3, 11, 27, 28). Previously we have
shown that 28 days of a VLCD was not associated with an
increase in macrophage content in SAAT (29). Thus, it
might be assumed that the observed increase of macro-
phage marker expression in response to strong calorie re-
striction reflects stimulation of macrophage activation
rather than their accumulation. The increase of proinflam-
matory (IL-6, IL-8, MCP-1, TNF) but also antiinflamma-
tory (IL-10, IL-1Ra) cytokines together with M1 (IGTAX,
CCR) and M2 (CD163) macrophage markers is in accor-
dance with the published findings that macrophages in
SAAT are of a mixed phenotype (30). The role of the in-
crease in the inflammatory state in SAAT after 28 days of
severe calorie restriction is still unclear.

Interestingly, the only gene identified to be significantly
down-regulated in both phases of the VLCD was LOX,
one of the genes involved in fibrosis (and extracellular
matrix remodeling. LOX catalyzes the cross-linking of
collagens in AT and, thus, it is one of a key factors con-
tributing to the fibrosis of AT observed in obesity (31).
Inhibition of LOX also resulted in the improvement of
several metabolic parameters, ameliorated glucose and in-
sulin levels, decreased HOMA index, and reduced plasma
triglyceride level in obese rats (31). Indeed, the decrease of
LOX expression found in our study was associated with
changes in SAAT metabolism genes (Supplemental Table
2). Importantly, the reduction of lipogenesis and fibrosis
observed during weight loss in our study represent the
opposite processes to those found in the overfeeding stud-
ies (23, 24).

Leptin appeared as the only adipokine for which a
quantitative relationship with the diet-induced changes of
HOMA-IR was found. In addition, leptin changes were
correlated also with a number of metabolic-related genes
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in AT and with plasma FGF21 levels. Leptin was shown to
act on peripheral tissues by the regulation of fatty acid
oxidation and energy expenditure through activation of
AMP-activated protein kinase, induction of FFA oxida-
tion genes, and increased transport of FFAs to mitochon-
dria (32). It might be suggested that this adipokine is a
sensor of metabolic changes in SAAT and the signal that
mediates the metabolic interplay with other organs during
calorie restriction. Further studies in this issue in obese
humans should be warranted.

After 28 days of the VLCD, the diet-induced improve-
ment of metabolic indices (TG, insulin, cholesterol) was
correlated with changes in lipogenic genes (eg, SCD1,
FASN, DGAT2). It was shown in mice that a decrease of
SCD1 expression (in liver or systemic level) was correlated
with an improvement of the metabolic profile and insulin
sensitivity (33, 34). Thus, we may hypothesize that the
decrease of lipogenic genes in AT is paralleled with the
decrease of lipogenesis in liver, which is probably one of
the important contributors to the improvement of meta-
bolic profile and IS during the VLCD.

FGF21 was shown to act as a metabolic regulator dur-
ing fasting through stimulating ketogenesis and fatty acid
oxidation in liver in mice (8). In addition, in mice and
3T3-L1 adipocytes, the role of FGF21 in the down-regu-
lation of lipogenesis and lipolysis in SAAT was shown
(8–10). In line with this, we observed negative correlation
between the increase of plasma FGF21 during the 28 days
of the VLCD and the changes in mRNA expression of
genes involved in SAAT lipogenesis (FASN, DGAT2) and
glucose uptake (GLUT4). Because FGF21 plasma levels
are increased only in later phase of the diet (35), it might
be suggested that FGF21 plays a role in the regulation of
a switch from a short-term to a longer-term calorie re-
striction. The down-regulation of lipogenesis in associa-
tion with insulin-stimulated glucose transport into AT
supports the role of FGF21 in the saving of substrates for
other organs during famine.

In conclusion, our findings show that the early (2 d) and
later (28 d) phases of the VLCD differ with respect to
metabolic and inflammatory response in SAAT. Although
in both phases the effects of severe calorie restriction rep-
resent the reaction to shortage of calories/nutrients (ie,
induced lipolysis, reduced storage of lipids), the expres-
sion of regulatory cofactors involved in these processes is
different in the early and later phase of the VLCD. The
diet-induced modifications in metabolic and inflamma-
tion-related functions of AT did not appear to play a piv-
otal role in the improvement of IS at the early phase of the
VLCD. The processes observed after 28 days of the VLCD
probably contribute to adaptation of SAAT to prolonged
calorie restriction through the saving of substrates. More-

over, the correlation of the changes in metabolic genes in
SAAT with metabolic indices and FGF21 suggest the pos-
sible cross talk of SAAT with liver function during the
VLCD.
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Supplemental Table 1:List of analyzed genes 

Gene symbol Assay ID Protein Function 

De novo lipogenesis 
   ACLY Hs00982738_m1 ATP citrate lyase Synthesis of acetyl-CoA 

ACACA Hs01046047_m1 Acetyl-CoA carboxylase alpha Synthesis of malonyl-CoA 

FAS Hs01005622_m1 Fatty acid synthase Synthesis of palmitate 

SCD1 Hs01682761_m1 Stearoyl-CoA desaturase 1 Insertion of a double bond into fatty acyl-CoA substrates 

ELOVL6 Hs00225412_m1 ELOVL Fatty Acid Elongase 6 Elongation of 2 carbons to the chain of long- and very long-chain fatty acids 

DGAT1 Hs01017541_m1 Diacylglycerol O-Acyltransferase 1 Re-esterification of fatty acids, triglyceride synthesis 

DGAT2 Hs01045913_m1 Diacylglycerol O-Acyltransferase 2 Triglyceride synthesis 

CHREBP Hs00263027_m1 Carbohydrate-responsive element-binding protein Transcription factor regulating de novo lipogenesis and glucose metabolism 

SREBP1c Hs01088691_m1 Sterol regulatory element binding protein 1c Transcription factor regulating de novo lipogenesis and glucose metabolism 

Lipolysis 
   PNPLA2=ATGL Hs00982040_g1 Patatin-like phospholipase domain containing 2 (=adipose triglyceride lipase) Triglyceride hydrolysis 

LIPE=HSL Hs00943404_m1 Lipase E, Hormone Sensitive Type (=hormon sensitive lipase) Diglyceride hydrolysis 

MGL Hs00200752_m1 Monoglyceride lipase Monoglyceride hydrolysis 

ABHD5=CGI58 s01104373_m1 Abhydrolase Domain Containing 5 (=lipid Droplet-Binding Protein CGI-58)   Cofactor of ATGL 

PLIN1 Hs00160173_m1 Perilipin 1 Coating of lipid droplets, inhibitor of lipolysis 

G0S2 Hs00274783_s1 G0/G1 Switch 2 (cofactor ATGL) ATGL inhibitor (lipolysis inhibitor) 

PPARγ Hs01115513_m1 Peroxisome proliferator-activated receptor gamma Master regulator of adipogenesis and glucose and lipid metabolism of adipocytes 

FAT/CD36 Hs00169627_m1 Fatty acid translocase Transport and regulation of fatty acid transport across the cell membranes 

β-oxidation 
   PPARα Hs00947539_m1 Peroxisome proliferator-activated receptor alpha Transcription factor regulating glucose and lipid metabolism 

PPARGC1A=PGC1 Hs01016719_m1 Peroxisome proliferator-activated receptor gamma coactivator 1 alpha Cofactor of PPARγ, involved in thermogenesis and energy metabolism 

CPT1B Hs03046298_s1 CarnitinePalmitoyltransferase 1B Conversion of the long-chain acyl-CoA to long-chain acylcarnitine 

ACOX1 Hs01074241_m1 Acyl-CoA Oxidase 1, Palmitoyl First step of β-oxidation pathway of very long chain-fatty acids 

ACADM Hs00936580_m1 Acyl-CoA Dehydrogenase First step of β-oxidation pathway of medium long chain-fatty acids 

Insulin/Glucose receptors  
   GLUT1 Hs00892681_m1 Glucose transporter 1 Basal glucose uptake 

GLUT4 Hs00168966_m1 Glucose transporter 4 Stimulated glucose uptake 

IRS1 Hs00178563_m1 Insulin receptor substrate 1 Transmits signal from insulin and IGF-1 receptor downstream 

Fibrosis 
   TGFb1 Hs00998133_m1 Transforming growth factor beta 1 Pro-fibrotic factor 

TLR4 Hs01060206_m1 Toll-like receptor 4 Endotoxin receptor mediating the development of AT fibrosis 

COL1A1 Hs00164004_m1 Collagen type I alpha 1 Major component of type I collagen 
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COL6A3 Hs00365098_m1 Collagen, type VI, alpha 3 Alpha chain of type VI collagen 

LOX Hs00942480_m1 Lysyl oxidase Cross-links collagens and elastins 

MMP9 Hs00234579_m1 Matrix metallopeptidase 9 Catalysis of ECM breakdown 

Markers of monocyte/ 
macrophage 

   CD68 Hs00154355_m1 Cluster of differentiation 68 Scavenger receptor 

CD163 Hs00174705_m1 Cluster of differentiation 163 Scavenger receptor 

MSR1 Hs00234007_m1 Macrophage scavenger receptor 1 Class A macrophage scavenger receptor 

ACP5 Hs00356261_m1 Acid phosphatase 5, tartrate resistant Belongs to the metallophosphoesterase superfamily 

IRF5 Hs00158114_m1 Interferon regulatory factor 5 Transcription factor regulating induction of inflammatory cytokines 

FCGBP Hs00175398_m1 IgGFc-binding protein Function unknown 

ITGAX Hs00174217_m1 Integrin, alpha X (complement component 3 receptor 4 subunit) (CD11C) Mediates cell-cell interaction during inflammation 

CCR2 Hs00356601_m1 MCP1 receptor Mediates chemotactic perception for monocytes and basophils 

Cytokines/adipokines    

Leptin Hs00174877_m1 Leptin Adipokine reflecting adipose tissue mass and regulating energy balance 

IL6 Hs00985639_m1 Interleukin 6 (interferon, beta 2) Cytokine stimulating immunologic response and regulating energy metabolism 

IL1RN Hs00893626_m1 Interleukin 1 receptor antagonist Natural inhibitor of the pro-inflammatory IL1 cytokine 

IL8 Hs00174103_m1 Interleukin 8 Causes chemotaxis of immune cells and induces phagocytosis 

IL10 Hs00961622_m1 Interleukin 10 Regulation of inflammatory response 

MCP1 Hs00234140_m1 Monocyte chemoattractant protein 1 Attracts inflammatory cells to the inflammatory site 

TNFα Hs00174128_m1 Tumor necrosis factor alpha Proinflammatory cytokine regulating also lipid and carbohydrate metabolism 

Reference genes 
   PPIA Hs04194521_s1 Peptidylprolylisomerase A (cyclophilin A) Cis-trans isomerization of prolineimidic peptide bonds 

GUSB Hs00939627_m1 Glucuronidase Beta Hydrolysis of β-D-glucuronic acid 

PUM1 Hs00472881_m1 Pumilio homolog 1 Translational regulator 
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Table 2:Correlations between diet-induced changes of selected metabolic genes / indices and leptin, 

LOX, and CD36 during 2 days and 28 days of VLCD 

Changes after 2 days of VLCD 

mRNA 
(except of HOMA-IR) 

Leptin 

(mRNA) 
Leptin  

(secretion) 

LOX  

(mRNA) 

CD36  

(mRNA) 

ATGL 0.662
b
 0.276 0.284 0.746

c
 

HSL 0.647
b
 0.135 0.469 0.776

c
 

MGL 0.636
a
 -0.092 0.176 0.121 

SCD1 0.645
c
 0.297 0.189 0.430 

FASN 0.668
c
 0.250 0.513 0.522

a
 

ACOX1 0.363 -0.194 0.207 0.051 

ACADM 0.551
a
 0.335 0.254 0.256 

PPARγ 0.607
b
 -0.104 0.534

a
 0.841

c
 

PLIN 0.384 0.229 0.593
a
 0.239 

GLUT4 0.386 0.408 0.608
a
 0.173 

IRS1 0.300 0.300 0.664
b
 -0.248 

SREBP 0.322 0.465 0.551 -0.047 

ChREBP 0.550
a
 0.191 0.501 0.035 

HOMA-IR 0.273 0.134 -0.064 0.182 

 

Changes after 28 days of VLCD 

mRNA 
(except of HOMA-IR) 

Leptin 

(mRNA) 
Leptin  

(secretion) 

LOX  

(mRNA) 

CD36  

(mRNA) 

ATGL 0.706
a
 0.593

a
 0.658

b
 0.645

b
 

HSL 0.712
c
 0.607

a
 0.641

b
 0.636

b
 

MGL 0.709
a
 0.583

a
 0.756

c
 0.248 

SCD1 0.702
b
 0.596

a
 0.431 0.507

a
 

FASN 0.512
a
 0.497 0.589

a
 0.488 

ACOX1 0.414 0.332 0.604
a
 0.108 

ACADM 0.372 0.347 0.817
c
 0.279 

PPARγ 0.641
b
 0.757

a
 0.077 0.819

c
 

PLIN 0.594
a
 0.423 0.846

c
 0.346 

GLUT4 0.593
a
 0.591

a
 0.493 0.165 

IRS1 0.554
a
 0.388 0.668

b
 0.280 

SREBP 0.507 0.503 0.470 0.249 

ChREBP 0.475 0.374 0.689
c
 0.242 

HOMA-IR 0.445 0.550
a
 -0.426 0.439 

Correlations were calculated as foldchange: (value at day 2/ baseline) or (value at day 28/ 

baseline).Pearson’s correlation coefficient is presented (n=16). 
a
p<0.05 ; 

b
p≤0.01; 

c
p≤0.001. 

160


	Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes
	1. Introduction
	2. Materials and methods
	2.1. Cells and chemicals
	2.2. Gene expression analysis
	2.3. Apoptosis assay
	2.4. Oil red O (ORO) staining
	2.5. Glucose and acetic acid incorporation into lipids
	2.6. Analysis of mitochondrial respiration
	2.7. Statistical analysis

	3. Results
	3.1. Acute high intensity ERS reduces adipogenesis and lipogenesis of human preadipocytes and adipocytes
	3.2. Chronic low ERS impairs adipogenesis and associated lipogenesis
	3.3. Lipogenic capacity of mature adipocytes is not influenced by chronic low ERS

	4. Discussion
	Author contributions
	Conflicts of interest
	Acknowledgments
	Transparency document
	References

	zeg012162917so1
	zeg012162917so2
	zeg012162917so3
	zeg012162917so4

