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Abstract

We study volatility spillovers among commodity and equity markets by em-

ploying a recently developed approach based on realized measures and forecast

error variance decomposition invariant to the variable ordering from vector-

autoregressions. This enables us to measure total, directional and net volatil-

ity spillovers as well as the asymmetry of responses to positive and negative

shocks. We exploit high-frequency data on the prices of Crude oil, Corn, Cot-

ton and Gold futures, and the S&P 500 Index and use a sample which spans

from January 2002 to December 2015 to cover the entire period around the

global financial crisis of 2008. Our empirical analysis reveals that on average,

the volatility shocks related to other markets account for around one fifth of

the volatility forecast error variance. We find that shocks to the stock markets

play the most important role as the S&P 500 Index dominates all commodities

in terms of general volatility spillover transmission. Our results further suggest

that volatility spillovers across the analyzed assets were rather limited before

the global financial crisis, which then boosted the connectedness between com-

modity and stock markets. Furthermore, the volatility due to positive and

negative shocks is transmitted between markets at different magnitudes and

the prevailing effect has varied. In the pre-crisis period, the positive spillovers

dominated the negative ones, however, in several years following the crisis, the

negative shocks have had a significantly higher impact on the volatility spill-

overs across the markets, pointing to an overall increase in uncertainty in the

commodity and equity markets following a major crisis. In recent years, the

asymmetric measures seem to have returned to their pre-crises directions and

magnitudes.
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Abstrakt

V této práci zkoumáme přeléváńı volatility mezi komoditńımi a akciovými trhy

metodou založenou na realizovaných měrách volatility a rozkladu prognózy

chybových odchylek invariantńıch v̊uči pořad́ı proměnných při vektorových au-

toregreśıch. To nám umožňuje měřit nejen celkové, směrové a čisté přeléváńı

volatility, ale i asymetrii reakćı na pozitivńı a negativńı šoky. V analýze

využ́ıváme vysokofrekvenčńı data o cenách termı́nových kontrakt̊u na trźıch

s ropou, kukuřićı, bavlnou a zlatem a hodnotách indexu S&P 500. Data

pokrývaj́ı obdob́ı od ledna 2002 do prosince 2015 tak, aby zahrnula globálńı

finančńı krizi v roce 2008. Naše empirická analýza ukazuje, že v pr̊uměru je

volatilita na ostatńıch trźıch zodpovědná za přibližně jednu pětinu chybové

odchylky prognózy volatility. V souladu s předchoźı literaturou zjǐsťujeme, že

nejd̊uležitěǰśı úlohu hraj́ı šoky na akciových trźıch, neboť Index S&P 500 domin-

uje všem komoditám z hlediska přeléváńı volatility. Naše výsledky naznačuj́ı,

že před vypuknut́ım globálńı finančńı krize v roce 2008 bylo přeléváńı volatility

např́ıč analyzovanými trhy poměrně omezené, nicméně krize výrazně pośılila

propojenost mezi komoditńımi a akciovými trhy. Dále zjǐsťujeme, že volatilita

vyvolaná pozitivńımi a negativńımi šoky je přenášena mezi trhy v r̊uzných ve-

likostech a převažuj́ıćı efekt se v předkrizovém obdob́ı lǐsil, avšak v několika

letech po skončeńı krize měly negativńı šoky výrazně větš́ı dopad na přeléváńı

volatility mezi jednotlivými trhy, což poukazuje na celkový nár̊ust nejistoty

na komoditńıch a akciových trźıch po velké krizi. V posledńıch letech se zdá,

že čisté směrové efekty přeléváńı volatility se vrátily do svých předkrizových

směr̊u a objemů.
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odchylky, asymetrické efekty, komoditńı
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Proposed topic Measurement of volatility spillovers and asymmetric con-

nectedness on commodity and equity markets

Motivation In the last decades, individual markets have become interconnected in

an unprecedented manner, which led to increased interest in the study of interaction

of different markets. Literature analyzing this interdependence has focused mainly

on returns and their volatility. Since volatility is considered to be an alternative mea-

sure of risk, the motivation to analyze its behavior is straightforward. Monitoring

such spillovers should be in the interest of investors and other financial market par-

ticipants as it can provide useful signals about the future development of the market.

In this thesis, we will try to model volatility spillovers across the most developed

commodity – oil crude, stocks and exchanged rate among the United States, Germany

and the Czech Republic. We will cover the period from January 2005 to January

2015 which will enable us to examine volatility spillovers before, during, and after

the financial crisis.

Following the approach of Diebold and Yilmaz (2009), we base our methodology

on the construction of a simple quantitative measure of such interdependence, the so-

called spillover index. Specifically, we examine the volatility spillovers based directly

on the decomposition of the forecast error variance of a vector auto-regressive model.

This allows to distinguish the forecast error variance in one market from the shocks

in other markets and thus to estimate the spillover effect.

We employ the extension to this approach pioneered by Barunik, Kocenda and

Vacha (2013), who build not only upon the work on spillover indices by Diebold and

Yilmaz (2009), but also on the updated methodology introduced in (Diebold and

Yilmaz, 2012), which introduces measures of both total and directional volatility

spillovers. The empirical fact that negative shocks are more pronounced in terms

of volatility has been formalized by a number of extensions to the ARCH model
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mailto:barunik@fsv.cuni.cz


Master’s Thesis Proposal xii

family. However, the limitations of these approaches led to the development of two

methodologies of measuring volatility, which were combined by Barunik, Kocenda

and Vacha (2013). The resulting modified indices allow for modeling asymmetric

responses to positive and negative shocks.

Hypotheses

Hypothesis #1: Volatility spillovers between two assets within one country

vary across different countries.

Hypothesis #2: Volatility spillovers are asymmetric in response to negative or

positive shocks. In particular, negative shocks have greater impact on volatility

spillovers than positive ones.

Hypothesis #3: The volatility of oil prices, stocks and exchanged rates in the

U.S. and German market affect the volatility in the Czech market.

Hypothesis #4: Volatility spillovers among countries vary for different frequen-

cies.

Hypothesis #5: The size of volatility spillovers varies over time.

Methodology To test our hypotheses, we will employ the connectedness measure-

ment methodology which was originally developed by Diebold and Yilmaz (2009)

and Diebold and Yilmaz (2012), using a generalized vector autoregressive framework.

Specifically, we will apply the variance decomposition which helps to demonstrate

the amount of information each variable contributes to the other variables in the

regression and it will show how much of the forecast error variance of each of the

variables can be explained by exogenous shocks to the other variables (Diebold and

Yilmaz, 2013). Such method will allow us to measure both the total and directional

volatility spillovers and will reveal the level of cross-country spillovers.

To study the volatility-spillover asymmetries, we will employ the volatility spillover

index devised in Diebold and Yilmaz (2009) as modified by Barunik, Kocenda and

Vacha (2013). Based on the concept of realized semi- variances presented by Barndorff-

Nielsen et al. (2010), the model allows us to decompose the realized variance into

parts corresponding to positive and negative shocks in the market. Focusing on both

intra-market and cross-market volatility, we estimate the size of the spillovers using

these asymmetric spillover indices.

Expected Contribution The expected contribution is to show the inter-market

connectedness, how the negative and positive shocks influence the volatility spillovers

and how the level of spillovers is changing in response to character of the observed
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period – before crises, during crises and recovery phases. While most of the studies

on this topic focus only on data on U.S. firms, we compare several Central European

markets with the U.S. market. Furthermore, we reveal the intra-market character-

istics such as for example the spillover effect of exchange rate on oil prices in each

market. We thus provide further evidence for the effects found by Barunik, Kocenda

and Vacha (2015) for the U.S. market during the 2008 financial crisis.

Outline
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5. Empirical Analysis, results and discussion
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Baruńık, J., Kočenda, E., and Vácha, L. 2016. Asymmetric connectedness on

the US stock market: Bad and good volatility spillovers. Journal of Financial

Markets, 27, 55-78.
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Chapter 1

Introduction

In the last decades, individual markets have become interconnected in an un-

precedented manner, which led to an increased interest in the study of the

interaction of different markets. Additionally, financial liberalization and in-

ternationalization of trade have induced a significant increase in volatility in

the markets. With both higher integration and increased volatility of major

financial markets, the commodity market as well as the equity market have

become more sensitive to innovations, changing political and economic situ-

ation, positive and negative shocks or changes in the investors’ expectations.

Moreover, quite recently the commodity markets have gone through consider-

able financialization and the fast growth in the liquidity of commodity futures

has generated an increasing inflow of investors interested in commodities exclu-

sively as investments. Volatility is considered to be an alternative measure of

risk, therefore the motivation to analyze its behavior is straightforward as it can

provide useful signals about the future development of the markets. Monitor-

ing, analyzing and understanding time-varying volatility and the transmission

mechanism across different asset classes have become a fundamental issue for

researchers, investors as well as for policy makers. The global financial crisis

of 2008 has further strengthened the notion of increasing integration between

seemingly uncorrelated markets and has underlined the importance of diversi-

fication of the investment portfolio. It is thus of an especially high interest to

study the patterns of volatility transmission and the evolution of intra-market

connectedness in the light of the worldwide crash of financial markets.

Most previous studies have focused on volatility spillovers among major

stock markets, across one specific industry or between the crude oil market
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and financial markets. The aim of this thesis is to model volatility spillovers

across widely traded commodities, specifically among Crude oil, Gold, Corn

and Cotton futures, and one of the main U.S. stock market indices, the S&P

500 Index, to represent the equity market. Each of the included commodities

represents a specific branch of the commodity market - energy, precious metal,

grain and fiber markets, respectively. The importance of each of these com-

modities within their markets is sufficient to consider them as a proxy for each

sector. Our sample covers the period from January 2002 to December 2015

which enables us to examine volatility spillovers before, during, and after the

global financial crisis. Thanks to the sample’s 14-year span we can observe the

development long before the financial market crash as well as quite long after

the turbulent period fades away which allows us to clearly assess the impact of

the global crisis on the markets under research.

Following the approach of Diebold & Yilmaz (2009), we base our method-

ology on the construction of a simple quantitative measure of interdependence,

the so-called spillover index. Specifically, we examine the volatility spillovers

based directly on the decomposition of the forecast error variance of a vector

auto-regressive model. This allows us to distinguish the forecast error vari-

ance in one market from the shocks in other markets and thus to estimate

the spillover effect. We employ an extension to this approach pioneered by

Baruńık et al. (2016), who build not only upon the work on spillover indices

by Diebold & Yilmaz (2009), but also on the updated methodology introduced

by Diebold & Yilmaz (2012), which introduces measures of both total and di-

rectional volatility spillovers. The empirical fact that negative shocks are more

pronounced in terms of volatility has been formalized by a number of extensions

to the ARCH model family. However, the limitations of these approaches led

to the development of two methodologies of measuring volatility, which were

combined by Baruńık et al. (2016). The resulting modified indices allow for

modeling asymmetric responses to positive and negative shocks.

In our research, we contribute to the discussion of intra-market connect-

edness regarding commodity and equity markets. The present analysis of the

connectedness between seemingly unrelated widely traded commodities and

an American stock index reveals many interesting findings. We find that the

volatility spillovers across the analyzed assets were rather limited before the

2008 financial crisis, which then deepened the connectedness between commod-
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ity and stock markets and emphasized further financialization of commodities.

The shocks to the stock markets play the most important role regarding the

transmission of volatility as the S&P 500 Index dominates all commodities

in terms of general volatility spillover transmission measures. Moreover, we

provide an analysis of asymmetric responses to positive and negative shocks.

To our best knowledge, no research has dealt with asymmetric connectedness

within a sample similar to that used in our analysis. The results contradict the

common perception that the negative shocks impact the volatility spillovers

more heavily than the positive ones and suggest that except for the times of

crises, the attitude of market participants is not as pessimistic as generally as-

sumed. In the pre-crisis period, the positive spillovers dominated the negative

ones, however, after the Lehman Brothers crash in September 2008, the neg-

ative shocks have had a significantly higher impact on the volatility spillovers

across the analyzed markets. Nevertheless, in recent years, we can observe that

the asymmetric measures seem to have gradually returned to their pre-crises

directions and magnitudes.

The remainder of the thesis is structured as follows. Chapter 2 provides

an overview of the existing literature focusing on inter-market connectedness,

transmission of volatility between different markets, measuring the volatility

spillovers as well as the asymmetric response to positive and negative shocks.

In Chapter 3 we describe the theoretical background behind the construction of

realized measures and the methodology used to estimate the effects of volatil-

ity in commodity and equity markets. A detailed description of the selected

commodities and stock index is provided in Chapter 4 along with the con-

struction, adjustments and descriptive statistics of the data. In Chapter 5

we evaluate a static and dynamic analysis of volatility spillovers between two

asset classes—stocks and commodities—as well as volatility spillovers across

different commodities and we further investigate potential asymmetries in the

transmission mechanism due to negative and positive shocks. Finally, Chapter

6 concludes and discusses the possible extensions of our analysis.



Chapter 2

Literature review

In the last decades, individual asset markets have become interconnected in an

unprecedented manner, which led to an increased interest in the study of the

interaction between different markets. This chapter is devoted to an overview

of the existing literature focusing on the inter-market connectedness especially

between assets included in our analysis in general, transmission of volatility

between different sectors, measuring of the volatility spillovers as well as the

asymmetric response to positive and negative shocks. In our analysis we are

mostly interested in commodity markets and its intra-connectedness between

different asset classes as well as the link between commodity market and stock

market which is represented by the S&P 500 Index.

Most studies focus on the volatility transmission among different key stock

markets or between the crude oil market and financial markets. Arouri et al.

(2012) investigate the volatility transmission between oil and stock markets in

Europe using the VAR–GARCH model enabling the analysis of spillover effects

in both returns and conditional volatility. By analyzing the European global

market index and seven stock sector indices over the period from 1998 to 2009,

the authors unveil the existence of significant volatility spillovers between oil

and stock markets in Europe with various intensity of volatility interactions

in different sectors. Moreover, the transmission effect from oil to stock mar-

kets shows to be more evident. In order to extract the nature of relationship

between the volatility of stock market and the volatility of oil futures market,

Vo (2011) employ the bivariate VAR(1)-SV model for the joint processes gov-

erning the S&P 500 Index and the oil futures returns during the 1999–2009

period. The author finds that there is time-varying correlation between the
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stock and oil futures markets which tends to grow with increasing volatility in

the market. The daily volatility in both markets shows to be very persistent

and hence quite predictable. Moreover, the inter-dependence between the two

markets is revealed, i.e. innovations that hit either market can have impact on

the volatility in the other market. Further, Degiannakis et al. (2013) examine

the relationship between the returns of oil prices and industrial sector indices

in a time-varying heteroskedastic environment, taking into consideration the

origin of the oil prices shocks. The results show that the correlation between

industrial sectors’ returns and oil price returns is influenced by the origin of

the oil price shock as well as by the type of industry. Degiannakis et al. (2014)

follow up with a study showing that oil price changes due to aggregate de-

mand shocks lead to a reduction in stock market volatility in Europe, and that

supply-side shocks and oil specific demand shocks do not affect volatility.

In recent years, significant volatility in the U.S. stock market and dramatic

fluctuations in the global price of crude oil have been observed. Using a struc-

tural VAR model, Kang et al. (2015) study the impact of global oil price shocks

on the covariance of U.S. stock market returns and the stock market volatility.

The results reveal that after the financial crisis, oil-market specific demand

shocks predicted a much larger fraction of implied-covariance of stock returns

and volatility than in the period before the global financial crisis. Moreover,

the authors find that positive shocks to aggregate demand and to oil-market

specific demand are associated with negative effects on the covariance of return

and volatility, while oil supply disruptions are associated with positive effects.

The spillover index measuring the degree of connectedness for the oil market

and the stock market showed to be quite large and highly statistically signif-

icant proving the oil price shocks and the connection between stock market

return and volatility to be correlated. Malik & Hammoudeh (2007) study the

volatility and its transmission mechanism among equity markets of the U.S.,

Saudi Arabia, Kuwait, and Bahrain and the global crude oil market and they

reach results seminal for accurate asset pricing models, hedging strategies and

forecasting future equity and oil price return volatility.

Literature focusing on the relationship between the stock market and the

foreign exchange market is quite voluminous as both markets play an indis-

putably important role in portfolio diversification and economic development

in general. Different theoretical models have implied that stock price changes
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in two countries may have an impact on the exchange rate between the two

respective currencies. Kanas et al. (2000) studied the interaction between stock

returns and exchange rate changes within the same economy in six different de-

veloped countries, specifically Japan, Germany, Canada, France, the UK and

the US. A significant contemporaneous relationship between the two markets

has been found. Examining the interdependence in terms of the conditional sec-

ond moments of the distribution of stock returns and exchange rate changes,

the volatility spillovers from stock returns to exchange rate changes appeared

in all countries except for Germany during the 1986–1998 time period. In addi-

tion, the spillovers increased after the October 1987 crash. On the other hand,

the volatility spillovers from exchange rate changes to stock returns show to be

insignificant for all countries. Finally, spillovers from stock returns seem to be

symmetric which means that the negative and the positive stock market shocks

of equal magnitude have the same impact on the exchange rate.

Yang & Doong (2004) also confirm the evidence of information transmis-

sion between the two markets suggesting their integration. Using a multivariate

extension of the EGARCH model, they test for the mean and volatility trans-

mission mechanism between the stock market and the foreign exchange market

for the G-7 countries including weekly observations from 1979 to 1999. As

the model allows to capture potential asymmetries in the volatility spillovers,

the authors find evidence for the asymmetric volatility from the stock market

to the foreign exchange which is in contrast with the findings of Kanas et al.

(2000). Furthermore, the results show that the movements in stock prices have

a relatively large impact on the future changes in exchange rates while the

other way around the influence is less clear. The significant volatility spillovers

and asymmetric effects from the stock market to the foreign exchange market

appear in four countries, i.e. the US, Japan, France and Italy.

Lizardo & Mollick (2010) examine how oil price shocks affect the value of

the U.S. dollar (USD) in the long–run as well as in the short–run by adding

oil prices to the monetary model of exchange rates. The results show that oil

price shocks significantly explain movements in the value of the USD against

major currencies during the whole examined 1975-2008 period. Changes in real

oil price lead to a significant movement of the USD against net importer cur-

rencies such as Canada, Mexico and Russia. Variation in the currencies of oil

importers, such as Japan, relative to the USD with increasing or decreasing oil
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price, is also revealed. The results thus suggest that the variation in US dollar

exchange rate can influence the volatility of crude oil price and thus its forecast-

ing accuracy. This result is important for this thesis as we are interested in the

connectedness of the financial and equity markets and the commodity markets.

In particular, we focus on volatility spillovers between the two types of markets.

Employing various econometric methods such as cointegration, VAR model

and ARCH type models, Zhang et al. (2008) explore three spillover effects,

specifically mean spillover, volatility spillover and risk spillover. A significant

long-term equilibrium interacting relationship between the two markets is re-

vealed implying that the US dollar depreciation during the 2000-2005 exam-

ined period was an crucial factor in driving up the international crude oil price.

Further, Zhang et al. (2008) find evidence for volatility and clustering in both

market prices with insignificant spillover effects suggesting that the immediate

fluctuations in the US dollar exchange rate do not influence substantially the

oil crude market. Additionally, the risk spillover between the two markets ap-

pears to be negligible concluding that the impact of the US dollar exchange

rate on the oil market is only fractional. Employing several different mea-

sures of oil prices, Chen & Chen (2007) test the interaction between exchange

rates and the real oil prices for G7 countries—Canada, France, Germany, Italy,

Japan, the UK, and the US—by using monthly panel data from 1972 to 2005.

The cointegration between the two markets has been confirmed showing that

the real oil prices may have been the fundamental cause of real exchange rate

movements. Moreover, using panel predictive regression estimates, Chen &

Chen (2007) study the ability of real oil prices to predict future real exchange

returns concluding that real oil prices have relevant forecasting power in terms

of exchange returns. The out-of-sample prediction performances show major

foreseeability over longer horizons.

The interest in commodity prices is not a new phenomenon, however, the

recent global financial crisis as well as substantial fluctuations in commodity

prices have further increased the interest on the connection between them as

well as their dynamic relationship to other markets such as the equity market.

An increasing volatility in commodity prices and its causes and impacts is a

fundamental topic in many studies. Cashin & McDermott (2002) analyze the

behavior of real commodity prices using the Economist’s index of industrial

commodity prices. They find that there is a downward trend in real commod-
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ity prices of about 1% per year over the observed period from 1862 to 1999

and more importantly, a substantial increase in volatility is observed. They

conclude that a downward trend in real commodity prices is of little impor-

tance as it is utterly dominated by the fluctuations of prices which have a

significant impact on the terms of trade. Tang & Xiong (2012) aim to ex-

plain the extensive increase in the price volatility of non-energy commodities

around 2008 as a result of the financialization1 process accelerated by the fast

growth of commodity index investment and causing increased commodity price

correlations. The authors find intensified price co-movements between non-

energy commodity futures and oil prices since 2000, contemporaneously with

the rapidly increasing index investment in commodity markets. The expanding

financialization of commodities in general is documented by other studies as

well (Dwyer et al. 2011; Vivian & Wohar 2012; Mensi et al. 2013; Creti et al.

2013; Basak & Pavlova 2016).

Increased correlation between commodity prices has induced further re-

search. Nazlioglu et al. (2013) study the volatility transmission between oil

and selected agricultural commodity prices, namely sugar, wheat, soybeans

and corn, i.e. key agricultural products for biofuels and for food. The time

period under research is divided into two, the period before the food price crisis

(1986-2005) and post-crisis period (2006-2011). By employing a recently devel-

oped variance causality test, they show that the risk spills over between oil and

agriculture commodity markets (except for sugar) in the post-crisis period while

there is no such evidence in the period before the food crisis. Furthermore, they

analyze the transmission of shocks from the oil price to agricultural markets us-

ing impulse response functions and their findings underline the previous results

that the transmission of risk between energy and agriculture markets reaches

substantially higher levels after the crisis. Du et al. (2011) also study the re-

lationship between crude oil prices and agricultural markets and the potential

transmission of their volatility over the time period from November 1998 to Jan-

uary 2009. They apply stochastic volatility models with parameters estimated

by Bayesian Markov Chain Monte Carlo (MCMC) methods to weekly average

settlement prices of crude oil, corn and wheat futures and find that the recent

oil price shocks appear to have a substantial impact on agricultural commodity

1A situation when a substantial increase in the popularity of commodity investing triggers
unusually high inflow of institutional funds into commodity futures markets is referred to as
the financialization of commodities (Basak & Pavlova 2016).
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markets. These results confirm their assumption about the volatility spillovers

among crude oil, corn, and wheat markets after the fall of 2006 potentially

caused by the increasing presence of commodity investments. In addition, var-

ious economic factors such as scalping, speculation, and petroleum inventories,

are found to have a significant influence on the crude oil price volatility.

A distinct body of literature also studies the links between the commodity

markets and the stock markets and the transmission of volatility between them.

Creti et al. (2013) study the connectedness between price returns for 25 com-

modities and stocks. In particular, they cover various sectors such as energy,

precious metals, agricultural, non-ferrous metals, food, oleaginous, exotic and

livestock, including also an aggregate commodity price index, the Commodity

Research Bureau (CRB) index, as well as the S&P 500 Index representing the

U.S. equity market. To investigate the time evolution of correlations between

the various markets during 11 years spanning from 2001 to 2011, they proxy

the volatility by the daily squared returns of prices and employ the dynamic

conditional correlation GARCH methodology. Creti et al. (2013) show that the

correlations between commodity and stock markets evolve over time and fluc-

tuate substantially. High volatility is particularly observable in the post-crisis

period, the recent global financial crisis has thus played an important role,

emphasizing the connectedness between commodity and stock markets and

inducing further financialization of commodity markets. Furthermore, their

results suggest that some commodities such as oil, coffee, and cocoa possess

speculation phenomenon, their correlations with the S&P 500 Index increase

when stock prices increases and decline in times of bearish equity market.

On the other hand, the safe-haven role of gold is revealed as the correlation

with the stock market is mainly negative and in times of declining stock prices

is less considerable. Despite the fact that there are some common features for

the commodities included in the analysis, Creti et al. (2013) conclude that they

cannot be regarded as a homogeneous asset class which is in line with empirical

results provided by Vivian & Wohar (2012), who argue that commodities are

too diverse to be considered as an asset class. Mensi et al. (2013) examine pos-

sible correlations and potential volatility spillovers across commodity and stock

markets, specifically using the VAR-GARCH model they analyze the transmis-

sion between the S&P 500 Index returns and BRENT, WTI, WHEAT, GOLD,

and BEVERAGE spot prices over the period from 2000 to 2011. Their results
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suggest a substantial correlation and volatility spillovers across commodity and

stock markets revealing that the highest conditional correlations are exhibited

between the S&P 500 Index and Gold and the S&P 500 Index and the WTI

index. Further emerging empirical literature studying the links between the

commodity and equity markets also underlines the usefulness of the analysis

of volatility transmission between the two types of markets as volatility plays

a crucial role in determining substitution strategies and hedging possibilities

(Choi & Hammoudeh 2010; Dwyer et al. 2011; Silvennoinen & Thorp 2013).

A wide range of literature studying the volatility transmission among mar-

kets and across assets has used multivariate GARCH models, cointegration,

structural VAR models or ARCH type models. However, these models have

their limitations as they are not able to quantify spillovers in sufficient detail

(Baruńık et al. 2015). In order to better measure and capture volatility spill-

overs, Diebold & Yilmaz (2009) introduce a simple and intuitive measure of

connectedness between assets based on forecast error variance decompositions

from vector autoregressions. Several drawbacks of this approach were solved by

Diebold & Yilmaz (2012) who provide an improved volatility spillover measure

in which forecast-error variance decompositions are invariant to the variable

ordering. This updated methodology allows us to measure both the total and

directional volatility spillovers and reveals the level of intra-market spillovers.

Klößner & Wagner (2014) further enhance the volatility spillover index by

developing a new algorithm for the swiftly calculation of the minimum and

maximum of the index over all renumerations. In this thesis, we use the ex-

tended approach proposed by Baruńık et al. (2016). Combining the volatility

spillover index methodology and the concept of positive and negative realized

semivariances proposed by Barndorff-Nielsen et al. (2010) allows us to analyze

the asymmetric spillovers using high-frequency measures.

Regarding directional spillovers, Diebold & Yilmaz (2009) analyze nineteen

global equity markets from the early 1990s and find a strong evidence of di-

vergence in the dynamics of return spillovers and volatility spillovers. Diebold

& Yilmaz (2012) measure both the total and directional daily volatility spillo-

vers among four U.S. asset classes—stocks, bonds, foreign exchange rates and

commodities—from January 1999 to January 2010. The authors show that the

cross-market volatility spillovers proved to have an increasing importance dur-

ing the global financial crisis of 2008. Until then, the volatility transmissions
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across assets were quite limited. Specifically, the spillovers from the stock mar-

ket to the other markets have shown to be significant after the collapse of the

Lehman Brothers in September 2008.

Diebold et al. (2017) study the connectedness among 19 key commodi-

ties over 2011-2016 time period and their results show a clear clustering of

commodities into groups that match traditional industry groupings with some

exceptions. The energy sector turns out to be most important in terms of

transmitting shocks to others. Baruńık et al. (2016) employ their approach on

data covering most liquid U.S. stocks in several sectors between 2004 and 2011

(thus including the period of the financial crisis as well as the pre-crisis and

post-crisis periods). The results suggest there is asymmetric connectedness in

the U.S. stock market. Furthermore, the positive and negative volatility trans-

missions show to have a different volume which changes over time in different

sectors. The authors conclude that the overall intra-market connectedness of

the U.S. stocks rose significantly during the recent financial crisis. Baruńık

et al. (2015) study spillovers from volatility among petroleum commodities

during the 1987-2014 period and find evidence for increasing volatility spillo-

vers that substantially change after the 2008 financial crisis. They argue that

the observed higher volumes of volatility spillovers are related to the progres-

sive financialization of commodities. Regarding the asymmetric spillovers, the

prevalence of spillovers due to negative shocks corresponds to periods of in-

creasing crude oil prices and the asymmetries in spillovers markedly declined

after the financial crisis. Baruńık et al. (2017) analyze the asymmetric re-

sponse to shocks in the foreign exchange market using high-frequency data of

widely traded currencies between 2007 and 2015 and find that the spillovers

from bad volatility dominate. The complete framework for defining, measuring,

and monitoring connectedness of markets has been summarized in (Diebold &

Yilmaz 2015).

Our hypothesis that volatility spillovers are likely to exhibit different mag-

nitude based on whether the shock originates from negative or positive returns

has its roots in a broad area of research. As an example, Barberis (2013) argue

that market agents possess asymmetric attitudes toward good and bad news

and related outcomes and that on average, people are more sensitive to losses

than to gains of the same volume. Regarding good and bad volatility, by which

we understand volatility stemming from positive and negative returns, respec-
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tively, the literature has mainly focused on return-based measures which we also

employ in our analysis. Patton & Sheppard (2015) and Feunou et al. (2013)

use realized semivariance measures of returns to study the differences between

the two volatilities and focus on their impact on the equity returns’ dynamics.

According to Feunou et al. (2013), the decomposition of volatility caused by

positive and negative news can be perceived as a level of downside and up-

side risk. Segal et al. (2015) decompose aggregate uncertainty into good and

bad volatility components, associated with positive and negative innovations

to macroeconomic growth to study whether and how the uncertainty increases

or decreases aggregate growth and asset prices. Apart from variable supply

and demand on the market, there are various reasons for bad and good volatil-

ity. Bad volatility may result from a single highly important negative news,

increased political risk, slowdown and worsening of economic conditions, and

so on. On the other hand, good volatility may be caused by positive macroe-

conomic, sectoral, or firm-specific announcements (Baruńık et al. 2016).



Chapter 3

Methodology

In this section, we describe the theoretical background behind the specific hy-

potheses and methodology used to estimate the effects of volatility in commod-

ity markets. First, we discuss the realized measures—realized variance and its

decomposition into positive and negative semi-variances. Then, we present the

methodology behind the construction of the spillover index and the measures of

spillover asymmetry. We employ the connectedness measurement methodology

which was originally developed by Diebold & Yilmaz (2009) and Diebold &

Yilmaz (2012), using a generalized vector autoregressive framework. Specifi-

cally, we use variance decomposition which helps to demonstrate the amount

of information each variable contributes to the other variables in the regression

and it shows how much of the forecast error variance of each of the variables

can be explained by exogenous shocks to the other variables Diebold & Yil-

maz (2013). Such method allows us to measure both the total and directional

volatility spillovers and will reveal the level of intra-market spillovers.

To study the volatility-spillover asymmetries, we will employ the volatility

spillover index devised in Diebold & Yilmaz (2009) as modified by Baruńık

et al. (2016). Based on the concept of realized semi-variances presented by

Barndorff-Nielsen et al. (2010), the model allows us to decompose the realized

variance into parts corresponding to positive and negative shocks in the market.

Focusing on the intra–market spillovers, we estimate the size of the spillovers

using these asymmetric spillover indices.
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3.1 Realized measures

Following Baruńık et al. (2016), we first sum up the construction of the mea-

sures of volatility. Let us consider a continuous-time stochastic process for

logarithmic prices of an asset, pt. This price evolves over a given time pe-

riod t ∈ 〈0, T 〉. The price process consists of two components—a continuous

component and a pure jump component—and takes the following form:

pt =

∫ t

0

µsds+

∫ t

0

σsdWs + Jt, (3.1)

where µ represents a predictable drift process, σs a strictly positive volatility

process, W a standard Brownian motion and J the pure jump. All variables

used in this equation are adapted to a common filtration F . The quadratic

variation of the process is then defined as:

[pt, pt] =

∫ t

0

σ2
sds+

∑
0<s≤t

4p2s, (3.2)

where 4ps = ps − ps− represent possible present jumps. The first term on the

right-hand side of this equation denotes the integrated variance of the process,

which is observed to be equal to zero Andersen et al. (2001).

As proposed by Andersen et al. (2001) and Barndorff-Nielsen (2002), the

sum of squared returns,
∑n

i=1 r
2
i , can be used as a natural estimator of the

quadratic variation. If we suppose that the intraday logarithmic returns ri =

pi−pi−1 are equally spaced on the interval [0, t], then the sum, denoted RV , con-

verges in probability to the quadratic variation of the underlying price process,

or [pt, pt], as n → ∞. If we use a small-enough interval between observations,

we can approximate the quadratic variation using this concept. This simple

approach, however, does not differentiate between positive and negative re-

turns. Therefore, we cannot focus individually on positive and negative shocks

to prices and the volatility these shocks induce. In reality, the reactions of

markets to positive and negative shocks differ, which is why Barndorff-Nielsen

et al. (2010) derived the concept of dividing the realized variances into positive

and negative realized semi-variances.
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3.1.1 Realized semi-variances

Since markets may differ in ways they cope with volatility due to general in-

crease and decrease of prices, Barndorff-Nielsen et al. (2010) define signed re-

turns as follows:

RS− =
n∑
i=1

r2i I[ri<0] (3.3)

RS+ =
n∑
i=1

r2i I[ri>0] (3.4)

By definition, RV = RS− + RS+. RS− represents a measure of down-

side risk and captures the variation determined only by falls of the underlying

prices; RS+, on the other hand, captures the variation determined by increases

in the price of the asset. The limiting behavior of RV is transferred to RS−

and RS+, with both being equal to exactly one half of the integrated variance

and the sum of squared jumps due to negative and positive jumps, respectively.

Moreover, the positive and negative realized semi-variances correspond to

the good and bad states of the underlying variable and serve as a proxy for

good and bad volatility, respectively. Consequently, we may observe asymme-

tries in the volatility spillovers due to these different states as they may spread

differently across markets (Baruńık et al. 2016).

3.2 Spillover index

In this section, we introduce a measure of volatility spillovers which will allow

for the distinction between negative and positive jumps. Based on the approach

of Diebold & Yilmaz (2012), Baruńık et al. (2016) propose an extension in the

form of including the above-defined concept of realized semi-variances.

The initial uniform spillover index introduced by Diebold & Yilmaz (2009)

was built on the variance decomposition of the forecast errors in a vector autore-

gressive model (VAR). These measures record how much of the H-step-ahead

forecast error variance of some variable i is due to innovations in another

variable j and hence provide a simple way of measuring volatility spillovers

(Baruńık et al. 2016). However, this methodology has several limitations. A
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substantial drawback of the original Diebold and Yilmaz framework is that

the variance decompositions employ the Cholesky factorization of the covari-

ance matrix of the VAR residuals, which may lead to the dependence of the

variance decomposition results on the ordering of variables in the underlying

VAR process. Moreover, the initial spillover index allows to measure only the

total spillovers (the transmission from (to) one market to (from) all other mar-

kets) while one may be interested also in the directional spillovers, i.e. how the

volatility from one particular market i is spilled over to another specific market

j and vice versa. Further limitations concern the application of the method-

ology only on spillovers across identical asset in different countries whereas

many other types of spillovers, such as spillovers across asset classes within one

country, may be of interest. These methodological shortcomings were overcome

by Diebold & Yilmaz (2012), who develop a generalized vector autoregressive

framework which makes forecast error variance decomposition invariant to the

variable ordering and enables to measure not only total but also directional

volatility spillovers.

3.2.1 Total spillover index

In this section, we shed light on the construction of the extended spillover in-

dex as developed by Diebold & Yilmaz (2012), which follows directly from the

variance decomposition in a generalized VAR framework instead of employing

the Cholesky factor orthogonalization. Simply put, the forecast error variance

decomposition indicates what percent of the k-step ahead forecast error vari-

ance is due to which variable (Cochrane 2005). First, consider a covariance

stationary N-variable VAR (p):

xt =

p∑
i=1

Φixt−i + εt, (3.5)

where xt = (x1t, x2t, ..., xnt) is an N-dimensional vector, Φi, with i = 1, ..., p,

stands for coefficient matrices and εt ∼ N(0,Σε) is a vector of independently

and identically distributed disturbances. In our subsequent empirical work, a

vector x will represent realized variances of N assets, more precisely positive or

negative realized semivariances. Assuming covariance stationarity, the moving
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average (MA) representation of the VAR exists and is given by

xt =
∞∑
i=0

Ψiεt−1, (3.6)

where the N×N coefficient matrices Ψi obey the following recursive definition:

Ψi = Φ1Ψi−1 + Φ2Ψi−2 + ...+ Φ1Ψi−1 =

p∑
j=1

ΦjΨi−j, (3.7)

with Ψ0 being an N ×N identity matrix IN and with Ψi = 0 for i < 0.

The total spillover index developed by Diebold & Yilmaz (2012) is composed

of two parts—own variance shares and cross variance shares. Own variance

shares are defined as fractions of the H-step-ahead error variances in forecasting

xi due to shocks to xi, for i = 1, 2, ..., N . Cross variance shares, or spillovers, are

defined as fractions of the H-step-ahead error variances in forecasting xi due to

shocks to xj, for i, j = 1, 2, ..., N such that i 6= j. Following the notation used

by Baruńık et al. (2016), the H-step-ahead generalized forecast error variance

decomposition matrix then looks as follows:

ωHij =
σ−1jj

∑H−1
h=0 (e′iΨhΣεej)

2∑H−1
h=0 (e′iΨhΣεΨ′hei)

, (3.8)

where Σε is the variance matrix for the error vector, εt, σjj is the standard

deviation of the error term for the jth equation, ei is the selection vector, with

one as the ith element and zeros otherwise, and Ψh are moving average coeffi-

cients from the forecast at time t. Because the shocks to each variable are not

necessarily orthogonalized, the sum of contributions to the variance of forecast

error (i.e. the row sum of the elements of the variance decomposition table) is

not necessarily equal to one:

N∑
j=1

ωHij 6= 1 (3.9)

Therefore, to be able to use the information available in the variance de-

composition matrix in the calculation of the spillover index, we normalize each

entry of the variance decomposition matrix by the row sum:

ω̃Hij =
ωHij∑N
j=1 ω

H
ij

(3.10)
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This step ensures that
∑N

j=1 ω̃
H
ij = 1 and

∑N
i.j=1 ω̃

H
ij = N (i.e. the contri-

butions of spillovers from volatility shocks are normalized by the total forecast

error variance (Baruńık et al. 2016)). Diebold & Yilmaz (2012) then define

the spillover index, a measure of the contribution of spillovers from volatility

shocks across the variables in the system to the total forecast error variance,

as:

SH = 100× 1

N

N∑
i,j=1
i 6=j

ω̃Hij (3.11)

3.2.2 Directional spillovers

The crucial improvement achieved by using the generalized VAR framework lies

in the fact that we are now able to identify the directional spillovers, i.e. we

can decompose the total spillover to those coming from and to each observed

asset (Diebold & Yilmaz 2012). The directional spillovers received by asset i

from all other assets j are defined as follows:

SHi←• = 100× 1

N

N∑
i,j=1
i 6=j

ω̃Hij (3.12)

Similarly, the directional spillovers transmitted by asset i to all other assets

j can be measured as:

SHi→• = 100× 1

N

N∑
i,j=1
i 6=j

ω̃Hji (3.13)

3.2.3 Net spillovers and net pairwise spillovers

Once we have obtained the directional spillovers, following Diebold & Yilmaz

(2012), it is then straightforward to derive a simple measure of net spillovers as

the difference between gross volatility shocks transmitted to and received from

all other assets:

SHi = Si→• − SHi←• (3.14)

As explained by Baruńık et al. (2016), the above measure tells us how much

each asset contributes to the volatility in other assets in net terms. The net
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pairwise spillovers between two assets, i and j, can then be simply computed

as the difference between the gross shocks transmitted from asset i to asset j

and those transmitted from asset j to asset i:

SHij = 100× 1

N

(
ω̃Hji − ω̃Hij

)
(3.15)

3.3 Bad and good volatility

The innovation brought by Baruńık et al. (2016) lies mainly in fitting the N-

variable vector auto regression model to semivariances defined above instead

of volatility itself. This combined methodology allows for focusing individually

on effects that one asset’s volatility has on the other, while also differentiating

between negative and positive shocks to the asset price. In particular, using

this method, we are able to account for spillovers due to negative returns (S−)

and positive returns (S+) and also directional spillovers from volatility due to

negative returns (S−i←•,S−i→•) and positive returns (S+
i←•,S+

i→•).

Using the extension developed by Baruńık et al. (2016), we are able to

isolate asymmetric volatility spillovers by replacing the vector of volatilities

RVt = (RV1t, ..., RVnt)
′ defined above with the vector of negative semivari-

ances, RS−
t = (RS−1t, ..., RS

−
nt)
′, or the vector of positive semivariances, RS+

t =

(RS+
1t, ..., RS

+
nt)
′1. This approach allows to distinguish between the effects of

positive and negative shocks on volatility spillovers. We are thus able to test

which volatility (good or bad) matters more for volatility spillover transmission

or whether their effects are similar in magnitude.

3.3.1 Spillover asymmetry measure

Following Baruńık et al. (2016), we define the spillover asymmetry measure

SAM as the difference between positive and negative spillovers:

SAM = S+ − S− (3.16)

where S+ and S− are volatility spillover indices due to positive and negative

semivariances (RS+ and RS−), respectively, with an H-step-ahead forecast

1This notation excludes the H index for ease of display, however, it remains a valid
parameter for the estimation of spillover indices
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at time t. Defining the measure in this way allows for a straightforward in-

terpretation of the results. In the case when SAM ≥ 0, the spillovers from

positive realized semivariances are larger in magnitude than those coming from

negative realized semivariances and vice versa in the case when SAM ≤ 0.

When SAM = 0, the spillovers coming from RS+ and RS− are of the same

magnitude.



Chapter 4

Data

In our analysis, we use five-minute high-frequency data to study volatility spill-

overs and their asymmetries on the commodity market and how the commod-

ity market’s volatility is transmitted to the stock market and the other way

around. From four different commodity classes—energy, precious metal, grain

and fiber futures—we select four widely traded commodities (one from each)

to represent each sector, namely Crude oil, Gold, Corn and Cotton. As we

are also interested in the connectedness between the commodity market and

the stock market, we use data for the S&P 500 Index to represent the stock

market. The data spans from January 2, 2002 to December 31, 2015, which

means that the data set includes the global financial crisis of 2008 as well as

the pre-crisis period and the recovery phase. The selected time period thus

enables the study of an interesting development in the financial markets during

the disturbance period. The data were obtained from Tick Data, Inc., one of

the leading providers of historical data from stock, futures, options and forex

markets.

In this chapter, we first analyze in Section 4.1 each of the selected com-

modities with a particular focus on the features these commodities that may

have an effect on the interplay with other markets. In Section 4.2, we explain

what adjustments of these data were necessary for the purposes of our analysis.

Section 4.3 provides some descriptive statistics of the data and finally, in Sec-

tion 4.4, we discuss the computation of realized variances and semivariances as

accurate measures of volatility.
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4.1 Selected commodities

The commodities selected for this analysis can be divided into two subgroups.

Firstly, soft commodities, represented by Cotton and Corn, include primarily

agricultural products such as grains, food, fiber or livestock. Secondly, hard

commodities, represented by Gold and Crude Oil, are commodities that are

mined, such as metals and energy products. We select these four major com-

modities because they are among the most traded commodities in their specific

branches and thus enable us to cover a wide spectrum of the commodity mar-

kets.

This section provides a brief description of the particularities of markets for

each of the commodity covered in our analysis. The reason why we analyze

these features is to understand the forces that may govern the transmission of

volatility across markets. The nature of the relationships between the selected

commodities is a crucial determinant of the behavior of agents in the markets

and thus of the reasons why volatility may spill over to other markets and how.

We include also a brief description of the Standard and Poor’s 500 Index and

its relationship with our selected commodities.

Crude oil

Crude oil (CL) represents the most important natural resource of the indus-

trialized nations. Due to the fact that it cannot be replaced naturally at the

rate at which it is consumed, it is considered a non-renewable resource and

scarcity is thus one of its defining features. It is typically recovered from the

ground by oil drilling following extensive geological research and is thus costly

to obtain, however, its wide and intensive use in most major industries makes it

well worth it. The Oil Market Report of the International Energy Agency (IEA

2017) estimates that nearly 96 million barrels of oil per day, or more than 35

billion barrels per year, have been used globally in 2016. The world’s economy

is largely dependent on fossil fuels such as crude oil, which makes it possible for

its exporters to extract significant profits from its sale. It is thus not surprising

that a large body of literature has dealt with the study of its impact on the

economy.1 Recent literature also recognizes the growing interaction between

1See Vo (2011) for a concise review of the literature dealing with the impact of fluctuations
in the price of Crude oil on the economy
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oil markets and financial markets (Zhang et al. 2008).

The prices in the oil market are set primarily by futures contracts traders

and speculators. The presence of speculators in these markets largely underlies

the motivation of this thesis and will be a recurring source of motivation of the

present analysis. In particular, we are interested in how the volatility present

in the markets for our selected commodities transfers into other observed mar-

kets. Figure 4.1 shows the development of the price of crude oil futures between

2002 and 2015.

Figure 4.1: Price of Crude oil futures over time

Source: Author based on data from Tick Data, Inc.

Corn

Corn (CN) is among the most important grain crops on Earth, being widely

used not only directly as food for humans, but also for the production of animal

feed or corn ethanol used as a biomass. According to estimates by the United

States Department of Agriculture USDA (2016), around 970 million metric

tons of corn has been produced globally in the 2015/2016 season, with the

U.S. being responsible for about one third of this amount. Its importance and

widespread supply and demand make it extremely price-sensitive, with natural

and other conditions in different parts of the world influencing the production

(and thus price) levels significantly. Notably, in the recent years, China has
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been a significant source of uncertainty in world corn trade because of changing

government subsidies of the Chinese Communist Party, making China’s corn

trade difficult to predict (USDA 2016).

All grains, including corn, are usually quoted in cents per bushel. Trading

corn futures can be a fairly seasonal matter, because corn is planted in the

spring and harvested in the fall. Therefore, trading in the winter months is

guided primarily by demand and is relatively calm, while the summer months

are the ones that usually see the most volatility due to new weather reports

coming in. On the demand side, since a substantial part of the world’s supply

of corn is used to produce ethanol, there is a clear link between corn and other

commodities used to produce ethanol, such as crude oil and gasoline. Figure

4.2 shows the development of the price of Corn futures between 2002 and 2015.

Figure 4.2: Price of Corn futures over time

Source: Author based on data from Tick Data, Inc.

Cotton

Cotton (CN) is the most classical commodity in our sample. It has been ex-

tensively cultivated in India for thousands of years before being hugely pop-

ularized by the British colonial power in the 18th century. In the 2015/2016

season, nearly 97 million 480-pound bales of cotton have been produced glob-

ally (USDA 2016). Figure 4.3 shows the development of the price of Cotton
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futures between 2002 and 2015.

Figure 4.3: Price of Cotton futures over time

Source: Author based on data from Tick Data, Inc.

Gold

Gold (GC) has historically been the most prominent precious metal. It is

widely used as an investment commodity due to its scarcity and character of a

luxury good that has a low number of substitutes. At the same time, gold is

used in the production of electronics (due to the fact that it is a highly efficient

conductor that is able to carry tiny electrical charges) and other fields, such as

the aerospace industry or dentistry and medicine. Gold is generally believed to

be a relatively safe investment over the long term, even though the price can be

volatile in the short term. Many investors use gold as a hedge against adverse

events since its value typically increases in response to events that decrease the

value of paper investments such as stocks and bonds. Figure 4.4 shows the

development of the price of Gold futures between 2002 and 2015.
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Figure 4.4: Price of Gold futures over time

Source: Author based on data from Tick Data, Inc.

Standard and Poor’s 500 Index

Standard and Poor’s 500 Index is a capitalization-weighted index of 500 stocks.

The index is designed to measure the performance of the broad domestic econ-

omy through changes in the aggregate market value of 500 stocks representing

all major industries.2 Figure 4.5 shows the development of the value of the

S&P 500 Index between 2002 and 2015.

2Source: https://www.bloomberg.com/quote/SPX:IND
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Figure 4.5: Value of the S&P 500 Index over time

Source: Author based on data from Tick Data, Inc.

4.2 Data construction

In order to prevent estimation bias that may be caused by low trading activ-

ity on the market, we exclude weekends, U.S. federal holidays and some state

holidays such as the Black Friday. As all five selected futures are traded on

different Exchanges, the number of observations per trading day as well as the

number of days when the exchange was open varies among the analyzed com-

modities, as seen in Table 4.1 which shows a summary of the original data set

before adjustments.

For the purposes of our analysis, we exclude all days on which at least one

of the Exchanges was closed. Figure 4.6 depicts the variation in the number

of observations per day for each observed market. We discard days on which,

for at least one variable, more than 20% observations is missing as compared

to the average trading day. An exception to this rule is Cotton whose num-

bers of observations per day are, somewhat surprisingly, extremely unstable

and their exclusion would lead to the loss of a significant amount of obser-

vations. Therefore, we will treat Cotton futures with care and use a sample

that excludes Cotton entirely as a robustness check. Nevertheless, this harmo-

nization of data across markets enables us to eliminate days when there are

some missing observations due to special opening hours of the Exchanges (e.g.
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Table 4.1: Original data set - summary of observations

Variable Exchange No. of days
Total no. of
observations

Average no. of
observations

per day
Light Crude (CL) New York Mercantile Exchange (NYMEX) 3 576 219 138 61.28
Corn (CN) Chicago Board Of Trade (CBOT) 3 526 167 758 47.58
Cotton (CT) Intercontinental Exchange 3 514 160 086 45.56
Gold (GC) Commodity Exchange Inc. (COMEX) 3 573 220 618 61.75
S&P 500 Cash Index CME Group 3 524 279 567 79.33

Source: Author based on data from Tick Data, Inc.

the day before Independence Day) which could lead to a bias in our estimation.

Figure 4.6: Observations per day over the observed time period

Source: Author based on data from Tick Data, Inc.

These adjustments lead to the final sample which consists of 3,437 trading

days. The average number of observations per day differs across commodities

(from 46 to 80) since we include trading days even if the opening hours on

these days are not common for all Exchanges. As described in more detail in

Section 4.4, we use the 5-minute data only to compute daily realized measures,

therefore, using different trading hours is not an issue.
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4.3 Descriptive statistics

In this section, we explore the final adjusted data set. We calculate the 5-

minute return at time t as the change in log price between times t − 1 and

t. Overnight returns are not computed in order to avoid possible distortion.

We provide some descriptive statistics of the calculated returns in Table 4.2.

Summary statistics are relatively similar for all observed variables. The mean

return is close to zero for all series—small and positive for Crude oil, Corn

and Gold, and small and negative for Cotton and the S&P 500 Index. The

returns for Crude oil and Cotton are spread out over a wider range of values as

their standard deviations are the highest, while the S&P 500 Index and Gold

exhibit the lowest variation. The volatilities of high-frequency returns are well

documented by Figure 4.7. We observe that the volatility varies substantially

over the observed time period. During the unstable periods in 2008 and 2009

that were caused by the global financial crisis, the data shows a significant

increase in the volatility of returns, a pattern that is observable for all time

series except for Cotton, which exhibits relatively high volatility during the

whole analyzed time period. The negativity of skewness for the series of Crude

oil, Corn and Gold indicates that their distributions of returns are skewed left

and points to frequent small gains which are underlined by the slightly positive

mean of the series. The returns on the Corn futures and the S&P 500 Index

exhibit positive skewness (the right tails of the distribution of returns are larger

relative to the left ones). The S&P 500 Index reached the highest value not

only for skewness but also for kurtosis. This means that the distribution of

its returns tends to have more outliers than our selected commodity markets,

which have lighter tails, however, inspecting the plots of 5-minute returns in

Figure 4.7, we can conclude that outliers are to some extent present in all series.

Table 4.2: Descriptive statistics of 5-minute returns

Variable Mean Min Max SD Skewness Kurtosis Observations
Light Crude (CL) 0.0000089 -0.0341775 0.0384028 0.0022465 -0.1286002 11.5111832 208 705
Corn (CN) 0.0000016 -0.0609825 0.0439631 0.0019734 -0.1057595 24.3690218 161 029
Cotton (CT) -0.0000091 -0.0338341 0.0523929 0.0020779 0.1040618 20.5265105 153 669
Gold (GC) 0.0000029 -0.0280942 0.0227638 0.0011010 -0.2001009 19.0230779 209 576
S&P 500 -0.00000032 -0.02389203 0.03666528 0.00106975 0.27506588 30.44928775 270 363

Source: Author based on data from Tick Data, Inc.
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Figure 4.7: 5-minute returns

Source: Author based on data from Tick Data, Inc.

4.4 Realized variance and semivariance

In order to construct an accurate measure of volatility, we compute the real-

ized variance as a sum of squared intraday logarithmic 5-minute returns for

each trading day in our sample. Moreover, as we are also interested in whether

the volatility is asymmetric, we further compute positive and negative semi-

variances as sums of positive and negative intraday returns, respectively. The

methodology for the computation of realized measures is described in more de-

tail in Section 3.1. In Figures 4.8 – 4.10, the plots of daily realized variances and

semivariances for each observed variable are presented. We can observe that

the highest realized variances (both positive and negative) are reached during

the mid-2008 and 2009 which corresponds to the turbulent periods during the

global financial crisis. This pattern is particularly substantial for the S&P 500
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Index which is not surprising as the index is based on the market capitalizations

of 500 largest companies listed on the U.S. exchange stocks. Prices in markets

that are tied more firmly to the financial markets tend to be affected the most

by financial crises. Accordingly, the Crude oil and Gold markets were influ-

enced by the financial crisis more as compared to the Cotton and Corn markets.

Figure 4.8: Daily realized variances

Source: Author’s computations.
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Figure 4.9: Daily positive realized semivariances

Source: Author’s computations.

Tables 4.3 – 4.5 reveal some interesting descriptive statistics regarding the

daily realized measures. The highest mean, as well as the highest standard

deviation of realized variance, is reported for Crude oil. The distributions of

realized measures for all analyzed commodities exhibit positive skewness, which

means that the majority of the values are smaller than the mean. For all distri-

butions of realized measures the kurtosis has shown to be substantially different

from 3, which is the kurtosis of a univariate normal distribution. Therefore,

based on these two statistical measures we can conclude that none of the dis-

tributions of realized measures is normally distributed.
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Figure 4.10: Daily negative realized semivariances

Source: Author’s computations.

Comparing the statistics of positive realized semivariances (RS) with those

of negative RS, we can conclude that there is the only a negligible difference

in the mean and thus we may say that both semivariances contribute to the

realized variance with more or less similar magnitude. While the values for

standard deviation are slightly higher for negative RS in the cases of Crude

oil, Corn, and Gold, this does not apply to Cotton and the S&P 500 Index.

For the latter two variables, the positive RS are more volatile than the neg-

ative ones. Therefore, we cannot infer based on these observations that the

negative shocks in our sample imply higher volatility. Furthermore, we can

observe some significant differences in the values of skewness and kurtosis. In

particular, the kurtosis of the Corn distribution is more than three times higher

for the negative realized semivariances than for the positive ones. On the con-

trary, inspecting the S&P 500 Index the values of both skewness and kurtosis

are considerably higher for positive semivariances. This suggests that the high
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level of kurtosis of the distribution of realized daily variances for the S&P 500

Index comes from the positive semivariances. Examining the statistics of all

distributions with an emphasis on the kurtosis, we can deduce that their shape

is leptokurtic which is characterized by thick tails and a very tall and thin peak

(Davidson & MacKinnon 1993).

Table 4.3: Descriptive statistics of daily realized variances

Variable Mean Min Max SD Skewness Kurtosis Observations
Light Crude (CL) 0.0003065 0.0000093 0.0039532 0.000343 4.0789507 27.2559129 3437
Corn (CN) 0.00018 0.00000 0.00425 0.00020 6.71499 89.18923 3437
Cotton (CT) 0.00019 0.00000 0.00348 0.00022 4.93142 48.00934 3437
Gold (GC) 0.0000739 0.0000039 0.0020434 0.0000931 6.9574072 95.6782445 3437
S&P 500 0.0000900 0.0000025 0.0057833 0.0002180 10.9549756 193.8430740 3437

Source: Author’s computations.

Table 4.4: Descriptive statistics of daily realized positive semivari-
ances

Variable Mean Min Max SD Skewness Kurtosis Observations
Light Crude (CL) 0.0001509 0.0000056 0.0024102 0.0001825 4.8824188 39.6556808 3437
Corn (CN) 0.000091 0.000000 0.002084 0.000113 7.460891 97.780711 3437
Cotton (CT) 0.000096 0.000000 0.002833 0.000133 6.904429 90.979120 3437
Gold (GC) 0.0000362 0.0000014 0.0011482 0.0000485 8.4376699 135.7749452 3437
S&P 500 0.0000453 0.0000014 0.0039692 0.0001240 14.6075444 351.1167638 3437

Source: Author’s computations.

Table 4.5: Descriptive statistics of daily negative realized semivari-
ances

Variable Mean Min Max SD Skewness Kurtosis Observations
Light Crude (CL) 0.0001556 0.0000036 0.0021295 0.0001877 4.0006299 25.8312976 3437
Corn (CN) 0.000091 0.000000 0.004041 0.000124 13.022621 337.589790 3437
Cotton (CT) 0.000097 0.000000 0.002475 0.000125 5.405588 63.384144 3437
Gold (GC) 0.0000377 0.0000021 0.0016285 0.0000563 9.7747490 209.6757499 3437
S&P 500 0.00004471 0.00000088 0.00181411 0.00010216 8.55460505 104.03274277 3437

Source: Author’s computations.
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Results

In this chapter, we provide a full-sample analysis of volatility spillovers between

two asset classes—stocks and commodities—as well as volatility spillovers be-

tween different commodity markets. As detailed above, this approach can help

us detect to what extent expectations in the markets change in reaction to

events in other markets and how the connectedness between different class as-

sets evolves. Since volatility is regarded as a proxy for market risk, the direction

and intensity of its spillovers, which will be the central theme of the analysis

presented in this chapter, are of high interest especially because of their major

importance in times of financial crises. The covered sample, which includes

sufficient amounts of observations before, during and after the global financial

crisis of 2008, enables a thorough study of the effects that a major crisis may

have on volatility spillovers across different markets. For all estimations and

computations presented in this chapter, we use the common, freeware statisti-

cal software R studio.

The remainder of this chapter proceeds as follows. First, in Section 5.1,

we briefly summarize the selection of our model. In Section 5.2, we inspect

the level of overall volatility spillovers. For further details, we decompose the

Spillover Index into all of the forecast error variance components for variable i

coming from shocks to variable j, for all i and j, and analyze the average gross

directional spillovers as well as net and pairwise spillovers. In Section 5.3, we

track the time variation of the volatility spillovers using 200-day rolling samples

and we assess the extent and nature of the development of the total volatility

spillover index over time. Furthermore, we focus on the development over the

observed time period also for the gross directional and net spillovers. Finally,
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in Section 5.4, we employ the Spillover Asymmetry Measure (SAM) framework,

as described above, to study the differences in the spillovers from bad and good

volatility and we quantify the spillover dynamics via rolling window estimation.

5.1 Model selection

First, in order to check whether the time series under research is stationary, we

run three common tests. We employ an augmented Dickey–Fuller test (ADF;

due to Dickey & Fuller (1979)) and Phillips-Perron (PP; due to Phillips &

Perron (1988)) tests with the null hypothesis that a unit root is present in

our time series sample and with the alternative hypothesis that the time se-

ries is stationary. The augmented Dickey–Fuller (ADF) statistic is a negative

number—the more negative it is, the stronger the rejection of the null hypoth-

esis of the presence of a unit root. The PP test statistics can be viewed as

Dickey–Fuller statistics that have been made robust to serial correlation by

using the heteroskedasticity- and autocorrelation-consistent covariance matrix

estimator (Phillips & Perron 1988). The results of these two unit root tests

are provided in Tables A.1 and A.2 in the Appendix. Based on the p-values

obtained for the two tests, we can reject the null hypothesis of the presence of

a unit root even at the 1% level of significance.

Nonetheless, both the ADF and the PP unit root tests have as the null

hypothesis that a time series is integrated of order 1. For stationarity tests,

on the other hand, the presence of a unit root is not the null hypothesis but

the alternative. The most commonly used stationarity test is the Kwiatkowski,

Phillips, Schmidt and Shin (KPSS; due to Kwiatkowski et al. (1992)) test. The

results of the KPSS test are provided in Table A.3 in the Appendix and sug-

gest that we can reject the null hypothesis of stationarity at the 1% significance

level. Similar results from unit root and stationarity tests are quite common for

financial data as they often exhibit long-memory behavior. These results may

imply that our data series are maybe not stationary, but mean-reverting. This

notion is supported by Fouque et al. (2000) who provide an empirical analysis

of high-frequency S&P 500 Index data and confirm that volatility reverts to its

mean.

In order to determine the lag length of the VAR model, we calculate two
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information criteria, the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC; also called the Schwarz criterion). For the pur-

poses of comparability of the results, we will use the same number of lags for

the VAR model for realized variances and for realized positive and negative

semivariances. Similarly, we will not use different specifications for the full

sample and for samples excluding some assets. Table A.4 in the Appendix re-

ports the AIC and BIC values for a different number of lags—2, 4 and 10—and

reveals that there is no significant difference between the values obtained for

each number of lags. Therefore, we choose the number of lags to be 2 as it

balances the relative simplicity of the model with its good performance. More-

over, using 2 lags is in line with the related literature that has a similar scope

of study. The VAR lag of length 2 was chosen (based on the AIC) by Baruńık

et al. (2016) when studying asymmetric connectedness on the U.S. stock mar-

ket as well as by Baruńık et al. (2015) when studying volatility spillovers in

petroleum markets. In addition, Diebold & Yilmaz (2012) provide a sensitivity

analysis of their volatility spillover index employed in this analysis to the VAR

lag structure and show that results do not differ substantially for lags of 2 to

6. Baruńık et al. (2016) obtained analogous results for lags of 2 to 4. All their

results are in support of the assumption that the spillovers are not sensitive to

the choice of the order of the VAR model. Furthermore, Baruńık et al. (2016)

run the residual diagnostics to check whether there is deflection from assump-

tions on VAR concluding that there is no dependence in the residuals and their

estimates are consistent. We also perform this robustness check and in Figure

A.1 in the Appendix we present the spillover plots produced by employing the

VAR model with different lags from 2, which we use in our analysis, to 4. Com-

paring the dynamic behavior of the volatility spillover indices obtained from

the VAR(3) and VAR(4) models with our VAR(2) we can conclude that there

are no significant differences and the volatility spillover indices are robust to

the choice of the VAR model specification.

For the purposes of the dynamic analysis, we have to specify the length of

the rolling window. We set the window length to 200 days which is consistent

with the approach employed by Baruńık et al. (2016) and Diebold & Yilmaz

(2012). Furthermore, we check the robustness of our model with respect to

the length of the rolling window and also with respect to the forecasting hori-

zon. Regarding the rolling window width, we construct the Spillover Index

with rolling windows of 150, 200, and 250. Regarding the forecasting hori-
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zon, we select 5 and 15 days as the appropriate alternatives to our selection of

the forecasting horizon of 10 days. Figure A.2 in the Appendix presents the

spillover volatility plots employing different lengths of the rolling window and

forecasting horizon for the full sample. We observe that the development of

all analyzed specifications of the volatility spillover indices do not vary signif-

icantly. To sum up, we find that the results do not substantially change and

are robust with respect to the window length and horizon selection as well as

with respect to the choice of the model specification.

5.2 Unconditional patterns - volatility spillover ta-

bles

In this section, we analyze volatility spillovers between four selected commodi-

ties traded on U.S. Exchanges and the S&P 500, an American stock market

index. The calculations of the total volatility spillover indices are based on vari-

ance decompositions of 10-days-ahead forecast errors employing VAR models,

as specified in the previous section. Tables below are called volatility spillover

tables and provide an approximate “input–output” decomposition of the total

volatility spillover index. The ith entry represents the estimated contribution to

the forecast error variance of market j coming from shocks to market i. Num-

bers on the diagonal account for the share of own variance and the off-diagonal

values represent the cross-variance, i.e. the volatility spillovers between mar-

kets. The sum of the off-diagonal columns stands for the contribution to others

while the sum of rows stands for the contribution from others. Furthermore, by

subtracting the contributions to others from the contributions from others, we

obtain the net volatility spillovers. In the lower right corners of Tables 5.1 – 5.6,

we report the results for the Volatility Spillover Indices for three samples—the

full sample, a sample that includes the four selected commodities only and at

last for a sample that excludes Cotton.1

1As explained in more detail above, the data for the Cotton futures were inconsistent in
the number of observations per day, which is why we explore the effects of its exclusion from
the analysis as a type of a robustness check.



5. Results 39

5.2.1 Static analysis for the full sample

Table 5.1 reports the average volatility spillovers for the full sample over the

time period spanning from January 2, 2002, to December 31, 2015. The direc-

tional spillovers are shown as the off-diagonal values of the matrix represented

by Table 5.1. We may conclude that the share of volatility shocks that are

spilled over from one market to another substantially differs across the ana-

lyzed markets and ranges from 0.6% to 26%. The Cotton futures exhibit the

lowest values of volatility transmission among our sample, followed by Corn.

On the other hand, the highest spillovers are reported from the S&P 500 Index

to Crude Oil and Gold futures—the share of volatility transmitted from the

S&P 500 Index to these two markets has been 26.4% and 17.8%, respectively.

Regarding the contribution to others, we can see that gross directional volatil-

ity spillovers to others from each of the five assets span from 6.4% for Cotton

to 51.7% for the S&P 500 Index. This means that the shocks related to Cotton

are reflected only slightly in other analyzed markets while more than half of

the variance in the S&P 500 Index is transmitted to other markets considered

in our analysis. Furthermore, more than 20% of realized variance in the prices

of Gold and Crude Oil futures are transmitted to other assets in our sample.

Table 5.1: Volatility spillover table - full sample

From
CL CN CT GC SP Directional from others

CL 73.675 2.135 1.183 5.217 17.790 26.325
CN 2.748 85.679 3.501 4.019 4.053 14.321
CT 2.749 3.786 88.674 1.297 3.493 11.326

To GC 6.341 2.299 0.583 64.399 26.377 35.601
SP 8.684 1.450 1.147 13.353 75.366 24.634
Directional
to others

20.523 9.670 6.414 23.888 51.714 112.208

Directional
including own

94.198 95.348 95.088 88.286 127.079
Total Spillover Index

22.44%

Source: Author’s computations.

Looking at the directional volatility spillovers from all markets to one spe-

cific market (i.e. contributions from others in the last column of Table 5.1), we

observe that the range of results is narrower as compared to contributions to

others, reaching values from 11.3% to 35.6%, for Cotton and Gold, respectively.

While significant differences between the results for different markets persist,

we may conclude that volatility in all observed assets is at least from one tenth
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caused by the events taking place in other markets. Gold, as a representant of

precious metals, is the one most affected by the shocks in other markets, which

is also reflected in the diagonal values in Table 5.1, which shows that the share

of the effects of own shocks is by far the lowest one for Gold. These results

are in line with the economic intuition, since precious metals are often used

as a hedge against adverse events in other markets. As explained in Section

4.1, the price of Gold futures tends to increase in response to events that de-

crease the value of paper investments, such as stocks and bonds, and vice versa.

Finally, let us consider the total volatility spillovers, which are essentially

extracted from the separated directional spillovers to form one complex index.

On average, the volatility shocks related to other markets account for 22.44%

of the volatility forecast error variance in our sample. The rest of the volatility

can be attributed to the idiosyncratic shocks or to innovations that have taken

place in other markets which are not included in our analysis.

To obtain more detailed information about the direction and magnitude of

volatility spillovers, we calculate the net spillovers and the net pairwise spillo-

vers. The results are presented in Tables 5.2 and 5.3, respectively. As described

above, the net volatility spillovers are calculated simply the difference between

the contribution to others and the contribution from all others. Subsequently,

when we subtract the gross volatility spillovers from asset j to asset i from

the volatility transmitted from asset i to asset j, we obtain the net pairwise

spillovers. Therefore, as an example, the notation “CL-CN” stands for the

contribution from CL to CN minus the contribution from CN to CL.

Table 5.2 shows whether the asset acts as a net “receiver” or “giver”, i.e.

whether the contribution (in terms of volatility that is spilled over to other

markets) from all other markets is greater than the transmission of its own

shocks to other markets. We find that the only net giver in our sample is

the S&P 500 Index as it transmits more than twice as much volatility than it

receives. The results thus suggest that all our selected commodities are more

affected by the volatility in the other assets than what they transfer to others.

Gold shows to be the biggest receiver of volatility spillovers among the markets

in our sample.
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Table 5.2: Net volatility spillovers - full sample

CL CN CT GC SP
-5.80242 -4.652 -4.912 -11.714 27.079

Source: Author’s computations.

Table 5.3 provides an overview of net pairwise spillovers. The S&P 500

Index acts as a net giver of volatility with respect to all commodities which

should not be surprising as the index reflects the performance of the stocks

of the 500 U.S. leading companies on the two largest2 exchanges in the world

representing all major industries. Its development is thus largely representative

of the overall situation on the market, including the commodity markets. As

expected, Crude Oil and Gold are the largest receivers of volatility from the

S&P 500 Index. Crude Oil is widely used in nearly all industries, making it

largely dependent on the performance of the business sector, while Gold, as ex-

plained above, is often used as a hedge against adverse events on the financial

and equity markets. Cotton, on the other hand, acts as a net pairwise receiver

of volatility with respect to all other examined assets.

Table 5.3: Net pairwise spillovers - full sample

CL - CN CL - CT CL - GC CL - SP
0.613 1.566 1.124 -9.106

CN - CT CN - GC CN - SP
0.285 -1.720 -2.603

CT - GC CT - SP
-0.714 -2.347

GC - SP
-13.024

Source: Author’s computations.

5.2.2 Static analysis for adjusted samples

In this section, we conduct a similar static analysis as above but for samples

modified by excluding one of the assets. First, we eliminate the S&P 500 In-

dex from our sample as we are interested in the interconnectedness exclusively

among the commodity markets. Table 5.4 reveals unconditional patterns of

2In terms of total market capitalization of its listed companies.
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volatility transmission among the examined commodities. The total volatil-

ity spillover index is substantially lower than the one we obtained for the full

sample—the overall transmission of volatility within this sample only slightly

exceeds 12%. Thus almost 88% of the total variance of forecast errors can be

attributed to the idiosyncratic volatility shocks and to events that have taken

place in other markets not included in our sample.

Table 5.4: Volatility spillover table - sample excluding the S&P 500
Index

From
CL CN CT GC Directional from others

CL 86.718 2.864 1.738 8.679 13.282
CN 3.431 87.729 3.796 5.044 12.271

To CT 3.565 4.069 90.242 2.123 9.758
GC 10.616 3.471 1.149 84.764 15.236
Directional
to others

17.612 10.405 6.683 15.846 50.547

Directional
including own

104.330 98.134 96.926 100.610
Total Spillover Index

12.64%

Source: Author’s computations.

Comparing the gross directional spillovers with the results from the volatil-

ity spillover table for the full sample, we may conclude that while the values

for Cotton and Corn do not exhibit significant changes neither regarding the

directional transmission to others nor the contribution from others, the figures

for Crude oil and Gold vary rather extensively. The gross directional spillovers

to Gold are twice as small as for the full sample which includes the S&P 500

Index, and for Crude oil, the difference is even more substantial, decreasing

from 35% to 15%. The same applies for the directional effects to others, al-

though the difference is less significant. It follows from the above that the U.S.

stock market represented by the S&P 500 Index plays an eminent role in the

transfer of volatility to hard commodities, represented by Gold and Crude Oil,

but does not play such an important role for soft commodities, represented

by Corn and Cotton. These results are in line with the notion that while the

production process in many industries relies heavily on hard commodities, soft

commodities are more often consumed directly (Creti et al. 2013). Taking into

account the results from Table 5.5 which summarizes the net spillovers, we can

conclude that the volatility shocks to Crude Oil and Gold spill over to other

commodities the most. On the other hand, the shocks related to volatility in
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the Cotton futures are the least influential in both samples. To summarize the

results shown in Table 5.4, we can say that both the total as well as the direc-

tional spillovers over the studied period were rather low among the commodity

markets themselves.

Table 5.5: Net spillovers - sample excluding the S&P 500 Index

CL CN CT GC
4.330 -1.866 -3.074 0.610

Source: Author’s computations.

As the number of observations per trading day for Cotton futures was rel-

atively unstable over time, we did not harmonize the data for CT as we did

for all other assets to prevent unnecessary loss of too many observations (see

Section 4.2 for more details). For this reason, we perform the same analysis

as above but for a sample excluding Cotton in order to reveal some possible

hidden patterns due to its inconsistency in observations. Table 5.6 reports the

volatility spillovers for the sample that excludes Cotton. The total volatility

spillover index is slightly higher than the one obtained for the full sample, at

23.9%.

Table 5.6: Volatility spillover table - sample excluding Cotton

From
CL CN GC SP Directional from others

CL 74.536 2.146 5.258 18.059 25.464
CN 2.853 88.768 4.158 4.220 11.231

To GC 6.383 2.307 64.792 26.518 35.208
SP 8.829 1.451 13.423 76.296 23.704
Directional
to others

18.065 5.905 22.839 48.798 95.607

Directional
including own

92.601 94.674 87.631 125.094
Total Spillover Index

23.90%

Source: Author’s computations.

Concerning the off-diagonal figures representing directional spillovers as well

as the diagonal figures standing for idiosyncratic volatility shocks, the results

do not exhibit significant differences as compared to the volatility spillover ta-

ble for the full sample. Inspecting the cumulative contribution to and from

other markets, the figures do not change excessively compared to the results
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from the full sample (Table 5.1). An exception to this is Corn, the results

for which change relatively significantly after the exclusion of Cotton from the

sample—contribution to other markets as well as the transmission from other

markets declines markedly in absolute numbers, from 9.7% to 5.9% and from

14.3% to 11.2%, respectively. Table 5.7 reports the net volatility spillovers and

underlines our conclusion that by the exclusion of the Cotton market from our

sample, we do not observe significant variation from results obtained from the

full sample analysis. The impact of the change of the sample affects almost

exclusively the Corn market results and we may conclude that the connect-

edness between the two markets (Corn and Cotton) is more intense than the

connection between the Cotton market and other assets included in our sample.

These results suggest that regarding volatility spillovers, the connectedness is

higher among soft commodities than between soft and hard commodities.

Table 5.7: Net spillovers - sample excluding CT

CL CN GC SP
-7.399 -5.326 -12.369 25.094

Source: Author’s computations.

5.3 Conditioning and dynamics

The data used in our analysis spans over 14 years from the beginning of 2002

until the end of 2015. During such a long time period, many changes have

occurred in the financial markets due to rapidly increasing globalization, ex-

panded mobility of capital and crucial changes in the trading system such as the

launch of the electronic online platforms that enable almost continuous trad-

ing, but also due to the business cycles and fluctuations in economic activity

over time, which result in expansions and contractions of the markets (Barunik

et al. 2016). By far the most important event that occurred during the ob-

served time period was the global financial crisis of 2008. While the previous

static analysis provides a useful overview of the average volatility spillovers over

the period under research, it would be inadequate to assume that the spillover

index obtained from matrices above would be appropriately informative for the

whole time period. To be able to examine the development of the volatility

spillovers over time, as explained above, we estimate our preferred model using
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200-day rolling windows, horizon h = 10, and VAR lag length of 2, and we also

let these parameters vary to provide a robustness check for our results. Firstly,

we examine the dynamics of total spillovers for three samples defined in the

previous section. Secondly, we capture the time variation employing the rolling

window estimation on the contribution to other markets, from other markets,

and net and pairwise volatility spillovers. The changing dynamics of volatility

transmission over time are depicted in spillover plots3 in Figures 5.3 – 5.7.

5.3.1 Total spillover index’s development

Figure 5.1 presents the moving-window estimation of total spillovers for the

full sample and for the sample including only commodities. We can easily ob-

serve the rich dynamics of volatility spillovers between the commodities and

the S&P 500 Index over the studied period. The volatility spillover indices

for both samples evolve relatively similarly over the studied time period, how-

ever, some marked differences can be isolated. The spillovers based on the full

sample reach larger magnitudes during the whole time period under research

which is in accordance with our findings from the static analysis. Figure 5.2

depicts the dynamics of the differences between volatility spillover index for the

full sample and for the sample that contains only the four selected commodity

markets. We can observe that in the years following the crisis the difference

between indices is greater than before 2008 which suggests that the impact

of the crisis on the commodity market (or at least regarding the commodities

included in our sample) was not as extensive as that on the U.S. stock market

(represented by the S&P 500 Index). Table 5.8 provides some basic summary

statistics regarding the differences in the two measures.

3As is common in the related literature, all presented spillover plots in this section are
presented in squared root terms.



5. Results 46

Figure 5.1: Total volatility spillovers - full sample and sample exclud-
ing the S&P 500 Index

Source: Author’s computations.

Note: The black line represents the total volatility spillover index for
the full sample, the gray line for the sample excluding the S&P 500
Index.

Figure 5.2: Differences in spillover indices with respect to the full
sample

Source: Author’s computations.

The level of volatility spillovers in both samples is rather low at the begin-

ning of the observed period and fluctuates between 5% to 15% for the first four

years. The volatility spillovers index for the full sample hits 20% in the middle

of 2006 and then slightly declines during the first half of the year 2007. The

same pattern seems to repeat during the following year. The first substantial
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Table 5.8: Summary statistics - Differences in spillover indices with
respect to the full sample

Mean Min Median Max St. Dev.
Excluding S&P 500 6.831 -1.722 6.267 17.877 3.556
Excluding CT 1.292 -6.196 1.381 11.234 2.980

Source: Author’s computations.

increase in inter-market connectedness can be detected in September 2008 fol-

lowing the collapse of Lehman Brothers, an investment bank, and the burst of

the U.S. sub-prime mortgage crisis which turned into a global recession and

affected the world’s economy in a major way over several years that followed.4

During the fall of 2008, the index for the full sample more than doubled and

exceeded the 40% level of volatility spillovers. Concerning only the commodity

markets sample, the values of the index increased from 18% before the Lehman

Brothers collapse by 15 percentage points, reaching their maximum of 33.37%

during November 2008. The high level of volatility spillovers has lasted also

throughout the first half of 2009 due to the increased level of uncertainty and

instability of the financial markets. At the end of July, the spillover indices

hit their second peak and the full-sample index reached its maximum over the

studied period, at 43.7%. The probable cause of this peak is the development

of the financial crisis which around this time started to impact the economy

around the world to its full extent. From mid-2009, the volatility transmis-

sions between markets gradually declined with some minor fluctuations until

late 2014 when both indices reached their pre-crisis levels. However, after this

point, we can observe again an increase in the transmission of volatility in

both samples in the last observed year. To analyze the largest jumps in the

volatility spillovers, we calculated their intra-day returns and found that the

highest returns correspond to adverse events on the financial market. Table 5.9

provides an overview of the important events and explains most of the major

spikes observable in Figure 5.1.

4Source: https://www.theguardian.com/commentisfree/cifamerica/2011/dec/12/lehman-
brothers-bankrupt
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Table 5.9: Event study

Date
Volatility
Spillover Index

Return Event

9/17/2008 28.892 10.714 Bankruptcy of Lehman Brothers
9/18/2008 51.234 22.342 Bankruptcy of Lehman Brothers
10/10/2008 64.454 38.617 The great crash of 20085

8/5/2011 64.519 36.548
Asian markets plunge on back
of euro fears and U.S. losses, oil and gold
both decline as investors race for U.S. Treasuries6

10/15/2014 34.569 14.621 U.S. stock market decline7

12/17/2014 39.400 15.377

Sharp decline in world stock markets,
the tumbling price of oil, and the prospect
of another eurozone crisis prompted
by political uncertainty in Greece.8

8/12/2015 38.351 18.225
Global stock markets plunge on China
currency rapid decline 9

8/24/2015 79.994 49.438 China’s Black Monday flash crash10

Source: Author.

To sum up, the overall connectedness of the markets included in our analy-

sis increased substantially following the global financial crisis of 2008. We can

distinguish two main periods regarding the behavior of the volatility spillovers

over the 14 years under research—before 2008 and after 2008. During the pre-

crisis period, the average value of the volatility spillover index was about 15%

for the full sample and 10% for the sample including commodities only, whereas

in the post-crisis period, the average values of the index for the full and the

restricted sample reached 25% and 17%, respectively. Furthermore, regarding

the full sample, the highest spikes of spillovers before 2008 do not reach the

average level of the index after the global financial crisis. As the period under

study covers 7 years after the crisis, we may conclude that the uncertainty and

skepticism of stock market participants persist in the market long after the

crisis and the traders may change their behavior by diversifying the portfolio

more extensively which may lead to higher intra-market connectedness. Our

5Source: https://www.theguardian.com/business/2008/oct/10/marketturmoil-credit
crunch

6Source: https://www.theguardian.com/business/2011/aug/04/stock-markets-exchange-
plunge-business

7Source: http://money.cnn.com/2014/10/15/investing/stocks-markets-wall-street-
correction /index.html

8Source: https://www.theguardian.com/business/2014/dec/12/world-stock-markets-tum
ble-and-ftse-suffers-worst-fall-since-2011

9Source: http://money.cnn.com/2015/08/12/investing/china-yuan-stock-markets-sell-off
/index.html

10Source: https://www.theguardian.com/business/live/2015/aug/24/global-stocks-sell-off
-deepens-as-panic-grips-markets-live
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findings reflect the financial situation on the market and are in line with those

reached by Baruńık et al. (2016), Baruńık et al. (2015) and Diebold & Yilmaz

(2012).

We also analyze the development of the total volatility index when exclud-

ing Cotton from our sample as a type of a robustness check since, as explained

above, the observations for Cotton are somewhat inconsistent in the number of

observations per day. In Figure 5.3, we present the development of two total

volatility indices—for the full sample and for the sample excluding Cotton. A

visual inspection of the figure reveals that both spillovers indices share a largely

common path. Somewhat surprisingly, the level of spillovers is even greater at

some points of the observed period for the sample that excludes Cotton. These

findings indicate that Cotton does not play an important role in the volatility

spillovers within our sample and that there is not significant connectedness be-

tween Cotton and other commodities included in our analysis. Furthermore,

these results suggest that our previous estimates are robust with respect to the

selection of assets.

Figure 5.3: Total volatility spillovers - full sample and sample exclud-
ing Cotton

Source: Author’s computations.

Note: The black line represents the total volatility spillover index for
the full sample, the gray line for the sample excluding Cotton.
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5.3.2 Gross directional spillover plots

In the previous section, we interpreted the total spillover plots which revealed

interesting patterns and allowed us to further understand the intra-market

transmission of volatility. However, it concealed information about directional

spillovers from one particular asset to others and vice versa. This section pro-

vides a dynamic estimation of the contribution to and from other assets sep-

arately for each asset covered in our analysis. The development of directional

spillovers over the 14-year period is depicted in Figures 5.4 and 5.5.

Figure 5.4: Directional spillovers from other assets

Source: Author’s computations.

Figure 5.4 presents the directional volatility spillovers from others to each

of the five assets over time (corresponding to the “directional from others”

column in Table 5.1). For the full sample, we can observe higher values of

gross directional spillovers during the turbulent period of the end of 2008 and

the first months of 2009 as compared to those before the crisis. Nevertheless,

while the level of volatility transmission from others to Crude oil, the S&P 500,

and Gold remains relatively high for a long period after the crisis, the direc-

tional contributions from others to Cotton and Corn return relatively fast to

their pre-crisis levels. During the whole period under research, the directional

transmissions from others to the last two mentioned are lower than for the first

three assets. We can observe a spike in the market for Cotton and Corn in

2013 when, at the same time, the gross directional spillovers to Crude oil, Gold
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and the S&P 500 have a decreasing trend. These findings further support our

previous results that the soft commodities, represented by Cotton and Corn,

are the least connected to the rest of the sample.

Figure 5.5: Directional spillovers to others

Source: Author’s computations.

Figure 5.5 depicts the evolution of the gross directional spillovers to others

from each of the five observed assets. The directional contributions to others

vary greatly over time, however, they seem to reach lower overall volume than

the gross directional spillovers from others for all assets except for the S&P

500 Index which exhibits significantly higher transmission to others than any

other commodity. This is in line with the results obtained in the “directional

to others” row compared to the “directional from others” column in Table 5.1.

An interesting pattern can be observed for Crude oil. While all other assets

hit their maximum of gross spillovers to others during the turbulent period

corresponding to the global financial crisis, the spillovers from Crude oil to

others reach their highest values relatively long after the crisis. This may be

the impact of the unstable situation in the oil markets caused by the political

problems and rising tensions in the Middle East and North Africa in 2011 when

Crude oil prices reached their highest levels since 200811.

11Source: https://www.eia.gov/todayinenergy/detail.php?id=4550
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5.3.3 Net directional volatility spillover plots

Above, we inspected the gross directional spillovers within our sample. In what

follows, we analyze the net spillovers and the net pairwise spillovers. The for-

mer is defined simply as the difference between contribution from others and

contribution to others. Therefore, when the values for a specific asset are above

zero, the commodity was transmitting more volatility to others than it was re-

ceiving from others. In that case, we call that commodity a net spillover giver.

The negative domain corresponds to the net spillovers that a commodity re-

ceives from the others and therefore the asset acts as a net spillover receiver.

Figure 5.6 shows that the net effects alternate over the sample period as the net

spillovers for all assets take both positive and negative values at some point.

The net spillovers of all assets except for Crude oil reached their maximum (in

absolute value) during the global financial crisis of 2008.

Moreover, the impact of financial instability reflected in the net spillovers is

more evident for Cotton, Gold and the S&P 500 Index as their absolute values

in the post-crisis period are substantially higher and the increased level of net

spillovers is also noticeable in the years following the crisis. Furthermore, the

net spillovers of Gold and Cotton take almost exclusively negative values and

thus make these two commodities appear as net spillover receivers while the

opposite is true for the S&P 500 Index whose net spillovers reach significantly

higher volumes compared to the rest of the sample and do not take almost any

negative values over the 14-year observed period. These emerged patterns are

in accordance with the static analysis and the results obtained in Table 5.2.

Cotton and Crude oil seem to be more balanced in terms of transmitting and

receiving net spillovers from other assets, however, it appears that the negative

values prevail for both commodities. Furthermore, regarding Crude oil and the

S&P 500 Index, we can observe extensive spikes taking the opposite values at

the end of the analyzed time period. These correspond to August 2015, the

time of the so-called Black Monday in China, which caused the U.S. stock mar-

ket to suffer its biggest sell-off in four years and commodity prices have also

been hit by worries over China, especially oil which tumbled by 6%.12

12Source: https://www.theguardian.com/business/live/2015/aug/24/global-stocks-sell-
off-deepens-as-panic-grips-markets-live.
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Figure 5.6: Net spillovers

Source: Author’s computations.

Figure 5.7 depicts the net pairwise spillovers that show the dynamics and

dominance of the net spillovers between two specific commodities. For exam-

ple, in the plot labeled cl − cn, when the values are above zero, the spillovers

from cn to cl exceed those from cl to cn. Based on visual inspection, we can

determine the dominant position of an asset in almost each pair. The S&P

500 Index appears to be dominant in all pairs. The volatility in Crude oil

spills over to Gold more extensively than the other way around, particularly

in the post-crisis period. For most of the observed time period, Crude oil also

seems to dominate Cotton in terms of spillover transmission. The volatility

of Gold impacts considerably more the fluctuation of Cotton than vice versa.

The shocks to Gold are also transmitted more heavily to Cotton than in the

opposite direction. The transmission of pairwise net spillovers appears quite

balanced in cl − cn and cn− ct pairs.
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Figure 5.7: Pairwise spillovers

Source: Author’s computations.

5.4 Asymmetric volatility spillovers

In the previous static and dynamic analysis the presence of volatility spillovers

among the selected commodities and the S&P 500 Index has been confirmed.

We have also examined the evolution of the volatility transmission over time

and the amount of volatility spilled over from each of the studied assets. In this

section, we investigate potential asymmetries in the transmission mechanism

due to negative and positive shocks.

Based on the methodology proposed by Barndorff-Nielsen et al. (2010) we

decompose the realized variance to positive and negative semivariances and use

them to derive negative and positive volatility spillovers. Furthermore, in order

to quantify the extent of the asymmetric transmission of the volatility within

our sample, we calculate the spillover asymmetric measures (SAM) proposed

by Baruńık et al. (2016).

5.4.1 Asymmetric volatility spillovers – static and dynamic

analysis

First, we analyze the results summarized in the spillover volatility tables based

on negative and positive semivariances which provide a useful overview of the

average volatility spillovers due to negative and positive shocks. In the low
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right corners of Tables 5.10 and 5.11, we present the total spillover indices for

negative and positive returns, respectively. The overall average contribution

of positive shocks to volatility spillovers in our sample is only slightly higher

compared to the negative ones (17.72% compared to 16.46%). This finding is

not in support of our hypothesis that on average, volatility spillovers resulting

from negative realized semivariances are of higher magnitude than the ones

stemming from the positive ones. For all commodities, the gross directional

spillovers to others reach greater values when taking into account good news.

However, the S&P 500 Index exhibits higher transmission of bad volatility to

others and lower from others as compared to good volatility spillovers. The

differences are particularly significant for Gold, Cotton, and Corn, where the

transmission of good volatility to others reaches almost twice the volume of

spillovers due to bad volatility. These results indicate that the stock market

represented by the S&P 500 Index is more sensitive to bad news corresponding

to negative returns than the commodity market. The directional spillovers of

good and bad volatilities from others do not vary as considerably, however, the

most distinct output is observed again for the S&P 500 Index. When employ-

ing the positive realized semivariances in the estimation, the volatility in all

commodities included in our analysis is responsible for almost 22% of the fluc-

tuations observed in the S&P 500 Index compared to 15.9% of bad volatility

transmitted from others.

Table 5.10: Volatility spillover table - Negative realized semivariances

From
CL CN CT GC SP Directional from others

CL 77.698 1.147 0.938 3.863 16.354 22.302
CN 1.476 93.034 0.917 1.515 3.059 6.966
CT 2.162 0.859 92.175 1.464 3.339 7.825

To GC 5.872 1.263 0.407 70.643 21.815 29.357
SP 7.425 0.803 0.734 6.908 84.130 15.869
Directional
to others

16.935 4.072 2.996 13.750 44.568 82.320

Directional
including own

94.633 97.105 95.171 84.393 128.698
Total Spillover Index

16.46%

Source: Author’s computations.
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Table 5.11: Volatility spillover table - Positive realized semivariances

From
CL CN CT GC SP Directional from others

CL 77.249 2.486 1.527 5.068 13.670 22.750
CN 2.951 89.585 1.308 3.308 2.847 10.415
CT 2.272 1.502 93.262 0.545 2.418 6.738

To GC 4.539 2.554 0.608 73.260 19.038 26.739
SP 7.605 1.582 1.499 11.291 78.023 21.977
Directional
to others

17.368 8.125 4.942 20.212 37.973 88.619

Directional
including own

94.617 97.710 98.204 93.472 115.996
Total Spillover Index

17.72%

Source: Author’s computations.

Figure 5.8 depicts the development of two spillover indices based on negative

and positive realized semivariances which allows us to observe the differences

in volatility transmission that emerge due to negative and positive returns.

The black line represents the spillover index from positive RS whereas the gray

line depicts the spillover index from negative RS. There are some observable

differences in the development of the two measures, especially in the post-crisis

period. The volatility spillover index from positive RS dominates the one from

negative RS almost throughout the whole first part of the studied time period,

between 2002 and 2005. For years 2005 to 2008, the good and bad volatilities

exhibit a more or less common path and reach similar levels. The dominance

of volatility transmission due to positive news remains also at the beginning

of the crisis in 2008. However, from March 2009 until mid-2011, the volatil-

ity index based on negative RS prevails and the differences between the two

indices are more excessive. In the period that follows, we can again observe a

rather interchangeable development of both indices. At the end of the stud-

ied period the impact of positive shocks on the volatility spillover re-dominates.

In Figure 5.9 we can observe the development of the spillover indices based

on negative and positive RS for the sample that includes commodities only.

Both indices evolve very similarly to the corresponding ones in Figure 5.8 which

study the whole sample, however, they both reach lower volumes. This is in

line with our findings above that the level of volatility transmission is higher

for the full sample than for the sample excluding the S&P 500 Index. A closer

inspection of different asymmetries in the two samples is provided in Section

5.4.2 as the differences are better visible using the asymmetry measure. To

conclude, we can confirm the presence of certain asymmetries in the impact
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of positive and negative shocks on the volatility and its transmission. Fur-

thermore, our findings in this section are not in line with the hypothesis that

the bad news resulting in negative returns affect the volatility more intensively

than good news and related positive shocks. In the following section, we in-

spect the asymmetries further by employing the Spillover Asymmetry Measure.

Figure 5.8: Asymmetric volatility spillovers - full sample

Source: Author’s computations.

Note: The black line represents the spillover index from positive real-
ized semivariances (RS+), the gray line from negative realized semi-
variances (RS−).

5.4.2 Spillover asymmetry measure (SAM)

Finally, we use the Spillover Asymmetry Measure (SAM) proposed by Baruńık

et al. (2016) and defined in Section 3.3 to quantify the differences in the volatil-

ity spillovers due to negative and positive shocks. This approach allows us to

study the extent of the asymmetry in the volatility transmission independently

of the level of spillovers. Positive values of SAM indicate the dominance of the

volatility spillover index based on positive RS while negative values of SAM
imply that the transmission of volatility due to negative returns reaches higher

volume than that due to positive returns. When SAM = 0, the effects of both

negative and positive spillovers offset each other, however, as we will see, this

situation is very rare on the markets.
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Figure 5.9: Asymmetric volatility spillovers - sample excluding the
S&P 500 Index

Source: Author’s computations.

Note: The black line represents the spillover index from positive real-
ized semivariances (RS+), the gray line from negative realized semi-
variances (RS−).

Figure 5.10: Spillover ssymmetry measure (SAM) - full sample

Source: Author’s computations.

Figure 5.10 presents the SAM for our full sample. Significant fluctuations

of the measure are evident over the whole time period under study. We can

observe that the extent of asymmetric behavior reflects not only the magni-

tude but also the duration. Considering the pre-crisis period, we find that the

SAM takes predominantly positive values except for several months at the

beginning of 2003 which may be associated with the perturbed situation in the
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oil markets caused by the second Gulf War and unrest in Venezuela (Baruńık

et al. 2015). The overall dominance of the positive values in this period means

that the transmission of volatility due to positive shocks is higher than the bad

volatility spillovers which may be related to the optimistic sentiment persist-

ing from the prosperous period before the global financial crisis. Moreover, the

asymmetries in spillovers from negative and positive shocks in the pre-crisis pe-

riod do not take very high values—they range from approximately -5% to +5%.

The most significant asymmetric effect is visible after the crisis starting in

March 2009 until September 2011 when we observe a prevalence of negative

asymmetries. The clusters of negative spillovers during the years that followed

the crisis document the pessimistic mood on the markets, when the negative

shocks had a higher impact than the positive ones as the investors were more

cautious and more sensitive to bad news. Furthermore, during this period,

the extent of negative asymmetries is much higher compared to the pre-crisis

period, falling to -14.4% in June 2011, which may point to concerns about

uncertainty and stability of the financial markets following the crisis. In the

subsequent period, we can observe much less excessive fluctuations of volatility

spillovers with a varying dominant position of spillovers based on positive and

negative returns. The lower fluctuation with similar range as in the pre-crisis

period and the variability of the prevalence of good and bad volatility may

be to some extent caused by increasing financialization (Baruńık et al. 2015).

Similarly, Tang & Xiong (2012) find support for the notion of increasing finan-

cialization of commodities by showing that synchronized price movements of

major commodities markets in the U.S. are a consequence of such financial-

ization. Moreover, Baruńık et al. (2015) argue that as a further consequence,

higher volatility transmission occurs simultaneously with a lower level of asym-

metries between volatility spillovers due to positive and negative shocks. At

the end of the observed period, good news had a substantially larger influence

on the markets than bad news.

Figure 5.11 depicts the asymmetries induced by positive or negative shocks

for the sample that excludes the S&P 500 Index. We notice several differences

as compared to the asymmetries presented for the full sample. First, the im-

pact of negative shocks is stronger during the period between 2005 and 2006.

This may be caused by uncertainty on the commodity markets associated with

the food price crisis which is in line with the findings of Nazlioglu et al. (2013),
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who examine volatility transmission between oil and selected agricultural com-

modity prices. They find that oil market volatility spills on the agricultural

markets in the post-crisis era while there is no risk transmission between oil

and agricultural commodity markets before the food price crisis. Regarding

the immediate post-crisis period, the dominance of volatility spillovers based

on negative semivariances is also observable for the sample that includes only

commodities, however, it does not reach such a high volume as in the case of

the full sample.

Figure 5.11: Spillover asymmetry measure (SAM) - sample excluding
the S&P 500 Index

Source: Author’s computations.

From mid-2011 till mid-2014, the good volatility transmission prevails. How-

ever, in the late 2014 and for several first months of 2015, negative shocks to

commodity markets had a substantially larger impact as compared to positive

shocks. This negative cluster may be associated with the global commodity

price crash when the global commodity prices fell by almost 40% and large drops

across many different commodity classes were observable (Saggu & Anukoon-

wattaka 2015). Table 5.12 provides summary statistics for the SAM for both

samples. The asymmetries for the full sample reach higher extremes especially

regarding the transmission of volatility induced by the negative shocks. How-

ever, the mean for the full sample is slightly above zero while for the sample

including only commodities, the mean is -0.215 which means that on average,

volatility stemming from the negative semivariances spilled over to the com-
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modity markets fractionally more than the good volatility.

Table 5.12: SAM - Summary statistics

Mean Min Median Max St. Dev.
Full sample 0.156 -14.438 0.550 8.462 3.132
Commodities only -0.215 -10.102 0.091 7.278 3.074

Source: Author’s computations.

Overall we find some asymmetric behavior in volatility transmission for

both samples. In particular, in the years following the crisis, the negative

shocks have had a higher impact on the volatility spillovers across the markets

included in our analysis. Nevertheless, the level of the asymmetry measure does

not take very high values compared to the results obtained by Baruńık et al.

(2015) who find the asymmetric effects in spillovers on the petroleum mar-

ket rather substantial. Similarly, Dovhunová (2014) finds stronger evidence of

asymmetric volatility transmission also for the stock markets in Central and

Eastern Europe. Despite the fact that the asymmetric connectedness of mar-

kets included in our analysis is not as substantial, the good and bad volatility

is transmitted at different magnitudes and the dominant position changes over

the studied time period. While negative spillovers reach higher extremes, they

do not strictly dominate the transmission of volatility based on positive returns.

These findings are in line with those of Baruńık et al. (2016) and suggest that

risk transmission is not driven by pessimism as much as generally assumed.
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Conclusion

In this thesis, we study volatility spillovers using a recently developed approach

based on the volatility spillover index, as introduced by Diebold & Yilmaz

(2009) and further developed by Diebold & Yilmaz (2012). The approach uses

a generalized vector autoregressive framework in which forecast-error variance

decompositions are invariant to the variable ordering which enables us to mea-

sure total, directional and net volatility spillovers. We employ an extension to

this approach introduced by Baruńık et al. (2016) who build upon the volatility

spillover index proposed by Diebold & Yilmaz (2012) and combine it with the

concept of positive and negative realized semivariances developed by Barndorff-

Nielsen et al. (2010). The realized measures allow not only to better estimate

the total volatility but most importantly, the resulting modified indices allow

for modeling asymmetric responses to positive and negative shocks.

We apply the methodology proposed by Baruńık et al. (2016) to quantify

the volatility spillovers and the asymmetric response to positive and negative

shocks in high-frequency data within two datasets. First, we model the volatil-

ity transmission between four selected widely traded commodities and one of

the main U.S. stock market indices, the S&P 500 Index, as a representative of

the equity market. The second dataset includes commodities only, specifically

Crude oil, Gold, Corn and Cotton futures. Each of the included commodities

represents a specific branch of the commodity market—energy, precious met-

als, grains and fiber markets, respectively. The importance of each of these

commodities within their markets is sufficient to consider them as a proxy for

each sector. In order to provide accurate estimates, five-minute returns are

used for the construction of realized measures. Our sample covers a 14-year
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period from January 2002 to December 2015, which allows us to analyze the

development long before the global financial crisis of 2008 as well as quite long

after the turbulent period fades away and we can thus evaluate the impact of

the global crisis on the commodity and equity markets.

The results are divided into several categories. First, we provide a static

analysis of three different samples—the full sample, a sample including only

commodities and a sample excluding Cotton futures (as a type of robustness

check). The decomposition of the total volatility spillover index allows us to

estimate the directional spillovers, i.e. how much the shocks to one asset are

transmitted to another asset, as well as the net and the pairwise spillovers.

Second, in order to capture the development of spillovers over time, we employ

the rolling window estimation. Third and last, we investigate potential asym-

metries in the transmission mechanism due to negative and positive shocks.

The static analysis reveals that the volatility transmission within the sample

including the S&P 500 Index is substantially higher than the volatility spill-

overs only between commodities. On average, the volatility shocks related to

other markets account for 22.44% of the volatility forecast error variance in our

full sample while only for 12.64% in the sample that includes commodities only.

The S&P 500 Index turns out to be a net giver of volatility when compared

to all commodities under research, i.e. the transmission of shocks from the

stock index to others exceeds the volatility spillovers from others to the stock

index. Our findings thus show that the shocks to stock markets play a rather

important role in the volatility in commodities while commodities do not influ-

ence each others’ volatility to such an extent. Especially, the soft commodities

such as Cotton and Corn exhibit the lowest contribution of spillovers to other

markets.

The dynamic analysis shows the development of volatility spillovers between

markets over time and provides strong evidence that the connectedness between

markets has become much more significant after the global financial crisis of

2008 for all three samples. The uncertainty and skepticism of market partic-

ipants persist in the markets long after the crisis as the volatility spillovers

reach higher volumes than in the pre-crisis period. The recent global financial

crisis has thus played an important role for volatility spillovers, emphasizing

the connectedness between commodity and stock markets and inducing further
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financialization of commodities. Furthermore, by applying the rolling win-

dow estimation also on the net, pairwise and directional spillovers, we reveal

that the S&P 500 Index exhibits significantly higher volatility transmission to

commodities than any other commodity and also the S&P 500 appears to be

dominant in all pairs over the whole period. The stock markets turn out to

play a crucial role in the volatility transmission on the commodity market.

Finally, we investigate asymmetries in the response to negative and positive

shocks. Despite the fact that the level of the asymmetry measure is not very

substantial, the good and bad volatility is transmitted at different magnitudes

and the dominant position changes over the studied time period. We find that

in the years following the crisis, the negative shocks have had a higher impact

on the volatility spillovers across the markets included in our analysis. However,

while negative spillovers reach higher extremes, they do not strictly dominate

the transmission of volatility based on positive returns. Moreover, an inspec-

tion of volatility spillover tables reveals that for all the observed commodities,

the gross directional spillovers to others based on positive semivariances reach

greater values than the directional spillovers due to negative shocks. Never-

theless, the S&P 500 Index exhibits a higher transmission of bad volatility to

others and lower from others compared to good volatility spillovers which indi-

cates that the stock market is more sensitive to bad news than the commodity

market.

This thesis provides further corroboration of the increased importance of

intra-market connectedness following the global financial crisis of 2008. While

most previous studies focus on the volatility transmission among different stock

markets or between the crude oil market and financial markets, we provide

a complex analysis of the connectedness between seemingly unrelated widely

traded commodities, representing different sectors, and the S&P 500 Index.

The increasing financialization on the commodity market and the fast growth

in the liquidity of commodity futures are of particularly high interest. More-

over, our results from the analysis of the asymmetric responses to positive and

negative shocks defy the common notion that the negative shocks impact the

volatility spillovers more heavily than the positive ones and indicate that the

attitude of market participants has not been as pessimistic as generally as-

sumed, except for the period of a few years following the global financial crisis.

We thus provide a fresh look at the speed of the healing process of the markets
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following a major financial crisis.

We see several possible extensions of the present research. First, the inclu-

sion of more commodities representing each sector would enable a more precise

analysis of how the individual markets are related and one might want to in-

spect also the connectedness at the disaggregate sectoral level. Similarly, the

connectedness between our selected commodities and the bond market could

lead to interesting findings. Furthermore, a more detailed event analysis would

further clarify the volatility transmission mechanism following major events in

the commodity and equity markets. Last but not least, a directional spillover

asymmetry measure would allow to study the source of asymmetry among

assets and to identify the extent to which volatility from one specific asset

transmits to other assets asymmetrically.
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Appendix A

Appendix

Complementary results to model specification

This appendix reports complementary tables and plots supporting the results

from Chapter 5. We employed statistical software R to run the stationarity

tests and calculate other statistics below. The R code employed in this thesis

can be provided upon request.

Table A.1: ADF unit root test

ADF Statistic for lag 2 and 4
RV Negative RS Positive RS

CL -10.641 -7.2925 -12.817 -8.8728 -12.86 -8.8002
CN -22.479 -16.578 -25.62 -19.081 -24.273 -17.746
CT -22.768 -15.955 -24.316 -17.267 -25.975 -18.388
GC -16.916 -10.88 -18.728 -11.866 -19.33 -13.38
SP -13.828 -9.1947 -13.011 -8.7874 -15.781 -10.443

Source: Author’s computations.

Table A.1 provides the ADF statistic for our time series, in the first row

for each of the series (RV, RS−, RS+) the ADF statistic for lag 2 is proveded

and in the second row the results for lag 4. As the critical value for ADF for

T > 500 and rejection at 1% is −3.961 and all the values in the Table A.1 are

well below this limit, the p-value for all test has shown to be < 0.01.

1Source: http://home.cerge-ei.cz/petrz/GDN/crit_values_ADF_KPSS_Perron.pdf

http://home.cerge-ei.cz/petrz/GDN/crit_values_ADF_KPSS_Perron.pdf
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Table A.2: PP unit root test

p-value
RV RS− RS+

CL <0.01 <0.01 <0.01
CN <0.01 <0.01 <0.01
CT <0.01 <0.01 <0.01
GC <0.01 <0.01 <0.01
SP <0.01 <0.01 <0.01

Source: Author’s computations.

Note: Truncation lag parameter = 9

Table A.3: KPSS stationarity test

p-value
RV RS− RS+

CL <0.01 <0.01 <0.01
CN <0.01 <0.01 <0.01
CT <0.01 <0.01 <0.01
GC <0.01 <0.01 <0.01
SP <0.01 <0.01 <0.01

Source: Author’s computations.

Note: Truncation lag parameter = 13

Table A.4: AIC, BIC

No. of lags AIC BIC
2 -254 379.6 -254 041.8
4 -255 370.2 -254 725.4
10 -255 878.4 -254 312.8

Source: Author’s computations.
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Robustness Check

Figure A.1: Robustness of volatility spillovers to VAR model specifi-
cation

Source: Author’s computations.

Note: The first plot represents the VAR(2)-based spillover index,
second depicts the VAR(5)-based index and the third the VAR(4)-
based index.
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Figure A.2: Robustness check with respect to the window width, w,
and forecasting horizon H = 5, H = 10 and H = 15

Source: Author’s computations.
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