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Abstract

This is a theoretical study of the Least Absolute Deviations (LAD)
fits. In the first part, fundamental mathematical properties of LAD
fits are established. Computational aspects of LAD fits are shown
and the Barrodale-Roberts Algorithm for finding LAD fits is presen-
ted. In the second part, the statistical properties of LAD estimator
are discussed in the concept of linear regression. It is shown that
LAD estimator is a maximum likelihood estimator if the error vari-
ables follow Laplace distribution. We state theorems establishing
strong consistency and asymptotic normality of LAD estimator and
we discuss the bias of LAD estimator. In the last section, we present
the results of numerical experiments, where we numerically showed
consistency of LAD estimator and discussed its behaviour under
different distributions of error variables with comparison to the Or-
dinary Least Squares (OLS) estimator. Lastly, we looked at the
behaviour of LAD and OLS estimators in the presence of corrupted
observations.
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Abstrakt

Toto je teoretická studie metody Nejmenš́ıch absolutńıch odchylek
(NAD). V prvńı části jsou uvedeny základńı matematické vlast-
nosti metody NAD. Jsou představeny komputačńı aspekty metody
NAD a Barrodale̊uv - Robertse̊uv algoritmus, který se při komputaci
této metody použ́ıvá. Ve druhé části jsou diskutovány statistické
vlastnosti metody NAD v kontextu linárńı regrese. Je ukázáno,
že odhad metodou NAD je maximálně věrohodným odhadem, za
předpokladu že chyby maj́ı laplaceovo rozděleńı. Jsou uvedeny věty,
které dokazuj́ı silnou konzistenci a asimtotickou normalizu. Dále
je diskutována nestranost odhadu metodou NAD. V posledńı části
jsou prezentovány výsledky numerických experiment̊u, ve kterých
je numericky ukázána konzistenci odhadu metodou NAD. Dále je
studováno chováńı tohoto odhadu za r̊uzných distribučńıch funkćı
chyb v porovnáńı s metodou Nejmenš́ıch čtverc̊u. Nakonec je uvedeno
chováńı těchto dvou odhad̊u v př́ıtomnosti chybných dat.

Kĺıčová slova

nejmenš́ı absolutńı odchylky, Barrodale-Roberts, l1 norma, l1 re-
grese, laplaceovi chyby, iteračně opakovaně vážené nejmenš́ı čtverce,
robustnost
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Proposed Topic:: Least Absolute Deviations

Preliminary scope of work

Method of Least Absolute Deviations, or the so-called l1 estimator,
provides probably the most intuitive alternative to a widely used
method of Least Squares, or the so-called l2 estimator. l1 is con-
sidered to be more robust than l2, yet less stable and more compu-
tationally difficult. The aim of this thesis is to study the l1 estimator,
its usage in linear regression, its properties, its differences from l2
and its robustness.

After the historical background and the introduction, the theory
of l1 estimator will be discussed. Various applications of l1 will be
presented including examples where l1 is more appropriate then l2
as an estimator e.g. when l1 gives maximum likelihood estimation
(MLE) whereas l2 does not (i.e. under Laplace distribution of errors
instead of Gaussian). In the next section the weight function will
be introduced into the l1 model to further improve its robustness.
In the last section the simulations using appropriate statistical soft-
ware will be conducted and the results will be discussed.

Research questions: What are the practical applications of l1?
Under what circumstances should l1 be used instead of l2



Preliminary outline

1. Introduction
2. Least Absolute Deviation
3. Least Weighted Absolute Deviation
4. Simulations of the models’ robustness (breakdown point)
5. Conclusion
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Introduction

Method of the Least Squares is probably both the best known and
the most used method for finding fits for linear models. The method
of the Least Absolute Deviations (LAD) is most likely its closest re-
lative, at least conceptually speaking. From historical point of view,
it is hard to tell which method is older. Hald (1986) showed that
the first significant use of LAD seems to point at Galileo Galilei,
who in 1632 suggested testing astronomical hypotheses by taking
means of sums of absolute deviations of hypothesised values from
observed one. Nevertheless, the invention of calculus allowed rise
of such methods, which are easily manipulated with using calculus.
Least Squares is one of them. On the other hand, calculus offer little
to no help in dealing with LAD. That is probably why it fell out of
popularity and did not re-emerged until the second half of the twen-
tieth century, when the rise of computers and linear programming
offer the ability to compute LAD fits efficiently.

The aim of this theses is to study the LAD fits. We will begin by
taking a look at its most important mathematical properties, which
we will all be needed in the later sections. Next, we will take a look
at the computational aspect of LAD fits. Then, we will take a close
look at the properties of LAD fits in statistics while comparing to
the Ordinary Least Squares (OLS). We will conclude by numerical
simulations where we will aim to test the theory presented in the
previous section and we will again compare with the OLS.
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Preliminaries

We will begin with some notes on notation and on some of the heav-
ily used mathematical concepts. If we do not say differently, n and k
stand for any natural number. Let x, y ∈ Rn, x = (x1, . . . , xn)T , y =
(y1, . . . , yn)T . We say x = y if and only if ∀i ∈ {1, . . . , n} : xi = yi.
Also, we use symbol 0 without further specifications for a zero vec-
tor with any number of zero components, i.e. 0 = (0, 0, . . . , 0) where
the number of zeros is such number that other operations are well-
defined in the given context.

If we say that some function is linear, we mean in in the “ana-
lytical” sense, not in the sense from linear algebra. That means we
call linear any function which is affine. We say that matrix X has
full column rank, if the rank of X equals to the number of columns.
By operator “:=” we mean either the definition or redefinition i.e.
if we write x = 3 (or x := 3) and later x := 5, then we first defined
x to be 3 and then later redefined x to have the value of 5. This
notation will come handy in the section dealing with algorithms.

Standard scalar product is a function 〈·, ·〉 : Rn×Rn → R given by
∀x, y ∈ Rn, x = (x1, . . . , xn)T , y = (y1, . . . , yn)T : 〈x, y〉 =

∑n
i=1 xiyi.

This is a very special case of a well known much general definition of
scalar product that we will not need in this text. We will sometimes
omit the word ”standard” and say just ”scalar product”, but we will
always mean the standard scalar product. The scalar product has
the following properties which we will use throughout this text. For
any x, y, z ∈ Rn, λ ∈ R we have

(1) 〈x, x〉 > 0 ⇐⇒ x 6= 0

(2) 〈λx, y〉 = λ〈x, y〉 = 〈x, λy〉
(3) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
(4) 〈z, x+ y〉 = 〈z, x〉+ 〈z, y〉

(2), (3) and (4) imply that scalar product is linear in both argu-
ments and this will be used heavily.

Let W be a finite set of vectors from Rk. The orthogonal com-
plement of W is the set {δ ∈ Rk : 〈δ, x〉 = 0 for all x ∈ W}
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Let x = (x1, . . . , xn)T ∈ Rn. The l2 norm of x or Euclidean norm of
x is defined as

‖x‖2 =

√√√√ n∑
i=1

x2
i

and l1 norm of x is defined as

‖x‖1 =
n∑
i=1

|xi|.

Let p ∈ {1, 2}. Then lp norm has the following properties. For any
x, y ∈ Rn, λ ∈ R we have

(1) ‖x‖p = 0 ⇐⇒ x = 0

(2) ‖λx‖p = |λ| · ‖x‖p
(3) ‖x+ y‖p ≤ ‖x‖p + ‖y‖p

where (3) is called triangular inequality. In the whole text, whenever
we write ‖·‖ i.e. norm without the information which norm we mean,
we always mean ‖·‖1.

Let T be any set, then for any set x , the indicator function is
defined as

1(x) =

{
1, if x ⊆ T

0, if x 6⊆ T

Let β, δ ∈ Rk, f : Rk → R. Then the right hand side directional
derivative of f at the point β in the direction of δ is defined as

f ′δ+(β) = lim
h→0+

f(β + hδ)− f(β)

h

and left hand sided directional derivatives is defined analogically.
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1 Non-statistical properties

1.1 Problem definition

For some A ∈ Rn×m, b ∈ Rn, the well-known least squares fitting
problem is defined as trying to find x̂ ∈ Rm such that

‖b− Ax̂‖2 = min
x∈Rm
‖b− Ax‖2 .

The least absolute deviation (LAD) fitting problem could be
defined analogically, simply changing the Euclidean l2 norm to the
l1 norm. We will, however, from the start use a different notation
following the tradition in the linear regression.

Definition 1. Let X ∈ Rn×k, y ∈ Rn. Then we call the problem of
finding β̂ ∈ Rk such that

‖y −Xβ̂‖1 = min
β∈Rk
‖y −Xβ‖1

the LAD fitting problem. Any such β̂ ∈ Rk we call a solution to
LAD fitting problem or simply solution.

Therefore, the problem is to minimize the absolute deviation
(AD) distance function f : Rk → R defined for all β ∈ Rk, β =
(β1, . . . , βk)

T as

f(β) = ‖y −Xβ‖1 =
n∑
i=1

|yi − xiβ| =
n∑
i=1

|yi −
k∑
j=1

xijβj|

=
n∑
i=1

|yi − 〈xi, β〉|.

where xi is the i-th row of X.

1.2 Properties of solution

We are going to start with a Theorem describing some basic prop-
erties of the AD distance function.

Theorem 1. Let f be AD distance function. Then f is continuous,
convex and piecewise linear. Moreover, f can be written as

f(β) =
2n∑
i=1

li(β)1Li(β)
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where li(β) is a liner function over Li, Li ⊆ Rk, Li ∩ Lj = ∅,
whenever i 6= j and

⋃2n

i=1 Li = Rk.

The equation states, that f is “finitely” piecewise linear i.e. there
are finitely many subsets of Rk over which f is liner.

Proof. Let us first prove continuity of f . Let β1, β2 ∈ Rk. Then

|f(β1)− f(β2)| =

∣∣∣∣∣
n∑
i=1

|yi − 〈xi, β1〉| −
n∑
i=1

|yi − 〈xi, β2〉|

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

(|yi|+ |〈xi, β1〉|)−
n∑
i=1

(|yi|+ |〈xi, β2〉|)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(|〈xi, β1〉| − |〈xi, β2〉|)

∣∣∣∣∣
≤

n∑
i=1

|(|〈xi, β1〉| − |〈xi, β2〉|)|

≤
n∑
i=1

|〈xi, β1〉 − 〈xi, β2〉| =
n∑
i=1

|〈xi, β1 − β2〉|.

First two inequalities follow from the triangle inequality. The last
one follows from the so-called inverse triangle identity, which states
that for any x, y ∈ R we have ||x|− |y|| ≤ |x− y| . We also used the
linearity of the scalar product. Now, taking the limit of right hand
side we have

lim
β1→β2

n∑
i=1

|〈xi, β1 − β2〉| = 0

and thus, by squeeze theorem, we also have |f(β1)− f(β2)| → 0 as
β1 → β2. Which means that f is continuous. Now, let us prove
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convexity. Let again β1, β2 ∈ Rk and t ∈ 〈0, 1〉. Then

f(tβ1 + (1− t)β2) =
n∑
i=1

|yi − 〈xi, tβ1 + (1− t)β2〉|

=
n∑
i=1

|yi − t〈xi, β1〉 − (1− t)〈xi, β2〉|

=
n∑
i=1

|yit+ (1− t)yi − t〈xi, β1〉 − (1− t)〈xi, β2〉|

=
n∑
i=1

|t(yi − 〈xi, β1〉) + (1− t)(yi − 〈xi, β2〉)|

≤
n∑
i=1

(
t|yi − 〈xi, β1〉|+ (1− t)|yi − 〈xi, β2〉|

)
≤

n∑
i=1

t|yi − 〈xi, β1〉|+
n∑
i=1

(1− t)|yi − 〈xi, β2〉|

= tf(β1) + (1− t)f(β2)

Which proves that f is convex. Finally, let us prove the piecewise
linearity. Let us consider the set M = {0, 1}n. Then |M | = 2n.
Let {mi}2n

i=1 be a finite sequence of all subsets of M (i.e. all those
subsets are vectors like (1, 0, 0, 1, . . . , 1︸ ︷︷ ︸

n−times

)T ). Now, let

Li = {β ∈ Rk : (∀j ∈ {1, . . . , n} : yj − xjβ > 0 ⇐⇒ mi
j = 1)}.

It is easy to see, that Li sets satisfy all the conditions given by the
theorem. We define

li(β) =
n∑
j=1

2(yj−xjβ)mi
j−

n∑
j=1

(yj−xjβ) =
n∑
j=1

(yj−xjβ)(2mi
j−1).

Clearly, for any given i ∈ {1, . . . , n}, li(β) is linear. We also have
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∀β ∈ Li : li(β) = f(β), because

f(β) =
∑

{i:yi−xiβ>0}

(yi − xiβ)−
∑

{i:yi−xiβ≤0}

(yi − xiβ)

= 2 ·

 ∑
{i:yi−xiβ>0}

(yi − xiβ)

− ∑
{i:yi−xiβ>0}

(yi − xiβ)−

−
∑

{i:yi−xiβ≤0}

(yi − xiβ

=
∑

{i:yi−xiβ>0}

2(yi − xiβ)−
n∑
i=1

(yi − xiβ)

=
n∑
i=1

2(yi − xiβ)1{β∈Rk:yi−xiβ>0}(β)−
n∑
i=1

(yi − xiβ)

It is easy to see that the last is equals to li(β) over any Li. This
gives

f(β) =
2n∑
i=1

li(β)1Li(β)

and the proof is complete.

Let us first take a look at a simple one dimensional case. This
will shed the first light on one of the most important characteristic
of LAD fitting curve. The one dimensional LAD fitting problem can
be seen as a trying to find β ∈ R such that a line y = βx minimizes
the sum of absolute values of residuals ri(β) = yi − βxi. Theorem
2 will state that, unless xi = 0 for all i ∈ {1, . . . , n}, there exists
a line such that at least one residual is zero, which means the line
passes through point [xp, yp] for some p ∈ {1, . . . , n}.

Theorem 2. Let f be the AD distance function with k = 1 i.e. f :
R→ R and f(β) =

∑n
i=1 |yi−βxi| where ∀i ∈ {1, . . . , n} : yi, xi ∈ R.

Let for some i ∈ {1, . . . , n} be xi 6= 0. Then there exist an index
p ∈ {1, . . . , n} such that

yp
xp

= arg min
β∈R

f(β)
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Proof. Firstly, assume that xi 6= 0 for all i ∈ {1, . . . , n}. Thanks to
the absolute values we have

lim
β→∞

f(β) = lim
β→−∞

f(β) = +∞. (1)

Let ci = yi
xi

. Without a loss of generality we can assume c1 ≤ c2 ≤
· · · ≤ cn (as we could just rename them). Let K = 〈c1− 42, cn + 42〉
be a closed interval. Then K is a compact set. And since f is by
Theorem 1 continuous, by the extreme value theorem we have

∃β̂ : β̂ = arg min
β∈K

f(β).

Combining that f is linear on (−∞, c1) and (1) gives that f in de-
creasing on (−∞, c1) which means

∀β ∈ (−∞, c1 − 42) : f(c1 − 16) < f(β).

Analogically, we have

∀β ∈ (cn + 42,+∞) : f(cn + 16) < f(β).

Therefore β̂ is a minimizer of f not only on K but also on R. Now, it
is easy to see that f is differentiable everywhere where yp−βxp 6= 0

for some p. If f ′(β̂) does not exist, we must have yp − βxp = 0 for

some p and thus β̂ = yp
xp

. If f ′(β̂) does exist, it must be equal to zero.

In that case we have β̂ ∈ 〈cp, cp+1〉 for some p. Because f is linear
over (cp, cp+1) it must have a constant derivative which is zero. Thus
f must be constant over this interval. Because f is continuous, we
have f(β̂) = f(cp) and thus cp = yp

xp
is also a minimizer of f .

Now, if M ( {1, . . . , n} and xi = 0 for all i ∈M then we can find

the minimizer of f̃ =
∑

i∈{1,...,n}\M |yi − βxi| which is just f minus

a constant i.e. the minimizer of f̃ is also a minimizer of f . And by

the first part of a proof there is a minimizer of f̃ in the form yp
xp

for

some p.

Note that the assumption “∃i ∈ {1, . . . , n} : xi 6= 0” is equivalent
to “column rank of X is 1” where X = (x1, . . . , xn)T . Analogical
assumption will appear in Theorem 4, which will be a direct gener-
alization of this theorem. The following Lemma will be used in a
proof of Theorem 3.
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Lemma 1. Let A be a real matrix with a full column rank. Then
matrix ATA is invertible.

Proof. Showing the invertibility of ATA is equivalent to showing that
if ATAx = 0 for some vector x, then x is a zero vector. If ATAx =
0 then also xTATAx = 0. Thus we can write 0 = xTATAx =
(Ax)T (Ax) = 〈Ax,Ax〉 = ‖Ax‖2 which gives Ax = 0 and since A
has a full column rank, x must be a zero vector.

We are now able to show the existence of solution. Firstly, note
that if rank of X is zero, then X is a zero matrix and every fit is
optimal. We will thus always assume that rank(X) > 0.

Theorem 3. Given LAD fitting problem, there always exists its
solution.

Proof. Let us first assume that rank(X) = k. Thus k ≤ n and there
exists k rows of X, say x1, . . . , xr which are linearly independent.
Then no non-zero β ∈ Rk can be orthogonal to all x1, . . . , xr i.e.
some scalar product of β and xi has to be greater than zero for
some i. Thus

∃δ ∈ R, δ > 0,∀β ∈ Rk, ‖β‖ = 1 :
n∑
i=1

|〈xi, β〉| ≥ δ.

Now, let β∗ ∈ Rk, β∗ 6= 0 ∈ Rk. Then let β = β∗

‖β∗‖ . So we

have ‖β‖ = 1 and also δ ≤
∑n

i=1 |〈xi, β〉| =
∑n

i=1 |〈xi,
β∗

‖β∗‖〉| =
1
‖β∗‖

∑n
i=1 |〈xi, β∗〉| which means

∃δ ∈ R, δ > 0,∀β ∈ Rk, β 6= 0 :
n∑
i=1

|〈xi, β〉| ≥ δ‖β‖.

Next, ∀β ∈ Rk, β 6= 0 we can write

f(β) + f(0) =
n∑
i=1

|yi − xiβ|+
n∑
i=1

|yi| =
n∑
i=1

(|yi − xiβ|+ | − yi|)

≥
n∑
i=1

|xiβ| =
n∑
i=1

|〈xi, β〉| ≥ δ‖β‖

If we take β ∈ Rk such that ‖β‖ > 2f(0)
δ

we get f(β) > f(0). Let

K = {β ∈ Rk : ‖β‖ ≤ 2f(0)
δ
}. Then there is no minimizer of f out-

side K and, since K is compact and f is continuous, there exists a
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minimizer β̂ ∈ K of f on K which therefore must be the minimizer
of f on Rk.

Now, suppose that r = rank(X) < k. Let x1, . . . , xr be linearly
independent columns of X and xr+1, . . . , xn other columns of X.
Consider two matrices X1 = (x1, . . . , xr) and X2 = (xr+1, . . . , xn)
and two functions f1(β) = ‖y−X1β‖1 and f2(β) = ‖y−X2β‖1. By

the first part of the proof there exists a minimizer β̂ ∈ Rr of f1. Next,
we find a matrix B such that X1B = X2. This can be done as B =
(XT

1 X1)−1XT
1 X2 provided the inverse exists, which is true by Lemma

1. Without loss of generality assume that first r columns of X are
linearly independent (otherwise we would just add an index which
would store information which columns are independent). Then for
all β ∈ Rk, β = (aT , bT )T , a = (a1, . . . , ar)

T , b = (b1, . . . , bk−r)
T we

can write

f(β) = ‖y −Xβ‖1 = ‖y −X1a−X2b‖1 = ‖y −X1a−X1Bb‖1

= ‖y −X1(a−Bb)‖1 = f1(a−Bb)

Hence minimizing f is equivalent to finding a and b such that f1(a−
Bb) is minimal. If β∗ = (β̂1, . . . , β̂r, 0, . . . , 0) ∈ Rk, then f(β∗) =

f1(β̂). And since β̂ is the minimizer of f1, β∗ ∈ Rk is the minimizer
of f .

We have just shown the existence of the solution to the LAD
fitting problem. However, the proof was not constructive i.e. we do
not have a formula for solution. The problem of finding the solution
is much harder for LAD fitting problem then, for instance, for the
Least Squares fitting problem and we will discuss this in more detail
in the next section. The following theorem is fundamental for finding
a solution. It is a direct generalization of Theorem 2

Theorem 4. Let r > 0 be the rank of X. Then there exists a solu-
tion to the LAD fitting problem β̂ such that there exist (at least)

r different indexes i1, . . . , ir ∈ {1, . . . , n} such that yij − xij β̂ = 0,
j = 1, . . . , r.

Proof. Let β̂ be any solution to the LAD fitting problem (which
we know that exists by Theorem 3) and p < r be the number of
zero residuals. Without loss of generality let ∀i ∈ {1, . . . , r} : yi −
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xiβ̂ = yi − 〈xi, β̂〉 = 0 i.e. the first r residuals are zero. Because
p < rank(X) there exists vector v ∈ Rk such that ∀i ∈ {1, . . . , r} :

〈xi, v〉 = 0 and ∃i ∈ {r + 1, . . . , n} : 〈xi, v〉 6= 0. Let ϕ(t) = β̂ + tv.
Then

f(ϕ(t)) =
n∑
i=1

|yi − 〈xi, ϕ(t)〉| =
n∑
i=1

|yi − 〈xi, β̂ + tv〉|

=
n∑
i=1

|yi − 〈xi, β̂〉 − t〈xi, v〉| =
n∑

i=r+1

|yi − 〈xi, β̂〉 − t〈xi, v〉|

=
n∑

i=r+1

|y∗i − tx∗i |

where y∗i = yi − 〈xi, β̂〉 and x∗i = 〈xi, v〉. Because we know that
∃i ∈ {r + 1, . . . , n} : x∗i = 〈xi, v〉 6= 0, we can use Theorem 2 which

gives the existence of index j ∈ {r + 1, . . . , n} such that t̂ =
y∗j
x∗j

is

the minimizer of f(ϕ(t)). Because it is a minimizer, we must have

f(ϕ(t̂)) ≤ f(ϕ(0)) = f(β̂) and because β̂ is a minimizer of f , ϕ(t̂)
is also a minimizer of f . And because ϕ(t̂) is such a minimizer of f
which has at least r+1 residuals equal to zero (residuals {1, . . . , r, j}
and because this argument can be used as long as the amount of zero
residuals is less then r, the proof is complete.

1.3 Directional derivatives

In this section, our goal will be to compute directional derivatives
of the AD distance function f . Let ri = yi − 〈β, xi〉 and vi = 〈δ, xi〉
and let h ∈ (0,min{ |ri||vi| , i ∈ {1, . . . , n}}. If ri

vi
> 0 for some i, then

|ri − hvi| = |vi|
∣∣∣∣ ri|vi| − vi

|vi|
h

∣∣∣∣ =

=

|vi|
∣∣∣ rivi − h∣∣∣ = |vi|

(
ri
vi
− h
)
, if vi > 0, ri > 0

|vi|
∣∣∣−( rivi − h)∣∣∣ = |vi|

(
ri
vi
− h
)
, if vi < 0, ri < 0

thus |ri−hvi| = |vi|
(
ri
vi
− h
)

whenever ri
vi
> 0. Analogically, we get

that |ri − hvi| = −|vi|
(
ri
vi
− h
)

whenever ri
vi
< 0.
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Let V = {i : vi = 0}, Z = {i 6∈ V : ri = 0}, P = {i 6∈ V : ri
vi
> 0}

and N = {i 6∈ V : ri
vi
< 0}. Clearly V ∪Z ∪P ∪N = {1, . . . , n} and

V, Z, P,N are pairwise disjoint. We can thus write

f(β + hδ) =
n∑
i=1

|yi − 〈β + hδ, xi〉| =
n∑
i=1

|yi − 〈β, xi〉 − h〈δ, xi〉|

=
n∑
i=1

|ri − hvi|

=
∑
V

|ri|+ |h|
∑
Z

|vi|+
∑
P

|vi|(
ri
vi
− h)−

∑
N

|vi|(
ri
vi
− h).

And also

f(β + hδ)− f(β) =
∑
V

|ri|+ |h|
∑
Z

|vi|+
∑
P

|vi|(
ri
vi
− h)

−
∑
N

|vi|(
ri
vi
− h)

−
∑
V

|ri| −
∑
Z

|ri| −
∑
P

|ri| −
∑
N

|ri|

=|h|
∑
Z

|vi|+
∑
P

(sgn(vi) · ri − h|vi|)

−
∑
N

(sgn(vi) · ri − h|vi|)

−
∑
Z

0−
∑
P

|ri| −
∑
N

|ri|

=|h|
∑
Z

|vi| − h
∑
P

|vi|+ h
∑
N

|vi|

+
∑
P

(sgn(vi) · ri − |ri|)

+
∑
N

(− sgn(vi) · ri − |ri|).

If i ∈ P and vi > 0, ri > 0, then sgn(vi) · ri − |ri| = ri − ri = 0.
If i ∈ P and vi < 0, ri < 0, then sgn(vi) · ri − |ri| = −ri + ri = 0.
If i ∈ N and vi > 0, ri < 0, then − sgn(vi) · ri − |ri| = −ri + ri = 0.
If i ∈ N and vi < 0, ri > 0, then − sgn(vi)·ri−|ri| = −(−ri)−ri = 0.
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Hence sgn(vi) · ri − |ri| = 0 in general and thus

f(β + hδ)− f(β) = |h|
∑
Z

|vi| − h
∑
P

|vi|+ h
∑
N

|vi|.

Now, we can easily get one sided directional derivatives in the dir-
ection of δ. We have

f ′δ+(β) = lim
h→0+

f(β + hδ)− f(β)

h

= lim
h→0+

|h|
∑

Z |vi| − h
∑

P |vi|+ h
∑

N |vi|
h

=
∑
Z

|vi| −
∑
P

|vi|+
∑
N

|vi|

and

f ′δ−(β) = lim
h→0+

f(β − hδ)− f(β)

−h

= lim
h→0+

|h|
∑

Z |vi|+ h
∑

P |vi| − h
∑

N |vi|
h

=
∑
Z

|vi|+
∑
P

|vi| −
∑
N

|vi|

There identities will be needed later. Also, we will need another
expression for directional derivatives which we will calculate now.
We know that f(β + hδ) =

∑n
i=1 |ri(β) − h〈δ, xi〉|. Let h > 0 be

small enough, that sgn(ri(β)− h〈δ, xi〉) = sgn(ri) for all i. Then

f(β + hδ)− f(β) =
∑
i∈Zβ

|0− h〈δ, xi〉|+
∑
i 6∈Zβ

|ri − h〈δ, xi〉|

−
∑
i∈Zβ

|0| −
∑
i 6∈Zβ

|ri|

= h
∑
i∈Zβ

|〈δ, xi〉|

+
∑
i 6∈Zβ

[sgn(ri)(ri − h〈δ, xi〉)− sgn(ri)ri]

= h
∑
i∈Zβ

|〈δ, xi〉| − h
∑
i 6∈Zβ

sgn(ri)〈δ, xi〉
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And thus

f ′δ+(β) =
∑
i∈Zβ

|〈δ, xi〉| −
∑
i 6∈Zβ

sgn(ri)〈δ, xi〉.

Also, note that if ej ∈ Rk is the j-th unit coordinate of Rk i.e.
ej = (0, . . . , 0, 1, 0, . . . , 0)T where 1 is the j-th component, we have

f ′ej+(β) =
∑
i∈Zβ

|xij| −
∑
i 6∈Zβ

sgn(ri)xij.

In the next, we will use the following notation. Let β ∈ Rk. Then
Zβ = {i : ri(β) = 0}. We say, that β is an extreme point, if
span({xi : i ∈ Zβ}) = Rk (and thus |Zβ| ≥ k). We say, that β is a
degenerate point, if |Zβ| > k.

Theorem 5. Let β ∈ Rk. Then β is a minimizer of LAD distance
function if and only if ∀δ ∈ Rk : f ′δ+(β) ≥ 0 i.e.

∀δ ∈ Rk :
∑
P

|〈δ, xi〉| −
∑
N

|〈δ, xi〉| ≤
∑
Z

|〈δ, xi〉|,

where V = {i : 〈δ, xi〉 = 0}, Z = {i 6∈ V : yi−〈β,xi〉
〈δ,xi〉 = 0}, P = {i 6∈

V : yi−〈β,xi〉
〈δ,xi〉 > 0} and N = {i 6∈ V : yi−〈β,xi〉

〈δ,xi〉 < 0}. Moreover, β is a

unique minimizer if and only if the inequality above is strict.

The proof of the first part of this theorem can be found in any
advanced calculus book, while the “i.e.” part follows from the equa-
tion for direction derivatives presented above. In practice, it is of
course impossible to check directional derivatives for all directions.
But if we a have non-degenerate extreme point, it is much easier to
decide whether it is a minimizer. The following theorem does just
that.

Theorem 6. Let β ∈ Rk be a non-degenerate extreme point. Then
β is a minimizer of LAD distance function if and only if ∀i ∈ Zβ :
f ′δi+(β) ≥ 0, for all δi ∈ Rk, δi 6= 0 satisfying ∀j ∈ Zβ, j 6= i :
〈δi, xj〉 = 0. Moreover, β is a unique minimizer if and only if the
inequality above is strict.

Proof of this Theorem can be found in Bloomfield and Steiger
(1983). A few notes about the theorem should be said. Because β
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is an extreme point, we have span({xi : i ∈ Zβ}) = Rk. Because it
is non-degenerate, we have |Zβ| = k. Thus, δi is the direction of a
“line” in Rk which is an orthogonal compliment of {xi : i ∈ Zβ, i 6=
j}.
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2 Finding a solution

In this section we will discuss how the solution to the LAD fitting
problem is found. Since AD distance function is not smooth i.e. it
does not have continuous partial derivatives, no useful formula for
solution can be written down. This is the first obvious difference
between LAD and the Least Squares To find a solution to the LAD
fitting problem we will need to use one of iterated algorithms.

Theorem 4 implies that under the assumption of X having the
full column rank k, to find a solution to the LAD fitting problem
we could do the following: for every subset S = {i1, . . . , ik} ⊂
{1, . . . , n}, find β ∈ Rk such that ∀j ∈ S : rj(β) = 0. Then the

solution of LAD fitting problem β̂ is such β from those computed
which has minimal f(β). This would lead to an algorithm which
would have to solve

(
n
k

)
systems of k linear equations. Computa-

tions needed for this algorithm grow too fast as n grows larger i.e.
this algorithm cannot be uses efficiently. However, the property of
LAD fitted line given by Theorem 4 is used by all the most used
algorithms for finding the solution to the LAD fitting problem, only
all those algorithms are using this property in a more clever way. In
this section, we will describe one of those algorithms.

All the best-known algorithms for finding LAD fit are iterated
and all are using Theorem 4. Firstly (in the first phase) they find
some extreme point c1 ∈ Rk. Then, they iterate towards optimum
by a sequence of extreme fits c2, c3, ... which satisfies f(c1) ≥ f(c2) ≥
f(c3) ≥ . . . . Also, two subsequent cj, cj+1 only differ at one residual.
More precisely, if ∀i ∈ Rj ⊂ {1, . . . , n} : ri(cj) = 0 and ∀i ∈ Rj+1 ⊂
{1, . . . , n} : ri(cj+1) = 0 (i.e. Rj is a set of indexes of those residual,
which are zero for cj fit) then algorithms satisfies that by going from
extreme fit cj to cj+1 and thus from Rj to Rj+1, only one element in
Rj is replaced by one other element in Rj+1 \Rj. All the most used
algorithms differ only at three things. Firstly, how they find the
first extreme fit c1. Secondly, how they chose which element in Rj

to replace. Thirdly, how they chose the replacement from Rj+1 \Rj.
We will now take a look at one of these algorithms, known as the
Barrodale-Roberts (BR) algorithm
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2.1 The Barrodale-Roberts Algorithm

The BR algorithms has two phases. The first phase has a goal to
find some extreme point. We start at c0 = 0 ∈ Rk. First phase has
at most k steps. It produces a sequence c1, c2, . . . , ck where ck is the
extreme point. Throughout the algorithm, we have set {δ1, . . . , δk}
of “edge” directions. At the start, we let ∀j : δj = ej. The first step
goes as follows. We compute all the directional derivatives i.e. for
all j we compute

f ′δj+(0) =
∑
i∈Z

|xij| −
∑
i 6∈Z

sgn(ri(0))xij

and also compute

f ′−δj+(0) =
∑
i∈Z

|xij|+
∑
i 6∈Z

sgn(ri(0))xij,

where Z = {i : yi = 0}. Because f is convex, for any j, we have
f ′δj+(0) and f ′−δj+(0) either both non-negative, or they have opposite
signs. We will assume there is at least one negative direction de-
rivative. The case when all directional derivatives are non negative
will be asserted later. We then choose such p ∈ {1, . . . , k} for which
f ′δj+(0) (or f ′−δj+(0)) is the most negative. We then call δp active
and we let τ1 = p for future use. We then move from c0 to c1 by
minimizing f along tδp. We thus need to find

arg min
t∈R

f(tδp) = arg min
t∈R

n∑
i=1

|yi − t〈δp, xi〉| = arg min
t∈R

n∑
i=1

|yi − txip|.

We already know (Theorem 2) that solution is t = tq = yq
xqp

for some

q ∈ {1, . . . , n}. We should state that finding such q is equivalent
to finding weighted median which is a basic problem solved using
linear programming. We then let c1 = c0 + tqδ

p = 0 + tqδ
p = tqδ

p

and we have rq(c1) = yq−〈c1, xq〉 = 0. We let σ1 = q for future use.

Now, we would like to repeat this step i.e. to find another “steep-
est” direction. But if we would do that just as above, we would not
have rq(c2) = 0. We will need to modify our directions δ1, . . . , δk.
We want

rq(c1 + tδj) = yq − 〈c1, xq〉 − t〈δj, xq〉 = 0 (1)
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to hold for all j such that j 6= p and all t ∈ R. To do this we find
δ1, . . . , δk such that

〈δj, xq〉 =

{
1, if j = p

0, if j 6= p

which we do by

δj :=

{
δp

xqp
, if j = p

δj − xqj
xqp
δp, if j 6= p

This choice assures (1) holds for all j, j 6= p and also assures that
δ1, . . . , δk are still linearly independent (which is actually needed for
the next Theorem 7 to hold). In the next step of the first phase we
basically repeat step one. But when finding the steepest edge using
the directional derivatives, we will not include direction δp.

By induction, let us describe (j + 1)-th step of the first phase.
At the start of this step, we have {σ1, . . . , σj}, the set of indexes of
those residuals, which are zero for cj, i.e. rσi(cj) = 0, i = 1, . . . , j.
Also, we have {τ1, . . . , τj}, the set of indexes of those δ1, . . . , δk which
have already been used i.e. we have indexes of the active directions.
Finally, we have linearly independent directions δ1, . . . , δk satisfying

∀j ∈ {1, . . . , k} ∀l ∈ {1, . . . , j} : 〈δj, xσl〉 =

{
1, if j = σl
0, if j 6= σl

(2)

At the start of the (j + 1)-th step we will, for all i such that
i 6∈ {τ1, . . . , τj} calculate

f ′δi±(cj) =
∑
l∈Zcj

|〈δi, xl〉| ∓
∑
l 6∈Zcj

sgn(rl(cj))〈δi, xl〉. (3)

Because f is convex, for any i we have f ′δi+(cj) and f ′−δi+(cj)
either both non-negative, or they have opposite signs.

We will now assert the case that ∀i 6∈ {τ1, . . . , τj} : f ′δi+(cj) ≥
0, f ′−δi+(cj) ≥ 0. In this case we are actually done, as says the fol-
lowing theorem proof of which can be found in Bloomfield & Steiger
(1983).
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Theorem 7. In the BR algorithm, if at any step we have ∀i 6∈
{τ1, . . . , τj} : f ′δi+(cj) ≥ 0, f ′−δi+(cj) ≥ 0, then cj is the minimizer of
f .

Otherwise we can choose p such that the directional derivative is
most negative along line tδp. We let cj+1 = cj + tqδ

p, where

tq = arg min
t∈R

n∑
i=1

|yi − 〈cj, xi〉 − t〈δp, xi〉| =
yq − 〈cj, xq〉
〈δp, xq〉

for some q. Again, we want (2) to hold in the next step. We thus
let

δi :=

{
δp

〈δp,xq〉 , if i = p

δj − 〈δ
j ,xq〉
〈δp,xq〉δ

p, if i 6= p
(4)

and move to another step. The first phase is finished, when we
compute cj and j = k. At that point, ck is the extreme fit.

The goal of the second phase is to find the minimum of f . In every
step, we compute directional derivatives f ′δi±(cj) (where j ≥ k) just
as in the (3), but we do that for all i (not just for i 6∈ {τ1, . . . , τj}). If
all the directional derivatives are non-negative at cj, cj is minimizer
of f by Theorem 7. Otherwise, as before, we move to cj+1 = cj+tqδ

p,
where δp is the direction of steepest downhill edge and

tq =
yq − 〈cj, xq〉
〈δp, xq〉

is the minimizer of f(tδp) =
∑n

i=1 |yi − 〈cj, xi〉 − t〈δp, xq〉|. This
changes one zero residual for another i.e. cj+1 is still an extreme
point. Next we update {δ1, . . . , δk} as in (4) and repeat. The al-
gorithm must find solution by theorems from the fist section. There
are only finitely many extreme points, one of them is minimizer and
BR algorithm always moves closer to optimum (i.e. downhill). If
it cannot move downhill, i.e. when all the direction derivatives in
the direction of the edge vectors are non-negative, we are at the op-
timum by Theorem 7. We should point out, that the BR algorithm
can be rewritten using linear programming, which is the usual way
to treat LAD fitting problem as, for instance, in Brennan and Seiford
(1987).
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2.2 Iteratively reweighted least squares

In this section, we will briefly discuss the method of finding an
approximate solution to the LAD fitting problem. This method is
called Iteratively reweighted least squares (IRLS for short). The
Barrodale-Roberts Algorithm and other algorithms for finding LAD
fit using linear programming are superior to IRLS in a way that they
give an exact solution whereas IRLS produces only an approximate.
The advantage of IRLS is its much easier implementation and that
it can be used to more general problem then just LAD fitting line.
Here, we will only show its usage for LAD fits.

Theorem 8. Let X and y be as in LAD fitting problem and let
∀i ∈ {1, . . . , n} : wi ∈ R, wi > 0. Then

arg min
β∈Rk

n∑
i=1

wi(yi − xiβ)2 = (XTWX)−1XTWy,

where W ∈ Rn×n,W = (wij)
n
i,j=1 and

wij =

{
wi, if i = j

0, if i 6= j

Proof. Because g(β) ∈ C2(Rk) we can find minimum by standard
analytical methods. We have

∂g

∂β1

(β) = −2
n∑
i=1

wixi1(yi −
k∑
j=1

xijβj)

Taking all partial derivatives and setting them to zero we get (after
rearrangement) system of equations

n∑
i=1

k∑
j=1

wixi1xijβj =
n∑
i=1

wixi1yi

n∑
i=1

k∑
j=1

wixi2xijβj =
n∑
i=1

wixi2yi

...
n∑
i=1

k∑
j=1

wixikxijβj =
n∑
i=1

wixikyi
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witch is equivalent to

XTWXβ = XTWy.

Invertibility of XTWX can be shown similarly as in Lemma 1 and
fact that (XTWX)−1XTWy is indeed a minimum is a matter of
technical checking of the sufficient condition for minimum.

The IRLS algorithms repeatedly solves

arg min
β∈Rk

n∑
i=1

w
(t)
i (yi − xiβ)2

where t is index of step of the algorithm. It produces sequence
β0, β1, . . . which can be shown to converge to arg minβ∈Rk

∑n
i=1 |yi−

xiβ| i.e. to the LAD fit, where the only condition for convergence is

the existence of inverse to XTWX. At the start we set w
(0)
i = 1, i =

1, . . . , n and compute

β0 = arg min
β∈Rk

n∑
i=1

w
(0)
i (yi − xiβ)2.

In the (j + 1)-th step, we let

w
(j+1)
i =

1

|yi − 〈β(j), xi〉|

βj+1 = arg min
β∈Rk

n∑
i=1

w
(j+1)
i (yi − xiβ)2

As stated above, finding approximate LAD fits is only one of the
applications of IRLS and using it for LAD fit actually requires ad-

ditional treatment. Namely w
(j+1)
i = 1

|yi−〈β(j),xi〉|
might be undefined

(division by zero). We could, for instance, use

w
(j+1)
i =

1

max{ε, |yi − 〈β(j), xi〉|}

for some ε > 0. Or as discussed by Schlossmacher (1973) we could
delete those data points, which have close to zero residuals. In this
case we would stop the algorithm when all residuals correspond-
ing to not deleted points did not change enough from the previous
iteration.
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3 Statistical properties

Let y ∈ R, x, β ∈ Rk and ε random variable. In this section, we will
use the Least Absolute Deviations to estimate the linear model

y = β1x1 + · · ·+ βkxk + ε = 〈β, x〉+ ε (M)

with the given random sample (yi, xi)
n
i=1, xi = (xi1, . . . , xik), where

xi1, . . . , xik ∈ R are observed independent variables, β1, . . . , βk ∈ R
are non random unobserved coefficients, εi are unobserved random
disturbance variables (also called error variables or errors for short)
and yi are observed dependant variables. We sometimes write model
(M) as

yi = β1xi1 + · · ·+ βkxik + εi = 〈β, xi〉+ εi. (M)

Our object will be to estimate β = (β1, . . . , βk)
T . Let us start by de-

fining the Least Absolute Deviation (LAD) estimator of β in model
(M).

Definition 2. The LAD estimator of β in model (M) is defined as

β̂LAD = arg min
β∈Rk

n∑
i=1

|yi − 〈β, xi〉|.

Thus all the mathematical background from the previous parts
of this text apply.

3.1 MLE under Laplace errors

In this part, we will show that if the errors εi are drawn from Laplace
distribution with median µ = 0, then the LAD estimator is the
Maximum likelihood estimator for our model (M).

Definition 3. Random variable has a Laplace(µ, s) distribution, if
its probability density function is

f(x) =
1√
2s

exp

(
−
√

2|x− µ|
s

)
, x ∈ R

where µ ∈ R is a location parameter and s > 0 is a scale parameter.

It is not hard to show that if X ∼ Laplace(µ, s) then Median(X)
= EX = µ.
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Theorem 9. If in the model (M) it holds that ∀i ∈ {1, . . . , n} : εi ∼
Laplace(0, s), then LAD estimator of β of model (M) is equal to the

Maximum likelihood estimator of β of model (M) i.e. β̂LAD = β̂MLE.

Proof. If we have ∀i ∈ {1, . . . , n} : εi = yi − xiβ ∼ Laplace(µ, s),
the likelihood function is

L(β, µ, s) =
n∏
i=1

1√
2s

exp

(
−
√

2|yi − xiβ − µ|
s

)

=
1

(
√

2s)n
exp

(
n∑
i=1

(
−
√

2

s
|yi − xiβ − µ|

))

=
1

(
√

2s)n
exp

(
−
√

2

s

n∑
i=1

|yi − xiβ − µ|

)
where the exponent term is maximized whenever

∑n
i=1 |yi−xiβ−µ|

is minimized. Thus, if µ = 0, we have

β̂MLE = arg min
β∈Rk

n∑
i=1

|yi − xiβ|

and therefore β̂MLE = β̂LAD.

From the proof we see that β̂MLE and β̂LAD can be different when
µ 6= 0. As β̂LAD is the maximum likelihood estimator under the pres-
ence of Laplace error, under this condition it could be recommended
to use LAD estimator instead of OLS estimator in linear regression.
The behaviour of both estimators will be tested under the presence
of Laplace errors in the last section of this text. Some examples of
models, where Laplace errors seem more likely then normal are given
for instance in Gokarna (2006). Some examples are the modeling of
detector relative efficiencies, extreme wind speeds, position errors in
navigation, stock return, the Earth’s magnetic field and wind shear
data.

3.2 Consistency and asymptotic normality

In this section we will state theorems which establishes the strong
consistency of LAD estimator and its asymptotic behaviour. Since
we have no explicit formula for β̂LAD, the proof of these theorems
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are far harder then for instance in the least squares case. In general,
proofs of these theorems utilizes Ergodic theory and consequently,
are beyond the scope of this text. Throughout this chapter we
will assume that (xi, yi)

n
i=1 is stationary and ergodic sequence which

obeys model (M). Even the proper definition of “stationary ergodic
sequence” is beyond the scope of this text. We can think of this
sequence as a generalization of random sample. The proof of the fol-
lowing theorems can be found in the Bloomfield and Steiger (1983).

Theorem 10. Let (x, y)T ∈ Rk+1 be an integrable random vector,
y = 〈β, x〉 + ε. Let x and ε be independent, ε have an unique zero
median and let

P (〈β, x〉 = 0) = 1 =⇒ β = 0

Then β̂LAD → β almost surely.

Fact that x and ε are independent implies E(ε|x) = E(ε) a.s. and
ε having the unique median at zero substitutes for usual E(ε) = 0
used to establish consistency of the Ordinary Least Squares. The
following theorem establishes asymptotic normality if LAD estim-
ator.

Theorem 11. Let (x, y)T ∈ Rk+1 be a random vector, y = 〈β, x〉+ε.
Let x and ε be independent. Let the matrix of second movements of
x C be positive definite. Let y have positive and continuous density
around zero. Let ε have an unique zero median. Then

√
n(β̂LAD − β)→ NLAD in distribution,

where NLAD is the normal vector with zero mean and covariance
matrix 1

(2f(0))2
C−1

3.3 Bias

Theorem from the previous part assure strong consistency of the
LAD estimator. This in turn implies that the LAD estimator is
asymptotically unbiased, but the way we defined LAD estimator
makes it in general biased. We defined the LAD estimator as any
minimizer of f and we know that there might not be a unique solu-
tion which might cause the estimator to be biased. Fortunately, this
can be fixed. We know that there is no analytical formula for solu-
tion and that all solutions thus must be computed using iterated
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algorithms. The LAD estimator could also be defined as an output
of certain algorithm. We could, for instance, say that given data set
(xi, yi) ∈ Rk, the LAD estimator of β in model (M) is the output of
The Barrodale-Roberts algorithm with the given set used as input.
But the BR algorithm as we stated it does only find solution, it
does not try to find such solution, which would be an unbiased es-
timator. Therefore, question is whether there is an algorithm which
would yield an unbiased LAD estimator. Indeed, there are such
algorithms introduced in Sielken and Heartely (1973). They rely
heavily on methods of linear programming and their description is
beyond the scope of this text.

3.4 Robustness

It is commonly said, that LAD estimator is more robust then for
instance OLS estimator. In this part we will discuss its robustness
properties. Firstly, we should discuss why the “robustness property”
of estimator is desired. Informally, we call estimator robust, if it is
able to resist corruptions in the data i.e. it is able to somewhat filter
those observation, which seem corrupt. The robustness property of
the estimator has not bean considered an important property of an
estimator for a large part of history of statistics. One reason for
that is that in the past, statistics were done “on paper” i.e. without
the use of computer. That implied limited sample sizes and in a
small sample size one can manually check for the presence of errors
in observations. Nowadays, when sample sizes are in thousands, this
would be impractical or impossible. Henceforth, it is desirable that
an estimator is able to do this on its own. In the next we will assume
that matrix X defined as always has full column rank.

The most common measure of robustness is the concept of Break-
down points which is introduced in the next definition.

Definition 4. Let T be a family of estimators defined for all sample
sizes and let x = {x1, . . . , xn} be a given data set. Let Zm be the set
of all data sets of size m. We say that estimator T breaks down at
x for a contamination of size m if

sup
z∈Zm
‖T (x)− T (x ∪ z)‖ = +∞,
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i.e. we are able to make T (x∪z) arbitrary far from T (x). Let m∗ be
the smallest amount of contamination for which T breaks at x i.e.

m∗ = min
m∈N

{
m : sup

z∈Zm
‖T (x)− T (x ∪ z)‖ = +∞

}
.

The breakdown point of T at x is defined as

ε∗(T, x) =
m∗

n+m∗
.

Clearly, the best would be ε∗ = 1
2

which occurs when m∗ = n.

The worst is the case of m∗ = 1 i.e. ε∗ = 1
n+1

which occurs when
adding just one contamination point causes arbitrary large changes
in T . It is easy to show that OLS estimator has this property.

Theorem 12. For a given data set (xi, yi)
n
i=1 ∈ Rk+1, the OLS

estimator of β in model (M) has the breakdown point 1
n+1

i.e.

ε∗(β̂OLS, (xi, yi)
n
i=1) =

1

n+ 1
.

Moreover, let K be any subset of Rk. Then adding point (xn+1, yn+1),
where xn+1 ∈ K and yn+1 ∈ R is arbitrary far from zero can cause

arbitrary large ‖β̂OLS((xi, yi)
n
i=1)− β̂OLS((xi, yi)

n+1
i=1 )‖.

Proof. Let xn+1 ∈ K. Let β̂nOLS be OLS estimator of β in model

(M) with only points (xi, yi)
n
i=1 and let β̂n+1

OLS be OLS estimator of β
in model (M) with points (xi, yi)

n+1
i=1 . Let

g(yn+1) := β̂nOLS − β̂n+1
OLS.

Let Xn ∈ Rn×k be a matrix with xi as a i-th row. Let ỹn =

(y1, . . . , yn)T and let X̃n = (XT
nX)−1XT

n . Then β̂nOLS = X̃nỹn or
equivalently

β̂nOLS =


y1x̃11 + · · ·+ ynx̃1n

y1x̃21 + · · ·+ ynx̃2n
...

ykx̃k1 + · · ·+ ynx̃kn


thus

g(yn+1) =


y1x̃11 + · · ·+ ynx̃1n − y1x̃11 − · · · − ynx̃1n − yn+1x̃1,n+1

y1x̃21 + · · ·+ ynx̃2n − y1x̃21 − · · · − ynx̃2n − yn+1x̃2,n+1
...

y1x̃k1 + · · ·+ ynx̃kn − y1x̃k1 − · · · − ynx̃kn − yn+1x̃k,n+1


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and because all x̃ij does not depend on yn+1, we can write (if we let
0 ·+∞ = 0)

lim
yn+1→+∞

g(yn+1) =


− sgn(x̃1,n+1) · (+∞)
− sgn(x̃2,n+1) · (+∞)

...
− sgn(x̃k,n+1) · (+∞)

 .

Also, this vector cannot be a zero vector, because X has full column
rank. We thus must have

lim
yn+1→+∞

‖g(yn+1)‖ = +∞.

The second part of the theorem states, that given dataset (xi, yi),
even if we take K in such a way, that it contains cluster of points
xi, i = 1, . . . , n and “not much more” (i.e. whenever we take xn+1

from K, it will be close to another point xi for some i), sufficiently
large yn+1 still “breaks” OLS estimator. The LAD estimator also
has the worst breakdown point as will be shown in Theorem 13, but
this “moreover” property is not there i.e. when we want to break
LAD for sure, we need to force not only yn+1 to be large, but also
xn+1.

Theorem 13. For a given data set (xi, yi)
n
i=1 ∈ Rk+1, the LAD

estimator of β in model (M) has the breakdown point 1
n+1

i.e.

ε∗(β̂LAD, (xi, yi)
n
i=1) =

1

n+ 1
.

Proof. Let (xi, yi)
n
i=1 ∈ Rk+1 be given. Let

F = {S ⊆ {1, . . . , n} : |S| = k, span{xi : i ∈ S} = Rk}

and let

∆(S) = {δ ∈ Rk : ‖δ‖ = 1, 〈δ, xi〉 = 0

for i ∈ I where I is the subset of S, |I| = k − 1}

∆(S) = {δ ∈ Rk : ‖δ‖ = 1, 〈δ, xi〉 = 0 for i ∈ I where I is the subset
of S, |I| = k − 1 } }. This forces span ∆(S) = Rk. Finally, let

t = min
‖xn+1‖=1

{
min
S∈F

{
max
δ∈∆(S)

{|〈δ, xn+1|〉}
}}

.
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We must have t > 0 since otherwise there would exist xn+1 ∈
Rk, ‖xn+1‖ = 1 and S ∈ F such that ∀δ ∈ ∆(S) : 〈δ, xn+1〉 = 0
but that contradicts to span{∆(S)} = Rk. Let us choose xn+1 ∈ Rk

such that

‖xn+1‖ >
1

t

n∑
i=1

‖xi‖.

We will show that for any yn+1 ∈ R the LAD fit through points
(xi, yi)

n+1
i=1 must pass through [xn+1, yn+1]. Let yn+1 ∈ R. For con-

tradiction let us assume that we have LAD fit β̂LAD using points
(xi, yi)

n+1
i=1 which satisfies yn+1 − 〈β̂LAD, xn+1〉 6= 0. This fit must

pass through k points from (xi, yi)
n
i=1. Let it be points (xi, yi), i ∈ S

for some S ∈ F . By the definition of t we find δ ∈ ∆(S) such
that|〈δ, xn+1〉| ≥ t‖xn+1‖. Because 1 = ‖δ‖ = |δ1| + · · · + |δk|, for
all i we get δi ≤ 1. Hence, for all i ∈ {1, . . . , n} we have |〈δ, xi〉| =
|δ1xi1+· · ·+δkxik| ≤ |δ1||xi1|+· · ·+|δk||xik| ≤ |xi1|+· · ·+|xik| = ‖xi‖.
We can thus write

|〈δ, xn+1〉| ≥ t‖xn+1‖ >
n∑
i=1

‖xi‖ ≥
n∑
i=1

|〈δ, xi〉|.

By Theorem 5 we must have f ′δ±(β̂LAD) ≥ 0. We know that

f ′δ+(β̂LAD) =
∑
Zn+1

|〈δ, xi〉| −
∑
Pn+1

|〈δ, xi〉|+
∑
Nn+1

|〈δ, xi〉|

where Z, P,N are the same as in Theorem 5 (for instance Pn+1 =
{i ∈ {1, . . . , n+ 1} : yi − 〈δ, xi〉 > 0}).

If yn+1 − 〈β̂LAD, xn+1〉 > 0, then n+ 1 ∈ P and we have

f ′δ+(β̂LAD) =
∑
Zn

|〈δ, xi〉| −
∑
Pn

|〈δ, xi〉| − |〈δ, xn+1〉|+
∑
Nn

|〈δ, xi〉|

< |〈δ, xn+1〉| − |〈δ, xn+1〉| − |〈δ, xn+1〉|+ |〈δ, xn+1〉| = 0,

i.e. f ′δ+(β̂LAD) < 0 and that is a contradiction to β̂LAD being LAD
fit.
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If yn+1 − 〈β̂LAD, xn+1〉 < 0, then

f ′δ−(β̂LAD) =
∑
Zn

|〈δ, xi〉|+
∑
Pn

|〈δ, xi〉| −
∑
Nn

|〈δ, xi〉| − |〈δ, xn+1〉|

< |〈δ, xn+1〉|+ |〈δ, xn+1〉| − |〈δ, xn+1〉| − |〈δ, xn+1〉| = 0,

and again, that is a contradiction. We thus must have yn+1 −
〈β̂LAD, xn+1〉 = 0. Because yn+1 was arbitrary, we can take it arbit-

rary large, and that forces ‖β̂LAD‖ to be arbitrary large, thus

lim
yn+1→∞

‖β̂LAD((xi, yi)
n
i=1)− β̂LAD((xi, yi)

n+1
i=1 )‖ = +∞.

The differences between Theorem 12 and Theorem 13 could also
be viewed that almost always, corrupted observation causes at least
some issue for OLS estimator. In the LAD case, errors in observa-
tions might not cause an error (i.e. when only yn+1 is corrupted and
xn+1 is not). It could also be intuitively understood, that unless
LAD fit passes through error observation, it should not be effective
in a big way. We will test how LAD compares against OLS in the
chapter dealing with the simulations.

3.5 Least Weighted Absolute Deviations

Let xi, yi be as in the LAD fitting problem. The Least Weighted Ab-
solute Deviations (LWAD for short) fitting problem is the problem
of finding the minimizer of function g : Rk → R given by

g(β) =
n∑
i=1

wi(β)|yi − 〈β, xi〉|,

where wi : Rk → R are given functions. The idea is to define
LWAD estimator of β in model (M) as the solution to LWAD fitting
problem with wi chosen in such a way, that the statistical properties
of LWAD estimator are better then for the standard LAD estimator.
Namely, the idea is to improve robustness. We call wi the weight
functions and we choose them in such a way that data which seems
corrupted (i.e. are too large in most cases) have lesser weight then
non-corrupted data. This should make the estimator resistant to
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outliers and to (bad) leverage points. The same idea is used in
many other estimators, for instance weighted least squares. Among
all estimator using some sort of weight function, LWAD seems very
unpopular. The reason for that seems even harder computational
difficulties than for the standard LAD estimator. Also, it seems no
apparent advantages of LWAD exist over more popular estimator.
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4 Simulations

In this section we present the result of simulations we conducted to
illustrate the behaviour of LAD estimator in linear regression. We
considered liner model

y = β0 + β1x1 + β2x2 + β3x3 + ε

and a random samples (xi1, xi2, xi3, yi)
n
i=1 of different sizes n. The

experiments were performed as follows. Firstly, the distribution of ε
was chosen. Next, we divided interval 〈−5, 5〉 equidistantly to n in-
tervals Ii. Middle point of Ii was assigned to xi for i = 1, . . . , n.
Then xi2, xi3 were generated from normal distribution with zero
mean and standard deviation 3. Then, β0, β1, β2, β3 were chosen
from uniform distribution on interval (−10, 10). Lastly, we gener-
ated εi from the chosen distribution and taken yi = β0 + β1x1i +
β2x2i + β3x3i + εi for i = 1, . . . , n. Then, we ran a regression of
(xi1, xi2, xi3) on yi using the same model and obtained OLS estim-
ator and LAD estimator. For LAD estimator we used the BR al-
gorithm. This was repeated m number of times (10 000 times or 20
000 times actually).

The distributions of ε we considered were as follows: Standard
Normal; Laplace with µ = 0, s = 1; standard Logistic, with cumu-
lative distribution function

F (x) =
1

1 + e−x
, x ∈ R,

and lastly the special case of symmetric Pareto distribution with
density

g(x) =
1

1 + |x|3
, x ∈ R.

4.1 Consistency

The first experiment we conducted meant to demonstrate the con-
sistency of LAD estimator. We ran the experiment using normal
errors m = 20 000 times for each n = 10, 50, . . . , 10 000. Each time
we obtained LAD estimator β̂ and calculated the deviation of β̂ from
the true value β = (β1, β1, β3, β4)T . In the Table 1 we present the
maximums of such deviations.
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n max{‖β − β̂‖}
10 3.5654
50 0.7773
150 0.4201
500 0.2345
1500 0.1280
2500 0.1012
10 000 0.0529

Table 1: m = 20 000

We can clearly see, that with the increasing number of observa-
tions within a sample, the maximum deviation of LAD estimator of
β deviates less and less from the true velue of β. That is in line with
consistency.

4.2 Comparison with OLS

In the next experiment, we compared the LAD estimator to the
OLS estimator under different distributions of ε and under different
sample sizes. In the Table 2,3 and 4 we present the means of ‖β−β̂‖
where β̂ is either LAD estimator or OLS estimator.

Normal Laplace Logistic Pareto
OLS 0.354 0.502 0.668 1.525
LAD 0.427 0.509 0.752 1.006

Table 2: n = 10, m = 10 000

Normal Laplace Logistic Pareto
OLS 0,130 0,343 0,248 1.509
LAD 0,168 0,297 0,272 0.830

Table 3: n = 50, m = 10 000

Our results are as expected. Under normal errors LAD seems
inferior to the OLS estimator. This is in line with the the Gauss-
Markov theorem. If the errors follow Laplace distribution our data
suggest LAD has superiority over OLS. That is in line with Theorem
9 which ensures that LAD is the maximum likelihood estimator.
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Normal Laplace Logistic Pareto
OLS 0,076 0,104 0,138 1.522
LAD 0,095 0,086 0,150 0.806

Table 4: n = 150, m = 10 000

Given the results and the theory, one should safely recommend the
usage of LAD over OLS in the case of Laplace errors. If the ε follow
standard logistic distribution (which can be though of as normal dis-
tribution with heavier tales), we still see the superiority of OLS, but
this superiority is not as large as if errors have normal distribution.
From the Table 4, we have that under normal errors, LAD estimator
of β has 1.25 times larger (i.e. larger by 25%) mean deviation from
the true value of β then the OLS estimator. Under Logistic errors,
this falls down to LAD having 1.088 times larger (i.e. larger by
8.8%) mean deviation form the true value. This might suggest LAD
is better resistant to larger errors (which are implied by logistic func-
tion having heavier tales). Lastly, under errors drawn from symetric
Pareto distribution, which can be thought as Laplace distribution
with heavier tales, LAD has, as expected, advantage over OLS. As
was the case with the logistic function, the heavier tales of density of
errors influence OLS in a bigger way then LAD. Under the Laplace
errors, OLS had about 21% large mean deviations form true value
then LAD. Under the Pareto errors, this grows to 89%.

4.3 Corrupted data

In the third and final experiment, our goal was to test the resistance
of the LAD and the OLS estimators to the presence of corrupted
data. We ran the same experiment as was the previous one, but we
only consider Normal errors and Laplace errors. Also, we corrupted
the percentage of date. This was done in the following way. We ran-
domly selected data points to corrupt. Then we found the radius r
of s sphere in Rk such that all non-corrupted data point lie within
this sphere. Then we assigned a new values to the corrupted data
points. The new values were assigned in such a way that the cor-
rupted data points were randomly (based on uniform distribution)
placed on a sphere in Rk with the radius 5r (or 50r). We present

the resulting mean ‖β − β̂‖ in the tables 5 and 6. In the tables, the
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percentage point means the percentage of corrupted data, the 5r or
50r stand for the radius of sphere with corrupted points.

5%, 5r 10%, 5r 5%, 50r 10%, 50r
OLS 1,557 2,125 10,779 17,784
LAD 0,308 0,539 1,071 1,006

Table 5: Normal errors, n = 150, m = 10 000

5%, 5r 10%, 5r 5%, 50r 10%, 50r
OLS 1,482 2,121 9,427 18,052
LAD 0,276 0,534 1,088 1,017

Table 6: Laplace errors, n = 150, m = 10 000

The results for the OLS estimator is with line Theorem 12 - the
OLS estimator is always influenced by the presence of corrupted
data. The LAD estimator is also influenced, but at the much lower
level. This might suggest, that if the data are subject to corruption,
using LAD might prove to be better then using OLS. Of course,
there are plenty of techniques for treating this type of corruption
which might in turn make least standard regression better. But
here we wanted to test the robustness of LAD estimator and our
data are in line with often used statement, that LAD estimator is
robust.
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Conclusions

We have shown the most important properties of Least Absolute
Deviations and the key ideas behind this method. We have star-
ted with basic properties of solution which demonstrated the diffi-
culties involving LAD fits. Non-smoothness of AD distance function
f rendered the usage of calculus mostly ineffective. On the other
hand, the fact that f was piecewise linear allow the extensive use of
linear algebra. Most important result was the proof of existence of
extreme LAD fit. This existence was later used in the section where
we described The Barrodale-Roberts Algorithm which we later used
in the section dealing with statistical simulations. After the brief
example of method for finding approximate solutions, Iteratively
Reweighted Least Squares, we moved towards the section where we
described the statistical properties of the LAD fit with focus on lin-
ear regression. We defined the LAD estimator for linear model and
showed it arises as the maximum likelihood estimator if the error
term follow Laplace distribution. Later, in experimental section, we
demonstrated that under Laplace error, the LAD estimator has an
advantage over the Ordinary Least Squares and suggested its usage
under the assumption of Laplace errors. We also talked about con-
sistency and asymptotic normality of LAD estimator. We presented
theorems establishing these properties. We later successfully tested
its consistency. Then we talked about how LAD estimator is in gen-
eral biased, but also explained that the unbiased LAD estimator can
be obtained by improving the algorithm used for its computation.
Lastly, we discussed the robustness of LAD estimator. We showed
the important difference in the breakdown points of LAD and OLS.
The robustness of LAD estimator was tested in the experimental
section and we saw its advantages over OLS in this regard.
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