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Introduction

Variety of physical processes in quantum mechanics can be described as an
interaction of the so called discrete state with a continuum. Resonant scattering
can serve as a most typical example. One of simple models, introduced by Ugo
Fano, assumes the decay of the discrete state into a continuum of states, driven
by a constant coupling (i.e., independent of the energy of the continuum states).
In such case, the decay is exponential.

We will generalize Fano model in order to describe similar system, but this
time with an energy-dependent coupling, which is much closer to many physical
processes seen in nature.

In the first chapter of this thesis, we shall discus Fano model in more detail
and we will introduce natural way of dealing with it. By discretization of the
continuum of states and finding eigenstates of the resulting Hamiltonian, we will
be able to find the exact time evolution of the system. We than generalize Fano
model to energy-dependent coupling and introduce simple way to numerically
determine time evolution for this generalized system.

In the second chapter, we will discus some aspects of the time evolution (prob-
ability of finding the system in the initial discrete state), mainly the dependence
on different parameters of the coupling. We shall see that for particular pa-
rameters the probability exponentially decrease, whilst for others the probability
oscillates. We shall study the oscillatory and the non-oscillatory mode, as well as
the transition between them.

In the whole thesis, we use atomic units with ~ = e = me = 1.
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1. Theoretical Background

1.1 Fano Model

A simple model, first introduced by U. Fano, describes decay of a discrete state
into a continuum of states. The model considers a Hamiltonian H0, which has
as eigenstates the continuum of states |E〉 and the discrete state |ϕ〉, coupled to
the continuum by a constant (i.e., independent of energy of the |E〉) coupling
Hamiltonian V .

We shall assume that V is not explicitly time-dependent, has zero diagonal
elements, and that V cannot couple two states of the continuum:

〈ϕ|V |ϕ〉 = 0,
〈E|V |E〉 = 0,
〈E|V |E ′〉 = 0.

(1.1)

The only non-zero element is therefore 〈E|V |ϕ〉, which is responsible for the
decay of |ϕ〉. In the basis of |ϕ〉 and the continuum eigenstates |E〉 of H0, the
full Hamiltonian matrix is

H =


Eϕ V

V ∗

. . . 0
E

0
. . .

 . (1.2)

1.1.1 Discretization of the Continuum

In order to analyse time evolution of such a system analytically, we replace
the states of continuum |E〉 by discretized spectrum of states |k〉 spaced by δ in
energy. From this we can simply obtain physical results when δ tends to zero.

We will require similar condition for the new quasi-continuum:

• The discretized continuum extends over interval (−∞,∞) with equidistant
levels spaced by δ. Therefore

〈k|H0|k〉 = Ek = kδ, k ∈ Z. (1.3)

For what follows, we set origin of the energy axis at the energy of the
discrete state, i.e., Eϕ = 〈ϕ|H0|ϕ〉 = 0.

• For the coupling, we assume all the matrix elements of V between the level
|ϕ〉 and |k〉 are equal and real:

ν = 〈k|V |ϕ〉 = 〈ϕ|V |k〉 (1.4)

• All the other matrix elements of V are zero:

〈ϕ|V |ϕ〉 = 〈k|V |k′〉 = 0 (1.5)
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If we denote Γ the transition probability an ρ the density of final states (the
quasi-continuum) we can write Fermi’s golden rule in a form

Γ = 2π|ν|2ρ(Eϕ), (1.6)

where in our case ν = 〈ϕ|V |k〉. As ρ = 1/δ, we can rewrite previous equation to

Γ =
2π|ν|2

δ
(1.7)

and as Γ must remain constant even when δ → 0, one can derive

ν2

δ
=

Γ

2π
. (1.8)

1.1.2 Stationary States of the System

Let now have the full Hamiltonian H = H0 +V with Eµ as eigenvalue and |Ψµ〉
as eigenstate. If we project Schrödinger equation

H|Ψµ〉 = Eµ|Ψµ〉 (1.9)

onto 〈k| and 〈ϕ|, using relations Eϕ = 0, (1.3), (1.4), and (1.5), we obtain respec-
tively

Ek〈k|Ψµ〉+ ν〈ϕ|Ψµ〉 = Eµ〈k|Ψµ〉, (1.10a)∑
k

ν〈k|Ψµ〉 = Eµ〈ϕ|Ψµ〉. (1.10b)

which together yield eigenvalue equation∑
k

ν2

Eµ − Ek
=

1

δ

∑
k

ν2

Eµ
δ
− k

= Eµ. (1.11)

It can be shown that

∑
k

(z − k)−1 =
π

tan(πz)
, (1.12a)

∑
k

(z − k)−2 =
π2

sin2(πz)
, (1.12b)

which used for (1.11) together with (1.8) gives

Eµ
δ

= m+
arctan

(
Γ

2Eµ

)
π

, (1.13)

where m is any integer. We can solve this resulting eigenvalue equation numeri-
cally.
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1.1.3 Decay of the Discrete Level

In this section we will study behaviour of the system initially prepared in the state
corresponding to the discrete level |ϕ〉. If we add the normalization condition∑

k

|〈k|Ψµ〉|2 + |〈ϕ|Ψµ〉|2 = 1, (1.14)

to (1.10), we obtain

〈ϕ|Ψµ〉 =
1[

1 +
∑

k′

(
ν

Eµ−Ek′

)2
]1/2

, (1.15a)

〈k|Ψµ〉 =

ν
Eµ−Ek[

1 +
∑

k′

(
ν

Eµ−Ek′

)2
]1/2

, (1.15b)

and using (1.12b), (1.11), and (1.8) we get

〈ϕ|Ψµ〉 =
ν[

ν2 +
(

Γ
2

)2
+ E2

µ

]1/2
. (1.16)

Now we can calculate the probability of finding the system still in the discrete
state |ϕ〉 after time t, if we expand |ϕ〉 into the basis of eigenstates |Ψµ〉 of
Hamiltonian H = H0 + V and using (1.16):

|ϕ(0)〉 =
∑
µ

ν[
ν2 +

(
Γ
2

)2
+ E2

µ

]1/2
|Ψµ〉. (1.17)

Therefore, the state will evolve in time as

|ϕ(t)〉 =
∑
µ

ν[
ν2 +

(
Γ
2

)2
+ E2

µ

]1/2
e−iEµt|Ψµ〉, (1.18)

which yields the probability of finding the system in |ϕ〉 equal to

〈ϕ|ϕ(t)〉 = δ
∑
µ

Γ
2π

Γδ
2π

+
(

Γ
2

)2
+ E2

µ

e−iEµt, (1.19)

where we used formula (1.8) for ν. As the δ tends to 0, Eµ tends to continuum
and the sum becomes an integral, so we get

〈ϕ|ϕ(t)〉 =

∫ ∞
−∞

Γ

2π

e−iEt(
Γ
2

)2
+ E2

dE = e−
Γ|t|
2 , (1.20)

from which the probability is

|〈ϕ|ϕ(t)〉|2 = e−Γ|t|. (1.21)

So Γ−1 is the decay constant of our system.
For more details about Fano model, see [1] and [2].
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1.2 Generalization for Energy-Dependent

Coupling

As we have seen above, Fano model is restricted to constant coupling (see
(1.4)). We would like to find more general description, allowing as to solve more
realistic problem

ν(E) = 〈k|V |ϕ〉, (1.22)

where ν is now a function of energy of the continuum E. For that we need to relax
some of our assumptions. The Hamiltonian (1.2) still remains with the coupling
in a form

〈ϕ|H|E〉 = V = αe−βE
2

, (1.23)

where |ϕ〉 is the initial discrete state (i.e., at time t = 0), E is energy of state of
the continuum to which is |ϕ〉 coupled, and α, β ∈ R are parameters.

We require normalization:

• 〈ϕ|ϕ〉 = 1

• 〈ϕ|E〉 = 0

• 〈E|E ′〉 = δ(E − E ′)
Time evolution of any time-dependent wave function |Ψ(t)〉 is determined by

Schrödinger equation

i
d|Ψ〉
dt

= H|Ψ〉, (1.24)

and as |Ψ(t)〉 can be expressed as a linear combination of |ϕ〉 and |E〉

|Ψ(t)〉 = a(t)|ϕ〉+

∫ ∞
−∞

b(t, ε)|E〉dε. (1.25)

we can rewrite (1.24) to

i
d|Ψ〉
dt

= i
da(t)

dt
|ϕ〉+ i

∫ ∞
−∞

db(t, E)

dt
|E〉dE = a(t)H|ϕ〉+

∫ ∞
−∞

b(t, E)H|E〉dE,

(1.26)
Now we project (1.26) onto 〈ϕ| and 〈E|, which gives us respectively (Eϕ = 0)

i
da(t)

dt
=

∫ ∞
−∞

b(t, E)V (E)dE, (1.27a)

i
db(t, E)

dt
= a(t)V ∗ + b(t, E)E, (1.27b)

which is a set of differential equations for unknown coefficients a(t) and b(t, E).
We add an initial condition |Ψ(t = 0)〉 = |ϕ〉 (⇔ a(0) = 1, b(0, ε) = 0).

Our goal is to calculate the probability of finding |Ψ(t)〉 in the state |ϕ〉, that
means

|〈ϕ|Ψ(t)〉|2 = |a(t)|2 (1.28)

for which we need to know a(t), i.e., to solve (1.27). For that we first discretize
continuum |E〉 to |k〉 as described in previous section. The discretized continuum
can be then treated numerically and (1.27) can be solved with numerical methods,
as we are not able to solve it analytically.
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1.3 Oscillations in Two and Three Level System

We will see later that in the generalized Fano model, the probability (1.28)
starts to oscillate for specific value α and β (see equation (1.23)). To better
understand this phenomenon, we will examine two simpler models - two and
three level systems.

Consider first a system of two levels that are not eigenstates of the Hamil-
tonian. Any state |Ψ〉 can be represented as a linear combination of these two
states:

|Ψ〉 = c1

(
1
0

)
+ c2

(
0
1

)
≡ c1|1〉+ c2|2〉, |c1|2 + |c2|2 = 1. (1.29)

The probability of finding a state initially prepared as |1〉 in |2〉 oscillates with
characteristic frequency Ω, also known as Rabi frequency.

Now, if we want to find this frequency as a function of matrix elements of
given 2x2 Hamiltonian H, we must first rewrite H in terms of Pauli matrices σ:

H = a0σ0 + a1σ1 + a2σ2 + a3σ3. (1.30)

Denoting E1, E2 the two eigenvalues and |E1〉, |E2〉, respectively, the two
eigenstates of H (in the basis of |1〉, |2〉), we can write

E1 = a0 +
√
a2

1 + a2
2 + a2

3, (1.31a)

E2 = a0 −
√
a2

1 + a2
2 + a2

3, (1.31b)

|E1〉 =

(
cos
(
θ
2

)
e−iφ sin

(
θ
2

)) , (1.31c)

|E2〉 =

(
−eiφ sin

(
θ
2

)
cos
(
θ
2

) )
, (1.31d)

where e−iφ is an arbitrary phase and

θ = arcsin

(√
a2

1 + a2
2

a2
1 + a2

2 + a2
3

)
= arccos

(
a3√

a2
1 + a2

2 + a2
3

)
. (1.32)

Let the system initial state be |1〉, that is,

|Ψ(0)〉 = |1〉 = cos

(
θ

2

)
|E1〉 − e−iφ sin

(
θ

2

)
|E2〉. (1.33)

Then

|Ψ(t)〉 = e−itE1 cos

(
θ

2

)
|E1〉 − e−iφe−itE2 sin

(
θ

2

)
|E2〉, (1.34)

and the probability of finding |Ψ(t)〉 in |2〉 is

7



|〈2|Ψ(t)〉|2 =

∣∣∣∣(eiφ sin

(
θ

2

)
〈E1|+ cos

(
θ

2

)
〈E2|

)
|Ψ(t)〉

∣∣∣∣2
=

1

2
sin2 θ (1− cos (t(E1 − E2))) =

(a2
1 + a2

2)2

a2
1 + a2

2 + a2
3

sin2

(
t
(E1 − E2)

2

)
, (1.35)

which is known as Rabi formula [3].
The probability oscillates in time with characteristic frequency

Ω = E1 − E2 = 2
√
a2

1 + a2
2 + a2

3. (1.36)

Similarly, it can be shown that the probability of finding system in |1〉 is also
oscillatory with the same frequency Ω. If this phenomenon is driven by external
field, it is called Rabi oscillations [3].

As we will be working with Hamiltonians of a form (V, ε assumed real)

H(2) =

(
0 V
V ε

)
, (1.37)

and

H(3) =

−ε V 0
V 0 V
0 V ε

 , (1.38)

it is convenient to find Rabi frequency for these two special cases. Our two states
will be

|1(2)〉 ≡
(

1
0

)
, |2(2)〉 ≡

(
0
1

)
(1.39)

for Hamiltonian H(2) and

|1(3)〉 ≡

0
1
0

 , |2(3)〉 ≡

0
0
1

 (1.40)

for Hamiltonian H(3).
The probability ρ of finding |1〉 still in the state |1〉 varies for different times

according to the formula

ρ = |〈1|e−iHt|1〉|2. (1.41)

In the first case,

ρ(2) =
2V 2 + ε2 + 2V 2 cos

(
t
√

4V 2 + ε2
)

4V 2 + ε2
. (1.42)

It is obvious that the frequency is

Ω(2) =
√

4V 2 + ε2. (1.43)

Similarly as above, we can find the probability ρ(3) of finding |1(3)〉 in the state
|1(3)〉 for the Hamiltonian (1.38):
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ρ(3) =

(
ε2 + V 2 cos

(
t
√

2V 2 + ε2
))2

(2V 2 + ε2)2

=
(V 2 + ε2)

2

(2V 2 + ε2)2 +
2 (V 4 + V 2ε2) cos

(
t
√

2V 2 + ε2
)

(2V 2 + ε2)2

+
V 4
(
cos
(
2t
√

2V 2 + ε2
)

+ 1
)

2 (2V 2 + ε2)2 (1.44)

We can see that we get higher harmonic frequency Ω
(3)
2 in addition to the basic

frequency Ω
(3)
1

Ω
(3)
1 =

√
2V 2 + ε2, (1.45a)

Ω
(3)
2 = 2

√
2V 2 + ε2. (1.45b)
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2. Computational Methods

Our goal now will be to solve the system of differential equations (1.27). The
paramount problem is the integral in (1.27a). We postpone the evaluation of it
for a while and turn our attention to orthogonal polynomials, as we will find them
very useful later on.

2.1 Orthogonal Polynomials

Let’s have ∞ ≤ a < b ≤ ∞, a linear vector space L2 ((a, b)) of square-
integrable functions on the interval (a, b) with inner product defined by

(f(x), g(x)) =

∫ b

a

f(x)g(x)dx (2.1)

and a set of polynomial functions of degree n {fn(x)}∞n=0 such that∫ b

a

fn(x)fm(x)dx =

{
0 n 6= m,
Cn n = m,

(2.2)

where Cn ∈ R. Then it is said that the set {fn(x)}∞n=0 is orthogonal over inter-
val (a, b). Furthermore, if Cn = 1, it’s said that the set is orthonormal.

More generally, consider a function w(x), integrable and non-negative on inter-
val (a, b). If w(x) is unbounded on (a, b), than we must require further condition
for the moments: ∫ b

a

xµw(x)dx <∞, µ ∈ N (2.3)

Now we can generalize the previous statement: It’s said that the set of poly-
nomials {fn(x)}∞n=0 on a linear vector space L2 ((a, b)) such that∫ b

a

fn(x)fm(x)w(x)dx =

{
0 n 6= m,
Cn n = m,

(2.4)

where Cn ∈ R, is orthogonal set with respect to the weight function w(x) on
(a, b). If Cn = 1, then the set is additionally orthonormal.

Many orthogonal and orthonormal polynomials have been found so far. Of
our particular interest will be Hermite and Legendre polynomials.

Hermite Orthogonal Polynomials

Hermite orthogonal polynomials appear as a solution of differential equation
[4]

d2y(x)

dx2
− 2x

dy(x)

dx
+ 2ny = 0, n = 0, 1, 2, ... (2.5)

for x ∈ (−∞,∞) and are orthogonal with respect to the weight function w = e−x
2
.

These polynomials can be also written as:

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 (2.6)
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Legendre Orthogonal Polynomials

In the same manner, Legendre orthogonal polynomials are solutions of [4]

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0, n = 1, 2, ... (2.7)

for x ∈ (−1, 1) with the weight function w = 1. They can be written as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (2.8)

2.2 Gaussian Quadrature

Our goal is to numerically calculate integral of a given function with a mini-
mum error made. The whole idea of this method is in the Mean value theorem of
integral calculus. This theorem states, that there exist a point c in the integration
interval such that the definite integral corresponds to the function value at this
point multiplied by length of this interval∫ b

a

f(x)dx = (b− a)f(c), c ∈ [a, b], (2.9)

if f(c) exists.
Gaussian quadrature allows us to rewrite the integral, if we can find n appro-

priate non-equidistant points xi ∈ R and weights wi, such that it holds:∫ b

a

f(x)dx =
n∑
i=1

wif(xi) +Kn(f), (2.10)

where Kn(f) = 0 if f is a polynomial of degree ≤ 2n− 1 [5].
For a smooth function f which can be well approximated by a polynomial

the method is very accurate even for small number of points xi. All we need is
to determine weighs wi and points xi, which can be done using the properties of
orthogonal polynomials.

It can be shown that orthogonal polynomials of degree n have exactly n dis-
tinct roots in the interval (a, b). Moreover, the roots “interleave” the roots of
polynomial of degree n − 1. So there is always one root in between each two
adjacent roots of previous polynomial. The most beautiful surprise comes when
we find all these roots. They are in fact the points xi for Gaussian quadrature.

Finding the corresponding weighs wi is easy in our case as we are about
to use either Hermite or Legendre polynomials, which are both well-known sets
of functions with known weigh functions. From Gram-Schmidt orthogonalization
one can derive formulas for wi, which will give us all we need for the computation.
For Hermite polynomials we get

wi =
2

(H̃ ′n(xi))2
, (2.11)

while for Legendre polynomials the weights read

wi =
2

(1− x2
i )[P

′
n(xi)]2

, (2.12)
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where H̃i is normalized Hermite polynomial [6]

H̃i =
1√
πn!2n

Hi. (2.13)

These methods are called Gauss-Hermite and Gauss-Legendre quadrature respec-
tively.

Note that in the Gauss-Legendre quadrature we need to transform the integral
from interval (−1, 1) to interval (a, b), which can be done by substitution

x =
b− a

2
z +

b+ a

2
(2.14)

In the present work, we will use Gaussian quadratures to numerically evaluate
the integrals over energy in(1.27).
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3. Results and Discussion

3.1 Numerical Approach

As stated in previous chapter, we need to evaluate the integral in the equation
(1.27). We do it numerically by Wolfram Mathematica program using Gaussian
quadrature, for which we have to choose the appropriate method - either Gauss-
Hermite or Gauss-Legendre one.

We want to suppress numerical error to minimum, therefore, we need the
continuum to be discretized as finely-grained as possible (regarding time of the
computation), that means, we need a polynomial of high order. The higher order
we have, the smaller is the error made during computation. The natural choice
here is Gauss-Hermite as the integrand V is already in the form of weight function
w = e−x

2
. Moreover, unlike in Gauss-Legendre quadrature, we can precisely

evaluate the integral in (1.27) from minus infinity to infinity, whilst using Gauss-
Legendre quadrature will force us to restrict ourselves to finite (sufficiently large)
interval.

On the other hand, some of the roots of Hermite polynomial are far away
form the origin where V = αe−βε

2
is effectively zero, therefore, these roots do not

really contribute to the resulting sum (2.10). We have to calculate roots of higher
order polynomial, if we want higher precision, because the sum (2.10) is mostly
dominated by roots near the origin. Legendre polynomials have roots almost
uniformly distributed, that means, if we restrict ourselves to finite interval, using
the same order of polynomial gives us higher precision.

Another problem comes with calculating weights for Hermite polynomials:
The Hermite polynomial in (2.11) becomes in some of the roots far from the
origin smaller than the machine precision. As the polynomial appears in the
denominator, numerical approach collapses when the order of the polynomial
is about 300, while Gauss-Legendre quadrature is still stable even when 1500
equations are given.

Furthermore, the order of the polynomial is equal to the number of equa-
tions (1.27a). As the number of equations gets larger, the interval of integration
on which the numerical evaluation reasonably simulates the system gets longer
(further discussion is in the section 3.3).

For all reasons mentioned above, it was not plausible to use Gauss-Hermite
quadrature in the present thesis. We decided to use Gauss-Legendre quadrature,
which is already included in Mathematica under the command GaussianQuadra-
tureWeights (see Attachment 1). We require the deviation of the numerical inte-
gration from the exact solution to be of order 10−8 or less, which resulted in the
interval (−55, 55). For this interval, converged results were obtained with 1500
integration points. Resulting set of 1501 differential equations (1.27) was solved
using the standard Mathematica routine NDSolve.
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3.2 Exponential Decay According to Perturba-

tion Theory

We numerically compute the probability of finding the initial discrete state
|Ψ(t)〉 still in |ϕ〉 after a time t (see equation (1.28)) as a function of parameters
α and β. For very small β the system is close to Fano model (V is effectively a
constant) and the decay is nearly exponential:

|〈ϕ|Ψ(t)〉|2 = |a(t)|2 ∝ e−Γt = e−
t
τ (3.1)

The value of the decay constant Γ can be found from first order perturbation
theory in the form of Fermi’s golden rule, which states:

Γ = 2π|〈ϕ|H|E〉|2δ(Eϕ − E), (3.2)

where δ(Eϕ − E) is the Dirac δ-function. Since Eϕ = 0 we get

Γ = 2π|e−βε2|2
∣∣∣
ε=0

= 2π|α|2, (3.3)

providing formula for expected decay of |ϕ〉 into the quasi-continuum

|a(t)|2 = e−2π|α|2t. (3.4)

3.3 Numerically Simulated Decay

We start examination of the time evolution with some technical aspects.
Figure 3.1 shows numerically calculated probability (1.28) (blue curve, denoted
by n.c.) compared with the exponential decay predicted by (3.4) (yellow curve).
It reveals slight abnormality in exponential decay. As a residue of numerical
discretization of the continuum, by which we effectively ”enclosed” the system
into a box finite in space, the wave function reflect from the wall of the well.
We will restrict ourselves to a smaller interval of time, as this reflection is not of
any physical meaning to us. The results can be considered valid only for times
< 50 for used numerical parameters (mainly the degree of Legendre polynomial
in Gauß quadrature set to 1500).

Another anomaly, seen in Figure 3.2, are ”echoes” in exponential decay. For
α = 1/5, β = 20 we are far away from Fano model. Parts of the continuum near
origin are strongly coupled to the discrete state compared to more distant parts,
giving rise to more complicated phenomena in the time evolution. We can also
see that the second echo mix together with the reflection.

We start the examination with Figure 3.3, where we are close to Fano model
at the beginning, and as β increases, we are leaving the area where Fano model is
still valid. We can see that the expected curve (3.4) starts to deviate significantly
around β = 1 from numerically calculated |a(t, α, β)|2. Around β = 10 the
first oscillations of probability appear with a frequency around 25 time units.
This frequency decreases with β and for β = 140 (Figure 3.3(h)) the oscillations
disappear, as the frequency is longer than the interval of simulation (1.28).

In Figure 3.4 we can see the oscillations playing the main role. As α = 2
the discrete state is now coupled to the continuum so strongly that the system
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partially reflects back to the discrete state |ϕ〉 before it can escape to infinity.
The rest of it goes away into the continuum. That explains oscillations of the
probability with exponential decline. We can see that the exponential decline is
slower with β increasing.

We obviously can not talk here about Fano model any more, yet the only
parameter that has changed is α. But Fano model places no restrictions on how
strong the coupling should be. It only requires the coupling to be constant, which
is ensured by small β. Therefore, according to Fano, the parameter α should not
be very important, but still we see that large α causes oscillations even for those
values of β for which the system decays exponentially in the case of smaller α
(Figure 3.3).

Whether the oscillations appear or not evidently depends on chosen value of
α and β, with α as the dominant variable. It can be seen clearly in Figure 3.5
that different α can entirely switch the regime between exponential decay and
oscillatory mode. Moreover, when the oscillations first show up (Figure 3.5(f))
the frequency of them corresponds to the point where expected probability (3.4)
of finding |Ψ(t)〉 in |ϕ〉 effectively reaches zero, which supports our theory - first,
the decay follows to expected behaviour of Fano model, but strong coupling forces
part of the system to return to the discrete state. When we continue with larger
and larger α, the initial decay will be slower than expected and the frequency
slightly decreases.
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Figure 3.1: Decay of the discrete state |ϕ〉 into the continuum of states |E〉. The
blue curve, denoted by n.c., shows numerically calculated probability according
to Equation (1.28). The predicted decay (Equation (3.4)) is the yellow curve.
The paremeters are set α = 1/5, β = 1/5.

n.c.

ⅇ-
2π t
25

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

a
(t
)2

Figure 3.2: Decay of the discrete state |ϕ〉 into the continuum of states |E〉. The
color coding is the same as in Figure 3.1. The paremeters are set α = 1/5, β = 20.
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(a) β = 1/5
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(b) β = 1/4
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(c) β = 1/2
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(d) β = 1
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(e) β = 10
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(f) β = 20
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(g) β = 100
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(h) β = 140

Figure 3.3: The decay of the discrete state |ϕ〉 into the continuum of states
|E〉. The blue curve, denoted by n.c., shows numerically calculated probability
according to Equation (1.28). The predicted decay (Equation (3.4)) is the yellow
curve. The paremeter is set α = 1/5, β varies.
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(a) β = 1/50
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(b) β = 1/30
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(c) β = 1/20
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(d) β = 1/15
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(e) β = 1/10
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(f) β = 1/7
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(g) β = 1/5

n.c.

ⅇ-8π t

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

a
(t
)2

(h) β = 1

Figure 3.4: The decay of the discrete state |ϕ〉 into the continuum of states
|E〉. The blue curve, denoted by n.c., shows numerically calculated probability
according to Equation (1.28). The predicted decay (Equation (3.4)) is the yellow
curve. The paremeter is set α = 2, β varies.
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(a) α = 1/9
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(c) α = 1/5
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Figure 3.5: The decay of the discrete state |ϕ〉 into the continuum of states
|E〉. The blue curve, denoted by n.c., shows numerically calculated probability
according to Equation (1.28). The predicted decay (Equation (3.4)) is the yellow
curve. The paremeter is set β = 1/5, α varies.
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3.3.1 System in the Non-Oscillatory Mode

In this short section, we would like to verify correctness of our model by the
limit when the coupling (1.23) tends to a constant one. We expect the decay of
the system will be approaching the exponential decay predicted by Fano model,
which will prove consistence of our theory.

Having the resulting function |a(t, α, β)|2 numerically calculated, we fit it by

f(t) = ce−
t
τ̃ (3.5)

with c, τ̃ as fitting parameters. We expect values τ = Γ−1 (see equation (3.1)),
when we are in non-oscillatory mode. For different α and β the resulting values
τ̃ are in Tables 3.1, 3.2, and 3.3. As we can see, relative errors of τ̃ vary from
tens of percent when α and β are larger than approximately 1/4, to effectively
zero for very small α and β, when we are close to Fano model and (3.4) is valid.

Table 3.1 shows results for quite large α and β for which the relative errors
of τ̃ go up to 40% and never under 5%. As stated before, α is the dominant
parameter causing deviation from exponential decay. As we can see in Table
3.2, small α may suppress relative errors even for not really small β. For both
parameters far under the value of 1/4, the relative error is negligible (Table 3.3).

Relative
β τ̃

error

10.0 5.62 0.41
5.00 4.88 0.23
1.00 3.89 0.02
0.50 3.74 0.06
0.33 3.71 0.07
0.25 3.70 0.07
0.20 3.70 0.07
0.17 3.71 0.07
0.14 3.72 0.07
0.13 3.73 0.06
0.11 3.74 0.06

Table 3.1: Table of fitted parameter τ̃ from Equation (3.5). The parameter is
set α = 1/5, β varies. Assumption τ = Γ−1 yields (see Equation (3.3)) τ = 3.98.

Relative error is given by |τ̃−τ |
τ

.
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Relative
α τ τ̃

error

0.33 1.43 1.25 0.12
0.25 2.55 2.31 0.09
0.20 3.98 3.70 0.07
0.17 5.73 5.44 0.05
0.14 7.80 7.50 0.04
0.13 10.19 9.88 0.03
0.11 12.89 12.59 0.02
0.10 15.92 15.62 0.02
0.07 35.81 35.58 0.01
0.05 63.66 63.60 0.00

Table 3.2: Table of fitted parameter τ̃ from Equation (3.5). The parameter is set

β = 1/5, α varies, τ = (2π|α|2)−1. Relative error is given by |τ̃−τ |
τ

.

Relative
α τ τ̃

error

0.20 3.99 3.95 0.0081
0.17 5.73 5.71 0.0039
0.14 7.80 7.78 0.0021
0.13 10.19 10.17 0.0013
0.11 12.90 12.88 0.0008
0.10 15.92 15.91 0.0006
0.07 35.81 35.80 0.0002
0.05 63.66 63.66 0.0001
0.02 397.89 397.88 0.0000
0.01 1591.55 1591.54 0.0000

Table 3.3: Table of fitted parameter τ̃ from Equation (3.5). The parameters are

set β = α4, τ = (2π|α|2)−1. Relative error is given by |τ̃−τ |
τ

.
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3.3.2 System in the Oscillatory Mode

In general, oscillations appear in multi-level systems, therefore these systems
will be of our particular concern. We shall try to describe our discretized con-
tinuum as a multi-level system, starting with two and three level systems. We
remind here results from Section 1.3 – the frequencies for two level system Ω(2)

and three level system Ω(3) read

Ω(2) =
√

4V 2 + ε2 (3.6a)

Ω
(3)
1 =

√
2V 2 + ε2 (3.6b)

Ω
(3)
2 = 2

√
2V 2 + ε2 (3.6c)

In oscillatory mode, we can find frequency ω of oscillations as a function
of ”full width at half maximum” (FWHM ) of the coupling V (α, β, ε). We ap-
proximate ε ∼= FWHM as it represents characteristic energetic distance between
discrete state |ϕ〉 and the states of the continuum.

We set α = 2 as it provides clear probability oscillations for various β. We can
see (Table 3.4) that frequency ω of oscillations decreases with decreasing FWHM.
Obviously we cannot compare generalized Fano model with two level system: As
FWHM tends to zero (β increasing), the term 4V 2 tends to 4 and equation (3.6a)
gives

√
4 = 2. The same problem arises with the three level system, only equation

(3.6b) gives
√

2. But frequency of oscillations ω decreases far more, tending to
zero. Therefore, neither the two level system nor the three level system describes
the observed frequency correctly. In fact, ω as function a of α and β seems to
be accurately fitted by

√
FWHM – see Figure 3.6. As the continuum is now due

to the discretization effectively multi-level system, we may try to simulate it by
such a system. We modify equations (1.27) for multi-level system of energies Ei.
That is, we replace the integral in (1.27a) by sum, leaving out the weights. We
get a set of differential equations

i
da(t)

dt
=
∞∑
i=1

b(t, Ei)V (Ei), (3.7a)

i
db(t, Ei)

dt
= a(t)V ∗(Ei) + b(t, Ei)Ei, (3.7b)

As we used Gauss-Legendre quadrature to numerically evaluate coefficients
a(t) and b(t, E) above, we now effectively just set all weights equal to one. When
evaluating (1.27), the weights were in range of approximately 0.02 − 0.9, so we
enlarge all of them. The coupling therefore appears stronger to the system, giving
rise to oscillations even for such α, β the system used to decay exponentially (see
Figure 3.7) and accentuates the oscillation when the generalized Fano model
oscillates (Figure 3.8). Also, when evaluating (1.27), we used for discretization
roots of Legendre polynomials, which are almost uniformly distributed. For (3.7)
we discretize the continuum uniformly to 1500 levels.

The number of levels in multi-level system is closely linked up with the fre-
quency of the oscillations. On the other hand, for the generalized Fano model
with continuum of the final states, the resulting numerically simulated time evo-
lution for system with |Ψ(t)〉 evaluated from Equation (1.27) is stable and the
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change in the frequency of the oscillations when 1500 or 300 differential equations
(1.27a) is of order 10−2. This confirms that the numerical approach to treat the
continuum is correct.

Even though multi-level system appears to behave completely differently, it
may qualitatively describe our system. Compare the green curve in Figure 3.7,
denoted by n.c.a and representing numerically calculated probability according
to Equation (1.28), where |Ψ〉 is numerically evaluated from (3.7), with the blue
curve in Figure 3.5(f). Similarly, the green curve in Figure 3.8, denoted by n.c. a,
representing the same system, behaves alike the blue curve in Figure 3.4(h). The
only change is in the frequency of the oscillations which is, as already mentioned,
a function of number of the energy levels in the multi-level system.

From Table 3.4, it can be seen that the limit of the frequency Ω(n) decreases
for large β for n-level system. We can expect that with β and n tending to
infinity (i.e., continuum of states with very narrow coupling), the frequency of
the oscillation tends to zero. The same behaviour has the system with |Ψ(t)〉
evaluated from Equation (1.27) using Gaussian quadrature.

Besides, from each energy level, new higher harmonic frequency appears (sim-
ilarly as in (3.6)). When we put them together, they provides oscillations, if α
is sufficiently small, with exponential decrease (Figure 3.7). For α large enough,
the exponential decrease becomes negligible on the interval of evaluating time
evolution (Figure 3.8).
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β FWHM ω Ω(2) Ω(3)

0.005 23.55 3.30 11.94 11.86
0.01 16.65 2.71 8.56 8.44
0.02 11.77 2.28 6.22 6.05
0.03 9.12 1.94 4.98 4.77
0.05 7.45 1.72 4.23 3.98
0.07 6.45 1.58 3.79 3.52
0.10 5.27 1.40 3.31 2.99
0.11 5.00 1.36 3.20 2.87
0.13 4.71 1.31 3.09 2.75
0.14 4.41 1.26 2.98 2.62
0.17 4.08 1.21 2.86 2.48
0.20 3.72 1.14 2.73 2.34
1.00 1.67 0.73 2.17 1.64
1.2 1.52 0.70 2.14 1.61
1.5 1.36 0.66 2.11 1.57
1.7 1.28 0.64 2.10 1.55
2 1.18 0.61 2.08 1.53

2.2 1.12 0.60 2.08 1.52
2.5 1.05 0.58 2.07 1.51
3 0.96 0.55 2.06 1.49
4 0.83 0.51 2.04 1.47
5 0.74 0.48 2.03 1.46
7 0.63 0.44 2.02 1.45
10 0.53 0.40 2.02 1.44
15 0.43 0.36 2.01 1.43
20 0.37 0.34 2.01 1.43
50 0.24 0.27 2.00 1.42
75 0.19 0.24 2.00 1.42
100 0.17 0.22 2.00 1.42
500 0.07 0.06 2.00 1.41

Table 3.4: Table of parameter ω - frequency of oscillations. The parameter is
set α = 2, β varies. Frequencies Ω(2) and Ω(3) are given by equations (3.6a) and
(3.6b).
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Figure 3.6: The dependence of frequency of oscillations ω on FWHM of the
coupling (1.23). Blue points are taken from Table 3.4, yellow curve is the fitted
function f(FWHM) = 3.48(FWHM)0.56.
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Figure 3.7: The decay of |ϕ〉 into a system of 1500 states |Ei〉 uniformly dis-
tributed over interval (-55,55). The green curve, denoted by n.c. a, shows numer-
ically calculated probability according to Equation (1.28), where |Ψ〉 is numeri-
cally evaluated from (3.7). The blue curve, denoted by n.c. b, shows numerically
calculated probability according to Equation (1.28), where |Ψ〉 is numerically
evaluated from (1.27). The predicted decay (Equation (3.4)) is the yellow curve.
The parameters are set α = 1/5, β = 1/5.
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Figure 3.8: The decay of |ϕ〉 into a system of 1500 states |Ei〉 uniformly dis-
tributed over interval (-55,55). The green curve, denoted by n.c. a, shows numer-
ically calculated probability according to Equation (1.28), where |Ψ〉 is numeri-
cally evaluated from (3.7). The blue curve, denoted by n.c. b, shows numerically
calculated probability according to Equation (1.28), where |Ψ〉 is numerically
evaluated from (1.27). The parameters are set α = 2, β = 1/5.
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3.3.3 Transition between the Oscillatory and the Non-
Oscillatory Mode

In this section, we would like to find criteria by which we can determine
whether the oscillations appear or not. We have seen already that it depends on
the parameters α and β in the coupling (1.23). In particular, on the magnitude
of the coupling, given by

‖V ‖ =

(∫ ∞
−∞
|V (E)|2dE

)1/2

∝ α
4
√
β
. (3.8)

We anticipate that transition from non-oscillatory to oscillatory mode is
closely linked to the magnitude of V , more precisely, to its specific value. We may
try to find a dimensionless expression, which will predict whether the oscillations
appear or not, such as

α

FWHM
∝ α

√
β. (3.9)

However, it turns out that the formula

α√
FWHM

∝ α 4
√
β (3.10)

is better quantity even though it is not dimensionless. This choice has two mo-
tives: First, the term 4

√
β ∝ 1/

√
FWHM appears in equation (3.8); second, we

have seen in previous section that frequency of oscillations ω behaves as
√
FWHM.

We now briefly elaborate the dimensional analysis of our problem. We see
that for β holds [

4
√
β
]

= E−
1
2 = λ, (3.11)

where E is a unit of energy and λ is a unit of wavelength (of a particle representing
our system). For α we have

[α] = E = V, (3.12)

where V is a unit of strength of the coupling. Summing it all up, we get[
α 4
√
β
]

= V λ = K (3.13)

where K is a specific constant, corresponding to the transition from exponential
decay regime to the oscillatory mode.

The obtained result can be understood quite straightforwardly: For a strong
coupling (in some sense), the particle needs to be fast enough to escape to infinity
before it is captured back to the discrete state, which corresponds to a short
wavelength. And the other way around - when the coupling is weak, for the
particle it is easy to escape even with small amount of energy (long wavelength).

For α 4
√
β > K, either the coupling is too strong or the particle does not

possesses enough energy to escape. In both cases, the oscillations of probability
appear. When α 4

√
β < K, the coupling is too weak (or the particle is too fast)

to capture the particle back to the discrete state before it escapes to infinity, so
it leaves the discrete state and we observe simple exponential decay. This is in
conformity with the observed behaviour (see Figure 3.5). We have seen in the
section 3.3.2 that α is the dominant parameter switching the regimes, which make
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perfect sense, as α 4
√
β is much more slowly increasing function of β in comparison

with its strong dependence on α.
The Table 3.5 shows several values of α and β for which the oscillations first

appear. These values are only approximate, because the precise point of appear-
ance of the oscillations is rather subjective. Yet the quantity α 4

√
β stays constant

satisfactorily, confirming our analysis and determining K to be approximately
K ∼= 0.32.

α β α 4
√
β

5,00 1, 7.10−5 0,32
1,00 0,01 0,32
0,90 0,02 0,32
0,80 0,02 0,32
0,75 0,03 0,32
0,50 0,15 0,31
0,25 2,60 0,32

Table 3.5: Table of approximate parameters α and β, for which oscillations appear
for the first time.
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Conclusion

In the beginning of this thesis, Fano description of a discrete state coupled to
a continuum of states by a coupling independent of the energy of the continuum
is introduced. Generalized version of Fano model for time-dependent coupling is
then outlined, followed by a brief elaboration on special systems of two and three
energy levels. Finally, needful theory of numerical computation is presented.

In the second part of this thesis, obtained results are summarized. The time
evolution of the system was numerically simulated (using Gauss quadrature, Leg-
endre polynomials, and numerical solution of a set of differential equations), in
particular the probability of finding the system in its initial state. It turnes out
that the probability for some forms of the coupling exponentially decays and for
some of them oscillates with much slower exponential decrease.

The non-oscillatory mode appears when coupling is close to a constant one,
that means when Fano model becomes a good approximation. The predictions
of first order perturbation theory then correspond to system’s time-evolution.

The oscillations appear when coupling is no longer satisfactorily constant.
The frequency of oscillations behaves as a square root of FWHM of the coupling,
tending to zero with FWHM tending to zero. The frequency is compared with
two and three level system, neither of which depicts the system precisely enough.
The multi-level system is then discussed and its qualitative behaviour seems to
characterise generalized Fano model quite well.

In the last subsection the transition point between both modes is discussed.
The quantity that determines the time evolution mode (exponential or oscillatory)
is found and its specific value corresponding to the transition from one regime
to the other is determined. Furthermore, explanation of its physical meaning is
given.
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Attachment

Attachment 1 - Programme

α = ; β = ;
fitdolni = 0.7;
fithorni = 50;
resdolni = 0;
reshorni = 60;
pocet = 5000;
krok = (fithorni - fitdolni)/pocet;
Nq = 1500 ;
frekvence = ;
<< NumericalDifferentialEquationAnalysis
V = Function[e, Exp[-e2β] α] ;
GQ = GaussianQuadratureWeights[Nq, -55, 55, 32]];
bs = Table[b[i][t], { i, 1, Nq + 1}];
coupling = Sum[GQ[[i]][[2]]*bs[[i]]*V[GQ[[i]][[1]]], { i, 1, Nq}];
Eq1 = { I D[bs[[Nq + 1]], t] == coupling};
Eq2 = Table[ I D[bs[[i]], t] == GQ[[i]][[1]]*bs[[i]] + bs[[Nq + 1]]*V[GQ[[i]][[1]]],
{ i, 1, Nq}];
Eq3 = {(bs[[Nq + 1]] /. t -¿ 0) == 1.0} ;
Eq4 = Table[(bs[[i]] /. t -¿ 0) == 0.0, { i, 1, Nq}];
Eq = Join[Eq1, Eq2];
Eq = Join[Eq, Eq3];
Eq = Join[Eq, Eq4];
sol = NDSolve[Eq, bs, { t, resdolni, reshorni}];
chci = Function[t, Re[bs[[Nq + 1]]*Conjugate[bs[[Nq + 1]]] /. sol[[1]]]];
fitdata = Table[{ N[t], chci[t]}, { t, fitdolni, fithorni, krok}]];
fit = NonlinearModelFit[fitdata, a (Cos[frekvence*t*2 π] + 1)
Exp[-t/τ ], { a, b, c, τ}, t];
τ = fit[”ParameterTable”][[1]][[1]][[5]][[2]];
relativnichybatau = fit[”ParameterTable”][[1]][[1]][[5]][[3]]/
fit[”ParameterTable”][[1]][[1]][[5]][[2]]
χ = fit[”ANOVATableSumsOfSquares”][[1]]/pocet
ft = Normal[fit];
Plot[{ ft, bs[[Nq + 1]]*Conjugate[bs[[Nq + 1]]] /. sol }, { t, resdolni, reshorni} ]
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