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Introduction

We live in an era in which our lives are shaped by the results of the modern
material science. Even on our everyday commute to work we use technologies
which would not exist without the material science such as nanofabrics in our
clothes, the liquid crystals in the displays of our cell phones, different kinds of
alloys used in the cars we drive and the buses we ride and so forth. Among all the
diverse areas of interest that make up the material physics there are two areas of
interest which have played a critical role since the onset of the theory - electronic
transport and magnetism. The spin-orbit interaction connects both of them.

The spin-orbit interaction is a weak relativistic quantum effect - when we
take the low velocity limit of the Dirac Hamiltonian we arrive at a Hamiltonian
with many different terms and among them is one term connecting the spin σ
and the orbital momentum L of the particle. This term is very small compared
to the kinetic terms in the rest of the Hamiltonian, nevertheless it is of great
importance in solid state physics as it removes band degeneracy. It therefore gives
rise to various effects such as the Rashba-Dresselhaus effect or the anomalous Hall
effect. Since covering all the effects in one publication would require at least one
rather large book, in this work we will cover only the latter one - the anomalous
Hall effect (AHE).

The history of the anomalous Hall effect stretches back to 1881, when Edwin
E. Hall found that the Hall effect in ferromagnetic materials was ten times larger
than that of the non-magnetic materials. Soon it was empirically found that the
Hall resistivity ρxy is linearly dependent on both the magnetization Mz and the
magnetic field Hz: ρxy = R0Hz + RsMz (Pugh and Lippert, 1932). However for
a long time this effect - now known as the anomalous Hall effect - has eluded all
attempts at its theoretical explanation.

The first successful explanation was provided by Karplus and Luttinger in
1954 (Karplus and Luttinger, 1954). According to the Karplus-Luttinger theory,
if we apply an external electric field to a ferromagnetic solid, electrons acquire a
contribution to their group velocity perpendicular to the electric field now known
as the anomalous velocity. The anomalous velocity has its origin in the interband
coherence. (See Figure 1) This contribution to the anomalous Hall conductivity
is now called the intrinsic contribution and it has been shown that it is in fact
connected to the topological properties of the momentum-space. This explanation
was however soon rejected by most of the scientific community in favour of skew
scattering explanation.

The skew scattering theory has been proposed by Smit in 1955 (Smit, 1955).
According to this theory the anomalous Hall effect is caused by the fact, that after
each collision with impurity in the crystal lattice the electron scatters asymmet-
rically due to the spin-orbit interaction.

In 1970 Berger has published an article (Berger, 1970) which considered yet
another possible means of origin of the anomalous Hall effect - the side jump.
This mechanism was based on the fact that when a Gaussian wave packet is
scattered elastically by an impurity in the crystal lattice, the centre of the wave
packet shifts depending on the spin associated with it.

For a long time, there was a great controversy as to which of these three
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Figure 1: Representation of mechanisms responsible for the anomalous Hall effect.
From (Nagaosa et al., 2010)
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different theories of the origin of the anomalous Hall effect is the correct one. In
the last three decades there has been a great progress in the understanding of
AHE and we have since learned that all the three described modes of origin of the
AHE are indeed present in solids and in fact compete in creating the anomalous
Hall effect. Nevertheless there are still very few good models for computing the
anomalous Hall conductivity, so there is still a lot of area for new development.

At the break of the millennium there has been a surge in interest in the anoma-
lous Hall effect, as it became apparent, that it could provide us with much inter-
esting information about the ferromagnetic materials. There is also a prospect of
anomalous Hall effect playing a crucial role in spintronics. The anomalous Hall
effect is therefore surely worth studying and there is much potential for uncover-
ing results that will lead to a better understanding of solid state physics as well
as future new technologies.

In this work we will introduce the framework necessary for the description of
the AHE. We will then show how different mechanisms of the AHE come up in
this formalism. Then we will turn our attention to two models which describe
the AHE, we will describe the models and we will endeavour to compare these
two models and show where they differ and what are their areas of applicability.
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1. Background

In order to study the anomalous Hall effect we must first lay some groundwork
that will allow us to efficiently describe the phenomena that are responsible for it.
As was already mentioned in the introduction the AHE is a relativistic quantum
effect, so in order to describe the phenomenon in an exact manner we would have
to solve a many-body Dirac equation for something like 1024 particles. This is
not really feasible so, to get some meaningful results, we have to introduce several
approximations and work with them.

1.1 Independent electron approximation

The first approximation we will use is the independent electron approximation.
This approximation springs out of density functional theory (which is covered
e.g. in Lowitzer (2010)) which tells us that the manybody description of the
system can in effect be replaced by a description involving only a single electron
moving in effective potentials and a term called exchange correlation energy which
accounts for the interaction energy of the electrons. In the independent electron
approximation we neglect the exchange correlation energy altogether and we work
with a single-electron Dirac equation with effective external potentials. This
approximation is the most widely used in solid state physics (see e.g. Ashcroft
and Mermin (1976)) and it is in fact one of the few means of describing the
conductivity.

1.2 The Dirac and Pauli equations

In the relativistic quantum theory the state of an electron is described by a bi-
spinor wavefunction Ψ. The evolution of the electron (with charge e < 0 and
mass m) subjected to an external electric field, given by a scalar potential φ and
a vector potential A, is characterised by the Dirac equation (Itzykson and Zuber,
2012):

ĤΨ = i~
∂

∂t
Ψ; Ĥ = α · (cp + eA(r)) + βmc2 − eV (r) (1.1)

where p is the momentum of the electron and α and β are the Dirac matrices:

α =

(
σ 0
0 σ

)
with σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (1.2)

where σi are Pauli matrices and

β =

(
I2 0
0 −I2

)
. (1.3)

where I2 is a 2× 2 identity matrix.
It is possible to calculate the AHE via the Dirac equation, however it is

too complicated for our purposes and the spin-orbit effects are not so readily
apparent in the solution. Therefore we will use the weak relativistic limit of the
Dirac equation - the Pauli equation. If we take the weak-relativistic limit of the
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conductivity calculated with the Dirac Hamiltonian (Dirac conductivity) and take
the terms up to the order of 1

c2
it will correspond with the conductivity obtained

with the Pauli Hamiltonian (Pauli conductivity).(Crépieux and Bruno, 2001)
The bi-spinor wavefunction can be divided into two spinor wavefunctions -

large component ψ and small component χ. In the weak-relativistic limit we can
give an approximate relation between the two

χ(r, t) =
1

2mc

(
~
i
∇− eA(r)

)
· σφ(r, t)−

− 1

4m2c3

(
i~
∂

∂t
− V (r)−mc2

)(
~
i
∇− eA(r)

)
· σφ(r, t)

(1.4)

thus all the physical meaning is conveyed by the large component. With the
assumption of small velocities we can therefore rewrite the Dirac equation so
that it acts separately on the large and the small component.

The most simple approximation would lead to the Schroedinger equation. The
Schroedinger equation however does not contain any spin-orbit interaction term,
so in order to account for the spin-orbit interaction we have to take into account
more terms from the Dirac equation. Including all the terms up to the order of
1
c2

leads to the Pauli equation (for a detailed derivation of the Pauli equation see
e.g. (Strange, 1998)):[

E + eV (r)− 1

2m

(
p(r) +

e

c
A(r)

)2
+

1

2mc2
(E + eV (r))2 + i

µB
2mc

E(r) · p−

− µB
2mc

σ · (E(r)× p)− µBσ ·B(r)
]
ψ = 0,

(1.5)

where we have written explicitly the gradient of the scalar potential φ and the
curl of the vector potential A as electric field E and magnetic field B and we have
introduced the Bohr magneton µB = e~

2mc
The first three terms in the equation give

the ordinary Schroedinger equation, the fourth term is a relativistic correction to
the energy due to the change of mass with velocity. The fifth term is called the
Darwin term and has no classical analogy.

The last two terms involve the spin of the electron. The last one is the Zeeman
energy of the electron. It corresponds to a coupling of an external magnetic field
to the spin of the electron.

The last-but-one term can be rewritten as:

µB
2mc

σ · (E(r)× p) =
µB
2
σ ·
(

1

c
E(r)× v

)
=
µB
2
σ ·B0, (1.6)

where B0 is a magnetic field that emerges in the local frame of the electron due
to the movement of the electron through the electric field.

In a spherically symmetrical potential V (r) we can give another expression
for the last-but-one term:

σ · (E(r)× p) = σ · (∇V (r)× p) =
1

r

dV (r)

dr
σ · (r× p) =

1

r

dV (r)

dr
σ · L = λσ · L

(1.7)
where we have introduced the spin-orbit coupling constant λ. This term is the
spin-orbit coupling term. It connects the spin of the electron with its angular
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momentum and thus with its transport properties. We therefore see that this
term encompasses the magnetic properties of solids as well as their transport
properties.

1.3 Kubo formula

The effective potentials appearing in the Pauli equation make it impossible to
solve the equation exactly. We therefore have to introduce another approxima-
tion. The kinetic energy term in the Pauli equation is much larger than the
electric potential and spin orbit coupling terms. We can therefore consider the
spin-orbit coupling and the electric potential to be a small perturbation of an
unperturbed Hamiltonian. When the perturbation is small enough we may as-
sume that the response of the system is directly proportional to the perturbation
and neglect all higher orders of the perturbation series. We call this case a linear
response of the system.

The linear response theory entails the Kubo formalism which makes the for-
mulation and subsequent solution of the conductivity problem much more simple.
We will develop the Kubo formalism in this section.

Suppose we have a system in a stationary state described by a state operator
ρ and an unperturbed time-independent Hamiltonian H0. In order to calculate
the conductivity we would like to know what will be the expectation value for
the current density <j> if we add a small time-dependent perturbation W (t) that
accounts for an electric field E(t).

In the Schrödinger picture the expectation value of the current density ĵ for
a system described by a time dependent state operator ρ(t) is defined as: 〈j〉t =
Tr {ρ(t)A} (Ballentine, 1998). The equation of motion for the state operator in
the Schrödinger picture is

dρ(t)

dt
= − i

~
[H(t), ρ(t)] , (1.8)

where H(t) = H0 + W (t) is the complete Hamiltonian of the system. To get
the time dependence of the state operator it is advantageous to transform into a
Dirac picture, where the state operator has the form

ρD(t) = e
i
~H0tρ(t)e−

i
~H0t (1.9)

The equation of motion for the state operator in the Dirac picture has the form

dρD(t)

dt
=
i

~
e
i
~H0t [H0, ρ(t)] e−

i
~H0t + e

i
~H0t

∂ρ(t)

∂t
e−

i
~H0t (1.10)

=
i

~
e
i
~H0t [H0, ρ(t)] e−

i
~H0t − i

~
[H0 +W (t), ρ(t)] (1.11)

= − i
~
e
i
~H0t [W (t), ρ(t)] e−

i
~H0t (1.12)

= − i
~

[WD(t), ρD(t)] , (1.13)

with WD(t) = e
i
~H0tW (t)e−

i
~H0t. The equation of motion (1.13) along with the

initial condition ρD(0) = ρ0 is clearly satisfied by ρD(t) in the form:

ρD(t) = ρ0 −
i

~

∫ t

−∞
dt′ [WD(t′), ρD(t′)] (1.14)
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By iteration we obtain the solution in form of an infinite series

ρD(t) = ρ0 +
∞∑
n=1

(
−i
~

)n ∫ t

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tn−1

−∞
dtn·

· [WD(t1), [WD(t2), [· · · , [WD(tn), ρ0] · · · ]]]
(1.15)

This expression is exact and the only condition for it to be true is that the sum
on the right side converges. Now we will exploit the fact, that the perturbation
W (t) is small and we will keep only the leading term in the series.

ρD(t) = ρ0 −
i

~

∫ t

−∞
dt′ [WD(t′), ρ0] (1.16)

We can now transform the approximated state operator back into the Schrödinger
picture obtaining

ρ(t) = ρ0 −
i

~

∫ t

−∞
dt′e−

i
~H0t [WD(t′), ρ0] e

i
~H0t. (1.17)

With the use of the equation 1.17 we can now write the expectation value of the
current density as〈

ĵ
〉
t

= Tr
{
ρ0ĵ
}
− i

~
Tr

{∫ t

−∞
dt′e−

i
~H0t [WD(t′), ρ0] e

i
~H0tĵ

}
(1.18)

= − i
~
Tr

{∫ t

−∞
dt′ [WD(t′), ρ0] ĵD(t)

}
(1.19)

= − i
~

∫ t

−∞
dt′ 〈[jD(t),WD(t′)]〉 (1.20)

where the first term in equation 1.18 vanishes as there is no current in the unper-
turbed system. We have used invariance of trace under cyclic permutations and
we have set jD(t) = e

i
~H0tĵe−

i
~H0t.

We can now insert the explicit form of the perturbation into the equation
1.20. We will consider an electric field with the form E(t) = E0e

−i(ω+δi)t with
δ → 0+ (the term iδ ensures that for t→ −∞ the electric field vanishes and the
system is unperturbed). The perturbation associated with the electric field has
the form

W (t) = −E(t) ·P, (1.21)

where P =
∑N

i=1 qir̂i is the electric dipole moment, with qi the electric charge
and r̂i the position of the particle. Using this form of the perturbation in the
equation 1.20 we get the explicit relation between the current density expectation
value and the electric field〈

ĵµ

〉
t

=
i

~
∑
ν

∫ t

−∞
dt′ 〈[jµ,D(t), Pν,D(t′)]〉E0,νe

−i(ω+δi)t′ (1.22)

In this form the expression for the current density is still not suitable for calculat-
ing the conductivity as there is integral over all electric fields in time t′ < t. We
will have to get rid of the dependence of the electric field on time t′. In order to
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do this we will first rewrite the expectation value of the commutator in equation
(1.22) so that only the polarisation will be time dependent.

〈[jµ,D(t), Pν,D(t′)]〉 = Tr
{
ρ0

(
e
i
~H0tjµe

i
~H0(t′−t)Pνe

− i
~H0t′−

−e
i
~H0t′Pνe

− i
~H0(t′−t)jµe

− i
~H0t

)} (1.23)

= 〈[jµ, Pν,D(t′ − t)]〉 (1.24)

We can now rewrite the equation 1.22 as:〈
ĵµ

〉
t

=
i

~
∑
ν

∫ t

−∞
dt′ 〈[jµ, Pν,D(t′ − t)]〉E0,νe

−i(ω+δi)t′ (1.25)

=
i

~
∑
ν

∫ ∞
−∞

dt′Θ(t′ − t) 〈[jµ, Pν,D(t′ − t)]〉 e−i(ω+δi)(t′−t)E0,νe
−i(ω+δi)t

(1.26)

=
i

~
∑
ν

∫ ∞
−∞

dt′′Θ(−t′′) 〈[jµ, Pν,D(t′′)]〉 e−i(ω+δi)(t′′)Eν(t) (1.27)

where we have introduced the Heaviside function Θ(t). With the relation between
the current density and the electric field in this form we may now finally write
down the formula for conductivity tensor:

σµν =
i

~

∫ ∞
−∞

dtΘ(−t) 〈[jµ, Pν,D(t)]〉 e−i(ω+δi)(t) (1.28)

However this form of relationship is still not suitable for the calculations as
there appears the dipole moment. In order to get rid of the dipole moment we
will use the Kubo identity (Kubo, 1957) which is valid for any operator Â

[
Â(t), ρ

]
= −i~ρ

∫ (kBT )
−1

0

dλ
˙̂
A(t− i~λ). (1.29)

We will use Kubo formula along with a relation
˙̂
P = V ĵ where V is the volume

of the system we investigate. The conductivity tensor can then be rewritten as

σµν =
i

~
∑
ν

∫ ∞
−∞

dtΘ(−t)Tr {[jµ, Pν,D(t)] ρ0} e−i(ω+δi)(t) (1.30)

=
i

~

∫ ∞
−∞

dtΘ(−t)Tr {[Pν,D(t), ρ0] jµ} e−i(ω+δi)(t) (1.31)

=

∫ β

0

dλ

∫ ∞
−∞

dtΘ(−t)Tr
{
ρ0

˙̂
Pν,D(t− i~λ)jµ

}
e−i(ω+δi)(t) (1.32)

= V

∫ β

0

dλ

∫ ∞
−∞

dtΘ(−t)Tr {ρ0jν,D(t− i~λ)jµ} e−i(ω+δi)(t) (1.33)

= V

∫ β

0

dλ

∫ ∞
−∞

dtΘ(t)Tr {ρ0jνjµ,D(t+ i~λ)} ei(ω+δi)(t) (1.34)

This is the Kubo formula
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1.4 Bastin and Kubo-Středa formula

The Kubo formula is still too inconvenient to work with as it contains the integrals
over current densities. It is often hard to express the current densities explicitly
and even should we succeed the integrals in the Kubo formula are not generally
manageable. We will therefore derive the Kubo-Středa formula, which will be
much more convenient for the actual calculations. The Kontani model in the
next chapter will be based on the Kubo-Středa formula.

As an intermediate step in the derivation of the Kubo-Středa formula we will
first derive the Bastin formula. In derivation of the Bastin formula we start with
the Kubo formula and then we employ the free electron approximation. (Note
that in derivation of the Kubo formula we did not use the free electron approxi-
mation, so the Kubo formula could be used in a broader class of problems in the
linear response framework.) In order to account for the scattering of electrons
on impurities we will now use the configurational average of the operators in the
trace which we will denote as 〈· · · 〉c1 :

σµν = V

∫ β

0

dλ

∫ ∞
0

dtTr 〈ρ0jνjµ,D(t+ i~λ〉c e
i
~ (~ω+δi)(t). (1.35)

We will now take a step aside and transform the trace in the integral into a
more manageable form. This will permit us to explicitly integrate the expression.
The first step is to change the Dirac picture current density into the Schrödinger
picture

〈n|JD,µ(t+ i~λ)|m〉 = e
i
~ (t+i~λ)(εn−εm) 〈n|Jµ|m〉 , (1.36)

with |n>and |m>the eigenstates of the unperturbed Hamiltonian H0 with the
energy εn and εm. The free-electron approximation lets us assume that the un-
perturbed Hamiltonian H0 can be expanded as a simple series of creation and
annihilation operators: H0 =

∑
n εna

+
n an. We can also expand the current den-

sity operators this way (Büttiker, 1992)

jµ =
∑
m,n

〈m|jµ|n〉 a+man. (1.37)

This allows us to write the trace in equation (1.35) as

Tr [ρ0jνjD,µ(t+ i~λ)] =
∑
mnkl

〈m|jν |n〉 〈k|jµ|l〉 e
i
~ (t+i~λ)(εk−εl)Tr

[
ρ0a

+
mana

+
k al
]
(1.38)

=
∑
mnkl

〈m|jν |n〉 〈k|jµ|l〉 e
i
~ (t+i~λ)(εk−εl)δmlδnkf(εn) [1− f(εm)]

(1.39)

=
∑
mn

〈m|jν |n〉 〈n|jµ|m〉 e
i
~ (t+i~λ)(εn−εm)f(εn) [1− f(εm)] .

(1.40)

1We will not evaluate on the question of form of the configurational average since this work
focusses mainly on the scattering-independent type of the AHE.
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Where we have used the relation between the trace of equilibrium state operator
ρ0 and the Fermi-Dirac distribution f(ε) = 1

1+eβ(ε−µ)
:[

ρ0a
+
mana

+
k al
]

= δmlδnkf(εn) [1− f(εm)] . (1.41)

Using the equation (1.40) we can rewrite the integral in equation (1.35) as

σµν =V

∫ β

0

dλe−λ(εn−εm)×

×
∫ ∞
0

dt

〈
f(εm) [1− f(εn)]

∑
mn

〈n|jν |m〉 〈n|jµ|m〉 e
it
~ (~ω+δi+εn−εm)

〉
c

(1.42)

Integrating over λ and t we get

σµν = V
∑
mn

1− e−β(εn−εm)

εn − εm
× (1.43)

×
〈
f(εm) [1− f(εn)] 〈n|jν |m〉 〈n|jµ|m〉

i~
~ω + δi+ εn − εm

〉
c

(1.44)

We can further simplify this equation by noting that

1− eβ(εn−εm)

εn − εm
f(εm) [1− f(εn)] =

1

εn − εm
[f(εm)− f(εm)f(εn) −

−e−β(εn−εm)f(εm) [1− f(εn)]
] (1.45)

=
1

εn − εm

[
f(εm)− 1 + e−β(εn−εm)eβ(εn−µ)

(1 + eβ(εn−µ)(1 + eβ(εm−µ))

]
(1.46)

=
f(εm)− f(εn)

εn − εm
. (1.47)

We will also limit our attention to the case of static electric field and will therefore
set the frequency ω = 0. We thus obtain

σµν = i~V

〈∑
mn

f(εm)− f(εn)

(εn − εm)(δi+ εn − εm)
〈n|jν |m〉 〈n|jµ|m〉

〉
c

. (1.48)

Inserting the completeness relation I =
∫∞
−∞ dεδ(ε − H) into equation (1.48) we

obtain

σµν = i~V
∑
mn

∫ ∞
−∞

dε×

×
〈(

f(ε)δ(ε− εm)

(εn − ε)(δi+ εn − ε)
− f(ε)δ(ε− εn)

(ε− εm)(δi+ ε− εm)

)
〈m|jν |n〉 〈n|jµ|m〉

〉
c

.

(1.49)

Now we recall, that the δ in the equation is infinitesimal and that we can use the
equality of limits:

lim
δ→0+

1

(εn − ε)(εn − ε+ iδ)
= lim

δ→0+

d

dε

1

(εn − ε+ iδ)
. (1.50)
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Using the above equality and placing the terms in the equation (1.49) judiciously
we have

σµν = i~V
∑
mn

∫ ∞
−∞

dεf(ε)

〈(
〈m|jν |n〉

d

dε

(
1

δi+ εn − ε

)
〈n|jµ|m〉 δ(ε− εm)−

−〈m|jν |n〉 δ(ε− εn) 〈n|jµ|m〉
d

dε

(
1

δi+ εm − ε

))〉
c

.

(1.51)

We can rewrite the equation (1.51) using the Green functions. The Green func-
tions are defined as

G±(ε) = lim
δ→0+

(ε−H ± iδ)−1. (1.52)

Using the Green operators and expressing the current density operators as jµ =
−evµ/V the equation (1.51) now takes the form

σµν =
ie2~
V

∫ ∞
−∞

dεf(ε)Tr

〈
vν
d

dε
G+(ε)vµδ(ε−H)− vνδ(ε−H)vµ

d

dε
G−(ε)

〉
c

(1.53)

This is the Bastin equation. It connects the conductivity σµν with the trace of
a product of velocity operators, Dirac delta functions of Hamiltonian and deriva-
tions of Green functions. The only assumptions needed to derive the equation are
the linear response of the system to the perturbation and the use of the indepen-
dent electron approximation. It is almost simple enough for us to use it in the
subsequent computations. However the Dirac delta functions of the Hamiltonian
in the energy integral render it very hard to solve numerically. We will therefore
have to make one more additional step to obtain a formula for the conductivity
which we will be able to use for our computations.

We will first get rid of the Dirac delta functions with the help of identity
δ(ε−H) = − 1

2iπ
(G+(ε)−G−(ε)):

σµν = − e2~
2πV

∫ ∞
−∞

dεf(ε)Tr

〈
vν
d

dε
G+(ε)vµ(G+(ε)−G−(ε)) −

−vν(G+(ε)−G−(ε))vµ
d

dε
G−(ε)

〉
c

.

(1.54)

Then we will formally split the integral in two and integrate the first half per
partes and keep the second half the same

σµν = σIµν + σIIµν (1.55)

with

σIµν = − e2~
4πV

∫ ∞
−∞

dε
df(ε)

dε
Tr
〈
vνG

+(ε)vµ(G+(ε)−G−(ε)) −

−vν(G+(ε)−G−(ε))vµG
−(ε)

〉
c
.

(1.56)

and

σIIµν = − e2~
4πV

∫ ∞
−∞

dεf(ε)Tr

〈
vν
d

dε
G+(ε)vµG

+(ε)− vνG+(ε)vµ
d

dε
G−(ε) −

−vν
d

dε
G+(ε)vµG

−(ε)) + vνG
−(ε))vµ

d

dε
G−(ε)

〉
c

.

(1.57)
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This expression can be further simplified by noting that dG±(ε)
dε

= − (dG±(ε))
2

and by using the relation u~vµ = [rµ, H] = −[rµ, G
−1]. Using these relations and

integrating per partes once again we arrive at

σIIµν = − e2~
4πV

∫ ∞
−∞

dε
df(ε)

dε
Tr
〈
(G+(ε)−G−(ε))(rµvν − rνvµ)

〉
c
. (1.58)

Equations (1.55), (1.56) and (1.58) are the Středa equations.

1.5 Anomalous hall effect

Finally we are in a position to take a look at some of the phenomena that give
rise to the anomalous Hall effect. Since we are working only with the weak
relativistic approximation of the Dirac Hamiltonian (the Pauli Hamiltonian) we
will not arrive at all of the phenomena and the picture will thus be incomplete.
However in the current state of solid state physics it seems that most of the AHE
can be attributed to the three phenomena mentioned in this section.

There are currently three known formalisms in which we can describe the
anomalous Hall effect - the Boltzmann formalism, the Kubo formalism and the
Keldysh formalism. The Boltzmann formalism is a semiclassical formalism based
on the Boltzmann equation. Its main advantage is that it allows us to identify
the processes that lead to the anomalous Hall effect. Its disadvantage is that is
it impossible to treat the anomalous Hall effect systematically with the Boltz-
mann formalism and it is possible that we could omit some effects leading to the
AHE. The Kubo formalism is based on the Green’s functions and it is a fully
microscopical theory. It is therefore formally exact within the linear limit and it
automatically encompasses all the processes leading to the AHE. However it is
more complicated to actually compute exact results in and it does not give much
information about the underlining physical processes contributing to the AHE.
The Keldysh formalism is also based on the Green’s functions. It is possible to
calculate nonequilibrium problems with it, however it is even harder to work with,
than the Kubo formalism and we will thus not present it in this work.

In this section we will describe the three processes outlined in the Introduction.
To describe the processes we will use the language of the Boltzmann formalism.
In the next chapter we will show an application of the Kubo formalism to a
specific model.

Following Nagaosa et al. (Nagaosa et al., 2010), we will formally divide the AH
conductivity into three parts. We will then attribute specific physical processes
to these contributions.

The anomalous Hall conductivity can be divided into two parts according to
the dependence of the anomalous Hall conductivity on the Bloch state transport
lifetime τ . The anomalous hall conductivity can be expressed as a sum of a
conductivity independent of the Bloch state transport lifetime σxy ∼ τ 0 and
a part linearly dependent on the transport lifetime, σxy ∼ τ 1. We will call
the linearly dependent part the skew-scattering contribution σskewxy . The part
independent of the Bloch transport lifetime can be further divided. We will call
the zero frequency (DC) limit of the τ independent anomalous Hall conductivity
the intrinsic contribution σintxy . The third contribution is called the side jump
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contribution and is defined as the rest of the anomalous Hall conductivity: σsjxy =
σxy − σskewxy − σintxy .

Skew-scattering contribution The skew scattering contribution was first
recognised by Smit in 1955 and was long considered by the scientific community
to be the only origin of the AHE. This is due to the fact that the skew scattering is
proportional to the Bloch state transport lifetime and will thus be the dominating
contribution in nearly perfect crystals, which were used in the early experiments
with the anomalous Hall effect.

The mechanism of the skew scattering can be easily seen from the Lipp-
mann–Schwinger equation:∣∣ψ±〉 = |φ〉+

1

E −H0 ± iε
V
∣∣ψ±〉 (1.59)

where |ψ±〉 is the scattered state, |φ〉 is the original state, H0 is the unperturbed
Hamiltonian describing the state without the source of scattering and V is the
scattering potential. If we take into account the spin orbit interaction, the matrix
elements of the impurity scattering potential are (Nagaosa et al., 2010):

〈k′s′|V |ks〉 = Ṽk,k′

(
δs′,s +

i~2

4m2c2
(〈s′|σ |s〉 × k′) · k

)
(1.60)

The second term due to SOI is responsible for the fact that the scattering prob-
ability is asymmetrical with respect to the the wave vector k and it is different
for right-handed transitions with respect to the magnetization and for the left-
handed ones. This will result in a momentum perpendicular to the magnetization
of the sample and to the incidental momentum. As can be seen in the equation
(1.60), this effect is also linearly dependent on the incidental momentum of the
scattered electron and therefore on the longitudinal current in the sample. The
skew-scattering contribution to the anomalous Hall conductivity is also propor-
tional to the potential Ṽk,k′ and therefore proportional to the Bloch transport
lifetime in the sample. Since the longitudinal conductivity is also proportional
to the Bloch transport lifetime, the anomalous Hall resistivity originating in the
skew scattering will be proportional to the longitudinal resistivity.

Intrinsic contribution The intrinsic contribution was the first contribu-
tion described in theory. However it had been discarded for a long time. This was
because the anomalous velocity giving rise to the AHE depends on the accelera-
tion of a wave packet k̇ and it was argued that in an equilibrium the acceleration
would be zero. However, since the electrons undergo many collisions, there is
indeed a non-zero acceleration of the wave packets in the material even if it is in
equilibrium and the intrinsic contribution is always present.

The anomalous velocity can be seen, when we consider a semiclassical La-
grangian L acting on a wave packet Ψn,kc,rc in band n with center position rc
and average wave vector kc. The wave packet then has the form (Nagaosa et al.,
2010):

Ψn,kc,rc =
1√
V

∑
k

wkc,rc(k)ei(k−kc)·anei(r−rc)·kunk(r), (1.61)
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where wkc,rc are real coefficients and an = 〈un,k| i∂kunk〉 is a Berry connection of
the Bloch state.

The Lagrangian has the form:

L = 〈Ψn,kc,rc| i
∂

∂t
−H0 + eV |Ψn,kc,rc〉 (1.62)

= ~kc · rc + ~k̇c · an(kc)− E(kc) + eV (rc). (1.63)

We can therefore write the Euler-Lagrange conditions as:

~k̇c = −eE (1.64)

ṙc =
∂En(kc)

∂kc
− ~kc × bn(kc). (1.65)

where bn(kc) = ∇× an(kc) is a Berry curvature of the Bloch state. The second
term is the anomalous velocity and it is the origin of the intrinsic contribution to
the anomalous Hall conductivity.

The intrinsic contribution is therefore dependent only on the topological prop-
erties of the momentum-space of the sample and it is independent of scattering. It
is in fact the only term which is finite in scattering-free models. The Hall current
created by the intrinsic Hall effect is also dissipationless (Lee et al., 2004).

The anomalous Hall conductivity originating in the intrinsic contribution is
dominant in transition metal ferromagnets (Miyasato et al., 2007).

Side jump contribution The side jump contribution has been for a long
time a source of great controversies. This is mostly because the side jump is
independent of the Bloch state relaxation time, so it is not easily distinguished
from the intrinsic contribution. The side jump itself is also very small - in typical
metals ∆y ∼ 10−16m and becomes significant only when enhanced through the
band structure effects. (Berger, 1970)

The origin of the side jump contribution can be seen from the Lippmann–
Schwinger equation (1.59) and the matrix form of the scattering potential. When
a wave packet with a wave vector k is scattered by the potential (1.60) with small
enough spin-orbit interaction we can approximate the scattered wave packet in
the Born approximation:

Ψn,kc,rc ∼ eir·k+
∑
k′s′

δss′
1

E − E(k′, s′)− iε
Ṽk,k′exp

(
i

~2

4m2c2
(σss × k) · k′

)
(1.66)

We can view this scattered wave packet as a new wave packet with the center
displaced by:

δ =
~2

4m2c2
(σss × k). (1.67)

We therefore see that in addition to skew scattering the spin-orbit interaction
in the scattering potential also causes a shift in the center position of the wave
packet, which also leads to the AHE. The displacement is spin-dependent and it
is perpendicular to both the spin of the electron and its wave vector.

Both the skew-scattering and the side jump are called extrinsic contributions
as they are based on a scattering. It is important to note, that for the intrinsic
Hall effect to manifest there has to be an interband hopping available. While for
the extrinsic contributions the interband hopping is not necessary, they are both
greatly enhanced (by a factor of ∼ 104) by the multiband effects.
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2. The models

In this chapter we will introduce two models dealing with the anomalous Hall
effect. The models have been devised by Středa and Jonckheere and by Kontani
et al. Since it is too difficult to make a model that would account for all the
effects giving rise to the anomalous Hall conductivity, the models will account for
only the intrinsic contribution to the anomalous Hall conductivity.

As we have mentioned in the previous chapter in the recent years there have
been numerous experiments suggesting, that the intrinsic anomalous Hall effect
is the dominant contribution to the anomalous Hall conductivity in the transition
metal ferromagnets in the good metal regime (σxx ∼ 104 − 106(Ωcm)−1). Since
these materials represent the biggest group in the ferromagnetic materials, it is
worthwhile studying these contributions.

Throughout this chapter we will therefore only deal with ferromagnetic ma-
terials. For simplicity we will assume, that the magnetisation M will be parallel
to the z-axis.

We will also restrict ourselves only to crystals with spatial inversion symmetry.

2.1 Středa model

The Středa model is a very simple one. In the paper (Středa and Jonckheere,
2010) Středa argues that the intrinsic contribution to the anomalous Hall conduc-
tivity should be obtainable via either the linear response Kubo formula leading
to the Berry phase contribution or as a response to a gradient of a chemical po-
tential. Both the approaches should give the same result. Středa therefore uses
a model based on the chemical potential difference ∆µ and a consequent electric
dipole.

We will explain the basic idea behind the Středa model:
Suppose we have a one-dimensional sample with the length L kept at zero

temperature. When the sample is in equilibrium with no external forces acting
on it, the states with a wave vector k will be in a distribution f(k). If we apply
an external electric field E in the direction of the y-axis, the distribution will
shift along the ky - axis, as shown in figure 2.1, by ∆k = eEτm

~ , with τm being the
momentum relaxation time. As can be seen from the figure, most of the states
deep in the Fermi sea stay the same. However the states near the Fermi-level
with k < 0 are vacated and more states near the Fermi level with k > 0 are filled.
These states can be viewed as the sources of current.

We can describe this shift in the distribution f(k) of the wave vectors with
the help of quasi-Fermi levels F±. We can define the positive quasi-Fermi level
F+ as the Fermi level of the electrons moving in the same direction as the applied
electric field E. In the same way we define the negative quasi-Fermi level F− as
the Fermi level of the electrons moving in the opposite direction as that of the
applied electric field E. As can be seen in the figure 2.1 the negative quasi-Fermi
level is lower than the positive quasi-Fermi level: F− < F+. Since the negative
quasi-Fermi level is lower than the positive one, for every state with ky < 0 we
can find a state with the opposite velocity and the current contributions from
these two states cancel out. So the only states that contribute to the current
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Figure 2.1: Shift of the distribution f(k) with an external electric field E applied.
The blue rectangle above the axis represents the original distribution f(k). The
red rectangle below the axis represents the shifted distribution.

are the states with ky > 0 with the energy between the positive and negative
quasi-Fermi levels - we will call these states the k+ states.

We can now evaluate the current created with the k+ states. Electron gas
moving with the velocity v with the density n has a contribution to the current
j = env. Since in this case the density of electrons associated with the state k is
1/L, we can express the current created by the k+ states as:

j =
∑
k+

e

L
v(k) (2.1)

where we have summed over all the k+ states. We can now change the sum over
the k states into an integral

∑
k −→

L
π

∫
k
dk and express the group velocity of

the electrons as vα(k) = 1
~∇kEα(k) (see e.g. Ashcroft and Mermin (1976)):

j =
2e

h

∫
k+

dE
dk
dk = −2e

h

∫
k+
dE, (2.2)

where we integrate over the k+ states. Since the k+ states occupy all the k states
between F+ and F− we have:

j =
2e

h
(F+ − F−). (2.3)

The difference between the quasi-Fermi levels is the chemical potential difference
between the states at the Fermi surface ∆µ(kF ). We can therefore rewrite the
equation (2.3) as

j =
2e

h
∆µ(kF ). (2.4)

In order to find the conductivity we therefore need to find the relationship between
the chemical potential difference ∆µ(kF ) and the electric field E.

In the model we will use the independent electron approximation and assume
that the properties of the material can be described by a Pauli-like single electron
Hamiltonian:

H =
p2

2m
+ V (r) +Hso +Hz (2.5)
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where p is the momentum of the electron, m is the free electron mass, V (r) is
the crystalline potential and Hso is the Hamiltonian of the spin-orbit interaction
and Hz is the Hamiltonian of Zeeman effect:

Hso =
λ2c
4~
σ · [∇V (r)× p] =

λ2c
4~

p · [σ ×∇V (r)] (2.6)

Hz = −µBBeff · σ (2.7)

with λc being an effective Compton wavelength λc = h
mc

, σ is the vector of Pauli
matrices introduced in equation (1.2), µB is the Bohr magneton and Beff is the
effective magnetic field.

Eigenvectors of this Hamiltonian are two-component spinors and, since the
Hamiltonian is translation-invariant in the lattice vectors, we can express them
in the Bloch form |α,k〉:

Ψα,k(r) ≡ 〈r|α,k〉 =
eik·r√
8π3

uα (k, r) (2.8)

with uα (k, r) being periodic in the lattice vectors, k being the wave vector and
α = (n,m, l, s) being the band index comprising of n - principal quantum number,
m - orbital quantum number, l - azimuthal quantum number and s - the spin
number. We will suppose that the material is ferromagnetic, with the effective
magnetic field Beff in the direction of the z-axis. The spin number will therefore
be a good quantum number.

The velocity operator corresponding to the Hamiltonian (2.5) is:

v =
1

i~
[H, r] =

p

m
+
λ2c
4~
σ ×∇V (r). (2.9)

A typical feature accompanying the spin orbit interaction is the mass-center
separation along the y-axis ∆Yα(kx) of the states |α, kx〉 and |α,−kx〉 (with kx >
0). This mass-center separation can also be seen as the source of the anomalous
hall effect. We can calculate the mass center separation via the requirement that
in the stationary state the force

Fy ≡
1

ih
[py, H] (2.10)

is zero. Equating the force to zero will then yield the formula for the mass-center
separation.

If we apply an external electric field Ey in the direction of the y-axis the states
|α, kx〉 and |α,−kx〉 with opposite velocities will acquire a chemical potential
difference ∆µ between them:

∆µ = −Eye∆Yα(kF ). (2.11)

with ∆Yα(kF ) being the mass-center separation of the eigenstates with the wave
vector from the Fermi surface.We can now employ the equation (2.4) to find the
current contribution Jαx (µ) of the α band:

Jαx (µ) = −2e2

h
∆Yα(kF )Ey. (2.12)
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From this equation we can easily identify the contribution of the band α to the
anomalous Hall conductivity as:

σαxy = −2e2

h
∆Yα(kF ) (2.13)

The anomalous Hall conductivity will then simply be the sum of the contributions
of all the bands α:

σxy =
∑
α

σαxy (2.14)

We can therefore identify the Hall conductivity with the mass-center separation
∆Yα(kF ).

For the purposes of the next chapter we need to generalise this model to two-
dimensional systems. The conductivity contribution expressed in the equation
(2.13) is the contribution of the states |α, kx〉 and |α,−kx〉. In order to take into
account the whole Fermi surface we need to integrate over all the states at the
Fermi surface with kx > 0. The total anomalous Hall conductivity will then be:

σxy = −2e2

h

∫
dkδ(k2 − k2F )∆Yα(k). (2.15)

Středa also gives a simple example model in (Středa and Jonckheere, 2010)
to show the current . The simple model will be a linear chain of atomic orbitals
along the x-axis, with the separation a. The potential V (r) of the chain will be:

V (x, y) = −V0cos(2πx/a) +mΩ2y2/2, (2.16)

with the harmonic oscillator potential in the y-direction. In the Figure 2.2, we
can see the current densities jαx (kx, x, y) = evαx (kx, x, y) obtained by Středa by
tight binding approximation for a set of parameters mentioned in the description
below the figure.

In the case of the simple example the force will be

Fy = −mΩ2y + 2s
λ2cmΩ2

4~
px (2.17)

which, with the help of relation (2.9) gives the mass-center separation is

∆Yα(kx) = 2s
λ2cm

2~

[
1−

(
λ2cm

4~

)2

Ω2

]−1
2vαx (kx). (2.18)

This leads to the Hall conductivity

σαxy = −e
2

h

sλ2cm

~

[
1−

(
λ2cm

4~

)2

Ω2

]−1
2vαx (kF ). (2.19)

We can see from the equation (2.19) that the anomalous Hall conductivity are
approaching zero as the spin-orbit interaction vanishes. This is exactly the ex-

pected behaviour. We also see that when
(
λ2cm
4~

)2
Ω2 −→ 1 the anomalous Hall
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Figure 2.2: Current distributions for an energy band in the chain-potential model
given by Středa. The current distributions were computed for a set of parameters:
2ma2V0/~2 = 75.0, mΩ2a2/(4π2V0) = 1.4 and πλ2c/a

2 = 0.015 with sz = 1/2 and
m = −1. For figures (a) and (c) kx = 1.5/a. For figures (b) and (d) kx = −1.5/a.
In figures (a) and (b) there are current distributions with arrows indicating the
direction of the current and the lighter the background is the larger the current
magnitude. In figures (c) and (d) there are current densities averaged over the
x and y coordinates. We can see that there is a clear spatial separation of the
states with the opposite velocities.
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conductivity goes to infinity. This is also an expected behaviour as the aforemen-
tioned parameter should be much less than one in the weak relativistic limit and

in the case that
(
λ2cm
4~

)2
Ω2 −→ 1 the weak relativistic limit would break down.

Středa also shows, that the conductivity obtained via the the equation (2.11) is
equivalent to the conductivity obtained from the Berry phase of the momentum-
space and therefore to the intrinsic anomalous Hall conductivity (Středa and
Jonckheere, 2010).

In table 2.1 we have summed up all the assumptions implied by the Středa
model.

Table 2.1: Assumptions implied by the Středa model
Independent electron approximation

Linear response approximation
Zero temperature

Ferromagnetic material with M||ẑ
Space inversion symmetry

2.2 Kontani model

The Kontani model is a bit more complicated. It studies the intrinsic anomalous
Hall effect in the tight binding model of the interaction between the d-orbitals.
Since in the ferromagnets the anomalous Hall effect comes about due to the spin-
orbit interaction with the Hamiltonian (in the simplified case of ferromagnet with
pure sz = ±1/2 spin states) Hso = λσ ·L = λszlz, we can restrict ourselves to the
d-orbitals, for which 〈dα|lz|dβ〉 is non-zero. This condition reduces the orbitals
to dxz, dyz, dxy and dx2−y2 . Furthermore, since the anomalous Hall effect comes
from the interband hopping, we can also neglect the orbitals dxy and dx2−y2 , as
the energy splitting between them is about 1eV, while the dxz and dyz orbitals
are degenerate - this means that the frequency of hopping between the dxy and
dx2−y2 is exponentially smaller, than that of the hopping between the dxz and dyz
orbitals. We will therefore concern ourselves only with the dxz and dyz orbitals.

In this model we will describe the system with the Hamiltonian H = H0+HSO

consisting of a part H0 which will describe the system without a spin interaction
and a part HSO which will describe the spin-orbit interaction. We will express
the Hamiltonian H0 with the use of creation and annihilation operators for the
electron on the orbital dα: cα†k and cαk. To make the notation a bit less unwieldy
we will write an index x when referring to the dxz orbital and y when referring
to the dyz orbital.

H0 =
∑
k

ĉ†kĥ
0
kĉk (2.20)

with

ĥ0k =

(
ξxk ξxyk
ξyxk ξyk

)
, ĉ†k =

(
cx†k , c

y†
k

)
(2.21)

where ξxk = −2t cos kx, ξ
y
k = −2t cos ky ξ

xy
k = 4t′ sin kx sin ky. Here t and t′ are

the hopping integrals between the nearest and the next-nearest lattice points as
shown in figure 2.3.
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Figure 2.3: (a) - figure of hopping integrals between the same orbitals. (b) - figure
of hopping integrals between different orbitals. Figure a courtesy of (Kontani
et al., 2007).

The spin-orbit interaction part HSO is given by the equation (1.7). We will
however express it with the help of creation and annihilation operators as

HSO =
∑
k

ĉ†kĥ
λĉk. (2.22)

In the basis of eigenvectors |l, lz > of L2 and Lz, β = { |2, -2 >, |2, -1 >, |2, 0>,
|2, 1 >, |2, 2 > }, we have the matrix representation of Lz:

〈l,m|Lz|l′,m′〉
β
=


−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

 , (2.23)

and the dxz and dyz states have the representation

|x, z〉 = − 1√
2

(|2, 1〉 − |2,−1〉) β
=

1√
2


0
−1
0
1
0

 (2.24)

and

|y, z〉 = − i√
2

(|2, 1〉+ |2,−1〉) β
=

i√
2


0
1
0
1
0

 . (2.25)

We therefore see, that in our basis β′ = {dxz, dyz} the representation of the spin-
orbit interaction is

ĥλ = sgn(sz)λσy (2.26)
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with σy being the Pauli matrix given in the equation (1.2).
The velocity operator corresponding to the Hamiltonian is given by vα(k) =

1
~∇kEα(k). We therefore have

vx =
1

~

(
2t sin kx 4t′ cos kx sin ky

4t′ cos kx sin ky 0

)
(2.27)

vy =
1

~

(
0 4t′ sin kx cos ky

4t′ sin kx cos ky 2t sin ky

)
(2.28)

In order to use the Kubo-Středa equation we will also need to express the
Green functions corresponding to the Hamiltonian H. The Green functions are
defined by the equation (1.52). We will express the Green function in the matrix
form in which it has the form Ĝ(ω) = (ω + µ− ĥ0k − ĥλ)−1(

Gxx Gxy

Gxy Gyy

)
=

1

d(ω)

(
ω + µ− ξyk αk

α∗k ω + µ− ξxk,

)
(2.29)

with αk = ξxyk + iλsgn(sz) and d(ω) = (ω + µ− ξxk)(ω + µ− ξyk)− |αk|2. We can
also express d(ω) as

d(ω) = (ω + µ− E+
k )(ω + µ− E−k ), (2.30)

where E±k is the quasiparticle dispersion relation:

E±k =
1

2
(ξxk + ξyk ±

√
(ξxk − ξ

y
k)2 + 4|αk|2). (2.31)

In order to model the ferromagnetic state, we will assume that in the d-orbitals
are only electrons with spin sz = −1/2.

In order to account for the scattering of the quasiparticles Kontani uses re-
tarded and advanced Green functions with quasiparticle damping rate γ = ~/2τ :

GR
αβ(ω) = Gαβ(ω + iγ) (2.32)

GA
αβ(ω) = Gαβ(ω − iγ) (2.33)

We can now employ the Kubo-Středa formula to calculate the anomalous Hall
conductivity. We will use the equations (1.55), (1.56) and (1.57) in which we have
explicitly written out the traces as the sums over the orbitals:

σAHxy = σIxy + σIIxy, (2.34)

σIxy =
∑

k,αα′,ββ′

e2~
4πΩ

∫
dεvα

′α
x vβ

′β
y

(
−df
dε

)[
GR
αβ′G

A
βα′ −

1

2
(GR

αβ′G
R
βα′ +GA

αβ′G
A
βα′)

]
(2.35)

σIIxy = −1

2

∑
k,αα′,ββ′

e2~
4πΩ

∫
dεvα

′α
x vβ

′β
y f(ε)×

×
[
∂

∂ε
GR
αβ′G

R
βα′ −GR

αβ′
∂

∂ε
GR
βα′ −

∂

∂ε
GA
αβ′G

A
βα′ +GA

αβ′
∂

∂ε
GA
βα′

] (2.36)
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We will now simplify the expressions. First we will sum over the greek indices.
We see that the only combinations of the indices for which the velocities are
odd in both kx and ky and non-zero are (αα′, ββ′) = (xxxy), (xxyx), (xyyy) and
(yxyy). All the other combinations of indices are either trivially zero, or are odd
in kx, ky or both and will therefore vanish after summation over all k. Since the
model has a square lattice symmetry, the expressions (2.35) and (2.36) are both
invariant to permutation of kx and ky. We can therefore write the sum over the
greek indices as a single component

σIxy =
∑
k

e2~
4πΩ

∫
dεvxvy

(
−df
dε

)[
GR
xxG

R
yx −

1

2
(GR

xxG
R
yx +GA

xxG
A
yx)

]
(2.37)

σIIxy = −1

2

∑
k

e2~
4πΩ

∫
dεvxvyf(ε)

[
∂

∂ε
GR
xxG

R
yx −GR

xx

∂

∂ε
GR
yx−

− ∂

∂ε
GA
xxG

A
yx +GA

xx

∂

∂ε
GA
yx

] (2.38)

where vxvy ≡ vxxx v
xy
y = 8tt′ sin2 kx cos ky.

The Green functions can be simplified into (Kontani et al., 2007):

σIxy =
∑
k

e2~
4πΩ

∫
dεvxvy

(
−df
dε

)
4γ

dR(ε)dA(ε)
(2.39)

σIIxy = −1

2

∑
k

e2~
4πΩ

∫
dεvxvyf(ε)

[(
1

dR(ε)

)2

−
(

1

dA(ε)

)2
]

(2.40)

In the limit of T → 0K the Fermi-Dirac distribution becomes a step function
f(ε)→ θ(ε− µ) and with its derivative a Dirac delta function df/dε→ δ(ε− µ).
We can use these relations along with the table integral∫ µ

−∞

dx

(x− a)2(x− b)2
=

−(2µ− a− b)
(a− b)2(µ− a)(µ− b)

− 2

(a− b)3
ln

(
a− µ
b− µ

)
(2.41)

to evaluate the integrals in equations (2.39) and (2.40). Using these relations we
arrive at a set of three contributions to the anomalous conductivity

σxy = σIxy + σIIaxy + σIIbxy (2.42)

σIxy =
2λ

π

∑
k

vxvy
γ

[(µ− E+
k )2 + γ2][(µ− E−k)2 + γ2]

(2.43)

σIIaxy =
2λ

π

∑
k

vxvy
(E+

k − E
−
k )2

Im

{
2µ− E+

k − E
−
k + 2iγ

(µ− E+
k + iγ)(µ− E−k + iγ)

}
, (2.44)

σIIbxy =
4λ

π

∑
k

vxvy
(E+

k − E
−
k )3

Im

{
ln

(
E+

k − µ− iγ
E−k − µ− iγ)

)}
. (2.45)

These relations are valid even for finite damping rates γ. In order to account only
for the intrinsic anomalous Hall effect we will take the limit of the damping rate
going to zero. In this case we get the contributions to the anomalous Hall effect
as (Kontani et al., 2007):
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σIxy = λ
e2~
Ω

∑
k

vxvy
δ(µ− E+

k ) + δ(µ− E−k )

(E+
k − E

−
k )2

(2.46)

σIIaxy = −λe
2~
Ω

∑
k

vxvy
δ(µ− E+

k ) + δ(µ− E−k )

(E+
k − E

−
k )2

(2.47)

σIIbxy = 2λ
e2~
Ω

∑
k

vxvy
−θ(µ− E+

k ) + θ(µ− E−k )

(E+
k − E

−
k )3

(2.48)

The fist contribution σIxy is the Fermi surface term. The second and the third
terms σIIaxy and σIIbxy are Fermi sea terms, although the term σIIaxy is in the case
of no scattering nonzero only on the Fermi surface. In the limit of no scattering
(γ → 0) the first contribution σIxy is of the same magnitude as the σIIaxy and they
cancel each other out. (This nullification of the two terms however occurs only
in the intrinsic limit.) In the case of no scattering and zero temperature the only
contribution to the anomalous Hall conductivity therefore comes from the last
term σIIbxy . This term has been recognised as the term coming from the Berry
curvature (Onoda and Nagaosa, 2002).

All the contributions to the conductivity are linear vxvy = 8tt′ sin2 kx cos ky.
This implies that should the hopping integral t′ between different bands be zero
the anomalous Hall conductivity would vanish. This corresponds to the fact that
the dxz orbital does not allow the transport in the y direction and the dyz does
not allow transport in the x direction. Therefore wee need the interband hopping
in order to achieve the anomalous Hall current.

In the table 2.2 we have summed up the assumptions implied in this model.
The first four assumptions come from the use of the Kubo-Středa formula.

Table 2.2: Assumptions implied by the Kontani model
Independent electron approximation

Linear response approximation
Zero temperature

Zero frequency
Tight binding model with only dxz and dyz orbitals

Ferromagnetic material with M||ẑ
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3. Model comparison

In this chapter we make an attempt to compare the two models described in the
previous chapter. We calculate the anomalous Hall conductivity predicted by the
two models and in order to compare the two models we need to calculate the
conductivity for the same material under the same conditions.

We have chosen the material to be Strontium ruthenate (Sr2RuO4) as the
shape of the Fermi surface in Sr2RuO4 is very favourable for computation. In
the Figure 3.1 there is a depiction of the Fermi surface of Sr2RuO4 calculated in
(Eremin et al., 2004). Another reason for choosing Sr2RuO4 is that the material
has shown many interesting properties such as Spin-Triplet Superconductivity
(Maeno et al., 2012) and it is relatively easy to produce high-quality crystals
(Lichtenberg, 2002). It is therefore a focal point of great interest in the solid
state physics and it is worthwhile to compute some of its properties.

We will further assume that the temperature approaches 0K and that the
magnetisation M of the material is parallel to the z-axis.

Unless explicitly stated otherwise, in this chapter we will use the Hartree
atomic units for which the electron mass m, the elementary charge e, the reduced
Planck’s constant ~ and the Coulomb’s constant ke are defined as identity.

With all these presumptions in mind we can now proceed to the calculations
and the comparison of the models.

3.1 Adjusting the Středa model

The Středa model is easier to adjust to a different setting than the Kontani model.
We will therefore adjust the Středa model to the conditions of the Kontani model.
We will use the same Hamiltonian as before:

H =
p2

2m
+ V (r) +Hso +Hz (3.1)

Figure 3.1: Fermi surface of Strontium ruthenate (Sr2RuO4) obtained by Eremin
et al.
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with

Hso =
λ2c
4~
σ · [∇V (r)× p] (3.2)

Hz = −µBBeff · σ. (3.3)

However we will have to change the potential V (r) to reflect on the fact
that in the Kontani model we use a tight-binding Hamiltonian. In the tight-
binding approximation we assume, that in the vicinity of the atom we can take
the Hamiltonian of the atom as the nearly complete Hamiltonian of the system.
Hence in the vicinity of the atom the potential is spherically symmetric. We will
therefore assume the potential near the atom to be a function of the magnitude
of distance from the center of the atom squared

V (r) = f(r2). (3.4)

This is clearly not the case for the potential in the Sr2RuO4 crystal, nevertheless,
since we are already using the tight-binding approximation in the Kontani model,
we can assume that this approximation is reasonably accurate for the purpose of
comparing the two models. If we chose some more general potential the calcula-
tions would likely become unmanageable and we would have to fill in too many
details.

We can now express the spin-orbit interaction as

Hso =
λ2c
4~
σ · [∇V (r)× p] (3.5)

=
λ2c
4~
r

r
f ′(r2)σ · [r× p] (3.6)

=
λ2c
4~
f ′(r2)σ · L, (3.7)

where f ′(r2) ≡ df(u)
du

∣∣∣
u=r2

. If we compare the last expression (3.7) with the equa-

tion (1.7) we see that
λ2c
4~
f ′(r2) = λ, (3.8)

which has the same meaning as λ in the Kontani model.
The velocity expectation values are

v =
1

i~
[H, r] (3.9)

=
p

m
+
λ2c
4~
σ ×∇V (r) (3.10)

=
p

m
+
λ2c
4~
f ′(r2)σ × r. (3.11)

From equation (3.11) we can express the x and y components of momentum as

px = mvx − 2λ(σyz − σyy) (3.12)

pz = mvz − 2λ(σxy − σyx) (3.13)
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In order to evaluate the force Fy we will evaluate commutation relations of
each term in the Hamiltonian with the momentum in the y-direction py:[

py,
p2

2m

]
= 0 (3.14)

[py, Hz] = 0 (3.15)

[py, Hso] =
λ2c
4~

[py, f
′(r2)σ · L] (3.16)

=
λ2c
4~
{[py, f ′(r2)]σ · L + f ′(r2)σ · [py,L]} (3.17)

=
λ2c
4~
{−i~yf ′′(r2)σ · L + i~f ′(r2)(σzpx − σxpz)} (3.18)

= −i~yf
′′(r2)λ2c
4~

σ · L + i~λ(σzpx − σxpz) (3.19)

[py, V (r)] = −2i~yf ′(r2) (3.20)

=
−8iy~2λ

λ2c
(3.21)

Putting it all together and using equations (3.12) - (3.13) we get

Fy =
1

i~
[py, H] (3.22)

=
−8y~λ
λ2c

− yf ′′(r2)λ2c
4~

σ · L + λ(σzpx − σxpz) (3.23)

=
−8y~λ
λ2c

− yf ′′(r2)λ2c
4~

σ · L + λσz[mvx − 2λ(σyz − σyy)]−

− λσx[mvz − 2λ(σxy − σyx)]

(3.24)

Now, as we are only interested in movement in the x−y plane, we will restrict
the movement along the z axis. This means that we will set the expectation values
of z and vz to zero.

Since λc is of the order of 10−2Bohrs and ~ = 1 in the Hartree atomic units,
and the second term in the equation (3.24) is approximately λ4c times smaller
than the first one, we will neglect the term completely.

Using the multiplication rules for the Pauli matrices we thus arrive at the
expression for force:

Fy = y

[
4λ2 − 8~λ

λ2c

]
+ λσzmvx − iλ2σzmx (3.25)

In the static case the force is zero. From the real part of equation (3.25) we
therefore obtain the equation for the mass-center separation ∆Yα(kx):

∆Yα(kx) =

[
8~
λ2c
− 4λ

]−1
σzmvx(kx) (3.26)

By inserting the mass-center separation (3.26) into the equation (2.13) we obtain
the contribution of the α state to the anomalous Hall conductivity:

σαxy = −2e2

h

[
8~
λ2c
− 4λ

]−1
σzmvx(kF ) (3.27)
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We obtain the anomalous Hall conductivity by summing over the contributions
from all the states. In the case of our model we take into consideration two
states - dyz and dxz orbitals. The velocities corresponding to these states are
vxz(kx, ky) = 0 and vxz(kx, ky) = 2t sin kx. Therefore in the Středa model there
will be non-zero contribution to the anomalous Hall conductivity only from the
dxz orbital.

Furthermore, since we assume our model to be two-dimensional, we need to
integrate the conductivity over half of the Fermi surface with kx > 0 to get the
total conductivity. We therefore have:

σαxy = −e
2

h

4σzmt
8~
λ2c
− 4λ

∫
dk θ(kx)δ(k

2 − k2F ) sin kx. (3.28)

As a final touch we can use the equation (3.8) to adjust the denominator in the
expression for the anomalous Hall conductivity:

σαxy = −e
2

h

λσzmt

2f ′(r2)− 4λ2

∫
dk θ(kx)δ(k

2 − k2F ) sin kx. (3.29)

The parameter f ′(r2) is completely at our disposal, so we will determine its value
by the requirement that the anomalous Hall conductivity obtained through the
Středa model be comparable with the Kontani model.

3.2 Kontani model

There is no need to alter the Kontani model in any way. We are comparing
only the intrinsic contribution to the anomalous Hall effect, so we will use the
equations (2.46 - 2.48):

σIxy = λ
e2~
Ω

∑
k

vxvy
δ(µ− E+

k ) + δ(µ− E−k )

(E+
k − E

−
k )2

(3.30)

σIIaxy = −λe
2~
Ω

∑
k

vxvy
δ(µ− E+

k ) + δ(µ− E−k )

(E+
k − E

−
k )2

(3.31)

σIIbxy = 2λ
e2~
Ω

∑
k

vxvy
−θ(µ− E+

k ) + θ(µ− E−k )

(E+
k − E

−
k )3

(3.32)

Since the terms σI and σIIa cancel each other out we do need to compute only
the term σIIb. In order to perform the calculations we will change the sum over
the wave vectors k into the integral:

σIIbxy = 2λ
e2~4π2

a

∫
BZ

dk vxvy
−θ(µ− E+

k ) + θ(µ− E−k )

(E+
k − E

−
k )3

, (3.33)

where we integrate over the first Brillouin zone.

3.3 Results

In order to obtain the results we first need to fill in a few constants. We have used
the length of the unit cell a = 4Å and the ratio t/t′ = 0.1. Both the constants
were chosen to represent Strontium Ruthenate - Sr2RuO4.
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Figure 3.2: Calculated anomalous Hall conductivities as a function of spin-orbit
coupling constant λ for density of states n = 0.4. The dashed line represents
the conductivity obtained through the Středa model, the full line represents the
conductivity obtained through the Kontani model.

In the Středa model we need to fix the derivation of the potential, so that
it suits our calculations. We therefore chose f ′(r2) = 10Eh/a0, so that the con-
ductivity calculated via the Středa model is comparable with the conductivity
calculated via the Kontani model.

We have used Mathematica to numerically evaluate the integrals and to graph-
ically present the obtained results.

In figures 3.2 to 3.5 are calculated anomalous Hall conductivities as functions
of the spin-orbit coupling constant λ for values of state densities n = 0.4 0.8 1.2
and 1.6.

In figures 3.6-3.8 are calculated anomalous Hall conductivities as functions of
the density of states n for values of the spin-orbit interaction λ = 0.05 0.2 and
0.4.

Evaluation of the results We can see from the graphs that the conductiv-
ities calculated via the Středa model and via the Kontani model have generally
very similar behaviour. This is not surprising as the (non-zero) conductivity con-
tributions in both the models have been recognised as the contributions coming
from the Berry curvature and it is to be expected that they behave similarly.

There are however some differences which we presume come out due to the
fact that we are applying two theoretical models made with different assumptions
to the same conditions. In this case we had to bend the conditions for the Středa
model to be able to calculate the conductivity it predicts.

Let us now briefly review the basic premises of the two models. In the Středa
model the anomalous velocity comes about from the different chemical potentials
of the states in the same band with the opposite velocity in x-direction. The
Středa model therefore takes into account the Fermi surface contribution to the

30



Figure 3.3: Calculated anomalous Hall conductivities as a function of spin-orbit
coupling constant λ for density of states n = 0.8. The dashed line represents
the conductivity obtained through the Středa model, the full line represents the
conductivity obtained through the Kontani model.

Figure 3.4: Calculated anomalous Hall conductivities as a function of spin-orbit
coupling constant λ for density of states n = 1.2. The dashed line represents
the conductivity obtained through the Středa model, the full line represents the
conductivity obtained through the Kontani model.
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Figure 3.5: Calculated anomalous Hall conductivities as a function of spin-orbit
coupling constant λ for density of states n = 1.6. The dashed line represents
the conductivity obtained through the Středa model, the full line represents the
conductivity obtained through the Kontani model.

conductivity and it does not need the interband hopping to emerge. On the
other hand in the Kontani model the anomalous velocity comes about from the
interband hopping and it is related to the Fermi sea. The models are therefore
very different in terms of the basic assumptions which are implied in either of
them.

From the graphs of the anomalous Hall conductivities as functions of the spin-
orbit coupling constant λ we see that the magnitudes of the conductivities grow
monotonically with the spin-orbit coupling constant λ. This is to be expected as
the anomalous Hall effect is caused by the spin-orbit coupling.

From the graphs of the anomalous Hall conductivities as functions of the
electron densities we also see that the conductivities change the sign near the
unit electron density. This is in accordance with both the results obtained by
Kontani (Kontani et al., 2007) and the experimental results (Fang et al., 2003).
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Figure 3.6: Calculated anomalous Hall conductivities in dependence on density
of states n for spin-orbit coupling constant λ = 0.05. The dashed line represents
the conductivity obtained through the Středa model, the full line represents the
conductivity obtained through the Kontani model.

Figure 3.7: Calculated anomalous Hall conductivities in dependence on density
of states n for spin-orbit coupling constant λ = 0.2. The dashed line represents
the conductivity obtained through the Středa model, the full line represents the
conductivity obtained through the Kontani model.
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Figure 3.8: Calculated anomalous Hall conductivities in dependence on density
of states n for spin-orbit coupling constant λ = 0.4. The dashed line represents
the conductivity obtained through the Středa model, the full line represents the
conductivity obtained through the Kontani model.
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Conclusions

The objective of this work was to introduce one of the many effects that have
their origin in the spin-orbit interaction. Our effect of choice was the anomalous
Hall effect. This effect is an interesting topic of research since for a long time
it has been mired in controversy and even now there are very few good models
describing it. The anomalous Hall effect is also of growing importance in the solid
state physics due to the advent of spintronics.

In the first chapter we have shortly summarised all the necessary approxima-
tions and frameworks for the description of the intrinsic anomalous Hall effect.
We have chosen to describe the AHE with the help of the Kubo-Středa formula.
We have also discussed the description of the AHE in the language of the Boltz-
mann formalism and the different types of the contributions to the anomalous
Hall conductivity - we have described the intrinsic, skew-scattering and the side
jump contributions.

In the second chapter we have introduced two models dealing with intrinsic
anomalous Hall effect - the Středa model and the Kontani model. We have derived
both the models using the formalism laid out in the first chapter. The models
are very different in terms of the underlying assumptions.

In Středa model the anomalous Hall conductivity comes about from the spa-
cial separation of the states with the opposite longitudinal velocities and from a
consequent chemical potential difference. In the Kontani model the anomalous
Hall conductivity originates from the interband hopping between the dxz and dyz
orbitals. The Kontani model is more general and its assumptions are closer to
reality, while the Středa model is simple and readily applicable to a wider class
of materials.

In the third chapter we have compared the two models. Despite the different
structure of the models, for example the different number of orbitals in the basis
and the different form of the anomalous Hall conductance formula, the models
recover similar trends regarding the dependence on the magnitude of spin-orbit
interaction and electron occupancy. This is important especially regarding the
applicability of the Středa model, which can be doubted because of its more
simple structure with only one orbital involved in the calculation.
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the full line represents the conductivity obtained through the Kon-
tani model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Calculated anomalous Hall conductivities in dependence on density
of states n for spin-orbit coupling constant λ = 0.4. The dashed
line represents the conductivity obtained through the Středa model,
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