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Abstrakt: Tato prace se zabyva analyzou metody konecnych prvki a nespojité
Galerkinovy metody pro numerické feseni eliptické okrajové tlohy s nelinearni
Newtonovou okrajovou podminkou ve dvourozmérné polygonalni oblasti. Slabé
reseni ztraci regularitu v okoli hrani¢nich singularit, které se vyskytuji v okoli roht
a korent slabého feseni na hranéch. Hlavni pozornost se vénuje odhadtm chyby.
Ukazuje se, ze tad konvergence neni snizen nelinearitou, pokud je slabé feseni
nenulové na vétsi ¢asti hranice. Pokud je slabé feseni nulové na celé hranici, pak
nelinearita zpomaluje pouze konvergenci funkénich hodnot, ale ne konvergenci
gradientu. Stejné vysledky jsou odvozeny pro priblizna feSeni ziskand pomoci
numerické integrace. Odvozené vysledky jsou potvrzeny numerickymi vypocty.
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Abstract: This thesis is concerned with the analysis of the finite element method
and the discontinuous Galerkin method for the numerical solution of an elliptic
boundary value problem with a nonlinear Newton boundary condition in a two-
dimensional polygonal domain. The weak solution loses regularity in a neighbour-
hood of boundary singularities, which may be at corners or at roots of the weak
solution on edges. The main attention is paid to the study of error estimates. It
turns out that the order of convergence is not dampened by the nonlinearity, if
the weak solution is nonzero on a large part of the boundary. If the weak solution
is zero on the whole boundary, the nonlinearity only slows down the convergence
of the function values but not the convergence of the gradient. The same analysis
is carried out for approximate solutions obtained with numerical integration. The
theoretical results are verified by numerical experiments.

Keywords: nonlinear elliptic problem, boundary singularities, finite element
method, discontinuous Galerkin method, numerical quadrature

1ii



Contents

(Introductionl

(1 Continuous problem|

[L1_Classical formulationl . . . . . . . ... ... ... ... ....

(1.2 Function spaces| . . . . . . . . ... ... ...

(.3 Weak solution| . . . . . .. ... ...
(1.4 Regularity| . . . . . .. ... oo

[3 Discrete problem with numerical integration|

[3.1 Quadrature tormula). . . . . . . ... ... ... ...
[3.2 Approximate solution|. . . . . . . ...
[3.3  Boundedness of interpolated function . . . . . . ... ... ..

3.4 Error estimationl . . . . . ... ... oL
FE b} - Galerki hod

M1 Discretization] . . . . . . . . . ...

[4.2  Monotonicity and continuity] . . . . . . . ... ... L.

M3 FError estimationl . . . . . ... ..o

[> Numerical experiments|

5.1 Example 1 - solution is zero on the boundaryf. . . . . . . . ..

[5.2  Example 2 - solution not identically zero on the boundary]

Conclusion|

[Bibliography|

19
19
21
25
32

36
36
39
41

48
48
52

55

56



Introduction

There are many numerical techniques for solving partial differential equations.
The effectivity of the respective methods is often closely related to the properties
of the equations in question. We are concerned with the study of the finite element
method (FEM) and the discontinuous Galerkin method (DGM). We use them for
the solution of an elliptic equation with a nonlinear Newton boundary condition in
a bounded two-dimensional polygonal domain with numerical integration. Such
boundary value problems have applications in science and engineering, see [14],
[2]. We suppose that the nonlinear term has a general “polynomial” growth.
This can be found in the modelling of electrolysis of aluminium with the aid
of the stream function. The nonlinear boundary condition describes turbulent
flow in a boundary layer (J26]). Similar nonlinearity appears in a radiation heat
transfer problem ([24], [2I]) or in nonlinear elasticity ([I5], [16]). A parabolic
equation with a nonlinear Newton boundary condition is solved with the use of
finite elements in [6] and [28], but the growth of the nonlinearity is only linear.

The paper [8] deals with the problem arising in the investigation of the elec-
trolytical producing of aluminium. The problem is discretized by piecewise linear
conforming triangular elements. The effect of the numerical integration applied to
this problem is investigated in [9]. Using monotone operator theory in [I3] and
assuming regularity of the weak solution, the paper [I0] gives error estimates.
The paper [11] investigates this problem using discontinuous Galerkin method
and piecewise polynomial functions, but does not consider the effect of numerical
integration.

In this thesis we study an elliptic boundary value problem with nonlinear
Newton boundary condition in a polygonal domain. The goal is to analyse both
FEM and DGM used on conforming shape regular meshes with piecewise polyno-
mial functions and the effect of numerical integration while considering the actual
regularity of the weak solution. In Chapter [I|the boundary value problem is intro-
duced, the weak solution is defined and some regularity results are derived in the
neighbourhood of boundary edges. In chapter [2| the Galerkin approximation of
the weak solution (approximate solution found with the aid of exact integration)
is introduced with the aid of FEM. It turns out that the order of convergence
changes based on whether the exact weak solution is zero on the boundary or not.
Chapter |3| shows that the same error estimates mostly hold for the approximate
solution found with numerical integration. Chapter 4] introduces the DG method
and derives the same results. Chapter 5| confirms the theoretically found error
estimates with numerical experiments.



1. Continuous problem

1.1 Classical formulation

Let 2 C R? be a bounded domain with a Lipschitz continuous boundary 9Q2. We
consider a boundary value problem with a non-linear Newton boundary condition:
find v : Q — R such that

—Au=f inQ, (1.1)

gz + klu|*u = ¢ on 01, (1.2)
with given functions f : 2 — R, ¢ : 92 — R and constants k > 0, « > 0. By a
classical solution of with boundary conditions we refer to a function
u € C*(Q) satisfying pointwise at every point in € and satisfying at
every point on 0€) such that the outer normal unit vector n is defined.

We will not be concerned with the classical solution directly but we will instead
define a weak solution. This can be obtained formally by multiplying by
a function v, integrating over €2, using Green’s theorem, and applying boundary
condition (1.2). It will immediately follow that the classical solution, if it exists,
is also a weak solution. Further, we will show that the weak solution exists and
is unique. This will also imply that there exists at most one classical solution.
We will then use smoothness of f, ¢ and 0f2 to prove the regularity of the weak
solution.

1.2 Function spaces

To define a weak solution we need to introduce some function spaces.

We will refer to the set of real numbers by R, the set of positive integers by
N, and the set of non-negative integers by N.

For a bounded domain (open connected set) €, C*¥(Q) denotes the set of all
k-times continuously differentiable functions in 2 such that all of their partial
derivatives of order up to k can be continuously extended on the closure Q of
Q. The space C**(Q) contains functions from C*(€Q) such that all of their k-th
partial derivatives are Holder continuous on 2 with parameter A\. The space of all
infinitely smooth functions with a compact support in the domain €2 is denoted
by C2°(€2) and the space of all infinitely smooth functions such that all of their
partial derivatives can be continuously extended on € is denoted by C*(€2).

For p € [1,00) we consider Lebesgue spaces LP(§2), LP(0N2) of classes of mea-
surable functions which are equal almost everywhere with respect to the Lebesgue
measure. These are Banach spaces with norms

flop = ([ 177az)"

I lopen = ([ f|pd8)’1’ |



For p € [1,00) and k € N we consider Sobolev spaces W*P(Q), WkP(9€) with

seminorms )
[/ lepe = (Z / ]Dﬂf\”dm> :
1B1=k

| flrpon = (%:k /(m ’Dﬂf‘p dS) :

where 3 = (f1, B2) is a multi-index with |5| = 81 4+ 52, and norms

= BrlP :
1£ k.00 (mzk /Q D7 f| d:z:)

[

1f lkp00 = (|5Z<k /8Q ’Dﬁf‘pdS) .

The derivative D’ f in the definition of Sobolev spaces is considered in a weak
sense, that is, D f is a weak derivative of f in Q if D°f € L} () is a locally
integrable function satisfying

/pr%dx: (—1)'5‘/QD5f<pdx, Yo € C%(Q).

The Sobolev spaces of functions which are zero on boundary 9€) are denoted by
WyP(Q). Forp € [1,00), k € Nyand s € (0,1) the fractional Sobolev-Slobodetskii
spaces W*tsP(Q)) use a seminorm

i) - s dy) g

Z /QxQ |x — y|ntep

|Bl=k

|f|k+s,p,ﬂ = (
where n is the dimension of €2, and they use a norm

1
1 lktspe = (1F 12 p0 + 1 Brspa) -

We also denote WH*2(Q) = H*(Q) and WoP(Q) = LP(Q2). If a function f belongs
to a Sobolev space W*P((2), then its 3-th derivative belongs to a space W+ =182 ()
for any |#| < k and the norms satisfy inequality

1D =110 < 1f llip0-

The following continuous embeddings known as Sobolev embeddings hold for
domains 2 C R™ with Lipschitz continuous boundaries (Section 5.6 in [7])

WP(Q) s Lar (Q), p € [L,n),
Whn(Q) — LI(Q), q € [1,00),
o (1.3)
lep(Q) s Co’l P (Q), JUAS (nv OO)>
W HQ) < C(Q),



and the following continuous trace embeddings also hold for domains with Lip-
schitz continuous boundaries (Section 5.5 in [7] or Theorems 1.4.4.1 and 1.5.1.1
in [17])

W (Q) < L5 (0Q),  pe[Ln),

WLn(Q) < LI(9), gell,00), »
WP(Q) < C*75(0Q), P € (n,00), ’
WL(Q) < C(Q)

If G C 09, then by |G| we denote the one-dimensional measure defined on 052
of the set G. Due to Poincaré inequality (5.8.1 in [7]) on spaces Wy () the
seminorm is in fact equivalent to a norm.

Theorem 1.1 (Poincaré inequality). Let 2 be a domain with a Lipschitz contin-
uous boundary. Let u € WYP(Q). Let G C 9Q with |G| > 0. Then there exists a
constant cp > 0 dependent on ), G and p such that

[ullipa < cp(fulipe + [lullope)- (1.5)

In what follows, we will use ¢ to refer to a general positive constant which can
change for different equations.

1.3 Weak solution

Suppose that
feL*), ¢elLl*09). (1.6)

We introduce the following forms for u, v € H'(Q)
b(u,v) = / Vu - Vodz,
Q
d(u,v) = li/ |u|*uvdS,
20

Q _
L*(v) = /vadx, (1.7)
L% (w) = [ puvdS,
L(v) = L%(v) + L%(v),
a(u,v) = b(u,v) + d(u,v).
Definition 1.2. We say that a function u : Q — R is a weak solution of (1.1]) if

u€ HY(Q),

a(u,v) = L(v) Yov € HY(Q). (18)

If we take the classical solution u € C?(Q2) € H'(Q) of (L.1)-(1.2), multiply
the equation ([1.1]) by a function v € H'(2), integrate over €2, use Green’s theorem
and the boundary conditions ([1.2]), we will obtain the condition ([1.8]).

/vadx = /Q —Auvdr = — /89 ngdS + /Q Vu - Vodx

5
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/Vu-Vvdx+/ /<|u|auvdS:/ fvdx+/ pvdS
0 20 0 00

The weak solution is a generalization of the classical solution. To show exis-
tence and uniqueness of the weak solution we need to know some properties of
the form a. Note that

vdS = /a (K |u]* v — @) vdS
Q

a(u,u—v)—a(v,u—wv) :/ |Vu—Vv]2dx+fi/8 (Ju]®u— |v|*v)(u—v)dS. (1.9)
0 0
Let g > 0 and o« > 0. We define a function y : R — R :

Yy Q) =(C+gl"(C+9) —¢C—9g|"(C—9)) (29), EeR.

Then the function y is decreasing in (—o0,0) and increasing in (0, 00), and

: _ a+2
min y(¢) = 49",

For £, € R let us set 2g = [ — n|. Then
(01" n = |€[*€) (n — &) = 27 In — €|, (1.10)
and the following lemma follows, see [10].
Lemma 1.3. Let u,v € H'(Q2). Then
altu =) —alv,u—v) = ju— ol o+ K2 fu— 0|20 (L1D)
In [I0] and [9] most of the following theorem was also proven.
Theorem 1.4.
a) L is a continuous linear functional on H(2).

b) The functional a(u,-) from H'(Q) into R is a continuous linear functional
for every u € HY(Q).

c¢) a is uniformly monotone, with
a(u,u —v) —a(v,u—v) > o(|lu — v|120) (1.12)

for all u,v € H(Q), where

Cor2™t**t2 for 0<t <2k,
g<t>:{ ° sts (113)

Cot? for t > 2k,
for a =0, we set k™Y =0.

d) The functional a(-,v) from H'(Q) into R is continuous for every v € H*(£2)
in the following sense: There exists a positive constant Cy > 0 independent
of v such that

ja(u,v) = a(w,v)] < Oy (L+ ullfan + [lwlf20) lu = wlhzellvl 20,
(1.14)
for all u,v € H(Q).



e) The form a is coercive in the following sense: There exists a positive con-
stant Cy > 0 such that

a(u,u) > Collully (1.15)
holds for all uw € H'(Q) such that ||ul/120 > 1.

Proof. 1t remains to prove the part d).

la(u,v) — a(w,v)| < ’/Q V(u—w) - Vodz| +

“u— |w|® ds
KJ/BQ(|U| u— |w|®w)wv
Holder inequality used on the first term yields

<|u-— w|1,2,ﬂ |U|1,2,Q .

/QV(U —w) - Vodz

Without loss of generality let u < w, then the second term can be rearranged
using

| w — [w]® w = /wc‘iqtm) dt = (a + 1) /w 1t dt.

Since the function [t|* of ¢ € R is monotone in (—o00,0) and in (0,00) and its
global minimum is reached for ¢t = 0, it follows that

[#* < (Jul™ + |wl®), ¢ € [u,w].

Take any pi,ps,p3 > 1 such that 1/p; + 1/ps + 1/ps = 1. Then using these
relations and Holder inequality gives us

/{/m (Jul®u — |w]® w) vdS‘ < wla+1) /L‘m (Jul® + [w]*) [u — w]| |v] dS
< rk(a+1) (Hqu,aphaQ + ||w||3,ap1,ag) [w —wllgp, .00 101000 -

The trace embedding ((1.4) completes the proof of ((1.14)). O

We can define an operator A : H'(Q) — (H'(Q))* by (Au,v) = a(u,v) for
all u,v € H*(Q). It follows from monotone operator theory, see [13], [30] and
properties in Theorem that problem (|1.8]) has exactly one solution.

1.4 Regularity

In the error estimates later in this text we will assume that the weak solution u
belongs to a space of smoother functions than only H'().

From this point on we will assume that the domain € is polygonal with N
edges I'1,...,I'y. To describe functions defined on the boundary 02 we will use
the trace theorem. Consider an operator 7' which takes functions from C*(Q)
and assigns their restriction on 02 and also possibly some partial derivatives in

the outer normal direction on each edge in 02

@ 8lu}

T : e, —
UH{U’(M’ " onl



It can be shown for p € [1,00) and k € N that T has a unique continuous linear
extension (also denoted by T') into a Cartesian product of Sobolev spaces on edges

of the domain {2
N k-1

T Whr(Q) — [ [T W7 (r)).
j=1i=0
This in particular means that there exists a constant ¢ dependent only on €, k,
p such that

luloalli-1 o0 = lulli-1 00 < clullipe, ue WHP(Q). (1.16)
p P

The trace operator T does not map onto []%; Wi (0€2) because there might

possibly occur jumps in derivatives in normal direction at the corners of 0f2.

However, these derivatives satisfy some compatibility conditions given in [11].
Let us consider a Neumann boundary value problem

—Au=f in (),
1.17
Ou =g ondf, ( )
on

with a weak solution u € H'(2) such that

. — 1
/ﬂw Vodz /vadx+/mgvds, ve HY(Q). (1.18)

Then the following theorem holds, see [18] Corollary 4.438 and [25] Corollary
8.3.3.

Lemma 1.5. Let u € H*(Q) be the weak solution given by (1.18)), let f €
Wk=24(Q), g € Wk1=199(9Q), where k > 2, ¢ > 1, % >k — 2, and wy is
the largest interior angle at boundary corners of 9. Then u € W*4(Q).

We can consider a weak solution u € H'(2) of (1.8). If we knew that the
trace of |u|*u was in the same space as g in Lemmal[l.5] we could use this theorem
for g = ¢ + T(|u|*u) to obtain some regularity of w.

Lemma 1.6. Ifu € H*(Q), then |u|*u € W4(Q) with ¢ = 2 — €, where ¢ > 0 is
arbitrarily small, and thus |u|® u|pq € W'1/29(0Q).

Proof. Tt follows from Sobolev embedding (T.3) that H'(Q) «— L+Y4(Q) and
thus u € L)9(Q) or |u|*u € LI(Q) for any ¢ € [1,00). It remains to estimate
the first weak derivatives of |u|” u using Holder inequality

«@ q _ q aq q
/Q\V(]u\ W de = (a + 1) /Q|u\ Vul? de

< (4 D[l 5.0 11Vulllg,0 0

(1.19)

where + + & = 1. By choosing s’ = 7% > 1 we find that ¢s’ = 2 and ags < oo,
and |u|®u € WH1(Q). O

Remark. Tt also directly follows from embedding (1.3]) that W4(Q) — C(Q) for
q > 2 and the computation in this proof gives us: If u € Wh4(Q), then also
lu|* u € WHe(Q).



Using these tools, it can be shown that the following regularity result holds,
see [L1].

Theorem 1.7. Let u € H(Q) be a weak solution of (1.8) in a polygonal domain
Q. Let f € LYQ), ¢ € WY29(9Q), where

g=1+ —e<2 forwy>m,
2&@ - T
T
=1 —e>2 — <wp < 1.2
q +2w0—7r € for2 wo < T, (1.20)
: . ™
q is arbitrary for wy < 5

and ¢ > 0 is arbitrarily small. Then u € W24(9Q).

Since all inner angles w in €2 are less than 27, it follows that ¢ > %.

Lemma 1.8. Let u € W*4(Q). Let 8 = (31, f2) be a multi-index with 31, B> € Ny
such that |B| = p1+ B2 < k. Then

01 (Jul*w)
8xf18:c22

D (jul"u) =

can be expressed as a finite sum of terms of a form

J
clul**'=7 T[ DV, (1.21)
j=1
where ¢ is a constant dependent on o and 5, J € N and v;, j = 1,...,J are

multi-indices such that >7_yv; = . If a € N, then DP(|u|*u) only contains
terms with nonnegative exponent a4+ 1 — J.

Proof. Let k, g be given. We will proceed using induction on |j3|.
When || = 0 the only possible term has J =0 and ¢ = 1.
If |5 =1, then c=a+1, J =1, and either 7, = (1,0) or 73 = (0, 1).
Suppose that that the lemma holds for all multi-indices with length smaller
than |5]. In particular, we have

LoD (julow))
D (julu) = ——5 -

for some i € {1,2} and /" such that |3| = || + 1. Then we only need to
apply to terms clu|*t1=7 H‘] D, Wthh have ZJ 1 V5 = B’ If the partial

derlvatlve ai is applied to any factor in H D”Ju then the resultlng term does

have the desired form with J = J', one of the multi-indices v} increased, and
Zj 1 =B If s applied to |u|**'~7", then the resulting term has J = J' 41,
ZJ 1Y+ v = 5, where 7,11 is either (1,0) or (0,1) depending on z;, and
therefore also has the desired form.

Suppose that «« € N. Then the exponent o + 1 — J in |u is integer
for any J. The only possibﬂity to obtain a negative exponent in the induction
step would be to apply -2 50 to Jul*t!” 7 for J' such that a4+ 1 —J' € [0,1), i.e.

a+1—J =0. But then % = (0 and the constant ¢ would in fact be zero. [

|a+1—J



Lemma 1.9. Let u € W*4(Q), where k > 2, ¢ > 1. Let Q be a polygonal
domain. Let a+1 >k or o € Ny. Then |u|*u|pq € WF1/29(9Q) and there holds
an estimate

el *ulli-1/g.q00 < cllullign (1.22)

with a constant ¢ > 0 dependent on €, k, q, c.

Proof. We will prove that |u|*u € W*4(Q). Consider any multi-index 8 = (31, 32)
such that || = 81 + B2 < k. Our goal is to show that

B «

D? (Ju|*u) = W e LY(9).

Oz 0xy*
The expression D?(|u|*u) is a sum of several terms of the form given in
Lemma (1.8, Due to the triangle inequality in Lebesgue spaces, we only need to
show that all of these terms belong to the space L9(2) and are estimated by
the right-hand side of . The assumption o + 1 > k or a € Ny guarantees
that the exponents o +1 — J in are nonnegative for all terms. Since u €
Wka(Q) — C*2(Q), we can trivially estimate terms which only have derivatives
of orders up to k — 2

< cllulligs

¢ k,q,Q2

J
|u|oz+1—J H D7y

J=1

0,g,82
Consider the term
clu|*DPu.
Since u € W*4(Q) — C(Q) and DPu € LI(2), we have

q

|fut* D
0,q,92

= [ a0l < |l [ 1D%ulde < clulld.

The only remaining terms are

2
clul** T[] DV u,

j=1
where v; has length 1 and ~, has length £ — 1. If £ > 3, then we again estimate

) q
i § 27

-1
< Nullsey 1Vullloy [, 107 ulde < elul4.
j=1

0,q,92

If k =2, v, has also length 1, and we can use embedding (1.3])

9 q
||t H D"y

—1 2
< Nl MVeullgha < cllulliss,
j=1

c@ =

0,4,
where the last inequality holds because
e WhH(Q) — C(Q) for g > 2,
o HY(Q) — L*(Q) for q = 2,

10



o Whi(Q) — L*(Q) for q € [1,2) as 22—‘1 > 2q.

—7 =
Thus |u|®u € W"9(Q) and its trace satisfies (1.22)). O

Functions in W%4(Q2) are continuous. Therefore, it is possible to distinguish
on which parts of the boundary 02 is the weak solution u nonzero.

Lemma 1.10. Letu € W*4(Q), where k > 2, ¢ > 1 and Q is a polygonal domain.
Let o +1 < k. Let G be a closed subset of 0. If |G| > 0 and |u| > >0 on G,
then |u|*u|q € WF1/21(q).

Proof. Function wu is continuous in ). Therefore, we can find an open neighbour-
hood of G in Q denoted by Q¢ such that |u| > ¢ > 0 in Qg. We can proceed
similarly to the proof of Lemma This time we cannot guarantee that the
exponents o + 1 — J are non-negative. The lowest possible negative exponent
is @ +1 — k and the same arguments as in the proof of Lemma lead to an
estimate

1 — k
1l ull g0 < e (lullih o, + T lullk o, ) (1.23)

where ¢ is dependent also on 2 and thus possibly on both G and . O

Remark. 1f we knew beforehand that uw was sufficiently distant from zero on
sufficiently large part of the boundary 02, we could obtain estimate similar to

(1.22)) for arbitrary o > 0.
Using Lemma it was shown in [II] that the following lemma holds.

Lemma 1.11. Let the assumptions of Theorem be satisfied and let f €
Wka(Q) for k > 1. Then u € WF29(Qy), where Q is a subdomain of Q with
smooth boundary and Qo C €.

A similar regularity result to Lemma holds for domains with smooth
boundary, see [I7] Theorem 2.5.1.1.

Lemma 1.12. Let Qs be a domain with smooth boundary, let f € W*=24(Qy),
g € Wk1=1a9(9Q),), where k € N, k > 2, ¢ > 1. Let u € H* () be a weak
solution of a problem

Vu - Vodz :/ fvdaz:—l—/8 gvdS, ve HY(Q). (1.24)
Qo Qo

Qo
Then u € WH1(Q).

By using Lemma|l.12| Lemma and Lemma l.10, we can improve regularity
results in Lemma to include nonsingular parts of the boundary 0f2.

Theorem 1.13. Let €2 be a polygonal domain. Let k € N, k > 2, ¢ > 1. Let
a >0 and k> 0 the be constants, and f € W*24(Q) and ¢ € W*'739(0Q) the

functions from problem —. Let u be a weak solution defined in . Let
G be a closed subset of 02 not containing any boundary vertices of . If a ¢ Ny
and o + 1 < k, let u restricted to G satisfy |u| > € for some constant ¢ > 0.
Let Q1 C Q be a domain with smooth boundary such that 02N 0, C G, i.e.
shares boundary with Q only in G. Then u € W*4(€)).
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o 3
embedding ([1.3]), we have W*P(Q) < C(€) and the weak solution u is continuous.

Therefore, we can find domain €2, with smooth boundary such that 2 D €y D €y,
0, does not contain boundary vertices of 9, €y is some neighbourhood of Q;
in Q, and |u| > § on Gy = 02N 0, o ¢ Ny and o + 1 < k.

We will proceed using induction on k. The base case is Theorem [I.7] Let us
suppose that u € W*14(0y,), we will show that u € W*4(€,).

It follows from Lemma and Lemma for k > 3 and from Lemma
for k = 2 that |u|*u € W*'"29(Gy). Let us define ¢» € C*°(Q) in the following
way:

Proof. 1t follows from Theorem that u € W2P(Q) for some p > 2. Due to

e p=1in
e p)=0in Q\ N
° %:OODGQ

Since we have ¢ € Wk_l_%’q(Gz), lu|*u € Wk_l_%’q(GQ), and v is smooth, we
also have
O(Yu) ou 1

S S = (ol u+ ) € WETHGY) (1.25)

As Yu =0 on 0 \ Go, we have % € Wk_l_%’q(afb). We also have
—A(Yu) = —ultp — 2V - Vu — pAu € WF29(Qy), (1.26)

since uAwy € WkE=14(Qy), Vb - Vu € WE=29(Qy), and—pAu = o f € WF24(Qy).
Therefore, Yu € W*4(£y) follows from Lemma [1.12, Because u = 1u in €, we
have u € W*4((). O

We can conclude that if the right-hand side functions f, ¢ from (|1.1)-(1.2) are
smooth enough, the weak solution u defined in ([1.8]) belongs to Sobolev spaces:

e W2 in a neighbourhood of boundary corners, where ¢ is dependent on the
inner angles at the corners,

o Wl+24 in a neighbourhood of roots of u on the boundary 95 sides (not
in any corner) for noninteger o > 0,

e W57 in the rest of €.

12



2. Finite element discretization

2.1 Discretization

We assume that the domain Q C R? is polygonal. We construct its triangulation
Ty, consisting of a finite number of closed triangles 7. We will consider only
conforming triangulations satisfying the following conditions:

0= U T

TeTn
if Tl,TQ S 7;” T1 7£ TQ, then T1 ﬂTQ = @, or Tl ﬂTQ

is either a common vertex or a common side of 17 and 7T5.

(2.1)

We say that T € 7T, is a boundary triangle, if 7" has a side S C 02 and we
denote the set of all sides S C 9 by s;,. Then Uge,, S = 052. For simplicity, we
assume that each boundary triangle has only one boundary edge S and thus can
be referred to as Ts. If a triangle is not a boundary triangle we call it an inner
triangle.

By hr and pr we denote the length of the maximal side of T" and the radius
of the maximal circle inscribed into 7', respectively. We further set

h = 2.2
max hy (2.2)
Let us consider a shape regular system of triangulations {74 }ne(o,h0) of the domain
Q): there exists Cr > 0 such that
hr

o < Cgr VT €Ty Vh € (0, ho). (2.3)
T

2.2 Galerkin approximation

We will seek a Galerkin approximation and an approximate solution in a space
of continuous piecewise polynomial functions of order » € Ny and then use a
Lagrange interpolation as a tool to show the order of its convergence.

Definition 2.1. Let r € N. Let T € Ty, be a triangle. We denote the space of
polynomials in x1, x5 on T of degree at most r by P,.(T)

P(T) = {PT T — Ripr(ny,02) = Y i 2i@h, a4, € R}- (2.4)
4,J€ENp
i+j<r
Let S be a side of a triangle and let F' be an affine mapping of an interval
[0,1] onto S. Then we denote the set of polynomials of degree at most r on S by
P.(S):
P.(S) = {p o F~!; pisapolynomial of degree < ron [0, 1]} )

Let Ty, be a triangulation of Q). The set of all continuous piecewise polynomial
functions of degree at most r is

Hy = {on € C(Q); walr € P(T), T € o}, (2.5)

13



and the space of all piece-wise polynomial function of degree at most r is
Sy = {on € LA(Q); vnlr € P(T), T € Th}. (2.6)

Definition 2.2. Let T be a closed reference triangle with vertices (0,0), (1,0),
(0,1), let u € C(T), let r € N, let x1,..., 241y 04+2)2 € T be pairwise differ-
ent nodes in T. Then we call a projection © of C(T) onto P.(T) a Lagrange

interpolation of order r if u(x,) = mu(x,) forallp=1,..., %

Let uw € C(Q), let r € N, let m be a Lagrange interpolation of order r on a
reference triangle T with vertices (0,0), (1,0), (0,1). Let T, be a triangulation
of U, let Fr be an affine mapping of T onto T for each T € Ty,. Then we call a
projection m, of C(Q) onto H! a piecewise Lagrange interpolation, if 7, restricted
to T is given by Fromo Fp' for all T € Tj,.

Remark. The choice of w nodes is necessary for the existence and unique-
ness of the interpolation, but the nodes must also satisfy some other conditions,
see [4]. If there are r + 1 nodes on each side of a triangle, then the interpolated
function 7u on that side will be given only by the values of u on that side, i.e.
the piecewise Lagrange interpolation 7, will preserve continuity of u.

Now we can define a Galerkin approximation U}, of a solution w.

Definition 2.3. We say that U, € H" is a Galerkin approzimation of a weak
solution u € HY(Q) given by (1.8) if

a(Uh,vh) = L(Uh) Y, € Hg (27)

Since H! is a subset of H1(), it follows that the form a has all the properties
in Theorem [1.4] and existence and uniqueness of the Galerkin approximation
again follow from monotone operator theory in [I3] and [30]. We can further
improve the monotonicity of a by assuming that one of the functions in question
is not close to zero on a part of 9€). More precisely:

GcCon, |G| >0,

2.8
lul] >e>0 onG. (28)

Theorem 2.4. Let u € H'(Q) and let the conditions (2.8)) hold. Then there
exists a constant Cy = C5(S2, G, e) > 0 such that
a(u,u —v) —a(v,u —v) > Cs|lu — v||%7279 Vv € HY(Q). (2.9)

Proof. Since |u|* — |v|* and u* — v? have the same sign, it follows that (Ju|* —
[v]*)(u? —v?) > 0, or equivalently |u|®u®+ |[v|*? > |u|*v? + |v]|®u?. Thus, we can
write

2(Jul*u — [v]*v)(u — v) = |[u|*(2u® — 2uv) + |v|*(20* — 2uw)

2.10
> |u|*(u? — 2uv + v?) + [v|*(v? = 2uv + u?) = (Jul* + |v]|*) (u — v)2 (2.10)

From this and equation ((1.9) it directly follows that
1
a(u,u—v) = a(v,u = v) > |u =g + 5# |Gl v = v[2e

The existence of a constant C5 from the statement of this theorem follows from
Poincaré inequality ([1.5]). O
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Under the conditions ([2.8), we can redefine o from ({1.12f), (1.13) as
o(t) = Cst* te]0,00), (2.11)

but numerical experiments indicate that if w is close to zero on a large part of
the boundary 052, o behaves as in (1.13]), that is, C5 is very small.

2.3 Error estimation

Our next goal is to show how fast the Galerkin approximation U, converges to the
weak solution u. Let us suppose that u € W*4(Q) for some k € N, k > 2, ¢ > 1.

Due to the embedding W*4(Q) — C(), the piecewise Lagrange interpolation is
well-defined.

Theorem 2.5. Let u € H'(Q) be a weak solution of (1.8)), let U, € H} be the
Galerkin approzimation defined by (2.7). Then

o1([[u = Unllig0) < C inf |ju— o120, (2.12)
UhEH]TL

where

er(t) = o(t)/1. (2.13)
Proof. The Galerkin approximation is given by the same formula as a weak
solution defined in (L.8), but only on a restriction from H'(Q) to Hj. This
means that Theorem holds again and the Galerkin approximation exists and
is unique. Then

o([|Unll12.0) < a(Up, Uy) = L(Up)
< c(([[ flloz2.0 + llelloza0) |Unlli2;

where we used trace theorem in the last inequality. This shows that o1 (||Us/1.2.0)
is bounded independently of A and U, is uniformly bounded. Another conse-

quence of formulas and is that
a(u,vy) = L(vy) = a(Up,v) Yo, € Hy,
which implies Galerkin orthogonality
a(u,v) — a(Up,vp) = 0.
Since Uy, € Hj, we have
a(u, Uy —vp) — a(Up, Uy, —vp) =0
for all v, € H}, which can be rearranged into
a(u,u—Up) — a(Up,u — Up) = a(u,u —vy) —a(Up,u —vy) Yo, € Hy. (2.14)
Then, by (1.12), (2.14]) and (|1.14)) for arbitrary v, € H}, we have
o(llu = Unll12,0) < alu,u — Un) — a(Up, uw — Uy)
= |a(u,u — Up) — a(Up, u — Uy)|
= |a(u,u —vy) — a(Up, u — vy)|
< Cy (L4 ullf o0+ 1Unllfan) lu = Unllizalle = vlli 2.0

Dividing (2.15)) by ||u — Ui||12,0 and using the uniform boundedness of Uy, we
obtain the sought inequality. O]

(2.15)
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In what follows, we will use Theorem 3.1.5 from [4]:

Theorem 2.6. Let r,m € Ny, p,q > 1. Let the piecewise Lagrange interpolation
T, preserve polynomials of degree at most r. Let the the triangulation Ty, be shape
reqular according to (2.3)). Let the following embeddings hold:

WrHh(T) — C(T),
Wb (T — W™P(T).

Then there ezists a constant Cy = Cy(m,Cr) > 0 such that for oll T € T}, and
h € (0, hy) we have

2_2
r+1fm+;75

lu — mpul < Cylulrg1,97hp Yu € Wrthy(T). (2.16)

m7p7T -

Note that the terms 1% — % in the exponent of hy correspond to the fact that we
are considering a two-dimensional case and the theorem also holds for any other
dimension. We will use this theorem mainly to estimate error of interpolation
measured in H'-norms or seminorms.

Corollary. Let k € N, ¢ > 1. Let the piecewise Lagrange interpolation 7, preserve
polynomials of degree < r. Set v = min(r, k). Let the triangulation 7} be shape-
regular according to (2.3]). Then there exists a constant Cs = Cg(m, Cr) > 0 such
that

107 < Cslulysrgrh™ ™9 Yu € WHS(T) VT € Ty, Vh € (0, ho).

||lu — mhul

Lemma 2.7. Let 6> 1,neN, z; >0, w; >0,i=1,...,n. Then the following
inequalities hold:

iwf < <i w)ﬁ (2.17)

=1 =1
e\ P P
(B’ s o
i Wi i Wi

Proof. We will prove using induction. For n = 1 both sides are equal.

Suppose that the inequality holds for n — 1. Then holds for n, if we have

x, = 0. To complete the induction step, it suffices to show that the left-hand

side has a lower or equal derivative with respect to z,, than the right-hand side.
The derivative of the left-hand side is

-1
pan !,

and the derivative of the right-hand side is

(&)

As z, < Y% z; and Bz’ is a non-decreasing function, the inequality between
the derivatives does hold. Therefore the inequality (2.17)) holds for n and arbitrary
x, > 0.

Inequality (2.18)) is known as Jensen’s inequality, see Theorem 3.3 in [29]. O
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Recall that the inverse of the function p; arising from the monotonicity is

1
t a+1 —1/a
ori(t) = { (awima) ™ for 0e< o (2.19)
= for t > 2k e,
0
which can be replaced under conditions (2.8) by
t

—1
o7 (1) = — 2.20
O (2.20)

as follows from ([2.11)).

Theorem 2.8. Let the solution of (1.8) be u € W*14(Q), where WrL(Q) —
HY(Q). Then

|m—Uﬁm@é{%K¢W““mwka’qe“jx 221)
o1 (clulkr1q0h"), q € [2,00).
Proof. Using Theorem for vj, = mpu and Theorem [2.6] we obtain
1/2
o1(lu = Unlli20) < ellu = mhulli00 = ¢ ( > llu— Whu”iZ,T)
e (2.22)

1/2
w424
<c ( Z IUIi+1,q,ThT”+ /q> .

TeT

For ¢ < 2, we use (2.17)) with § = %, T = ]u\ZH,q’TthHqQ:

2/q
2v+2—4 _92
Z ’u|i+1,q,ThTy /e < (Z \UIZ+1,q,Tth”+q ) )
TeTh TeTh

1/2 1/q
2w+2-4 —2 _
(Z ulf i1 grhr /q> < (Z |UIi+1,q,Tth”+q ) < ulpr1g0h” 0.
TeTh TeTh

Inequality (2.18)) can be rewritten as

(o) < (g20) (2]

(2

For ¢ > 2 we use this inequality with 3 = £, w; = h}, z; = \uliH’q,Th%V*A‘/q:

(E hTQ)
TeTh
(2.23)

Let or be a sum of lengths of sides of a triangle T" € T, then we clearly have

hy < % and |T| = %oTpT. This together with the shape regularity condition

(2.3)) gives us

Q=
[T
Q|-

1/2
2u42—-4 -2
( Z |U|Z+1,q,ThTV+ /q) S ( Z h%|u|z+l7q,Th%V )

TeTy, TETh

1
h3 < Crhrpr < CR§0TPT = Cr|TY,
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which can be summed over all T € Tj,

> hh < Cr|Q). (2.24)
TeTh

Combining (2.22)), (2.23]) and (2.24)) gives us

1
q 27
o1(llu = Unlli2,0) < (Z h%\uli+1,q,Th%”‘2) (Z h%)
TeTh TeTh

S C(Q7 CR7p>’u‘k+17q7QhV’

-
Q=

and completes the proof. O]

Remark. The arguments from this proof can be repeated for different values of v
on different parts of 2. Considering what regularity was shown in Section[1.4] the
error estimates would require triangles near vertices to have length at most ch”

vH1-2/
(or ch 2—2/qq) and the triangles near roots of u on boundary edges for noninteger
v v+1-—2/
a > 0 to have length at most chl=I+T (or ch LQHQ—Q?‘I).

So far, we have shown that the H'(Q)-norm of the error of the Galerkin
approximation converges to zero with a rate of convergence r, if the approximation
uses continuous piecewise polynomial functions of degree r, if the exact solution
is sufficiently smooth and if the exact solution is distant from zero on a part of
the boundary. Without the assumption , the order of convergence is divided
by a 4+ 1. Next, we will show that if the exact solution is zero on the whole
boundary, we can improve the estimate for the H'(€)-seminorm.

Theorem 2.9. Let the weak solution u € WH14(Q) — HY(Q) given by (1.8) be
zero on 0S). Then

vH1-2
|U _ Uh| < C|u‘k+1,q7ﬂh M 1, q€ [17 2)7 (225)
b= C|u|k+1,q7QhV7 q S [27 OO),

where v = min (r, k) and r is the degree of used polynomials.

Proof. Neglecting a term in gives us
lu — Uh’iz,g < a(u,u — Up) — a(Up,u — Up),

using Galerkin orthogonality for a piecewise Lagrange interpolation yields

a(u,u — Up) — a(Up,u — Uyp) = a(u,u — mpu) — a(Up, u — mhu).
Using the fact that mu is also zero on 0§2 and Holder inequality gives us

a(u,u — mpu) — a(Up, u — mpu) = /QV(u —Up) - V(u— mpu)de

<|u— Uh‘l,Q,Q lu — 7Th“|1,2,ﬂ .
Dividing by |u — Uyl 5 ¢ leads to an estimate
lu — Uh|1,2,Q <|u-— 7ThU|1,2,Q :

Using Theorem for H'(T)-seminorm instead of a norm and the same argu-
ments as in the proof of Theorem gives us the sought estimate. O
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3. Discrete problem with
numerical integration

3.1 Quadrature formula

In practical computation, integrals in the definition of the forms are evaluated by
numerical integration. In this section, we are concerned with the analysis of the
effect of numerical integration.

Consider a reference triangle 7' with vertices (0,0), (1,0), (0,1). We approx-
imate an integral of a continuous function 1& over T' using values at M different
points z, and M weights w,, p = 1,..., M. Considering that the area of T is
1/2, we then have

. 1M
/szdx ~ 5 z:lwuw(xu). (3.1)
ILL:

A

Any triangle T' can be obtained using an affine function Fr, such that Fip(T) = T.
Then the nodes become zr, = F(x,), p =1,..., M and we obtain a quadrature
formula for a function v defined on T’

M
| vde =TI wlan,), TeT (3.2)
pn=1

Analogically, we introduce numerical integration over edges S on 0f). As a
reference element, we use the interval [0,1] with m nodes z, and weights 5,,
pw=1,...,m. The quadrature formula on reference interval is

1. m
/ JdS ~ S B0(x,), (3.3)
0 =1
and the quadrature formula on edges is
/S 9dS ~ |S|Y Bid(zs,), S € s (3.4)
pn=1
The errors of integration are
M
Er(v) = /de:c — |7 Z W (T7 ),
pn=1

Bs(9) = [ 9ds - |Sr§:1m9<xsﬁu>, o

Bo(v) = [ vdo = 3 [T Y wder,) = 3 Er(®),

TeTh p=1 TeT,

Eon0) = [ 045 = 1813 fd(ws,) = 3 Es(0).

Sespy Sesy
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The approximations of forms are defined as

da(u,v) = 5 3 18]S Bullul"uv)(zs,).

Sesp, pn=1

1w = Y I8 i Bu(ov) (s,), (36)

Sesy

Li(v) = > |T1 Y- wulfv)(@r,)-

TET pn=1

We assume that the form b will be evaluated exactly as its arguments will be
polynomials of order < 2r — 2. Furthermore, we again define forms

aq(u,v) = b(u,v) + dg(u,v),

La(v) = Lg(v) + L3 (v). (3.7)

Definition 3.1. Let Er be the error of numerical quadrature on a triangle T' € Tp,.
We say that a quadrature on triangles is exact for polynomials of degree < R, if
Er(vy) =0 for any v, € Pr(T), T € Tp.

Let Eg be the error of numerical quadrature on an edge S € s,. We say that
a quadrature on edges is exact for polynomials of degree < R, if Es(vy) =0 for
any v, € Pr(S), S € sp.

We will use error estimates from Theorems 7.36 and 7.37 in [5].

Theorem 3.2. Let S € s,. Let the quadrature formula on edges be exact for
polynomials of degree < r+s1—1. Let q,q € [1,00] be such that 1/q+1/q¢' =1 (we
set 1/oo = 0). Then there exists a constant ¢ > 0 such that for any ¢ € W1(S),
vp, € Pr(S), we have:

|Es(pvn)| < e SI™lsy.q.5vnllo.q,s- (3.8)

Let T € Ty, where Ty, are shape regular triangulations. Let the quadrature formula
on triangles be exact for polynomials of degree < r + sy — 1. Let q,q' € [1,00] be
such that 1/q+ 1/q' = 1. Then there ezists a constant ¢ > 0 such that for any
few=>4T), v, € P.(T), we have:

|Ex(fon)| < clhr]*?[fss.qm 10n]l0.q 7 (3.9)
The next theorem follows directly from these estimates.

Theorem 3.3. Let the quadrature formula on edges be exact for polynomials of
degree < r+ s — 1 on each S € sy, let ¢ € (1,00). Then there exists a constant
¢ > 0 such that for any ¢ € W*11(0Q), vy, € Hy, we have:

| Eaa(pvn)| < ch®™|ols g00llvalli2.0- (3.10)

Let the quadrature formula on triangles be exact for polynomials of degree <
r+s9—1 on each T' € Ty, where Ty, are shape reqular, let g € (1,00). Then there
exists a constant ¢ > 0 such that for any f € W*1(Q), v, € Hy, we have:

[Ea(fun)l < ch™|fls.g0llvnll20- (3.11)
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Proof. We have

|Eaa(evn)| < D |Es(eun)| < ch™ > Jolsy gsllvnllog,s

SeEsp Se€sp

By applying discrete Holder inequality with parameters ¢ and ¢/, % + % =1, we
obtain

> lelsiaslvnllog.s < [@lsi.goellvnllog.on-
S€Esp

Finally, by applying trace embedding H'(Q2) < L7 (0Q) on v, we obtain the
first error estimate (3.10]). Analogically, we also obtain

|Eq(fun)| < ch® > | flaarlvnllogr < ch®| fls,qollvnlloq.os
TeTh

and we complete the proof of (3.11)) with embedding H*(Q) < L7 (Q). O

Remark. We have only used the fact that vy, is continuous at the end by embedding
inequality. If v, € S}, we have:

| Eaq(pvn)| < ch™ ol q.00llvnlloq.00, (3.12)
|Ea(fon)| < ch®[f|s q.0llvnlloq.0- (3.13)

3.2 Approximate solution

Definition 3.4. We call uy, € H}, an approzimate solution of problem (1.1))-(1.2))

if
ad(uh, Uh) = Ld(Uh) Yo, € H;; (314)

In order to obtain error estimates of the approximate solution we need an
analogy to monotonicity results for the new form ay.

Theorem 3.5. Let the quadrature (3.4)) have at least r+1 nodes and only positive
weights, i.e.
m>r+1, By>0, p=1,....,m. (3.15)

Then there exists a constant Cs > 0 such that the following inequality holds for
every uy, v, € Hj:

ag(p, un = vp) = ag(vn, un — vp) > fup — vnli 2.0 + Csllun — vnll533000.  (3.16)
Let sp1 C sy be a set of some boundary segments and denote Gy, = U sp1. If
lop| > €, >0 on Gy (3.17)
holds for some ¢, > 0, then following inequality holds as well:

aq(un, up — V) = aq(Op, up — vn) > |un — vals 0.0 + Collun — vnll5 2., (3.18)
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Proof. We will proceed similarly to [10] Lemma 4.31. We have

ag(un, up — vp) = ag(Vp, up — V) = un —vnlfoq + 5 Y |S1Zs(un, vn), (3.19)
S€Esp,

where

Zs(up, vp) Z By (|un|“un — [vn|*vn) (un — vn) (s ). (3.20)
pn=1

Now we apply either ((1.10) and then we find that
Zg(up,vp) Z Bulun — vn|* " (25,),

or (2.10) to find that
Zs(up, o) Z Bulun = vn)*(Jun|® + |va|*) (zs,,).

We clearly have Zg(up,v,) > 0 and additionally, since each edge has more nodes
than the degree of used polynomials r, Zg(up,vy) > 0 for u, # v,. Consider

a function g, = ¢, o Fs defined on [0, 1], where Fg : [0, 1] oMo, S is an affine
mapping. Then expressions

1
m 2Fa
| Gnllare = (Z 6u|95h|a+2<17p)> : (3.21)

u=1

and

[6nll2 = (i 5,u|95h|2(75u)) : (3.22)

pn=1
are norms of a finite-dimensional space of polynomials of degree at most r defined
on [0, 1]. Using the fact that all norms are equivalent on a finite dimensional space,
we conclude that there exist constants C; and Cs such that

IGnllate > Cillénlloatzon, bl > Collbnlloz.o00)- (3.23)
This means that

—all o~ . A ot N
Zs(up,vp) > 27 aip — Uh”ﬂ% > 2" aCla [[in — ’UhHg,Ziz 0,1) —

— 9o, " / i — ]2 2dS = 276, || / lup — vp]*2dS,
0 S
(3.24)
and
60[ R R 8& ~ 92 . .
Zs(up, vn) = *h||uh — i3 > 5h02 [4in — 613 2,01y =
(3.25)

5h

/ iy, — v [2dS = 6hc2 I [ fun = va[?ds
for S € sp1. Combining these inequalities with (3.19)) gives the sought results. [J
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Remark. We will use this theorem for the piecewise Lagrange interpolation v, =
mhu. We expect the existence of such GG, and €, to follow from the conditions .
We have G, C G and ¢, < £ and we would like this subset of the boundary 02 and
the positive constant to be independent of h. It follows from the considerations
about a Lebesgue constant and C,, C; defined in that for sufficiently smooth
mesh refinement 7,,, some Gy, and ¢p, are bound to exist. Moreover, it also
follows that for any further refinements 7}, the constant ¢, will not decrease and
the part of the boundary G will not decrease either, that is

En > €py > 0,

3.26
002 D G, D Gy, (3.26)

The constant Cg in ([3.18)) is therefore independent of h.
We have an analogy to Lemma [1.3] and hence, by using Holder inequality

11
[ello asaon 122 = Jlullo 200

and Poinacaré inequality (1.5)), Theorem |1.4|c) follows and we have an inequality

aq(tn, up — vp) — ag(vn, up — vr) > 0(|lun — vall12.0),
where g is given by the same formula as ¢ but with different constants.

Lemma 3.6. Let the assumptions of Theorem 3.5 hold. Then

ag(tn, up, — vp) — ag(vp, up — vg) > 0(||up, — vpll12.0), (3.27)

where
o(t) = Cogt™**. (3.28)

If the condition (3.17) holds, then we can redefine o as
o(t) = Chat®. (3.29)

Uniform monotonicity of the form a, on the finite dimensional space Hj, guar-
antees the existence and the uniqueness of the approximate solution u; given by

(1), sce [13], [30]

Denote
R(t) = o(t)/t (3.30)
and let R_; be the inverse of R. It holds that
t o\
R (t)=|— 3.31
=) (331)
which can be replaced under the condition (3.17)) by

t

R_l(t) - Oild

(3.32)

Then we have the following abstract error estimate.
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Theorem 3.7. Let uy be the approximate solution of problem (3.14)) and let u be
the weak solution defined by (1.8). If v, € HJ, then

|lu —unlli2.0 <||u— o120

+ R (Cﬂlu = tnlla ol + [lullizo + lvalli20)

+ sup + sup
0F#wpeH] HwhH1,2,Q 0Fwp€HJ ||whH1,2,Q

(3.33)

[a(wn, wn) — aa(vn, wn)| L (wn) — Ld<wh>|).

Proof. The monotonicity of a;, from Theorem gives us

o(|lun — vnll12.0) < aa(un, up, —vi) — aq(vp, up — ).
By using
aq(un, up — vp) = La(up — vp),
L(up, — vp) = a(u, up, — vp),
and adding and subtracting the same terms, we get
ad(uha Up — Uh) - Gd(Um Up — ’Uh) = [Ld(uh - Uh) - L(Uh - Uh)]

+ [a(u, up, — vy) — a(vp, up, — vp)] + [a(vh, up — vi) — ag(vp, up — vp)].

The first bracket can be estimated directly using an inequality from a definition
of a norm of a dual operator:

L(wy) — Li(w
La(un — n) — Liun — )] < sup 1) = Lalwn)ly o

0#wn€H}, Hwh||1,2,sz
The second bracket can be estimated using the continuity (|1.14)) of the form a:

«
1,2,0

[lu — Uh||1,2,Q [ un — Uh”1,2,Q .

|a(u, up — vn) — avp, un —vn)| <C (1 + HuH(lXQQ + [lvn

The third bracket can be estimated similarly to the first bracket:

a(vy, wy) — ag(vy, w
la(vp, up, — vp) — ag(vp, up — vp)| < sup [(vn, wn) a(Vh, h)|\|uh—vh|

1,2,Q2-
0wy, CHT w120

Combining these estimates with the definition of R in (3.30)) gives us

L(wy) — Lg(w
R(|lup, — vrll120) < sup | L (wn) d(wn)]
0Fwn€H} lwh 12,0

a\vy, w — Ag\Vp, W
+ Chllu —vplli2.0(1 + [[ullfoq + [[vnllf20) + sup lens ) = aaln )
0wy, CHT [wnl[12.0

(3.34)

By using triangle inequality ||u — upll120 < ||[u — vnlli20 + |un — vall1 20, We

arrive at (3.33]). O
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Recall that
L(wp) — La(wn) = Eq(fwn) + Esa(pwn)
represents the error of integration of terms derived from the right hand sides of

(1.1) and (1.2)). This error can be estimated using (3.11]) and (3.10)) from Theorem
5.0k

|L(wy) — La(wy)| < ¢ (h52 |flsy 00 T B |90|51,q,m) lwally - (3.35)

The term
a(vp, wy) — ag(vp, wp) = Eaq(|vn| vnws,)

is the error of integration of the non-linear term on the boundary 9€). It cannot
be estimated directly using , because the continuous piecewise polynomial
function v, may have jumps in its derivatives at vertices of boundary triangles
and some derivatives of |v;|* v, may become nonintegrable near the roots of v, in
case of noninteger parameter «. Using and repeating arguments from the
proof of Theorem on separate parts of the boundary will lead to an estimate
similar to (3.10). But first, we will need to prove boundedness of |v;|” v, on the
boundary 0f) in a norm of some Sobolev space.
For the purpose of error estimation of the term

[ = onlli20( + [ullfon + lvallT20),

we will need vj, to be a function from the space Hj such that |jvyl; 4 is uni-
formly bounded based on u and |lu — v, 5, converges to zero with some rate.
Therefore, we will set v, = m,u, where 7, is the continuous piecewise Lagrange
interpolation operator.

3.3 Boundedness of interpolated function

In this section we are concerned with estimating derivatives of functions on the
boundary of 2. As we are aiming to use , it is sufficient to consider one fixed
segment S € s, of a boundary triangle T of a triangulation 7. Let F' be an
affine mapping of I = [0, S]] onto S. Set v, = vy, o F for a function v, € Hj.
Function vy, is therefore a polynomial of degree r defined on interval [0, [S]].
Remark. Since |F'| = 1, it follows that functions f measured in arbitrary W*(S)-
norm or in any C*(S)-norm give the same result as functions f = f o F' measured
in the corresponding W*(I)-norm or the C*(I)-norm. This affine transformation
is only used for simplicity as S C R? uses two coordinates and I C R uses only one
coordinate. Therefore all derivatives of f are only with respect to one variable.

Let us begin by expressing the actual terms which appear after using chain
rule on derivatives of |v,|" v,. We will proceed similarly to Lemma .

Lemma 3.8. Let v), be a polynomial of degree r on the interval [0, |S|]. Let o > 0
and 8 € N. Then
(1" )"

can be expressed as a finite sum of terms of the form

J
c |1’);|°‘H*J H 509, (3.36)

Jj=1
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where c is a constant dependent on o and 3, J € N and v; €, 5 =1,...,J are

)(5)

positive integers satisfying Z}']:1 v; = B. Ifa € N, then (|v,|" vp)"” only contains

terms where the exponent o + 1 — J is non-negative.

Proof. We will use induction on 5. When g = 1, the only term has ¢ = a + 1,
J=1and y; = 1.

Suppose that that the lemma holds for § — 1. Then we only need to apply
4 to terms clop|o " H}]/:1 0,09, which have J' € N and Zjlzl v =61 1If
the derivative % is applied to any factor in Hjlzl 62(73), then the resulting term
does have the desired form with J = J', a single index v} increased by one, the
remaining indices unchanged, and ijl v o= p. If % is applied to ]17;|°‘+1_J/,
then the resulting term has J = J' + 1, Zjlzl Y; + Vo1 = B, where vy = 1,
and therefore also has the desired form.

Suppose that @ € N. Then the exponent aw +1 — J in |u is integer for
any J. The only possibility to obtain a negative exponent from the induction

step would be to apply < to 0“1 for J' such that o+ 1 — J' € [0,1), i.e.
a+1—J" = 0. But then (|17;§|0>, = 0 and the constant ¢ would in fact be zero. [

|a+1—J

To estimate integrals of terms of the form (3.36)), the most straight-forward
way is to estimate most of its factors in L>°-norm and take them out of the
integral. As we assume u € W(Q)) and the embeddings

Wr(Q) < ¢ (Q), q>2,
H™H Q) — ¢ (Q), A€o, (3.37)
WrHa(Q) < ¢ (), g e 1,2),

follow from ([1.3), we can approach estimating of lower derivatives by consider-
ations applying to continuous functions rather than using properties of Sobolev
spaces.

Lemma 3.9. Let u € C"(Ts), let mpu be its Lagrange interpolation of order r
using r + 1 nodes at the sides of Ts. Let F be an affine mapping of I = [0, S]]
onto S. Let u =wuo F and myu = (mpu) o F. Then for any i € {0,...,r} holds
an estimate

Tt o r < DO ISP T 0 (3.38)
7=t

Proof. We will use induction on ¢ downward from 7 to 0.
Let ¢ = r. Our goal is to show that
|m|r,oo,[ < |ﬁ|r,oo,]'
Function m,u is a polynomial of degree r and its r-th derivative is a constant.
Therefore, it is sufficient to prove that mu'™” = @) (t) for some t € I or that a
continuous function (75w — @) has a root. The Lagrange interpolation is exact
at all nodes and thus m,u —u has r+ 1 roots in I. It follows from Rolle’s theorem
that (m,u — ﬁ)' has r roots in I and repeating this argument r times gives us a
)(7“)

root of (mu — )"’ in I.
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Let the inequality (3.38) hold for ¢ 4+ 1. Take arbitrary ¢,¢, € I. Considering
that |[to, t]| < |I| = |S|, we have

) t )
T (to) + |l (r)dr
to

T ()] =

< ‘ﬁhvu(i) (to)‘ + ST 7Rl 4 0 g -

Using (3.38)) for ¢ + 1 and the definition of L*-norm, we have
(Tl o s < [T (t0)| + 1S Y SPT Jal
j=it1

Jj=i+1

J,00,1

To complete the induction step, it suffices to find some ty,¢; € I such that
' (to) = a¥(t;). Take i + 1 of the 7 + 1 nodes of interpolation. Construct a
polynomial v of degree at most ¢ such that @, m,u and v are equal at these nodes.
Functions © — v and m,u — v have ¢ + 1 roots in I and they both belong to a
space C*(I). By Rolle’s theorem, there are ty and ¢, such that (mu — v) (ty) =
(@ —v)? (t;) = 0. This together with the fact that v is a constant completes
the proof. O

The case of u € C" 1273 (Ts) for ¢ € (1,2) (and for ¢ = 2) is almost identical.

Lemma 3.10. Let u € C"Ts), where A € (0,1), let myu be its Lagrange
interpolation of order r using r + 1 nodes at the sides of Tg. Let F' be an affine
mapping of I =10,|S|] onto S. Let t = uo F and 7pu = (mpu) o F. Then there
exists a constant ¢ > 0 such that for any i € {0,...,r} holds an estimate

r—1)

[Tt g < €SI jood (3.39)

r—1
J—14+A—1 |~
o+ ISP

Proof. Again, we will use induction on 4 from r down to 0.
Let ¢« = r. Our goal is to show that

ml, oy < elS|T T fatry
Ry oo, 1 =

CoONI) "

Let v be a Taylor polynomial of the function u of degree r — 1 at point 0, that is
v is a polynomial of degree < r — 1 and it has the same derivatives of orders up
to r — 1 at the point 0 as @. Function @ — v has the same r-th derivative as u and
also has the same seminorm (Holder constant) ’ﬁ(T*U Its interpolation

CONI)’
mpu — v also has the r-th derivative unchanged. We only need to show that
— 14X |/~ r—1
Tt = 0] g < IS @ = 0) ]

where (71 — v) satisfies (% —v)?(0) =0 forall j =0,...,r — 1.
It follows from (% —v)"~Y(0) = 0 and the definition of the Hélder continuity
that
3= 0]y < ISP [

CoON(I) "
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Since (@ — v)"=2 = 0 (if r > 2), it follows that

0 1A | (r-1)
=0l ey S IS ED)
Repeating this argument yields
~ r—14+X | ~(r—1
i g < ST AV
Consider an affine transformation of & — v and m,u — v from I = [0,|S]] onto

[0,1]. Denote the resulting functions by 4 —v and mu —v. The function @ — v
is also bounded in L*-norm by ||~ |t|cony- The interpolation m,u — v of

U — v is therefore bounded by

1+
T = ‘ o) S €IS v

where ¢ > 0 is a constant dependent only on the choice of nodes of interpolation
on the reference interval [0, 1]. The space of polynomials of degree < r on [0, 1]
is a finite-dimensional space. Every seminorm on a finite-dimensional space can
be estimated from above by any norm. Taking a seminorm ||, ;) and a norm
|[0,00,(0,1 thus yields

—

TpU — VU

r—1+A
T‘OO[Ol]_ |S| | |CO)\ )7
where ¢ > 0 is again some constant dependent only on 7. Since affine transfor-
mation from I onto [0, 1] multiplies the r-th derivative by |S|", we have

1S|" |7 — |, = ]wh/u?v] c|s|rA

This is (3.39) for i = r.

Since functions in the space CT~1A(I) are also in CY(I) for j = 0,...,r — 1,
the whole induction step in the proof of the previous lemma works here too and
we again have

|7‘,oo,I 00,[0, 1] = |U‘CO’>‘(I) ’

|7Thu|zoo[ < il 0, + 151 |7Thu‘z+lool (3.40)
Combining (3.40)) and the inequality - ) for i + 1 gives (3.39) for . ]

To estimate the interpolation in a norm of Sobolev spaces we use a one-
dimensional corrolary of Theorem or Theorem 3.1.5 in [4]. The interpolation
preserves polynomials of degree up to k < r. We further set m = k+1 and p = ¢
in Theorem 2.6

Corollary. Let the piecewise Lagrange interpolation 7, preserve polynomials of
degree < r. Let the restriction of the interpolated function m,u on any side of a
triangle be given only by the values of u on that side (that is, let it have r + 1
nodes on every side of a triangle). Let k € Ny, 7 < k, ¢ > 1. Then there exists a
constant C'(7) such that

|1~L - m‘k—i—l,q,l S C |a|k+l,q,l Vu e Wk+17q(l)v
and it follows form triangle inequality that we also have

[Tnuly 1 g0 S (CH+ D) ulyy,,, YVUe€ WhHLa(T), (3.41)
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When we use polynomials of degree r and consider only numerical quadrature
for boundary nonlinear terms satisfying , we expect the order of convergence
in H'-norm to be r. But we need in addition to the regularity of the exact weak
solution u an upper bound for the r-th derivative of (|mu|® 7ou). We need to
have some upper estimate for all terms of the form

J J
c |m|a+1—J H ), Z v =T (3.42)
j=1 j=1

If v is an integer, then all exponents o+ 1 —J in powers of |7,u| are non-negative
(those that are negative are in terms multiplied by ¢ = 0) and we only need an
upper estimate of |T,u|. The lowest possible exponent is o + 1 — r and therefore
in a case of @« > r — 1, we also only need an upper estimate.

Lemma 3.11. Let u € W™4(Q), where r € Ny, ¢ > 1. Let Ts be a boundary
triangle of the triangulation Tp, and I = [0,|S|]. Let ), be a continuous piecewise
Lagrange interpolation of order r that uses r+1 nodes on the sides of triangles. Let
F' be the affine transformation of I onto S and let Tou = (mpuls) o F. Let 1 € N,
1t <r, and let a« > 0 be the constant from . Let either o« € Ng or o > ¢ — 1.
Then |mpu|® mhu € Wo(I) and there exists a constant ¢ = c(m, o, 7,i,q) > 0 such
that

(3.43)

Proof. Due to triangle inequality in Lebesgue spaces, we only need to estimate
terms of the form given in (3.42) (with 23'7:1 v; = 1) by the right hand-side of
(3.43). The assumption @ > ¢ — 1 or a € Ny guarantees that the exponents
a+1—Jin are non-negative for all terms that need to be estimated.
Since we have an embedding , all derivatives of orders up to r — 1 can be
estimated in L*>-norm by |[|ill,,, , o due to for ¢ € (1,2] and all derivatives
of orders up to r due to for ¢ € (2,00).
Let us take a term of the form (3.42)):

J J
c|lma* T T mat?, Yo =
j=1 j=1

1l Tl g < e lullf g0 1l -

Write the seminorm as an integral

1
J q
= (/ |7;hvu|(0¢+1—J)q H ‘m(%‘) qu) ‘
T ”
7j=1

All terms that are continuous can be simply taken out of the integral and give us
some upper bound for the seminorm. Without loss of generality assume that +;
is the largest order of derivative. Suppose for the moment that all other factors
are continuous and can be estimated in the following way:

J
|ﬁhvu|0<+1—°7 H 7;hvu(%')
j=1

0,q,1

Hﬁhvu(vj)

0.00.] <c “aHCT(I) <c ||U||Cr(aQ) <c ||uHr+1,q,Q7 (3.44)
with replacing the C"-norm by the C"~'*-norm if ¢ € (1,2]. Then we have an
estimate

J
(/ |m|(a+1*J)q H ’m(%‘)
I 5
j=1

q 1
qu) < CHuH(aJrlfJ)Jr(Jfl) (/ ’m(w) qu)q ‘
I

r+1,q9,92
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Using (3.41)) gives an estimate of the last remaining part

</ m(w)
I

Combining these estimates yields

S ¢ ||ﬂ||i,q,l :

1
q q — ~
dS) = |7rhu"y],q,l S c|u|’YJanI

— ’CH-I—J

| T m(w)

j=1

< cllullii g il g -
0,q,1

The assumption that all factors in |ﬁﬁ4|a+1_‘] 1., ) besides mu"”) can be

estimated by follows from (|3.38]) and if
o vy <r—1,
e vy =randq> 2,
e 7y =1 (in this case J = 1 and there are no other factors with derivatives).

Since we have v; < i < r one of these cases always holds and we have in fact
completed the proof. O

If neither & € Ny nor a« > r — 1 and we are still trying to use the estimate
(3.8) of order r, we need to obtain some positive lower bounds on 7,u. These
estimates can be derived with some aid from the Lebesgue constants if we include
an assumption that max;|a| and miny |u| are relatively close, see Chapter 3 in
[23].

Consider a fixed Lagrange interpolation 7, of order r preserving polynomials
of degree < r on the boundary. More precisely: the nodes of interpolation on the
reference triangle T are in one fixed position for all triangles T € 7T, and there
are r + 1 nodes of interpolation on every side of this triangle. Take an arbitrary
function @ € C(I) such that ||af], ., ; < 1. Then there exists a constant A such
that ||mpullc < A, for all such . It can be defined as

Ar = max |mpu
ueC(I)

[2ll o, r<1
0,00,1

0,00,1"

Considering that 7 u is given by a finite (r + 1) amount of values of @ and the
interpolation operator 7, is linear, the maximum in the definition of A, can be
found by taking functions which have either 1 or —1 at each node (that is 2"+
combinations). If we further consider that rescaling a function from one interval
onto another with a linear substitution will not change the function’s extremes,
we see that this constant A is shared for all segments in s, for all triangulations
{Th} ,h > 0.

If we now take a function @ € C'(I) which is bounded by a+ b from above and
by a — b from below for some a € R and b > 0, it follows that the interpolated
function mpu € P,(I) is bounded by a + A;b from above and by a — A;b from
below. Suppose that the values of @ are in [C}, 1] for some constant C, € (0, 1).
Then we have a = (14 C}) and b = 1(1—C}), and m,u is estimated from below
by

A

;(CL+1)— 5 (1= Cp) =5 (Cr(Ax+1) = (Ax — 1),

DN | —
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Ay Cr
1.000000 0.000000
1.250000 0.111111
1.422919 0.174549
1.559490 0.218594

=W N |

Table 3.1: Values of optimal Lebesgue constants for polynomials of de-
grees up to 4 and the corresponding constants C'p,

Ar—1

which is zero for the choice Cf, = o0

. Then, from the conditions

A —1 ming |u|

CL:Aﬂ‘i‘l, CZG(CLvl)v

>, (3.45)

maxy |u| —

follows the lower bound estimate
min |Thu| > = (CZ(A +1)— (A, = 1)) max |l .

Therefore, we have an estimate in L*°-norm for a negative power of the interpo-
lated function

(i v > 0. (3.46)

2 Y
< al|?

0,00,] — (CZ<A7T + 1) _ (Aw - 1)) H ”O,oo,l’

If the triangulation is refined by dividing some triangles into smaller ones, the
maximum of |u| on any new segment is bounded from above by the old maximum
and the new minimum is bounded from below by the old minimum. Thus the
new segment also satisfies the conditions (3.45)) and the constant C; might even
be increased.

Choosing linearly transformed Chebyshev nodes for the interpolation 7 gives
an estimate for the Lebesgue constant

2 8
Ay =— <10g(7" +1) +0.7219 + log > +0 (r‘Z) , (3.47)
7T m

where r is the degree of interpolation and v = 0.577215 is the Euler-Mascheroni
constant, see [12], [20]. The explicit formula for optimal Lebesgue constant is
known for k < 3, see [27]. Using the optimal Lebesgue constants for r < 4
(formulas (3.3) and (7.4) in [27]) give us some possible values for the constant C7,
in ([3.45).

Lemma 3.12. Letu € W™H9(Q), let S € sp, be a boundary segment such that u|g
is non-zero and does not change sign and furthermore, let mms‘ﬁ" > (. Suppose
that C; > C,, where Cp, is defined above. Let u be the affine transformation of u|g
onto I =10, |S|] as defined above. Then there exists a constant ¢ = ¢(m, a7, q) > 0

such that

P 2r—2— ~
170l Tl < € (lullan g0+ Il ) @l (3.48)
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Proof. We can proceed similarly as we did in the proof of Lemma|3.11} The only
new concern is that now the exponents a + 1 — J in the terms of the form

J J
clma T [ ma?, Yoy =
j=1

j=1

can be negative. Whereas we previously used an estimate ([3.44)) for nonnegative
a+1—J, we now use

J—a—1
2 i J—a—1 J—a—1
< <
0,00,1 — <OI(A7Th + 1) - (Aﬂ'h - 1)) Hu”070071 =¢ HUHTJFL%Q’
(3.49)

H ’m‘aﬂLl*JH

for negative a +1 — J < 0. This estimate leads to an inequality

J—a—1 J—1 ~
< clful| oYY

J
1= TT — ()
‘|7rhu] T’ rad

=1

0,q,1

Since a + 1 < J < r holds for negative exponents o + 1 — J < 0, the exponent
2J — 2 — « is between « and 2r — 2 — «. It follows that

J—a—1 J—1 2r—2—
ull 30 D <l o + a2
and the inequality (3.48)) holds. O

3.4 Error estimation

The purpose of this section is to estimate the error of quadrature on the bound-
ary 02 denoted by Eaq(|mpu|” (mpu)wy). We can divide the boundary segments
S € sy, into three disjoint sets s, = spo U sp1 U Spo.

e 50 contains segments S with u|g = 0. Then also mpuls = 0 and the
quadrature is exact there, i.e. Eg(|myul” (mpu)wy,) = 0.

elf a+1 > r or a € Ny, then s,; contains all segments not in spg. If
a ¢ Ng and a + 1 <7, then s;; contains all segments not in sjg satisfying
minslul > . where C) is given by (3.45). Then combining (3.48) (or (3.43))

maxg|u
and (3.8]) gives us an error estimate of order r.

e 5o contains the remaining segments, i.e. for @« ¢ Ny and av + 1 < 7, spo

contains segments satisfying ;1;12 ‘|Z‘| < C; and u is not identically zero on

S. Let us set hy = max {|S|;S € spa} (or hey = 0 if there are no segments
in sp2). Combining (3.43)) and (3.8)) gives us an error estimate of order

o= |a) + 1. (3.50)

Theorem 3.13. Let the weak solution u given in belong to W™H4(Q) and
let the right-hand side functions belong to spaces f € W™4(Q) and p € W™1(0N).
Let {E}he(o,ho) be a shape regular system of triangulations of 0 according to
. Let its boundary segments sy, be divided according to the cases above for a
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piecewise continuous Lagrange interpolation my, of order r with r+1 nodes on sides
of triangles. Let the approximate solution be given by . Let the quadrature
formulas on edges and on triangles be exact for polynomials of degree < 2r — 1
and let the quadrature formula on edges satisfy . Then there exist constants
o =c(u,r,q,Q,m) >0, ca = ca(u,r,q,Q,ma) >0, c3 = c3(u,r,q,Q,ma) >0,
cy = c4(fyo,m,Q,m) > 0 such that

= unllypg < k™70 + Roy (b5 o5 (W + h) + eah”)) . (3.51)
if ¢ € (1,2) and
[u—unlly 50 < c1h” + Ry (c2h” 4 c3 (A" 4 hy?) +cah”)), (3.52)

if ¢ > 2, where R_y is defined in (3.31])-(3.32)).

Proof. 1t was proven in Theorem [3.7|that the error ||u — uyl|, 5 o is bounded from
above by

HU"WMHM&Q4—R—1<dhL—ﬂ%UmQ@(1+HU

Toqa + lImnullfeq)
b g T w) —ama el yL(wh)—Ld(whﬂ)

0#wpEH! Hwh| 1,2, 0#wy, €HY HwhHl,z,Q

Estimation of ||u — mpul|1 2,0 by

= myulh 20 < ful, g0 b2

for ¢ € (1,2) and by
|u—mhullize < clul,y ,0h"

for ¢ > 2 was done in the proof of Theorem [2.8] Inequality

Imnully g0 < ellull 50

follows from (3.41)) if consider that ||"||y. ;) = [I*[lyy=(s)-
Since the quadrature formulas are exact for polynomials of degree < 2r — 1

and
L(wy) — La(wy) = Ea(fwp) + Eaq(ew,),
it follows from Theorem [3.3] that
L — L
sup|(wh) a(wn)|
0wy €HE ||wp,

<" (|fl g+ 12l gon) -

1,2,

Finally, we have

la(mpu, wy) — ag(mpu, wy)| = Y Es (Jmpu|® (mou)wy) -
SeEsp

Errors on the segments s, = spoUsp1Usyo are estimated separately using Theorem
.2l Since u = mpu = 0 on segments S € spg, we have

> Egs (mpul® (mpu)wy) = 0.

SEspo
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On segments S € sj;, we can use the estimate
|Es (|mpul® (mpu)wn)| < el S| [lmnul® mul,. g lwnllo 0 s

for % + ql, = 1, and then either (3.48)) or (3.43)

2r—2—
Il maal, 5 < e (lullfyy o (+F1ul255:8)) lull,gs

which yields

| Es (Imnul”™ (mpu)wn)| < c(u)h” [|u

79,5 ||wh| 0,q’,S °

Summing over all S € s;1, using discrete Holder inequality and trace embedding,
we conclude that

> Es (Imuul® (muuw)wn)| < 3 c()h” [ull, s llwnllo g s

S€Esp1 S€spi
< c(wh [Jull, g sp Nwnllogr s
< c(u)h” ||U||r+1,q,n ||wh||1,2,Q :
On segments S € sp2 we can similarly use the estimate
| Es (Imnu|® mpuw )| < e S [[mul® mul,, s lwnllogs
followed by
[lmnul® mnul,, 05 < cllulliiggo llull, g

which leads to

> Es (|myul® mpuwn)| < c(u)hi? Jull, g g0 lwally o -

SEspo
Combining these estimates yields the inequalities (3.51)) and ({3.52]). O

Remark. In order to obtain the regularity v € WTh4 at least in the set €
from Theorem [L.13| we need f € W"=19(Q) and ¢ € W'~/49(9Q). But the
computations in this theorem needed f € W™4(§2) and ¢ € W4(0Q). If f and ¢
had only the regularity which was necessary to obtain the regularity of the weak
solution u, the order of convergence in this theorem would be decreased by 1.

Note that the function R_; defined in — is linear, if the exact solution
u is sufficiently distant from zero on a large part of the boundary 992. Our
theoretical estimates for the order of convergence in the H'-norm are divided by
a + 1 only if the exact solution is zero on most of the boundary. Similarly to the
Galerkin approximation, we can improve the estimate for the rate of convergence
in H'-seminorm by omitting the denominator o + 1, if the exact solution u is
zero on the whole boundary 0. In this case, we also need to assume that the
right-hand side integrals are evaluated exactly, that is

/fvhda:, / YupdS,
Q o0

can be evaluated exactly for the given functions f, ¢ from (1.1)-(1.2)), and v, €
Hj. Whereas

a r
/(99 |Uh| UpWh, Up,Wp € Hh

is evaluated with numerical quadrature. The argument is similar to Theorem [2.9]
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Theorem 3.14. Let the weak solution u € W' H4(Q) given in (1.8)) be zero on
08. Let an approximate solution uy, € Hj be given by

ad(uh, ’Uh) = L(Uh), Yy, € H,Z, (353)
where ap, and L are defined in (3.7) and (1.7). Let the quadrature formula on
edges satisfy (3.15)). Then

cluly g ™78, g€ [1,2),
lu— Uh|1,2,9 < L
T q € [2,00).
Proof. Neglecting the second term on the right-hand side of (3.16f) gives us

|uh - Whu’iZQ S ad(uh, Up — 7Thu) — ad(ﬂhu, Up — 7Thu).

(3.54)

The definitions of solutions u;, and u yield
ag(up, up — mpu) = L(up — mpu) = a(u, up — mhu).

Using the fact that u is zero on 9 and thus the integral of |u|” u(u), — mhpu) on
the boundary is evaluated exactly, we obtain

a(u, up, — mpu) = ag(u, up — THU).
By Holder inequality we finally get
ag(u, up — mpu) — ag(Thu, up — THU) = /ﬂV(u — mpu) - V(up — mpu)de
<|u- 7Th“|1,2,Q |up — 7Th“‘1,2,9 :
Dividing
|up, — ﬂ-huliQ,Q <|u-— 77hu|1,2,9 |up — 7Thu|1,2,9
by |up, — Thul, 5 ¢ leads to and estimate
|un = Thuly 50 < fu—Thuly 5 q -

Triangle inequality further gives us

lu — uh’1,2,ﬂ <|u-— 7Thuh,z,n + |mhu — uh’1,2,Q <2fu— 77hu|1,2,9 :

The arguments from the proof of Theorem [2.8| give us the sought estimate. []

We have shown theoretically that using numerical integration for evaluating
forms in the definition of the approximate solution will not decrease the order
of convergence which was derived in section 2.3] In case of noninteger o« > 0
and the degree of used polynomials » > a+ 1, it might be necessary to refine the
triangulation 7T, near the roots of the exact solution u on the boundary 0€2. These
refined triangles T, S € sp2 would require their size to be hp, < chTai71, Also
note that the estimates in section [2.3 only required the solution to be regular, but
the estimates in this chapter near the boundary edges were only able to use the
same regularity that we were able to prove in section [[.4, Numerical experiments
did not require this refinement to converge with the derived order of convergence.

Combining Theorem [2.8] o' given in , and Theorem suggested that
the Galerkin approximation given in (2.7)) should always converge to the exact
weak solution defined in in the H'-seminorm with a rate of convergence
of r. The same conclusions can be drawn from Theorem [3.13] R_; given in
and Theorem in this Chapter, which takes into account the effect of
numerical integration. This theoretical result is in agreement with the numerical
experiments.
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4. Discontinuous Galerkin
method

4.1 Discretization

A similar analysis can be carried out by the discretization using piecewise polyno-
mial but in general discontinuous functions. Consider a polygonal domain Q C R?
with a conforming triangulation 7, satisfying (2.1)). We denote the set of all faces
by Fp and we further distinguish the set of all boundary faces

FP ={T e F; T C o9},
and the set of all inner faces
Fl=F, \ }",?.

The set FP was denoted by s, in the previous chapters concerning FEM.
For every inner face I' € F we choose an arbitrary but fixed unit vector nr

orthogonal to I'. Then there are two neighbouring triangles TF(L), TF(R) € 7Ty, such
that I' =T IEL) NT; F(R) and we choose T} IEL) to be the one with outer normal np (thus

making nr an inner normal to TIER)). For any boundary face I' C 92, by T, 1£L) we
denote the element from 7, adjacent to I' and we set nr to be the outer normal.
For k € N, ¢ > 1 and a triangulation 7; we define a broken Sobolev space

Wh(Q, Tn) = {v € LA(Q); vlr € WH(T)VT € Ty} (4.1)

and also H*(Q, Tp,) = W"2(Q, Ty).

For functions v € W*?(Q), T;) and inner faces I' € F}, we introduce notation

U|§L) = trace of v| )y onT, v|(FR) = trace of v| m onT,
I r
4.2)
L/« R L R (
W =5 (ol + o), [l = ot = ol

for the left trace, the right trace, the mean value of traces and the jump of v on
I'. Even though the value of [v]r depends on the choice of the orientation of nr,
the vector [v]rnr is independent of this orientation.

The approximate solution will be sought in a space of discontinuous piecewise
polynomial functions of degree r € N :

Sy = {vn € LN(Q); vl € PAT), T € To}. (4.3)

We suppose that the set of triangulations {7}, is shape regular in accor-
dance with . Due to Theorem the weak solution u given by belongs
to the space W24(Q) for some ¢ > % dependent on the largest inner angle in
Q. From Sobolev embedding (1.3)), it follows that u is in fact continuous with
[ulr = 0. In this section we give another definition for a (discontinuous) weak
solution with different forms. This newly defined formulation will be again satis-
fied by the same previously defined weak solution. Therefore, only the numerical
methods for finding it will differ.
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The weak solution can be derived by taking the equation for the classical
solution u in 2, multiplying it by a test function v € W24(Q, Ty,), ¢ > 1 integrating
over an element T € T, using Green’s theorem and boundary condition ,
summing over all elements T' € 7T, and possibly adding some terms which are
zero for the weak solution.

/vadm :/ —Auvdr = /8T gnvd5+/ Vu - Voude,

~ oo 871 vdS = / Klu|®u — ¢)odS,

ou ou
n T(L)U|T(L) + — 7 (R)U|TI£R) =np- (Vu>v|TF(L) —np - (VU>U]TF(R) = nr - (Vu)[v],
/fvdx—/ K |ul®u—p)vdS — Z/nr (Vu)lv dS—i—Z/Vu Voudz.

rer! T,

These considerations lead to the following form defined for functions
u € W24Q), q > g, ve (QTh):

= > /Vu Vodz (4.4)

TET,

- Z/ nr - (Vu)[o] + Onr - (Vo)[u]) dS.

rer]

This form represents the left-hand side integration over elements T € T,. The
terms multiplied by a parameter 6 are zero for the weak solution. This param-
eter can be chosen as 1,0, —1, which leads to symmetric, incomplete and non-

symmetric versions of the diffusion forms (4.9)-(4.11)) denoted by SIPG, IIPG,
NIPG, respectively. Further, we introduce the interior penalty form

=3 [ oful (4.5)
rer]
The coefficient ¢ is given by

o W (46)

where hp is the length of the face I' and Cy, > 0 will be specified later. The form
d represents the nonlinear boundary term and dy is the form d evaluated using
numerical quadrature formula (3.4)):

d(u,v) =K Y / |u|* uvdS = H/Q |u|* uvdS, (4.7)

rerp

dalw,0) =1 Y 013 B (ful” w) (zr,). (1)

rerf  p=1

Combining these forms into ay, Ay, and A¢ will allow us to define the Galerkin
approximation and the approximate solution using relatively simple formulae.

ap(u,v) = by(u,v) + Jp(u,v), (4.9)
Ap(u,v) = ap(u,v) + d(u,v), (4.10)
Agn(u,v) = ap(u,v) + dg(u,v). (4.11)
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Definition 4.1. We call u, € S} the discontinuous Galerkin approximation of
the weak solution given in (1.8)) if

Ah(uh,vh) = L(’Uh) Vvh S S;; (412)

Definition 4.2. We call upg € S}, the discontinuous approzimate solution of the
problem (LI)-(L2) if

Adh(udh, Uh) = Ld(Uh) \V/’Uh € S;; (413)

The broken Sobolev space H'(£2,T;) and its subspace S; are Banach spaces
with seminorms

zjéjvm%m) , (4.14)

TeT,

|U|H1(Q,Th) = (

N |=

o], = (Z /T|Vv]2dx+Jh(v,v)) , (4.15)
TeT

and a norm

N

el = (Il + ol 72(0) (4.16)
Let us summarize some basic properties used in the analysis of discontinuous
Galerkin method, see Theorems 4.1 and 4.4 in [3], Sections 2.5.1, 2.5.2, and 2.6.3
in [5] and Lemma 5.3 and Lemma 5.4 in [I1].

Lemma 4.3. There exists a constant ¢ = c(q) > 0 such that the following in-
equalities hold for all ¢ > 1, v, € S}, h > 0:

[onllo g < clllonll; (4.17)
[onllo g,00 < clllvnll (4.18)

There exists a constant C; > 0 such that the following inverse inequality holds

for allv, € P.(T), T € Ty, h > 0:
|Uh|1,2,T < th;l ||UhHo,2,T' (4.19)

There exists a constant Cypy > 0 such that the following multiplicative trace in-
equality holds for allv € HY(T), T € Ty, h > 0:

10l 200 < Car (I0llo o [0] 0 + hz 1016 7) (4.20)

and the following multiplicative trace inequality holds for allv € WH4(T), T € Ty,
h>0,q€(32),L+5=1

lol520r < Car (I0llogz [l + A7 T0llo27) - (4.21)
Let the constant Cyy in satisfy the following conditions for 6 from :
Cw > 0, for § = —1 (NIPG), (4.22)
Cw > 4Cy (1 + Cy), for § =1 (SIPG), (4.23)
Cw > Cy (14 Cy), for 0 =0 (IIPG), (4.24)
then the form ay, is coercive in the following way:
an(vn, vn) > ; o2 (4.25)

holds for all vy, € S}, h > 0.

38



4.2 Monotonicity and continuity

Deriving error estimates will require us to have lower estimates of the forms in
the definition of the DG solution, which will follow from monotonicity, upper esti-
mates following from continuity, and combining them with Galerkin orthogonality
and interpolation error estimates.

The continuity of the form A, was proven in [I1] Lemma 5.6.

Lemma 4.4. For q > % there exists a constant ¢ > 0 such that

[Answ) = An(o,w)] < e{lu = o] + o (= 0,0

(4.26)
+ Gl = o) (Il a0+ 10117 ol
holds for all w € W*4(2,Tp), v,w € Sy, h > 0, where
1/2
Ri(9,q) = (CM Z hr |¢|1,q/,T |¢|27q7T) (4.27)
TET,
for ¢ € W29, Ty), q € (%,2), % + % =1 and
1/2
Ri(¢,q) = (CM > hT|¢|1,2,T|¢|2,2,T) ; (4.28)
TET,

for ¢ € W24(Q,Tr), q > 2. Moreover,

1/2
Gil@) = (OM S (161205 bzt + 18], 7 uqsno,w)) (4.29)

TETh
for ¢ € HY(Q,Th).

Lemma 4.5. Let the constant Cyy satisfy conditions (4.22)-(4.24). Then the form
Ay, is uniformly monotone on the space S; in the following way: There exists a
continuous increasing function p : [0,00) — [0,00) such that

Ah(uh, Up — Uh) — Ah(vh,uh — Uh) >p (|||uh — Uh”l) ,  Up,Vp € S;;, h > 0. (430)

This lemma was proven in [I1] Lemma 5.7 with a monotone function

o(t) = { ct**t? for te0,1], (4.31)

Tl for tell,o0).

It follows from monotone operator theory, see [13], [30], that there exists exactly
one discontinuous Galerkin approximation u;, € S} defined in (4.12)).
We improve the monotonicity with condition

lop| >e>00onG C 0Q, |G| >0, h >0, (4.32)

which follows from and for sufficiently refined triangulation 7,. Note
that G and € might be smaller than those given in , but they are not decreas-
ing as 7y, is refined further. Combining the coercivity with allows
us to redefine p.
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Lemma 4.6. Let Cy satisfy conditions (4.22))-(4.24) and let the condition (4.32))
hold. Then (4.30) holds for a function

p(t) =ct?, te€[0,00). (4.33)

Proof. 1t follows from the definition (4.10)) of Ay, linearity of aj, (4.25)), Theorem
, and Poincaré inquality (|1.5)) that

Ap(un, up — vy) — Ap(vn, up, — vp)
= ap(up — vp, up — vy) + d(up, up — vy) — d(vp, up — vy)
> ; = vnly + cllun — vnllg ¢
> cflun — wal|*.
]

The same results can be obtained if the boundary terms are evaluated with
numerical quadrature.

Lemma 4.7. Let the quadrature formula (3.4]) used in the evaluation of the form
dgq (and thus Agn) use at least r + 1 nodes and have all weights positive, i.e. let

it satisfy (3.15). Let Cy satisfy conditions (4.22)-(4.24). Then the form Aap

is uniformly monotone on Sy in the following way: There exists a continuous
increasing function p : [0,00) — [0,00) such that

Agn (up, up, —vp) — Agn (v, up —op) > p (|lun — onlll) s, un,vn € S;,h >0, (4.34)
where . ct**t? for t€[0,1]
pt) = { ct? for te [1:oc;) (4.35)
If the condition also holds, then holds for a function
p(t) =ct?, te€[0,00). (4.36)
Proof. Using the definition of Agp and , we have

Adh(uha Up — Uh) - Adh(vh; Up — Uh)

= ah( WU, — Uy Up, — Up) + da(un, up — vp) — dg(vp, wp, — vp)

\uh — Uh‘h + K Z |S‘ZS Uh,?)h)

Sesy
where .
Uh, Uh Z |Uh| Up — |Uh| Uh) (uh - UfJ(QTS,“). (437)
The inequalities
Zg(uh,vh) > CHuh_vh”Oa—I—ZQ’ (438)
and
Zs(un, vn) > ¢ |lun = nllg 0.0 (4.39)

for were shown in the proof of Theorem . Combining these inequalities

gives us (4.34) with ( and - O]
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We again define monotone functions p; and p; for the error estimates as

nt) =" 5= s (4.40)
and p; ' and p; ' are their inverses. The estimates above show that p; and p; are
either linear or grow with t**', and p;' and p;' are thus either linear or grow
with ta+1,

The last step needed before deriving error estimates is to express in some
simple terms the interpolation errors u—m,u evaluated in functions Ry, (u—muu, q)
and Gj(u — mpu) from the continuity of Ay,.

Lemma 4.8. Let my, be a piecewise Lagrange interpolation of order r € N, let the
system of triangulations {T,}, h > 0 be shape regular in accordance with (2.3)),
let ue Wr(Q), k€N, k>2 v=min(r + 1,k). Then

1/2
Rp(u—mpu,q) <c| > h?p(yd/‘n ]u\i’q,T , (4.41)
TeT

where ¢ > 0 is independent of q > % and h > 0. There also exists ¢ > 0
independent of h > 0 such that

1/2
Gh(u—mu) < ¢ ( S e ]u|iq,T) . (4.42)
T€ETh

Proof. Both estimates follow from applying (2.16|) to (4.27))-(4.29). Let us show,

for example, (4.27)).
We have ¢ € %,2) and %—l— % =1, (2.16) gives us:

u—1+2<$—%)
lu — ﬂ-hu’l,q/,T <c |u’u,q,T hy )

’u - 7T'hu‘2,q,T S ¢ ‘u|u,q,T hng'

Using this in the right-hand side of (4.27)) yields

1/2
(CM Z hT |U — Whull,q’,T |U - Trhu|2,q7T)

TeT,

1/2
—142(1-2)4v—2
S ¢ ( Z hT |u|12/,q,T h; ( q) ’ ) )

TeT,
which is (4.41)) for q € (%,2). H
4.3 Error estimation

Let us begin by estimating the error of DG approximation.
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Theorem 4.9. Let w € W4(Q), ¢ > % be the weak solution given by (|1.8),

let uy, be the discontinuous Galerkin approximation of order r given by (4.12), let
the system of triangluations Tn, h > 0 be shape regular in accordance with 7
let Cy satisfy (4.22))-(4.24). Then there exist constants c1,co > 0 independent of
u, h, such that

e = wnll < pr* (crh™ 2 Jul, o (T4 B2 Ul 50)) + b2 ul, g

(4.43)
forq e (%,2), and
llu = wnll < pr* (eah” [l g1 g0 (172 ullfn0)) + b ul, 100 (4.44)

for q > 2, where p1 was given in (4.40)).

Proof. Let m;, be a continuous piecewise Lagrange interpolation operator of order
r. Then [[ull| = |lull, 5o and [[mpul] = |[mpull; 5 q- By virtue of (4.30) and the
definitions of solutions u, and wu,

p (lun — mrul|) < Ap(up, up — mpu) — Ap(Thu, up — Thw)
= L(uh — 7rhu) — Ah(ﬂ'hu, Up — 7Thu)

= Ap(u, up, — mpu) — Ap(mpu, up — Thu).

This relation and Lemma {4.4] give us
o1 (llun — moul]) < ( ot — oty o + Rt — s )

+ Gafu = 1) (Julfgn + Il ) )
Lemma 4.8 and inequality

Imnully 50 < €llull o0

following from ([2.16]) imply

1/2
2(r+1-2 2
p1 (= mpu]) < ( lu — Tyl o + ( S e |u|)

TeT),
(0%
1,20 |-

The term ||u — mpull, 5 Was estimated in Theorem and the same ideas from
its proof give us

1/2
r+1-2/ 4
( Z h¥r+1*2/Q) |u’2 T) < {h’ 7 |u|r+1,q,Q7 qc (37 2) )

T+17q» T
TET, ch” ul, g0 q>2.

1/2
2r43—4 2
+ (Z hTJr i |U|r+1,q,T) Ju

TeT,

Using this inequality yields

2l o (L B2 [ullfh0) g€ (32),
eh” [ul, g0 (T4 BV [ullf ) q>2.

pr (llun = mnull) < {
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Triangle inequality
e = unlll < flu = mnully 5 0 + lun — mhull

and the estimate of ||[u — mpul|, , o from Theorem [2.8 completes the proof. O

The discontinuous approximate solution can be estimated similarly with ideas
from Theorem [3.7] and Theorem [3.13| Let us again separate the boundary faces
FPB into three disjoint sets FF = F U FE U FE,.

e 7 contains segments T' with ulr = 0. Then also m,ulr = 0 and the
quadrature is exact there, i.e. Er(|mpul” (mpu)wy) = 0.

eIf a+1>rora e Ny then 5 contains all segments not in Ff. If
a ¢ Ny and a+ 1 < r, then F5 contains all segments not in FF% satisfying
minplu > ¢ where C} is given by (3.45). Then combining (3.48) (or (3.43))

maxr|u

and (3.8)) gives us an error estimate of order 7.

e F{3 contains the remaining segments, i.e. for o ¢ Ny and a+ 1 < r, Ff}

contains segments satisfying % < () and w is not identically zero on

[. Let us set hy = max {|F| ;e f,?;} (or hy = 0 if there are no segments

in 7). Combining (3.43) and (3.8) gives us an error estimate of order
ro = o + 1.

Theorem 4.10. Let u € W™H4(Q), ¢ > % be the weak solution given by (|1.8),
let f € W) and ¢ € WT(OR), let ugp, be the discontinuous Galerkin approz-

imation of order r given by (4.13)), let Cyw satisfy (4.22))-(4.24)), let the system
of triangluations T, h > 0 be shape reqular in accordance with (2.3)), let the

quadrature formula used in the evaluation of the form dy (and thus Ag)
satisfy , let the quadrature formulas on edges and on triangles be exact for
polynomials of degree < 2r — 1, let the boundary faces FP be divided into Fi,
FB ., FB as above. Then there exist constants cy, ca, c3 > 0 independent of h such
that

2

llw — uanll| < et 77 + ! (czh’”“‘% +os (W +h5))) (4.45)
ifq € (%,2), and
llw = wanlll < erh” + p" (eah” + c5 (R + ) (4.46)

if ¢ > 2, where py was given in (4.40)).

Proof. Let m;, be a continuous piecewise Lagrange interpolation operator of order

r. Inequality (4.34) gives us
ﬁ (|||Udh — 7Thu|||) S Adh(udh, Udh — 7rhu) — Adh(ﬂ'hu, Ugh — Whu). (447)

Using
Adh(udm Udn — Whu) = Ld(udh - Whu),

L(Udh — 7Thu) = Ah(u, Udh — 7Thu),
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and adding and subtracting the same terms, we get

Aan(Uan, uap, — mhw) — Agn(Tau, ugn, — mpu) = [La(ugn — mpu) — L(ugn — mhu)]
+ [Ah(u, Udh — 7Thu) — Ah(ﬂ'hu, Ugh — Whu)]

—I— [Ah(whu, Udh — 7rhu) — Adh(whu, Udh — Whu)].

The first bracket can be estimated with (3.13) and (3.12)):

|Ld(udh — 7Thu) — L(udh — 7Thu)|

< ch” (1f, g0 19llo g0 + 121, 00 [0nllog a0)

which can be further estimated with and to obtain
| La(uan — mhu) = L(uan, — mu)| < ch'[[ua].
The third bracket can be estimated similarly to find
| An(mht, ugn — mpw) — Agn(Tnu, wan, — mhu)| < ch” [[myul® myul, o0 llvall,

which was already estimated in the proof of Theorem [3.13] The second bracket
was estimated in the proof of Theorem .9 by

r - B 4
Wy (1402 ulSy0) . g€ (502).

o Jul, sy g0 (LB ullf50) g > 2.

Combining these inequalities, using triangle inequality
e = unlll < flu = mnully 5 0 + lun — mnull

and the estimate of ||u — mu|, , o from Theorem [2.8 completes the proof. O

If the exact weak solution is zero on the whole boundary, we can again similarly
improve the estimate of the order of convergence in the ||, -seminorm.

Theorem 4.11. Let the weak solution v € WTh4(Q), ¢ > % given by ((1.8))
be zero on OS2, let uy be the discontinuous Galerkin approzimation of order r
given by (4.12)), let the system of triangluations Ty, h > 0 be shape regular in

accordance with (2.3)), let Cyw satisfy (4.22))-(4.24). Then there exists a constant
¢ > 0 independent of u, h, such that

hr+i=2/a , g€ (%,2),
|u — up, < {C |U|r+1,qyﬂ i (3 ) (4.48)

ch” \u|r+17q,Q , q>2.

Proof. Let m,u be a piecewise continuous Lagrange interpolation of u. Using

(4.25)), the definitions of norms ay, Ay, Jp, in (4.9), (4.10), (4.5)), Holder inequality,
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and the definitions of the solutions u and uy, in (1.8)), (4.12)), we have

1 2
5 |up, — mhul),

1 2 2
=5 (T;/va}lmw dx + Z /FU[Uh—WhU] dS)

rerf
< ap(up — THU, Uy — THU)
< Ap(up, up, — mpu) — Ap(mhu, up — THU)
= L(up — mpu) — Ap(mpu, up — mhu)

= Ah(u,uh — 7Thu> — Ah(ﬂ'hu, Up — 7Thu)

=Y /TV(u —mpu) - V(up — mpu)de

TET,
+ ZI /1“ olu — mpul[up, — Thu]dS
= 3 [ e (9 m) s = ] e (9 ) ) A

+ R/{m (Ju|® u — |mpu|® mpu) (up — mpu)dS.
(4.49)

Holder inequality gives us

Z /TV(U — mpu) - V(up — mpu)de + Z /Fa[u — ) [up, — Thu)dS

T€Tn rerf

<|u — mpul, |up — THUl, -
Since © = mpu = 0 on 012,
Hé(mwu—mwwmm@m—wwmszo
Q
Both u and 7,u are continuous, therefore

Z Onr - (V(up, — mpu))[u — mpuld = 0.

Using Hoélder inequality on [pnr - (V(u — mpu)) [up, — mhul leads to

5> [one (V= myu)) s — mpulds
rerf

< ( > /Fa[uh — Whu]zdS) 2 ( > /Fa_l (nr - (V(u— 7Thu)>)2 dS)

rer! rer!

N |=

Using these inequalities in (4.49) and dividing it by |u, — mhul, yields

lup, — mhul, < cf| lu—mul, + ( > /Fo'_l (np - (V(u — mu)))? dS) ;

rerf
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which can be estimated by multiplicative trace inequalities (4.20)) and (4.21)) for
Lyl =1 ifqe (4,2):
q q/ ) 37

S [ o (e (V(u - ) as

reri r

2
<e > (hlu—mnuly g pfu— mtlyyp + [u— mulf, 7)),
TeTh

> [ o e (V(u - ) as

rer} r

SCX:@W—WWKWH“_WMMI+W_WWKM)
TeTh

Triangle inequality |u — wy|, < |u — mhul, + |up, — mhul, and the fact that
lu — mpul, = |u— 7Thu|1,2,9 )

lead to
9 2 1/2
u =l < e (Ju=moul p + (B (= T, 0) + o= myull o) )

Using a® + b* < (a + b)?, estimates of |u — mpu|, , o in Theorem , and (|4.41])
completes the proof. O

If we consider a problem, where the numerical quadrature is used only on the
nonlinear boundary term, but the right-hand side integrals are evaluated exactly,
we still obtain the same result with almost identical proof.

Theorem 4.12. Let the weak solution u € W™H4(Q), ¢ > 5 given by (L8) be
zero on 0N, let uq, € S; be the discontinuous Galerkin approzimation given by

Adh(udh,vh) = L(Uh), Vvh S S;; (450)

Let the system of triangluations Tn, h > 0 be shape reqular in accordance with

(2.3), let Cw satisfy (4.22)-(4.24), let the quadrature formula (3.4) used in the
evaluation of the form Agn satisfy (3.15). Then there exists a constant ¢ > 0

independent of u, h, such that

_ 4
chrH1-2/q ulyi1 00 4E (5,2) ,

(4.51)
ch” |ul q>2.

W—UMMS{

r+1,¢,Q2

Proof. Let mpu be a piecewise continuous Lagrange interpolation of u. Inequality
(4.25) gives us

1 2
3 \wan, — Taul, < ap(Ugn — TR, Ugy — THU)
< Agn(Uan, uan, — Thw) — Agn (TR, Ugn — ThW).

Using the definitions of the solutions v and u;, and the fact that numerical quadra-
ture is evaluated exactly for functions which are identically zero, we have

Adh(udh, Ugh — Whu) = L(Udh - Whu) = Ah(U, Ugh — Whu),
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Adh<ﬂ'hu7 Udh — 7Thu) = Ah(ﬂ'hu, Udh — 7Thu).

Therefore,
1 2
5 [tan, — mhuly, < Ap(u, ugn — mhu) — Ap(Tau, ugy — THU),
and the rest of this proof is identical to Theorem {4.11} O

We have proven theoretically that the results concerning the error estimates
of FEM derived in Chapters 2| and [3|also hold for DG method under the same as-
sumptions. The order of convergence depends on the degree of used polynomials,
the regularity of the exact solution and it is again divided by « + 1, if the weak
solution is zero on the boundary. For the DG method, the approximate solution
converges to the exact weak solution in the ||-||-norm instead of the H'-norm. If
the exact solution is zero on the boundary 0f2, we have improved the order of
convergence in the |-|,-seminorm instead of the H'-seminorm.
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5. Numerical experiments

In this chapter we present two numerical examples computed using the FEniCS
software [I]. We explore the reduction of the order of convergence caused by
the nonlinearity, how it affects different norms, and whether this changes, if the
exact solution of problem (1.1])-(1.2)) is zero on the whole boundary 9. In both
experiments we discretize the problem by the FEM and by the SIPG variant
of the DG method. We use uniform triangular meshes with element diameters
h, = %,l =0,1,...,5. The amount of degrees of freedom (DOF) is therefore
expected to increase about four times with each refinement. Denoting the error
of the discrete solution by e, = u — u,, we compute the experimental order of

convergence (EOC) by

logey,_, — logey,

FEOC =
logh;—1 —logh; ’

1=1,2,...,5 (5.1)

The discrete problems (22.7)), (3.14), (4.12)), (4.13) represent nonlinear systems
for a > 0. We solved this problem by a dampened Newton method with tolerance
on the residual 1077,

5.1 Example 1 - solution is zero on the bound-
ary

In the first experiment we consider the problem (I.1)-(1.2)) on a unit square
domain 2 = (0,1)?. The data f and ¢ are chosen such that the exact solution is

u(zy, xe) = x1(1 — 21) 22 (1 — 29) (mf + x%)lM : (5.2)

This function belongs to W44(Q), ¢ € (1, %), or H**79(Q), § > 0. Therefore,

min(2.5,r) min(2.5,r)
we expect |ep]; 5o ~ O (h ’ ) and [[ep]lg o~ O (A o

We have discretized the problem with FEM and SIPG variant of the DG
method. For polynomials of degree » = 2 we have tried different values of the
nonlinearity parameter @ = 0.5,1.0, 1.5, 2.0, and for parameter a = 1.5 we have
tried FEM with polynomials of degrees r = 1,2, 3,4. The results shown in Table
and Table also include the mesh element size h = maxyec7;, hr, the number
of degrees of freedom and the number of Newton iterations.

The H'-seminorm and [-],-seminorm seem to behave as expected, i.e. their
order of convergence is min(2.5,7). The most significant part of the error mea-
sured in H'-norm (or |||-||-norm) was its L?>-norm. Our estimates for the L?*norm

. min(2.5,r) : 1 2 2.5 25
give us an order of convergence —_ ==, which would be a1 gD Al il for
r = 1,2,3,4, respectively. The EOC, however, suggests 7, =%, =7, o for

r=1,2,3,4, respectively. The theoretical error estimate is therefore suboptimal.
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a=15 r=1

h DOF iter HEHOQ,Q EOC |6|1727Q EOC ||8||172’Q EOC
0.375 49 4 9.3448e-02 - 7.9119e-02 - 1.2244e-01 -
0.188 161 6 4.8018e-02 0.96 4.0634e-02 0.96 6.2904e-02 0.96
0.094 577 6 2.7109e-02 0.82 2.0042e-02 1.02 3.3713e-02 0.90
0.047 2177 6 1.5600e-02 0.80 9.8458e-03 1.03 1.8447e-02 0.87
0.023 8449 6 8.8992e-03  0.81 4.8780e-03 1.01 1.0148e-02 0.86
0.012 33281 6 5.0395e-03  0.82 2.4321e-03 1.00 5.5957e-03  0.86
a=15 r=2

h DOF iter HGHO’QVQ EOC |e|1,279 EOC ||6||1’2yg EOC
0.375 161 3 2.6724e-02 - 8.6570e-03 - 2.8091e-02 -
0.188 577 6 1.2058e-02 1.15 2.2618e-03 1.94 1.2268e-02 1.20
0.094 2177 6 5.9243e-03 1.03 5.7373e-04 1.98 5.9520e-03 1.04
0.047 8449 6 2.9464e-03 1.01 1.4479e-04 1.99 2.9499e-03 1.01
0.023 33281 6 1.4700e-03 1.00 3.6421e-05 1.99 1.4704e-03 1.00
0.012 132097 6 7.3425e-04 1.00 9.1384e-06 1.99 7.3430e-04 1.00
a=15 r=3

h DOF iter HEHOJ,Q EOC |E|1727Q EOC ||6||172’Q EOC
0.375 337 3 1.2840e-02 - 8.3916e-04 - 1.2867e-02 -
0.188 1249 6 4.9724e-03 1.37 1.2809e-04 2.71 4.9741e-03 1.37
0.094 4801 5 3.3908e-03  0.55 1.5021e-05 3.09 3.3908e-03  0.55
0.047 18817 6 1.6746e-03 1.02 2.0634e-06 2.86 1.6746e-03 1.02
0.023 74497 6 8.3301e-04 1.01 2.9962e-07  2.78 8.3301e-04 1.01
0.012 296449 3 4.1014e-04 1.02 4.7016e-08 2.67 4.1014e-04 1.02
a=15 r=4

h DOF iter HGHO’QVQ EOC |e|1,279 EOC ||6||1’2yg EOC
0.375 577 3 9.6870e-03 - 1.4266e-04 - 9.6880e-03 -
0.188 2177 6 5.0551e-03  0.94 1.4161e-05 3.33 5.0551e-03  0.94
0.094 8449 6 2.5318e-03 1.00 2.3612e-06 2.58 2.5318e-03 1.00
0.047 33281 6 1.2653e-03 1.00 4.3600e-07  2.44 1.2653e-03 1.00
0.023 132097 6 6.3245e-04 1.00 8.1398e-08 2.42 6.3245e-04 1.00
0.012 526337 4 2.9917e-04 1.08 1.5154e-08 2.43 2.9917e-04 1.08
a=0.5, r=2

h DOF iter H8H072’Q EOC |e|1727g EOC ||e||172’g2 EOC
0.375 161 4 2.3779e-03 - 8.6544e-03 - 8.9752e-03 -
0.188 577 5 6.3232e-04 1.91 2.2617e-03 1.94 2.3485e-03 1.93
0.094 2177 4 1.9356e-04 1.71 5.7372e-04 1.98 6.0550e-04 1.96
0.047 8449 3 6.0476e-05 1.68 1.4479e-04 1.99 1.5691e-04 1.95
0.023 33281 3 1.8977e-05 1.67 3.6421e-05 1.99 4.1069e-05 1.93
0.012 132097 3 6.0396e-06 1.65 9.1384e-06 1.99 1.0954e-05 1.91
a=10, r=2

h DOF iter HeHoyng EOC |e|1,279 EOC ||e||172,Q EOC
0.375 161 4 1.0793e-02 - 8.6566e-03 - 1.3835e-02 -
0.188 577 6 3.9942e-03 1.43 2.2618e-03 1.94 4.5901e-03 1.59
0.094 2177 6 1.6433e-03 1.28 5.7373e-04 1.98 1.7406e-03 1.40
0.047 8449 5 6.8640e-04 1.26 1.4479e-04 1.99 7.0150e-04 1.31
0.023 33281 4 2.8784e-04 1.25 3.6421e-05 1.99 2.9014e-04 1.27
0.012 132097 3 1.1988e-04 1.26 9.1384e-06 1.99 1.2023e-04 1.27
a=20, r=2

h DOF  iter | [|lello2,0  EOC leln EOC [lell] EOC
0.375 161 3 4.8888e-02 - 8.6572e-03 - 4.9648e-02 -
0.188 577 6 2.5182e-02 0.96 2.2618e-03 1.94 2.5284e-02 0.97
0.094 2177 6 1.3928e-02 0.85 5.7373e-04 1.98 1.3940e-02 0.86
0.047 8449 6 7.7818e-03 0.84 1.4479e-04 1.99 7.7831e-03 0.84
0.023 33281 6 4.3594e-03  0.84 3.6421e-05 1.99 4.3595e-03  0.84
0.012 132097 6 2.4446e-03  0.83 9.1384e-06 1.99 2.4446e-03  0.83

Table 5.1: Example 1 - number of DOF and Newton iterations,
discretization errors and convergence rates for r =1, 2, 3, 4 and
a=0.5,1.0, 1.5, 2.0 in FEM.
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a=0.5, r=2

h DOF  iter | |lello2,0  EOC leln EOC []el]] EOC
0.375 384 4 | 2.3711e-03 - 7.7517¢-03 - 8.1062¢-03 -
0.188 1536 5 | 6.3176e-04  1.91 | 2.0084e-03  1.95 | 2.1054e-03  1.94
0.094 6144 4 | 1.9354¢-04 1.71 | 5.0545¢-04 1.99 | 5.4124e-04 1.96
0.047 24576 3 | 6.0472¢-05 1.68 | 1.2673e-04 2.00 | 1.4042e-04  1.95
0.023 98304 3 | 1.8994e-05 1.67 | 3.1764e-05 2.00 | 3.7009¢-05  1.92
0.012 393216 3 | 5.9364c-06 1.68 | 7.9534e-06  2.00 | 9.9246e-06  1.90

a=10, r=2

h DOF iter llello,2,0 EOC le|n EOC e EOC
0.375 384 4 1.0791e-02 - 7.7532e-03 - 1.3288e-02 -
0.188 1536 6 3.9941e-03  1.43 2.0084e-03  1.95 | 4.4706e-03  1.57
0.094 6144 6 1.6433e-03 1.28 5.0545e-04 1.99 1.7193e-03 1.38
0.047 24576 5 6.8640e-04  1.26 1.2673e-04  2.00 6.9800e-04  1.30
0.023 98304 4 2.8785e-04  1.25 3.1764e-05  2.00 2.8960e-04  1.27
0.012 393216 3 1.1989%e-04  1.26 7.9534e-06  2.00 1.2015e-04  1.27

a=15 r=2

D DOF _ iter | [lellosa  EOC leln EOC el EOC
0.375 384 4 2.6723e-02 — 7.7536e-03 — 2.7825e-02 —
0.188 1536 6 1.2058e-02 1.15 2.0084e-03 1.95 1.2224e-02 1.19
0.094 6144 6 5.9243e-03 1.03 5.0545e-04 1.99 5.9459e-03 1.04
0.047 24576 6 2.9464e-03 1.01 1.2673e-04 2.00 2.9491e-03 1.01
0.023 98304 6 1.4700e-03 1.00 3.1764e-05 2.00 1.4703e-03 1.00
0.012 393216 6 7.3425e-04 1.00 7.9534e-06 2.00 7.3429e-04 1.00

a=20, r=2

h DOF iter llello,2,0 EOC le|n EOC e EOC
0.375 384 3 4.8888e-02 - 7.7537e-03 - 4.9499e-02 -
0.188 1536 6 2.5182e-02  0.96 2.0084e-03  1.95 2.5262e-02  0.97
0.094 6144 6 1.3928e-02  0.85 5.0545e-04  1.99 1.3937e-02  0.86
0.047 24576 6 7.7818e-03  0.84 1.2673e-04  2.00 7.7828e-03  0.84
0.023 98304 6 4.3594e-03  0.84 | 3.1764e-05 2.00 | 4.3595e-03  0.84
0.012 393216 6 2.4446e-03  0.83 7.9534e-06  2.00 2.4446e-03  0.83

Table 5.2: Example 1 - number of DOF and Newton iterations,
discretization errors and convergence rates for r = 2 and a =
0.5, 1.0, 1.5, 2.0 in SIPG variant of DG method.
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5.2 Example 2 - solution not identically zero on
the boundary

In the second experiment, we again consider the problem (1.1)-(1.2)) on a unit
square domain Q = (0,1)%. We prescribe the data f and ¢ in such a way that
the exact solution is

(14 21)sin (271 22) . (5.3)

AN,

w(@r, w) =

This function was used in [19]. It is smooth, zero on boundary segments
going through points [0, 1], [0, 0], [1,0] and nonzero on segments going through
points [1,0], [1, 1], [0,1]. The expected order of convergence is r in all norms and
seminorms considered and should not depend on the nonlinearity parameter a.

In a discretization of this problem, we have chosen o« = 1.5 and degrees of
polynomials r» = 1, 2, 3 for both FEM and SIPG variant of DG method. For FEM,
we have also tried » = 4, and o = 0.5. The order of convergence is not affected
by boundary nonlinearity parameter «, which is in agreement with theoretical
results. The H'-seminorm and |-|,-seminorm converge with the predicted order
of convergence r, but the L?-norm converges faster with order r +1. The L?-norm
error estimate is again suboptimal, but in this case, the error is dominated by the
H'-seminorm or the |-|,-seminorm. Therefore the resulting order of convergence
in H'-norm or [||-||-norm is still r in accordance with the theoretical results.

The numerical experiments confirmed that the theoretical error estimates in
seminorms were optimal and that the order of convergence changes based on
whether the exact solution is zero on the whole boundary. The numerical results,
however, suggest that the order of convergence in L?-norm is suboptimal. The
theoretical results give us an order of convergence r (or .7 ), but the EOC is r+1
(or 70";11) This improvement only appeared when the exact solution belonged to
the space H™™1(Q).
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a=15 r=1

h DOF iter HGHO’QVQ EOC |e|1,279 EOC ||6||1’2yg EOC
0.375 49 6 2.5883e-01 - 9.5881e-01 - 9.9314e-01 -
0.188 161 5 6.1723e-02 2.07 5.3381e-01 0.84 5.3736e-01 0.89
0.094 577 4 1.5381e-02 2.00 2.8145e-01 0.92 2.8187e-01 0.93
0.047 2177 4 3.9289e-03 1.97 1.4421e-01 0.96 1.4426e-01 0.97
0.023 8449 3 9.9584e-04 1.98 7.2704e-02 0.99 7.2711e-02 0.99
0.012 33281 3 2.4986e-04 1.99 3.6390e-02 1.00 3.6391e-02 1.00
a=15 r=2

h DOF iter HEHOJ,Q EOC |E|1727Q EOC ||6||172’Q EOC
0.375 161 6 1.4730e-02 - 2.3514e-01 - 2.3560e-01 -
0.188 577 4 1.2493e-03 3.56 5.8813e-02 2.00 5.8826e-02 2.00
0.094 2177 3 1.3819e-04 3.18 1.5173e-02 1.95 1.5173e-02 1.95
0.047 8449 3 1.6986e-05 3.02 3.8676e-03 1.97 3.8676e-03 1.97
0.023 33281 2 2.1254e-06 3.00 9.7489%e-04 1.99 9.7489e-04 1.99
0.012 132097 2 2.6587e-07 3.00 2.4425e-04 2.00 2.4425e-04 2.00
a=15 r=3

h DOF iter HGHO’QVQ EOC |6|1,279 EOC ||6||1’2yg EOC
0.375 337 6 4.5914e-03 - 2.3116e-02 - 2.3568e-02 -
0.188 1249 3 2.4182e-04 4.25 3.4931e-03 2.73 3.5015e-03 2.75
0.094 4801 3 1.3800e-05 4.13 4.7873e-04 2.87 4.7893e-04 2.87
0.047 18817 2 8.5542e-07 4.01 6.2363e-05 2.94 6.2369e-05 2.94
0.023 74497 2 5.4140e-08 3.98 7.9229e-06 2.98 7.9231e-06 2.98
0.012 296449 2 3.4211e-09 3.98 9.9474e-07 2.99 9.9474e-07 2.99
a=15 r=4

h DOF iter H8H072’Q EOC |e|1727g EOC ||e||172’g2 EOC
0.375 577 6 8.4789%e-05 — 4.2824e-03 - 4.2832e-03 -
0.188 2177 3 3.2227e-06 4.72 3.2812e-04 3.71 3.2813e-04 3.71
0.094 8449 2 1.0740e-07 4.91 2.2035e-05 3.90 2.2036e-05 3.90
0.047 33281 2 3.4969e-09 4.94 1.4299e-06 3.95 1.4299¢-06 3.95
0.023 132097 2 1.1140e-10 4.97 9.0809e-08 3.98 9.0809e-08 3.98
0.012 526337 2 3.5005e-12 4.99 5.6988e-09 3.99 5.6988e-09 3.99
a=0.>5, r=2

h DOF iter HeHoyng EOC |e|1,279 EOC ||6||1ygyg EOC
0.375 161 6 1.4072e-02 - 2.3527e-01 - 2.3569e-01 -
0.188 577 4 1.2379e-03 3.51 5.8815e-02 2.00 5.8828e-02 2.00
0.094 2177 4 1.3806e-04 3.16 1.5173e-02 1.95 1.5173e-02 1.95
0.047 8449 3 1.6989e-05 3.02 3.8676e-03 1.97 3.8676e-03 1.97
0.023 33281 3 2.1256e-06 3.00 9.7489%e-04 1.99 9.7489%e-04 1.99
0.012 132097 2 2.6588e-07 3.00 2.4425e-04 2.00 2.4425e-04 2.00

Table 5.3: Example 2 - number of DOF and Newton iterations,
discretization errors and convergence rates for r = 1, 2, 3, 4 and
a=1.5,0.5in FEM.
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a=15 r=1

h DOF  iter llello,2,0 EOC le]n EOC elll EOC
0.375 192 6 2.5073e-01 - 8.7620e-01 - 9.1137e-01 -
0.188 768 5 6.1030e-02 2.04 4.7862e-01 0.87 4.8249e-01 0.92
0.094 3072 4 1.5377e-02 1.99 2.4855e-01 0.95 2.4902e-01 0.95
0.047 12288 4 3.9457e-03 1.96 1.2692e-01 0.97 1.2698e-01 0.97
0.023 49152 3 1.0016e-03 1.98 6.3982e-02  0.99 6.3990e-02  0.99
0.012 196608 3 2.5142e-04 1.99 3.2043e-02 1.00 3.2044e-02 1.00

a=15 r=2

h DOF iter llello,2,0 EOC le|n EOC e EOC
0.375 384 6 1.3432e-02 - 2.2029e-01 - 2.2069e-01 -
0.188 1536 4 9.8475e-04  3.77 | 5.4667e-02  2.01 5.4676e-02  2.01
0.094 6144 3 9.5957e-05  3.36 1.3884e-02 1.98 1.3884e-02 1.98
0.047 24576 3 1.1194e-05  3.10 3.5122e-03  1.98 3.5122e-03  1.98
0.023 98304 2 1.3773e-06  3.02 8.8228e-04  1.99 8.8229e-04  1.99
0.012 393216 2 1.7139e-07  3.01 2.2075e-04  2.00 2.2075e-04  2.00

a=15 r=3

h DOF  iter llello,2,0 EOC le]n EOC elll EOC
0.375 640 6 4.5720e-03 - 2.7526e-02 - 2.7903e-02 -
0.188 2560 3 2.4012e-04  4.25 4.2359e-03  2.70 4.2427e-03  2.72
0.094 10240 3 1.3676e-05  4.13 5.7642e-04  2.88 5.7658e-04  2.88
0.047 40960 2 8.4847e-07  4.01 8.1035e-05 2.83 8.1039e-05 2.83
0.023 163840 2 5.3738e-08  3.98 1.0459e-05 2.95 1.0460e-05 2.95
0.012 655360 2 3.3983e-09  3.98 1.3431e-06  2.96 1.3431e-06  2.96

Table 5.4: Example 2 - number of DOF and Newton iterations,
discretization errors and convergence rates for o = 1.5 and r =
1, 2, 3 in SIPG variant of DG method.
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Figure 5.4: Example 2 - EOC for ao = 1.5.
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Conclusion

In this thesis we have analyzed finite element method (FEM) and discontinuous
Galerkin method (DG) for elliptic problem in a polygonal domain with nonlinear
Newton boundary condition. We have given some regularity properties of the
weak solution in a neighbourhood of boundary edges. Then we have discretized
the problem with FEM and derived abstract error estimates for the approximate
solution. These estimates were further improved if the exact solution was dis-
tant from zero on a large part of the boundary to give the same estimates as if
there was no nonlinearity on the boundary. If the exact solution was zero on the
whole boundary, we have improved the seminorm part of the error estimates. We
have then shown that the same results are obtained even if we consider that the
integrals in the definition of the approximate solution are evaluated with numer-
ical integration. Then we have discretized the problem with DG and we have
derived the same error estimates even while considering numerical integration.
The numerical experiments confirmed that order of convergence changes based
on whether the exact solution is zero on the boundary and the seminorm part of
the error estimates behaved exactly as predicted. It remains to prove an optimal
L?(Q)-error estimate.
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