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Introduction
There is no doubt that a vast amount of real-world problems can be formulated in
terms of an optimization problem. If one wishes to track the optimal behaviour
not only at a singular moment, but through time, the formulation usually changes
to optimal control.

Classical control theory is to date well established and developed. A gentle
introduction can be found in Zabczyk (2009). In real-world applications, usually,
nothing is certain and some applications benefit from accounting for noise which
may be present in the controlled system or in the control.

For a long time, the semimartingale processes were the best models of noise
available. The theory of semimartingales and classical Itô integration is well devel-
oped which makes it approachable in applications. Control theory for stochastic
systems with Brownian perturbations is now mature and many of the results may
be found in Yong & Zhou (1999).

In recent years, semimartingales turned out to be inadequate for description
of natural phenomena that have “long memory”. Long memory has been observed
to occur in telecommunication connections and asset prices, to name a few. Long
memory phenomena cannot be described by the Wiener process, which has inde-
pendent increments which makes it memoryless. On the other hand, the concept
of turbulence in hydrodynamics can be described by self-similar fields with sta-
tionary and dependent increments, e.g. Yaglom (2012). This is where the ideas of
Kolmogorov (1940) and Mandelbrot & Van Ness (1968) come into play. The frac-
tional Brownian motion they described as an example of long-memory processes
can be used to model long memory in many cases. This means that stochastic
control of systems with fractional Brownian perturbations becomes of interest.

For the study of optimal control problems, stochastic calculus and the theory
of stochastic differential equations are instrumental. For the case of fractional
Brownian motion, stochastic integration is developed in Pipiras & Taqqu (2000),
Alòs & Nualart (2003), stochastic differential equations are treated in Guerra &
Nualart (2008) and the comprehensive monograph of Mishura (2008) containing
many topics concerning fractional Brownian motions.

To date, many works in the field of stochastic optimal control were published
where the ordinary Brownian motion was replaced by some kind of fractional
Brownian motion. Solution of a linear quadratic stochastic optimal control prob-
lem with fractional noise with finite horizon in a Hilbert space was treated in
Duncan et al. (2012). Solution of linear quadratic stochastic ergodic optimal con-
trol problem with fractional noise was given in Kleptsyna et al. (2005) for a single
dimension and in Duncan et al. (2015) for problems in Hilbert spaces.

In this thesis, an adaptive ergodic control problem is formulated and solved
that is described by a system of linear stochastic differential equations driven by
multidimensional fractional Brownian motion and an ergodic quadratic cost func-
tional. For the solution to exist it is required that a strongly consistent parameter
estimator be given that is asymptotically independent of the system evolution.
In full generality, this can be only assured if the estimator is independent of the
Brownian motion driving the system.

The problem consists of finding optimal feed-back control, described by a ran-
dom process u = (u(t), t > 0). The state of the system is described by a random
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process X = (X(t), t > 0). The dynamics of the system is modeled by a linear
stochastic differential equation driven by a multidimensional fractional Brownian
motion. For illustration, we can formally write

dX(t) = [A(θ0)X(t) +G(t)u(t)] dt+ σ dB(t), t > 0

X(0) = x0

(1)

for a continuous matrix-valued map A(θ), matrices G, σ of correct dimensions,
a fractional Brownian motion B, a true value of the parameter θ0 and an initial
condition x0. The optimality of behavior is measured by a functional J(x0, u)
which depends on the initial state of the system x0 and the exercised control
u. The values J(x0, u) are real and deterministic and hence provide a kind of
summarization of the effect of u on the system in all possible situation. To solve
the linear quadratic problem, we have to describe how to calculate value of the
control u(t) at every time t > 0 in order to minimize J(y, u). The control may
depend on the random state of the system X, but at every time t > 0, we can
only use values of X(s) for s < t.

In practice, the precise evolution equations (1) are rarely known exactly. This
is why it is most practical to have a result which describes how the optimal control
looks like if we have to estimate the evolution equations form the behavior of the
controlled system, and at the same time we want to control it optimally. In other
words, the control cannot depend on the value of θ0. This is what we strive to
deliver in this thesis.

In a single dimension a solution to the adaptive ergodic control problem with
fractional Brownian noise was worked out in Duncan et al. (2002). In the nar-
rowest sense, this thesis is an attempt to generalize the results of Duncan et al.
(2002) to a multidimensional case. In contrast to Duncan et al. (2002) we did
not, however, specify the parameter estimator precisely which in turn cost us the
additional requirement of its asymptotic negative quadrant dependence.

The thesis is organized as follows. In Section 1 we formulate classical results
needed further in the thesis. Notably, in Section 1.8 construction of stochastic
calculus for the fractional Brownian motion with Hurst parameter H > 1/2 on
the real half line [0,∞) is presented. In contrast to Mishura (2008), we use the
representation of Alòs & Nualart (2003) to establish the representation of the
fractional Brownian motion as a specific integral of an ordinary Brownian motion
on the real positive half-line and not on the whole real line. The Section 1.9 is
rather original as we did not find treatment of stochastic differential equations
driven by fractional Brownian motion which would allow random coefficients. The
only non-trivial proof, however, is that of Theorem 33 which is a small variation
of the proof found in Mishura (2008). In Section 2 the linear quadratic ergodic
control problem with fractional noise is formulated and known results are recalled.
Most notably, in Section 2.4 results concerning solvability and continuity of the
algebraic Riccati equation are formulated and adapted to the main problem of
the thesis. In Section 2.5, solution of the ergodic linear quadratic optimal control
problem with fractional noise as proved by Duncan et al. (2015) is given and
discussed. The main section of the thesis is Section 3. The whole section consists
of original results. Important is the main Theorem 56 along with all the lemmas
of the section. The original propositions in Section 2.6 also proved to be crucial
for our approach to work successfully. Propositions and proofs in Section 2.8 are
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original as well.
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1 Preliminaries
This section is supposed to serve as a collecting place for results established else-
where which we will use in the course of the thesis. Care has been taken so that
all citations are accurate. Proofs are mostly not included. Exceptions to this rule
are definition of stochastic integration with respect to fractional Brownian motion
given in Section 1.8 and the existence theorem for solutions of stochastic differ-
ential equations driven by fractional Brownian motion with random coefficients
given in Theorem 33 in Section 1.9.

1.1 Notation

We work with various normed spaces. To simplify notation we overload the
absolute value symbol and write |x| for the norm of an object x in the norm
of the space into which x belongs. If it is not clear into which normed space x
belongs, we clarify the used norm by subscripting the symbol representing the
normed space as in |x|R. We use an analogous notational convention for scalar
products, i.e. 〈x, y〉 denotes the scalar product of objects x and y.

We use ‖M‖ to denote the operator norm of an operator M . It is defined as

‖M‖ := sup{|Mx|; |x| ≤ 1, x ∈ DomM}.

We use x∗ to denote the adjoint if x is an operator and a transpose if x is
a matrix or vector.

For a space with measure (X,X , µ), a natural number m and a number q ≥ 1
we let Lq(X,Rm) denote the standard Lebesgue space of measurable mappings
f : X → Y satisfying |f |q < ∞ where |f |q :=

(∫
X
|f(x)|qRmµ(dx)

) 1
q . If m = 1 we

write more tersely Lq(X).
The symbol 1A is used to denote the indicator function of a set A. The symbol

rankM is used to denote rank of a matrixM . The symbol B(X) is used to denote
a Borel σ-algebra generated by a metric space X. The symbols σ(A) and σ(Z)
denote the σ-algebra generated by the set system A and the random variable Z
respectively. The symbol R+ denotes the nonnegative real axis, i.e. the interval
[0,∞).

1.2 Convergence of functions

This section includes miscellaneous results about convergence of integrals of func-
tions.

Lemma 1. Fix a ∈ R ∪ {±∞}, K ≥ 0 and f ∈ L1
loc(R+). If limt→∞ f(t) = a

then

lim
t→∞

1

t

∫ t

0

f(s) ds = a.

and

lim
t→∞

∫ t

0

e−K(t−s)f(s) ds =
a

K
.

Proof. We may use the L’Hôpital rule as stated in Theorem 5.13 on p. 109 in
Rudin et al. (1964) for the case “c/∞” and obtain the results.
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1.3 Random variables, processes and measurability

Let Ω be an abstract set of elementary events. Let F be a sigma-algebra on Ω
and let F(t), t ≥ 0 be a filtration of F , meaning that F(t) is σ-algebra and
F(t) ⊆ F for all t ≥ 0 and F(s) ⊆ F(t) for all s < t.

The quadruplet (Ω,F ,F(t)t≥0,P) is called a stochastic basis.

Definition 1. We say, that the stochastic basis (Ω,F ,F(t)t≥0,P) satisfies the
usual conditions if ⋂

t>s

F(t) = F(s), for all s ≥ 0.

and the sigma-algebra of null sets

N := {N ⊆ Ω;∃M ∈ F , N ⊆M,PM = 0}

is contained in F(t) for all t ≥ 0.

The filtered probability space satisfying the usual conditions (Ω,F ,F(t)t≥0,P)
will underlie all our considerations in the main part of the thesis.

1.3.1 Measurability

But first, let us begin with some basic definitions. In line with Kallenberg (2001)
p. 4 we define measurable mappings in the following definition.

Definition 2 (Measurable mappings). Let (X,X ) and (Y,Y) be a spaces with
measure. A mapping f : X → Y is said to be measurable if f−1(A) ∈ X holds
for all A ∈ Y . In cases where the spaces are not clear from context, we say that
f is measurable as a map from (X,X ) to (Y,Y).

Let A be a sub σ-algebra of X . The mapping f is called A-measurable if it
is measurable as a map from (X,A) to (Y,Y).

Let (Z,Z) be a measurable space and g : X → Z be measurable. The mapping
f is said to be g-measurable if it is σ(g)-measurable, where σ(g) is the sigma-field
generated by the mapping g defined as σ(g) := {g−1(A);A ∈ Z).

Definition 3 (Random variable). Let m be a natural number and let (Ω,F ,P)
be a probability space. A measurable mapping X : (Ω,F ,P) → (Rm,B(Rm)) is
called a random variable on (Ω,F ,P) with values in Rm, or simply a random
variable if the underlying probability space and the dimension of the space of
values can be easily inferred from context.

In line with Yong & Zhou (1999), Definition 2.1 on p. 15 the notion of a random
process is given by the following definition.

Definition 4 (Random process). Fix a natural number m and let (Ω,F ,P) be
a probability space. A mapping X : R+ × Ω → Rm such that X(t) := X(t, ·)
is a random variable with values in Rm for all t > 0 is called a random process
on (Ω,F ,P) with values in Rm, or simply a random process if the underlying
probability space and the dimension of the space of values can be easily inferred
from context.

We give a notion of progressive measurability in the following definition in
line with Kallenberg (2001), p. 122.
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Definition 5 (Progressive measurability). Let (Ω,F , (F(t))t>0,P) be a stochastic
basis. A random process (X(t), t ≥ 0) on (Ω,F ,P) is called [F(t)t≥0]-progressive
if the restriction of the process X to [0, t]×Ω, i.e. the process (X(s), 0 ≤ s ≤ t), is
B([0, t])⊗F(t)-measurable for every t ≥ 0. We omit the filtration and talk simply
about progressive processes if the filtration can be easily inferred from context. If
it is necessary to specify the filtration, we will also write just “F(t)-progressive”
instead of quite complex [F(t)t≥0]-progressive if no confusion can arise.

1.3.2 Inequalities

The following Theorem contains the statement of the classical Hölder inequality
which we use heavily. A proof can be found for example in Kallenberg (2001) as
Lemma 1.29 on p. 15.

Theorem 2 (Hölder). Fix a space with measure (Ω,F , µ). For any measurable
functions f and g and numbers p, q ≥ 1 satisfying pq = p+ q we have∫

fg =

(∫
fp
) 1

p
(∫

gq
) 1

q

.

Remark 3. Let n ∈ N, p ≥ 1 and a1, . . . , an ∈ R. In the Hölder inequality
let Ω := {1, . . . , n}, F be the power set of M and µ be the discrete measure
concentrated on the points of Ω satisfying µ({i}) = 1 for all i ∈ M . Then
Theorem 2 asserts that we have

(a1 + . . .+ an)p ≤ np−1(ap1 + . . .+ apn).

Clearly, as n ≥ 1 we have that np ≥ np−1.

1.3.3 Convergence of random variables

The propositions in this section show how a.s. convergence translates into Lp

convergence.
The following definition can be found in Billingsley (2008) on p. 230.

Definition 6. Let (M,M, µ) be a space with measure and let fn : (M,M, µ)→ R
be measurable functions for all n ∈ N. The sequence of functions fn is said to be
uniformly integrable if

lim
c→∞

sup
n∈N

∫
[|fn|≥c]

|fn|dµ = 0.

The following Theorem can be found in Billingsley (2008) as Theorem 16.14
on p. 230.

Theorem 4. Let (M,M, µ) be a space with measure and let fn, f : (M,M, µ)→
R be measurable functions for all n ∈ N. Let the underlying space with measure
be finite, i.e. satisfying µM <∞. Let the sequence fn be uniformly integrable and
such that fn → f as n→∞ µ-a.e. in M . Then f is integrable and∫

M

fndµ→
∫
M

fdµ.

Note that the dominated convergence theorem is a particular case of The-
orem 4 for if there exists g integrable so that |fn| < g then fn is uniformly
integrable and Theorem 4 applies.
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1.4 Linear ordinary differential equations

In this section we present an exposition of basic definitions and theorems in the
domain of linear ordinary differential equations. The preliminaries are mainly
taken from Sideris (2013). We constrain ourselves to equations defined for non-
negative times.

Fix a natural numberm. Let A : R+ → Rm×m and b : R+ → Rm be continuous.
Let x0 ∈ Rm and s ≥ 0. Consider a system of linear differential equations written
in matrix form

ẋ(t) = A(t)x(t) + b(t), for t > s, (2)
x(s) = x0. (3)

The condition (3) is called the initial condition. The system (2) is called homo-
geneous if b(t) = 0 for all t ≥ 0, it is called autonomous if b(t) = b and A(t) = A
are constant with respect to the time variable t.

Next, we define the concept of solution to the ordinary differential equation.
The definition is a standard one, cf. Section 2.1 in Sideris (2013) on p. 5 or
Section 1.1 in Braun & Golubitsky (1983) on p. 1.

Definition 7. Let I ⊆ R+ be an open interval such that s ∈ I. An absolutely
continuous function x : I → Rm is said to be a solution of the ordinary differential
equation (2) with initial condition (3) on the interval I if it is differentiable on
I a.e., satisfies x(s) = x0 and

ẋ(t) = A(t)x(t) + b(t), for a.a. t ∈ I,

where by ẋ(t) we mean the time derivative of the function x at the point t; it can
also be written as d

dt
x(t).

The following theorem can be found as Lemma 3.3 in Sideris (2013) on p. 26.
It is the classical Grönwall lemma.

Theorem 5 (Grönwall). Let ξ, ϕ be nonnegative functions which are continuous
on a open interval (a, b) ⊆ R containing the point s ∈ R and let c ≥ 0 be a real
constant. Let

ϕ(t) ≤ c+

∣∣∣∣∫ t

s

ξ(r)ϕ(r) dr

∣∣∣∣ for all a < t < b.

Then

ϕ(t) ≤ c exp

∣∣∣∣∫ t

s

ξ(r) dr

∣∣∣∣ for all a < t < b.

We will need a generalization of the Grönwall lemma for dealing with convo-
lutional integrals. We present one such generalization next. The proof can be
found in Pachpatte (1998) as Theorem 1.3.2 on p. 13.

Theorem 6. Let ξ, ϕ, c and k be nonnegative functions continuous on a closed
interval [a, b] ⊆ R, and

ϕ(t) ≤ c(t) + k(t)

∫ t

a

ξ(r)ϕ(r) dr for all a ≤ t ≤ b.

Then

ϕ(t) ≤ c(t) + k(t)

∫ t

a

c(s)ξ(s) exp

(∫ t

s

k(r)ξ(r) dr

)
ds for all a ≤ t ≤ b.
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Remark 7. It is well known that every solution extends to the maximal interval,
cf. Theorem 3.4 in Sideris (2013) on p. 27. It is trivial to check that a solution
to the equation (2) with initial condition (3) also solves the integral equation

x(t) = x0 +

∫ t

s

(
A(r)x(r) + b(r)

)
dr for all t ≥ s.

Thus we may write

|x(t)| ≤ |x0|+
∫ t

s

(
‖A(r)‖|x(r)|+ |b(r)|

)
dr for all t ≥ s.

Notice that
∫ t
s
|b(r)|dr is nondecreasing in t. Fix arbitrary T > s. We can

estimate

|x(t)| ≤ cT +

∫ t

s

‖A(r)‖|x(r)| dr for all t ≥ s.

where

cT = |x0|+
∫ T

s

|b(r)| dr.

Using Theorem 5, we obtain

|x(t)| ≤ cT exp

∫ t

s

‖A(r)‖ dr for all T ≥ t ≥ s.

Thanks to the bound we obtained, the maximal interval I satisfies [s, T ] ⊆ I for
all T ≥ 0 and hence [s,∞) ⊆ I. This implies that the equation has a global
solution for every initial condition x0 and s ≥ 0.

The result sketched in Remark 7 together with the local existence of solution
proved in Sideris (2013) is formulated as Corollary 3.3. in Sideris (2013) on p. 40.
We formulate it in the next corollary.

Corollary 8. Fix a natural number m. Let A : R+ → Rm×m and b : R+ → Rm be
continuous. Then for every s ∈ R+ and x0 ∈ Rm, the linear ordinary differential
equation (2) with the initial condition (3) has a unique solution x on R+, i.e. the
solution x is unique and global.

In what follows, we omit specification of the domain of definition of the solu-
tions to a linear ordinary differential equation. Thanks to Corollary 8, we can do
this without any loss of generality, since every solution can be extended to R+

and thus we may implicitly assume that the domain of every solution is R+. It
alleviates us from complexity we would not benefit from.

Definition 8. Fix a natural number m. A two-parameter matrix-valued map
S : R2

+ → Rm×m is called the flow map of the system (2), or simply the flow map
of A, if it satisfies

xr,x0(t) = S(t, r)x0, for all t ≥ r ≥ 0 and all x0 ∈ Rm,

where xr,x0 is a solution to the ordinary differential equation

ẋ(t) = A(t)x(t), t ≥ 0

9



with the initial condition xr,x0(r) = x0. We write S(t) := S(t, 0) and call S(t) the
fundamental matrix solution.

The matrix S(t, s) is called the state transition matrix. The special case S(t, 0)
is called the fundamental matrix solution. In the sequel we will omit the second
parameter and write the fundamental matrix solution as a single parameter map
S(t) := S(t, 0).

The following lemma presents basic properties of the flow map. It is based on
Lemma 3.6. in Sideris (2013) on p. 34 which is formulated for the case of a general
ordinary differential equation which means that everything it asserts holds also
for the flow map of a linear ordinary differential equation with the additional
simplification, that we can ignore the domain of the flow map as it can be always
assumed to equal R+. We present the simplified version of the lemma.

Lemma 9. Let S be a flow map of A. Then

(i) S(t, t0) = S(t, r) ◦ S(r, t0) for all t, r, t0 ≥ 0.

(ii) S(t, t) = Idm×m for all t ≥ 0.

(iii) S(r, t) ◦ S(t, r) = Idm×m for all t, r ≥ 0.

(iv) S(t, t0) is a homeomorphism from Rm to Rm.

Note that property (iii) says that S(t, t0) is invertible and that the inverse can be
calculated as S(t, r)−1 = S(r, t) for all t, r ≥ 0.

It is easy to verify, that

d

dt
S(t, s) = A(t)S(t), t > s. (4)

The following theorem, found in Sideris (2013) as Theorem 4.1 on p 54, is
the most fundamental reason why studying linear ordinary differential equation
is very fruitful. It gives us means of expressing solutions of the inhomogeneous
ordinary differential equation (2) in term of the flow map of A.

Theorem 10 (Variation of constants). Fix m ∈ N. Let A : R+ → Rm×m and
b : R+ → Rm be continuous. Let S be the flow map of A. Fix x0 ∈ Rm and s ≥ 0.
The function

x(t) = S(t, s)x0 +

∫ t

s

S(t, r)b(r) dr for t ≥ s

is the unique global solution of (2) with initial condition (3).

If m = 1, we can readily calculate the flow map of A using a rather simple
formula. This is the subject of the next Proposition 11.

Proposition 11. Let a : R+ → R be continuous. The function

S(t, s) = exp

{∫ t

s

a(r) dr

}
for t ≥ s ≥ 0

is the flow map of a in the sense of Definition 8.
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1.5 Linear ordinary differential equations with constant co-
efficients

If the system (2) is autonomous, i.e. the coefficients A and b are constant with
respect to the time variable t, the unique global solution of the system can be
expressed explicitly in terms of the matrix exponential. Formulating this result
precisely is the topic of this section.

Based on Definition 2.2 in Sideris (2013) on p. 6 we define the matrix expo-
nential. It plays a fundamental role in the explicit formula for the fundamental
matrix solution of a system of ordinary differential equations with constant coef-
ficients.

Definition 9. Fix a natural number m. Given a square matrix A ∈ Rm×m we
define the matrix exponential of A to be the square-matrix-valued map

exp{At} :=
∞∑
k=0

1

k!
Aktk.

The statement and proof of the following proposition can be found in Sideris
(2013) as Lemma 2.1 on p. 6.

Proposition 12. Fix a natural number m. Given square matrices A,B ∈ Rm×m

we have

(i) expAt is defined for all t ∈ R, moreover ‖expAt‖ ≤ exp ‖A‖|t|.

(ii) exp{A+B} = expA expB = expB expA provided A and B commute, i.e.
AB = BA.

(iii) expA(t+ s) = expAt expAs = expAs expAt for all t, s ∈ R.

(iv) expAt is invertible for all t ∈ R, and (expAt)−1 = exp{−At}.

(v) d
dt

expAt = A expAt = (expAt)A.

We assess the measurability properties of the matrix exponential in the fol-
lowing lemma.

Lemma 13. Fix a natural number m. The matrix exponential exp{At} for A ∈
Rm×m and t ∈ R is a [BRm×m ⊗ BR]-measurable function

Proof. The matrix exponential is defined as a series, cf. Definition 9

expA :=
∞∑
k=0

1

k!
Aktk.

The partial sums

sN =
N∑
k=0

1

k!
Aktk.

are measurable since the coordinate functions sijN are polynomials in aij ∈ R and
t ∈ R for i, j = 1, . . . ,m of finite order and hence measurable functions. By
Lemma 1.10 in Kallenberg (2001) on p. 6 the matrix exponential is measurable
since it is a limit of measurable functions sN as N →∞.
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For ordinary differential equations with constant coefficients, the fundamen-
tal matrix solution can be obtained explicitly via the matrix exponential as the
following proposition describes. It follows immediately from Theorem 2.1 on p. 8
in Sideris (2013).

Proposition 14. Fix a natural number m and a matrix A ∈ Rm×m. The fun-
damental solution matrix of A is exp{At} for t ≥ 0. The flow map of A is thus
given by S(t, s) := exp{A(t− s)} for all t ≥ s ≥ 0.

Corollary 15 (Variation of constants for systems with constant coefficients). Fix
a natural number m. Let A ∈ Rm×m and b ∈ Rm be constant. Fix x0 ∈ Rm and
s ≥ 0. The function

x(t) = exp{A(t− s)}x0 +

∫ t

s

exp{A(t− r)} b dr for t ≥ s (5)

is the unique global solution of (2) with initial condition (3).

Proof. By Proposition 14 we know that S(t, r) = exp{A(t− r)} is the flow map
of A. Using Theorem 10 we obtain (5).

Thanks to the variation of constants formula for systems with constant coeffi-
cients and continuity of solutions with respect to initial conditions, the following
important proposition holds which states that the matrix exponential is continu-
ous.

Proposition 16. Fix a natural number m. The matrix exponential

Rm×m × R→ Rm×m : (A, t) 7→ exp{At}

is continuous.

Proof. The proof simply follows from the continuity of solutions of ordinary dif-
ferential equations on initial conditions which is described in Theorem 3.5 on
p. 29 in Sideris (2013).

The following proposition estimates distance between solutions of stable equa-
tions using the distance of their system matrices and hence establishes a continuity
property of uniformly stable matrices.

Proposition 17. Fix a natural number m. Let two stable matrices A,B ∈ Rm×m

be given, i.e. there exist positive constants M1, K1 and M2, K2 so that

‖expAt‖ ≤M1e
−K1t and ‖expBt‖ ≤M2e

−K2t for all t ≥ 0.

If K2 > K1, then

‖exp{At} − exp{Bt}‖ ≤ M1M2

K2 −K1

‖A−B‖
(
e−K1t − e−K2t

)
for all t ≥ 0.

If K := K1 = K2, then

‖exp{At} − exp{Bt}‖ ≤M1M2‖A−B‖te−Kt for all t ≥ 0.
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Proof. The proof follows from continuous dependence of the solution on param-
eter can be found in Sideris (2013) as Theorem 6.2 on p. 92. It can be, however,
also easily directly proved by using variation of constants on the difference of
equations having as system matrices A and B. We give such proof now.

Fix arbitrary x0 ∈ Rm. Let two differential equations be given

ẋ(t) = Ax(t), for all t > 0, x(0) = x0,

ẏ(t) = By(t), for all t > 0, y(0) = x0.
(6)

The equations have unique global solution by Corollary 8. They are given by
Corollary 15 as

x(t) = exp{At}x0, y(t) = exp{Bt}x0 for t ≥ 0. (7)

We can denote z(t) = x(t)− y(t) for t ≥ 0 and write

ż(t) = (A−B)x(t) +Bz(t) for all t > 0, z(0) = 0.

By Corollary 15 the unique solution z can also be expressed as

z(t) =

∫ t

0

exp{B(t− s)}(A−B)x(s) ds, t ≥ 0.

By assumed stability, we may estimate

|z(t)| ≤
∫ t

0

M2e
−K2(t−s)‖A−B‖M1e

−K1s|x0| ds

= |x0|e−K1t

∫ t

0

M2e
−(K2−K1)(t−s)‖A−B‖M1 ds.

Let now K2 > K1. Then obviously

|z(t)| ≤ M1M2

K2 −K1

(e−K1t − e−K2t)‖A−B‖ |x0|, t ≥ 0. (8)

If, on the other hand, K := K1 = K2, we obtain

|z(t)| ≤M1M2e
−K1tt ‖A−B‖ |x0|, t ≥ 0. (9)

We now only have to realize that z(t) = (exp{At}−exp{Bt})x0 since the estimate
(8) does not depend on x0 which was arbitrary. The estimates have the form
|z(t)| = |(exp{At} − exp{Bt})x0| ≤ f(t)|x0| for some function f and by definition
of the operator norm, this is enough for the norm to satisfy

‖exp{At} − exp{Bt}‖ = f(t) for t ≥ 0.
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1.6 Classical control theory

In this section, we introduce some concepts of classical control theory. They are
important for us since utilizing these concepts, conditions on the parameters of
the system (43) can be imposed so that the related optimal control problem has
a solution.

Our main source for this chapter is Zabczyk (2009). Equivalent definitions of
the concepts can, however, be found in many control theory related monographs,
as is for example Lancaster & Rodman (1995).

Fix natural numbers m and k. For matrices a ∈ Rm×m, b ∈ Rm×k, a con-
trol u ∈ L1

loc(R+;Rk) and an initial condition x0 ∈ Rm let the linear ordinary
differential equation

ẋ(t) = ax(t) + bu(t), t > 0

x(0) = x0

(10)

be given. By setting the values of the function u one can excercise control over
the trajectory of the system x. This is why u is called the control.

By Corollary 15 we know that the fundamental matrix solution of a is exp at
for t ≥ 0 and that

x(t) := exp{at}x0 +

∫ t

0

exp{a(t− r)}bu(r) dr for t ≥ 0 (11)

is the unique global solution of the equation (10). For a control u ∈ L1
loc(R+;Rk)

and an initial condition x0 ∈ Rm we denote xx0,u(t) the solution of (10) given by
(11).

1.6.1 Controllability

In line with Zabczyk (2009), section 1.2 on p. 14 ff. we state the following defini-
tions.

Definition 10. We say that a control u ∈ L1
loc(R+;Rk) transfers a state x0 ∈ Rm

to state x1 ∈ Rm in time T > 0 if

xx0,u(T ) = x1.

Definition 11. We say that the pair (a, b) is controllable if for each initial con-
dition x0 ∈ Rm and each terminal condition x1 ∈ Rm there exists a control
u ∈ L1

loc(R+;Rk) and time T > 0 so that u transfers x0 to x1 in time T .

The following theorem along with proof can be found as Theorem 1.2 in
Zabczyk (2009) on p. 17.

We will denote as [a|b] them×mk matrix (b ab a2b . . . am−1b), i.e. the matrix
composed by placing matrices b, ab, . . . , am−1b next to each other.

Theorem 18. The following conditions are equivalent.

(i) The pair (a, b) is controllable.

(ii) rank[a|b] = m.

The condition (ii) is called the Kalman rank condition.
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1.6.2 Observability

Set b = 0 in (10) and augment it with an observation equation. This way, we
obtain a system

ż(t) = az(t), t > 0

z(0) = x0, t ≥ 0

w(t) = cz(t)

(12)

where c ∈ Rm×k is the observation matrix. Let zx0(t) denote its solution for t ≥ 0.

Definition 12. The pair (c, a) is said to be observable if for all nonzero initial
conditions x0 ∈ Rm, x0 6= 0 there exists a time t > 0 such that

w(t) = czx0(t) 6= 0.

The notion of observability we present here is different from Zabczyk (2009).
We say that a pair (a, c) is observable if and only if the pair (c, a) is observable by
the definition in Zabczyk (2009). Our notion complies with the notion Lancaster
& Rodman (1995) use.

For observability a theorem similar to Theorem 18 holds. It can be found in
Zabczyk (2009) as Theorem 1.6 on p. 25.

Theorem 19. The following conditions are equivalent.

(i) The pair (c, a) is observable.

(ii) rank[a∗|c∗] = m.

Remark 20. It follows from Theorems 18 and 19 that the pair (c, a) is observable
if and only if the pair (a∗, c∗) is controllable.

1.6.3 Stability

Let us study the linear system

ż(t) = az(t), t > 0

z(0) = x0

(13)

for t ≥ 0. Let zx0(t) denote its solution for t ≥ 0.

Definition 13. We say that the matrix a is stable if for arbitrary x0 ∈ Rm we
have that zx0(t)→ 0 as t→∞.

The following theorem is of paramount importance. It states that the stabil-
ity of a linear system is equivalent with exponential stability and the speed of
convergence depends only on the real parts of eigenvalues of the matrix a. It is
a combination of Theorem 2.3 and Lemma 2.1 from Zabczyk (2009) on p. 30.

Theorem 21. Let a ∈ Rm×m. Denote ω∗ := sup{<λ;λ is an eigenvalue of a}.
The following conditions are equivalent.

(i) We have zx0(t)→ 0 as t→∞.
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(ii) There exist positive constants M and K, depending only on ω∗, so that
‖exp at‖ ≤Me−Kt for all t ≥ 0.

(iii) We have ω∗ < 0.

We will study systems (13) that depend on a parameter. The interest will
thus lie in the stability properties of system of the form (13) for a := a(θ) with
θ ∈ Θ for some parameter set Θ. The concept of stability can be strengthened
by requiring the stability to be uniform with respect to the parameter as in the
following definition.

Definition 14. Let Θ be an abstract set and a : Θ → Rm×m. We say, that the
matrix a(θ) is stable uniformly with respect to θ ∈ Θ if there exists a negative
constant ω∗ so that <λ ≤ ω∗ for all the eigenvalues λ of all the matrices a(θ),
θ ∈ Θ.

We will abuse notation and say that Λ(t; θ) is uniformly stable with respect to
θ ∈ Θ if a(θ) is uniformly stable with respect to θ ∈ Θ and Λ(t; θ) = exp{a(θ)t},
t ≥ 0, θ ∈ Θ. Similarily for stable matrices and stable matrix exponentials.

Corollary 22. Let Θ be an abstract set and a : Θ→ Rm×m and let a(θ) be stable
uniformly with respect to θ. Then there exist positive constants M and K so that

‖exp{a(θ)t}‖ ≤Me−Kt for all t ≥ 0 and θ ∈ Θ.

Proof. The statement simply follows from Theorem 21.

1.6.4 Stabilizability

Consider again the controlled system (10) which reads

ẋ(t) = ax(t) + bu(t), t > 0

x(0) = x0

(14)

for a ∈ Rm×m and b ∈ Rm×k.

Definition 15. We say that the pair (a, b) is stabilizable if there exists a matrix
κ ∈ Rk×m so that a+ bκ is a stable matrix.

If (a, b) is stabilizable, κ is the stabilizing matrix from Definition 15 and the
control is given in the so called feedback form

u(t) := κx(t), t ≥ 0,

then for all x0 ∈ Rm there exist positive constants M and K so that the solution
of (14) satisfies

|xx0,u(t)| = |xx0,κx(t)| ≤Me−Kt for all t ≥ 0.

Definition 16. The pair (a, b) is called completely stabilizable if for all positive
K there exists a matrix κ ∈ Rk×m and a positive constant M so that the solution
of (14) for arbitrary initial condition x0 ∈ Rm satisfies

|xx0,κx(t)| ≤Me−Kt|x|0 for all t ≥ 0.

16



It is immediately clear that if the pair (a, b) is completely stabilizable, it is
also stabilizable.

The following theorem, can be found in Zabczyk (2009) as Theorem 2.9, con-
nects controllability and stabilizability.

Theorem 23. The following conditions are equivalent.

(i) The pair (a, b) is completely stabilizable.

(ii) The pair (a, b) is controllable.

For stabilizability we would like to have a notion which connects stabilizability
properties with a set of parametrized matrices. This is what we introduce in the
following definition.

Definition 17. Let Θ be an abstract set, a : Θ→ Rm×m and b ∈ Rm×k. We say
that the pairs (a(θ), b) are stabilizable uniformly with respect to θ ∈ Θ if there
exists a matrix κ ∈ Rk×m so that the matrices a(θ)+bκ are stable uniformly with
respect to θ ∈ Θ.

Remark 24. It follows easily from definition that (a, b) is stabilizable if and only
if (a,−b) is.

The following useful proposition can be found as Lemma 4.5.3. in Lancaster
& Rodman (1995) on p. 93. It shows that the stability of a pair is invariant to
certain transformations of the matrices a and b. Remark 24 is a special case of
this fact.

Proposition 25. Let a ∈ Rm×m and b ∈ Rm×k. Then (a, b) is stabilizable if and
only if (a+bκ, bl) is stabilizable for any (k×m)-matrix κ and any (m×p)-matrix
l, for arbitrary p ∈ N, for which the linear subspace generated by bl is equal to
the linear subspace generated by b.

1.6.5 Detectability

Detectability is a dual counterpart of stabilizability. Here, as for observability,
we use the notions from Lancaster & Rodman (1995) rather than the definitions
from Zabczyk (2009). The meaning is analogous, but notation may differ.

Definition 18. We say that the pair (c, a) is detectable if there exists a matrix
l ∈ Rm×k so that the matrix a+ lc is stable.

By Theorem 23 it follows that controllability implies stabilizability. In a sim-
ilar way, observability implies detectability: Let the pair (c, a) be observable.
Then (a∗, c∗) is controllable by definition. Hence by Theorem 23 there exists
a matrix κ such that a∗ + c∗κ is stable. Therefore the matrix a + κ∗c is stable.
We see that it is enough to set l = k∗ and we obtain detectability of the pair
(c, a).

We will need notion of uniform detectability, analogous to uniform stabiliz-
ability. We define this notion next.
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Definition 19. Let Θ be an abstract set, a : Θ→ Rm×m and c ∈ Rk×m. We say
that the pairs (c, a(θ)) are detectable uniformly with respect to θ ∈ Θ if there
exists a matrix l ∈ Rm×k so that the matrices a(θ) + lc are stable uniformly with
respect to θ ∈ Θ.

Remark 26. Note that it follows trivially from definition that the pair (a, c) is
detectable if and only if the pair (c∗, a∗) is stabilizable.

1.7 Fractional Brownian motion

Fix H ∈ (0, 1) and a stochastic basis (Ω,F ,F(t)t≥0,P). A Gaussian stochastic
process B = (B(t), t ≥ 0) on (Ω,F ,F(t)t≥0,P) with B(0) = 0, zero mean and
covariance function given by

R(s, t) := E[B(s)B(t)] =
1

2

[
s2H + t2H − |s− t|2H

]
for s, t > 0

is called a fractional Brownian motion with Hurst parameterH. It was introduced
by Kolmogorov (1940) and later studied by Mandelbrot & Van Ness (1968) as
Guerra & Nualart (2008) note. For a review of some applications the reader may
be interested in peeking into Decreusefond & Üstünel (1998).

Calculate E|B(t)−B(s)|2 = |t− s|2H for all t, s ≥ 0. By the equivalency of
the moments of Gaussian distribution, cf. Kallenberg (2001), and the Kolmogorov
continuity criterion, to be found e.g. as Theorem 3.23 in Kallenberg (2001) on
p. 57, we may deduce that B has a version with all trajectories continuous. We
will always assume, without loss of generality, that we work with the version of
B which has all trajectories continuous.

Definition 20. Fix a natural number n and a Hurst parameter 0 ≤ H ≤ 1. Let
B1, . . . , Bn be independent fractional Brownian motions with a common Hurst
parameter H. The random process B = (B1, . . . , Bn)∗ is called an n-dimensional
fractional Brownian motion with Hurst parameter H.

1.8 Stochastic integrals of deterministic functions

The integration with respect to fractional Brownian motion poses a major chal-
lenge. It is mainly because of the peculiar nature of fractional Brownian motion
which has even more unpleasant properties than the ordinary Brownian motion.
On one hand, much like for an ordinary Brownian motion, the paths of frac-
tional Brownian motion have infinite variation a.s., hence standard methods of
Lebesgue-Stieltjes integration cannot be used. What is more, fractional Brow-
nian motion is not a semi-martingale either, hence one cannot use the classical
Itô’s stochastic calculus. Numerous attempts to develop some kind of stochastic
integration for the case of fractional Brownian motion have been investigated and
many of those are summarized in the work of Pipiras & Taqqu (2000).

In this section, we present a construction that enables us to integrate with
respect to fractional Brownian motion with Hurst parameter H > 1/2 certain
class of deterministic functions, i.e. we will define the meaning of the symbol∫
fdB for functions f from this class. We proceed in accord with Pipiras & Taqqu

(2000). The resulting construction agrees with the extension for integration of
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stochastic processes which can be found in Alòs & Nualart (2003). An agreeing
construction can also be found in Mémin et al. (2001) or Mishura (2008).

In what follows, we fix H > 1/2. Let B := (B(t), t ≥ 0) be a fractional Brow-
nian motion with Hurst parameter H. Require also that B be F(t)-progressive.

As Pipiras & Taqqu (2000) note on p. 2: In applications, one likes to view the
integral

∫
fdB to be approximated by

n−1∑
i=0

f(ti)[B(ti+1)−B(ti)], (15)

where 0 = t0 < . . . < tn <∞.
To construct a stochastic integral of a deterministic integrand, we may proceed

along the requirements put forward by (15). For simple functions, we can define
the integral so as to agree with (15) and then extend it to a broad class of functions
which include L2(R+).

A simple function is a function of the form

f(t) =
n−1∑
i=0

ai1[ti,ti+1)(t), (16)

where n ∈ N, 0 = t0 < t1 < . . . < tn <∞, ai ∈ R. Let E denote the linear space
of simple functions. For a simple function f ∈ E of the form (16), we define the
stochastic integral with respect to B to be the random variable I(f) given by

I(f) :=
n−1∑
i=0

ai[B(ti+1)−B(ti)].

Let I := {I(f); f ∈ E}, i.e. I denotes the linear space of Gaussian variables of
the special form I(f) for some simple function f . Let B denote the closure of I
in L2(Ω), i.e.

B := {X : (Ω,F ,P)→ R; I(fn)→ X in L2(Ω) for some sequence fn in E}

The map I maps the space of simple functions E into the linear space of Gaussian
variables I which is a subspace of B which in turn is a subspace of a complete
space L2(Ω).

The construction of the integral of deterministic functions we employ is based
on the following proposition of Pipiras & Taqqu (2000, Proposition 2.1, p. 5).
The original formulation is made for functions on the real line. Modifying the
proof to functions on the positive real half-line is trivial which is why we omit it.

Proposition 27. Let C be a set of deterministic functions on the R+ such that

(i) C is an inner product space with an inner product 〈f, g〉C, for f, g ∈ C;

(ii) E ⊆ C and 〈f, g〉C = E I(f)I(g) for f, g ∈ E;

(iii) E is dense in C.

Then
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(a) there is an isometry between the spaces C and a linear subspace of B;

(b) the spaces C and B are isometric if and only if C is a complete space.

Let us present a classical example of the use of the proposition. In the standard
Brownian motion case, we can take for C the space L2(R+). The space L2(R+) is
known to be complete. Hence Proposition 27 implies that in the case H = 1/2,
the space B is isometric to L2(R+).

The case H > 1/2 is by far not that simple. As Pipiras & Taqqu (2000) note
on p. 6

Observe that the isometry map I might depend on the inner product
space C. In other words, if C1 and C2 are two different classes of
functions that satisfy Proposition 27, then, a priori, it is not clear,
whether the corresponding isometry maps, say I1 and I2 are equal on
C1 ∩ C2 (A necessary and sufficient condition for this fact is 〈f, g〉C1 =
〈f, g〉C2 for all f, g in C1 ∩ C2.)

We choose the space C and the scalar product so as to agree with standard
literature. As we already noted, although the construction is not identical in all
the steps, the construction presented here agrees with Alòs & Nualart (2003),
Mémin et al. (2001) or Mishura (2008). This is because all the constructions use
identical scalar product on step functions given by (17) and the space C is the
largest space of deterministic real functions which fits into the closure of E in this
scalar product. Hence in both constructions both sets C and the scalar products
agree which is bound to lead to identical results eventually.

Let αH = H(2H − 1). We have that

R(s, t) = αH

∫ t

0

∫ s

0

|u− v|2H−2 du dv for all s, t > 0

On the space of simple functions we define a scalar product

〈f, g〉H = E I(f)I(g) for f, g ∈ E . (17)

We can require, without the loss of generality, by adding additional cutpoints ti
if necessary, that

f(t) =
n−1∑
i=0

ai1[ti,ti+1)(t), g(t) =
n−1∑
i=0

bi1[ti,ti+1)(t) for all t ≥ 0,

where n ∈ N, 0 = t0 < t1 < . . . < tn < ∞, ai, bi ∈ R, i = 0, . . . , n − 1. We can
write

E I(f)I(g) =
n−1∑
i=0

n−1∑
j=0

aibj[R(ti+1, tj+1)−R(ti, tj+1)−R(ti+1, tj) +R(ti, tj)]

=

∫ ∞
0

∫ ∞
0

f(u)g(v)R(du, dv) = αH

∫ ∞
0

∫ ∞
0

f(u)g(v)|u− v|2H−2 du dv. (18)

The reader may want to note that in (18) the integrals are just another way of
expressing a linear combination of the terms R(u, v) for various u and v.
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For a function ϕ : R+ → R define

|ϕ|2|H| := αH

∫ ∞
0

∫ ∞
0

|ϕ(r)||ϕ(s)||r − s|2H−2 dr ds.

The last term of (18) suggests that we may be able to integrate with respect to
B the functions from the space |H| := {ϕ : R+ → R; |ϕ||H| <∞}.

It is an immediate consequence of p. 17 in Pipiras & Taqqu (2000), that the
space |H| is a Banach space with the norm |·||H|, in which the set of simple
functions E is dense, by Theorem 3.2 ibid. on p. 9.

The space |H| is, however, not complete with respect to the norm |·|H :=√
〈·, ·〉H, ibid. From Proposition 27 it follows that there exists an isometry from

the space |H| into a proper subspace of B.
Let H denote the completion of the space of simple functions E in the scalar

product 〈·, ·〉H. From Proposition 27 it follows that H is isometric to B itself.

Definition 21 (Stochastic integral). Let ϕ ∈ H. Let I : H → B be the isometry
warranted by Proposition 27 using the scalar product (17). A stochastic integral
of ϕ with respect to the fractional Brownian motion is defined to be the random
variable I(ϕ) and is denoted as

∫
ϕdB. We introduce the standard notation∫ t

s
ϕ(s)dB(s) =

∫
1[s,t]ϕdB for 0 ≤ s ≤ t ≤ ∞.

It is trivial to see that |H| ⊆ H. Hence the isometry I also acts on the space
of functions |H|.

Proposition 28. Let ϕ, ψ ∈ H. Then

E
(∫

ϕdB

)(∫
ψ dB

)
= 〈ϕ, ψ〉H.

Proof. The proof follows from the fact that the stochastic integral is induced by
the isometry of H and B.

Remark 29. From the proof of Theorem 1.2 in Mémin et al. (2001) on p. 201, or
also Mishura (2008), Lemma 1.6.6, p. 20, we have that for every function ϕ ∈ |H|
there exists a constant bH such that the estimate

|ϕ||H| ≤ bH |ϕ| 1
H

holds. This estimate implies the inclusion of L1/H ⊆ |H|. By trivial proper-
ties of the Lebesgue integral, it also holds |ϕ|H ≤ |ϕ||H| Hence we can write by
Proposition 28

E
(∫ ∞

0

ϕdB

)2

= |ϕ|2H ≤ b2
H |ϕ|

2
1
H

for some positive constant bH independent of ϕ for any function ϕ ∈ |H|.

Let us now analyze the inner product 〈·, ·〉H in greater detail. Once done, we
will be able to calculate 〈·, ·〉H for all functions in |H| which will prove useful. We
proceed in accord with p. 3 ff. of Alòs & Nualart (2003), we only have T = ∞
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and replace E with |H|. This makes no harm since all the integrals still converge.
First, we have

|r − u|2H−2 =
(ru)H−

1
2

β
(
2− 2H,H − 1

2

)∫ u

0

v1−2H(r − v)H−
3
2 (u− v)H−

3
2 dv, for all r, u ≥ 0. (19)

where β denotes the beta function. Suppose r > u > 0. The formula (19) can be
obtained by the change of variables z = (r − v)/(u− v) and x = r/uz we obtain∫ u

0

v1−2H(r − v)H−
3
2 (u− v)H−

3
2dv = (r − v)2H−2

∫ ∞
r
u

(zu− r)1−2HzH−
3
2dz

= (ru)
1
2
−H(r − u)2H−2

∫ 1

0

(1− x)1−2HxH−
3
2dx

= β

(
2− 2H,H − 1

2

)
(ru)

1
2
−H(r − u)2H−2.

Consider the square integrable kernel

KH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2 du, where t > s ≥ 0, and

cH =

[
H(2H − 1)

β
(
2− 2H,H − 1

2

)] 1
2

.

Notice that

K̇H(t, s) = cH

(
t

s

)H− 1
2

(t− s)H−
3
2 ≥ 0 for all t > s ≥ 0. (20)

where K̇H(r, s) is the partial derivative of KH(r, s) in the first variable r, or put
differently K̇H(r, s) := ∂

∂r
KH(r, s). We may verify that for all t, s ≥ 0∫ t∧s

0

KH(t, u)KH(s, u)du

= c2
H

∫ t∧s

0

(∫ t

u

(y − u)H−
3
2yH−

1
2dy

)(∫ s

u

(z − u)H−
3
2 zH−

1
2dz

)
u1−2Hdu

= c2
Hβ

(
2− 2H,H − 1

2

)∫ t

0

∫ s

0

|y − z|2H−2dzdy = R(t, s). (21)

From (21) we see that R(t, s) is nonnegative definite. Consider now, the linear
operator K∗H mapping E into L2(R+) defined as

K∗Hf(s) :=

∫ ∞
s

f(r)K̇H(r, s) dr, s ≥ 0, (22)
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for a simple function f ∈ E . Using (21) and (18) we may write for simple functions
f and g from E

〈K∗Hf,K∗Hg〉L2(R+)

=

∫ ∞
0

(∫ ∞
s

f(u)K̇H(u, s) du

)(∫ ∞
s

g(v)K̇H(v, s) dv

)
ds

=

∫ ∞
0

∫ ∞
0

(∫ u∧v

0

K̇H(u, s)K̇H(v, s) ds

)
f(u)g(v) du dv

=

∫ ∞
0

∫ ∞
0

∂2

∂u∂v
R(u, v)f(u)g(v) du dv = αH

∫ ∞
0

∫ ∞
0

|u− v|2H−2f(u)g(v) du dv

= 〈f, g〉H. (23)

From the isometry relation (23) and the fact that E is dense inH it is apparent
that the operator K∗H can be extended from E to H, cf. Alòs & Nualart (2003);
in the rest of the paragraph we complete their terse note on the bottom of p. 8.
Let fn ∈ E be simple so that they converge to ϕ ∈ H in |·|H. By the isometry
relation and completeness of L2(R+) there is an element g ∈ L2(R+) such that
K∗Hfn → g in L2(R+). We define K∗Hϕ := g. Note that this way, K∗Hϕ is defined
only a.e. on R+ with respect to the Lebesgue measure. It is also clear that
{f : R+ → R, measurable; K∗Hf ∈ L2(R+)} ⊆ H and that the set {K∗Hf ; f ∈ H}
is dense in L2(R+).

Let ϕ ∈ |H| and define

K̃∗Hϕ(s) :=

∫ ∞
s

ϕ(r)K̇H(r, s) dr, s ≥ 0.

Then the exchange of the order of integration in (23) is possible by the Fubini
theorem and the fact that ϕ ∈ |H|, and we obtain by the exactly same calculations
as in (23) that the representation

〈K̃∗Hϕ, K̃∗Hξ〉L2(R+) = 〈ϕ, ξ〉H (24)

holds for all ϕ, ξ ∈ |H|. Since |K̃∗Hϕ|
2

L2(R+) = |ϕ|2H ≤ |ϕ|
2
|H| <∞ we also have that

K̃∗Hϕ(s) < ∞ for a.a. s ∈ R+. Let now fn ∈ E be simple functions converging
to ϕ ∈ |H| in |·|H. Then K∗Hfn = K̃∗Hfn for all n ∈ N and hence by (24) we can
write∣∣∣K∗Hϕ− K̃∗Hϕ∣∣∣

L2(R+)

≤ |K∗Hϕ−K∗Hfn|L2(R+) +
∣∣∣K∗Hfn − K̃∗Hfn∣∣∣

L2(R+)
+
∣∣∣K̃∗Hfn − K̃∗Hϕ∣∣∣

L2(R+)

≤ 2|fn − ϕ|H → 0 as n→∞ (25)

and hence

K∗Hϕ(t) = K̃∗Hϕ(t) for a.a. t ≥ 0 in the Lebesgue sense. (26)

The operator K∗H also gives an important representation of B in terms of
a particular Wiener process. The process

N(t) :=

∫ ∞
0

(K∗H)−1(1[0,t]) dB (27)
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is a Wiener process, cf. Alòs & Nualart (2003), (8) on p. 5. Trivially N(0) =
B(0) = 0. The covariance function can be obtained by direct calculation

EN(t)N(s) = E
∫ ∞

0

(K∗H)−1(1[0,t]) dB

∫ ∞
0

(K∗H)−1(1[0,s]) dB

=
〈
(K∗H)−1(1[0,t]), (K

∗
H)−1(1[0,s])

〉
H =

〈
1[0,t],1[0,s]

〉
L2(R+)

= t ∧ s for all t, s ≥ 0. (28)

We will call this Wiener process the Wiener process associated with the fractional
Brownian motion B. What is more, B has an integral representation in terms of
N

B(t) =

∫ t

0

KH(t, s) dN(s), t ≥ 0 a.s. (29)

This is easily obtained for we have K∗H1[0,t](s) = KH(t, s) for all t ≥ s ≥ 0. From
(23) and comments following we obtain that for every function f ∈ H we have∫ ∞

0

f(t) dB(t) =

∫ ∞
0

K∗Hf(t) dN(t) a.s. (30)

From (26) for every f ∈ |H| we have∫ ∞
0

f(t) dB(t) =

∫ ∞
0

∫ ∞
t

f(r)K̇H(r, t) dr dN(t) a.s. (31)

Working in multiple dimensions, we will use the following definition.

Definition 22. Let B be an n-dimensional fractional Brownian motion with
Hurst parameter H > 1/2 in the sense of Definition 20 and M : R+ → Rm×n be
a deterministic matrix-valued map so that all its components Mij are in H. We
define

∫ ∞
0

M(t) dB(t) :=

x1
...
xn

 , where xi :=
n∑
k=1

∫ ∞
0

Mik(t) dBk(t), i = 1, . . . ,m.

The following theorem is used in the proof of the variations of constants
formula for linear stochastic differential equations. It can be found in Mishura
(2008) as Theorem 1.13.1 on p. 57. We present a slight generalization for the case
of a matrix valued map and an n-dimensional fractional Brownian motion. It can
be readily proved using the one-dimensional theorem by rewriting the matrix
products as sums and realizing that aij = |e∗i aej| ≤ ‖a‖ for all i, j = 1, . . . ,m if
a ∈ Rm×m, for a fixed natural number m.

Theorem 30 (Stochastic Fubini’s theorem). Fix T > 0, natural numbers n and
m, and an n-dimensional fractional Brownian motion B with Hurst parameter
H > 1/2. Let f : [0, T ]2 → Rm×n be a measurable function such that∫ T

0

∫ T

0

∫ T

0

‖f(t, u)‖‖f(t, s)‖|s− u|2H−1 ds du dt <∞
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and ∫ T

0

∫ T

0

∫ T

0

∫ T

0

‖f(t1, u)‖‖f(t2, s)‖|s− u|2H−1 ds du dt1dt2 <∞.

Then the following integrals exist and we have∫ T

0

∫ T

0

f(t, s) dB(s) dt =

∫ T

0

∫ T

0

f(t, s) dt dB(s) a.s.

Remark 31. At the end of the chapter, let us note that from the representation
(30) we obtain that E

∫
ϕdB = 0 for all ϕ ∈ H and that the stochastic integral∫

· dB is linear by the standard properties of the Wiener integral.

1.9 Stochastic differential equations with fractional noise

Fix natural numbers m and n and a stochastic basis (Ω,F ,F(t)t≥0,P) satisfying
the usual conditions. Let A be an F(t)-progressive continuous process with values
in Rm×m, b be an F(t)-progressive process with trajectories in L1

loc(R+;Rm) a.s.
and σ ∈ Rm×n be a constant deterministic matrix. Let B be an n-dimensional
fractional Brownian motion with Hurst parameter H > 1/2 adapted to the fil-
tration F(t)t≥0 and X0 an F(0)-measurable random variable with values Rm

representing the initial condition. Consider the equation

dX(t) = [A(t)X(t) + b(t)] dt+ σ dB(t), t > 0, (32)
X(0) = X0. (33)

Definition 23. Let (X(t), t ≥ 0) be an F(t)-progressive stochastic process
defined on the stochastic basis (Ω,F ,F(t)t>0,P) and let I ⊆ R+ be an open
interval. The process (X(t), t ∈ I) is said to be a strong solution of the linear
stochastic differential equation driven by fraction Brownian motion (32) with
initial condition (33) on interval I if∫ t

0

|A(s)X(s)| ds <∞ for all t ∈ I a.s. (34)

and it verifies

X(t) = X0 +

∫ t

0

[A(s)X(s) + b(s)] ds+

∫ t

0

σ dB(s) for all t ∈ I a.s. (35)

We will omit the word strong in the sequel and only call X the solution of (32),
(33) as we will not deal with other notions of solutions in this thesis. We will omit
the interval I if talking about solutions when the interval is clear from context
or is the whole R+.

If the solution to the linear equation exists then it is continuous and unique.
This is what we prove next.

Theorem 32. Let a solution of the equation (32) with the initial condition (33)
exist. Then it is continuous and unique in the following sense. Let X and Y
be solutions on some intervals I1 and I2 of (32) with the initial condition (33).
Then they are continuous and P{X(t) = Y (t), for all t ∈ I1 ∩ I2} = 1.
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Proof. Since X is a solution by Definition 23 it satisfies

X(t) = X0 +

∫ t

0

[A(s)X(s) + b(s)] ds+ σB(t) for all t ∈ I P-a.s.

Recall that all trajectories of B(t) are continuous by definition. The integral∫ t
0
A(s)X(s) + b(s) ds is defined pathwise in the Lebesgue sense and its value is

finite on compact intervals by definition of the solution and assumptions on b and
A. Hence it is continuous in t a.s. This makes all trajectories of the solution X
continuous.

For all ω ∈ Ω′ we have

|X(t, ω)− Y (t, ω)| ≤
∫ t

0

‖A(s, ω)‖|X(s, ω)− Y (s, ω)| ds

using Grönwalls lemma in Theorem 5, we obtain X(t, ω) = Y (t, ω) for all t ∈ I ′
for all ω ∈ Ω′ for all I ′ ⊆ I1 ∩ I2 compact intervals containing 0.

Our equation (32) is rather simple. The existence and uniqueness of solutions
would be warranted by Theorem 1.12.1 in Mishura (2008) on p. 55 had we not have
a random coefficient matrix A. In the next theorem, we prove the existence of
solutions of stochastic differential equation (32) for the case of random coefficients
if the random matrix A(t) is bounded uniformly a.s. for all t ≥ 0. The proof is
basically the one in Mishura (2008) referenced above.

Theorem 33. Fix p ≥ 1. Let Cp := esssupω∈Ω sups≥0 ‖A(s, ω)‖p. Require Cp <
∞, E|X0|p < ∞ and E

∫ T
0
|b(t)|pdt < ∞ for all T ≥ 0. Then the equation (32)

with the initial condition (33) has a unique global solution.
Moreover, for every T > 0 we have for all 0 ≤ t ≤ T .

E sup
0≤s≤t

|X(s)|p ≤ 4p−1e4p−1Cp T p−1 E
(
|X0|p +

∣∣∣∣∫ T

0

b(s) ds

∣∣∣∣p + σ sup
0≤s≤T

|B(s)|p
)
.

Proof. Choose T < C−1
p . Define the successive approximation operator

LX(t) := X0 +

∫ t

0

A(s)X(s) + b(s) ds+ σB(t) for all 0 ≤ t ≤ T.

We will show that the operator is a contraction in the space of random processes

Sp :=

{
(ξ(t), T ≥ t ≥ 0); sup

0≤t≤1
E|ξ(t)|p <∞

}
.

with the norm
|ξ|Sp := sup

0≤t≤1
(E|ξ(t)|p)

1
p .

Calculate using Remark 3 and the Hölder inequality

E|LX(t)|p ≤ 3p
[
E|X0|p + E|σB(t)|p + 2ptp−1Cp(∫ t

0

E|X(s)|p ds+

∫ t

0

E|b(s)|p ds
)]

for all 0 ≤ t ≤ T.
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This means that LX ∈ Sp if X ∈ Sp. Further, for 0 ≤ t ≤ T we have

E|LX(t)− LY (t)|p ≤ E
(∫ t

0

‖A(s)‖|X(s)− Y (s)| ds
)p

≤ Cp E
(∫ t

0

|X(s)− Y (s)| ds
)p
≤ tp−1Cp

∫ t

0

E|X(s)− Y (s)|p ds.

Hence
|LX − LY |Sp ≤ T p−1Cp |X − Y |Sp .

Let us now prove that the space Sp is complete. Let Xn ∈ Sp, n ∈ N be a
Cauchy sequence in Sp. Then Xn(t) is Cauchy in Lp(Ω) for every 0 ≤ t ≤ T .
Since it is well known that the space Lp(Ω) is complete, for the case of p = 2
cf. Theorem 11.42 in Rudin et al. (1964), p. 329, we can choose X(t) for every
0 ≤ t ≤ T to be the limit of Xn(t) in Lp(Ω). Since the convergence was uniform
in t we have that Xn → X in Sp and we obtained that the space Sp is complete.

Observe that T p−1Cp(T ) < 1 by construction. By the fixed-point theorem can
be found for example in Rudin et al. (1964) as Theorem 9.23 on p. 220, there
exists a unique process X ∈ Sp so that LX(t) = X(t) for all 0 ≤ t ≤ 1 which
means it solves the equation (32) on [0, 1]. By construction it also holds X(0) = x
and hence the initial condition (33) is also met by X.

The solution can be extended to the whole real line by repeating the construc-
tion for every k ∈ N using the extending equation

X(t) = X(kT ) +

∫ t

kT

A(s)X(s) + b(s) ds+ σ[B(t)−B(kT )]

for kT ≤ t ≤ (k + 1)T .
We proved that there is a global solution X of the equation (32). By The-

orem 32, the solution X is continuous. Denote X?(t) := sup0≤s≤tX(s) for all
t ≥ 0. Fix T ≥ 0. Almost every trajectory of the solution is continuous, hence
X?(t) is continuous a.s. and satisfies for all 0 ≤ t ≤ T

|X?(t)|p ≤ 4p−1

(
|X0|p +

∣∣∣∣∫ T

0

b(s) ds

∣∣∣∣p
+ σ sup

0≤s≤T
|B(s)|p + Cp T

p−1

∫ t

0

|X?(s)|p ds
)
.

Using the Grönwall lemma in Theorem 5 we obtain for all 0 ≤ t ≤ T

|X?(t)|p ≤ 4p−1e4p−1Cp T p−1

(
|X0|p +

∣∣∣∣∫ T

0

b(s) ds

∣∣∣∣p + σ sup
0≤s≤T

|B(s)|p
)
.

Uniqueness follows from Theorem 32. This concludes the proof.

Proposition 34. Let a solution (X(t), t ≥ 0) of the equation (32) with the
initial condition (33) exist. Then the function µ(t) := EX(t) for t ≥ 0 is finite
for all t ≥ 0. Moreover, if A is deterministic, µ satisfies an ordinary differential
equation

µ̇(t) = A(t)µ(t) + Eb(t) for t ≥ 0
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with the initial condition
µ(0) = EX0.

and µ is thus continuous.

Proof. The finiteness follows from Theorem 33.
Let A be deterministic. Taking expectation of both sides of the equation (35),

realizing that EB(t) = 0 for all t ≥ 0 and that thanks to the assumptions put on
the solution in Definition 23 in (34) we can use the Fubini theorem and exchange
integral and expectation we obtain

µ(t) = EX0 +

∫ t

0

A(s)µ(s) + Eb(s) ds t ≥ 0

which once differentiated concludes the proof.

The following proposition provides means for writing the solution of the equa-
tion (32) with initial condition (33) in a rather explicit form. If the fundamental
matrix solution is known, the form becomes an explicit stochastic integral with
respect to the fractional Brownian motion B. The formula has the form of a “vari-
ation of constants” formula which holds for linear ordinary differential equations.
We constrain ourselves to deterministic matrices A. This is mainly because of
the fact that we did not develop theory of integration of stochastic processes with
respect to fractional Brownian motion.

Proposition 35. Let A be deterministic. Let S be the flow map of A in the spirit
of Definition 8. Then the process (X(t), t ≥ 0) defined as

X(t) = S(t, 0)x+

∫ t

0

S(t, r)b(r) dr +

∫ t

0

S(t, r)σ dB(r), t ≥ 0 (36)

is the solution of the linear stochastic differential equation (32) with the initial
condition (33) on R+.

Proof. We take the solution defined in (36) and substitute in into the right hand
side of equation (32). If we succeed to show that the right hand side equals X(t)
a.s. we will have proved the theorem. After the substitution, we obtain

x+

∫ t

0

A(s)

(
S(s, 0)x+

∫ s

0

S(s, r)b(r) dr +

∫ s

0

S(s, r)σ dB(r)

)
ds

+

∫ t

0

b(s) ds+

∫ t

0

σ dB(s)

= x+

∫ t

0

A(s)S(s, 0)x ds+

∫ t

0

∫ s

0

A(s)S(s, r)b(r) dr ds

+

∫ t

0

∫ s

0

A(s)S(s, r)σ dB(r) ds+

∫ t

0

b(s) ds+

∫ t

0

σ dB(s)

for all t ≥ 0. To use the stochastic the Fubini Theorem 30 we have to check the
two conditions. Clearly for all t ≥ 0∫ t

0

∫ t

0

∫ t

0

‖A(t)‖2‖σ‖2‖S(t, s)‖‖S(t, r)‖|s− r|2H−1 ds dr dt <∞

28



and∫ t

0

∫ t

0

∫ t

0

∫ t

0

‖A(t1)‖‖A(t2)‖‖σ‖2‖S(t1, s)‖‖S(t2, r)‖|s− r|2H−1 ds dr dt1dt2 <∞

since the integrands are bounded, because they are continuous and the integral is
over a finite interval. Note that the flow map S is continuous in both parameters
by Lemma 9 (iv).

Using the stochastic the Fubini Theorem 30, the ordinary Fubini theorem and
the fundamental property of the semigroup from p. 6, namely that S(·, s) solves
the ordinary differential equation ẋ(t) = A(t)x(t), x(s) = Idm×m for all t > s ≥ 0,
we may continue

= x+

∫ t

0

Ṡ(s, 0)x ds+

∫ t

0

∫ t

r

Ṡ(s, r)b(r) ds dr

+

∫ t

0

∫ t

r

Ṡ(s, r)σ ds dB(r) +

∫ t

0

b(s) ds+

∫ t

0

σ dB(s)

= x+ (S(t, 0)− S(0, 0))x ds+

∫ t

0

(S(t, r)− S(r, r))σ dB(r)

+

∫ t

0

(S(t, r)− S(r, r))b(r) dr +

∫ t

0

b(s) ds+

∫ t

0

σ dB(s)

= S(t, 0)x+

∫ t

0

S(t, r)b(r) dr +

∫ t

0

S(t, r)σ dB(r)

for all t ≥ 0 a.s. where the formula after the last equality sign matches X as
defined in (36). We proved that X solves the equation (32), (33) which concludes
the proof.

Proposition 36. If A is a constant (m×m)-matrix, the flow map of A is known
to be expressible in terms of the matrix exponential as S(t, s) = exp{A(t−s)} for
t ≥ s ≥ 0. The formula (36) simplifies to

X(t) = exp{At}x+

∫ t

0

exp{A(t− r)}σ dB(r), t ≥ 0. (37)

Proof. The proof follows directly from Propositions 14 and 35.
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2 Problem formulation
In this section, we first define an ergodic control problem with fractional noise,
then extend it to a parameter-dependent system. Finally, we formulate the main
problem of the thesis.

We will first fix the general settings for what follows.
Fix a stochastic basis (Ω,F ,K(t)t≥0,P) satisfying the usual conditions and

such that there are two filtrations of F , F(t) and G(t)t≥0 so that K(t) := F(t) ∨
G(t) for all t ≥ 0. Require that F(t) and G(t) are independent for all t ≥ 0.

Fix an F(t)-progressive fractional Brownian motion B with Hurst parameter
H > 1/2. We will consider the continuous version ofB which exists by Section 1.7.

It is well known that an F(t)-progressive process is also [F(t)∨J (t)]-progressive
for any filtration J (t)t≥0 of F such that J (t) and F(t) are independent for all
t ≥ 0. This is exactly our situation since K(t) = F(t)∨G(t) and F(t) is indepen-
dent of G(t) for all t ≥ 0. Noting this, it is clear that B is also K(t)-progressive.

2.1 Ergodic linear quadratic problem with fractional noise

We begin by giving a precise mathematical formulation of a simpler, non-adaptive,
problem and comment on the meaning of the symbols that appear in the formu-
lation. The formulation of the problem is analogous to a standard one for the
case with ordinary Brownian motion as it is to be found e.g. in Chapter 6 in Yong
& Zhou (1999) on p. 300.

Fix natural numbers k, l,m and n. Let A ∈ Rm×m, G ∈ Rm×k, σ ∈ Rm×n be
deterministic matrices and x ∈ Rm a deterministic initial condition. We denote
U the set of all K(t)−progressive processes u : R+ × Ω → Rk which satisfy
E
∫ T

0
|u(t)|2dt < ∞ for all T > 0. The set U represents the set of admissible

controls for the problem and a u ∈ U represents a control. The state of the system
of interest is described by an m-dimensional random process (X(t), t > 0). The
system evolves according to the following equation

dX(t) = [AX(t) +Gu(t)] dt+ σ dB(t) for t > 0,

X(0) = x
(38)

for a fixed initial condition x ∈ Rm.
It is not important that x is deterministic. It only frees us from some tedious

considerations. If the cost functional below is updated accordingly, x can be
random, but has to be K0-measurable so that the equation (38) makes sense and
with bounded moments so that the following manipulations do not break down.

In order to be able to speak about optimality, we need some means of mea-
suring it. This is why we define the cost functional J(x, u). Let Q ∈ Rm×m and
R ∈ Rk×k be symmetric positive semidefinite matrices. The matrices Q and R
embody our preference for how the system should be controlled. For a process
u : R+ × Ω→ Rk and a vector x ∈ Rm we define the cost functional to be

J(x, u) = lim sup
T→∞

1

T
JT (y, u), (39)

where the finite time cost is given by

JT (x, u) =
1

2
E
[∫ T

0

〈QX(t), X(t)〉+ 〈Ru(t), u(t)〉 dt
]

for T ≥ 0. (40)
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Definition 24. We say, that an admissible control ū ∈ U is an optimal control
for the ergodic control problem (38) with cost (39) if

J(x, ū) = inf
u∈U

J(x, u). (41)

Definition 25. A control is said to be in feedback form, or to be a feedback
control, if it can be written as

u(t) = γ(t)X(t) + V (t) t ≥ 0 (42)

for some random processes γ with values in Rk×m and V with values in Rk, where
X is a solution of the system equations (38) with u substituted from (42), i.e.
a solution of

dX(t) = {[A+Gγ(t)]X(t) +GV (t)} dt+ σ dB(t) t > 0

X(0) = x

Feedback controls incorporate true trajectory of the system and hence have
a greater chance at being more robust to fluctuations in the system dynamics
should the model not match reality completely. That is why we concentrate on
finding optimal controls in feedback form.

To reiterate the most important aspects of the formulation we have given:
At each time t ≥ 0, the system has a state described by a random process
X = (X(t), t > 0) with dynamics described by a system of linear stochastic
differential equations (38) driven by fractional Brownian motion. By setting the
values of u(t) one is provided by means of control he can exercise to make the
system behave as he would like it to.

By defining the functional J(x, u) one can set what is meant by “optimal”. It
is worth noting that the functional takes on real deterministic values and hence
provides a kind of summarization of the effect of u on the system in all possible
situations.

To solve the linear quadratic problem, we have to describe how to calculate
the value of the control u(t) at every time t > 0 in order to minimize J(x, u).
The control uses the state of the system X, but at every time t > 0, we can only
use values of X(s) for s < t, since we required adaptiveness of the control u.

2.2 Adaptive ergodic linear quadratic problem with frac-
tional noise

In practice, the coefficients in equations are rarely known exactly. This is why it is
most practical to have a result which describes how the optimal control looks like
if we have to estimate the system equations form the behavior of the controlled
system, and at the same time we want it controlled optimally.

In the setting of the ergodic linear quadratic problem, this means that there is
some uncertainty in the parameters of the system equations (38). This is why in
this section, we reformulate the problem to allow for variations in the equations
describing its dynamics.

First, as in Section 2.1, fix natural numbers k, l,m, n and let G ∈ Rm×k,
σ ∈ Rm×n. In addition fix a compact set Θ ⊆ Rl to represent the possible values
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of an unknown parameter. The variations in the dynamics of the system will be
allowed by replacing the matrix A by a continuous matrix-valued map defined on
a compact set Θ, i.e. by a continuous map A : Θ → Rm×m. We let U , as before,
denote the set of all K(t)−progressive processes u : R+ × Ω → Rk which satisfy
E
∫ T

0
|u(t)|2dt <∞ for all T > 0. The state of the parametrized system X evolves

according to the following true equation

dX(t) = [A(θ0)X(t) +Gu(t)] dt+ σ dB(t) for t > 0,

X(0) = x,
(43)

where θ0 ∈ Θ is an unknown parameter to be estimated jointly with control and
x ∈ Rm is the fixed initial condition.

Let as before Q ∈ Rm×m be a symmetric positive semidefinite matrix and
R ∈ Rn×n be a symmetric positive definite and hence regular matrix. In the case
of a parametrized system, the cost functional remains the same, namely for the
matrices Q and R defining our preference on how the system should be controlled,
for a process u : R+×Ω→ Rk and a vector x ∈ Rm we define the cost functional
to be

J(x, u) = lim sup
T→∞

1

T
JT (x, u), (44)

where the finite-time cost is given by

JT (x, u) =
1

2
E

{∫ T

0

〈QX(t), X(t)〉+ 〈Ru(t), u(t)〉 dt
}
. (45)

Definition 26. Fix V ⊆ U . We say, that an admissible control ū ∈ V is an
optimal adaptive control for the parametrized ergodic control problem (43) with
cost (44) in class V if

J(x, ū) = inf
u∈V

J(x, u)

and ū(t) can be calculated without the knowledge of the true parameter θ0 for
all t ≥ 0.

The adaptive control problem consists of finding an adaptive optimal feedback
control for the controlled system (38) in the sense of Definition 26 and 25.

2.3 The parameter estimator

The evolution of system (43) depends on an unknown parameter θ0 ∈ Θ. In order
to be able to derive an optimal control for the system, we require some estimator
for the parameter to be available.

Assume we have access to an estimator θ̂ that is K(t)-progressive, continuous,
takes on values only from the set of feasible parameters Θ and is a strongly
consistent estimator of the true parameter, i.e. a.s. θ̂(t)→ θ0 as t→∞.

We can now explain why we chose K(t) := F(t)∨G(t) such that F(t) and G(t)
independent for all t ≥ 0. This way, we will be able to prove some theorems in
full generality, while in others we may require that the estimator is independent
of the driving fractional Brownian motion.
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An independent parameter estimator would be realizable, if we had access to
two identical but independent systems with equal unknown parameter θ0. We
would estimate θ0 in one and use the same control to control both systems. Our
main theorem then states, that we are able to optimally control one of the systems
while using the other one to estimate the parameter.

Since the parameter space Θ is compact, by Theorem 4.15 on p. 89 in Rudin
et al. (1964) the estimator process (θ̂(t)p, t > 0) is bounded for every p ≥ 1 and
hence by the dominated convergence theorem we have θ̂(t)→ θ0 in Lp as t→∞
for every p ≥ 1.

2.4 The parametrized algebraic Riccati equation

The solution of the optimal control problem is formulated in a feedback form
in terms of the instantaneous system state X(t) and the optimal gain γ(t). To
recover the optimal gain for an ergodic control problem one has to know the
solution of a special equation, the so called algebraic Riccati equation. The
availability of the solution of the control then inherits properties of the solution
to the algebraic Riccati equation.

The algebraic Riccati equation is defined in this section and the properties of
solutions we will need are stated. The most notable result is continuous depen-
dence of the solution of algebraic Riccati equation on parameters given suitable
conditions are satsfied.

Let the settings of Section 2.2 be in force and let us have access to a strongly
consistent estimator θ̂(t) of the true parameter θ0 with properties described in
Section 2.3. We specify the following assumptions to ease further formulations,
cf. Chojnowska-Michalik et al. (1992).

(A1) The pairs (A(θ), G) are stabilizable uniformly with respect to
θ ∈ Θ.

(A2) The pairs (Q,A(θ)) are detectable uniformly with respect to θ ∈ Θ.

Since the matrix-valued map A is assumed to be continuous, we have by
Proposition 16

(A3) the function θ 7→ exp{A(θ)t} is continuous for all t ≥ 0.

Note that in Chojnowska-Michalik et al. (1992), (A3) is assumed, whereas in our
finite-dimensional case we obtained it as a consequence of the continuity of the
matrix-valued map A.

For a parameter θ ∈ Θ consider the parametrized algebraic Riccati equation

0 = A(θ)∗p+ pA(θ) +Q− pGR−1G∗p (46)

for an unknown symmetric matrix p ∈ Rm×m.
The next theorem states that there is a unique solution of (46) given suitable

conditions are satisfied. It may be found Zabczyk (1975) as Theorem 1 on p. 252.
We reformulate it for the finite-dimensional case.

Theorem 37. Fix θ ∈ Θ and let the pair (A(θ), G) be stabilizable and (Q,A(θ)
be detectable. Then there exists a unique symmetric nonnegative solution P (θ) of
(46). Moreover, the matrix A(θ)−GR−1G∗P (θ) is stable.
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In the sequel, let P (θ) denote the unique symmetric nonnegative solution of
(46) and

AP (θ) := A(θ)−GR−1G∗P (θ), θ ∈ Θ (47)

if the Riccati equation (46) is uniquely solvable for the respective θ ∈ Θ.
The next theorem states that the unique solution of (46) is continuous, cf.

Theorem 1 in Chojnowska-Michalik et al. (1992) on p. 177. We reformulate it for
the finite-dimensional case.

Theorem 38. Let (A1) and (A2) be satisfied. Let P (θ), θ ∈ Θ be the unique
nonnegative solution of the Riccati equation (46) warranted by Theorem 37. Then
P is continuous in the operator norm ‖·‖.

The following proposition is a restatement of Lemma 2 in Chojnowska-Michalik
et al. (1992) on p. 177.

Proposition 39. Let (A1) and (A2) be satisfied. Then the matrix AP (θ) is stable
uniformly with respect to θ ∈ Θ.

Recall from Section 2.3 that θ̂ is a strongly consistent continuous parameter
estimator of θ0 ∈ Θ which among other things satisfies θ̂(t) ∈ Θ for all t ≥ 0 and
θ̂(t)→ θ0 a.s. We have the following corollary.

Corollary 40. Let f : Rl → R be a continuous function.
Then esssupω∈Ω supt≥0 f(θ̂(t, ω)) <∞ and E|f(θ̂(t))− f(θ0)| → 0 as t→∞.
Especially, if P (θ) is the solution of (46) that is continuous in θ, we have

P (θ̂(t))→ P (θ0) a.s. as t→∞. Moreover, for p ≥ 1, we have that

esssup
ω∈Ω

sup
t≥0
‖P (θ̂(t, ω))‖

p
<∞

and E‖P (θ̂(t))− P (θ0)‖p → 0 as t→∞.

Proof. Since f is continuous and θ̂ is strongly consistent, f(θ̂(t))→ f(θ0) a.s. as
t→∞.

Recall now, that θ̂(t) ∈ Θ for all t ≥ 0 and that Θ was assumed to be
a compact subset of Rl. By Theorem 4.15 on p. 89 in Rudin et al. (1964) we have
that the function θ 7→ f(θ) is bounded. We can thus write

sup
t≥0

∣∣∣f(θ̂(t))− f(θ0)
∣∣∣ ≤ sup

θ∈Θ
|f(θ)− f(θ0)| <∞

hence the first statement of the corollary follows now from the dominated con-
vergence theorem.

Since P is continuous, and from the just proved part, we obtain that P (θ̂(t))→
P (θ0) a.s. as t→∞.

In the same spirit, since the operator norm M 7→ ‖M‖ is continuous as well
as the power function, we obtain the rest of the statement.
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2.5 Solution of the ergodic linear quadratic optimal control
problem

The form of optimal control of the system (43) with cost (44) for the case when
the parameter θ0 ∈ Θ is known and fixed is well known even for the infinite-
dimensional case. The solution was presented in a paper by Duncan et al. (2015).
In this section, we will present their main theorem which is an indispensable
building block of our main result.

We present the result of Duncan et al. (2015) in a slightly modified man-
ner and consider a solution for a parametrized system. The only difference is,
however, in notation, where we instead of A write A(θ0). We will also skip the
presentation of the original result for the infinite-dimensional case and present
directly a simplified version which holds in the finite dimension. We can do this
by invoking comments in Example 4.1 on p. 101 of Duncan et al. (2015) which
justifies that the result of the main theorem hold also for the finite-dimensional
case.

There are some discrepancies between the notation of Duncan et al. (2015)
and ours which is the result of the fact, that in the infinite-dimensional case
many considerations are more complicated and usually stronger assumptions are
imposed. In order to transfer the results of Duncan et al. (2015) into our work
we please the reader to acknowledge that a finite-dimensional linear operator is
always trace class. This means, that in (3) in Duncan et al. (2015) we can safely
set the covariance of the cylindrical fractional Brownian motion Q̃ := Idn which
is why the theorem is applicable to system (43).

Let the settings of Section 2.2 be in force.
Duncan et al. (2015) treat a control problem (38) and define the cost functional

to be J(x, u) = lim supT→∞ JT (x, u)/T where

JT (x, u) =
1

2
E
{∫ T

0

|LX(t)|2 + 〈Ru(t), u(t)〉 dt
}
. (48)

For a positive semidefinite and symmetric matrix Q ∈ Rm×m we may always write
Q = LL for some symmetric positive-definite matrix L ∈ Rm×m, cf. Olive (2017)
the comment above Definition 11.11 on p. 317. The matrix L is then called the
square root of Q. Using this fact, we see that (48) is equivalent to (45) when we
put Q = L∗L. It is also trivial to see that the results which holds for (38) also
hold for (43) when θ0 is assumed to be known.

Impose the following conditions, cf. Duncan et al. (2015), conditions (A1) and
(A2) on p. 94-95.

(D1) The pair (Q,A(θ0)) is detectable.

(D2) The pair (A(θ0), G) is stabilizable.

The condition (D1) is equivalent to requiring that (L,A(θ0)) is detectable by
Proposition 25 and Remark 26 since L and Q span the same linear subspace of
Rm×m.

If the conditions (D1) and (D2) are satisfied, by Theorem 37 there exists
a unique symmetric solution P (θ0) of the Riccati equation (46) with θ := θ0 and
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for the matrix AP (θ0) defined in (47) to be A(θ0) − GR−1G∗P (θ0) there exist
positive constants KP (θ0) and MP (θ0) so that

‖Φ(t; θ0)‖ ≤MP (θ0)e−KP (θ0)t for all t ≥ 0. (49)

where Φ(t; θ0) := exp{AP (θ0)t} for t ≥ 0.
Let

Ψ(t; θ) := exp{A∗P (θ)t} for t ≥ 0 and θ ∈ Θ. (50)

where AP (θ) is defined in (47). Observe that Ψ(t; θ0) is the adjoint of Φ(t; θ0) for
all t ≥ 0. This follows from the Definition 9 of the matrix exponential.

For θ ∈ Θ we define the random process

W (t; θ) := E
[∫ ∞

t

Ψ(s− t; θ)P (θ)σ dB(s)
∣∣∣F(t)

]
, t ≥ 0. (51)

Note that the process represents an estimation of future evolution of the noise
component in the optimally controlled system based on the observations until
time t. Note also, that θ is constant in the variable we integrate over and that
the integrand is deterministic since θ is.

As noted, the integrand in (51) is deterministic. On top of this, from (49) we
can estimate for i = 1, . . . ,m, j = 1, . . . , n∫ ∞

t

|(Ψ(s− t; θ0)P (θ0)σ)ij|
1
H ds ≤

∫ ∞
t

‖Ψ(s− t; θ0)P (θ0)σ‖
1
H ds

≤ ‖P (θ0)σ‖
1
H

∫ ∞
t

‖Ψ(s− t; θ0)‖
1
H ds ≤ ‖P (θ0)σ‖

1
HM(θ0)

1
H

∫ ∞
t

e−
K(θ0)
H

(s−t) ds

≤ ‖P (θ0)σ‖
1
H
HM(θ0)

1
H

K(θ0)
<∞

and hence the integrand has all coordinates in L
1
H (R+) which means that it is

B-integrable by Remark 29 and the process W (·; θ0) is well defined.
Let Xx,u denote the trajectory of the system with initial condition x ∈ Rm

and under control u ∈ U .
We restrict the class of controls in which we search for the optimal control by

the following condition, cf. Duncan et al. (2015), condition (15) on p. 95.

lim
T→∞

1

T
E〈P (θ0)Xx,u(T ), Xx,u(T )〉 = 0. (52)

An explicit solution to the control problem (43), (44) in terms of the symmetric
solution P (θ0) of the Riccati equation (46) is given in the following theorem which
can be found as Theorem 3.2 of Duncan et al. (2015) on p. 95 and reads:

Theorem 41. Let (D1) and (D2) be satisfied, and let u ∈ U be a control satisfying
(52). Then

J∞ ≤ J(x, u). (53)

where

J∞ :=−
[
lim sup
T→∞

1

2T
E
∫ T

0

|R−1/2G∗W (s; θ0)|2 ds
]

+ αH

∫ ∞
0

Tr[P (θ0)Φ(s; θ0)] |s|2H−2 ds.
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Moreover, the feedback control

ū(t) = −R−1G∗(P (θ0)Xx,ū(t) +W (t; θ0)) (54)

is admissible, satisfies (52) and

J(x, ū) = J∞ (55)

hence it is a solution of, and J∞ is the optimal cost for, the ergodic linear quadratic
control problem (43) with initial condition x in the class of admissible controls
from U satisfying (52).

Moreover, according to the proof of the main theorem in Duncan et al. (2015)
on p. 9, the following propositions hold.

Proposition 42. Fix q > 0 and assume (D1) and (D2). Then there exists
a positive constant Cq so that

sup
t≥0

E|X̄(t)|2q ≤ Cq. (56)

Proposition 43. Fix q > 0 and assume (D1) and (D2). Then there exists
a positive constant Dq so that

sup
t≥0

E|W (t; θ0)|2q ≤ Dq.

2.6 Representation of W

In this section, we establish elementary representations of conditional expecta-
tions of stochastic integrals with respect to fractional Brownian motion. This will
be one of the main building blocks in the construction of the adaptive ergodic
control.

The following propositions are based on the work of Kleptsyna et al. (2005).
Let B(s | t) := E[B(s) | F(t)] for s ≥ t ≥ 0 which could be called the conditional
fractional Brownian motion and let N(t) =

∫∞
0

(K∗H)−1
1[0,t]dB, t ≥ 0 be the

Wiener process associated with B as in (27), this means it is an F(t)-Wiener
process.

Proposition 44. We have

B(s | t) =

∫ t

0

KH(s, r) dN(r) for all s ≥ t ≥ 0. (57)

Proof. Let us observe that by (29) we can write

E [B(s) | F(t)] = E
[∫ s

0

KH(s, r) dN(r)
∣∣∣F(t)

]
a.s.

Realizing that N is a Wiener process and hence (N(r) − N(t), r > t) and F(t)
are independent for all t ≥ 0, using the fact that the Wiener integral has zero
expectation and the assumption 0 ≤ t ≤ s we may write

E
[∫ s

0

KH(s, r) dN(r)
∣∣∣F(t)

]
= E

[∫ t

0

KH(s, r) dN(r)
∣∣∣F(t)

]
.

The integral on the right hand side is F(t)-measurable and hence the conditional
expectation can be removed and we obtain the statement of the lemma.
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Proposition 45. Let f ∈ |H|. Then for all t ≥ 0

E
[∫ ∞

t

f(s) dB(s)
∣∣∣F(t)

]
=

∫ t

0

∫ ∞
t

f(r)K̇H(r, s) dr dN(s) a.s. (58)

Proof. Let us observe that by (29) we can write

E
[∫ ∞

t

f(s) dB(s)
∣∣∣F(t)

]
= E

[∫ ∞
0

K∗H(1[t,∞)f) dN
∣∣∣F(t)

]
a.s.

Realizing that N is a Wiener process and hence (N(r) − N(t), r > t) and F(t)
are independent for all t ≥ 0 and using the fact that the Wiener integral has zero
expectation we may write

E
[∫ ∞

0

K∗H(1[t,∞)f) dN
∣∣∣F(t)

]
= E

[∫ t

0

K∗H(1[t,∞)f) dN
∣∣∣F(t)

]
a.s.

The integral on the right hand side is F(t)-measurable and hence the conditional
expectation can be removed. If we, in addition, use (22) we obtain∫ t

0

∫ ∞
s

1[t,∞)(r)f(r)K̇H(r, s) dr dN(s) =

∫ t

0

∫ ∞
t

f(r)K̇H(r, s) dr dN(s) a.s.

Remark 46 (Very informal). Notice that since by Proposition 44

dB(s | t) =

∫ t

0

K̇H(s, r) dN(r) ds a.s.

Proposition 45 can be symbolically written after exchanging the order of integra-
tion as

E
[∫ ∞

t

f(s) dB(s)
∣∣∣F(t)

]
=

∫ ∞
t

f(s) dB(s | t), for all t ≥ 0 a.s.

and hence provides an extension of Proposition 44.

It will prove useful to obtain the following estimate.

Proposition 47. Fix a function f ∈ |H|. Then there exists a constant bH so
that∫ t

0

(∫ ∞
t

f(s)K̇H(s, r) ds

)2

dr ≤
∣∣1[t,∞]f

∣∣2
|H| ≤ b2

H

∣∣1[t,∞]f
∣∣2
L

1
H

for all t ≥ 0.

Proof. By Proposition 44, the Itô isometry and the Jensen inequality, we may
write∫ t

0

(∫ ∞
t

f(s)K̇H(s, r) ds

)2

dr = E
(∫ t

0

∫ ∞
t

f(s)K̇H(s, r) ds dN(r)

)2

= E
{
E
[∫ ∞

t

f(s) dB(s)
∣∣∣F(t)

]}2

≤ E
(∫ ∞

t

f(s) dB(s)

)2

for all t ≥ 0.

From Remark 29 we know that there exists a positive constant bH so that

E
(∫ ∞

t

f(s) dB(s)

)2

≤
∣∣1[t,∞]f

∣∣2
|H| ≤ b2

H

∣∣1[t,∞]f
∣∣2
L

1
H

for all t ≥ 0.

This concludes the proof.
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2.7 Oracle’s control

Let the settings of Section 2.2 be in force and let, similarily as in Section 2.5,
(X̄(t), t ≥ 0) = (X ū,x(t), t ≥ 0) denote the solution of the system equations
(43) with control u := ū, initial condition X ū,x(0) = x and the true parameter
θ0 := θ0 ∈ Θ. This means that X̄ satisfies the stochastic differential equation
driven by fractional Brownian motion

dX̄(t) = [A(θ0)X̄(t) +Gū(t)] dt+ σ dB(t) for t > 0,

X̄(0) = x.
(59)

The feedback control ū is defined as in formula (54) only with θ replaced by the
true parameter θ0 resulting in

ū(t) := −R−1G∗[P (θ0)X̄(t) +W (t; θ0))] for all t ≥ 0. (60)

If we knew the value of the true parameter θ0, and (A1) and (A2) were sat-
isfied, we could actually use the control (60) to control the process. Based on
Theorem 41 we know that the feedback control (60) is the solution of the ergodic
optimal control problem (43) with the cost functional (44) and hence would pro-
vide an optimal control for the system.

We may derive an explicit solution for the trajectory X̄(t) of the optimally
controlled system. We can expand ū to obtain a stochatic differential equation
driven by fractional Brownian motion for the trajectory of the system that reads

dX̄(t) =
{

[A(θ0)−GR−1G∗P (θ0)]X̄(t)−GR−1G∗W (t; θ0)
}
dt+ σ dB(t)

for t ≥ 0,

X̄(0) = x.

(61)

From Theorem 41 it also follows that the optimally controlled process trajec-
tory X̄ satisfies (52), i.e.

lim
t→∞

1

t
E
〈
P (θ0)X̄(t), X̄(t)

〉
= 0.

The problem with the control ū is, however, that we do not know the value
of the true parameter and hence such a control is infeasible in reality. We also
excuded such controls which use the value of θ0 in Definition 26. In the next
section, we define a control, that we can calculate with no knowledge of θ0, except
for Θ, while still being optimal.

2.8 An adaptive control

Let the settings of Section 2.2 be in force. On top of this require (A1) and (A2)
from Section 2.4 to hold.

In order to obtain a useful feedback control, we have to be able to calculate
the control even if we remain ignorant of the value of the true parameter θ0.
A natural candidate for the adaptive ergodic control (43) would be the feedback
control obtained by replacing θ by the on-line parameter estimate θ̂(t), described
in Section 2.3, in the defining formula for control (54). This leads to the feedback
control

ũ(t) := −R−1B∗[P (θ̂(t))X̃(t) +W (t; θ̂(t))] for t ≥ 0, (62)
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where X̃ is the solution of (43) with the control u := ũ. The hope with this
approach is that we will be able to prove that such a control is a solution of the
optimal ergodic control problem (43) with the cost functional (39) by showing
that

J(x, ū) = J(x, ũ).

Duncan et al. (2002), on p. 4096, use a similar idea. It is called the “certainty
equivalence principle”. They are, however, in a different position for they use
the certainty equivalence principle to construct an implementable on-line control
based on a stochastic differential equation the process W has to satisfy. Then
they replace the optimally controlled trajectory with the adaptively controlled
one and derive an estimate of the driving Brownian motion from the adaptively
controlled trajectory. We choose a different approach here. We aim at obtaining
an optimal adaptive control candidate from the formula for W that is available
in (51).

The expression W (t; θ̂(t)) present in control (62), however, demands more
careful analysis before it can be used. At this point, due to the presence of
a stochastic integral in the definition ofW , is it not even clear whetherW (t; θ̂(t))
makes any sense at all. A well defined process inspired by the form of W (t; θ̂(t))
is defined in Section 2.8.1 which can be used further.

2.8.1 The predictable noise effect on the trajectory

Recall from Section 2.3 that among other properties the estimator θ̂ is K(t)-
progressive, where K(t) = F(t) ∨ G(t) and F(t) is independent of G(t) for every
t ≥ 0 and F(t)t≥0 and G(t)t≥0 are filtrations of F . The estimator also satisfies
θ̂(t) ∈ Θ for every t ≥ 0.

Recall that W was defined in (51) as

W (t; θ) := E
[∫ ∞

t

Ψ(s− t; θ)P (θ)σ dB(s)
∣∣∣F(t)

]
for t ≥ 0 and θ ∈ Θ. (63)

In the following proposition we establish a useful representation of W as an
Itô integral.

Proposition 48. Fix θ ∈ Θ. For the coordinates of the process (W (t; θ), t ≥ 0)
we have a representation

Wi(t; θ) =
m∑
j=1

m∑
k=1

n∑
l=1

σkl

∫ t

0

wijk(s, t) dNl(s) for t ≥ 0 a.s. (64)

for every i = 1, . . . ,m where

wijk(s, t) :=

∫ ∞
t

Ψij(r − t; θ)Pjk(θ)K̇H(r, s) dr.

Proof. We may rewrite W (t, θ) by coordinates, using linearity of stochastic inte-
gral and conditional expectation to obtain

Wi(t; θ) =
m∑
j=1

m∑
k=1

n∑
l=1

Pjk(θ)σkl E
[∫ ∞

t

Ψ(s− t; θ)ij dBl(s)
∣∣∣F(t)

]
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for all t ≥ 0, θ ∈ Θ and i = 1, . . . ,m. By arguments similar to those of (49) we
have

‖Ψ(t; θ)‖ ≤MP (θ)e−KP (θ)t for all t ≥ 0 (65)

for some positive constants MP (θ) and KP (θ) for arbitrary θ ∈ Θ. Observe that∫ ∞
t

Ψ(s− t; θ)
1
H
ij ds ≤

∫ ∞
t

‖Ψ(s− t; θ)‖
1
H ds ≤

∫ ∞
t

M
1
H
P (θ)e−

KP (θ)

H
(s−t) ds

≤ HM
1
H
P (θ)

KP (θ)
for all t ≥ 0

and hence Ψ(· − t; θ) ∈ L 1
H (t,∞) for all t ≥ 0. This means we may use Proposi-

tion 45 and rewrite

E
[∫ ∞

t

Ψ(s− t; θ)ij dBl(s)
∣∣∣F(t)

]
=

∫ t

0

∫ ∞
t

Ψ(r − t; θ)ijK̇H(r, s) dr dNl(s) a.s.

where N(t) =
∫∞

0
(K∗H)−1(1[0,t])dB, t ≥ 0 is the Wiener process associated with

B as in (27).

We use the representation as an inspiration and define a random process
(V (t), t ≥ 0) by coordinates for t ≥ 0 and i = 1, . . . ,m using the equality

Vi(t) :=
m∑
j=1

m∑
k=1

n∑
l=1

σkl

∫ t

0

vijk(s, t) dNl(s) (66)

where

vijk(s, t) :=

∫ ∞
t

Ψ(r − t; θ̂(s))ijPjk(θ̂(s))K̇H(r, s) dr, r ≥ t ≥ 0 and 0 ≤ s ≤ t

and the integral in (66) is understood in the Itô sense.

Proposition 49. The process V is well defined, K(t)-progressive and continuous.

Proof. It is well known that an F(t)-Wiener process is also an [F(t)∨J (t)]-Wiener
process for a filtration J (t)t≥0 of F such that F(t) and J (t) are independent for
all t ≥ 0. This is exactly our situation since K(t) = F(t) ∨ G(t), and F(t)
is independent of G(t) for all t ≥ 0. Noting this, it is clear that in order to
show that V is well defined, we have to show that for every t ≥ 0 the processes
vijk(·, t) are [K(s)s≥0]-progressive, or have a progressive modification, and that
vijk(·, t) ∈ L2(0, t) for all t ≥ 0 a.s. for i, j, k = 1, . . . ,m.

First, we will show progressiveness. Recall (50), defining Ψ(t; θ) = exp{AP (θ)t}
for t ≥ 0 and θ ∈ Θ. Observe that Ψ(t; θ) is measurable by Lemma 13. On top
of this, P (θ) is continuous by the assumptions and Theorem 38 and hence mea-
surable. Fix t ≥ 0 and i, j, k = 1, . . . ,m.

Put
ρ(s, θ) :=

∫ ∞
t

Ψ(r − t; θ)ijPjk(θ)K̇H(r, s) dr.
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By Proposition 39, ‖Ψ(t; θ)‖ ≤ Me−Kt for all t ≥ 0 and θ ∈ Θ. By (20) we may
estimate∣∣∣∣∫ ∞

t

Ψ(r − t; θ)ijPjk(θ)K̇H(r, s) dr

∣∣∣∣
≤ cHs

1
2
−H‖P (θ)‖

∫ ∞
t

‖Ψ(r − t; θ)‖rH−
1
2 (r − s)H−

3
2 dr

≤McHs
1
2
−H‖P (θ)‖

∫ ∞
t

e−K(r−t)rH−
1
2 (r − s)H−

3
2 dr. (67)

The integral on the right converges for all t > s > 0 without any problems. Real-
ize that by the assumption H > 1/2 we have H−1/2 > 0 and −1 < H−3/2 < 0.
Hence, for t = s > 0 we may compare the integral

∫ t+1

t
e−K(r−t)rH−

1
2 (r−s)H− 3

2 dr

with (2t)H−
1
2

∫ 1

0
rH−

3
2 dr which converges. Hence the integral (67) converges

and may be approximated by sums of approximating simple functions. The
integral thus preserves measurability and the function ρ is measurable. We
have vijk(s, t) = ρ(s, θ̂(s)) is [K(τ)τ≥0]-adapted and measurable for any fixed
t > 0. This means (vijk(s, t), s > 0) has a [K(τ)τ≥0]-progressive modification
(vmod
ijk (s, t), s > 0). We extend vijk(s, t) by vmod

ijk (0, t) = 0 and obtain that that
(vijk(s, t), s ≥ 0) has a [K(τ)τ≥0]-progressive modification, the extended vmod

ijk .
By Proposition 39, Ψ is stable uniformly with respect to θ, and realizing that

K̇(r, s) ≥ 0 for all r > s ≥ 0, cf. (20), we may write for i, j, k = 1, . . . ,m∫ t

0

v2
ijk(s, t) ds =

∫ t

0

(∫ ∞
t

Ψ(r − t; θ̂(s))ijPjk(θ̂(s))K̇H(r, s) dr

)2

ds

≤
∫ t

0

(∫ ∞
t

∥∥∥Ψ(r − t; θ̂(s))
∥∥∥∥∥∥P (θ̂(s))

∥∥∥∣∣∣K̇H(r, s)
∣∣∣ dr)2

ds

≤ CP

∫ t

0

(∫ ∞
t

Me−K(r−t)K̇H(r, s) dr

)2

ds for all t ≥ 0 a.s. (68)

where we used the fact that by Corollary 40, CP := esssupω∈Ω supt≥0 ‖P (θ̂(t, ω))‖
is finite. Using Proposition 47, there is a positive constant bH such that∫ t

0

(∫ ∞
t

Me−K(r−t)K̇H(r, s) dr

)2

ds ≤ b2
H

∣∣1[t,∞]Me−K(r−t)∣∣2
L

1
H

= b2
H

(∫ ∞
t

M
1
H e−

K
H

(r−t) dr

)2H

≤ b2
H

M2H2H

K2H
<∞ for all t ≥ 0. (69)

It is now clear that V is well defined, K(t)-progressive and continuous.

Let us turn to the estimation of moments of V .

Proposition 50. There exists a positive constant D1 such that we can estimate

E|V (t)|2 ≤ D1 for all t ≥ 0.

Proof. Using Remark 3 and the definition (66), we may write

E|Vi(t)|2 ≤ m4n2

m∑
j=1

m∑
k=1

n∑
l=1

σ2
kl E

(∫ t

0

vijk(s, t) dNl(s)

)2

for t ≥ 0.

42



Using the Itô isometry and the exact same arguments as in (68) we obtain for
i, j, k = 1, . . . ,m

E
(∫ t

0

vijk(s, t) dN(s)

)2

= E
∫ t

0

v2
ijk(s, t) ds

≤ CP

∫ t

0

[∫ ∞
t

Me−K(r−t)K̇H(r, s) dr

]2

ds for all t ≥ 0.

Exactly as in (69) we obtain existence of a positive constant bH so that

CP

∫ t

0

[∫ ∞
t

Me−K(r−t)K̇H(r, s) dr

]2

ds ≤ b2
H

∣∣1[t,∞]vijk
∣∣2
L

1
H

≤ b2
H

M2H2H

K2H
<∞ (70)

for all t ≥ 0. Setting D1 := b2
HM

2H2H/K2H concludes the proof.

Proposition 51. For every q ≥ 1, there exists a positive constant Dq such that
we can estimate

E|V (t)|2q ≤ Dq for all t ≥ 0.

Proof. Observe that being Itô stochastic integrals, the processes

wijk(t, T ) :=

∫ t

0

vijk(s, T ) dN(s), 0 ≤ t ≤ T

are continuous local L2-martingales by definition for all T ≥ 0 and i, j, k =
1, . . . ,m. We can use the Burkholder-Davis-Gundy inequality, cf. Theorem 17.7
in Kallenberg (2001) on p. 333 to obtain for i, j, k = 1, . . . ,m the estimate

E|wijk(T, T )|2q ≤ E sup
0≤t≤T

|wijk(t, T )|2q ≤ cq E
[∫ T

0

v2
ijk(s, T ) ds

]q
for some positive constant cq and all T ≥ 0. By arguments similar to (68) and
(70) we obtain

cq E
[∫ T

0

v2
ijk(s, T ) ds

]q
≤ cq

(
b2
H

M2H2H

K2H

)q
<∞ for i, j, k = 1, . . . ,m

where the bound does not depend on T ≥ 0. Using Remark 3 the proof is easily
concluded.

2.8.2 The on-line control trajectory

Let (X̂(t), t ≥ 0) = (X û,x(t), t ≥ 0), similarily as in Section 2.7, denote the solu-
tion of the system equations (43) with control u := û, initial conditionX û,x(0) = x
and the true parameter θ0 := θ0 ∈ Θ. This means that X̂ satisfies the stochastic
differential equation driven by a fractional Brownian motion

dX̂(t) = [A(θ0)X̂(t) +Gû(t)] dt+ σ dB(t) for t > 0,

X̂(0) = x.
(71)
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The feedback control û is defined similarily as in the formula (54) only with θ
replaced by the true parameter θ0 and by replacing W with V resulting in

û(t) := −R−1B∗[P (θ̂(t))X̂(t) + V (t)] for all t ≥ 0. (72)

The trajectory X̂(t) of the adaptively controlled system evolves according to
(43) in which we substitute û for u and obtain

dX̂(t) =
{[
A(θ0)−GR−1G∗P (θ̂(t))

]
X̂(t)−GR−1G∗V (t)

}
dt+ σ dB(t)

for all t > 0,

X̂(0) = x.

(73)

The following proposition is essential for the proof of the main theorem of
the thesis. It solves a difficulty that is at the heart of the problem of adaptive
control, namely, the question of the stability of the adaptively controlled system.
The main task is to cope with the fact that the matrix

A(θ0)−GR−1G∗P (θ̂(t)), for t ≥ 0

governing the evolution of the adaptively controlled system, cf. (73), is not nec-
essarily exponentially stable. We obtain an estimate of the same quality as for
the optimally controlled system which we formulated in Proposition 42.

We first prove that the adaptively controlled trajectory is well defined and
has continuous moments.

Proposition 52. The process X̂ defined as a solution to the equation (73) is
a well defined continuous and K(t)-progressive process. The process is unique
in the sense that if there is another process X̃ satisfying (73), then P{X̂(t) =
X̃(t), for all t ≥ 0} = 1.

Moreover, E|X̂(t)|
2q

is continuous in t on R+ for all q ≥ 1.

Proof. Recall, that we observed at the start of Section 2 that the fractional Brow-
nian motion B is K(t)-progressive.

Fix q > 0. By assumptions, θ̂ is continuous. By Theorem 38, P (θ) is con-
tinuous in θ ∈ Θ. Since A was assumed to be continuous, we obtain that
AP (θ) = A(θ) − GR−1G∗P (θ) is continuous in θ ∈ Θ. Moreover, since Θ is
compact, we obtain that

esssup
ω∈Ω

sup
t≥0
‖AP (θ̂(t, ω))‖

2q
<∞.

By Proposition 51 using the Fubini theorem we have E
∫ t

0
|V (r)|2qdr ≤ tDq <∞

for all t ≥ 0. This implies that V ∈ L1
loc(R+;Rm×m) a.s. We can thus use

Theorem 33 to conclude that X̂ is continuous global and unique.
Fix T > 0 and 0 ≤ s ≤ T . The random variable 2|sup0≤r≤T X̂(s)|

2q
is an

integrable majorant by previous considerations and the estimate in Theorem 33.
The process X̂, and X̂2q in turn, was already proved to be continuous. We may
use the dominated convergence theorem and write

E
∣∣∣X̂(t)

∣∣∣2q − E
∣∣∣X̂(s)

∣∣∣2q ≤ E
[∣∣∣X̂(t)

∣∣∣2q − ∣∣∣X̂(s)
∣∣∣2q]→ 0 as t→ s so that t < T.

Hence E|X̂|
2q

is continuous. This concludes the proof.
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We will need one rather technical lemma.

Lemma 53. Fix q ≥ 1, natural numbers m and n, a stable matrix A ∈ Rm×m,
a matrix c ∈ Rm×n and an n-dimensional fractional Brownian motion B with
Hurst parameter H > 1/2. Let S be the flow map of A. Then

∫ t
0
S(t, r)cdB(r) is

well defined for all t ≥ 0 and there exists a positive constant Fq so that

E
∣∣∣∣∫ t

0

S(t, r)c dB(r)

∣∣∣∣2q < Fq for all t ≥ 0.

Proof. It is well known, cf. e.g. Section 12.14 in Lin & Bai (2010) on p. 176, that
all moments of a Gaussian variable are equivalent. It is hence enough to consider
q = 1.

Let us first calculate∫ t

0

ae−b(t−r) dr =
a

b

(
1− e−bt

)
≤ a

b
for all t ≥ 0 (74)

where a and b are arbitrary constants.
By linearity of the stochastic integral and triangle inequality, we first rewrite

for every coordinate i = 1, . . . ,m(
E
∫ t

0

S(t, r)c dB(r)

)
i

=
m∑
j=1

m∑
k=1

cjk E
∫ t

0

Sij(t, r) dBk(r) for all t ≥ 0. (75)

Since A is stable, there exist positive constants M and K so that |Sij(t, r)| ≤
‖S(t, s)‖ ≤Me−K(t−s) for all t ≥ s ≥ 0, i, j = 1, . . . ,m. This means that∫ t

0

S
1
H
ij (t, r) dr ≤M

1
H

∫ t

0

e−
K
H

(t−r) dr ≤ HM
1
H

2K
.

We obtained that Sij(t, r) ∈ L
1
H (R+). By Remark 29 it means that Sij(t, r) ∈ |H|

and hence all the stochastic integrals in (75) are well defined for all t ≥ 0 and
hence also

∫ t
0
S(t, r)cdB(r) is.

By Remark 29 we have that there exists a positive constant bH so that

E
(∫ t

0

Sij(t, r) dB(r)

)2

≤ b2
H

(∫ t

0

S
1
H
ij (t, r) dr

)2

≤

(
HM

1
H

2K

)2

for all t ≥ 0. Using (75) and Remark 3 we obtain for all t ≥ 0

E
∣∣∣∣∫ t

0

S(t, r)c dB(r)

∣∣∣∣2 ≤ m3

m∑
j=1

m∑
k=1

cik E
∣∣∣∣∫ t

0

Sij(t, r) dBk(r)

∣∣∣∣2 ≤ m5‖c‖M
2

2K
.

The proof is thus concluded.

Proposition 54. Let X̂ be the process defined in (73) and let q ≥ 1. Assume
there exist nonnegative continuous functions g, h : R+ → R+ such that g(t) → 0
as t→∞ and h is bounded satisfying

E
(∥∥∥P (θ0)− P (θ̂(t))

∥∥∥∣∣∣X̂(t)
∣∣∣)2q

≤ g(t)E
∣∣∣X̂(t)

∣∣∣2q + h(t) for all t ≥ 0. (76)
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Then there exists a positive constant Eq so that for each t > 0 the estimate

E
∣∣∣X̂(t)

∣∣∣2q ≤ Eq. (77)

is satisfied.

Remark 55. Denote

g(t) := E
∥∥∥P (θ0)− P (θ̂(t))

∥∥∥ for t ≥ 0.

By Corollary 40 we have that g(t)2q → 0 as t→∞.
The condition (76) is satisfied in two basic cases. If there exists t0 ≥ 0 so that

the estimate θ̂(t) is independent of F(t) for all t ≥ t0, i.e. if F(t) is independent
of G(t) for all t ≥ 0.

Or, in the case when ‖P (θ0)− P (θ̂(t))‖ and |X̂(t)| are negatively quadrant
dependent for all t ≥ t0 for some t0 ≥ 0 i.e.

P
(∥∥∥P (θ0)− P (θ̂(t))

∥∥∥ ≥ x,
∣∣∣X̂(t)

∣∣∣ ≥ y
)

≤ P
(∥∥∥P (θ0)− P (θ̂(t))

∥∥∥ ≥ x
)
P
(∣∣∣X̂(t)

∣∣∣ ≥ y
)

(78)

for all real x, y and all t ≥ t0. Since both ‖P (θ0)− P (θ̂(t))‖ and |X̂(t)| are
nonnegative, it is enough to check condition (78) for nonnegative x and y only.

Let ‖P (θ0)− P (θ̂(t))‖ and |X̂(t)| are negatively quadrant dependent for all
t ≥ t0. Choose x′, y′ ∈ R+ and set x = x′

1
2q and y′ = y′

1
2q . Then by (78) we have

P
(∥∥∥P (θ0)− P (θ̂(t))

∥∥∥2q

≥ x′,
∣∣∣X̂(t)

∣∣∣2q ≥ y′
)

≤ P
(∥∥∥P (θ0)− P (θ̂(t))

∥∥∥2q

≥ x′
)
P
(∣∣∣X̂(t)

∣∣∣2q ≥ y′
)

for all t ≥ t0.

We obtained that ‖P (θ0)− P (θ̂(t))‖
2q

and |X̂(t)|
2q

are negatively quadrant de-
pendent for all t ≥ t0 as well.

If ‖P (θ0)− P (θ̂(t))‖ and |X̂(t)| are negatively quadrant dependent for all
t ≥ t0 then by Chapter 11.1 in Lin & Bai (2010) on p. 149 we have

E
(∥∥∥P (θ0)− P (θ̂(t))

∥∥∥2q∣∣∣X̂(t)
∣∣∣2q) ≤ E

∥∥∥P (θ0)− P (θ̂(t))
∥∥∥2q

E
∣∣∣X̂(t)

∣∣∣2q
for all t ≥ t0 and the condition (76) is satisfied.

In this view, the condition (76) can be understood as asymptotic negative
quadrant dependence of ‖P (θ0)− P (θ̂(t))‖ and |X̂(t)| as t→∞.

Proof of Proposition 54. Let us rewrite the defining equation of X̂, the equation
(73), by adding and subtracting GR−1G∗P (θ0) to obtain

dX̂(t) =
{ [
A(θ0)−GR−1G∗P (θ0)

]
X̂(t)

+GR−1G∗
[
P (θ0)− P (θ̂(t))

]
X̂(t)−GR−1G∗V (t)

}
dt+ σdB(t)

for all t > 0,

X̄(0) = x.

(79)
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By Proposition 14 the map defined by S(t, s) := exp{AP (θ0)(t−s)} for t ≥ s ≥
0 is the flow map of the deterministic matrix AP (θ0). By the stochastic variation
of constants formula in Proposition 35 and the uniqueness of X̂ warranted by
Proposition 52 we have

X̂(t) = S(t, 0)x+

∫ t

0

S(t, r)GR−1G∗
[
P (θ0)− P (θ̂(r))

]
X̂(r) dr

−
∫ t

0

S(t, r)GR−1G∗V (r) dr

+

∫ t

0

S(t, r)σ dB(r) for all t ≥ 0 a.s.

(80)

Using Remark 3, and properties of the integral we may calculate

E
∣∣∣X̂(t)

∣∣∣2q ≤ 42q

{
|x|2q‖S(t, 0)‖2q

+ E
(∫ t

0

‖S(t, r)‖
1
2‖S(t, r)‖

1
2

∥∥GR−1G∗
∥∥∥∥∥P (θ0)− P (θ̂(r))

∥∥∥∣∣∣X̂(r)
∣∣∣ dr)2q

+ E
(∫ t

0

‖S(t, r)‖
1
2‖S(t, r)‖

1
2

∥∥GR−1G∗
∥∥|V (r)| dr

)2q

+ E
∣∣∣∣∫ t

0

S(t, r)σdB(r)

∣∣∣∣2q
}

for all t ≥ 0.

Denote
µ(q) :=

2q

2q − 1
for q ≥ 1.

The matrix GR−1G∗ is deterministic and thus ‖GR−1G∗‖ can be taken out of the
expectations. Denote

C :=
∥∥GR−1G∗

∥∥.
We use the Hölder inequality in Theorem 2 with p := 2q and q := µ(q) to obtain

E
∣∣∣X̂(t)

∣∣∣2q ≤ 42q

{
|x|2q‖S(t, 0)‖2q

+

[(∫ t

0

‖S(t, r)‖
µ(q)
2 dr

)2q−1

E
∫ t

0

‖S(t, r)‖qC2q
∥∥∥P (θ0)− P (θ̂(r))

∥∥∥2q∣∣∣X̂(r)
∣∣∣2qdr]

+

[(∫ t

0

‖S(t, r)‖
µ(q)
2 dr

)2q−1

E
∫ t

0

‖S(t, r)‖qC2q|V (r)|2q dr

]

+ E
(∫ t

0

S(t, r)σdB(r)

)2q
}

for all t ≥ 0. (81)

By Theorem 37, AP (θ0) is a stable matrix and there exist positive constants
M and K so that ‖S(t, s)‖ = exp{AP (θ0)(t− s)} ≤ Me−K(t−s) for all t ≥ s ≥ 0.
Put

Mq :=
M q

qK
for q ∈ N.
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From (74) and the stability of AP (θ0), we obtain for all t ≥ 0∫ t

0

‖S(t, r)‖q dr ≤
∫ t

0

M qe−qK(t−r) dr ≤Mq (82)

and (∫ t

0

‖S(t, r)‖
µ(q)
2 dr

)2q−1

≤

[
M

µ(q)
2

µ(q)
2
K

(
1− e−

µ(q)
2
Kt
)]2q−1

≤M2q−1
µ(q)/2. (83)

To simplify notation further, we denote for q ≥ 1

M̃q := M2q−1
µ(q)/2.

By the estimate of moments of V , established in Proposition 51, there exists
a positive constant Dq such that E|V (t)|2q ≤ Dq for all t ≥ 0. Using the stability
of AP (θ0) again and calculation (82) we may estimate for all t ≥ 0∫ t

0

‖S(t, r)‖q E|V (r)|2q dr ≤ Dq

∫ t

0

M qe−qK(t−r) dr ≤MqDq. (84)

By Proposition 53 we have that there exists a positive constant Fq so that

E
∣∣∣∣∫ t

0

S(t, r)σdB(r)

∣∣∣∣2q ≤ Fq for all t ≥ 0. (85)

Realize that ‖S(t, r)‖ is deterministic and calculate using (84), (85), the as-
sumption (76) and the Fubini theorem

E
∣∣∣X̂(t)

∣∣∣2q ≤ 42q

{
M2q|x|2q

+ M̃qC
2q E

∫ t

0

‖S(t, r)‖q
∥∥∥P (θ0)− P (θ̂(r))

∥∥∥2q∣∣∣X̂(r)
∣∣∣2qdr

+ M̃qC
2q E

∫ t

0

‖S(t, r)‖q|V (r)|2q dr + Fq

}

≤ 42q

{
M2q|x|2q + M̃qC

2q

∫ t

0

‖S(t, r)‖q
[
g(r)E

∣∣∣X̂(r)
∣∣∣2q + h(r)

]
dr

+ M̃qC
2qMqDq + Fq

}

≤ c̃(t) + d̃

∫ t

0

e−qK(t−r)g(r)E
∣∣∣X̂(r)

∣∣∣2q dr (86)

for all t ≥ 0 where

c̃(t) := 42q(M2q|x|2q + M̃qC
2qMqDq + Fq) + d̃

∫ t

0

e−qK(t−r)h(r) dr

and d̃ := 42qM̃qC
2qM q is a positive constant.
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By assumptions, h is bounded, hence there exists a positive constant h̃ so that
h(t) ≤ h̃ for all t ≥ 0. By the estimate (74) we may write c̃(t) ≤ c̃ for all t ≥ 0
where

c̃ := 42q(M2q|x|2q + M̃qC
2qMqDq + Fq) +

d̃h̃

qK
.

Observe that (86) is in the form suitable for the usage of the generalized
Grönwall lemma. Fix T ≥ 0 and write

ϕ(t) ≤ c̃+ d̃e−qKt
∫ t

0

eqKrg(r)ϕ(r) dr for all 0 < t < T. (87)

Put ϕ(t) := E|X̂(t)|
2q
, t ≥ 0. Then the inequality (87) is equivalent with (86).

We know that E|X̂(t)|
2q

is continuous in t by Proposition 52. Hence the functions
ϕ, g, c̃ and the exponential are all continuous. We may use Theorem 6 and obtain
for all 0 < t < T

ϕ(t) ≤ c̃+ d̃e−qKt
∫ t

0

c̃eqKsg(s) exp

(∫ t

s

e−qKreqKrg(r) dr

)
ds,

which simplifies to

ϕ(t) ≤ c̃

[
1 + d̃

∫ t

0

e−qK(t−s)g(s) exp

(∫ t

s

g(r) dr

)
ds

]
for all 0 < t < T. (88)

Fix ε < qK. Since g(s)→ 0 as t→∞, we can find such t0 ≥ 0 that satisfies
g(t) < ε for all t ≥ t0. Moreover, there exists a positive constant C̃ so that
g(t) ≤ C̃ for all t ≥ 0. For all t ≥ t0∫ t

0

e−qK(t−s)g(s) exp

(∫ t

s

g(r) dr

)
ds

=

∫ t0

0

e−qK(t−s)g(s) exp

(∫ t0

s

g(r) dr

)
eε(t−t0) ds+

∫ t

t0

e−qK(t−s)g(s)eε(t−s) ds

= C̃K̃e−(qK−ε)t−εt0
∫ t0

0

eqKs ds+

∫ t

t0

e−(qK−ε)(t−s)g(s) ds

=
e(qK−ε)t0 − e−εt0

qK
C̃K̃e−(qK−ε)t +

∫ t

t0

e−(qK−ε)(t−s)g(s) ds

≤ e−(qK−ε)t
[
e(qK−ε)t0 − e−εt0

qK
C̃K̃ + ε

e(qK−ε)t − e(qK−ε)t0

qK − ε

]
≤ 1

qK
C̃K̃ +

ε

qK − ε
<∞ (89)

where K̃ := exp
(∫ t0

0
g(r) dr

)
. Notice that the estimate does not depend on T .

Since obviously

S̃ := sup
0≤t≤t0

c̃

[
1 + d̃

∫ t

0

e−qK(t−s)g(s) exp

(∫ t

s

g(r) dr

)
ds

]
<∞

we may set Eq := max(S̃, C̃K̃/qK + ε/(qK − ε)) and by (88) conclude that
sup0≤t ϕ(t) = sup0≤t E|X̂(t)|

2q
≤ Eq for some positive constant Eq.
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3 Adaptive ergodic linear quadratic control
problem solution

In this section, we turn to the formulation of the main result of the thesis. The
settings of Section 2.2, Section 2.4 and Sections 2.7 and 2.8 are in force.

Theorem 56. Let θ̂ be the strongly consistent estimator described in Section 2.3
and let (A1) and (A2) from Section 2.4 be satisfied.

Let û be the feedback control defined in formula (72), i.e. defined as

û(t) := −R−1G∗[P (θ̂(t))X̂(t) + V (t)] for all t ≥ 0 (90)

where V is the process defined in (66) and X̂ is the trajectory of the system
satisfying the equation (43) controlled with the control u := û. Let ū be Oracle’s
feedback control defined in formula (60), i.e. defined as

ū(t) := −R−1G∗[P (θ0)X̄(t) +W (t; θ0))] for all t ≥ 0 (91)

where (W (t; θ0), t ≥ 0) is the process defined in (51) and X̄ is the trajectory of
the system satisfying the equation (43) controlled with the control u := ū. Recall
also that in both formulas P (θ), θ ∈ Θ, is the unique nonnegative symmetric
solution of (46) which exists thanks to (A1) and (A2) by Theorem 37.

Let there exist nonnegative continuous functions gq, hq : R+ → R+ such that
gq(t)→ 0 as t→∞ and hq is bounded satisfying for q = 1, 2

E
(∥∥∥P (θ0)− P (θ̂(t))

∥∥∥∣∣∣X̂(t)
∣∣∣)2q

≤ gq(t)E
∣∣∣X̂(t)

∣∣∣2q + hq(t) for all t ≥ 0. (92)

Then
J(y, û) = J(y, ū).

and û is the optimal control, in the sense of Definition 24, for the ergodic control
problem (43) with the cost functional (39) in the class of controls u ∈ U satisfying

lim
t→∞

1

t
E〈P (θ0)Xu,x(t), Xu,x(t)〉 = 0. (93)

To prove the theorem it is sufficient to show

J(x, ū)− J(x, û) = 0 (94)

and
lim
t→∞

1

t
E〈P (θ0)X̂(t), X̂(t)〉 = 0. (95)
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Let us first calculate

J(x, ū)− J(x, û) = lim sup
T→∞

1

T
E
∫ T

0

(〈
QX̄(t), X̄(t)

〉
+ 〈Rū(t), ū(t)〉

)
−
(
〈QX̂(t), X̂(t)〉+ 〈Rû(t), û(t)〉

)
dt

= lim sup
T→∞

1

T
E
∫ T

0

(〈
Q(X̄(t)− X̂(t)), X̄(t)

〉
+
〈
QX̂(t), X̄(t)− X̂(t)

〉)
+
(〈
R(ū(t)− û(t)), ū(t)

〉
+
〈
Rû(t), ū(t)− û(t)

〉)
dt

= lim sup
T→∞

1

T
E
∫ T

0

〈
Q(X̄(t)− X̂(t)), X̄(t) + X̂(t)

〉
+
〈
R(ū(t)− û(t)), ū(t) + û(t)

〉
dt. (96)

where in the last equality, we used the symmetry of the matrices Q and R and
the fact that the scalar products are in Rm and hence are symmetric. We denote
for t ≥ 0

A1(t) :=
〈
Q(X̄(t)− X̂(t)), X̄(t) + X̂(t)

〉
,

A2(t) :=
〈
R(ū(t)− û(t)), ū(t) + û(t)

〉
.

(97)

Realize first that the integral in (96) can be calculated path-wise as a Lebesgue
integral, an ordinary Fubini theorem is in force. Using the Jensen inequality and
the ordinary Fubini theorem, we can write further

|J(y, ū)− J(y, û)| ≤ lim sup
T→∞

1

T
E
∫ T

0

|A1(t) + A2(t)| dt

≤ lim sup
T→∞

1

T

∫ T

0

E|A1(t)|+ E|A2(t)| dt. (98)

The proof of the main theorem follows. It rests on auxiliary results proved
further in the thesis.

Proof of Theorem 56. We prove (94). Lemma 66 shows that E|A1(t)| → 0 as
t → ∞. Lemma 68 shows that E|A2(t)| → 0 as t → ∞. Using Lemma 1, we
conclude by (98) that (94) is satisfied.

Only (95) is left to prove now. Since by Proposition 54 there is a positive
constant E1 such that supt≥0 E

∣∣X̂(t)
∣∣2 ≤ E1 we may write

1

t
E
〈
P (θ0)X̂(t), X̂(t)

〉
≤ 1

t
‖P (θ0)‖E

∣∣∣X̂(t)
∣∣∣2 → 0 as t→∞.

The main theorem is thus proved.

In what follows, we strive to prove that |A1(t)| as well as |A2(t)| vanish in
the mean as t → ∞. We ascertain these essential preconditions for the proof of
Theorem 56 to work in lemmas that follow. First, we will work towards breaking
down what is to be proved into small pieces.
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For t ≥ 0 denote

b1(t) := P (θ̂(t))X̂(t)− P (θ0)X̄(t).

b2(t) := V (t)−W (t; θ0).
(99)

Observe that then

ū(t)− û(t) = R−1G∗(b1(t) + b2(t)) for all t ≥ 0. (100)

Next, let us denote for t ≥ 0

b11(t) := P (θ̂(t))(X̂(t)− X̄(t)),

b12(t) := (P (θ̂(t))− P (θ0))X̄(t) (101)

and calculate for t ≥ 0

b1(t) = P (θ̂(t))X̂(t)− P (θ0)X̄(t)

= P (θ̂(t))(X̂(t)− X̄(t)) + (P (θ̂(t))− P (θ0))X̄(t) = b11(t) + b12(t).

The following Lemma provides an estimate of the limit behavior of b12(t).

Lemma 57. We have that E|b12(t)|2 → 0 as t→∞.

Proof. Using the Hölder inequality stated in Theorem 2. By Corollary 40, we
have E‖P (θ̂(t))− P (θ0)‖

4
→ 0 as t → ∞. We also have E

∣∣X̄(t)
∣∣4 ≤ C2 for all

t ≥ 0 for some positive constant C2 by Proposition 42. We may thus write

E|b12(t)|2 = E
∣∣∣(P (θ̂(t))− P (θ0))X̄(t)

∣∣∣2 ≤ (E∥∥∥P (θ̂(t))− P (θ0)
∥∥∥4

E
∣∣X̄(t)

∣∣4)1/2

≤ C2 E
∥∥∥P (θ̂(t))− P (θ0)

∥∥∥4

→ 0 as t→∞.

We are now ready to investigate how the difference X̄(t)− X̂(t) which arises
in A1(t) as well as, through ū(t)− û(t), in A2(t) behaves for t→∞. Once done,
we will be able to establish rather easily the proofs of Lemmas 66 and 68.

3.1 Controlled system trajectory convergence

The aim of this section is to prove Lemma 58. It estimates the mean-square
difference of the trajectory under Oracle’s optimal control and the trajectory
under the feasible on-line control at infinity.

Lemma 58. Recall that X̄ is the process satisfying equation (59) and X̂ is the
process satisfying equation (71). We have that

lim
t→∞

E
∣∣∣X̄(t)− X̂(t)

∣∣∣2 = 0.
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Denote
Y (t) := X̂(t)− X̄(t) for t ≥ 0. (102)

Our goal is to show that
lim
t→∞

E|Y (t)|2 = 0.

We outline the structure of the proof that follows. We proceed by breaking Y
into parts for which we prove the convergence separately. We obtain that

dY (t) = [AP (θ0)Y (t)− c1(t)− c2(t)]dt t > 0, Y (0) = 0

for
c1(t) := GR−1G∗[P (θ̂(t))− P (θ0)]X̂(t),

c2(t) := GR−1G∗[V (t)−W (t; θ0)],
(103)

and AP = AP (θ) which was defined in (47) as AP (θ) := A(θ0) − GR−1G∗P (θ0).
Solving the equation pathwise and estimating the absolute value of the solution
we further obtain in Lemma 59 that

E|Y (t)|2 ≤ 2
M

K

∫ t

0

Me−K(t−r)(E|c1(r)|2 + E|c2(r)|2)dr.

We then turn to proving that c1 and c2 vanish in mean-square as t→∞. To prove
this for c2 turns out to be rather technical and requires multiple technical lemmas.
The convergence of c2 in mean-square is finally proved in Lemma 65. Having
proved that, it is sufficient to use L’Hôpital rule and obtain that E|Y (t)| → 0 as
t→∞.

We start by noting that X̄ and X̂ are well defined since they are solutions of
stochastic differential equations with coefficients satisfying proper requirements
of Theorem 33. For the process X̄ this follows from Duncan et al. (2015) and for
X̂ this follows from Proposition 52

Calculate symbolically, using the equations which X̄ and X̂ satisfy, namely
(61) and (73). We write differentials only, omitting the integral signs to enhance
readability. For every t ≥ 0 it holds a.s.

dY (t) = dX̂(t)− dX̄(t)

= A(θ0)(X̂(t)− X̄(t)) dt−GR−1G∗[P (θ̂(t)) X̂(t)− P (θ0) X̄(t)] dt

−GR−1G∗(V (t)−W (t; θ0)) dt

= A(θ0)[X̂(t)− X̄(t)] dt

−GR−1G∗
{
P (θ0)[X̂(t)− X̄(t)] + [P (θ̂(t))− P (θ0)]X̂(t)

}
dt

−GR−1G∗[V (t)−W (t; θ0)] dt

= [A(θ0)−GR−1G∗P (θ0)][X̂(t)− X̄(t)] dt

−GR−1G∗
{

[P (θ̂(t))− P (θ0)]X̂(t) + [V (t)−W (t; θ0)]
}
dt. (104)

Note that the diffusion term σ dB(t) is present and equal in both differentials, in
dX̂(t) and in dX̄(t), and hence cancels.

Note that for every t ≥ 0, AP is a deterministic stable matrix in Rm×m whereas
c1(t) and c2(t) are random processes with values in Rm that are continuous by
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Proposition 52 and the fact that P (θ̂(t)) and W (t; θ0) are continuous in t. In
the notation introduced in (102) and (103), the formula obtained in (104) can be
expressed as

dY (t) = [APY (t)− c1(t)− c2(t)]dt t > 0, Y (0) = 0, (105)

It will be convenient to reformulate the fact in the language of ordinary differential
equations. We will use this approach to prove the following lemma.

Lemma 59. There exist positive constant M and K so that for every t ≥ 0 we
have

E|Y (t)|2 ≤ 2
M

K

∫ t

0

Me−K(t−r)(E|c1(r)|2 + E|c2(r)|2)dr.

Proof. As the first step, we will study a particular linear ordinary differential
equation with random coefficients. Observe, that AP is a deterministic matrix
which simplifies theoretical considerations considerably. Study the equation

Ż(t) = [APZ(t)− c1(t)− c2(t)] t > 0, Z(0) = 0, (106)

where the unknown is a random process Z : R+ × Ω→ Rm and the derivative is
understood pathwise. A process Z : R+×Ω→ Rm is a solution of (106) if Z(·, ω)
is a solution of the ordinary differential equation

ż(t) = [AP z(t)− c1(t, ω)− c2(t, ω)] t > 0, z(0) = 0,

for every ω ∈ Ω in the sense of Definition 7. According to (105) the process Y is
a solution to the differential equation with random coefficients (106).

Let L(t, s) be the flow map of AP and Ω′ be the set of full probability where
both processes c1 and c2 are continuous. By Theorem 10 applied for every ω ∈ Ω′

we obtain that

Ỹ (t, ω) = −
∫ t

0

L(t, r)(c1(r, ω) + c2(r, ω)) dr for all t ≥ 0 and all ω ∈ Ω′.

Since the equation (106) is linear, by Corollary 8 its solutions are global and
unique. Since the process Y solves the equation as well as Ỹ , we obtain that
there exists a version of Y for which Y = Ỹ , or put differently there exists Ω′′ of
full probability so that

Y (t, ω) = −
∫ t

0

L(t, r)(c1(r, ω) + c2(r, ω)) dr for all t ≥ 0 and ω ∈ Ω′′ ∩ Ω′.

(107)
The rest of the proof is done pathwise, we omit the randomness parameter ω

for clarity. All formulas are understood to hold for all ω ∈ Ω′ ∩ Ω′′.
Using triangle inequality and properties of the Lebesgue integral on (107) we

obtain

|Y (t)| ≤
∫ t

0

‖L(t, r)‖(|c1(r)|+ |c2(r)|) dr for all t ≥ 0.

By the detectability and stabilizability assumptions and Theorem 37 the flow map
L is stable, i.e. there exist positive constants M and K such that they satisfy

‖L(t, s)‖ ≤Me−K(t−s) for all t ≥ s ≥ 0.
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Hence using the Hölder inequality we can write

E|Y (t)|2 ≤
∫ t

0

Me−K(t−r)dr

∫ t

0

Me−K(t−r)E(|c1(r)|+ |c2(r)|)2 dr

≤ 2
M

K

∫ t

0

Me−K(t−r)(E|c1(r)|2 + E|c2(r)|2) dr

for all t ≥ 0. We have that Ω′ ∩Ω′′ is of full probability since P(Ω \ (Ω′ ∩Ω′′)) ≤
P(Ω\Ω′)+P(Ω\Ω′′) = 0, by the fact that Ω′ and Ω′′ are of full probability which
concludes the proof.

It is now easy to see that the proof of Lemma 58 will follow if we prove that
c1 and c2 vanish at infinity in mean square. This is what we do next.

Lemma 60. We have that E|c1(t)|2 → 0 as t→∞.

Proof. By Proposition 54 we have supt≥0 E|X̂(t)|
4
≤ E2 for some positive constant

E2. By Corollary 40, E‖P (θ̂(t))− P (θ0)‖
4
→ 0 as t → ∞. Using the Hölder

inequality stated in Theorem 2 we may write

E
∣∣∣(P (θ̂(t))− P (θ0))X̂(t)

∣∣∣2 ≤ (E∥∥∥P (θ̂(t))− P (θ0)
∥∥∥4

E
∣∣∣X̂(t)

∣∣∣4)1/2

≤ D2 E
∥∥∥P (θ̂(t))− P (θ0)

∥∥∥4

→ 0 as t→∞.

Combining these facts and realizing that GR−1G∗ is a deterministic matrix, we
obtain

E|c1(t)|2 ≤ D2

∥∥GR−1G∗
∥∥E∥∥∥P (θ̂(t))− P (θ0)

∥∥∥4

→ 0 as t→∞,

which concludes the proof.

Proving that c2 vanishes in mean square at infinity requires some fine esti-
mates. It will be convenient to study fist the properties of the difference of the
processes V (t) and W (t; θ0) as t → ∞. Lemma 65 provides an essential result
concerning a mean square behavior of the difference at infinity.

To prove it, we will need a set of rather technical lemmas. Their meaning will
become clear first in the proof of Lemma 65. It may be beneficial for the reader
to first look into the proof of Lemma 65 before studying the technical lemmas
which follow now.

Lemma 61. There is a positive constant C such that∫ ∞
t

e−K(u−t)(u− t)uH−
1
2du ≤ CtH−

1
2 for all t ≥ 0.

Proof. Realize that tH−
1
2 e−Kt → 0 as t→∞ and calculate∫ ∞

t

e−Ku(u − t)uH−
1
2du =

∫ ∞
t

e−KuuH+ 1
2du − t

∫ ∞
t

e−KuuH−
1
2du (108)
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The first integral is a partial gamma function. The gamma function is hence
the integrable majorant of the integrand and by the continuity of the inte-
gral

∫∞
t
e−KuuH+ 1

2du → 0 as t → ∞. By the same arguments we have that∫∞
t
e−KuuH−

1
2du→ 0 as t→∞. Using the L’Hôpital rule

lim
t→∞

∫∞
t
e−KuuH−

1
2du

1
t

= lim
t→∞

e−KttH−
1
2

1
t2

= 0.

Using the L’Hôpital rule once more calculate

lim
t→∞

1

tH−
1
2

∫ ∞
t

e−K(u−t)(u− t)uH−
1
2du = lim

t→∞

∫∞
t
e−Ku(u− t)uH− 1

2du

tH−
1
2 e−Kt

= lim
t→∞

∫∞
t
ue−KuuH−

1
2du−

∫∞
t
te−KuuH−

1
2du

Ke−Kt tH−
1
2 − (H − 1

2
)e−Kt tH−

3
2

= lim
t→∞

e−KttH+ 1
2 − e−KttH+ 1

2 −
∫∞
t
e−KuuH−

1
2

Ke−Kt tH−
1
2 − (H − 1

2
)e−Kt tH−

3
2

= lim
t→∞

∫∞
t
e−KuuH−

1
2

Ke−Kt tH−
1
2 − (H − 1

2
)e−Kt tH−

3
2

= lim
t→∞

e−KttH−
1
2

K2e−Kt tH−
1
2 − 2(H − 1

2
)Ke−Kt tH−

3
2 + (H − 1

2
)(H − 3

2
)e−Kt tH−

5
2

= lim
t→∞

1

K2 − 2(H − 1
2
)Kt−1 + (H − 1

2
)(H − 3

2
)t−2

=
1

K2
.

This means that t
1
2
−H ∫∞

t
e−K(u−t)(u− t)uH− 1

2du is bounded in t by some positive
constant C because it converges and the proof is thus concluded.

Lemma 62. There exists a positive constant D such that for all t ≥ s ≥ 0, t ≥ 1
we have

t
1
2
−H
∫ ∞
t

(r − t)e−K(r−t)K̇H(r, s) dr ≤ Ds
1
2
−H . (109)

Proof. To simplify notation, all formulas in the proof hold for all t ≥ s ≥ 0, t ≥ 1
if nothing else is specified.

Recall that by definition in (20) we have

K̇H(r, s) = cH

(r
s

)H− 1
2

(r − s)H−
3
2 ≥ 0 for all r > s ≥ 0.

Hence we can write the left hand side of (109) as

I(t) :=

∫ ∞
t

t
1
2
−H(r − t)e−K(r−t)cH

(r
s

)H− 1
2

(r − s)H−
3
2 dr.

Realizing that t ≥ s by assumptions and that H − 3/2 < 0 since H < 1, and
hence (r − s)H−3/2 is increasing in s we can estimate

I(t) ≤ cHt
1
2
−Hs

1
2
−H
∫ ∞
t

e−K(r−t)rH−
1
2 (r − t)H−

1
2 dr. (110)
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We split the integral on the right hand side of (110) so that we are able to
estimate it from above and start estimating one of the parts: We use substitution
x := r − t on the integral∫ t+1

t

e−K(r−t)rH−
1
2 (r − t)H−

1
2 dr

and realize that x ≤ 1 and H − 1/2 > 0 to obtain∫ t+1

t

e−K(r−t)rH−
1
2 (r − t)H−

1
2 dr ≤

∫ 1

0

e−KxtH−
1
2

(x
t

+ 1
)H− 1

2
dx.

Now since 0 < H − 1/2 < 1 and x/t+ 1 ≥ 1 we have that

tH−
1
2

∫ 1

0

e−Kx
(x
t

+ 1
)H− 1

2
dx ≤ tH−

1
2

∫ 1

0

e−Kx
(x
t

+ 1
)
dx

The integral converges and is bounded for all t ≥ 1. Hence we obtained a positive
constant D′ so that

tH−
1
2

∫ 1

0

e−Kx
(x
t

+ 1
)
dx = D′ tH−

1
2 for all t ≥ 1. (111)

We turn to estimate the second one of the two parts, i.e.∫ ∞
t+1

e−K(r−t)rH−
1
2 (r − t)H−

1
2 dr

Realizing that r − t ≥ 1 and 0 < H − 1
2
< 1 in the integral∫ ∞

t+1

e−K(r−t)rH−
1
2 (r − t)H−

1
2 dr ≤

∫ ∞
t+1

e−K(r−t)rH−
1
2 (r − t) dr

≤
∫ ∞
t

e−K(r−t)rH−
1
2 (r − t) dr

we can use Lemma 61 to obtain the existence of a positive constant C ′ so that∫ ∞
t+1

e−K(r−t)rH−
1
2 (r − t)H−

1
2 dr ≤ C ′tH−

1
2 . (112)

Combining (111) and (112) and looking back at (110) we obtain that for some
positive constant D we have

I(t) ≤ cHt
1
2
−Hs

1
2
−H(D′ + C ′)tH−

1
2 = Ds

1
2
−H for all t ≥ s > 0 and t ≥ 1.

Lemma 63. Fix δ < 3/2−H. Let f be a nonnegative function such that tδf(t)
vanishes at infinity. Then for every ε > 0 there exists t0 > 0 so that for all
r ≥ t ≥ t0 we have∫ t

0

s
1
2
−Hf(s)K̇H(r, s) ds ≤ cHr

H− 1
2 t

1
2
−H−δε. (113)
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Proof. All equalities hold for r ≥ t ≥ 0. By Definition 20 we first write∫ t

0

s
1
2
−Hf(s)K̇H(r, s) ds = cH

∫ t

0

f(s)
( r
s2

)H− 1
2

(r − s)H−
3
2 ds.

Realizing that r ≥ t in the integral and that (r − s)H−3/2 is decreasing in r, we
obtain

cH r
H− 1

2

∫ t

0

f(s)s1−2H(r − s)H−
3
2 ds ≤ cH r

H− 1
2

∫ t

0

f(s)s1−2H(t− s)H−
3
2 ds.

Substituting x := s/t we obtain

cH r
H− 1

2 t
1
2
−H
∫ 1

0

f(tx)x1−2H(1− x)H−
3
2 dx

= cH r
H− 1

2 t
1
2
−H−δ

∫ 1

0

(tx)δf(tx)x1−2H−δ(1− x)H−
3
2 dx

Since the integral
∫ 1

0
x1−2H−δ(1− x)H−

3
2 has a value of a beta function, which is

assured by the assumption H > 1/2 and δ < 3/2 −H and (tx)δf(tx) converges
by assumptions, and hence is bounded, we can use the dominated convergence
theorem to obtain that for every ε > 0 there exists t0 > 0 so that for all t ≥ t0
we have ∫ 1

0

(tx)δf(tx)x1−2H−δ(1− x)H−
3
2 dx < ε.

Hence we have

cH r
H− 1

2 t
1
2
−H
∫ 1

0

f(tx)x1−2H(1−x)H−
3
2 dx ≤ cHr

H− 1
2 t

1
2
−H−δε for all r ≥ t ≥ t0.

Lemma 64. Let f be a nonnegative function vanishing at infinity. Then∫ t

0

f(s)

{∫ ∞
t

e−K(r−t)(r − t)K̇H(r, s) dr

}2

ds→ 0 as t→∞. (114)

Proof. Let I(t) for t ≥ 0 denote the integral in (114). Rewrite the integral using
the Fubini theorem as∫ ∞

t

e−K(v−t)(v − t)
∫ t

0

f(s)K̇H(v, s)

(∫ ∞
t

e−K(u−t)(u− t)K̇H(u, s) du

)
ds dv

for all t ≥ 0.
By Lemma 62 we obtain

I(t) ≤ tH−
1
2

∫ ∞
t

e−K(v−t)(v − t)
∫ t

0

f(s)K̇H(u, s)Cs
1
2
−H ds dv

for all t ≥ 1.
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By Lemma 63 we obtain that for every ε > 0 there is a t′0 > 0 so that for all
t ≥ t0 := max(t′0, 1) we may write

I(t) ≤ t
1
2
−H
∫ ∞
t

e−K(v−t)(v − t)FCuH−
1
2 ε dv

for all t ≥ 1.
By Lemma 61 there exists a constant C ′ so that I(t) ≤ C ′ε for all t ≥ t0.

Hence I(t)→ 0 as t→∞ and the proof is concluded.

Lemma 65. Let (W (t; θ), t ≥ 0) be the process defined in (63), i.e.

W (t; θ) := E
[∫ ∞

t

Ψ(s− t; θ)P (θ)σ dB(s)
∣∣∣Ft] for t ≥ 0 and θ ∈ Θ (115)

and (V (t), t ≥ 0) be the process defined in (66) by coordinates as

Vi(t) :=
m∑
j=1

m∑
k=1

n∑
l=1

σkl

∫ t

0

vijk(s, t) dNl(s) for t ≥ 0 (116)

where
vijk(s, t) :=

∫ ∞
t

Ψij(r − t; θ̂(s))Pjk(θ̂(s))K̇H(r, s) dr.

Recall that b2(t) := V (t) − W (t; θ0) for t ≥ 0. We have that E|b2(t)|2 → 0 as
t→∞.

Proof. By Proposition 48 we have the representation

Wi(t; θ0) =
m∑
j=1

m∑
k=1

n∑
l=1

σkl

∫ t

0

wijk(s, t) dNl(s) for t ≥ 0 a.s. (117)

where
wijk(s, t) :=

∫ ∞
t

Ψij(r − t; θ0)Pjk(θ0)K̇H(r, s) dr.

In the whole proof the numbers i, j, k and l are reserved for coordinate indexes
and are quantified in all formulas, if they are left free, to take on arbitrary values
i, j, k = 1, . . . ,m and l = 1, . . . , n.

Denote

fijk(r; θ) := Ψij(r; θ)Pjk(θ)−Ψij(r; θ0)Pjk(θ0) r ≥ 0 and θ ∈ Θ.

Using linearity of the stochastic integral, expectation and matrix multiplication
we obtain for all t ≥ 0

Vi(t)−Wi(t; θ0) =
m∑
j=1

m∑
k=1

n∑
l=1

σkl

∫ t

0

∫ ∞
t

fijk(r − t; θ̂(s))K̇H(r, s) dr dNl(s)

Using Remark 3 we may estimate for all t ≥ 0

E|V (t)−W (t; θ0)|2 ≤ m2

m∑
i=1

E|Vi(t)−Wi(t; θ0)|2 ≤ m6n2

m∑
i=1

m∑
j=1

m∑
k=1

n∑
l=1

σkl

E
∣∣∣∣∫ t

0

∫ ∞
t

fijk(r − t; θ̂(s))K̇H(r, s) dr dNl(s)

∣∣∣∣2. (118)
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Let us now decompose fijk so that for all r ≥ 0 and θ ∈ Θ

fijk(r; θ) = [Ψij(r; θ)−Ψij(r; θ0)]Pjk(θ0) −Ψij(r; θ) [Pjk(θ0)− Pjk(θ)] .

This way, using linearity again we arrive at∫ t

0

∫ ∞
t

fijk(r − t; θ̂(s))K̇H(r, s) dr dNl(s) = Iijkl(t)− Jijkl(t) (119)

for all t ≥ 0 where

Iijkl(t) :=

∫ t

0

∫ ∞
t

(
Ψij(r − t; θ̂(s))−Ψij(r − t; θ0)

)
Pjk(θ0)K̇(r, s) dr dNl(s)

Jijkl(t) :=

∫ t

0

∫ ∞
t

Ψij(r − t; θ̂(s))
(
Pjk(θ0)− Pjk(θ̂(s))

)
K̇(r, s) dr dNl(s)

Using Remark 3 we may write

E|Iijkl(t)− Jijkl(t)|2 ≤ 2EI2
ijkl(t) + 2EJ2

ijkl(t) for all t ≥ 0. (120)

First concentrate on Iijkl. By the Itô isometry and realizing that K̇H(r, s) is
nonnegative for r > s ≥ 0, cf. (20), we obtain for all t ≥ 0

E I2
ijkl(t) = E

∫ t

0

{∫ ∞
t

(
Ψij(r − t; θ̂(s))−Ψij(r − t; θ0)

)
Pjk(θ0)K̇(r, s) dr

}2

ds

≤ ‖P (θ0)‖ E
∫ t

0

{∫ ∞
t

∥∥∥Ψ(r − t; θ̂(s))−Ψ(r − t; θ0)
∥∥∥K̇(r, s) dr

}2

ds.

Denote f(t) := E
∥∥∥A∗P (θ̂(t))− A∗P (θ0)

∥∥∥2

, t ≥ 0. By Proposition 39, A∗P (θ) is
stable uniformly in θ ∈ Θ so that there exist positive constants K and M so that
‖exp{A∗P (θ)t}‖ ≤Me−Kt for all t ≥ 0 and θ ∈ Θ. We can use the Fubini theorem
and apply Proposition 17 to continue as

E I2
ijkl(t) ≤M2‖P (θ0)‖

∫ t

0

f(s)

{∫ ∞
t

(r − t)e−K(r−t)K̇(r, s) dr

}2

ds

for all t ≥ 0. Thanks to stabilizability and detectability assumptions we may use
Corollary 40 to obtain f(t)→ 0 as t→∞. The assumption of Lemma 64 is thus
satisfied and we may conclude that

E I2
ijkl(t)→ 0 as t→∞.

We proceed by establishing an estimate for E J2
ijkl(t). Similarly as for I, using

the Itô isometry and realizing that K̇H(r, s) is nonnegative for r > s ≥ 0, cf. (20),
we obtain for all t ≥ 0

E J2
ijkl(t) ≤ E

∫ t

0

{∫ ∞
t

∥∥∥Ψ(r − t; θ̂(s))
(
P (θ0)− P (θ̂(s))

)∥∥∥K̇(r, s) dr

}2

ds

By Proposition 39, AP (θ) is stable uniformly with respect to θ ∈ Θ, that is there
exist positive constantsM and K so that ‖Ψ(r; θ)‖ = exp{AP (θ)r} ≤Me−Kr for
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all r ≥ 0 and every θ ∈ Θ. By assumptions imposed on the estimator, specifically
that θ̂(t) ∈ Θ for all t ≥ 0, we have that Ψ(r; θ̂(t)) = exp{AP (θ̂(t))r} ≤ Me−Kr

for all r ≥ t ≥ 0. Letting f(t) = E‖P (θ0)− P (θ̂(s))‖
2
, t ≥ 0, we can use the

Fubini theorem and write

E J2
ijkl(t) ≤

∫ t

0

f(s)

{∫ ∞
t

Me−K(r−t)K̇(r, s) dr

}2

ds for all t ≥ 0.

Realizing that by Corollary 40 again f(t)→ 0 as t→∞, we may use Lemma 64
once more to obtain E J2

ijkl(t)→ 0 as t→∞.
It is only necessary now, to combine the estimates back together. By (120)

we as well obtained E|Iijkl(t)− Jijkl(t)|2 → 0 as t → ∞. This means, looking
at (118) and (119), that E|V (t)−W (t; θ0)|2 → 0 as t → ∞. The proof of the
lemma is thus concluded.

Proof of Lemma 58. Recall that by (103),

c2(t) := GR−1G∗[V (t)−W (t; θ0)] for t ≥ 0.

Realizing that E|c2(t)|2 ≤ ‖GR−1G∗‖2E|V (t)−W (t; θ0)|2 since GR−1G∗ is a de-
terministic matrix, we may use the just proved Lemma 65 to obtain

E|c2(t)|2 → 0 as t→∞.

Recall that we defined c1(t) := GR−1G∗[P (θ̂(t)) − P (θ0)]X̂(t) for t ≥ 0 in
(103). Using the fact that GR−1G is a deterministic matrix and the Hölder
inequality we may write

E|c1(t)|2 ≤
∥∥GR−1G∗

∥∥2E
∣∣∣P (θ̂(t))− P (θ0)

∣∣∣4E∣∣∣X̂(t)
∣∣∣4 for all t ≥ 0.

In Proposition 54 we established that there exists a positive constant E2 so that
E|X̂(t)|

4
≤ E2 for all t ≥ 0. Hence using Corollary 40, we obtain E|c1(t)|2 → 0

as t→∞.
Recall that in Lemma 59, we established that

E|Y (t)|2 ≤ 2
M

K

∫ t

0

Me−K(t−r)(E|c1(r)|2 + E|c2(r)|2)dr.

Putting the partial results together using the L’Hôpital rule on the convolu-
tional integral, we obtain

E
∣∣∣X̄(t)− X̂(t)

∣∣∣2 → 0 as t→∞.

Lemma 66. We have that E|A1(t)| → 0 as t→∞, where A1 is defined in (97).

Proof. We use the Schwarz inequality and the fact that ‖Q‖ <∞ to obtain

E|A1(t)| = E
∣∣∣〈Q(X̄(t)− X̂(t)), X̄(t) + X̂(t)

〉∣∣∣
≤ ‖Q‖

(
E
∣∣∣X̄(t)− X̂(t)

∣∣∣2E∣∣∣X̄(t) + X̂(t)
∣∣∣2)1/2

.
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We can now use Remark 3 to get

E|A1(t)| ≤ 2‖Q‖
[
E
∣∣∣X̄(t)− X̂(t)

∣∣∣2(E∣∣X̄(t)
∣∣2 + E

∣∣∣X̂(t)
∣∣∣2)]1/2

.

Using Proposition 42, Proposition 54 and Lemma 58 provides estimates of bounds
on all terms. This concludes the proof of the lemma.

Lemma 67. Recall that for t ≥ 0 we defined in (99) and (101)

b1(t) = P (θ̂(t))X̂(t)− P (θ0)X̄(t) = b11(t) + b12(t)

and

b11(t) := P (θ̂(t))(X̂(t)− X̄(t)),

b12(t) := (P (θ̂(t))− P (θ0))X̄(t).

We have that E|b1(t)|2 → 0 as t→∞.

Proof. By Corollary 40, ‖P (θ̂(t))‖
2
is bounded for t ∈ R+. We can thus write

E|b11(t)|2 = E
∣∣∣P (θ̂(t))(X̂(t)− X̄(t))

∣∣∣2 ≤ E
∥∥∥P (θ̂(t))

∥∥∥2∣∣∣X̂(t)− X̄(t)
∣∣∣2

≤ K̃ E
∣∣∣X̂(t)− X̄(t)

∣∣∣2 → 0 as t→∞ (121)

by Lemma 58 for the positive constant K̃ := supθ∈Θ ‖P (θ)‖2.
Using Remark 3, we may estimate

E|b1(t)|2 ≤ 2E|b11(t)|2 + 2E|b12(t)|2

By the result established in Lemma 57, E|b12(t)|2 → 0 as t→∞. Finally, based
on (121) we may conclude that E|b1(t)|2 → 0 as t→∞.

Lemma 68. We have that E|A2(t)| → 0 as t→∞, where A2 is defined in (97).

Proof. We use, similarily as in the estimation of A1(t), the Schwarz inequality,
the Hölder inequaly as in Remark 3 and the fact that ‖R‖ <∞, to obtain

E|A2(t)| = E
〈
R(ū(t)− û(t)), ū(t) + û(t)

〉
≤ 2‖R‖

[
E|ū(t)− û(t)|2

(
E|ū(t)|2 + E|û(t)|2

)]1/2
.

We first show the boundedness of second moments of û(t) and ū(t) for all
t ≥ 0. Since by definition in (60), ū(t) = −R−1G∗(P (θ0)X̄(t) + W (t; θ0)) for
t ≥ 0, we may write for all t ≥ 0 using Remark 3

E|ū(t)|2 ≤ 2
∥∥R−1G∗

∥∥2
(
‖P (θ0)‖2E

∣∣X̄(t)
∣∣2 + E|W (t; θ0)|2

)
. (122)

The second moment of X̄(t) is bounded uniformly for all t ≥ 0 based on Propo-
sition 42. The second moment of the process W (·; θ0) is bounded uniformly for
all t ≥ 0 as well based on Proposition 43.
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Similarily, since û(t) = −R−1G∗(P (θ̂(t))X̂(t) + V (t)) we may write

E|û(t)|2 ≤ 2
∥∥R−1G∗

∥∥2
(∥∥∥P (θ̂(t))

∥∥∥2

E
∣∣∣X̂(t)

∣∣∣2 + E|V (t)|2
)

for all t ≥ 0. (123)

The process X̂ is bounded uniformly in mean square based on Proposition 54.
The process V is bounded uniformly in mean square based on Proposition 51.
Hence the process û is uniformly bounded in mean square as well. The process
‖P (θ̂(t))‖

2
is bounded for t ∈ R+ by Corollary 40.

Based on (122) and (123) we obtain that there exists a positive constant K
such that (

E|ū(t)|2 + E|û(t)|2
)1/2

< K for all t ≥ 0.

To prove the statement, we recall that according to (100) we can write ū(t) −
û(t) = R−1G∗(b1(t)+b2(t)). Since ‖R−1G∗‖ <∞, and from Lemmas 67 and 65 it
follows that R−1G∗(b1(t) + b2(t)) converges to zero in mean square, we have that
E|ū(t)− û(t)|2 → 0 as t→∞ and the lemma is proved.
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Conclusion
We studied adaptive linear quadratic stochastic ergodic control problem with
regular fractional Brownian noise, i.e. with Hurst parameter H > 1/2. The aim
was to optimally control the system

dX(t) = [A(θ0)X(t) +G(t)u(t)] dt+ σ dB(t), t > 0

X(0) = x0

with the cost functional

J(x, u) = lim sup
T→∞

1

T
E
[∫ T

0

〈QX(t), X(t)〉+ 〈Ru(t), u(t)〉 dt
]
.

Provided a strongly consistent parameter estimator of θ0 that is asymptotically
negatively quadrant dependent of the controlled systems trajectory exists, we
have proved that there is an optimal feedback control which is realizable with
no knowledge of the value of the true parameter. Our results generalize those
of Duncan et al. (2002) into multiple dimensions. Notable is that in contrast to
Duncan et al. (2002), we did not require the estimator to have a concrete form.

To suggest further direction of research, estimators which satisfy the required
criteria would have to be found. The only case we know of is the trivial case
where a strongly consistent estimator is independent of the trajectory of the
system. This is only realizable if there are two identical systems with independent
disturbances.

It would be interesting to see whether results similar to ours also hold for
the infinite-dimensional case. Since many of the results we used were actually
directed to infinite dimensions it seems, that there is enough theory which could
enable one to proof what we did here for the infinite-dimensional case.
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