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a kořen̊u slabého řešeńı na hranách. Hlavńı pozornost se věnuje odhad̊um chyby.
Ukazuje se, že řád konvergence neńı sńıžen nelinearitou, pokud je slabé řešeńı
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Introduction
There are many numerical techniques for solving partial differential equations.
The effectivity of the respective methods is often closely related to the properties
of the equations in question. We are concerned with the study of the finite element
method (FEM) and the discontinuous Galerkin method (DGM). We use them for
the solution of an elliptic equation with a nonlinear Newton boundary condition in
a bounded two-dimensional polygonal domain with numerical integration. Such
boundary value problems have applications in science and engineering, see [14],
[2]. We suppose that the nonlinear term has a general “polynomial” growth.
This can be found in the modelling of electrolysis of aluminium with the aid
of the stream function. The nonlinear boundary condition describes turbulent
flow in a boundary layer ([26]). Similar nonlinearity appears in a radiation heat
transfer problem ([24], [21]) or in nonlinear elasticity ([15], [16]). A parabolic
equation with a nonlinear Newton boundary condition is solved with the use of
finite elements in [6] and [28], but the growth of the nonlinearity is only linear.

The paper [8] deals with the problem arising in the investigation of the elec-
trolytical producing of aluminium. The problem is discretized by piecewise linear
conforming triangular elements. The effect of the numerical integration applied to
this problem is investigated in [9]. Using monotone operator theory in [13] and
assuming regularity of the weak solution, the paper [10] gives error estimates.
The paper [11] investigates this problem using discontinuous Galerkin method
and piecewise polynomial functions, but does not consider the effect of numerical
integration.

In this thesis we study an elliptic boundary value problem with nonlinear
Newton boundary condition in a polygonal domain. The goal is to analyse both
FEM and DGM used on conforming shape regular meshes with piecewise polyno-
mial functions and the effect of numerical integration while considering the actual
regularity of the weak solution. In Chapter 1 the boundary value problem is intro-
duced, the weak solution is defined and some regularity results are derived in the
neighbourhood of boundary edges. In chapter 2 the Galerkin approximation of
the weak solution (approximate solution found with the aid of exact integration)
is introduced with the aid of FEM. It turns out that the order of convergence
changes based on whether the exact weak solution is zero on the boundary or not.
Chapter 3 shows that the same error estimates mostly hold for the approximate
solution found with numerical integration. Chapter 4 introduces the DG method
and derives the same results. Chapter 5 confirms the theoretically found error
estimates with numerical experiments.
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1. Continuous problem

1.1 Classical formulation
Let Ω ⊂ R2 be a bounded domain with a Lipschitz continuous boundary ∂Ω. We
consider a boundary value problem with a non-linear Newton boundary condition:
find u : Ω → R such that

−∆u = f in Ω, (1.1)

∂u

∂n
+ κ|u|αu = ϕ on ∂Ω, (1.2)

with given functions f : Ω → R, ϕ : ∂Ω → R and constants κ > 0, α ≥ 0. By a
classical solution of (1.1) with boundary conditions (1.2) we refer to a function
u ∈ C2(Ω) satisfying (1.1) pointwise at every point in Ω and satisfying (1.2) at
every point on ∂Ω such that the outer normal unit vector n is defined.

We will not be concerned with the classical solution directly but we will instead
define a weak solution. This can be obtained formally by multiplying (1.1) by
a function v, integrating over Ω, using Green’s theorem, and applying boundary
condition (1.2). It will immediately follow that the classical solution, if it exists,
is also a weak solution. Further, we will show that the weak solution exists and
is unique. This will also imply that there exists at most one classical solution.
We will then use smoothness of f , ϕ and ∂Ω to prove the regularity of the weak
solution.

1.2 Function spaces
To define a weak solution we need to introduce some function spaces.

We will refer to the set of real numbers by R, the set of positive integers by
N, and the set of non-negative integers by N0.

For a bounded domain (open connected set) Ω, Ck(Ω) denotes the set of all
k-times continuously differentiable functions in Ω such that all of their partial
derivatives of order up to k can be continuously extended on the closure Ω of
Ω. The space Ck,λ(Ω) contains functions from Ck(Ω) such that all of their k-th
partial derivatives are Hölder continuous on Ω with parameter λ. The space of all
infinitely smooth functions with a compact support in the domain Ω is denoted
by C∞

c (Ω) and the space of all infinitely smooth functions such that all of their
partial derivatives can be continuously extended on Ω is denoted by C∞(Ω).

For p ∈ [1,∞) we consider Lebesgue spaces Lp(Ω), Lp(∂Ω) of classes of mea-
surable functions which are equal almost everywhere with respect to the Lebesgue
measure. These are Banach spaces with norms

∥f∥0,p,Ω =
(∫

Ω
|f |pdx

) 1
p

,

∥f∥0,p,∂Ω =
(∫

∂Ω
|f |pdS

) 1
p

.
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For p ∈ [1,∞) and k ∈ N we consider Sobolev spaces W k,p(Ω), W k,p(∂Ω) with
seminorms

|f |k,p,Ω =
⎛⎝∑

|β|=k

∫
Ω

⏐⏐⏐Dβf
⏐⏐⏐p dx

⎞⎠ 1
p

,

|f |k,p,∂Ω =
⎛⎝∑

|β|=k

∫
∂Ω

⏐⏐⏐Dβf
⏐⏐⏐p dS

⎞⎠ 1
p

,

where β = (β1, β2) is a multi-index with |β| = β1 + β2, and norms

∥f∥k,p,Ω =
⎛⎝∑

|β|≤k

∫
Ω

⏐⏐⏐Dβf
⏐⏐⏐p dx

⎞⎠ 1
p

,

∥f∥k,p,∂Ω =
⎛⎝∑

|β|≤k

∫
∂Ω

⏐⏐⏐Dβf
⏐⏐⏐p dS

⎞⎠ 1
p

.

The derivative Dβf in the definition of Sobolev spaces is considered in a weak
sense, that is, Dβf is a weak derivative of f in Ω if Dβf ∈ L1

loc(Ω) is a locally
integrable function satisfying∫

Ω
fDβϕdx = (−1)|β|

∫
Ω
Dβfϕdx, ∀ϕ ∈ C∞

c (Ω).

The Sobolev spaces of functions which are zero on boundary ∂Ω are denoted by
W 1,p

0 (Ω). For p ∈ [1,∞), k ∈ N0 and s ∈ (0, 1) the fractional Sobolev-Slobodetskii
spaces W k+s,p(Ω) use a seminorm

|f |k+s,p,Ω =
⎛⎝∑

|β|=k

∫
Ω×Ω

⏐⏐⏐Dβf(x) −Dβf(y)
⏐⏐⏐p

|x− y|n+sp dxdy
⎞⎠

1
p

,

where n is the dimension of Ω, and they use a norm

∥f∥k+s,p,Ω =
(
∥f∥pk,p,Ω + |f |pk+s,p,Ω

) 1
p .

We also denote W k,2(Ω) = Hk(Ω) and W 0,p(Ω) = Lp(Ω). If a function f belongs
to a Sobolev spaceW k,p(Ω), then its β-th derivative belongs to a spaceW k−|β|,p(Ω)
for any |β| ≤ k and the norms satisfy inequality

∥Dβf∥k−|β|,p,Ω ≤ ∥f∥k,p,Ω.

The following continuous embeddings known as Sobolev embeddings hold for
domains Ω ⊂ Rn with Lipschitz continuous boundaries (Section 5.6 in [7])

W 1,p(Ω) ↪→ L
np

n−p (Ω),
W 1,n(Ω) ↪→ Lq(Ω),
W 1,p(Ω) ↪→ C0,1− n

p (Ω),
W n,1(Ω) ↪→ C(Ω),

p ∈ [1, n),
q ∈ [1,∞),
p ∈ (n,∞),

(1.3)
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and the following continuous trace embeddings also hold for domains with Lip-
schitz continuous boundaries (Section 5.5 in [7] or Theorems 1.4.4.1 and 1.5.1.1
in [17])

W 1,p(Ω) ↪→ L
(n−1)p

n−p (∂Ω),
W 1,n(Ω) ↪→ Lq(∂Ω),
W 1,p(Ω) ↪→ C0,1− n

p (∂Ω),
W n,1(Ω) ↪→ C(∂Ω).

p ∈ [1, n),
q ∈ [1,∞),
p ∈ (n,∞),

(1.4)

If G ⊂ ∂Ω, then by |G| we denote the one-dimensional measure defined on ∂Ω
of the set G. Due to Poincaré inequality (5.8.1 in [7]) on spaces W 1,p

0 (Ω) the
seminorm is in fact equivalent to a norm.

Theorem 1.1 (Poincaré inequality). Let Ω be a domain with a Lipschitz contin-
uous boundary. Let u ∈ W 1,p(Ω). Let G ⊂ ∂Ω with |G| > 0. Then there exists a
constant cP > 0 dependent on Ω, G and p such that

∥u∥1,p,Ω ≤ cP (|u|1,p,Ω + ∥u∥0,p,G). (1.5)

In what follows, we will use c to refer to a general positive constant which can
change for different equations.

1.3 Weak solution
Suppose that

f ∈ L2(Ω), ϕ ∈ L2(∂Ω). (1.6)
We introduce the following forms for u, v ∈ H1(Ω)

b(u, v) =
∫

Ω
∇u · ∇vdx,

d(u, v) = κ
∫
∂Ω

|u|αuvdS,

LΩ(v) =
∫

Ω
fvdx,

L∂Ω(v) =
∫
∂Ω
ϕvdS,

L(v) = LΩ(v) + L∂Ω(v),
a(u, v) = b(u, v) + d(u, v).

(1.7)

Definition 1.2. We say that a function u : Ω → R is a weak solution of (1.1) if

u ∈ H1(Ω),
a(u, v) = L(v) ∀v ∈ H1(Ω).

(1.8)

If we take the classical solution u ∈ C2(Ω) ⊂ H1(Ω) of (1.1)-(1.2), multiply
the equation (1.1) by a function v ∈ H1(Ω), integrate over Ω, use Green’s theorem
and the boundary conditions (1.2), we will obtain the condition (1.8).∫

Ω
fvdx =

∫
Ω

−∆uvdx = −
∫
∂Ω

∂u

∂n
vdS +

∫
Ω

∇u · ∇vdx
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−
∫
∂Ω

∂u

∂n
vdS =

∫
∂Ω

(κ |u|α u− ϕ) vdS∫
Ω

∇u · ∇vdx+
∫
∂Ω
κ |u|α uvdS =

∫
Ω
fvdx+

∫
∂Ω
ϕvdS

The weak solution is a generalization of the classical solution. To show exis-
tence and uniqueness of the weak solution we need to know some properties of
the form a. Note that

a(u, u−v)−a(v, u−v) =
∫

Ω
|∇u−∇v|2dx+κ

∫
∂Ω

(|u|αu−|v|αv)(u−v)dS. (1.9)

Let g > 0 and α ≥ 0. We define a function y : R → R :

y(ζ) = (|ζ + g|α (ζ + g) − |ζ − g|α (ζ − g)) (2g), ξ ∈ R.

Then the function y is decreasing in (−∞, 0) and increasing in (0,∞), and

min
ζ∈R

y(ζ) = 4gα+2.

For ξ, η ∈ R let us set 2g = |ξ − η|. Then

(|η|α η − |ξ|α ξ) (η − ξ) ≥ 2−α |η − ξ|α+2 , (1.10)

and the following lemma follows, see [10].

Lemma 1.3. Let u, v ∈ H1(Ω). Then

a(u, u− v) − a(v, u− v) ≥ |u− v|21,2,Ω + κ2−α∥u− v∥α+2
α+2,0,∂Ω. (1.11)

In [10] and [9] most of the following theorem was also proven.

Theorem 1.4.

a) L is a continuous linear functional on H1(Ω).

b) The functional a(u, ·) from H1(Ω) into R is a continuous linear functional
for every u ∈ H1(Ω).

c) a is uniformly monotone, with

a(u, u− v) − a(v, u− v) ≥ ϱ(∥u− v∥1,2,Ω) (1.12)

for all u, v ∈ H1(Ω), where

ϱ(t) =
{
C0κ2−αtα+2 for 0 ≤ t ≤ 2κ−1/α,
C0t

2 for t ≥ 2κ−1/α,
(1.13)

for α = 0, we set κ−1/α = 0.

d) The functional a(·, v) from H1(Ω) into R is continuous for every v ∈ H1(Ω)
in the following sense: There exists a positive constant C1 > 0 independent
of v such that

|a(u, v) − a(w, v)| ≤ C1
(
1 + ∥u∥α1,2,Ω + ∥w∥α1,2,Ω

)
∥u− w∥1,2,Ω∥v∥1,2,Ω,

(1.14)
for all u, v ∈ H1(Ω).
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e) The form a is coercive in the following sense: There exists a positive con-
stant C2 > 0 such that

a(u, u) ≥ C2∥u∥2
1,2,Ω (1.15)

holds for all u ∈ H1(Ω) such that ∥u∥1,2,Ω ≥ 1.

Proof. It remains to prove the part d).

|a(u, v) − a(w, v)| ≤
⏐⏐⏐⏐∫

Ω
∇(u− w) · ∇vdx

⏐⏐⏐⏐+ ⏐⏐⏐⏐κ ∫
∂Ω

(|u|α u− |w|αw) vdS
⏐⏐⏐⏐

Hölder inequality used on the first term yields⏐⏐⏐⏐∫
Ω

∇(u− w) · ∇vdx
⏐⏐⏐⏐ ≤ |u− w|1,2,Ω |v|1,2,Ω .

Without loss of generality let u ≤ w, then the second term can be rearranged
using

|u|α u− |w|αw =
∫ w

u

d
dt (|t|α t) dt = (α + 1)

∫ w

u
|t|α dt.

Since the function |t|α of t ∈ R is monotone in (−∞, 0) and in (0,∞) and its
global minimum is reached for t = 0, it follows that

|t|α ≤ (|u|α + |w|α) , t ∈ [u,w].

Take any p1, p2, p3 > 1 such that 1/p1 + 1/p2 + 1/p3 = 1. Then using these
relations and Hölder inequality gives us⏐⏐⏐⏐κ ∫

∂Ω
(|u|α u− |w|αw) vdS

⏐⏐⏐⏐ ≤ κ(α + 1)
∫
∂Ω

(|u|α + |w|α) |u− w| |v| dS

≤ κ(α + 1)
(
∥u∥α0,αp1,∂Ω + ∥w∥α0,αp1,∂Ω

)
∥u− w∥0,p2,∂Ω ∥v∥0,p3,∂Ω .

The trace embedding (1.4) completes the proof of (1.14).

We can define an operator A : H1(Ω) → (H1(Ω))∗ by ⟨Au, v⟩ = a(u, v) for
all u, v ∈ H1(Ω). It follows from monotone operator theory, see [13], [30] and
properties in Theorem 1.4 that problem (1.8) has exactly one solution.

1.4 Regularity
In the error estimates later in this text we will assume that the weak solution u
belongs to a space of smoother functions than only H1(Ω).

From this point on we will assume that the domain Ω is polygonal with N
edges Γ1, . . . ,ΓN . To describe functions defined on the boundary ∂Ω we will use
the trace theorem. Consider an operator T which takes functions from C∞(Ω)
and assigns their restriction on ∂Ω and also possibly some partial derivatives in
the outer normal direction on each edge in ∂Ω

T : u ↦→
{
u,
∂u

∂n
, . . . ,

∂lu

∂nl

}
.
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It can be shown for p ∈ [1,∞) and k ∈ N that T has a unique continuous linear
extension (also denoted by T ) into a Cartesian product of Sobolev spaces on edges
of the domain Ω

T : W k,p(Ω) →
N∏
j=1

k−1∏
i=0

W k−i− 1
p
,p(Γj).

This in particular means that there exists a constant c dependent only on Ω, k,
p such that

∥u|∂Ω∥k− 1
p
,p,∂Ω = ∥u∥k− 1

p
,p,∂Ω ≤ c∥u∥k,p,Ω, u ∈ W k,p(Ω). (1.16)

The trace operator T does not map onto ∏k−1
i=0 W

k−i− 1
p
,p(∂Ω) because there might

possibly occur jumps in derivatives in normal direction at the corners of ∂Ω.
However, these derivatives satisfy some compatibility conditions given in [11].

Let us consider a Neumann boundary value problem

−∆u = f in Ω,
∂u

∂n
= g on ∂Ω,

(1.17)

with a weak solution u ∈ H1(Ω) such that∫
Ω

∇u · ∇vdx =
∫

Ω
fvdx+

∫
∂Ω
gvdS, v ∈ H1(Ω). (1.18)

Then the following theorem holds, see [18] Corollary 4.438 and [25] Corollary
8.3.3.

Lemma 1.5. Let u ∈ H1(Ω) be the weak solution given by (1.18), let f ∈
W k−2,q(Ω), g ∈ W k−1−1/q,q(∂Ω), where k ≥ 2, q > 1, 2

q
> k − π

ω0
, and ω0 is

the largest interior angle at boundary corners of ∂Ω. Then u ∈ W k,q(Ω).

We can consider a weak solution u ∈ H1(Ω) of (1.8). If we knew that the
trace of |u|αu was in the same space as g in Lemma 1.5, we could use this theorem
for g = ϕ+ T (|u|αu) to obtain some regularity of u.

Lemma 1.6. If u ∈ H1(Ω), then |u|αu ∈ W 1,q(Ω) with q = 2 − ε, where ε > 0 is
arbitrarily small, and thus |u|α u|∂Ω ∈ W 1−1/q,q(∂Ω).

Proof. It follows from Sobolev embedding (1.3) that H1(Ω) ↪→ L(α+1)q(Ω) and
thus u ∈ L(α+1)q(Ω) or |u|α u ∈ Lq(Ω) for any q ∈ [1,∞). It remains to estimate
the first weak derivatives of |u|α u using Hölder inequality∫

Ω
|∇ (|u|α u)|q dx = (α + 1)q

∫
Ω

|u|αq |∇u|q dx

≤ (α + 1)q ∥|u|αq∥0,s,Ω ∥|∇u|q∥0,s′,Ω ,
(1.19)

where 1
s

+ 1
s′ = 1. By choosing s′ = 2

2−ε > 1 we find that qs′ = 2 and αqs < ∞,
and |u|α u ∈ W 1,q(Ω).

Remark. It also directly follows from embedding (1.3) that W 1,q(Ω) ↪→ C(Ω) for
q > 2 and the computation in this proof gives us: If u ∈ W 1,q(Ω), then also
|u|α u ∈ W 1,q(Ω).
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Using these tools, it can be shown that the following regularity result holds,
see [11].

Theorem 1.7. Let u ∈ H1(Ω) be a weak solution of (1.8) in a polygonal domain
Ω. Let f ∈ Lq(Ω), ϕ ∈ W 1−1/q,q(∂Ω), where

q = 1 + π

2ω0 − π
− ε < 2 for ω0 > π,

q = 1 + π

2ω0 − π
− ε > 2 for

π

2 < ω0 < π,

q is arbitrary for ω0 ≤ π

2 ,

(1.20)

and ε > 0 is arbitrarily small. Then u ∈ W 2,q(Ω).

Since all inner angles ω in Ω are less than 2π, it follows that q > 4
3 .

Lemma 1.8. Let u ∈ W k,q(Ω). Let β = (β1, β2) be a multi-index with β1, β2 ∈ N0
such that |β| = β1 + β2 ≤ k. Then

Dβ (|u|αu) = ∂|β|(|u|αu)
∂xβ1

1 ∂x
β2
2

can be expressed as a finite sum of terms of a form

c|u|α+1−J
J∏
j=1

Dγju, (1.21)

where c is a constant dependent on α and β, J ∈ N and γj, j = 1, . . . , J are
multi-indices such that ∑J

j=1 γj = β. If α ∈ N, then Dβ(|u|αu) only contains
terms with nonnegative exponent α + 1 − J .

Proof. Let k, q be given. We will proceed using induction on |β|.
When |β| = 0 the only possible term has J = 0 and c = 1.
If |β| = 1, then c = α + 1, J = 1, and either γ1 = (1, 0) or γ1 = (0, 1).
Suppose that that the lemma holds for all multi-indices with length smaller

than |β|. In particular, we have

Dβ (|u|αu) =
∂
(
Dβ′ (|u|αu)

)
∂xi

for some i ∈ {1, 2} and β′ such that |β| = |β′| + 1. Then we only need to
apply ∂

∂xi
to terms c|u|α+1−J ′ ∏J ′

j=1 D
γ′

ju, which have ∑J ′

j=1 γ
′
j = β′. If the partial

derivative ∂
∂xi

is applied to any factor in ∏J ′

j=1 D
γ′

ju, then the resulting term does
have the desired form with J = J ′, one of the multi-indices γ′

j increased, and∑J
j=1 γj = β. If ∂

∂xi
is applied to |u|α+1−J ′ , then the resulting term has J = J ′ +1,∑J ′

j=1 γ
′
j + γJ ′+1 = β, where γJ ′+1 is either (1, 0) or (0, 1) depending on xi, and

therefore also has the desired form.
Suppose that α ∈ N. Then the exponent α + 1 − J in |u|α+1−J is integer

for any J . The only possibility to obtain a negative exponent in the induction
step would be to apply ∂

∂xi
to |u|α+1−J ′ for J ′ such that α + 1 − J ′ ∈ [0, 1), i.e.

α + 1 − J ′ = 0. But then ∂|u|0
∂xi

= 0 and the constant c would in fact be zero.
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Lemma 1.9. Let u ∈ W k,q(Ω), where k ≥ 2, q > 1. Let Ω be a polygonal
domain. Let α+ 1 ≥ k or α ∈ N0. Then |u|αu|∂Ω ∈ W k−1/q,q(∂Ω) and there holds
an estimate

∥|u|αu∥k−1/q,q,∂Ω ≤ c∥u∥α+1
k,q,Ω (1.22)

with a constant c > 0 dependent on Ω, k, q, α.

Proof. We will prove that |u|αu ∈ W k,q(Ω). Consider any multi-index β = (β1, β2)
such that |β| = β1 + β2 ≤ k. Our goal is to show that

Dβ (|u|αu) = ∂|β|(|u|αu)
∂xβ1

1 ∂x
β2
2

∈ Lq(Ω).

The expression Dβ(|u|αu) is a sum of several terms of the form (1.21) given in
Lemma 1.8. Due to the triangle inequality in Lebesgue spaces, we only need to
show that all of these terms belong to the space Lq(Ω) and are estimated by
the right-hand side of (1.22). The assumption α + 1 ≥ k or α ∈ N0 guarantees
that the exponents α + 1 − J in (1.21) are nonnegative for all terms. Since u ∈
W k,q(Ω) ↪→ Ck−2(Ω), we can trivially estimate terms which only have derivatives
of orders up to k − 2

c

|u|α+1−J
J∏
j=1

Dγju


0,q,Ω

≤ c ∥u∥α+1
k,q,Ω .

Consider the term
c|u|αDβu.

Since u ∈ W k,q(Ω) ↪→ C(Ω) and Dβu ∈ Lq(Ω), we have|u|αDβu
q

0,q,Ω
=
∫

Ω
|u|αq|Dβu|qdx ≤ ∥u∥αq

C(Ω)

∫
Ω

|Dβu|qdx ≤ c∥u∥αq+qk,q,Ω .

The only remaining terms are

c|u|α−1
2∏
j=1

Dγju,

where γ1 has length 1 and γ2 has length k − 1. If k ≥ 3, then we again estimate|u|α−1
2∏
j=1

Dγju


q

0,q,Ω

≤ ∥u∥(α−1)q
C(Ω) ∥|∇u|∥C(Ω)

∫
Ω

|Dγ2u|qdx ≤ c∥u∥αq+qk,q,Ω .

If k = 2, γ2 has also length 1, and we can use embedding (1.3)|u|α−1
2∏
j=1

Dγju


q

0,q,Ω

≤ ∥u∥(α−1)q
C(Ω) ∥|∇u|∥2q

0,2q,Ω ≤ c∥u∥αq+qk,q,Ω ,

where the last inequality holds because

• W 1,q(Ω) ↪→ C(Ω) for q > 2,

• H1(Ω) ↪→ L4(Ω) for q = 2,
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• W 1,q(Ω) ↪→ L2q(Ω) for q ∈ [1, 2) as 2q
2−q ≥ 2q.

Thus |u|αu ∈ W k,q(Ω) and its trace satisfies (1.22).

Functions in W 2,q(Ω) are continuous. Therefore, it is possible to distinguish
on which parts of the boundary ∂Ω is the weak solution u nonzero.

Lemma 1.10. Let u ∈ W k,q(Ω), where k ≥ 2, q > 1 and Ω is a polygonal domain.
Let α + 1 < k. Let G be a closed subset of ∂Ω. If |G| > 0 and |u| ≥ ε > 0 on G,
then |u|αu|G ∈ W k−1/q,q(G).

Proof. Function u is continuous in Ω. Therefore, we can find an open neighbour-
hood of G in Ω denoted by ΩG such that |u| ≥ ε > 0 in ΩG. We can proceed
similarly to the proof of Lemma 1.9. This time we cannot guarantee that the
exponents α + 1 − J are non-negative. The lowest possible negative exponent
is α + 1 − k and the same arguments as in the proof of Lemma 1.9 lead to an
estimate

∥|u|α u∥k,q,ΩG
≤ c

(
∥u∥α+1

k,q,ΩG
+ εα+1−k ∥u∥kk,q,ΩG

)
, (1.23)

where c is dependent also on ΩG and thus possibly on both G and u.

Remark. If we knew beforehand that u was sufficiently distant from zero on
sufficiently large part of the boundary ∂Ω, we could obtain estimate similar to
(1.22) for arbitrary α ≥ 0.

Using Lemma 1.5 it was shown in [11] that the following lemma holds.

Lemma 1.11. Let the assumptions of Theorem 1.7 be satisfied and let f ∈
W k,q(Ω) for k ≥ 1. Then u ∈ W k+2,q(Ω0), where Ω0 is a subdomain of Ω with
smooth boundary and Ω0 ⊂ Ω.

A similar regularity result to Lemma 1.5 holds for domains with smooth
boundary, see [17] Theorem 2.5.1.1.

Lemma 1.12. Let Ω2 be a domain with smooth boundary, let f ∈ W k−2,q(Ω2),
g ∈ W k−1−1/q,q(∂Ω2), where k ∈ N, k ≥ 2, q > 1. Let u ∈ H1(Ω2) be a weak
solution of a problem∫

Ω2
∇u · ∇vdx =

∫
Ω2
fvdx+

∫
∂Ω2

gvdS, v ∈ H1(Ω). (1.24)

Then u ∈ W k,q(Ω).

By using Lemma 1.12, Lemma 1.9 and Lemma 1.10, we can improve regularity
results in Lemma 1.11 to include nonsingular parts of the boundary ∂Ω.

Theorem 1.13. Let Ω be a polygonal domain. Let k ∈ N, k ≥ 2, q ≥ 1. Let
α ≥ 0 and κ > 0 the be constants, and f ∈ W k−2,q(Ω) and ϕ ∈ W k−1− 1

q
,q(∂Ω) the

functions from problem (1.1)-(1.2). Let u be a weak solution defined in (1.8). Let
G be a closed subset of ∂Ω not containing any boundary vertices of Ω. If α /∈ N0
and α + 1 < k, let u restricted to G satisfy |u| ≥ ε for some constant ε > 0.
Let Ω1 ⊂ Ω be a domain with smooth boundary such that ∂Ω ∩ ∂Ω1 ⊂ G, i.e. Ω1
shares boundary with Ω only in G. Then u ∈ W k,q(Ω1).
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Proof. It follows from Theorem 1.7 that u ∈ W 2,p(Ω) for some p > 4
3 . Due to

embedding (1.3), we haveW 2,p(Ω) ↪→ C(Ω) and the weak solution u is continuous.
Therefore, we can find domain Ω2 with smooth boundary such that Ω ⊃ Ω2 ⊃ Ω1,
∂Ω2 does not contain boundary vertices of ∂Ω, Ω2 is some neighbourhood of Ω1
in Ω, and |u| ≥ ε

2 on G2 = ∂Ω ∩ ∂Ω2, α /∈ N0 and α + 1 < k.
We will proceed using induction on k. The base case is Theorem 1.7. Let us

suppose that u ∈ W k−1,q(Ω2), we will show that u ∈ W k,q(Ω1).
It follows from Lemma 1.9 and Lemma 1.10 for k ≥ 3 and from Lemma 1.6

for k = 2 that |u|α u ∈ W k−1− 1
q
,q(G2). Let us define ψ ∈ C∞(Ω) in the following

way:

• ψ = 1 in Ω1

• ψ = 0 in Ω \ Ω2

• ∂ψ
∂n

= 0 on G2

Since we have ϕ ∈ W k−1− 1
q
,q(G2), |u|α u ∈ W k−1− 1

q
,q(G2), and ψ is smooth, we

also have

∂(ψu)
∂n

= ψ
∂u

∂n
= ψ (−κ |u|α u+ ϕ) ∈ W k−1− 1

q
,q(G2). (1.25)

As ψu = 0 on ∂Ω2 \G2, we have ∂(ψu)
∂n

∈ W k−1− 1
q
,q(∂Ω2). We also have

−∆(ψu) = −u∆ψ − 2∇ψ · ∇u− ψ∆u ∈ W k−2,q(Ω2), (1.26)

since u∆ψ ∈ W k−1,q(Ω2), ∇ψ · ∇u ∈ W k−2,q(Ω2), and−ψ∆u = ψf ∈ W k−2,q(Ω2).
Therefore, ψu ∈ W k,q(Ω2) follows from Lemma 1.12. Because u = ψu in Ω1, we
have u ∈ W k,q(Ω1).

We can conclude that if the right-hand side functions f , ϕ from (1.1)-(1.2) are
smooth enough, the weak solution u defined in (1.8) belongs to Sobolev spaces:

• W 2,q in a neighbourhood of boundary corners, where q is dependent on the
inner angles at the corners,

• W ⌊α⌋+2,q in a neighbourhood of roots of u on the boundary ∂Ω sides (not
in any corner) for noninteger α ≥ 0,

• W k,q in the rest of Ω.
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2. Finite element discretization

2.1 Discretization
We assume that the domain Ω ⊂ R2 is polygonal. We construct its triangulation
Th consisting of a finite number of closed triangles T . We will consider only
conforming triangulations satisfying the following conditions:

Ω =
⋃
T∈Th

T,

if T1, T2 ∈ Th, T1 ̸= T2, then T1 ∩ T2 = ∅, or T1 ∩ T2

is either a common vertex or a common side of T1 and T2.

(2.1)

We say that T ∈ Th is a boundary triangle, if T has a side S ⊂ ∂Ω and we
denote the set of all sides S ⊂ ∂Ω by sh. Then ⋃S∈sh

S = ∂Ω. For simplicity, we
assume that each boundary triangle has only one boundary edge S and thus can
be referred to as TS. If a triangle is not a boundary triangle we call it an inner
triangle.

By hT and ρT we denote the length of the maximal side of T and the radius
of the maximal circle inscribed into T , respectively. We further set

h = max
T∈Th

hT (2.2)

Let us consider a shape regular system of triangulations {Th}h∈(0,h0) of the domain
Ω: there exists CR > 0 such that

hT
ρT

≤ CR ∀T ∈ Th ∀h ∈ (0, h0). (2.3)

2.2 Galerkin approximation
We will seek a Galerkin approximation and an approximate solution in a space
of continuous piecewise polynomial functions of order r ∈ N0 and then use a
Lagrange interpolation as a tool to show the order of its convergence.

Definition 2.1. Let r ∈ N. Let T ∈ Th be a triangle. We denote the space of
polynomials in x1, x2 on T of degree at most r by Pr(T )

Pr(T ) =
{
pT : T → R; pT (x1, x2) =

∑
i,j∈N0
i+j≤r

ai,jx
i
1x

j
2, ai,j ∈ R

}
. (2.4)

Let S be a side of a triangle and let F be an affine mapping of an interval
[0, 1] onto S. Then we denote the set of polynomials of degree at most r on S by
Pr(S):

Pr(S) =
{
p ◦ F−1; p is a polynomial of degree ≤ r on [0, 1]

}
.

Let Th be a triangulation of Ω. The set of all continuous piecewise polynomial
functions of degree at most r is

Hr
h =

{
vh ∈ C(Ω); vh|T ∈ Pr(T ), T ∈ Th

}
, (2.5)
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and the space of all piece-wise polynomial function of degree at most r is

Srh =
{
vh ∈ L2(Ω); vh|T ∈ Pr(T ), T ∈ Th

}
. (2.6)

Definition 2.2. Let T̂ be a closed reference triangle with vertices (0, 0), (1, 0),
(0, 1), let u ∈ C(T̂ ), let r ∈ N, let x1, . . . , x(r+1)(r+2)/2 ∈ T be pairwise differ-
ent nodes in T̂ . Then we call a projection π of C(T̂ ) onto Pr(T̂ ) a Lagrange
interpolation of order r if u(xµ) = πu(xµ) for all µ = 1, . . . , (r+1)(r+2)

2 .
Let u ∈ C(Ω), let r ∈ N, let π be a Lagrange interpolation of order r on a

reference triangle T̂ with vertices (0, 0), (1, 0), (0, 1). Let Th be a triangulation
of Ω, let FT be an affine mapping of T̂ onto T for each T ∈ Th. Then we call a
projection πh of C(Ω) onto Hr

h a piecewise Lagrange interpolation, if πh restricted
to T is given by FT ◦ π ◦ F−1

T for all T ∈ Th.

Remark. The choice of (r+1)(r+2)
2 nodes is necessary for the existence and unique-

ness of the interpolation, but the nodes must also satisfy some other conditions,
see [4]. If there are r + 1 nodes on each side of a triangle, then the interpolated
function πu on that side will be given only by the values of u on that side, i.e.
the piecewise Lagrange interpolation πh will preserve continuity of u.

Now we can define a Galerkin approximation Uh of a solution u.

Definition 2.3. We say that Uh ∈ Hh
r is a Galerkin approximation of a weak

solution u ∈ H1(Ω) given by (1.8) if

a(Uh, vh) = L(vh) ∀vh ∈ Hr
h. (2.7)

Since Hh
r is a subset of H1(Ω), it follows that the form a has all the properties

in Theorem 1.4, and existence and uniqueness of the Galerkin approximation
again follow from monotone operator theory in [13] and [30]. We can further
improve the monotonicity of a by assuming that one of the functions in question
is not close to zero on a part of ∂Ω. More precisely:

G ⊂ ∂Ω, |G| > 0,
|u| ≥ ε > 0 on G.

(2.8)

Theorem 2.4. Let u ∈ H1(Ω) and let the conditions (2.8) hold. Then there
exists a constant C3 = C3(Ω, G, ε) > 0 such that

a(u, u− v) − a(v, u− v) ≥ C3∥u− v∥2
1,2,Ω ∀v ∈ H1(Ω). (2.9)

Proof. Since |u|α − |v|α and u2 − v2 have the same sign, it follows that (|u|α −
|v|α)(u2 − v2) ≥ 0, or equivalently |u|αu2 + |v|αv2 ≥ |u|αv2 + |v|αu2. Thus, we can
write

2(|u|αu− |v|αv)(u− v) = |u|α(2u2 − 2uv) + |v|α(2v2 − 2uv)
≥ |u|α(u2 − 2uv + v2) + |v|α(v2 − 2uv + u2) = (|u|α + |v|α)(u− v)2.

(2.10)

From this and equation (1.9) it directly follows that

a(u, u− v) − a(v, u− v) ≥ |u− v|2H1(Ω) + 1
2κ |G| εα∥u− v∥2

0,2,G.

The existence of a constant C3 from the statement of this theorem follows from
Poincaré inequality (1.5).

14



Under the conditions (2.8), we can redefine ϱ from (1.12), (1.13) as
ϱ(t) = C3t

2 t ∈ [0,∞), (2.11)
but numerical experiments indicate that if u is close to zero on a large part of
the boundary ∂Ω, ϱ behaves as in (1.13), that is, C3 is very small.

2.3 Error estimation
Our next goal is to show how fast the Galerkin approximation Uh converges to the
weak solution u. Let us suppose that u ∈ W k,q(Ω) for some k ∈ N, k ≥ 2, q ≥ 1.
Due to the embedding W k,q(Ω) ↪→ C(Ω), the piecewise Lagrange interpolation is
well-defined.
Theorem 2.5. Let u ∈ H1(Ω) be a weak solution of (1.8), let Uh ∈ Hr

h be the
Galerkin approximation defined by (2.7). Then

ϱ1(∥u− Uh∥1,2,Ω) ≤ C inf
vh∈Hr

h

∥u− vh∥1,2,Ω, (2.12)

where
ϱ1(t) = ϱ(t)/t. (2.13)

Proof. The Galerkin approximation (2.7) is given by the same formula as a weak
solution defined in (1.8), but only on a restriction from H1(Ω) to Hr

h. This
means that Theorem 1.4 holds again and the Galerkin approximation exists and
is unique. Then

ϱ(∥Uh∥1,2,Ω) ≤ a(Uh, Uh) = L(Uh)
≤ c((∥f∥0,2,Ω + ∥ϕ∥0,2,∂Ω) ∥Uh∥1,2,Ω,

where we used trace theorem in the last inequality. This shows that ϱ1(∥Uh∥1,2,Ω)
is bounded independently of h and Uh is uniformly bounded. Another conse-
quence of formulas (2.7) and (1.8) is that

a(u, vh) = L(vh) = a(Uh, vh) ∀vh ∈ Hr
h,

which implies Galerkin orthogonality
a(u, vh) − a(Uh, vh) = 0.

Since Uh ∈ Hr
h, we have

a(u, Uh − vh) − a(Uh, Uh − vh) = 0
for all vh ∈ Hr

h, which can be rearranged into
a(u, u− Uh) − a(Uh, u− Uh) = a(u, u− vh) − a(Uh, u− vh) ∀vh ∈ Hr

h. (2.14)
Then, by (1.12), (2.14) and (1.14) for arbitrary vh ∈ Hr

h, we have
ϱ(∥u− Uh∥1,2,Ω) ≤ a(u, u− Uh) − a(Uh, u− Uh)

= |a(u, u− Uh) − a(Uh, u− Uh)|
= |a(u, u− vh) − a(Uh, u− vh)|

≤ C1
(
1 + ∥u∥α1,2,Ω + ∥Uh∥α1,2,Ω

)
∥u− Uh∥1,2,Ω∥u− vh∥1,2,Ω.

(2.15)

Dividing (2.15) by ∥u − Uh∥1,2,Ω and using the uniform boundedness of Uh, we
obtain the sought inequality.
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In what follows, we will use Theorem 3.1.5 from [4]:

Theorem 2.6. Let r,m ∈ N0, p, q ≥ 1. Let the piecewise Lagrange interpolation
πh preserve polynomials of degree at most r. Let the the triangulation Th be shape
regular according to (2.3). Let the following embeddings hold:

W r+1,q(T ) ↪→ C(T ),
W r+1,q(T ) ↪→ Wm,p(T ).

Then there exists a constant C4 = C4(π,CR) > 0 such that for all T ∈ Th and
h ∈ (0, h0) we have

|u− πhu|m,p,T ≤ C4|u|r+1,q,Th
r+1−m+ 2

p
− 2

q

T ∀u ∈ W r+1,q(T ). (2.16)

Note that the terms 2
p
− 2

q
in the exponent of hT correspond to the fact that we

are considering a two-dimensional case and the theorem also holds for any other
dimension. We will use this theorem mainly to estimate error of interpolation
measured in H1-norms or seminorms.
Corollary. Let k ∈ N, q ≥ 1. Let the piecewise Lagrange interpolation πh preserve
polynomials of degree ≤ r. Set ν = min(r, k). Let the triangulation Th be shape-
regular according to (2.3). Then there exists a constant C6 = C6(π,CR) > 0 such
that

∥u− πhu∥1,2,T ≤ C6|u|ν+1,q,Th
ν+1−2/q
T ∀u ∈ W k+1,q(T ),∀T ∈ Th,∀h ∈ (0, h0).

Lemma 2.7. Let β ≥ 1, n ∈ N, xi ≥ 0, wi > 0, i = 1, . . . , n. Then the following
inequalities hold:

n∑
i=1

xβi ≤
(

n∑
i=1

xi

)β
, (2.17)

(∑
iwixi∑
iwi

)β
≤
∑
iwix

β
i∑

iwi
. (2.18)

Proof. We will prove (2.17) using induction. For n = 1 both sides are equal.
Suppose that the inequality holds for n − 1. Then (2.17) holds for n, if we have
xn = 0. To complete the induction step, it suffices to show that the left-hand
side has a lower or equal derivative with respect to xn than the right-hand side.

The derivative of the left-hand side is

βxβ−1
n ,

and the derivative of the right-hand side is

β

(
n∑
i=1

xi

)β−1

.

As xn ≤ ∑n
i=1 xi and βxβ−1 is a non-decreasing function, the inequality between

the derivatives does hold. Therefore the inequality (2.17) holds for n and arbitrary
xn ≥ 0.

Inequality (2.18) is known as Jensen’s inequality, see Theorem 3.3 in [29].
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Recall that the inverse of the function ϱ1 arising from the monotonicity is

ϱ−1
1 (t) =

⎧⎨⎩
(

t
C0κ2−α

) 1
α+1 for 0 ≤ t ≤ 2κ−1/α,

t
C0

for t ≥ 2κ−1/α,
, (2.19)

which can be replaced under conditions (2.8) by

ϱ−1
1 (t) = t

C3
, (2.20)

as follows from (2.11).

Theorem 2.8. Let the solution of (1.8) be u ∈ W k+1,q(Ω), where W k+1,q(Ω) ↪→
H1(Ω). Then

∥u− Uh∥1,2,Ω ≤

⎧⎨⎩ϱ
−1
1

(
c|u|k+1,q,Ωh

ν+1− 2
q

)
, q ∈ [1, 2),

ϱ−1
1 (c|u|k+1,q,Ωh

ν) , q ∈ [2,∞).
(2.21)

Proof. Using Theorem 2.5 for vh = πhu and Theorem 2.6, we obtain

ϱ1(∥u− Uh∥1,2,Ω) ≤ c∥u− πhu∥1,2,Ω = c

⎛⎝∑
T∈Th

∥u− πhu∥2
1,2,T

⎞⎠1/2

≤ c

⎛⎝∑
T∈Th

|u|2k+1,q,Th
2ν+2−4/q
T

⎞⎠1/2

.

(2.22)

For q < 2, we use (2.17) with β = 2
q
, xi = |u|qk+1,q,Th

qν+q−2
T :

∑
T∈Th

|u|2k+1,q,Th
2ν+2−4/q
T ≤

⎛⎝∑
T∈Th

|u|qk+1,q,Th
qν+q−2
T

⎞⎠2/q

,

⎛⎝∑
T∈Th

|u|2k+1,q,Th
2ν+2−4/q
T

⎞⎠1/2

≤

⎛⎝∑
T∈Th

|u|qk+1,q,Th
qν+q−2
T

⎞⎠1/q

≤ |u|k+1,q,Ωh
ν+1−2/q.

Inequality (2.18) can be rewritten as(∑
i

wixi

)β
≤
(∑

i

wix
β
i

)(∑
i

wi

)β−1

.

For q ≥ 2 we use this inequality with β = q
2 , wi = h2

T , xi = |u|2k+1,q,Th
2ν−4/q
T :

⎛⎝∑
T∈Th

|u|2k+1,q,Th
2ν+2−4/q
T

⎞⎠1/2

≤

⎛⎝∑
T∈Th

h2
T |u|qk+1,q,Th

qν−2
T

⎞⎠ 1
q
⎛⎝∑
T∈Th

h2
T

⎞⎠ 1
2 − 1

q

.

(2.23)
Let oT be a sum of lengths of sides of a triangle T ∈ Th, then we clearly have
hT ≤ oT

2 and |T | = 1
2oTρT . This together with the shape regularity condition

(2.3) gives us
h2
T ≤ CRhTρT ≤ CR

1
2oTρT = CR |T | ,
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which can be summed over all T ∈ Th∑
T∈Th

h2
T ≤ CR |Ω| . (2.24)

Combining (2.22), (2.23) and (2.24) gives us

ϱ1(∥u− Uh∥1,2,Ω) ≤

⎛⎝∑
T∈Th

h2
T |u|qk+1,q,Th

qν−2
T

⎞⎠ 1
q
⎛⎝∑
T∈Th

h2
T

⎞⎠ 1
2 − 1

q

≤ c(Ω, CR, p)|u|k+1,q,Ωh
ν ,

and completes the proof.

Remark. The arguments from this proof can be repeated for different values of ν
on different parts of Ω. Considering what regularity was shown in Section 1.4, the
error estimates would require triangles near vertices to have length at most chν

(or ch
ν+1−2/q

2−2/q ) and the triangles near roots of u on boundary edges for noninteger
α > 0 to have length at most ch

ν
⌊α⌋+1 (or ch

ν+1−2/q
⌊α⌋+2−2/q ).

So far, we have shown that the H1(Ω)-norm of the error of the Galerkin
approximation converges to zero with a rate of convergence r, if the approximation
uses continuous piecewise polynomial functions of degree r, if the exact solution
is sufficiently smooth and if the exact solution is distant from zero on a part of
the boundary. Without the assumption (2.8), the order of convergence is divided
by α + 1. Next, we will show that if the exact solution is zero on the whole
boundary, we can improve the estimate for the H1(Ω)-seminorm.

Theorem 2.9. Let the weak solution u ∈ W k+1,q(Ω) ↪→ H1(Ω) given by (1.8) be
zero on ∂Ω. Then

|u− Uh|1,2,Ω ≤

⎧⎨⎩c|u|k+1,q,Ωh
ν+1− 2

q , q ∈ [1, 2),
c|u|k+1,q,Ωh

ν , q ∈ [2,∞),
(2.25)

where ν = min (r, k) and r is the degree of used polynomials.

Proof. Neglecting a term in (1.11) gives us

|u− Uh|21,2,Ω ≤ a(u, u− Uh) − a(Uh, u− Uh),

using Galerkin orthogonality (2.14) for a piecewise Lagrange interpolation yields

a(u, u− Uh) − a(Uh, u− Uh) = a(u, u− πhu) − a(Uh, u− πhu).
Using the fact that πhu is also zero on ∂Ω and Hölder inequality gives us

a(u, u− πhu) − a(Uh, u− πhu) =
∫

Ω
∇(u− Uh) · ∇(u− πhu)dx

≤ |u− Uh|1,2,Ω |u− πhu|1,2,Ω .

Dividing by |u− Uh|1,2,Ω leads to an estimate

|u− Uh|1,2,Ω ≤ |u− πhu|1,2,Ω .

Using Theorem 2.6 for H1(T )-seminorm instead of a norm and the same argu-
ments as in the proof of Theorem 2.8 gives us the sought estimate.
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3. Discrete problem with
numerical integration

3.1 Quadrature formula
In practical computation, integrals in the definition of the forms are evaluated by
numerical integration. In this section, we are concerned with the analysis of the
effect of numerical integration.

Consider a reference triangle T̂ with vertices (0, 0), (1, 0), (0, 1). We approx-
imate an integral of a continuous function ψ̂ over T̂ using values at M different
points xµ and M weights ωµ, µ = 1, . . . ,M . Considering that the area of T̂ is
1/2, we then have ∫

T̂
ψ̂dx ≈ 1

2

M∑
µ=1

ωµψ̂(xµ). (3.1)

Any triangle T can be obtained using an affine function FT , such that FT (T̂ ) = T .
Then the nodes become xT,µ = F (xµ), µ = 1, . . . ,M and we obtain a quadrature
formula for a function ψ defined on T

∫
T
ψdx ≈ |T |

M∑
µ=1

ωµψ(xT,µ), T ∈ Th. (3.2)

Analogically, we introduce numerical integration over edges S on ∂Ω. As a
reference element, we use the interval [0, 1] with m nodes xµ and weights βµ,
µ = 1, . . . ,m. The quadrature formula on reference interval is

∫ 1

0
ϑ̂dS ≈

m∑
µ=1

βµϑ(xµ), (3.3)

and the quadrature formula on edges is
∫
S
ϑdS ≈ |S|

m∑
µ=1

βµϑ(xS,µ), S ∈ sh. (3.4)

The errors of integration are

ET (ψ) =
∫
T
ψdx− |T |

M∑
µ=1

ωµψ(xT,µ),

ES(ϑ) =
∫
S
ϑdS − |S|

m∑
µ=1

βµϑ(xS,µ),

EΩ(ψ) =
∫

Ω
ψdx−

∑
T∈Th

|T |
M∑
µ=1

ωµψ(xT,µ) =
∑
T∈Th

ET (ψ),

E∂Ω(ϑ) =
∫
∂Ω
ϑdS −

∑
S∈sh

|S|
m∑
µ=1

βµϑ(xS,µ) =
∑
S∈sh

ES(ϑ).

(3.5)
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The approximations of forms are defined as

dd(u, v) = κ
∑
S∈sh

|S|
m∑
µ=1

βµ(|u|αuv)(xS,µ),

L∂Ω
d (v) =

∑
S∈sh

|S|
m∑
µ=1

βµ(ϕv)(xS,µ),

LΩ
d (v) =

∑
T∈Th

|T |
M∑
µ=1

ωµ(fv)(xT,µ).

(3.6)

We assume that the form b will be evaluated exactly as its arguments will be
polynomials of order ≤ 2r − 2. Furthermore, we again define forms

ad(u, v) = b(u, v) + dd(u, v),
Ld(v) = LΩ

d (v) + L∂Ω
d (v).

(3.7)

Definition 3.1. Let ET be the error of numerical quadrature on a triangle T ∈ Th.
We say that a quadrature on triangles is exact for polynomials of degree ≤ R, if
ET (vh) = 0 for any vh ∈ PR(T ), T ∈ Th.

Let ES be the error of numerical quadrature on an edge S ∈ sh. We say that
a quadrature on edges is exact for polynomials of degree ≤ R, if ES(vh) = 0 for
any vh ∈ PR(S), S ∈ sh.

We will use error estimates from Theorems 7.36 and 7.37 in [5].

Theorem 3.2. Let S ∈ sh. Let the quadrature formula on edges be exact for
polynomials of degree ≤ r+s1−1. Let q, q′ ∈ [1,∞] be such that 1/q+1/q′ = 1 (we
set 1/∞ = 0). Then there exists a constant c > 0 such that for any ϕ ∈ W s1,q(S),
vh ∈ Pr(S), we have:

|ES(ϕvh)| ≤ c|S|s1|ϕ|s1,q,S∥vh∥0,q′,S. (3.8)

Let T ∈ Th, where Th are shape regular triangulations. Let the quadrature formula
on triangles be exact for polynomials of degree ≤ r + s2 − 1. Let q, q′ ∈ [1,∞] be
such that 1/q + 1/q′ = 1. Then there exists a constant c > 0 such that for any
f ∈ W s2,q(T ), vh ∈ Pr(T ), we have:

|ET (fvh)| ≤ c|hT |s2|f |s2,q,T∥vh∥0,q′,T . (3.9)

The next theorem follows directly from these estimates.

Theorem 3.3. Let the quadrature formula on edges be exact for polynomials of
degree ≤ r + s1 − 1 on each S ∈ sh, let q ∈ (1,∞). Then there exists a constant
c > 0 such that for any ϕ ∈ W s1,q(∂Ω), vh ∈ Hr

h, we have:

|E∂Ω(ϕvh)| ≤ chs1|ϕ|s1,q,∂Ω∥vh∥1,2,Ω. (3.10)

Let the quadrature formula on triangles be exact for polynomials of degree ≤
r+ s2 − 1 on each T ∈ Th, where Th are shape regular, let q ∈ (1,∞). Then there
exists a constant c > 0 such that for any f ∈ W s2,q(Ω), vh ∈ Hr

h, we have:

|EΩ(fvh)| ≤ chs2|f |s2,q,Ω∥vh∥1,2,Ω. (3.11)
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Proof. We have

|E∂Ω(ϕvh)| ≤
∑
S∈sh

|ES(ϕvh)| ≤ chs1
∑
S∈sh

|ϕ|s1,q,S∥vh∥0,q′,S

By applying discrete Hölder inequality with parameters q and q′, 1
q

+ 1
q′ = 1, we

obtain ∑
S∈sh

|ϕ|s1,q,S∥vh∥0,q′,S ≤ |ϕ|s1,q,∂Ω∥vh∥0,q′,∂Ω.

Finally, by applying trace embedding H1(Ω) ↪→ Lq
′(∂Ω) on vh, we obtain the

first error estimate (3.10). Analogically, we also obtain

|EΩ(fvh)| ≤ chs2
∑
T∈Th

|f |s2,q,T∥vh∥0,q′,T ≤ chs2 |f |s2,q,Ω∥vh∥0,q′,Ω,

and we complete the proof of (3.11) with embedding H1(Ω) ↪→ Lq
′(Ω).

Remark. We have only used the fact that vh is continuous at the end by embedding
inequality. If vh ∈ Srh, we have:

|E∂Ω(ϕvh)| ≤ chs1|ϕ|s1,q,∂Ω∥vh∥0,q′,∂Ω, (3.12)
|EΩ(fvh)| ≤ chs2|f |s2,q,Ω∥vh∥0,q′,Ω. (3.13)

3.2 Approximate solution
Definition 3.4. We call uh ∈ Hr

h an approximate solution of problem (1.1)-(1.2)
if

ad(uh, vh) = Ld(vh) ∀vh ∈ Hr
h. (3.14)

In order to obtain error estimates of the approximate solution we need an
analogy to monotonicity results for the new form ad.

Theorem 3.5. Let the quadrature (3.4) have at least r+1 nodes and only positive
weights, i.e.

m ≥ r + 1, βµ > 0, µ = 1, . . . ,m. (3.15)

Then there exists a constant C5 > 0 such that the following inequality holds for
every uh, vh ∈ Hr

h:

ad(uh, uh − vh) − ad(vh, uh − vh) ≥ |uh − vh|21,2,Ω + C5∥uh − vh∥α+2
0,α+2,∂Ω. (3.16)

Let sh1 ⊂ sh be a set of some boundary segments and denote Gh = ⋃
sh1. If

|vh| ≥ εh > 0 on Gh (3.17)

holds for some εh > 0, then following inequality holds as well:

ad(uh, uh − vh) − ad(vh, uh − vh) ≥ |uh − vh|21,2,Ω + C6∥uh − vh∥2
0,2,Gh

. (3.18)
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Proof. We will proceed similarly to [10] Lemma 4.31. We have

ad(uh, uh − vh) − ad(vh, uh − vh) = |uh − vh|21,2,Ω + κ
∑
S∈sh

|S|ZS(uh, vh), (3.19)

where
ZS(uh, vh) =

m∑
µ=1

βµ (|uh|αuh − |vh|αvh) (uh − vh)(xS,µ). (3.20)

Now we apply either (1.10) and then we find that

ZS(uh, vh) ≥ 2−α
m∑
µ=1

βµ|uh − vh|α+2(xS,µ),

or (2.10) to find that

ZS(uh, vh) ≥ 1
2

m∑
µ=1

βµ(uh − vh)2(|uh|α + |vh|α)(xS,µ).

We clearly have ZS(uh, vh) ≥ 0 and additionally, since each edge has more nodes
than the degree of used polynomials r, ZS(uh, vh) > 0 for uh ̸= vh. Consider
a function ϕ̂h = ϕh ◦ FS defined on [0, 1], where FS : [0, 1] onto−−→ S is an affine
mapping. Then expressions

∥ϕ̂h∥α+2 =
⎛⎝ m∑
µ=1

βµ|ϕ̂h|α+2(xµ)
⎞⎠ 1

2+α

, (3.21)

and

∥ϕ̂h∥2 =
⎛⎝ m∑
µ=1

βµ|ϕ̂h|2(xµ)
⎞⎠ 1

2

, (3.22)

are norms of a finite-dimensional space of polynomials of degree at most r defined
on [0, 1]. Using the fact that all norms are equivalent on a finite dimensional space,
we conclude that there exist constants Ĉ1 and Ĉ2 such that

∥ϕ̂h∥α+2 ≥ Ĉ1∥ϕ̂h∥0,α+2,(0,1), ∥ϕ̂h∥2 ≥ Ĉ2∥ϕ̂h∥0,2,(0,1). (3.23)

This means that

ZS(uh, vh) ≥ 2−α∥ûh − v̂h∥α+2
α+2 ≥ 2−αĈ1

α+2
∥ûh − v̂h∥α+2

0,α+2,(0,1) =

= 2−αĈ1
α+2

∫ 1

0
|ûh − v̂h|α+2dS = 2−αĈ1

α+2
|S|−1

∫
S

|uh − vh|α+2dS,
(3.24)

and

ZS(uh, vh) ≥ εαh
2 ∥ûh − v̂h∥2

2 ≥ εαh
2 Ĉ2

2
∥ûh − v̂h∥2

0,2,(0,1) =

= εαh
2 Ĉ2

2
∫ 1

0
|ûh − v̂h|2dS = εαh

2 Ĉ2
2
|S|−1

∫
S

|uh − vh|2dS
(3.25)

for S ∈ sh1. Combining these inequalities with (3.19) gives the sought results.
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Remark. We will use this theorem for the piecewise Lagrange interpolation vh =
πhu. We expect the existence of suchGh and εh to follow from the conditions (2.8).
We have Gh ⊂ G and εh < ε and we would like this subset of the boundary ∂Ω and
the positive constant to be independent of h. It follows from the considerations
about a Lebesgue constant and CL, Cl defined in (3.45) that for sufficiently smooth
mesh refinement Th0 , some Gh0 and εh0 are bound to exist. Moreover, it also
follows that for any further refinements Th, the constant εh will not decrease and
the part of the boundary Gh will not decrease either, that is

εh ≥ εh0 > 0,
∂Ω ⊃ Gh ⊃ Gh0 .

(3.26)

The constant C6 in (3.18) is therefore independent of h.
We have an analogy to Lemma 1.3 and hence, by using Hölder inequality

∥u∥0,α+2,∂Ω |Ω|
1
2 − 1

α+2 ≥ ∥u∥0,2,∂Ω ,

and Poinacaré inequality (1.5), Theorem 1.4 c) follows and we have an inequality

ad(uh, uh − vh) − ad(vh, uh − vh) ≥ ϱ̃(∥uh − vh∥1,2,Ω),

where ϱ̃ is given by the same formula as ϱ but with different constants.

Lemma 3.6. Let the assumptions of Theorem 3.5 hold. Then

ad(uh, uh − vh) − ad(vh, uh − vh) ≥ ϱ̃(∥uh − vh∥1,2,Ω), (3.27)

where
ϱ̃(t) = C0dt

α+2. (3.28)

If the condition (3.17) holds, then we can redefine ϱ̃ as

ϱ̃(t) = C1dt
2. (3.29)

Uniform monotonicity of the form ad on the finite dimensional space Hr
h guar-

antees the existence and the uniqueness of the approximate solution uh given by
(3.14), see [13], [30].

Denote
R(t) = ϱ̃(t)/t (3.30)

and let R−1 be the inverse of R. It holds that

R−1(t) =
(
t

C0d

) 1
α+1

, (3.31)

which can be replaced under the condition (3.17) by

R−1(t) = t

C1d
. (3.32)

Then we have the following abstract error estimate.
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Theorem 3.7. Let uh be the approximate solution of problem (3.14) and let u be
the weak solution defined by (1.8). If vh ∈ Hr

h, then

∥u− uh∥1,2,Ω ≤∥u− vh∥1,2,Ω

+R−1

⎛⎝C1∥u− vh∥1,2,Ω(1 + ∥u∥α1,2,Ω + ∥vh∥α1,2,Ω)

+ sup
0 ̸=wh∈Hr

h

|a(vh, wh) − ad(vh, wh)|
∥wh∥1,2,Ω

+ sup
0̸=wh∈Hr

h

|L(wh) − Ld(wh)|
∥wh∥1,2,Ω

⎞⎠.
(3.33)

Proof. The monotonicity of ah from Theorem 3.5 gives us

ϱ̃(∥uh − vh∥1,2,Ω) ≤ ad(uh, uh − vh) − ad(vh, uh − vh).

By using
ad(uh, uh − vh) = Ld(uh − vh),
L(uh − vh) = a(u, uh − vh),

and adding and subtracting the same terms, we get

ad(uh, uh − vh) − ad(vh, uh − vh) = [Ld(uh − vh) − L(uh − vh)]
+ [a(u, uh − vh) − a(vh, uh − vh)] + [a(vh, uh − vh) − ad(vh, uh − vh)].

The first bracket can be estimated directly using an inequality from a definition
of a norm of a dual operator:

|Ld(uh − vh) − L(uh − vh)| ≤ sup
0̸=wh∈Hr

h

|L(wh) − Ld(wh)|
∥wh∥1,2,Ω

∥uh − vh∥1,2,Ω.

The second bracket can be estimated using the continuity (1.14) of the form a:

|a(u, uh − vh) − a(vh, uh − vh)| ≤C1
(
1 + ∥u∥α1,2,Ω + ∥vh∥α1,2,Ω

)
∥u− vh∥1,2,Ω ∥uh − vh∥1,2,Ω .

The third bracket can be estimated similarly to the first bracket:

|a(vh, uh − vh) − ad(vh, uh − vh)| ≤ sup
0̸=wh∈Hr

h

|a(vh, wh) − ad(vh, wh)|
∥wh∥1,2,Ω

∥uh−vh∥1,2,Ω.

Combining these estimates with the definition of R in (3.30) gives us

R(∥uh − vh∥1,2,Ω) ≤ sup
0̸=wh∈Hr

h

|L(wh) − Ld(wh)|
∥wh∥1,2,Ω

+ C1∥u− vh∥1,2,Ω(1 + ∥u∥α1,2,Ω + ∥vh∥α1,2,Ω) + sup
0̸=wh∈Hr

h

|a(vh, wh) − ad(vh, wh)|
∥wh∥1,2,Ω

.

(3.34)

By using triangle inequality ∥u − uh∥1,2,Ω ≤ ∥u − vh∥1,2,Ω + ∥uh − vh∥1,2,Ω, we
arrive at (3.33).
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Recall that
L(wh) − Ld(wh) = EΩ(fwh) + E∂Ω(ϕwh)

represents the error of integration of terms derived from the right hand sides of
(1.1) and (1.2). This error can be estimated using (3.11) and (3.10) from Theorem
3.3:

|L(wh) − Ld(wh)| ≤ c
(
hs2 |f |s2,q,Ω + hs1 |ϕ|s1,q,∂Ω

)
∥wh∥1,2,Ω . (3.35)

The term
a(vh, wh) − ad(vh, wh) = E∂Ω(|vh|αvhwh)

is the error of integration of the non-linear term on the boundary ∂Ω. It cannot
be estimated directly using (3.10), because the continuous piecewise polynomial
function vh may have jumps in its derivatives at vertices of boundary triangles
and some derivatives of |vh|α vh may become nonintegrable near the roots of vh in
case of noninteger parameter α. Using (3.8) and repeating arguments from the
proof of Theorem 3.3 on separate parts of the boundary will lead to an estimate
similar to (3.10). But first, we will need to prove boundedness of |vh|α vh on the
boundary ∂Ω in a norm of some Sobolev space.

For the purpose of error estimation of the term

∥u− vh∥1,2,Ω(1 + ∥u∥α1,2,Ω + ∥vh∥α1,2,Ω),

we will need vh to be a function from the space Hr
h such that ∥vh∥1,2,Ω is uni-

formly bounded based on u and ∥u− vh∥1,2,Ω converges to zero with some rate.
Therefore, we will set vh = πhu, where πh is the continuous piecewise Lagrange
interpolation operator.

3.3 Boundedness of interpolated function
In this section we are concerned with estimating derivatives of functions on the
boundary of Ω. As we are aiming to use (3.8), it is sufficient to consider one fixed
segment S ∈ sh of a boundary triangle TS of a triangulation Th. Let F be an
affine mapping of I = [0, |S|] onto S. Set ṽh = vh ◦ F for a function vh ∈ Hr

h.
Function ṽh is therefore a polynomial of degree r defined on interval [0, |S|].
Remark. Since |F ′| = 1, it follows that functions f measured in arbitrary W ∗(S)-
norm or in any C∗(S)-norm give the same result as functions f̃ = f ◦F measured
in the corresponding W ∗(I)-norm or the C∗(I)-norm. This affine transformation
is only used for simplicity as S ⊂ R2 uses two coordinates and I ⊂ R uses only one
coordinate. Therefore all derivatives of f̃ are only with respect to one variable.

Let us begin by expressing the actual terms which appear after using chain
rule on derivatives of |ṽh|α ṽh. We will proceed similarly to Lemma 1.8.

Lemma 3.8. Let ṽh be a polynomial of degree r on the interval [0, |S|]. Let α ≥ 0
and β ∈ N. Then

(|ṽh|α ṽh)(β)

can be expressed as a finite sum of terms of the form

c |ṽh|α+1−J
J∏
j=1

ṽh
(γj), (3.36)
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where c is a constant dependent on α and β, J ∈ N and γj ∈, j = 1, . . . , J are
positive integers satisfying ∑J

j=1 γj = β. If α ∈ N, then (|ṽh|α ṽh)(β) only contains
terms where the exponent α + 1 − J is non-negative.

Proof. We will use induction on β. When β = 1, the only term has c = α + 1,
J = 1 and γ1 = 1.

Suppose that that the lemma holds for β − 1. Then we only need to apply
d

dx to terms c |ṽh|α+1−J ′ ∏J ′

j=1 ṽh
(γ′

j), which have J ′ ∈ N and ∑J ′

j=1 γ
′
j = β − 1. If

the derivative d
dx is applied to any factor in ∏J ′

j=1 ṽh
(γ′

j), then the resulting term
does have the desired form with J = J ′, a single index γ′

j increased by one, the
remaining indices unchanged, and ∑J

j=1 γj = β. If d
dx is applied to |ṽh|α+1−J ′

,
then the resulting term has J = J ′ + 1, ∑J ′

j=1 γ
′
j + γJ ′+1 = β, where γJ ′+1 = 1,

and therefore also has the desired form.
Suppose that α ∈ N. Then the exponent α + 1 − J in |u|α+1−J is integer for

any J . The only possibility to obtain a negative exponent from the induction
step would be to apply d

dx to |ṽh|α+1−J ′
for J ′ such that α + 1 − J ′ ∈ [0, 1), i.e.

α+1−J ′ = 0. But then
(
|ṽh|0

)′
= 0 and the constant c would in fact be zero.

To estimate integrals of terms of the form (3.36), the most straight-forward
way is to estimate most of its factors in L∞-norm and take them out of the
integral. As we assume u ∈ W r+1,q(Ω) and the embeddings

W r+1,q(Ω) ↪→ Cr
(
Ω
)
, q > 2,

Hr+1(Ω) ↪→ Cr−1,λ
(
Ω
)
, λ ∈ [0, 1),

W r+1,q(Ω) ↪→ Cr−1,2− 2
q

(
Ω
)
, q ∈ [1, 2),

(3.37)

follow from (1.3), we can approach estimating of lower derivatives by consider-
ations applying to continuous functions rather than using properties of Sobolev
spaces.

Lemma 3.9. Let u ∈ Cr(TS), let πhu be its Lagrange interpolation of order r
using r + 1 nodes at the sides of TS. Let F be an affine mapping of I = [0, |S|]
onto S. Let ũ = u ◦ F and π̃hu = (πhu) ◦ F . Then for any i ∈ {0, . . . , r} holds
an estimate

|π̃hu|i,∞,I ≤
r∑
j=i

|S|j−i |ũ|j,∞,I . (3.38)

Proof. We will use induction on i downward from r to 0.
Let i = r. Our goal is to show that

|π̃hu|r,∞,I ≤ |ũ|r,∞,I .

Function π̃hu is a polynomial of degree r and its r-th derivative is a constant.
Therefore, it is sufficient to prove that π̃hu(r) = ũ(r)(t) for some t ∈ I or that a
continuous function (π̃hu− ũ)(r) has a root. The Lagrange interpolation is exact
at all nodes and thus π̃hu− ũ has r+1 roots in I. It follows from Rolle’s theorem
that (π̃hu− ũ)′ has r roots in I and repeating this argument r times gives us a
root of (π̃hu− ũ)(r) in I.
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Let the inequality (3.38) hold for i+ 1. Take arbitrary t, t0 ∈ I. Considering
that |[t0, t]| ≤ |I| = |S|, we have

⏐⏐⏐π̃hu(i)(t)
⏐⏐⏐ =

⏐⏐⏐⏐π̃hu(i)(t0) +
∫ t

t0
π̃hu

(i+1)(τ)dτ
⏐⏐⏐⏐ ≤

⏐⏐⏐π̃hu(i)(t0)
⏐⏐⏐+ |S| |π̃hu|i+1,∞,I .

Using (3.38) for i+ 1 and the definition of L∞-norm, we have

|π̃hu|i,∞,I ≤
⏐⏐⏐π̃hu(i)(t0)

⏐⏐⏐+ |S|
r∑

j=i+1
|S|j−(i+1) |ũ|j,∞,I

=
⏐⏐⏐π̃hu(i)(t0)

⏐⏐⏐+ r∑
j=i+1

|S|j−i |ũ|j,∞,I .

To complete the induction step, it suffices to find some t0, t1 ∈ I such that
π̃hu

(i)(t0) = ũ(i)(t1). Take i + 1 of the r + 1 nodes of interpolation. Construct a
polynomial v of degree at most i such that ũ, π̃hu and v are equal at these nodes.
Functions ũ − v and π̃hu − v have i + 1 roots in I and they both belong to a
space Ci(I). By Rolle’s theorem, there are t0 and t1 such that (π̃hu− v)(i) (t0) =
(ũ− v)(i) (t1) = 0. This together with the fact that v(i) is a constant completes
the proof.

The case of u ∈ Cr−1,2− 2
q (TS) for q ∈ (1, 2) (and for q = 2) is almost identical.

Lemma 3.10. Let u ∈ Cr−1,λ(TS), where λ ∈ (0, 1), let πhu be its Lagrange
interpolation of order r using r + 1 nodes at the sides of TS. Let F be an affine
mapping of I = [0, |S|] onto S. Let ũ = u ◦ F and π̃hu = (πhu) ◦ F . Then there
exists a constant c > 0 such that for any i ∈ {0, . . . , r} holds an estimate

|π̃hu|i,∞,I ≤ c |S|r−1+λ−i
⏐⏐⏐ũ(r−1)

⏐⏐⏐
C0,λ(I)

+
r−1∑
j=i

|S|j−1+λ−i |ũ|j,∞,I . (3.39)

Proof. Again, we will use induction on i from r down to 0.
Let i = r. Our goal is to show that

|π̃hu|r,∞,I ≤ c |S|−1+λ
⏐⏐⏐ũ(r−1)

⏐⏐⏐
C0,λ(I)

.

Let v be a Taylor polynomial of the function ũ of degree r− 1 at point 0, that is
v is a polynomial of degree ≤ r − 1 and it has the same derivatives of orders up
to r− 1 at the point 0 as ũ. Function ũ− v has the same r-th derivative as ũ and
also has the same seminorm (Hölder constant)

⏐⏐⏐ũ(r−1)
⏐⏐⏐
C0,λ(I)

. Its interpolation
π̃hu− v also has the r-th derivative unchanged. We only need to show that

|π̃hu− v|r,∞,I ≤ c |S|−1+λ
⏐⏐⏐(ũ− v)(r−1)

⏐⏐⏐
C0,λ(I)

,

where (ũ− v) satisfies (ũ− v)(j)(0) = 0 for all j = 0, . . . , r − 1.
It follows from (ũ− v)(r−1)(0) = 0 and the definition of the Hölder continuity

that
|ũ− v|r−1,∞,I ≤ |S|λ

⏐⏐⏐ũ(r−1)
⏐⏐⏐
C0,λ(I)

.
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Since (ũ− v)(r−2) = 0 (if r ≥ 2), it follows that

|ũ− v|r−2,∞,I ≤ |S|1+λ
⏐⏐⏐ũ(r−1)

⏐⏐⏐
C0,λ(I)

.

Repeating this argument yields

|ũ− v|0,∞,I ≤ |S|r−1+λ
⏐⏐⏐ũ(r−1)

⏐⏐⏐
C0,λ(I)

.

Consider an affine transformation of ũ − v and π̃hu − v from I = [0, |S|] onto
[0, 1]. Denote the resulting functions by û− v and ˆπhu− v. The function û− v
is also bounded in L∞-norm by |S|r−1+λ |ũ|C0,λ(I). The interpolation ˆπhu− v of
û− v is therefore bounded by⏐⏐⏐ ˆπhu− v

⏐⏐⏐
0,∞,[0,1]

≤ c |S|r−1+λ |ũ|C0,λ(I) ,

where c > 0 is a constant dependent only on the choice of nodes of interpolation
on the reference interval [0, 1]. The space of polynomials of degree ≤ r on [0, 1]
is a finite-dimensional space. Every seminorm on a finite-dimensional space can
be estimated from above by any norm. Taking a seminorm |·|r,∞,[0,1] and a norm
|·|0,∞,[0,1] thus yields ⏐⏐⏐ ˆπhu− v

⏐⏐⏐
r,∞,[0,1]

≤ c |S|r−1+λ |ũ|C0,λ(I) ,

where c > 0 is again some constant dependent only on π. Since affine transfor-
mation from I onto [0, 1] multiplies the r-th derivative by |S|r, we have

|S|r |π̃hu− v|r,∞,I =
⏐⏐⏐ ˆπhu− v

⏐⏐⏐
r,∞,[0,1]

≤ c |S|r−1+λ |ũ|C0,λ(I) .

This is (3.39) for i = r.
Since functions in the space Cr−1,λ(I) are also in Cj(I) for j = 0, . . . , r − 1,

the whole induction step in the proof of the previous lemma works here too and
we again have

|π̃hu|i,∞,I ≤ |ũ|i,∞,I + |S| |π̃hu|i+1,∞,I . (3.40)
Combining (3.40) and the inequality (3.39) for i+ 1 gives (3.39) for i.

To estimate the interpolation in a norm of Sobolev spaces we use a one-
dimensional corrolary of Theorem 2.6 or Theorem 3.1.5 in [4]. The interpolation
preserves polynomials of degree up to k ≤ r. We further set m = k+ 1 and p = q
in Theorem 2.6.
Corollary. Let the piecewise Lagrange interpolation πh preserve polynomials of
degree ≤ r. Let the restriction of the interpolated function πhu on any side of a
triangle be given only by the values of u on that side (that is, let it have r + 1
nodes on every side of a triangle). Let k ∈ N0, r ≤ k, q ≥ 1. Then there exists a
constant C(π) such that

|ũ− π̃hu|k+1,q,I ≤ C |ũ|k+1,q,I ∀ũ ∈ W k+1,q(I),

and it follows form triangle inequality that we also have

|π̃hu|k+1,q,I ≤ (C + 1) |ũ|k+1,q,I ∀ũ ∈ W k+1,q(I). (3.41)
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When we use polynomials of degree r and consider only numerical quadrature
for boundary nonlinear terms satisfying (3.15), we expect the order of convergence
in H1-norm to be r. But we need in addition to the regularity of the exact weak
solution u an upper bound for the r-th derivative of (|π̃hu|α π̃hu). We need to
have some upper estimate for all terms of the form

c |π̃hu|α+1−J
J∏
j=1

π̃hu
(γj),

J∑
j=1

γj = r. (3.42)

If α is an integer, then all exponents α+1−J in powers of |π̃hu| are non-negative
(those that are negative are in terms multiplied by c = 0) and we only need an
upper estimate of |π̃hu|. The lowest possible exponent is α+ 1 − r and therefore
in a case of α ≥ r − 1, we also only need an upper estimate.
Lemma 3.11. Let u ∈ W r+1,q(Ω), where r ∈ N0, q > 1. Let TS be a boundary
triangle of the triangulation Th, and I = [0, |S|]. Let πh be a continuous piecewise
Lagrange interpolation of order r that uses r+1 nodes on the sides of triangles. Let
F be the affine transformation of I onto S and let π̃hu = (πhu|S) ◦F . Let i ∈ N0,
i ≤ r, and let α ≥ 0 be the constant from (1.2). Let either α ∈ N0 or α ≥ i − 1.
Then |π̃hu|α π̃hu ∈ W i,q(I) and there exists a constant c = c(π, α, r, i, q) > 0 such
that

||π̃hu|α π̃hu|i,q,I ≤ c ∥u∥αk+1,q,Ω ∥ũ∥i,q,I . (3.43)
Proof. Due to triangle inequality in Lebesgue spaces, we only need to estimate
terms of the form given in (3.42) (with ∑J

j=1 γj = i) by the right hand-side of
(3.43). The assumption α ≥ i − 1 or α ∈ N0 guarantees that the exponents
α + 1 − J in (3.42) are non-negative for all terms that need to be estimated.
Since we have an embedding (3.37), all derivatives of orders up to r − 1 can be
estimated in L∞-norm by ∥ũ∥k+1,q,Ω due to (3.39) for q ∈ (1, 2] and all derivatives
of orders up to r due to (3.38) for q ∈ (2,∞).

Let us take a term of the form (3.42):

c |π̃hu|α+1−J
J∏
j=1

π̃hu
(γj),

J∑
j=1

γj = i.

Write the seminorm as an integral⏐⏐⏐⏐⏐⏐|π̃hu|α+1−J
J∏
j=1

π̃hu
(γj)

⏐⏐⏐⏐⏐⏐
0,q,I

=
⎛⎝∫

I
|π̃hu|(α+1−J)q

J∏
j=1

⏐⏐⏐π̃hu(γj)
⏐⏐⏐q dS

⎞⎠ 1
q

.

All terms that are continuous can be simply taken out of the integral and give us
some upper bound for the seminorm. Without loss of generality assume that γJ
is the largest order of derivative. Suppose for the moment that all other factors
are continuous and can be estimated in the following way:π̃hu(γj)


0,∞,I

≤ c ∥ũ∥Cr(I) ≤ c ∥u∥Cr(∂Ω) ≤ c ∥u∥r+1,q,Ω , (3.44)

with replacing the Cr-norm by the Cr−1,λ-norm if q ∈ (1, 2]. Then we have an
estimate⎛⎝∫

I
|π̃hu|(α+1−J)q

J∏
j=1

⏐⏐⏐π̃hu(γj)
⏐⏐⏐q dS

⎞⎠ 1
q

≤ c ∥u∥(α+1−J)+(J−1)
r+1,q,Ω

(∫
I

⏐⏐⏐π̃hu(γJ )
⏐⏐⏐q dS

) 1
q

.
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Using (3.41) gives an estimate of the last remaining part(∫
I

⏐⏐⏐π̃hu(γJ )
⏐⏐⏐q dS

) 1
q

= |π̃hu|γJ ,q,I
≤ c |ũ|γJ ,q,I

≤ c ∥ũ∥i,q,I .

Combining these estimates yields⏐⏐⏐⏐⏐⏐|π̃hu|α+1−J
J∏
j=1

π̃hu
(γj)

⏐⏐⏐⏐⏐⏐
0,q,I

≤ c ∥u∥αr+1,q,Ω ∥ũ∥i,q,I .

The assumption that all factors in |π̃hu|α+1−J ∏J
j=1 π̃hu

(γj) besides π̃hu(γJ ) can be
estimated by (3.44) follows from (3.38) and (3.39) if

• γJ ≤ r − 1,

• γJ = r and q > 2,

• γJ = i (in this case J = 1 and there are no other factors with derivatives).

Since we have γJ ≤ i ≤ r one of these cases always holds and we have in fact
completed the proof.

If neither α ∈ N0 nor α ≥ r − 1 and we are still trying to use the estimate
(3.8) of order r, we need to obtain some positive lower bounds on π̃hu. These
estimates can be derived with some aid from the Lebesgue constants if we include
an assumption that maxI |ũ| and minI |ũ| are relatively close, see Chapter 3 in
[23].

Consider a fixed Lagrange interpolation πh of order r preserving polynomials
of degree ≤ r on the boundary. More precisely: the nodes of interpolation on the
reference triangle T̂ are in one fixed position for all triangles T ∈ Th and there
are r + 1 nodes of interpolation on every side of this triangle. Take an arbitrary
function ũ ∈ C(I) such that ∥ũ∥0,∞,I ≤ 1. Then there exists a constant Λπ such
that ∥π̃hu∥C ≤ Λπ for all such ũ. It can be defined as

Λπ = max
ũ∈C(I)

∥ũ∥0,∞,I
≤1

∥π̃hu∥0,∞,I .

Considering that π̃hu is given by a finite (r + 1) amount of values of ũ and the
interpolation operator πh is linear, the maximum in the definition of Λπ can be
found by taking functions which have either 1 or −1 at each node (that is 2r+1

combinations). If we further consider that rescaling a function from one interval
onto another with a linear substitution will not change the function’s extremes,
we see that this constant Λπ is shared for all segments in sh for all triangulations
{Th} , h > 0.

If we now take a function ũ ∈ C(I) which is bounded by a+ b from above and
by a − b from below for some a ∈ R and b > 0, it follows that the interpolated
function π̃hu ∈ Pr(I) is bounded by a + Λπb from above and by a − Λπb from
below. Suppose that the values of ũ are in [CL, 1] for some constant CL ∈ (0, 1).
Then we have a = 1

2(1+CL) and b = 1
2(1 −CL), and π̃hu is estimated from below

by
1
2(CL + 1) − Λπ

2 (1 − CL) = 1
2 (CL(Λπ + 1) − (Λπ − 1)) ,
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k Λπ CL
1 1.000000 0.000000
2 1.250000 0.111111
3 1.422919 0.174549
4 1.559490 0.218594

Table 3.1: Values of optimal Lebesgue constants for polynomials of de-
grees up to 4 and the corresponding constants CL

which is zero for the choice CL = Λπ−1
Λπ+1 . Then, from the conditions

CL = Λπ − 1
Λπ + 1 , Cl ∈ (CL, 1), minI |ũ|

maxI |ũ|
≥ Cl, (3.45)

follows the lower bound estimate

min
I

|π̃hu| ≥ 1
2 (Cl(Λπ + 1) − (Λπ − 1)) max

I
|ũ| .

Therefore, we have an estimate in L∞-norm for a negative power of the interpo-
lated function

|π̃hu|−γ


0,∞,I
≤
(

2
Cl(Λπ + 1) − (Λπ − 1)

)γ
∥ũ∥γ0,∞,I , γ > 0. (3.46)

If the triangulation is refined by dividing some triangles into smaller ones, the
maximum of |u| on any new segment is bounded from above by the old maximum
and the new minimum is bounded from below by the old minimum. Thus the
new segment also satisfies the conditions (3.45) and the constant Cl might even
be increased.

Choosing linearly transformed Chebyshev nodes for the interpolation π gives
an estimate for the Lebesgue constant

Λπ = 2
π

(
log(r + 1) + 0.7219 + log 8

π

)
+O

(
r−2

)
, (3.47)

where r is the degree of interpolation and γ = 0.577215 is the Euler-Mascheroni
constant, see [12], [20]. The explicit formula for optimal Lebesgue constant is
known for k ≤ 3, see [27]. Using the optimal Lebesgue constants for r ≤ 4
(formulas (3.3) and (7.4) in [27]) give us some possible values for the constant CL
in (3.45).

Lemma 3.12. Let u ∈ W r+1,q(Ω), let S ∈ sh be a boundary segment such that u|S
is non-zero and does not change sign and furthermore, let minS |u|

maxS |u| ≥ Cl. Suppose
that Cl > CL, where CL is defined above. Let ũ be the affine transformation of u|S
onto I = [0, |S|] as defined above. Then there exists a constant c = c(π, α, r, q) > 0
such that

||π̃hu|α π̃hu|r,q,I ≤ c
(
∥u∥αr+1,q,Ω + ∥u∥2r−2−α

r+1,q,Ω

)
∥ũ∥r,q,I . (3.48)
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Proof. We can proceed similarly as we did in the proof of Lemma 3.11. The only
new concern is that now the exponents α + 1 − J in the terms of the form

c |π̃hu|α+1−J
J∏
j=1

π̃hu
(γj),

J∑
j=1

γj = r

can be negative. Whereas we previously used an estimate (3.44) for nonnegative
α + 1 − J , we now use

|π̃hu|α+1−J


0,∞,I
≤
(

2
Cl(Λπh

+ 1) − (Λπh
− 1)

)J−α−1

∥ũ∥J−α−1
0,∞,I ≤ c ∥u∥J−α−1

r+1,q,Ω ,

(3.49)
for negative α + 1 − J < 0. This estimate leads to an inequality⏐⏐⏐⏐⏐⏐|π̃hu|α+1−J

J∏
j=1

π̃hu
(γj)

⏐⏐⏐⏐⏐⏐
0,q,I

≤ c ∥u∥(J−α−1)+(J−1)
r+1,q,Ω ∥ũ∥r,q,I .

Since α + 1 < J ≤ r holds for negative exponents α + 1 − J < 0, the exponent
2J − 2 − α is between α and 2r − 2 − α. It follows that

∥u∥(J−α−1)+(J−1)
r+1,q,Ω ≤ ∥u∥αr+1,q,Ω + ∥u∥2r−2−α

r+1,q,Ω ,

and the inequality (3.48) holds.

3.4 Error estimation
The purpose of this section is to estimate the error of quadrature on the bound-
ary ∂Ω denoted by E∂Ω(|πhu|α (πhu)wh). We can divide the boundary segments
S ∈ sh into three disjoint sets sh = sh0 ∪ sh1 ∪ sh2.

• sh0 contains segments S with u|S = 0. Then also πhu|S = 0 and the
quadrature is exact there, i.e. ES(|πhu|α (πhu)wh) = 0.

• If α + 1 ≥ r or α ∈ N0, then sh1 contains all segments not in sh0. If
α /∈ N0 and α + 1 < r, then sh1 contains all segments not in sh0 satisfying
minS |u|
maxS |u| ≥ Cl, where Cl is given by (3.45). Then combining (3.48) (or (3.43))
and (3.8) gives us an error estimate of order r.

• sh2 contains the remaining segments, i.e. for α /∈ N0 and α + 1 < r, sh2
contains segments satisfying minS |u|

maxS |u| < Cl and u is not identically zero on
S. Let us set h2 = max {|S| ;S ∈ sh2} (or h2 = 0 if there are no segments
in sh2). Combining (3.43) and (3.8) gives us an error estimate of order

r2 = ⌊α⌋ + 1. (3.50)

Theorem 3.13. Let the weak solution u given in (1.8) belong to W r+1,q(Ω) and
let the right-hand side functions belong to spaces f ∈ W r,q(Ω) and ϕ ∈ W r,q(∂Ω).
Let {Th}h∈(0,h0) be a shape regular system of triangulations of Ω according to
(2.3). Let its boundary segments sh be divided according to the cases above for a
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piecewise continuous Lagrange interpolation πh of order r with r+1 nodes on sides
of triangles. Let the approximate solution be given by (3.14). Let the quadrature
formulas on edges and on triangles be exact for polynomials of degree ≤ 2r − 1
and let the quadrature formula on edges satisfy (3.15). Then there exist constants
c1 = c1(u, r, q,Ω, π) > 0, c2 = c2(u, r, q,Ω, π, α) > 0, c3 = c3(u, r, q,Ω, π, α) > 0,
c4 = c4(f, ϕ, r,Ω, π) > 0 such that

∥u− uh∥1,2,Ω ≤ c1h
r+1− 2

q +R−1
(
c2h

r+1− 2
q + c3 (hr + hr2

2 ) + c4h
r)
)
, (3.51)

if q ∈ (1, 2) and

∥u− uh∥1,2,Ω ≤ c1h
r +R−1 (c2h

r + c3 (hr + hr2
2 ) + c4h

r)) , (3.52)

if q ≥ 2, where R−1 is defined in (3.31)-(3.32).

Proof. It was proven in Theorem 3.7 that the error ∥u− uh∥1,2,Ω is bounded from
above by

∥u− πhu∥1,2,Ω +R−1

⎛⎝c∥u− πhu∥1,2,Ω(1 + ∥u∥α1,2,Ω + ∥πhu∥α1,2,Ω)

+ sup
0̸=wh∈Hr

h

|a(πhu,wh) − ad(πhu,wh)|
∥wh∥1,2,Ω

+ sup
0̸=wh∈Hr

h

|L(wh) − Ld(wh)|
∥wh∥1,2,Ω

⎞⎠.
Estimation of ∥u− πhu∥1,2,Ω by

∥u− πhu∥1,2,Ω ≤ |u|r+1,q,Ω h
r+1−2/q

for q ∈ (1, 2) and by
∥u− πhu∥1,2,Ω ≤ c |u|r+1,q,Ω h

r

for q ≥ 2 was done in the proof of Theorem 2.8. Inequality

∥πhu∥1,2,Ω ≤ c ∥u∥1,2,Ω

follows from (3.41) if consider that ∥̃·∥W ∗(I) = ∥·∥W ∗(S).
Since the quadrature formulas are exact for polynomials of degree ≤ 2r − 1

and
L(wh) − Ld(wh) = EΩ(fwh) + E∂Ω(ϕwh),

it follows from Theorem 3.3 that

sup
0̸=wh∈Hr

h

|L(wh) − Ld(wh)|
∥wh∥1,2,Ω

≤ chr
(
|f |r,q,Ω + |ϕ|r,q,∂Ω

)
.

Finally, we have

|a(πhu,wh) − ad(πhu,wh)| =
∑
S∈sh

ES (|πhu|α (πhu)wh) .

Errors on the segments sh = sh0∪sh1∪sh2 are estimated separately using Theorem
3.2. Since u = πhu = 0 on segments S ∈ sh0, we have∑

S∈sh0

ES (|πhu|α (πhu)wh) = 0.
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On segments S ∈ sh1, we can use the estimate
|ES (|πhu|α (πhu)wh)| ≤ c |S|r ||πhu|α πhu|r,q,S ∥wh∥0,q′,S ,

for 1
q

+ 1
q′ = 1, and then either (3.48) or (3.43)

||πhu|α πhu|r,q,S ≤ c
(
∥u∥αr+1,q,Ω

(
+ ∥u∥2r−2−α

r+1,q,Ω

))
∥u∥r,q,S ,

which yields
|ES (|πhu|α (πhu)wh)| ≤ c(u)hr ∥u∥r,q,S ∥wh∥0,q′,S .

Summing over all S ∈ sh1, using discrete Hölder inequality and trace embedding,
we conclude that⏐⏐⏐⏐⏐⏐

∑
S∈sh1

ES (|πhu|α (πhu)wh)

⏐⏐⏐⏐⏐⏐ ≤
∑
S∈sh1

c(u)hr ∥u∥r,q,S ∥wh∥0,q′,S

≤ c(u)hr ∥u∥r,q,⋃ sh1
∥wh∥0,q′,

⋃
sh1

≤ c(u)hr ∥u∥r+1,q,Ω ∥wh∥1,2,Ω .

On segments S ∈ sh2 we can similarly use the estimate
|ES (|πhu|α πhuwh)| ≤ c |S|r2 ||πhu|α πhu|r2,q,S

∥wh∥0,q′,S ,

followed by (3.43)
||πhu|α πhu|r2,q,S

≤ c ∥u∥αr+1,q,Ω ∥u∥r2,q,S
,

which leads to⏐⏐⏐⏐⏐⏐
∑
S∈sh2

ES (|πhu|α πhuwh)

⏐⏐⏐⏐⏐⏐ ≤ c(u)hr2
2 ∥u∥r+1,q,Ω ∥wh∥1,2,Ω .

Combining these estimates yields the inequalities (3.51) and (3.52).

Remark. In order to obtain the regularity u ∈ W r+1,q at least in the set Ω1
from Theorem 1.13, we need f ∈ W r−1,q(Ω) and ϕ ∈ W r−1/q,q(∂Ω). But the
computations in this theorem needed f ∈ W r,q(Ω) and ϕ ∈ W r,q(∂Ω). If f and ϕ
had only the regularity which was necessary to obtain the regularity of the weak
solution u, the order of convergence in this theorem would be decreased by 1.
Note that the function R−1 defined in (3.31)-(3.32) is linear, if the exact solution
u is sufficiently distant from zero on a large part of the boundary ∂Ω. Our
theoretical estimates for the order of convergence in the H1-norm are divided by
α+ 1 only if the exact solution is zero on most of the boundary. Similarly to the
Galerkin approximation, we can improve the estimate for the rate of convergence
in H1-seminorm by omitting the denominator α + 1, if the exact solution u is
zero on the whole boundary ∂Ω. In this case, we also need to assume that the
right-hand side integrals are evaluated exactly, that is∫

Ω
fvhdx,

∫
∂Ω
ϕvhdS,

can be evaluated exactly for the given functions f , ϕ from (1.1)-(1.2), and vh ∈
Hr
h. Whereas ∫

∂Ω
|vh|α vhwh, vh, wh ∈ Hr

h

is evaluated with numerical quadrature. The argument is similar to Theorem 2.9.
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Theorem 3.14. Let the weak solution u ∈ W r+1,q(Ω) given in (1.8) be zero on
∂Ω. Let an approximate solution uh ∈ Hr

h be given by
ad(uh, vh) = L(vh), ∀vh ∈ Hr

h, (3.53)
where ah and L are defined in (3.7) and (1.7). Let the quadrature formula on
edges satisfy (3.15). Then

|u− uh|1,2,Ω ≤

⎧⎨⎩c |u|r+1,q,Ω h
r+1− 2

q , q ∈ [1, 2),
c |u|r+1,q,Ω h

r, q ∈ [2,∞).
(3.54)

Proof. Neglecting the second term on the right-hand side of (3.16) gives us
|uh − πhu|21,2,Ω ≤ ad(uh, uh − πhu) − ad(πhu, uh − πhu).

The definitions of solutions uh and u yield
ad(uh, uh − πhu) = L(uh − πhu) = a(u, uh − πhu).

Using the fact that u is zero on ∂Ω and thus the integral of |u|α u(uh − πhu) on
the boundary is evaluated exactly, we obtain

a(u, uh − πhu) = ad(u, uh − πhu).
By Hölder inequality we finally get

ad(u, uh − πhu) − ad(πhu, uh − πhu) =
∫

Ω
∇(u− πhu) · ∇(uh − πhu)dx

≤ |u− πhu|1,2,Ω |uh − πhu|1,2,Ω .
Dividing

|uh − πhu|21,2,Ω ≤ |u− πhu|1,2,Ω |uh − πhu|1,2,Ω
by |uh − πhu|1,2,Ω leads to and estimate

|uh − πhu|1,2,Ω ≤ |u− πhu|1,2,Ω .
Triangle inequality further gives us

|u− uh|1,2,Ω ≤ |u− πhu|1,2,Ω + |πhu− uh|1,2,Ω ≤ 2 |u− πhu|1,2,Ω .
The arguments from the proof of Theorem 2.8 give us the sought estimate.

We have shown theoretically that using numerical integration for evaluating
forms in the definition of the approximate solution will not decrease the order
of convergence which was derived in section 2.3. In case of noninteger α > 0
and the degree of used polynomials r > α+ 1, it might be necessary to refine the
triangulation Th near the roots of the exact solution u on the boundary ∂Ω. These
refined triangles TS, S ∈ sh2 would require their size to be hTS

≤ ch
r

⌊α⌋+1 . Also
note that the estimates in section 2.3 only required the solution to be regular, but
the estimates in this chapter near the boundary edges were only able to use the
same regularity that we were able to prove in section 1.4. Numerical experiments
did not require this refinement to converge with the derived order of convergence.

Combining Theorem 2.8, ϱ−1
1 given in (2.20), and Theorem 2.9 suggested that

the Galerkin approximation given in (2.7) should always converge to the exact
weak solution defined in (1.8) in the H1-seminorm with a rate of convergence
of r. The same conclusions can be drawn from Theorem 3.13, R−1 given in
(3.32) and Theorem 3.14 in this Chapter, which takes into account the effect of
numerical integration. This theoretical result is in agreement with the numerical
experiments.
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4. Discontinuous Galerkin
method

4.1 Discretization
A similar analysis can be carried out by the discretization using piecewise polyno-
mial but in general discontinuous functions. Consider a polygonal domain Ω ⊂ R2

with a conforming triangulation Th satisfying (2.1). We denote the set of all faces
by Fh and we further distinguish the set of all boundary faces

FB
h = {Γ ∈ Fh; Γ ⊂ ∂Ω} ,

and the set of all inner faces

F I
h = Fh \ FB

h .

The set FB
h was denoted by sh in the previous chapters concerning FEM.

For every inner face Γ ∈ F I
h we choose an arbitrary but fixed unit vector nΓ

orthogonal to Γ. Then there are two neighbouring triangles T (L)
Γ , T

(R)
Γ ∈ Th such

that Γ = T
(L)
Γ ∩T (R)

Γ and we choose T (L)
Γ to be the one with outer normal nΓ (thus

making nΓ an inner normal to T (R)
Γ ). For any boundary face Γ ⊂ ∂Ω, by T (L)

Γ we
denote the element from Th adjacent to Γ and we set nΓ to be the outer normal.

For k ∈ N, q ≥ 1 and a triangulation Th we define a broken Sobolev space

W k,q(Ω, Th) =
{
v ∈ L2(Ω); v|T ∈ W k,q(T ) ∀T ∈ Th

}
(4.1)

and also Hk(Ω, Th) = W k,2(Ω, Th).
For functions v ∈ W k,p(Ω, Th) and inner faces Γ ∈ F I

h , we introduce notation

v|(L)
Γ = trace of v|

T
(L)
Γ

on Γ, v|(R)
Γ = trace of v|

T
(R)
Γ

on Γ,

⟨v⟩Γ = 1
2
(
v|(L)

Γ + v|(R)
Γ

)
, [v]Γ = v|(L)

Γ − v|(R)
Γ ,

(4.2)

for the left trace, the right trace, the mean value of traces and the jump of v on
Γ. Even though the value of [v]Γ depends on the choice of the orientation of nΓ,
the vector [v]ΓnΓ is independent of this orientation.

The approximate solution will be sought in a space of discontinuous piecewise
polynomial functions of degree r ∈ N :

Srh =
{
vh ∈ L1(Ω); vh|T ∈ Pr(T ), T ∈ Th

}
. (4.3)

We suppose that the set of triangulations {Th}h>0 is shape regular in accor-
dance with (2.3). Due to Theorem 1.7 the weak solution u given by (1.8) belongs
to the space W 2,q(Ω) for some q > 4

3 dependent on the largest inner angle in
Ω. From Sobolev embedding (1.3), it follows that u is in fact continuous with
[u]Γ = 0. In this section we give another definition for a (discontinuous) weak
solution with different forms. This newly defined formulation will be again satis-
fied by the same previously defined weak solution. Therefore, only the numerical
methods for finding it will differ.
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The weak solution can be derived by taking the equation (1.1) for the classical
solution u in Ω, multiplying it by a test function v ∈ W 2,q(Ω, Th), q > 1 integrating
over an element T ∈ Th, using Green’s theorem and boundary condition (1.2),
summing over all elements T ∈ Th and possibly adding some terms which are
zero for the weak solution.∫

T
fvdx =

∫
T

−∆uvdx = −
∫
∂T

∂u

∂n
vdS +

∫
T

∇u · ∇vdx,

−
∫
∂Ω

∂u

∂n
vdS =

∫
∂Ω

(κ |u|α u− ϕ) vdS,

∂u

∂n

⏐⏐⏐⏐
T

(L)
Γ

v|
T

(L)
Γ

+ ∂u

∂n

⏐⏐⏐⏐
T

(R)
Γ

v|
T

(R)
Γ

= nΓ · ⟨∇u⟩v|
T

(L)
Γ

− nΓ · ⟨∇u⟩v|
T

(R)
Γ

= nΓ · ⟨∇u⟩[v],∫
Ω
fvdx =

∫
∂Ω

(κ |u|α u− ϕ) vdS −
∑

Γ∈FI
h

∫
Γ
nΓ · ⟨∇u⟩[v]dS +

∑
T∈Th

∫
T

∇u · ∇vdx.

These considerations lead to the following form defined for functions
u ∈ W 2,q(Ω), q > 4

3 , v ∈ (Ω, Th):

bh(u, v) =
∑
T∈Th

∫
T

∇u · ∇vdx (4.4)

−
∑

Γ∈FI
h

∫
Γ

(nΓ · ⟨∇u⟩[v] + θnΓ · ⟨∇v⟩[u]) dS.

This form represents the left-hand side integration over elements T ∈ Th. The
terms multiplied by a parameter θ are zero for the weak solution. This param-
eter can be chosen as 1, 0,−1, which leads to symmetric, incomplete and non-
symmetric versions of the diffusion forms (4.9)-(4.11) denoted by SIPG, IIPG,
NIPG, respectively. Further, we introduce the interior penalty form

Jh(u, v) =
∑

Γ∈FI
h

∫
Γ
σ[u][v]d.S (4.5)

The coefficient σ is given by
σ = CW

hΓ
, (4.6)

where hΓ is the length of the face Γ and CW > 0 will be specified later. The form
d represents the nonlinear boundary term and dd is the form d evaluated using
numerical quadrature formula (3.4):

d(u, v) = κ
∑

Γ∈FB
h

∫
Γ

|u|α uvdS = κ
∫
∂Ω

|u|α uvdS, (4.7)

dd(u, v) = κ
∑

Γ∈FB
h

|Γ|
m∑
µ=1

βµ (|u|α uv) (xΓ,µ). (4.8)

Combining these forms into ah, Ah, and Adh will allow us to define the Galerkin
approximation and the approximate solution using relatively simple formulae.

ah(u, v) = bh(u, v) + Jh(u, v), (4.9)
Ah(u, v) = ah(u, v) + d(u, v), (4.10)
Adh(u, v) = ah(u, v) + dd(u, v). (4.11)
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Definition 4.1. We call uh ∈ Srh the discontinuous Galerkin approximation of
the weak solution given in (1.8) if

Ah(uh, vh) = L(vh) ∀vh ∈ Srh. (4.12)
Definition 4.2. We call uhd ∈ Srh the discontinuous approximate solution of the
problem (1.1)-(1.2) if

Adh(udh, vh) = Ld(vh) ∀vh ∈ Srh. (4.13)
The broken Sobolev space H1(Ω, Th) and its subspace Srh are Banach spaces

with seminorms

|v|H1(Ω,Th) =
⎛⎝∑
T∈Th

∫
T

|∇v|2 dx
⎞⎠ 1

2

, (4.14)

|v|h =
⎛⎝∑
T∈Th

∫
T

|∇v|2 dx+ Jh(v, v)
⎞⎠ 1

2

, (4.15)

and a norm
|||v||| =

(
|v|2h + ∥v∥2

L2(Ω)

) 1
2 . (4.16)

Let us summarize some basic properties used in the analysis of discontinuous
Galerkin method, see Theorems 4.1 and 4.4 in [3], Sections 2.5.1, 2.5.2, and 2.6.3
in [5] and Lemma 5.3 and Lemma 5.4 in [11].
Lemma 4.3. There exists a constant c = c(q) > 0 such that the following in-
equalities hold for all q ≥ 1, vh ∈ Srh, h > 0:

∥vh∥0,q,Ω ≤ c|||vh|||, (4.17)
∥vh∥0,q,∂Ω ≤ c|||vh|||. (4.18)

There exists a constant CI > 0 such that the following inverse inequality holds
for all vh ∈ Pr(T ), T ∈ Th, h > 0:

|vh|1,2,T ≤ CIh
−1
T ∥vh∥0,2,T . (4.19)

There exists a constant CM > 0 such that the following multiplicative trace in-
equality holds for all v ∈ H1(T ), T ∈ Th, h > 0:

∥v∥2
0,2,∂T ≤ CM

(
∥v∥0,2,T |v|1,2,T + h−1

T ∥v∥2
0,2,T

)
, (4.20)

and the following multiplicative trace inequality holds for all v ∈ W 1,q(T ), T ∈ Th,
h > 0, q ∈

(
4
3 , 2

)
, 1
q

+ 1
q′ = 1:

∥v∥2
0,2,∂T ≤ CM

(
∥v∥0,q′,T |v|1,q,T + h−1

T ∥v∥2
0,2,T

)
. (4.21)

Let the constant CW in (4.6) satisfy the following conditions for θ from (4.4):
CW > 0, for θ = −1 (NIPG), (4.22)
CW > 4CM(1 + CI), for θ = 1 (SIPG), (4.23)
CW > CM(1 + CI), for θ = 0 (IIPG), (4.24)

then the form ah is coercive in the following way:

ah(vh, vh) ≥ 1
2 |vh|2h (4.25)

holds for all vh ∈ Srh, h > 0.

38



4.2 Monotonicity and continuity
Deriving error estimates will require us to have lower estimates of the forms in
the definition of the DG solution, which will follow from monotonicity, upper esti-
mates following from continuity, and combining them with Galerkin orthogonality
and interpolation error estimates.

The continuity of the form Ah was proven in [11] Lemma 5.6.

Lemma 4.4. For q > 4
3 there exists a constant c > 0 such that

|Ah(u,w) − Ah(v, w)| ≤ c
{

|||u− v||| +Rh (u− v, q)

+Gh(u− v)
(
∥u∥α1,2,Ω + |||v|||α

)}
|||w|||

(4.26)

holds for all u ∈ W 2,q(Ω, Th), v, w ∈ Srh, h > 0, where

Rh(φ, q) =
⎛⎝CM ∑

T∈Th

hT |φ|1,q′,T |φ|2,q,T

⎞⎠1/2

(4.27)

for φ ∈ W 2,q(Ω, Th), q ∈
(

4
3 , 2

)
, 1
q

+ 1
q′ = 1 and

Rh(φ, q) =
⎛⎝CM ∑

T∈Th

hT |φ|1,2,T |φ|2,2,T

⎞⎠1/2

, (4.28)

for φ ∈ W 2,q(Ω, Th), q ≥ 2. Moreover,

Gh(φ) =
⎛⎝CM ∑

T∈Th

(
∥φ∥2

0,2,T h
−1
T + |φ|1,2,T ∥φ∥0,2,T

)⎞⎠1/2

(4.29)

for φ ∈ H1(Ω, Th).

Lemma 4.5. Let the constant CW satisfy conditions (4.22)-(4.24). Then the form
Ah is uniformly monotone on the space Srh in the following way: There exists a
continuous increasing function ρ : [0,∞) → [0,∞) such that

Ah(uh, uh − vh) − Ah(vh, uh − vh) ≥ ρ (|||uh − vh|||) , uh, vh ∈ Srh, h > 0. (4.30)

This lemma was proven in [11] Lemma 5.7 with a monotone function

ρ(t) =
{
ctα+2 for t ∈ [0, 1],
ct2 for t ∈ [1,∞). (4.31)

It follows from monotone operator theory, see [13], [30], that there exists exactly
one discontinuous Galerkin approximation uh ∈ Srh defined in (4.12).

We improve the monotonicity with condition

|vh| ≥ ε > 0 on G ⊂ ∂Ω, |G| > 0, h > 0, (4.32)

which follows from (3.45) and (2.8) for sufficiently refined triangulation Th. Note
that G and ε might be smaller than those given in (2.8), but they are not decreas-
ing as Th is refined further. Combining the coercivity (4.25) with (4.32) allows
us to redefine ρ.
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Lemma 4.6. Let CW satisfy conditions (4.22)-(4.24) and let the condition (4.32)
hold. Then (4.30) holds for a function

ρ(t) = ct2, t ∈ [0,∞). (4.33)

Proof. It follows from the definition (4.10) of Ah, linearity of ah, (4.25), Theorem
2.4, and Poincaré inquality (1.5) that

Ah(uh, uh − vh) − Ah(vh, uh − vh)
= ah(uh − vh, uh − vh) + d(uh, uh − vh) − d(vh, uh − vh)

≥ 1
2 |uh − vh|2h + c ∥uh − vh∥2

0,2,G

≥ c|||uh − vh|||2.

The same results can be obtained if the boundary terms are evaluated with
numerical quadrature.

Lemma 4.7. Let the quadrature formula (3.4) used in the evaluation of the form
dd (and thus Adh) use at least r + 1 nodes and have all weights positive, i.e. let
it satisfy (3.15). Let CW satisfy conditions (4.22)-(4.24). Then the form Adh
is uniformly monotone on Srh in the following way: There exists a continuous
increasing function ρ̃ : [0,∞) → [0,∞) such that

Adh(uh, uh−vh)−Adh(vh, uh−vh) ≥ ρ̃ (|||uh − vh|||) , uh, vh ∈ Srh, h > 0, (4.34)

where
ρ̃(t) =

{
ctα+2 for t ∈ [0, 1],
ct2 for t ∈ [1,∞). (4.35)

If the condition (4.32) also holds, then (4.34) holds for a function

ρ̃(t) = ct2, t ∈ [0,∞). (4.36)

Proof. Using the definition (4.11) of Adh and (4.25), we have

Adh(uh, uh − vh) − Adh(vh, uh − vh)
= ah(uh − vh, uh − vh) + dd(uh, uh − vh) − dd(vh, uh − vh)

≥ 1
2 |uh − vh|2h + κ

∑
S∈sh

|S|ZS(uh, vh),

where
ZS(uh, vh) =

m∑
µ=1

βµ (|uh|αuh − |vh|αvh) (uh − vh)(xS,µ). (4.37)

The inequalities
ZS(uh, vh) ≥ c ∥uh − vh∥α+2

0,α+2,Ω , (4.38)
and

ZS(uh, vh) ≥ c ∥uh − vh∥2
0,2,Ω , (4.39)

for (4.32) were shown in the proof of Theorem 3.5. Combining these inequalities
gives us (4.34) with (4.35) and (4.36).
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We again define monotone functions ρ1 and ρ̃1 for the error estimates as

ρ1(t) = ρ(t)
t
, ρ̃1(t) = ρ̃(t)

t
, t ≥ 0, (4.40)

and ρ−1
1 and ρ̃−1

1 are their inverses. The estimates above show that ρ1 and ρ̃1 are
either linear or grow with tα+1, and ρ−1

1 and ρ̃−1
1 are thus either linear or grow

with t
1

α+1 .
The last step needed before deriving error estimates is to express in some

simple terms the interpolation errors u−πhu evaluated in functions Rh(u−πhu, q)
and Gh(u− πhu) from the continuity of Ah.

Lemma 4.8. Let πh be a piecewise Lagrange interpolation of order r ∈ N, let the
system of triangulations {Th}, h > 0 be shape regular in accordance with (2.3),
let u ∈ W k,q(Ω), k ∈ N, k ≥ 2, ν = min(r + 1, k). Then

Rh(u− πhu, q) ≤ c

⎛⎝∑
T∈Th

h
2(ν−2/q)
T |u|2ν,q,T

⎞⎠1/2

, (4.41)

where c > 0 is independent of q > 4
3 and h > 0. There also exists c > 0

independent of h > 0 such that

Gh(u− πhu) ≤ c

⎛⎝∑
T∈Th

h
2ν+1−4/q
T |u|2ν,q,T

⎞⎠1/2

. (4.42)

Proof. Both estimates follow from applying (2.16) to (4.27)-(4.29). Let us show,
for example, (4.27).

We have q ∈
(

4
3 , 2

)
and 1

q
+ 1

q′ = 1, (2.16) gives us:

|u− πhu|1,q′,T ≤ c |u|ν,q,T h
ν−1+2

(
1
q′ − 1

q

)
T ,

|u− πhu|2,q,T ≤ c |u|ν,q,T h
ν−2
T .

Using this in the right-hand side of (4.27) yields
⎛⎝CM ∑

T∈Th

hT |u− πhu|1,q′,T |u− πhu|2,q,T

⎞⎠1/2

≤ c

⎛⎝∑
T∈Th

hT |u|2ν,q,T h
ν−1+2(1− 2

q )+ν−2
T

⎞⎠1/2

,

which is (4.41) for q ∈
(

4
3 , 2

)
.

4.3 Error estimation
Let us begin by estimating the error of DG approximation.
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Theorem 4.9. Let u ∈ W r+1,q(Ω), q > 4
3 be the weak solution given by (1.8),

let uh be the discontinuous Galerkin approximation of order r given by (4.12), let
the system of triangluations Th, h > 0 be shape regular in accordance with (2.3),
let CW satisfy (4.22)-(4.24). Then there exist constants c1, c2 > 0 independent of
u, h, such that

|||u− uh||| ≤ ρ−1
1

(
c1h

r+1−2/q |u|r+1,q,Ω

(
1 + h1/2 ∥u∥α1,2,Ω

))
+ c2h

r+1−2/q |u|r+1,q,Ω
(4.43)

for q ∈
(

4
3 , 2

)
, and

|||u− uh||| ≤ ρ−1
1

(
c1h

r |u|r+1,q,Ω

(
1 + h1/2 ∥u∥α1,2,Ω

))
+ c2h

r |u|r+1,q,Ω (4.44)

for q ≥ 2, where ρ1 was given in (4.40).

Proof. Let πh be a continuous piecewise Lagrange interpolation operator of order
r. Then |||u||| = ∥u∥1,2,Ω and |||πhu||| = ∥πhu∥1,2,Ω. By virtue of (4.30) and the
definitions of solutions uh and u,

ρ (|||uh − πhu|||) ≤ Ah(uh, uh − πhu) − Ah(πhu, uh − πhu)
= L(uh − πhu) − Ah(πhu, uh − πhu)
= Ah(u, uh − πhu) − Ah(πhu, uh − πhu).

This relation and Lemma 4.4 give us

ρ1 (|||uh − πhu|||) ≤ c

(
∥u− πhu∥1,2,Ω +Rh(u− πhu, q)

+Gh(u− πhu)
(
∥u∥α1,2,Ω + ∥πhu∥α1,2,Ω

))
.

Lemma 4.8 and inequality

∥πhu∥1,2,Ω ≤ c ∥u∥1,2,Ω

following from (2.16) imply

ρ1 (|||uh − πhu|||) ≤ c

⎛⎝ ∥u− πhu∥1,2,Ω +
⎛⎝∑
T∈Th

h
2(r+1−2/q)
T |u|2r+1,q,T

⎞⎠1/2

+
⎛⎝∑
T∈Th

h
2r+3−4/q
T |u|2r+1,q,T

⎞⎠1/2

∥u∥α1,2,Ω

⎞⎠.
The term ∥u− πhu∥1,2,Ω was estimated in Theorem 2.8 and the same ideas from
its proof give us⎛⎝∑

T∈Th

h
2(r+1−2/q)
T |u|2r+1,q,T

⎞⎠1/2

≤

⎧⎨⎩h
r+1−2/q |u|r+1,q,Ω , q ∈

(
4
3 , 2

)
,

chr |u|r+1,q,Ω , q ≥ 2.

Using this inequality yields

ρ1 (|||uh − πhu|||) ≤

⎧⎨⎩ch
r+1−2/q |u|r+1,q,Ω

(
1 + h1/2 ∥u∥α1,2,Ω

)
, q ∈

(
4
3 , 2

)
,

chr |u|r+1,q,Ω

(
1 + h1/2 ∥u∥α1,2,Ω

)
, q ≥ 2.
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Triangle inequality

|||u− uh||| ≤ ∥u− πhu∥1,2,Ω + |||uh − πhu|||

and the estimate of ∥u− πhu∥1,2,Ω from Theorem 2.8 completes the proof.

The discontinuous approximate solution can be estimated similarly with ideas
from Theorem 3.7 and Theorem 3.13. Let us again separate the boundary faces
FB
h into three disjoint sets FB

h = FB
h0 ∪ FB

h1 ∪ FB
h2.

• FB
h0 contains segments Γ with u|Γ = 0. Then also πhu|Γ = 0 and the

quadrature is exact there, i.e. EΓ(|πhu|α (πhu)wh) = 0.

• If α + 1 ≥ r or α ∈ N0, then FB
h1 contains all segments not in FB

h0. If
α /∈ N0 and α+ 1 < r, then FB

h1 contains all segments not in FB
h0 satisfying

minΓ|u|
maxΓ|u| ≥ Cl, where Cl is given by (3.45). Then combining (3.48) (or (3.43))
and (3.8) gives us an error estimate of order r.

• FB
h2 contains the remaining segments, i.e. for α /∈ N0 and α + 1 < r, FB

h2
contains segments satisfying minΓ|u|

maxΓ|u| < Cl and u is not identically zero on
Γ. Let us set h2 = max

{
|Γ| ; Γ ∈ FB

h2

}
(or h2 = 0 if there are no segments

in FB
h2). Combining (3.43) and (3.8) gives us an error estimate of order

r2 = ⌊α⌋ + 1.

Theorem 4.10. Let u ∈ W r+1,q(Ω), q > 4
3 be the weak solution given by (1.8),

let f ∈ W r,q(Ω) and ϕ ∈ W r,q(∂Ω), let udh be the discontinuous Galerkin approx-
imation of order r given by (4.13), let CW satisfy (4.22)-(4.24), let the system
of triangluations Th, h > 0 be shape regular in accordance with (2.3), let the
quadrature formula (3.4) used in the evaluation of the form dd (and thus Adh)
satisfy (3.15), let the quadrature formulas on edges and on triangles be exact for
polynomials of degree ≤ 2r − 1, let the boundary faces FB

h be divided into FB
h0,

FB
h1, FB

h2 as above. Then there exist constants c1, c2, c3 > 0 independent of h such
that

|||u− udh||| ≤ c1h
r+1− 2

q + ρ̃−1
1

(
c2h

r+1− 2
q + c3 (hr + hr2

2 ))
)
, (4.45)

if q ∈
(

4
3 , 2

)
, and

|||u− udh||| ≤ c1h
r + ρ̃−1

1 (c2h
r + c3 (hr + hr2

2 ))) , (4.46)

if q ≥ 2, where ρ̃1 was given in (4.40).

Proof. Let πh be a continuous piecewise Lagrange interpolation operator of order
r. Inequality (4.34) gives us

ρ̃ (|||udh − πhu|||) ≤ Adh(udh, udh − πhu) − Adh(πhu, udh − πhu). (4.47)

Using
Adh(udh, udh − πhu) = Ld(udh − πhu),

L(udh − πhu) = Ah(u, udh − πhu),
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and adding and subtracting the same terms, we get

Adh(udh, udh − πhu) − Adh(πhu, udh − πhu) = [Ld(udh − πhu) − L(udh − πhu)]
+ [Ah(u, udh − πhu) − Ah(πhu, udh − πhu)]
+ [Ah(πhu, udh − πhu) − Adh(πhu, udh − πhu)].

The first bracket can be estimated with (3.13) and (3.12):

|Ld(udh − πhu) − L(udh − πhu)|
≤ chr

(
|f |r,q,Ω ∥vh∥0,q′,Ω + |ϕ|r,q,∂Ω ∥vh∥0,q′,∂Ω

)
,

which can be further estimated with (4.17) and (4.18) to obtain

|Ld(udh − πhu) − L(udh − πhu)| ≤ chr|||vh|||.

The third bracket can be estimated similarly to find

|Ah(πhu, udh − πhu) − Adh(πhu, udh − πhu)| ≤ chr ||πhu|α πhu|r,q,∂Ω |||vh|||,

which was already estimated in the proof of Theorem 3.13. The second bracket
was estimated in the proof of Theorem 4.9 by

chr+1−2/q |u|r+1,q,Ω

(
1 + h1/2 ∥u∥α1,2,Ω

)
, q ∈

(4
3 , 2

)
,

chr |u|r+1,q,Ω

(
1 + h1/2 ∥u∥α1,2,Ω

)
, q ≥ 2.

Combining these inequalities, using triangle inequality

|||u− uh||| ≤ ∥u− πhu∥1,2,Ω + |||uh − πhu|||

and the estimate of ∥u− πhu∥1,2,Ω from Theorem 2.8 completes the proof.

If the exact weak solution is zero on the whole boundary, we can again similarly
improve the estimate of the order of convergence in the |·|h-seminorm.

Theorem 4.11. Let the weak solution u ∈ W r+1,q(Ω), q > 4
3 given by (1.8)

be zero on ∂Ω, let uh be the discontinuous Galerkin approximation of order r
given by (4.12), let the system of triangluations Th, h > 0 be shape regular in
accordance with (2.3), let CW satisfy (4.22)-(4.24). Then there exists a constant
c > 0 independent of u, h, such that

|u− uh|h ≤

⎧⎨⎩ch
r+1−2/q |u|r+1,q,Ω , q ∈

(
4
3 , 2

)
,

chr |u|r+1,q,Ω , q ≥ 2.
(4.48)

Proof. Let πhu be a piecewise continuous Lagrange interpolation of u. Using
(4.25), the definitions of norms ah, Ah, Jh in (4.9), (4.10), (4.5), Hölder inequality,
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and the definitions of the solutions u and uh in (1.8), (4.12), we have

1
2 |uh − πhu|2h

= 1
2

⎛⎜⎝∑
T∈Th

∫
T

|∇(uh − πhu)|2 dx+
∑

Γ∈FI
h

∫
Γ
σ[uh − πhu]2dS

⎞⎟⎠
≤ ah(uh − πhu, uh − πhu)
≤ Ah(uh, uh − πhu) − Ah(πhu, uh − πhu)
= L(uh − πhu) − Ah(πhu, uh − πhu)
= Ah(u, uh − πhu) − Ah(πhu, uh − πhu)

=
∑
T∈Th

∫
T

∇(u− πhu) · ∇(uh − πhu)dx

+
∑

Γ∈FI
h

∫
Γ
σ[u− πhu][uh − πhu]dS

−
∑

Γ∈FI
h

∫
Γ

(nΓ · ⟨∇(u− πhu)⟩[uh − πhu] + θnΓ · ⟨∇(uh − πhu)⟩[u− πhu]) dS

+ κ
∫
∂Ω

(|u|α u− |πhu|α πhu) (uh − πhu)dS.
(4.49)

Hölder inequality gives us∑
T∈Th

∫
T

∇(u− πhu) · ∇(uh − πhu)dx+
∑

Γ∈FI
h

∫
Γ
σ[u− πhu][uh − πhu]dS

≤ |u− πhu|h |uh − πhu|h .

Since u = πhu = 0 on ∂Ω,

κ
∫
∂Ω

(|u|α u− |πhu|α πhu) (uh − πhu)dS = 0.

Both u and πhu are continuous, therefore∑
Γ∈FI

h

∫
Γ
θnΓ · ⟨∇(uh − πhu)⟩[u− πhu]d = 0.

Using Hölder inequality on
∫

Γ nΓ · ⟨∇(u− πhu)⟩[uh − πhu] leads to∑
Γ∈FI

h

∫
Γ
nΓ · ⟨∇(u− πhu)⟩[uh − πhu]dS

≤

⎛⎜⎝ ∑
Γ∈FI

h

∫
Γ
σ[uh − πhu]2dS

⎞⎟⎠
1
2
⎛⎜⎝ ∑

Γ∈FI
h

∫
Γ
σ−1 (nΓ · ⟨∇(u− πhu)⟩)2 dS

⎞⎟⎠
1
2

.

Using these inequalities in (4.49) and dividing it by |uh − πhu|h yields

|uh − πhu|h ≤ c

⎛⎜⎜⎝|u− πhu|h +

⎛⎜⎝ ∑
Γ∈FI

h

∫
Γ
σ−1 (nΓ · ⟨∇(u− πhu)⟩)2 dS

⎞⎟⎠
1
2
⎞⎟⎟⎠ ,
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which can be estimated by multiplicative trace inequalities (4.20) and (4.21) for
1
q

+ 1
q′ = 1, if q ∈

(
4
3 , 2

)
:

∑
Γ∈FI

h

∫
Γ
σ−1 (nΓ · ⟨∇(u− πhu)⟩)2 dS

≤ c
∑
T∈Th

(
h |u− πhu|1,2,T |u− πhu|2,2,T + |u− πhu|21,2,T

)
,

∑
Γ∈FI

h

∫
Γ
σ−1 (nΓ · ⟨∇(u− πhu)⟩)2 dS

≤ c
∑
T∈Th

(
h |u− πhu|1,q′,T |u− πhu|2,q,T + |u− πhu|21,2,T

)
.

Triangle inequality |u− uh|h ≤ |u− πhu|h + |uh − πhu|h and the fact that

|u− πhu|h = |u− πhu|1,2,Ω ,

lead to

|u− uh|h ≤ c
(

|u− πhu|1,2,Ω +
(
R2
h(u− πhu, q) + |u− πhu|21,2,Ω

)1/2
)
.

Using a2 + b2 ≤ (a + b)2, estimates of |u− πhu|1,2,Ω in Theorem 2.8, and (4.41)
completes the proof.

If we consider a problem, where the numerical quadrature is used only on the
nonlinear boundary term, but the right-hand side integrals are evaluated exactly,
we still obtain the same result with almost identical proof.

Theorem 4.12. Let the weak solution u ∈ W r+1,q(Ω), q > 4
3 given by (1.8) be

zero on ∂Ω, let udh ∈ Srh be the discontinuous Galerkin approximation given by

Adh(udh, vh) = L(vh), ∀vh ∈ Srh. (4.50)

Let the system of triangluations Th, h > 0 be shape regular in accordance with
(2.3), let CW satisfy (4.22)-(4.24), let the quadrature formula (3.4) used in the
evaluation of the form Adh satisfy (3.15). Then there exists a constant c > 0
independent of u, h, such that

|u− udh|h ≤

⎧⎨⎩ch
r+1−2/q |u|r+1,q,Ω , q ∈

(
4
3 , 2

)
,

chr |u|r+1,q,Ω , q ≥ 2.
(4.51)

Proof. Let πhu be a piecewise continuous Lagrange interpolation of u. Inequality
(4.25) gives us

1
2 |udh − πhu|2h ≤ ah(udh − πhu, udh − πhu)

≤ Adh(udh, udh − πhu) − Adh(πhu, udh − πhu).

Using the definitions of the solutions u and uh and the fact that numerical quadra-
ture is evaluated exactly for functions which are identically zero, we have

Adh(udh, udh − πhu) = L(udh − πhu) = Ah(u, udh − πhu),
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Adh(πhu, udh − πhu) = Ah(πhu, udh − πhu).

Therefore,

1
2 |udh − πhu|2h ≤ Ah(u, udh − πhu) − Ah(πhu, udh − πhu),

and the rest of this proof is identical to Theorem 4.11.

We have proven theoretically that the results concerning the error estimates
of FEM derived in Chapters 2 and 3 also hold for DG method under the same as-
sumptions. The order of convergence depends on the degree of used polynomials,
the regularity of the exact solution and it is again divided by α + 1, if the weak
solution is zero on the boundary. For the DG method, the approximate solution
converges to the exact weak solution in the |||·|||-norm instead of the H1-norm. If
the exact solution is zero on the boundary ∂Ω, we have improved the order of
convergence in the |·|h-seminorm instead of the H1-seminorm.
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5. Numerical experiments
In this chapter we present two numerical examples computed using the FEniCS
software [1]. We explore the reduction of the order of convergence caused by
the nonlinearity, how it affects different norms, and whether this changes, if the
exact solution of problem (1.1)-(1.2) is zero on the whole boundary ∂Ω. In both
experiments we discretize the problem by the FEM and by the SIPG variant
of the DG method. We use uniform triangular meshes with element diameters
hl = h0

2l , l = 0, 1, . . . , 5. The amount of degrees of freedom (DOF) is therefore
expected to increase about four times with each refinement. Denoting the error
of the discrete solution by eh = u − uh, we compute the experimental order of
convergence (EOC) by

EOC =
log ehl−1 − log ehl

log hl−1 − log hl
, l = 1, 2, . . . , 5. (5.1)

The discrete problems (2.7), (3.14), (4.12), (4.13) represent nonlinear systems
for α > 0. We solved this problem by a dampened Newton method with tolerance
on the residual 10−9.

5.1 Example 1 - solution is zero on the bound-
ary

In the first experiment we consider the problem (1.1)-(1.2) on a unit square
domain Ω = (0, 1)2. The data f and ϕ are chosen such that the exact solution is

u(x1, x2) = x1(1 − x1)x2(1 − x2)
(
x2

1 + x2
2

)1/4
. (5.2)

This function belongs to W 4,q(Ω), q ∈
(
1, 4

3

)
, or H3.5−δ(Ω), δ > 0. Therefore,

we expect |eh|1,2,Ω ≈ O
(
hmin(2.5,r)

)
and ∥eh∥0,2,Ω ≈ O

(
h

min(2.5,r)
α+1

)
.

We have discretized the problem with FEM and SIPG variant of the DG
method. For polynomials of degree r = 2 we have tried different values of the
nonlinearity parameter α = 0.5, 1.0, 1.5, 2.0, and for parameter α = 1.5 we have
tried FEM with polynomials of degrees r = 1, 2, 3, 4. The results shown in Table
5.1 and Table 5.2 also include the mesh element size h = maxT∈Th

hT , the number
of degrees of freedom and the number of Newton iterations.

The H1-seminorm and |·|h-seminorm seem to behave as expected, i.e. their
order of convergence is min(2.5, r). The most significant part of the error mea-
sured in H1-norm (or |||·|||-norm) was its L2-norm. Our estimates for the L2-norm
give us an order of convergence min(2.5,r)

α+1 , which would be 1
α+1 ,

2
α+1 ,

2.5
α+1 ,

2.5
α+1 for

r = 1, 2, 3, 4, respectively. The EOC, however, suggests 2
α+1 ,

2.5
α+1 ,

2.5
α+1 ,

2.5
α+1 for

r = 1, 2, 3, 4, respectively. The theoretical error estimate is therefore suboptimal.

48



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

−0.0001

0.0153

0.0308

0.0462

0.0617

0.0772

0.0926

0.1081

(a) Example 1 - function, which is zero
on the whole boundary

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

−1.000

−0.714

−0.429

−0.143

0.142

0.428

0.714

0.999

(b) Example 2 - smooth function, which
is nonzero on a part of the boundary

Figure 5.1: The exact weak solutions of the discretized problems.
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Figure 5.2: Example 1 - EOC of FEM for α = 1.5.
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Figure 5.3: Example 1 - EOC measured in ∥·∥0,2,Ω for r = 2.
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α = 1.5, r = 1
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 49 4 9.3448e-02 – 7.9119e-02 – 1.2244e-01 –
0.188 161 6 4.8018e-02 0.96 4.0634e-02 0.96 6.2904e-02 0.96
0.094 577 6 2.7109e-02 0.82 2.0042e-02 1.02 3.3713e-02 0.90
0.047 2177 6 1.5600e-02 0.80 9.8458e-03 1.03 1.8447e-02 0.87
0.023 8449 6 8.8992e-03 0.81 4.8780e-03 1.01 1.0148e-02 0.86
0.012 33281 6 5.0395e-03 0.82 2.4321e-03 1.00 5.5957e-03 0.86
α = 1.5, r = 2
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 3 2.6724e-02 – 8.6570e-03 – 2.8091e-02 –
0.188 577 6 1.2058e-02 1.15 2.2618e-03 1.94 1.2268e-02 1.20
0.094 2177 6 5.9243e-03 1.03 5.7373e-04 1.98 5.9520e-03 1.04
0.047 8449 6 2.9464e-03 1.01 1.4479e-04 1.99 2.9499e-03 1.01
0.023 33281 6 1.4700e-03 1.00 3.6421e-05 1.99 1.4704e-03 1.00
0.012 132097 6 7.3425e-04 1.00 9.1384e-06 1.99 7.3430e-04 1.00
α = 1.5, r = 3
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 337 3 1.2840e-02 – 8.3916e-04 – 1.2867e-02 –
0.188 1249 6 4.9724e-03 1.37 1.2809e-04 2.71 4.9741e-03 1.37
0.094 4801 5 3.3908e-03 0.55 1.5021e-05 3.09 3.3908e-03 0.55
0.047 18817 6 1.6746e-03 1.02 2.0634e-06 2.86 1.6746e-03 1.02
0.023 74497 6 8.3301e-04 1.01 2.9962e-07 2.78 8.3301e-04 1.01
0.012 296449 3 4.1014e-04 1.02 4.7016e-08 2.67 4.1014e-04 1.02
α = 1.5, r = 4
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 577 3 9.6870e-03 – 1.4266e-04 – 9.6880e-03 –
0.188 2177 6 5.0551e-03 0.94 1.4161e-05 3.33 5.0551e-03 0.94
0.094 8449 6 2.5318e-03 1.00 2.3612e-06 2.58 2.5318e-03 1.00
0.047 33281 6 1.2653e-03 1.00 4.3600e-07 2.44 1.2653e-03 1.00
0.023 132097 6 6.3245e-04 1.00 8.1398e-08 2.42 6.3245e-04 1.00
0.012 526337 4 2.9917e-04 1.08 1.5154e-08 2.43 2.9917e-04 1.08
α = 0.5, r = 2
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 4 2.3779e-03 – 8.6544e-03 – 8.9752e-03 –
0.188 577 5 6.3232e-04 1.91 2.2617e-03 1.94 2.3485e-03 1.93
0.094 2177 4 1.9356e-04 1.71 5.7372e-04 1.98 6.0550e-04 1.96
0.047 8449 3 6.0476e-05 1.68 1.4479e-04 1.99 1.5691e-04 1.95
0.023 33281 3 1.8977e-05 1.67 3.6421e-05 1.99 4.1069e-05 1.93
0.012 132097 3 6.0396e-06 1.65 9.1384e-06 1.99 1.0954e-05 1.91
α = 1.0, r = 2
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 4 1.0793e-02 – 8.6566e-03 – 1.3835e-02 –
0.188 577 6 3.9942e-03 1.43 2.2618e-03 1.94 4.5901e-03 1.59
0.094 2177 6 1.6433e-03 1.28 5.7373e-04 1.98 1.7406e-03 1.40
0.047 8449 5 6.8640e-04 1.26 1.4479e-04 1.99 7.0150e-04 1.31
0.023 33281 4 2.8784e-04 1.25 3.6421e-05 1.99 2.9014e-04 1.27
0.012 132097 3 1.1988e-04 1.26 9.1384e-06 1.99 1.2023e-04 1.27
α = 2.0, r = 2
h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 161 3 4.8888e-02 – 8.6572e-03 – 4.9648e-02 –
0.188 577 6 2.5182e-02 0.96 2.2618e-03 1.94 2.5284e-02 0.97
0.094 2177 6 1.3928e-02 0.85 5.7373e-04 1.98 1.3940e-02 0.86
0.047 8449 6 7.7818e-03 0.84 1.4479e-04 1.99 7.7831e-03 0.84
0.023 33281 6 4.3594e-03 0.84 3.6421e-05 1.99 4.3595e-03 0.84
0.012 132097 6 2.4446e-03 0.83 9.1384e-06 1.99 2.4446e-03 0.83

Table 5.1: Example 1 - number of DOF and Newton iterations,
discretization errors and convergence rates for r = 1, 2, 3, 4 and
α = 0.5, 1.0, 1.5, 2.0 in FEM.
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α = 0.5, r = 2
h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 4 2.3711e-03 – 7.7517e-03 – 8.1062e-03 –
0.188 1536 5 6.3176e-04 1.91 2.0084e-03 1.95 2.1054e-03 1.94
0.094 6144 4 1.9354e-04 1.71 5.0545e-04 1.99 5.4124e-04 1.96
0.047 24576 3 6.0472e-05 1.68 1.2673e-04 2.00 1.4042e-04 1.95
0.023 98304 3 1.8994e-05 1.67 3.1764e-05 2.00 3.7009e-05 1.92
0.012 393216 3 5.9364e-06 1.68 7.9534e-06 2.00 9.9246e-06 1.90
α = 1.0, r = 2
h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 4 1.0791e-02 – 7.7532e-03 – 1.3288e-02 –
0.188 1536 6 3.9941e-03 1.43 2.0084e-03 1.95 4.4706e-03 1.57
0.094 6144 6 1.6433e-03 1.28 5.0545e-04 1.99 1.7193e-03 1.38
0.047 24576 5 6.8640e-04 1.26 1.2673e-04 2.00 6.9800e-04 1.30
0.023 98304 4 2.8785e-04 1.25 3.1764e-05 2.00 2.8960e-04 1.27
0.012 393216 3 1.1989e-04 1.26 7.9534e-06 2.00 1.2015e-04 1.27
α = 1.5, r = 2
h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 4 2.6723e-02 – 7.7536e-03 – 2.7825e-02 –
0.188 1536 6 1.2058e-02 1.15 2.0084e-03 1.95 1.2224e-02 1.19
0.094 6144 6 5.9243e-03 1.03 5.0545e-04 1.99 5.9459e-03 1.04
0.047 24576 6 2.9464e-03 1.01 1.2673e-04 2.00 2.9491e-03 1.01
0.023 98304 6 1.4700e-03 1.00 3.1764e-05 2.00 1.4703e-03 1.00
0.012 393216 6 7.3425e-04 1.00 7.9534e-06 2.00 7.3429e-04 1.00
α = 2.0, r = 2
h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 3 4.8888e-02 – 7.7537e-03 – 4.9499e-02 –
0.188 1536 6 2.5182e-02 0.96 2.0084e-03 1.95 2.5262e-02 0.97
0.094 6144 6 1.3928e-02 0.85 5.0545e-04 1.99 1.3937e-02 0.86
0.047 24576 6 7.7818e-03 0.84 1.2673e-04 2.00 7.7828e-03 0.84
0.023 98304 6 4.3594e-03 0.84 3.1764e-05 2.00 4.3595e-03 0.84
0.012 393216 6 2.4446e-03 0.83 7.9534e-06 2.00 2.4446e-03 0.83

Table 5.2: Example 1 - number of DOF and Newton iterations,
discretization errors and convergence rates for r = 2 and α =
0.5, 1.0, 1.5, 2.0 in SIPG variant of DG method.
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5.2 Example 2 - solution not identically zero on
the boundary

In the second experiment, we again consider the problem (1.1)-(1.2) on a unit
square domain Ω = (0, 1)2. We prescribe the data f and ϕ in such a way that
the exact solution is

u(x1, x2) = 1
4 (1 + x1)2 sin (2πx1x2) . (5.3)

This function was used in [19]. It is smooth, zero on boundary segments
going through points [0, 1], [0, 0], [1, 0] and nonzero on segments going through
points [1, 0], [1, 1], [0, 1]. The expected order of convergence is r in all norms and
seminorms considered and should not depend on the nonlinearity parameter α.

In a discretization of this problem, we have chosen α = 1.5 and degrees of
polynomials r = 1, 2, 3 for both FEM and SIPG variant of DG method. For FEM,
we have also tried r = 4, and α = 0.5. The order of convergence is not affected
by boundary nonlinearity parameter α, which is in agreement with theoretical
results. The H1-seminorm and |·|h-seminorm converge with the predicted order
of convergence r, but the L2-norm converges faster with order r+1. The L2-norm
error estimate is again suboptimal, but in this case, the error is dominated by the
H1-seminorm or the |·|h-seminorm. Therefore the resulting order of convergence
in H1-norm or |||·|||-norm is still r in accordance with the theoretical results.

The numerical experiments confirmed that the theoretical error estimates in
seminorms were optimal and that the order of convergence changes based on
whether the exact solution is zero on the whole boundary. The numerical results,
however, suggest that the order of convergence in L2-norm is suboptimal. The
theoretical results give us an order of convergence r (or r

α+1), but the EOC is r+1
(or r+1

α+1). This improvement only appeared when the exact solution belonged to
the space Hr+1(Ω).
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α = 1.5, r = 1
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 49 6 2.5883e-01 – 9.5881e-01 – 9.9314e-01 –
0.188 161 5 6.1723e-02 2.07 5.3381e-01 0.84 5.3736e-01 0.89
0.094 577 4 1.5381e-02 2.00 2.8145e-01 0.92 2.8187e-01 0.93
0.047 2177 4 3.9289e-03 1.97 1.4421e-01 0.96 1.4426e-01 0.97
0.023 8449 3 9.9584e-04 1.98 7.2704e-02 0.99 7.2711e-02 0.99
0.012 33281 3 2.4986e-04 1.99 3.6390e-02 1.00 3.6391e-02 1.00
α = 1.5, r = 2
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 6 1.4730e-02 – 2.3514e-01 – 2.3560e-01 –
0.188 577 4 1.2493e-03 3.56 5.8813e-02 2.00 5.8826e-02 2.00
0.094 2177 3 1.3819e-04 3.18 1.5173e-02 1.95 1.5173e-02 1.95
0.047 8449 3 1.6986e-05 3.02 3.8676e-03 1.97 3.8676e-03 1.97
0.023 33281 2 2.1254e-06 3.00 9.7489e-04 1.99 9.7489e-04 1.99
0.012 132097 2 2.6587e-07 3.00 2.4425e-04 2.00 2.4425e-04 2.00
α = 1.5, r = 3
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 337 6 4.5914e-03 – 2.3116e-02 – 2.3568e-02 –
0.188 1249 3 2.4182e-04 4.25 3.4931e-03 2.73 3.5015e-03 2.75
0.094 4801 3 1.3800e-05 4.13 4.7873e-04 2.87 4.7893e-04 2.87
0.047 18817 2 8.5542e-07 4.01 6.2363e-05 2.94 6.2369e-05 2.94
0.023 74497 2 5.4140e-08 3.98 7.9229e-06 2.98 7.9231e-06 2.98
0.012 296449 2 3.4211e-09 3.98 9.9474e-07 2.99 9.9474e-07 2.99
α = 1.5, r = 4
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 577 6 8.4789e-05 – 4.2824e-03 – 4.2832e-03 –
0.188 2177 3 3.2227e-06 4.72 3.2812e-04 3.71 3.2813e-04 3.71
0.094 8449 2 1.0740e-07 4.91 2.2035e-05 3.90 2.2036e-05 3.90
0.047 33281 2 3.4969e-09 4.94 1.4299e-06 3.95 1.4299e-06 3.95
0.023 132097 2 1.1140e-10 4.97 9.0809e-08 3.98 9.0809e-08 3.98
0.012 526337 2 3.5005e-12 4.99 5.6988e-09 3.99 5.6988e-09 3.99
α = 0.5, r = 2
h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 6 1.4072e-02 – 2.3527e-01 – 2.3569e-01 –
0.188 577 4 1.2379e-03 3.51 5.8815e-02 2.00 5.8828e-02 2.00
0.094 2177 4 1.3806e-04 3.16 1.5173e-02 1.95 1.5173e-02 1.95
0.047 8449 3 1.6989e-05 3.02 3.8676e-03 1.97 3.8676e-03 1.97
0.023 33281 3 2.1256e-06 3.00 9.7489e-04 1.99 9.7489e-04 1.99
0.012 132097 2 2.6588e-07 3.00 2.4425e-04 2.00 2.4425e-04 2.00

Table 5.3: Example 2 - number of DOF and Newton iterations,
discretization errors and convergence rates for r = 1, 2, 3, 4 and
α = 1.5, 0.5 in FEM.

53



α = 1.5, r = 1
h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 192 6 2.5073e-01 – 8.7620e-01 – 9.1137e-01 –
0.188 768 5 6.1030e-02 2.04 4.7862e-01 0.87 4.8249e-01 0.92
0.094 3072 4 1.5377e-02 1.99 2.4855e-01 0.95 2.4902e-01 0.95
0.047 12288 4 3.9457e-03 1.96 1.2692e-01 0.97 1.2698e-01 0.97
0.023 49152 3 1.0016e-03 1.98 6.3982e-02 0.99 6.3990e-02 0.99
0.012 196608 3 2.5142e-04 1.99 3.2043e-02 1.00 3.2044e-02 1.00
α = 1.5, r = 2
h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 6 1.3432e-02 – 2.2029e-01 – 2.2069e-01 –
0.188 1536 4 9.8475e-04 3.77 5.4667e-02 2.01 5.4676e-02 2.01
0.094 6144 3 9.5957e-05 3.36 1.3884e-02 1.98 1.3884e-02 1.98
0.047 24576 3 1.1194e-05 3.10 3.5122e-03 1.98 3.5122e-03 1.98
0.023 98304 2 1.3773e-06 3.02 8.8228e-04 1.99 8.8229e-04 1.99
0.012 393216 2 1.7139e-07 3.01 2.2075e-04 2.00 2.2075e-04 2.00
α = 1.5, r = 3
h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 640 6 4.5720e-03 – 2.7526e-02 – 2.7903e-02 –
0.188 2560 3 2.4012e-04 4.25 4.2359e-03 2.70 4.2427e-03 2.72
0.094 10240 3 1.3676e-05 4.13 5.7642e-04 2.88 5.7658e-04 2.88
0.047 40960 2 8.4847e-07 4.01 8.1035e-05 2.83 8.1039e-05 2.83
0.023 163840 2 5.3738e-08 3.98 1.0459e-05 2.95 1.0460e-05 2.95
0.012 655360 2 3.3983e-09 3.98 1.3431e-06 2.96 1.3431e-06 2.96

Table 5.4: Example 2 - number of DOF and Newton iterations,
discretization errors and convergence rates for α = 1.5 and r =
1, 2, 3 in SIPG variant of DG method.
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Figure 5.4: Example 2 - EOC for α = 1.5.
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Conclusion
In this thesis we have analyzed finite element method (FEM) and discontinuous
Galerkin method (DG) for elliptic problem in a polygonal domain with nonlinear
Newton boundary condition. We have given some regularity properties of the
weak solution in a neighbourhood of boundary edges. Then we have discretized
the problem with FEM and derived abstract error estimates for the approximate
solution. These estimates were further improved if the exact solution was dis-
tant from zero on a large part of the boundary to give the same estimates as if
there was no nonlinearity on the boundary. If the exact solution was zero on the
whole boundary, we have improved the seminorm part of the error estimates. We
have then shown that the same results are obtained even if we consider that the
integrals in the definition of the approximate solution are evaluated with numer-
ical integration. Then we have discretized the problem with DG and we have
derived the same error estimates even while considering numerical integration.
The numerical experiments confirmed that order of convergence changes based
on whether the exact solution is zero on the boundary and the seminorm part of
the error estimates behaved exactly as predicted. It remains to prove an optimal
L2(Ω)-error estimate.
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Galerkin Methods with Interior Penalty for Partial Differential Equations
with Nonnegative Characteristic Form, Contemporary Mathematics Vol.
330, pp. 89-119, AMS, 2003.

[20] Hesthaven J. S., From electrostatics to almost optimal nodal sets for polyno-
mial interpolation in a simplex, SIAM J. Numer. Anal. 35 (1998), 655–676.
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