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Supervisor: RNDr. Janeček Martin, Ph.D., Department of Statistics and Proba-
bility, VŠE
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Introduction
Currently, insurance companies take a significant amount of time to process li-
abilites and cash flow. This thesis is based on the technique of accelerating the
valuation of said processes. The aim of this work is to calculate the future cash
flow of the company faster with reasonable error.

Among the actuarial tasks belong risk management, internal model calcu-
lation, dynamic asset/liability management which requires calculations of com-
pany’s future cash flow with a wide range of possible scenarios. Economic sce-
nararios may include a variety of economic indicators, from inflation to credit
risks. For every contract is calculated cash flow with some possible scenarios.
Because there are many variables to project which create many calculations, this
has become a timely process.

This thesis will show the work on the implementation of standard cash flow
calculations compared to the usage of proxy function and cluster analysis. We
will to simulate the interest rate scenarios using a CIR model. We want to show
the result comparison between the standard technique, proxy function and cluster
analysis. We will simulate the rates and chose random model points to show the
different time achievements between each technique. This thesis was implemented
in Wolfram Mathematica Software.
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1. Valuation of Liabilities in
Insurance Companies

1.1 General introduction
Life insurance is a protection against financial loss that, for example, would result
from the premature death of an insured. The insurer makes contracts with policy
holders and promises to pay a named benificiary the benefit in exchange for a
premium, upon the death of an insured person or during the agreed period.

In this work, we will focus on Universal Life products (UL). UL is a hybrid
life insurance policy which combines elements of term life insurance with an in-
vestment savings option. Premiums within an universal life insurance policy are
broken down by the insurance and saving component which is known as the cash
(capital) value. The success of an universal life insurance plan depends on the
investments in the plan the insurer chooses and market performance.

Within this thesis, our focus will center on the policies where a claim benefit
is paid in the case of death or maturity. Such insurance products are called
Endowment (”smı́̌sené pojǐstěńı”) and are the most common type of Czech life
insurance ([1], [2]).

1.2 Main Principles of Fair Value
One of the main issues for insurance mathematicians is to determine the value of
the liabilities of policy contracts. To calculate the value of liabilities for insurance
companies, there are a variety of methods to choose from. Examples of these
methods are Statutory valuation approach, Embedded Value (EV) approach, and
Fair Value (FV) approach, which can be found in [2].

In this work, we will focus mainly on fair value - stochastic approach. Using
the fair value approach, the estimated liabiltity results are more precise and closer
to real situation with more economic scenarios. Assumptions for calculation are
used on the best estimate level. Lapses and all other expected events are included
([2]). The stochastic fair value approach can be understood as the expected
present values of the stochastic simulations of future cash flows.

In 1999, the IASB released an insurance issues paper in which it defined ”fair
value” as ([1]):
”The amount for which an asset could be exchanged or a liability settled between
knowledgable, willing parties in an arm’s length transaction”

Calculation of annual cash flow during the year t is ([2]):

CFt = (Pt − Ct − Et)(1 + rfrt) − Claimst, (1.1)

where
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Pt premium paid at the beggining of the year t,
Ct commisions paid to agents at the beginning of the year t,
Et expenses paid at the beginning of the year t,
rfr risk free interest rate related to policy year t,
Claimst benefit outflows assumed to be paid at the end of the year t.

The present value of such cash flows is

FVt =
n∑

t=1

CFt

(1 + rfrt)t
, (1.2)

where

FVt Fair Value of liabilities at the end of the policy year t.

1.3 Assumptions
Here we will discuss the issues for the assumptions used in calculation.

All assumptions used for the cash flow projection are to be on the best estimate
level, which is understood to be their expected value.

1.3.1 Mortality
Underlying mortality assumptions are based on mortality tables, which are statis-
tical tables of expected annual mortality rates. Insurance companies use mortality
tables in order to determine proper premiums and fees that must be charged to
individuals seeking insurance.

The insurance companies should take into account their experience in last
years for mortality assumptions. Mortality experience tables might be split ac-
cording to sex and age of the insured person, as well as smoker status, type of
policy, etc ([2]).

Information gathered on an individual is taken into account when under con-
sideration for the insurance. A selected mortality table includes mortality data
on individuals who have recently purchased life insurance. These individuals tend
to have lower mortality rates than individuals who are already insured, due to
the fact that they have most likely just passed certain medical exams required to
obtain insurance.

1.3.2 Lapses
Lapses are the cancellation of coverage and it can be an important component
for the pricing of long term cash flows. The policyholder is allowed to cancel his
policy at any time. As well as mortality experience, the companies should take
into account their recent and reliable experience.

Once a policy lapses, the insurer is not under any legal obligation to provide
the benefits stated in the policy. The insurance company returns the savings
component deducted by some surrender fee to the policyholder.

Lapses analysis is usually built according to the policy year of insurance, type
of product or calendar year of the policy inception ([2]).
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1.3.3 Commissions
Commissions are usually based upon the size of the policy the agent is selling
(means the size of annual premiums) and by the type of product.

There are two forms of commission payments to life insurance agents: first
year (or initial) commission payments and renewal commissions payments.

The initial commissions payment is a payment that is equal to a percentage of
the total annual premium that will be made on the policy during the first policy
year.

A renewal commission is a commission paid for a specific number of years after
the first policy year. The number of years that a renewal is paid vary between
the companies, but frequently it is a significant number of years.

There can be claw back provision, which allows companies to return some
amount of money back from the agents due to the withdrawal by the insurer of
the policy agreement. Usually it concernes the initial commissions during the
first years.

1.3.4 Expenses
General and administrative expenses typically refer to expenses that are still
insurred by the company regardless of whether the company produces or sells
anything. Examples of expenses can be product advertisement, salaries, building
rent etc.

Expenses can be split into initial, such as medical underwriting, or renewal,
for example payments to company’s accountants.

Administrative expenses are usually classified in the following way ([1]):

• α initial single expenses: These exist during the closure of the contract.
They can be calculated as a percentage from the sum assured or the pre-
mium.

• β regular administrative expenses: These are annual renewal expenses dur-
ing the life time of the policy. They are calculated as a percentage of the
sum assured.

• γ premium payment expenses: These are calculated as a percentage of the
premium for regular payment policy types.

The expenses increase in time due to inflation. We will consider increase in
expenses as well.

1.3.5 Other Assumptions
Risk-free rate (rfr) should be used for all interest rate assumptions ([2]).

The risk-free rate represents the minimum return an investor expects for any
investment. It is the theoretical rate of return of an investment with zero risk.
Often for such a rate, the return yield of government bonds is used.

Under the fair value approach, the risk-free rate is used for discounting the
future cash flow and for annual investment income adjusted with market value
margin.
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2. Acceleration techniques of
calculations

2.1 Analytic function
The main principle of cash flow calculation is the following

CFt =
∑

j:∀policies

P
(j)
t − C

(j)
t − E

(j)
t − Dths

(j)
t − Surr

(j)
t − Matur

(j)
t , (2.1)

where

Dthst is the outflow representing the death benefit assumed to be
paid at the end of the policy year t,

Surrt is the outflow representing surrenders assumed to be paid at
the end of the policy year t,

Maturt the outflow representing the maturity benefits assumed to be
paid at the end of year t.

Policy cash flows for Endowment product are shown in the Table 4.3.
Our aim for every scenario is to dervive the formula in the following form:

CFt =
∑

j:∀policies

fixCF(j)
t +

∑
k

Coefk
t · f

(k)
t (i1, i2, . . . , it),

where

fixCFt, Coeft doesn’t depend on interest rate and can be calculated from
the one run of the full model,

ft is a function of interest rate that is common for all
model points,

k is a number of Coeft and ft pair, typically more than 1.

For our derivation let’s start from a simple situation. We will calculate the
cash flow from one contract during one year. For the type of product in this
thesis, the benefit in the case of death or maturity is equal to the sum assured
plus the savings part as a value of fund (or capital) at the year of payment t
(SA + CVt). In the case of a lapse, the company pays the policyholder the saving
part deducted by the surrender fee. So, we have:

CF1 = l0(P1 − C1 − E1) − CV1(1 − fee)w1 − (CV1 + SA)d1 − (CV1 + SA)m1 =
= l0(P1 − C1 − E1) − CV1[w1(1 − fee) + d1 + m1] − SA(d1 + m1) =
= l0(P1 − C1 − E1) − (CV0 + P − α − β − γ − RP1)(1 + i1)
∗ [w1(1 − fee) + d1 + m1] − SA(d1 + m1) =
= l0(P1 − C1 − E1) − SA(d1 + m1) − CV0[w1(1 − fee) + d1 + m1](1 + i1)−
− SP1[w1(1 − fee) + d1 + m1](1 + i1).
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where

lt number of policies in-force at the end of year t,
lt = lt−1 − dt − wt − mt;

dt number of deaths at the end of the year t,
dt = lt−1qx;

wt is number of lapses during the policy year t,
wt = lt−1(1 − qx)wthdt;

mt number of maturities at the end of the year t,
mt = 0 for t < n, mt = lt−1 − dt − wt for t = n;

SPt (= P − α − β − γ − RP1) saving premium;
PRt risk part of premium;
CVt fund value at the end of year t;
fee surrender fee applied when the surrender is paid assumed to be at the

end of the year.

Using the same logistics, we can continue with the value of cash flow for the
second year:

CF2 = · · · = l1(P2 − C2 − E2) − SA(d2 + m2)−
− CV0[w2(1 − fee) + d2 + m2](1 + i1)(1 + i2)−
− SP1[w2(1 − fee) + d2 + m2](1 + i1)(1 + i2)−
− SP2[w2(1 − fee) + d2 + m2](1 + i2)

And for the third year we will have:

CF3 = · · · = l2(P3 − C3 − E3) − SA(d3 + m3)−
− CV0[w3(1 − fee) + d3 + m3](1 + i1)(1 + i2)(1 + i3)−
− SP1[w3(1 − fee) + d3 + m3](1 + i1)(1 + i2)(1 + i3)−
− SP2[w3(1 − fee) + d3 + m3](1 + i2)(1 + i3)−
− SP3[w3(1 − fee) + d3 + m3](1 + i3)

We will denote the fixed part of the cash flow at the year t for the policy j as

FixCFt = lt−1(Pt − Ct − Et) − SA(dt + mt)
The summurization of all the model points will accumulate the cash flow at

the year t for all model points which we are getting the formula for ”proxy” or
analytic function:

CFt =
∑

j:∀policies

FixCF(j)
t −

−
∑

j:∀policies

[(d(j)
t + m

(j)
t + w

(j)
t · (1 − fee)) · CV

(j)
0 ] ·

t∏
k=1

(1 + ik)−

−
t∑

l=1

∑
j:∀policies

[(d(j)
t + m

(j)
t + w

(j)
t · (1 − fee)) · SP

(j)
l ] ·

t∏
k=l

(1 + ik)

(2.2)
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The estimation of cash flow by proxy function is a little bit tricky and requires
patience and concentration. Yet, the final results of the estimation by proxy
function are fast and concluded with no significant errors.

The calculation process by the analytic function can be summarized as the
following [2], [3]:

1. Run the full model once. This run doesn’t depend on investment return.

2. Derive the coefficients FixCFt and Coef
(k)
t and save them (usually about

100 ths or more variables based on the product complexity)

3. Take the selected scenario of interest rates (i1, i2, . . . , in)

4. Calculate CFt =
∑

j:∀policies

FixCF(j)
t +

∑
k

Coef
(k)
t · f

(k)
t (i1, i2, . . . , it)

2.2 Cluster analysis
In this section we will focus on cluster analysis.

The purpose of clustering is to allocate observations of varaibles into homoge-
nous and distinct groups (”clusters”). That means that observations are similar
to each other within the group and different from observation in other groups
([4]). Our aim is to group the policies into model points and choose the represen-
tant of selected group policies. For each representant we have a scale, depending
on how many policies it represents.

We don’t have any assumptions about the distibution of the underlying data.
Using the cluster analysis we are able to form groups of related observations.
Clustering techniques can be used for any data set. All that is needed is a
measure of how far one element in the set is from another element, using the
function that gives the distance between the elements. The distance function f
satisfies the following ([5]):

• f(ei, ei) = 0,

• f(ei, ej) ≥ 0,

• f(ei, ej) = f(ej, ei).

where ei is ith element of the dataset.
We don’t have an assumption about the number of clusters in which model

points can be grouped. We will use non-hierarchical clustering method, called the
k-means method. This method can be described in the following steps ([6],[7]):

1. Specify the number of clusters and the elements of each cluster. It can be
choosen arbitarily or deliberatly. One of possible option is K =

⌊√
N
2

⌋
2. Calculate each cluster’s centroid, and the distances between each observa-

tion and each centroid. If the observation is nearer the centroid of a cluster
other than the one to which it currently belongs, re-assign it to the nearest
cluster
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3. Repeat step number 2 until all observations are nearest to the centroid of
the cluster to which it belongs

4. If the number of clusters cannot be specified with confidence in advance,
repeat steps 1 to 3 with a different number of clusters and evaluate the
results.

The big disadvantage of such method is that it depends on the order choice,
which is used for grouping and this can cause different cluster results each time.

Mathematica software uses the algorithm of k-means. The algorithm for clus-
tering N data points into K disjoint subsets Sj containing Nj data points so as
to minimize the sum-of-square criterion [7]

J =
K∑

j=1

∑
n∈Sj

|en − Cj|2, (2.3)

where en is a vector representing the nth data point and Cj is the geometric
centroid of the data points in Sj
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3. Interest rate scenarios

3.1 Models of interest rates
A zero-coupon bond is a contract promising to pay a certain ”face” amount, which
we take to be 1, at a fixed maturity date T ([8]). Prior to that, the bond makes no
payments. Let’s denote the price of the bond at time t as P (t, T ) with maturity
T . From the definition is clear that P (T, T ) = 1.

P (t, T ) = e−R(t,T )·(T −t),

where R(t, T ) is the continuisily compounding interest rate between times t and
T .

Equivalently we can write

R(t, T ) = − lnP (t, T )
T − t

, t < T.

Instantaneous rate or short rate at time t is called the limit value of R(t, T )
for T → t

rt = lim
T →t+

R(t, T ) = lim
T →t+

⎛⎝ − lnP (t, T )
T − t

⎞⎠ = − ∂

∂T
lnP (t, T ).

One way of how to model the term structure of interest rates is to model
short rate process rt. We assume that this process follows a stochastic differential
equation (SDE). The general form of the model ([9]) is

drt = µ(rt, t)dt + σ(rt, t)dWt.

Here µ(rt, t) is called the drift, σ(rt, t) is diffusion and Wt is a Wiener process
which is defined as ([10]):

1. W0 = 0;

2. W has continuous paths a.s.;

3. ∀0 = t0 < t1 < · · · < tm the increments W (t1) − W (t0), . . . , W (tm) −
W (tm−1) are independent;

4. W (t + u) − W (t) ∼ N(0, u).

In the scope of this thesis, we will use the Cox-Ingersoll-Ross (CIR) for interest
rate modelling. It is given with the following stochastic differential equation
([11]):

drt = α(µ − rt)dt + σ
√

rtdWt,

r(0) = r.
(3.1)

where θ = (α, µ, σ) are model parameters. The drift function µ(rt, θ) = α(µ − rt)
is linear and it has a mean reverting property. It means that interest rate rt

moves in the direction of its mean µ with speed α.
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The advantage of 3.1 is that the interest rate does not become negative. If
rt reaches zero, the term multiplying dWt vanishes and the positive drift term in
3.1 drives the interest rate back into positive territory ([8]).

From [9] and [12] we can write the formulas for conditional expected value
and variance:

E[rt|rs] = µ + e−α(t−s)(rs − µ),

V ar[rt|rs] = rs
σ2

α

(
e−α(t−s) − e−2α(t−s)

)
+ µ

σ2

2α

(
1 − e−α(t−s)

)2
.

We will follow the notation given in [11] and [9]. Given rt at time t the density
of rt+∆t at time t + ∆t is

p(rt+∆t|rt; θ, ∆t) = ce−u−v
(

v

u

)q/2
Iq(2

√
uv), (3.2)

where

c = 2α

σ2(1 − e−α∆t) ,

u = crte−α∆t,

v = crt+∆t,

q = 2αµ

σ2 − 1,

(3.3)

and Iq(2
√

uv) is the modified Bessel function of the first kind of order q and is
defined as ([9]):

Iq(z) =
(

z

2

)q ∞∑
k=0

(
z

2

)2k 1
k!Γ(q + k + 1) ,

and Γ(x) is gamma function.
The distribution function is the non-central χ2(2crt; 2q + 2, 2u) with 2q + 2

degrees of freedom and parameter of noncentrality 2u proportional to the current
spot rate ([12]).

3.2 Calibration
In this part we will apply our model for certain particular data. We want to
estimate parameters (α, µ, σ) of the model CIR 3.1 that it can fit our market
historical data.

We will use the methods of ordinary least squares and maximum likelihood
estimation ([9]). We will denote the market observations as rti

, i = 0, . . . , N(N ∈
N).
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3.2.1 Ordinary Least Squares
We will take the discretization of CIR model 3.1 ([9]):

rti
= rti−1 + α(µ − rti−1)∆ti + σ

√
∆tirti−1ϵti

,

∆ti = ti − ti−1, i = 1, . . . , N.

We assume that the observations are equidistant and equivalently we can
write:

rti
− rti−1 = α(µ − rti−1)∆t + σ

√
∆trti−1ϵti

,

rti
− rti−1√
rti−1

= αµ∆t
√

rti−1

− α
√

rti−1∆t + σ
√

∆tϵti

where ϵt is normally distributed with zero mean and variance ∆t ([11]). The
initial drift estimates can be found by minimizing the residual sum of squares [9],
[11]

(α̂, µ̂) = argmin
α,µ

N∑
i=1

⎛⎝rti
− rti−1√
rti−1

− αµ∆t
√

rti−1

− α
√

rti−1∆t

⎞⎠2

. (3.4)

The explicit formula for α̂ and µ̂ can be found in [11]. Volatility estimate is
the following ([9]):

σ̂ = 1√
∆t

√∑N
i=0

(
rti −rti−1√

rti−1
− α̂µ̂∆t√

rti−1
− α̂

√
rti−1∆t

)2

N
. (3.5)

3.2.2 Maximum Likelihood Estimation
We will define the likelihood function ([11])

L(θ) =
N∏

i=1
p(rti+1 |rti

; θ, ∆t),

where p is density defined in 3.2. The corresponding log-likelihood function is:

l(θ) = lnL(θ) =
N∑

i=1
ln p(rti+1|rti

; θ, ∆t)

After substitution from 3.2 we can derive the log-likelihood function ot the
CIR process:

l(θ) = N lnc +
N∑

i=1

(
− uti

− vti
+ 1

2qln
(

vti

uti

)
+ ln Iq(2

√
uti

vti
)
)

, (3.6)

where
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uti
= crti−1e−α∆t,

vti
= crti

.

We can find maximum likelihood estimates of θ̂ of vector θ = (α, µ, σ) by
maximizing the log-likelihood function 3.6 ([11]):

θ̂ = (α̂, µ̂, σ̂) = argmax
θ

l(θ).

During the estimation we will take into account the positiveness of the pa-
rameters.
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4. Implementation
In this part we will apply in practice our knowledge from previous chapters.

In the scope of this thesis we are using the UL Endowment product. In case
of death or maturity, the insurance company pays the policyholder the agreed
amount (sum assured) plus the value of the fund. As the first step we will
simulate interest rate scenarios that will be used for investment return and for
discounting. Secondly, we will set the assumptions for cash flow calculation.
Using the simulated interest rates, we will calculate the present value of cash
flows for some set of policy contracts (model points) in three ways. First, by
using standard ”policy-by-policy” cash-flow, then using the ”proxy” function,
and finally, using the cluster analysis. In the end we will compare the results and
the final time of calculation.

We will run all our calculations in Wolfram Mathematica software. It is used
in many scientific, mathematical and computing fields.

4.1 Interest rate models
For risk-free rate assumption, we will use the data of 1Y yield curve for goverment
zero-coupon bonds for the Euro area. Data is taken from the 1.1.2016 and till
31.12.2016 and the number observations that we have in our history is 273 ([13]).

50 100 150 200 250

0.5

1.0

1.5

2.0

Figure 4.1: Market data of yield curve for goverment bonds for the Euro area

We will start with OLS method and then we will use the initial estimates for
MLE method. For simplicity, we will have ∆ = 1. By using the formula above
3.4 we will get the estimates
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(α̂OLS, µ̂OLS) = (0.023, 1.237)

And from 3.5 we have:

σ̂OLS = 0.051

Then we will use these esimations as initial in numerical maximization of the
log-likelihood function 3.6 and the we will have the following results:

(α̂MLE, µ̂MLE, σ̂MLE) = (0.022, 1.232, 0.052)

The value of log-likelihood function is l(θ) = 362.3. We can see that in
this case there is no significant differences between the results of OLS and MLE
methods. As final estimators of the parameters we will use the MLE estimators.

For the estimation of parameters with the MLE method, we took into account
the positivenenss of the parameters. From [11] we have the condition that if α, µ, σ
are all positive and holds the inequality 2αµ ≥ σ2 then the CIR process 3.1 is
well-defined and has a steady marginal distribution.

For our parameter estimates the conditions are hold and our model is well-
defined. We will simulate 1000 scenarios with our estimated CIR model 3.1:

drt = 0.022(1.232 − rt)dt + 0.052√
rtdWt

r(0) = 2.143
(4.1)

Figure 4.2 is showing the paths and histogram of our 1000 interest rate sim-
ulations. The histogram correspondes to non-central χ2 distribution.
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Figure 4.2: Histogram of simulations of interest rates with CIR model 4.1

In our example we will use only 20 simulated economic scenarios. The paths
of selected interest rates are shown in the Figure 4.3.
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Figure 4.3: Selected interest rates
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4.2 Assumptions
We assume that we have only two type of contracts. The first type of contract is
with regular (annual) premium payments and the second type are contracts with
single premium payment.

For assumptions of mortality we will use the mortality tables from the Czech
Statistical Office from year 2015. The mortality data can be found at [14]. We
will use the mortality experience coefficients depending on the policy year that is
shown in the Table 4.4. The expected mortality in policy year t is qexp

x = coeft ·qx.
We assume that the new insurers have lower mortality rates than the individuals
who are already insured.

Assumptions of lapses are shown in the Table 4.5. We assume that the prob-
abilities of lapses are higher during the first five policy years.

Further, we will assume that we have some lower (gauranteed) limit of fund
value evaluation in time as technical interest rate. We will assume that the
technical interest rate is equal to 2,1%. All cash flows are valuated to the date
1.1.2017.

All other assumptions that were used in our example calculation can be found
in Table 4.6.

4.3 Results

4.3.1 Analytical function
For better comparison of the results, we will use the datasets with 250, 500 and
1000 model points. Full results of present values of future cash flows can be found
in List of Tables in this thesis. Table 4.7, resp 4.8, resp 4.9 shows the result of
cash flows for a dataset within the size of 250 MPs, resp. 500 MPs, resp. 1000
MPs.

In this section we will submit the comparison of time needed for calculation
by used methods. We can see from the Table 4.1 that analytic function shows
better results in each case of our dataset. It’s seen that in our example analytic
function calculates the present value of cash flow at an average of 10 times faster
than the standard policy-by-policy methods. The average difference between the
values of present value of cash flows is zero. The insurance companies have much
more contracts in their portfolio and with analytic function they can reach the
results within a reasonable time. The time difference in calculation for bigger
companies can be from hours up to many days according to the size of portfolio.

Time (in sec) Time (in sec) Time ratio Mean of
Policy-by-policy Analytic function Pol-by-pol/Analytic rel. errors

MP 250 35.771 3.682 9.716 0.000%
MP 500 81.589 5.398 15.116 0.000%
MP 1000 150.198 8.487 17.699 0.000%

Table 4.1: Time comparison of standard cash flow calculation and analytic func-
tion
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4.3.2 Cluster analysis
The idea of cluster analysis using in acceleration techniques of liability calculation
is to speed up the calculation by decreasing the number of model points. This
procedure will group the model points into clusers. For each cluster we will have
a representer and a scale - count of model points in each cluster. It is possible to
choose one of the model points as a group representer or to make a new model
point as an average within the group. We will use the second option.

Also we will use three type of datasets (250 MPs, 500 MPs and 1000 MPs).
Using the method in Wolfram Mathematica described in 2.3 we will group each
dataset into clusters. Mathematica allows to work with points given in an ar-
bitrary number of dimension [5]. The clusters were grouped according to the
information of the full model point record, i.e. policy type, sex of policyholder,
entry age, inception date, policy period, sum assured, premium and capital value
at valuation date. So, for the first dataset of 250 model points we have 161 clus-
ters, for the dataset of 500 model points we have 307 clusters and for 1000 MPs
dataset we obtained 423 clusters. Each cluster has the model points with the
same policy type (single or regular), the same sex (female or male) and with a
minimum difference in other parameter values, i.e. premium, policy period, etc.

We created new model points as representers of the clusters. The representers
contain the information of average premium, sum assured, capital value at val-
uation date, policy period and entry age of policyholder within the cluster, and
also the number of policies, which the new model point represents.

We calculated the present value of cash flows using the standard ”policy-by-
policy” method, but firstly with the full dataset of model points and then with
the model points grouped in clusters. The full results of cash flow calculations are
summarized in the Tables 4.7, 4.8, 4.9. Table 4.2 contains the time comparison
of results using the standard method and the cluster analysis. We can see that
for our example the time needed to calculate a present value of future cash flows
using the cluster analysis is on average 1.5 times faster than using the standard
method. The result difference is up to 1%.

Time (in sec) Time (in sec) Time ratio Mean of
Policy-by-policy Cluster Analysis Pol-by-pol/Cluster rel. errors

MP 250 35.771 23.634 1.513 0.943%
MP 500 81.589 43.415 1.880 0.404%
MP 1000 150.198 61.934 2.425 0.758%

Table 4.2: Time comparison of standard cash flow calculation for full portfolio
and clustered
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Conclusion
The purpose of this thesis was to present possible ways about acceleration of
valuation of life liabilities. We focused on the UL endowment product. The
policyholder will be paid the benefit increased by the value of fund in case of
death or maturity.

We introduced the main formulas and principles of calculation of liabilities
using the stochastic fair value approach. We also presented the theory for interest
rate modelling. We choose a Cox-Ingersoll-Ross (CIR) model and showed the
methods for parameter estimation.

We ran all our calculations in Wolfram Mathematica software. We started
with the simulation of interest rate scenarios, then we set the assumption for our
sample portfolio. In the end we calculated the present value of portfolio cash
flows using the standard ”policy-by-policy” method, analytic or ”proxy” function
and cluster anlysis that we introduced in this thesis.

We compared the result of our caclulations using three types of portfolio:
first with 250 model points, second with 500 model points and finally with 1000
model points. In calculation within this thesis, the analytical function calculates
on average about 10 times faster compared to standard method with zero rela-
tive errors. Time difference can vary according to the model point samples and
selected assumptions. The method described in this thesis can be used with not
only strictly mathematical software but also in ordinary available softwares such
as MS Excel. The big disadvantage of the method is that initial preparation is
highly demanding.

The method of clustering can decrease the number of model points and so
decreases the final time of calculation. This method in our example gives on
average about 1.5 times faster results than standard ”policy-by-policy” method
and the difference in results is up to 1%. The advantage of such a method is that
it can be used for every data set. The disadvantage of cluster analysis is that it
can produce different cluster results after each usage.

In the case of further analysis and to improve upon these issues, we can use
other interest rate models, e.g. Hull-White, Vasicek interest rate models. The
results can vary. There is the possibility that a problem could arise regarding
calculation with analytic function using more complex benefit payments. For
example, if the profit share is paid once a year or if death benefit is paid as a
maximum of sum assured and fund value (max(SA, CVt)).

In this thesis, in cluster analysis implementation, we used the representer of
grouped model points as an average within the group. For more development of
this work, the usage of weighted average instead of arithmetic average could be
attempted.

There are other possibilities to accelerate the calculations that are not dis-
cussed in this thesis, for example so-called interpolation approach that uses the
grid scenarios. This, however, would be a seperate topic to be researched.
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Policy
year

1 Premium + l0 · P
Comm&Exp – l0 · (E1 + C1)

Sum Assured – l0qx · (SA + CV1)
Surrender – l0pxwthd1 · CV1(1 − fee)

2 Premium + l0px(1 − wthd1) · P
Comm&Exp – l0px(1 − wthd1) · (E2 + C2)

Sum Assured – l0px(1 − wthd1)qx+1 · (SA + CV2)
Surrender – l0px(1 − wthd1)(1 − qx+1)wthd2 · CV2(1 − fee)

... ...

... ...

n Premium + l0
n−2∏
i=0

[
px+i(1 − wthdi+1)

]
· P

Comm&Exp – l0
n−2∏
i=0

[
px+i(1 − wthdi+1)

]
· (En + Cn)

Sum Assured – l0
n−2∏
i=0

[
px+i(1 − wthdi+1)

]
qx+n−1 · (SA + CVn)+

+l0
n−1∏
i=0

[
px+i(1 − wthdi+1)

]
· (SA + CVn)

Surrender – l0
n−2∏
i=0

[
px+i(1 − wthdi+1)

]
(1 − qx+n−1)wthdn×

×CVn(1 − fee)

Table 4.3: Cash flow of Endowment policy during the year
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Policy
year

Policy type
Regular Single

1 0.30 0.30
2 0.40 0.40
3 0.50 0.50
4 0.60 0.60

≥ 5 0.70 0.70

Table 4.4: Mortality experience

Policy
year

Policy type
Regular Single

1 0.20 0.15
2 0.15 0.10
3 0.18 0.13
4 0.15 0.10
5 0.12 0.07

≥ 6 0.08 0.03

Table 4.5: Lapses assumptions

Assumptions Policy type
Regular Single

α% from SA 3.00% 3.00%
α% from Premium 25.0% 3.00%
β% 0.30% 0.30%
γ% 2.00% 0.00%
Initial Commission % Premium 35.0% 35.0%
Renewal Commission % Premium 4.00% 0.00%
Initial Expenses Fix 2000 0.000
Initial Expenses % Premium 4.00% 1.50%
Renewal Expenses Fix 600.0 0.000
Renewal Expenses % Premium 8.00% 0.50%
Surrender period 2years 2years
Surrender fee 5.00% 5.00%
Inflation rate of fix expenses 2.00% 2.00%

Table 4.6: Other assumptions used in our example
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List of Abbreviations

x age of insured person
n policy period in years
t policy year, 0 ≤ t ≤ n

qx probability that a person who is alive at the age of x will die before
the age x + 1

px probability that a person who is alive at the age of x will be alive at
the age of x + 1

tpx probability that a person who is alive at
the age of x will be alive at the age of x + t

ℓt expected number of policies in-force at the end of the year t
dx expected number of deaths during the year t
wt expected number of of lapses during the year t

wthdt probability of lapse at the policy year t
Pt premium income assume to be happen at the beginning of the year t
Ct commissions paid to agents assumed to be paid at the beginnning of

the year t
Et expenses outflow assumed to be paid at the beginning of the policy

year t
SA sum assured paid in case of death or maturity in the policy year t
CVt fund (capital) value at the end of the year t
RPt risk part of the premium at the end of year t
SPt saving part of the premium at the end of year t
rfrt risk free rate related to the year t

it interest rate related to the year t
TIR technical interest rate
fee surrender charge applied when the surrender is paid assumed to be at

the end of the year t
CFt cash flow at the end of the policy year t
FVt Fair Value of liabilities at the end of the policy year t
MP model point
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Attachments
Source code in Mathematica
1. Standard method of cash-flow calculation (Policy-by-policy)

In[1]:= PVofCF[typ_, pocdat_, vstvek_, pohl_, n_, valDate_,
scen_, PC_, Prem_, f0_, Count_] :=
Module[{polYear, age, polYearVect, periodnew,

MortExpVect, q, qexp, LapseVect, invIncome,
discfact, riskpr, AlphaVect, BetaVect,
GammaVect, konst, distrInvIncome, rate,
SurrPaid, CommVector, ExpensesVector,
inforceBoY, inforceEoY, numDeath, numLapses,
numLapsesPom, numMatur, FondBoYReal,
PremiumReal, AlphaReal, BetaReal,
GammaReal, PCReal, riskprReal,
distrInvIncomeReal, FondEoYReal, SurrPaidReal,
DeathPaidReal, MaturPaidReal, CommReal,
ExpensesReal, CFvector, CFdisc, fundBoY,
fundEoY, discrate, PremPom, PremVector},

polYear = QuantityMagnitude[DateDifference[pocdat,
valDate, "Year"]] + 1;

age = vstvek + QuantityMagnitude[DateDifference[pocdat,
valDate, "Year"]];

polYearVect = Table[polYear + i, {i, 0, n - polYear}];
periodnew = n - polYear + 1;
MortExpVect = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] < Length[mortexp[[typ]]],
MortExpVect[[i]] =

mortexp[[typ,polYearVect[[i]]]],
MortExpVect[[i]] = Last[mortexp[[typ]]]]];

If[pohl == 0, q = Table[qmale[[i]], {i, age + 1,
age + periodnew}],

q = Table[qfemale[[i]], {i, age + 1,
age + periodnew}]];

qexp = q*MortExpVect;
LapseVect = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] < Length[lapsevect[[typ]]],
LapseVect[[i]] =

lapsevect[[typ,polYearVect[[i]]]],
LapseVect[[i]] = Last[lapsevect[[typ]]]]];

invIncome = Scenarios[[scen]];
discrate = DiscountScenarios[[scen]];
discfact = Table[Product[1/(1 + discrate[[i]]),

{i, 1, k}], {k, 1, periodnew}];
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PremPom = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[typ == 2,
If[polYearVect[[i]] == 1,

PremPom[[i]] = 1,
PremPom[[i]] = 0],

PremPom[[i]] = 1]];
PremVector = Prem*PremPom;
riskpr = Table[(PC*q[[i]])/(1 + TIR[[typ]]),

{i, 1, Length[q]}];
AlphaVect = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] == 1,
AlphaVect[[i]] = AlphaP[[typ]]*Prem +
AlphaSA[[typ]]*PC, AlphaVect[[i]] = 0]];

BetaVect = ConstantArray[Beta[[typ]]*PC, periodnew];
GammaVect = ConstantArray[Gamma[[typ]]*Prem, periodnew];
konst = PremVector - AlphaVect - BetaVect - GammaVect -

riskpr;
rate = Map[Max[TIR[[typ]], #] &, invIncome -

InvestmentMargin];
fundBoY = Join[{f0}, ConstantArray[{}, periodnew - 1]];
For[i = 1, i <= periodnew - 1, i++,

fundBoY[[i + 1]] = (fundBoY[[i]] + konst[[i]])*
(rate[[i]] + 1)];

fundEoY = Join[Rest[fundBoY], {(fundBoY[[periodnew]] +
konst[[periodnew]])*(rate[[periodnew]] + 1)}];

distrInvIncome = (fundBoY + konst)*Table[rate[[i]],
{i, 1, periodnew}];

SurrPaid = (1 - SurrFee[[typ]])*fundEoY;
CommVector = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] == 1,
CommVector[[i]] = InitCommP[[typ]]*Prem +

InitCommSA[[typ]]*PC,
CommVector[[i]] = RenCommP[[typ]]*Prem +

RenCommSA[[typ]]*PC]];
ExpensesVector = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] == 1,
ExpensesVector[[i]] = InitExpFix[[typ]] +

InitExpP[[typ]]*Prem +
RenExpFix[[typ]]*
(1 + InflRateFixExp)ˆ(i - 1) +
RenExpP[[typ]]*Prem,

ExpensesVector[[i]] = RenExpFix[[typ]]*
(1 + InflRateFixExp)ˆ(i - 1) +
RenExpP[[typ]]*Prem]];
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inforceBoY = Join[{Count}, ConstantArray[{},
periodnew - 1]];

For[i = 1, i <= periodnew - 1, i++,
inforceBoY[[i + 1]] = inforceBoY[[i]]*

(1 - qexp[[i]])*
(1 - If[polYearVect[[i]] > 2,

LapseVect[[i]], 0])];
numDeath = inforceBoY*qexp;
numLapsesPom = (inforceBoY - numDeath)*LapseVect;
numLapses = numLapsesPom;
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] > 2, numLapses[[i]] =
numLapsesPom[[i]], numLapses[[i]] = 0]];

numMatur = ConstantArray[0, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] == n,
numMatur[[i]] = inforceBoY[[i]] -

numDeath[[i]] - numLapses[[i]],
numMatur[[i]] = 0]];

inforceEoY = inforceBoY - numDeath -
numLapses - numMatur;

FondBoYReal = inforceBoY*fundBoY;
PremiumReal = PremVector*inforceBoY;
AlphaReal = AlphaVect*inforceBoY;
BetaReal = BetaVect*inforceBoY;
GammaReal = GammaVect*inforceBoY;
PCReal = PC*inforceBoY;
riskprReal = riskpr*inforceBoY;
distrInvIncomeReal = distrInvIncome*inforceBoY;
FondEoYReal = fundEoY*inforceEoY;
SurrPaidReal = SurrPaid*numLapses;
DeathPaidReal = (fundEoY + PC)*numDeath;
MaturPaidReal = (fundEoY + PC)*numMatur;
CommReal = CommVector*inforceBoY;
ExpensesReal = ExpensesVector*inforceBoY;
CFvector = PremiumReal - SurrPaidReal - DeathPaidReal -

MaturPaidReal - CommReal - ExpensesReal;
CFdisc = CFvector*discfact;
Total[CFdisc]]

In[2]:= cftable = ConstantArray[0, {Length[PolicyType],
Length[Scenarios]}]

In[3]:= cfallscenallMP = ConstantArray[0, Length[Scenarios]]

In[4]:= For[m = 1, m <= Length[PolicyType], m++,
For[s = 1, s <= Length[Scenarios], s++,
cftable[[m,s]] = PVofCF[PolicyType[[m]],
IncDates[[m]], EntryAge[[m]], Sex[[m]],
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PolicyPeriod[[m]], ValuationDate, s,
SumAssured[[m]], Premiums[[m]],
CVatValDate[[m]], CountPol[[m]]]]]

In[5]:= For[w = 1, w <= Length[Scenarios], w++,
cfallscenallMP[[w]] =

Total[Transpose[cftable][[w]]]]

2. Analytic function for cash calculation

In[6]:= fcepro1MP[typ_, pocdat_, vstvek_, pohl_, n_, valDate_,
PC_, Prem_, f0_, Count_] :=
Module[{polYear, age, polYearVect, periodnew,
MortExpVect, q, qexp, LapseVect, PremPom, PremVector,
riskpr, AlphaVect, BetaVect, GammaVect, inforceBoY,
numDeath, numLapsesPom, numLapses, numMatur, inforceEoY,
CommVector, ExpensesVector, PremiumReal, CommReal,
ExpensesReal, NetPremium, PayoutSA, Decrems, PayoutCV,
SavPrem, PayoutSP, NetPremEq, PayoutSAEq, PayoutCVEq,
PayoutSPEq},
polYear = QuantityMagnitude[DateDifference[pocdat,

valDate, "Year"]] + 1;
age = vstvek + QuantityMagnitude[DateDifference[pocdat,

valDate, "Year"]];
polYearVect = Table[polYear + i, {i, 0, n - polYear}];
periodnew = n - polYear + 1;
MortExpVect = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] < Length[mortexp[[typ]]],
MortExpVect[[i]] =

mortexp[[typ,polYearVect[[i]]]],
MortExpVect[[i]] = Last[mortexp[[typ]]]]];

If[pohl == 0, q = Table[qmale[[i]],
{i, age + 1, age + periodnew}],

q = Table[qfemale[[i]],
{i, age + 1, age + periodnew}]];

qexp = q*MortExpVect;
LapseVect = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] < Length[lapsevect[[typ]]],
LapseVect[[i]] =

lapsevect[[typ,polYearVect[[i]]]],
LapseVect[[i]] = Last[lapsevect[[typ]]]]];

PremPom = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[typ == 2, If[polYearVect[[i]] == 1,
PremPom[[i]] = 1, PremPom[[i]] = 0],
PremPom[[i]] = 1]];

PremVector = Prem*PremPom;
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riskpr = Table[(PC*q[[i]])/(1 + TIR[[typ]]),
{i, 1, Length[q]}];

AlphaVect = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] == 1,
AlphaVect[[i]] = AlphaP[[typ]]*Prem +

AlphaSA[[typ]]*PC, AlphaVect[[i]] = 0]];
BetaVect = ConstantArray[Beta[[typ]]*PC, periodnew];
GammaVect = ConstantArray[Gamma[[typ]]*Prem, periodnew];
inforceBoY = Join[{Count}, ConstantArray[{},

periodnew - 1]];
For[i = 1, i <= periodnew - 1, i++,

inforceBoY[[i + 1]] = inforceBoY[[i]]*
(1 - qexp[[i]])*(1 - If[polYearVect[[i]] > 2,

LapseVect[[i]], 0])];
numDeath = inforceBoY*qexp;
numLapsesPom = (inforceBoY - numDeath)*LapseVect;
numLapses = numLapsesPom;
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] > 2,
numLapses[[i]] = numLapsesPom[[i]],
numLapses[[i]] = 0]];

numMatur = ConstantArray[0, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] == n,
numMatur[[i]] = inforceBoY[[i]] -

numDeath[[i]] -
numLapses[[i]],
numMatur[[i]] = 0]];

inforceEoY = inforceBoY - numDeath -
numLapses - numMatur;

CommVector = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] == 1,
CommVector[[i]] = InitCommP[[typ]]*Prem +

InitCommSA[[typ]]*PC,
CommVector[[i]] = RenCommP[[typ]]*Prem +

RenCommSA[[typ]]*PC]];
ExpensesVector = ConstantArray[{}, periodnew];
For[i = 1, i <= periodnew, i++,

If[polYearVect[[i]] == 1,
ExpensesVector[[i]] = InitExpFix[[typ]] +
InitExpP[[typ]]*Prem + RenExpFix[[typ]]*
(1 + InflRateFixExp)ˆ(i - 1) +
RenExpP[[typ]]*Prem,
ExpensesVector[[i]] = RenExpFix[[typ]]*
(1 + InflRateFixExp)ˆ(i - 1) +
RenExpP[[typ]]*Prem]];
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PremiumReal = PremVector*inforceBoY;
CommReal = CommVector*inforceBoY;
ExpensesReal = ExpensesVector*inforceBoY;
NetPremium = PremiumReal - CommReal - ExpensesReal;
NetPremEq = PadRight[NetPremium, 65];
PayoutSA = (numDeath + numMatur)*PC;
PayoutSAEq = PadRight[PayoutSA, 65];
Decrems = numDeath + numMatur +

numLapses*(1 - SurrFee[[typ]]);
PayoutCV = f0*Decrems;
PayoutCVEq = PadRight[PayoutCV, 65];
SavPrem = PremVector - AlphaVect - BetaVect -

GammaVect - riskpr;
PayoutSP = LowerTriangularize[Table[Decrems[[i]]*

SavPrem[[j]], {i, 1, Length[Decrems]},
{j, 1, Length[Decrems]}]];

PayoutSPEq = PadRight[PayoutSP, {65, 65}];
{NetPremEq, PayoutSAEq, PayoutCVEq, PayoutSPEq}]

In[7]:= fceScen[scen_, cc_, dd_] :=
Module[{invIncome, incomerate, discrate, discfact,
Tdiscfact, itriangle, PayoutSPint, sumPayoutSPint},
invIncome = Scenarios[[scen]];
incomerate = 1 + Map[Max[TIR[[1]], #] &,

invIncome - InvestmentMargin];
discrate = DiscountScenarios[[scen]];
discfact = Table[Product[1/(1 + discrate[[i]]),

{i, 1, k}], {k, 1, Length[discrate]}];
Tdiscfact = Table[Product[incomerate[[i]], {i, 1, j}],

{j, 1, Length[discrate]}]*cc;
itriangle =
LowerTriangularize[Table[Product[incomerate[[i]],

{i, l, j}], {j, 1, Length[discrate]},
{l, 1, Length[discrate]}]];

PayoutSPint = itriangle*dd;
sumPayoutSPint = ConstantArray[0, Length[discrate]];
For[w = 1, w <= Length[discrate], w++,

sumPayoutSPint[[w]] = Total[PayoutSPint[[w]]]];
{Tdiscfact, sumPayoutSPint, discfact}]

In[8]:= VektCF := Module[{AOld, BOld, COld, DOld, ANew, APol,
BNew, BPol, CNew, CPol, DNew, DPol, allscen, C2, D2,
discF},
AOld = ConstantArray[0, 65];
BOld = ConstantArray[0, 65];
COld = ConstantArray[0, 65];
DOld = ConstantArray[0, 65];
For[u = 1, u <= Length[PolicyType], u++,
{APol, BPol, CPol, DPol} = fcepro1MP[PolicyType[[u]],
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IncDates[[u]], EntryAge[[u]], Sex[[u]],
PolicyPeriod[[u]], ValuationDate,
SumAssured[[u]], Premiums[[u]],
CVatValDate[[u]], CountPol[[u]]];
ANew = APol + AOld; AOld = ANew;
BNew = BPol + BOld; BOld = BNew;
CNew = CPol + COld; COld = CNew;
DNew = DPol + DOld; DOld = DNew];
allscen = ConstantArray[0, Length[Scenarios]];
For[s = 1, s <= Length[Scenarios], s++,
{C2, D2, discF} = fceScen[s, CNew, DNew];
allscen[[s]] =

Total[(ANew - BNew - C2 - D2)*discF]];
allscen]
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