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Notation
• a, A A number.

• a, A, 1n A vector, if not stated otherwise.

• AT A transposed (= row) vector.

• A A matrix.

• (A|B) A = ( a11 a12
a21 a22 ) ,B =

(
b11 b12
b21 b22

)
, then (A|B) =

(
a11 a12 b11 b12
a21 a22 b21 b22

)
.

• A
⨂

2 AT A.

• c1n An n-dimensional vector with c in every component.

• 1[A = 0] An indicator of an event.

• A ∼ (0, σ2) A random variable A satisfying EA = 0 and VarA = σ2.
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1. Introduction
Literature studying various football leagues such as Italian (Pettersson-Lidbom
& Priks, 2010), Spanish (Garicano, Palacios-Huerta & Prendergast, 2005) and
English (Boyko, Boyko & Boyko, 2007) give evidence that referees are significantly
influenced by various forms of social pressure; a number of aspects of the referees’
bias is studied. We look at the literature in details:

• Italian Series A and B: The fact that 25 games were played without the
spectators due to the hooligans violence gave an opportunity to compare
these matches and their outcomes to the matches with spectators and
therefore the crowd effect on both referees and players. The authors
found evidence that “it is the referee that changes his behaviour in games
without spectators rather than the players.” A significant change of referees’
behaviour was found regarding fouls and yellow and red cards awarded.

• Spanish Primera División: This article examined the injury time
(overtime) dependance on various factors, among others goal differentials
and Big team indactors (budget and position in the league table). A huge
difference between the goal differences –1 and +1 was found, suggesting
that the home team is highly favoured in close games. The authors also
suggest that the big rank difference (difference in positions in the league
table) positivelly effects the length of the overtime but not in close games.

• English Premier League: As the authors used data from 14 Premier
League consecutive seasons involving more than 50 referees, they compared
the home advantages (a differential in goals, yellow and red cards and
penalties awarded) for all the referees separately and found out that they
differ significantly. However, excluding one outlier from the dataset pushed
the differences between referees regarding the goal differential above the
significance level.

Due to the fact that the exact length of the overtimes (in seconds) in multiple
seasons of EPL has recently become available, the potential referee bias is possible
to be reevaluated using more precise data. Therefore, unlike the previous research,
we settle for the analysis of the overtime length only. There are two reasons for
that:

1. We have the data of the length of the overtime rounded to the whole
seconds, not the whole minutes as they are commonly available.

2. We have larger dataset about each match in comparison to the previous
literature - we know even such details about each match as i.e. number of
throw-ins, handballs or fouls commited.

The length of the overtime is entirely in a referee’s competence, yet it should
comply with the clearly stated rules (namely Law 7 in the official football rules
(FIFA, 2000)). Hence we can think of the real overtime in the match as if it
consisted of two parts:
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1. Regular: The factors defined in rules, i.e. goal celebrations, discussion
with referees, substitutions, injuries etc.

2. Bias: Score differential or team specific.

So our main question for the thesis is, whether the length of the overtime can
be fully explained by the regular factors defined in the rules, or if either score
differential or team specific or both affect the length as well as various game
stoppages.

Our research has given answers similar to the study of Spanish Primera División.
We have found evidence that the length of the overtime as a random variable
cannot be fully explained as the function of the regular factors: Referees
contribute to the home advantage by giving extra overtime when the home team
is behind. The referees stall the end of the match the most when the home team
is behind by one goal. A small additional favouritism of a group of “Big” teams
has been found but — similarly to the Spanish league — not in the close games.
This thesis has also attempted, and failed, to identify any form of favouring
committed by a referee or a group of referees in specific matches which helped
change the outcome of the match.

The thesis is structured as follows:

• In Chapter 2 we summarize the existing theory and techniques used later
in our research.

• In Chapter 3 we formulate and prove the key theorem for our research —
about referencing with various values of a categorial variable in the model.

• In Chapter 4 we formulate hypotheses about various forms of referees’
favouritism and we test them using theory from the previous chapters. We
focus on two particular forms of social pressure –– the home advantage and
the advantage of a big fan base.
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2. Review of Linear Regression
Model Basics
This chapter is mostly a summarization of the theory introduced in (Kulich, 2017)
and (Zuzáková, 2010).

Convention. The statements concerning relationships between two random
variables or a random variable and a constant are always understood as
relationships almost surely.

2.1 Linear Regression Model
Let us consider n independent identically distributed random vectors (Yi, XT

i )T .
Each Xi has p + 1 < n components, so it can be written as (xi0, xi1, ..., xip)T .
(Yi, XT

i )T is called an observation. Then n is the count of observations.

Convention. For the whole thesis we assume that the random variable Yi is a
function of variables xi0, xi1, ..., xip and that this function is linear.

Definition 1. The data (Yi, XT
i )T satisfy the linear regression model, if

Y = Xβ + ε,

where
Y = (Y1, Y2, ..., Yn)T ,
X = (XT

1 , XT
2 , ..., XT

n )T ,
β = (β0, β1, ..., βp)T ,
ε = (ε1, ε2, ..., εn)T , where
εi are mutually independent identically distributed random variables such that
∀i ∈ {1, 2, ..., n} : εi ∼ (0, σ2) and εi is independent with Xi.

Yi is called the response1 in i-th observation, Xi the vector of p + 1 regressors2 in
i-th observation, X the regression3 matrix, β the vector of regression coeficients4,
εi the error terms5 and σ2 the residual variance.

Note. If ∀i ∈ {1, 2, ..., n} : xi0 = 1, the related model is called the linear model
with intercept. β0 is then called the intercept term and represents the expected
value of Yi under (xi1, xi2, ..., xip)T = 0.

Convention. We will always assume that ∀i ∈ {1, 2, ..., n} : xi0 = 1.

1also dependent variable
2also covariates, predictors or independent variables
3also covariate or model
4also regression parameters or effect
5also disturbances
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Note. The coefficient βj expresses an increase of the expected value of the
dependant variable Yi with an unit change of xij, while the other regressors remain
unchanged, which is clear from the following equations:

Yi = xi0β0 + xi1β1 + ...xijβj... + xipβp + εi

Y ′
i = xi0β0 + xi1β1 + ...(xij + 1)βj... + xipβp + εi

= xi0β0 + xi1β1 + ... + xipβp + εi + βj

Y ′
i − Yi = βj.

2.1.1 Transformed Response on a Log Scale
Let us consider a monotone function h. If we consider a model with transformed
response h(Y ), we in most cases lose all the information about the influence of
the regressors on the response.

The only case of nonlinear h that has a reasonable interpretation, is the log
function. Then it holds:

log(Yi) = XT
i β + εi

Yi = exp{XT
i β + εi} = exp{XT

i β} exp{εi}

In the linear model the coefficient βj expresses an increase of the expected value
of the dependant variable Yi with an unit change of xij, while the other regressors
remain unchanged. In the log model, the coefficient exp{βj} expresses a relative
increase of the expected value of the dependant variable Yi with an unit change of
xij, while the other regressors remain unchanged, which is clear from the following
equations:

log(Yi) = xi0β0 + xi1β1 + ... + xipβp + εi

Yi = exp{xi0β0} exp{xi1β1}... exp{xipβp} exp{εi}
Y ′

i = exp{xi0β0} exp{xi1β1}... exp{(xij + 1)βj}... exp{xipβp} exp{εi}
= exp{xi0β0} exp{xi1β1}... exp{xipβp} exp{εi} exp{βj}

Y ′
i

Yi

= exp{βj}.

2.2 Estimation of the Parametres
Convention. From now on, we will always assume that X is of full rank, i.e.
r(X) = p + 1.

2.2.1 Point Estimation
Definition 2. That β̂ is the Least Square Estimator (LSE) of the parameter β,
if

β̂ = arg min
β∈Rp+1

(Y − Xβ)T (Y − Xβ)

Theorem 1 (LSE Formula). Let Y = Xβ + ε be a linear model. Then β̂ =
(XTX)−1XT Y is the LSE of the parameter β.
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Proof. Firstly we show the following:

XT (Y − Xβ̂) = 0.

Using β̂ = (XTX)−1XT Y we obtain

XT (Y − Xβ̂) = XT (Y − X(XTX)−1XT Y )
= XT Y − (XTX)(XTX)−1XT Y

= XT Y − XT Y

= 0.

Now let β̃ ∈ Rp+1. We compute:

(Y − Xβ̃)
⨂

2 = [(Y − Xβ̂) + (Xβ̂ − Xβ̃)]
⨂

2

= (Y − Xβ̂)
⨂

2 + (Xβ̂ − Xβ̃)
⨂

2 + (Y − Xβ̂)T (Xβ̂ − Xβ̃)  
=:A

+ (Xβ̂ − Xβ̃)T (Y − Xβ̂)  
=:B

It can be easily shown that A = B = 0. Since A is a number, A = AT .

A = (Y − Xβ̂)TX(β̂ − β̃)
= [(Y − Xβ̂)TX(β̂ − β̃)]T

= (β̂ − β̃)TXT (Y − Xβ̂)T T

= (β̂ − β̃)T XT (Y − Xβ̂)  
=0

= 0
B = [X(β̂ − β̃)]T (Y − Xβ̂)

= (β̂ − β̃)T XT (Y − Xβ̂)  
=0

= 0

Thus we obtain:

(Y − Xβ̃)
⨂

2 = (Y − Xβ̂)
⨂

2 + (Xβ̂ − Xβ̃)
⨂

2,

where (Y − Xβ̂)
⨂

2 is constant with respect to β̃. Therefore, the search for the
minimum of (Y − Xβ̃)

⨂
2 is equivalent to the search for the minimum of

(Xβ̂ − Xβ̃)
⨂

2 = (β̂ − β̃)TXTX(β̂ − β̃),

which is always non-negative and equals 0 if and only if β̃ = β̂, since XTX is a
positive-definite quadratic form under our assumption of full rank of the matrix
X.

Note. Since we assume X to be of full rank, XTX is also of full rank und thus
invertible.

Ŷ := Xβ̂ is called the vector of fitted values, u := Y − Ŷ the vector of residuals
and SSe := uT u = (Y − Xβ̂)T (Y − Xβ̂) the residual sum of squares.
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Proposition (Properties of LSE, fitted values, residuals and SSe). It holds:

(i) Eβ̂ = β and Varβ̂ = σ2(XTX)−1,

(ii) EŶ = Xβ and VarŶ = σ2[X(XTX)−1XT ],

(iii) Eu = 0 and Varu = σ2[In − X(XTX)−1XT ],

(iv) ESSe = (n − p − 1)σ2.

Proof. The proof can be found for instance in (Anděl, 2007).

2.2.2 Hypotheses Testing under Normality
In this subsection we will assume the normality of error terms, i.e.

εi ∼ N (0, σ2), ∀i ∈ {1, 2, ..., n} =⇒ ε ∼ Nn(0, σ2In).

Under this assumption many properties of the model can be derived:

Theorem 2 (Properties of Response, LSE, fitted values, residuals and SSe under
normality). It holds:

(i) Y ∼ Nn(Xβ, σ2In),

(ii) β̂ ∼ Np+1(β, σ2(XTX)−1),

(iii) Ŷ ∼ Nn(Xβ, σ2[X(XTX)−1XT ]),

(iv) u ∼ Nn(0, σ2[In − X(XTX)−1XT ],

(v) SSe/σ2 ∼ χ2
n−p−1,

(vi) β̂ and SSe are independent.

Proof. The proof can be found for instance in (Anděl, 2007) and (Zvára, 2008).

Corollary. Let c ̸= 0 be a (p + 1)-dimensional vector of constants. Then

cT β̂ − cT β√
SSe

n−p−1cT (XTX)−1c
∼ tn−p−1.

Proof. This is a direct corollary of the parts (ii) and (v) in the previous theorem,
definition of Student’s t-distribution and the delta method.

Corollary.
β̂j − βj√

SSe

n−p−1 ẋ(j+1)(j+1)
∼ tn−p−1, ∀j ∈ {0, 1, ..., p},

where ẋ(j+1)(j+1) is the (j+1)-th diagonal element of (XTX)−1.

Proof. We set c the (j+1)-th canonical vector and use the previous corollary.
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Let us have 0 ≤ q ≤ p. The following theorem allows us to test the hypothesis

H0 : βq = βq+1 = ... = βp = 0

against the alternative: At least one of q-th, (q+1)-th, ..., p-th regressors has a
significant effect on the response.

We denote X(q) the matrix of the first q columns of X and β(q) the vector of the
first q components of β. Let SSe be the residual sum of squares in the original
model Y = Xβ + ε and SS ′

e be the residual sum of squares in the reduced model
Y = X(q)β(q) + ε′, where X(q)β(q) := 0 providing q = 0.

Theorem 3. If H0 holds, then

n − p − 1
p − q + 1

SS ′
e − SSe

SSe

∼ Fp−q+1,n−p−1.

Proof. The proof can be found for instance in (Zvára, 2008).

Note. If q = 0, we use this theorem to test whether the model as a whole
significantly describes the dependence of the response on the regressors, as it
compares the full model to the model reduced to the error term.
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3. Decomposition of an Intercept
Using a Categorial Variable:
Theoretical Background
In this chapter we will introduce a well-known and commonly used technique
that will be used later in the research. We will formulate and prove statement
about validity of such approach.

Let us consider n independent identically distributed random variables Wi with
their values in a set F. Let us find a constant f and a function g : F → {1, 2, ..., f}.
Then we add random variable g(Wi) as follows. We define f random variables:

W k
i := 1[g(Wi) = k], k ∈ {1, 2, ..., f}.

For ∀k ∈ {1, 2, ..., f} we denote:
W k := (W k

1 , W k
2 , ..., W k

n )T ,
W∗ := (W 1, W 2, ...W f−1),
X0

i := (xi1, xi2, ..., xip)T ,

X0 := (X0
1

T
, X0

2
T
, ..., X0

p
T )T ,

M̂ := (X0|W∗|W f ),
M̃ := (X0|W∗|1n).

Note. If X is a regression matrix for a model with intercept, we essentially
decompose the intercept based on different values of the categorial variables
g(Wi).

Note. M̂ represents a new model with the decomposed categorial variables Wi

and without intercept (respectively with zero intercept term), model M̃ represents
a new model in which one value of decomposed categorial variable is used as an
intercept.

Convention. We continue to assume M̂ and M̃ are of full rank, i.e. r(M̂) =
r(M̃) = p + f. The necessary condition for the full rank is to have at least one
observation acquiring each of the values of the new categorial variable.

Using notation from this section, we can formulate and prove a crucial theorem
for this thesis.

3.1 Referencing with One Value of a Categorial
Variable

In this section we denote for β = (β1, β2, ..., βp, βp+1, ..., βp+f )T :
β0 := (β1, β2, ..., βp)T , β∗ := (βp+1, ..., βp+f−1)T . So β = (β0, β∗, βp+f )T .

Theorem 4 (About referencing with one value of a categorial variable). Let us
have two linear models Y = M̂β + ε̂ and Y = M̃β + ε̃, where M̂ and M̃ are
defined as before. Let β̂ be the LSE for β in the first model. Then the following
statements are equivalent:
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(i) β̃ is the LSE for β in the second model.

(ii) β̃ = (β̃0, β̃∗, β̃p+f )T , where

β̃0 = β̂0,

β̃∗ = β̂∗ − β̂p+f1f−1,

β̃p+f = β̂p+f .

Lemma. Let us have two linear models Y = M̂β + ε̂ and Y = M̃β + ε̃, where M̂
and M̃ are defined as before. Let α̃ = (α̃0, α̃∗, α̃p+f )T and α̂ = (α̂0, α̂∗, α̂p+f )T

be two (p + f)-dimensional vectors satisfying:

α̃0 = α̂0,

α̃∗ = α̂∗ − α̂p+f1f−1,

α̃p+f = α̂p+f .

Then it holds:
(Y − M̂α̂)

⨂
2 = (Y − M̃α̃)

⨂
2.

Proof of the Lemma. We denote

D := M̃ − M̂ =
(
0n · · · 0n 0n · · · 0n 1n − W f

)
.

Let us compute:

(Y − M̃α̃)
⨂

2 = [Y − (M̂ + D)α̃]
⨂

2

= [Y − ((X0|W∗|W f ) + D)α̃]
⨂

2

= (Y − X0α̃0 − W∗α̃∗ − W f α̃p+f − Dα̃)
⨂

2

= [Y − X0α̂0 − W∗(α̂∗ − α̂p+f1f−1) − W f α̂p+f − Dα̃]
⨂

2

= (Y − X0α̂0 − W∗α̂∗ − W f α̂p+f + W∗α̂p+f1f−1 − Dα̃)
⨂

2.

Since

W∗α̂p+f1f−1 = α̂p+f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
k∈{1,2,...,f−1}

w1k∑
k∈{1,2,...,f−1}

w2k

...∑
k∈{1,2,...,f−1}

wnk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= α̂p+f

⎛⎜⎜⎜⎜⎝
1 − w1f

1 − w2f
...

1 − wnf

⎞⎟⎟⎟⎟⎠ = Dα̃,

we obtain:

(Y − M̃α̃)
⨂

2 = (Y − X0α̂0 − W∗α̂∗ − W f α̂p+f )
⨂

2

= (Y − (X0|W∗|W f )α̂)
⨂

2

= (Y − M̂α̂)
⨂

2.

11



Proof of the Theorem 4.
(ii) ⇒ (i) We denote:

C := (Y − M̂β̂)
⨂

2

Since β̂ is the LSE of β, it holds:

(Y − M̂β)
⨂

2 ≥ C, ∀β ∈ Rp+f . (3.1)

From the lemma we have:

(Y − M̃β̃)
⨂

2 = C. (3.2)

All we need to prove at this point is that C is also a minimum for the expression
(Y − M̃β̃)

⨂
2, that is

(Y − M̃β)
⨂

2 ≥ C, ∀β ∈ Rp+f . (3.3)

Let us assume that there exists β̃′ ∈ Rp+f such that (Y − M̃β̃′)
⨂

2 < C. We
define β̂′ := (β̂′0, β̂′∗, β̂′

p+f )T , where

β̂′0 := β̃′0,

β̂′∗ := β̃′∗ + β̃′
p+f1f−1,

β̂′
p+f := β̃′

p+f .

From the lemma we have:

(Y − M̂β̂′)
⨂

2 = (Y − M̃β̃′)
⨂

2 < C,

which is a contradiction to (3.1). Therefore we proved (3.2), and from (3.3) we
obtain:

β̃ = arg min
β∈Rp+f

(Y − M̃β)
⨂

2,

that is, β̃ is the LSE for β in the model Y = M̃β + ẽ.

(i) ⇒ (ii) This is obvious now, since under our assumptions LSE always
exists and it is unique.

The crucial fact is that, with other variables unchanged, we obtain estimations
for βk − βp+f , k ∈ {p + 1, p + 2, ..., p + f − 1}, while the Theorem 2 still holds.
Hence we can test hypotheses of the difference βk − βp+f .

• The hypothesis βk − βp+f ≤ 0 is equivalent to the statement that
the response is more positivelly affected when g(Wi) = k than when
g(Wi) = p + f .

• The hypothesis βk − βp+f ≥ 0 is equivalent to the statement that the
response is more positivelly affected when g(Wi) = p + f than when
g(Wi) = k.

Since we can choose any value of the categorial variable and move the
corresponding binary random variable to the intercept, we can formulate and
test similar hypotheses of every pair of the values of the categorial variable.
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Example

We use randomly generated dataset to illustrate the use of the previous theorem:

Variable Distribution Generated value
(Intercept) U(100, 200) 169.318
Beta1 U(5, 10) 8.11
Beta2 U(10, 20) 18.537
ExtraEffect1 U(40, 80) 41.277
ExtraEffect2 U(40, 80) 45.511
ExtraEffect3 U(40, 80) 74.682
CategorialVariable U{1, 2, 3}
Regressor1 U(20, 120)
Regressor2 U(5, 30)
ErrorTerm N(0, 100)
Empty values are vectors and can be found in Table 5.1.

We define 3 random variables Decomp.k as 1[CategorialVariable = k]. Then we
compute the Response as

Intercept +
∑

(Beta · Regressor) +
∑

(ExtraEffect · Decomp.) + ErrorTerm.

Analysing just the original regressors (1 and 2) we obtain:

Coeficient LSE
(Intercept) 203.63
Regressor1 8.049
Regressor2 20.079

If we decompose the original intercept first into three decomposed random
variables, and then reference with the third one, we obtain:

Coeficient LSE Coeficient LSE p-valuea

(without intercept) (with referencing)
Regressor1 8.072 8.072
Regressor2 18.611 18.611
Decomp.1 209.758 −45.041 0.006
Decomp.2 212.709 −42.089 0.011
Decomp.3b 254.798 254.798
a one-sided b ∼ (Intercept)

Hence it is clear from the table above that the estimations of the variables
Decomp.1 and Decomp.2 were lessened by a factor of Decomp.3 estimation while
the estimations of all other variables remained unchanged.

On a significance level of 95% we reject the hypotheses that ExtraEffect1 is
greater or equal to ExtraEffect3 and that ExtraEffect2 is greater or equal to
than ExtraEffect3, as the one-sided p-values are less than 0.05 in both cases.
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4. Research
Note. For the whole thesis a significance level is chosen to be of 95%. For
simplifying we use R’s marks for achieving various significance levels:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 (space) 1.

Note. Season 1 = Season 2011/12, ..., Season 5 = Season 2015/2016.

4.1 Social Context and Assumptions

4.1.1 Premier League
The Premier League is England’s primary football league. It is the most-watched
sports league in the world. English referees are considered to be one of the best
referees in the world. This is demonstrated by having the most referees and
linesmen in FIFA World Cup finals from all the countries in the world.

There can be two main pushes on the referees during the match:

• Home support. Since there is an average attendance over 35 000
spectators at a match, over 75 000 for the biggest team.

• “Big” teams. As in every league there are teams with a huge fanbase
finishing regularly at the top of the table and this awareness can cause bias
as well.

4.1.2 Assumptions
We have three main theories to test and in the thesis we will introduce three
models to test hypotheses of them.

• Goal difference at the time 90:00 affects the Overtime.
We assume that the referee let the game last longer if there is a chance of
turning the result, especially when the home team is behind by one goal:

– Games where the goal difference is two or more last shorter then all
the others.

– Games where the goal difference is exactly one last longer then all the
others.

– Games where the home team is behind by one goal last the longest.

Since we will explore this phenomenon through the whole dataset, all the
referees and all the teams, the related model will be called the Systematic
Bias Model.

• Referees let certain matches last longer waiting for a goal.
We assume that there is a significant number of matches, where (beyond
the systematic bias, if proven) the referees wait for a goal to be scored.
Since we will study these particular matches (and teams and referees), the
related model will be called the Individual Bias Model.
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• “Big” teams are favoured with extra overtime when they need it.
We assume that there is a significant influence of whether Big teams with
the biggest fanbase are playing against the Small ones and need more time.
It is also considered beyond the systematic bias, if proven. The related
model will be called Big-Small Teams Model.

We assume the Home advantage to be most relevant from the three introduced
criteria. That is why we introduced it before Individual Bias and Big-Small Teams
Models. If the Home advantage will be proven, we will take it into consideration
creating the other two models.

4.2 Data Collecting and Modificating
We collected data from 5 Premier League seasons (2011/2012 – 2015/2016). Given
that there are 20 teams playing with one another twice a season, data from 1900
matches are available. For each match we have the following information:

• Date, Home and Away team, Referee,

• Length of the overtime (rounded to seconds not minutes)

• Pairs (for Home-Away) of numbers of

– Goals in the 1st, 2nd half, Goals in the overtime,
– Penalties, Sub-ins, Red and Yellow cards,
– Fouls, Corners, Throw-ins,
– Offsides, Handballs

The pairs of counts should be all that could possibly affect Overtime, with the
exception of injuries and certain extraordinary situations (such as fans on the
pitch etc.). Since those situations do not happen in the Premier League, all we
have not originally taken into consideration with and could be relevant are the
injuries.

4.2.1 First Look at the Data
Code. S0.1–S0.3

First we explore some basic properties of the Overtime variable:

max 762
min 6
mean 259.86
median 249
standard deviation 76.1
# of less than 1 minute 1

When we look at the matches with only 6 seconds of the overtime, we realise
that it was the last round of the 2014/2015 season, Leicester was playing against
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QP Rangers and the final score was 5:1. So we cannot talk about any bias, the
referee did not probably want to prolong this match which was the last in the
season since the result had already been decided. We choose to remove this
observation entirely from our dataset, so as not to distort our results.

Next we look more thoroughly into Overtime. It is only natural to assume
that log(Overtime) would fit better the regression model than only Overtime,
because from the nature of overtime, it cannot be negative, there is much
more space to the right from the median then to the left and it is not as
big of an exception to have matches with additional 7 minutes or more. To
test out this assumpation, we plot the histograms and the Q-Q plots for both
variables — Overtime and log(Overtime) — and a theoretical normal distribution.
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It is clear from the plots, the log model fits indeed better the normal distribution,
so for most of the thesis, we continue with log(Overtime) despite the fact that
based on the nature of the problem, the factors should have an additive effect
rather than multiplicative (e.g. each substitution should increase the length of
the match by X seconds, not 1.02 times).
Note. It is obvious that some intervals of Overtime were greatly preferred which
was caused by the fact that the estimated overtime is announced at the time
90:00 in whole minutes, and if nothing special happens, it is usual to meet this.
To handle this properly, a methodology beyond this thesis would be required, so
we settle for the data as they are. Since the dataset is quite large, the average
effect of preffered values should be lessened.

4.2.2 Basic Linear Model and Injuries
Code. S0.4–S0.6
We perform the linear regression only on all the objective factors (they can be
seen in the Table 5.2). All variables are in pairs (Home-Away) and we reject those
pairs where both variables are shown not to be significant (i.e. we do not reject
the hypotheses that the corresponding coefficients are 0):

• Handballs, Offsides and Penalties.
Now, when we know which factors to take into consideration, we only need to
handle the injuries to have the dataset fully prepared. It is reasonable to assume
that any bias would not exceed 3 extra minutes of overtime. So we introduce a
new model with just the relevant factors and for now we choose Overtime and not
log(Overtime). Then we look which observations have the residual of at least 180.

There are 41 of them. We try to find as much information concerning the
matches as possible in order to determine whether there was an injury causing
the extra additional time. In 26 of them, we found the injury. We add a dummy
variable, valued 1 for these 26 matches and 0 for the rest. At this moment the
dataset is completed and ready for the research.

We add Injury to the model and the result will be called the Basic Model. In the
Table 5.3 we can see the whole table with an intercept and with all the relevant
variables.
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4.3 Systematic Bias Model
Note. We will refer to this model as to the SB Model or SB for short.

4.3.1 Approach
Code. S1.0–S1.1

Based on the theory in Chapter 3, we take the random variable Difference90 which
describes the difference in the score at the beggining of the overtime. It will be
positive for the home team in the lead. We define 7 binary random variables for
goal differences:

• HA_Up3 for Difference90 ≥ 3,

• HA_Up2 (respectivelly HA_Up1) for Difference90 = 2 (resp. 1),

• HA_Same for Difference90 = 0 and

• HA_Down1–3 analogically.

For the purposes of the first two hypotheses we also define:

• HA_Dif2more for | Difference90 | ≥ 2 and

• HA_Dif1exact for | Difference90 | = 1.

However, when we add these variables to the model, we should avoid leaving the
variables with goals in the first and the second half, since they are dependant
with the goal difference. We only keep OvertimeGoals in the model (for both
Home and Away).

First we would like to compare our dataset to a similar dataset from Spanish
Primera División introduced by Garicano & Col. (2005). We plot a simple
bar plot showing average length of Overtime in the matches with various goal
differences at the beggining of the overtime:
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There is the corresponding plot1from the mentioned article:

We can see a huge difference on the bar +1 between the leagues. In the Spanish
league it is the lowest bar of all, however, in the English league it is the second
highest, right behind –1. This can be interpreted as huge bias in favour of the
home team in Spain — if they are behind by one goal, almost twice as much time
is added than when they are leading by one goal. In the English league, if the
home team is leading by one goal, the matches are also significantly lenghtened,
even not as much as in the opposite situation.

Now we properly formulate our three assumptions into null hypotheses for this
model:

• H
SB1,i

0 : βHA_Dif2more ≥ βHA_i, i ∈ {Up1, Same, Down1},

• H
SB2,i

0 : βHA_Dif1exact ≤ βHA_i, i ∈ {Up3, Up2, Same, Down2, Down3},

• HSB3
0 : βHA_Down1 ≤ βHA_Up1.

4.3.2 Results
In the Table 5.4 we can see the whole table without an intercept and with all the
relevant variables, for the hypotheses (referencing with various variables) we will
only display the coefficients for the binary variables.

1The only difference is that the score margin in Spanish league is taken at the end of the
game.
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Hypothesis: Decided matches last shorter

Code. S1.2

In this model we use HA_Dif2more as an intercept.

Estimate Std. E. t value p-valuea

(Intercept) 4.8144 0.0547 87.9853 < 2E-16 ***
HA_Up1 0.2056 0.0145 14.1608 < 2E-16 ***
HA_Same 0.1446 0.014 10.3275 < 2E-16 ***
HA_Down1 0.2334 0.0152 15.3489 < 2E-16 ***
a one-sided

Given the small p-values for HA_Up1, HA_Same and HA_Down1 we reject all

H
SB1,i

0 : βHA_Dif2more ≥ βHA_i, i ∈ {Up1, Same, Down1},

and the first assumption is proven.

Hypothesis: Matches with one-goal difference at the time 90:00 last
longer

Code. S1.3

In this model we use HA_Dif1exact as an intercept.

Estimate Std. E. t value p-valuea

(Intercept) 5.0423 0.0544 92.6238 < 2E-16 ***
HA_Up3 −0.3371 0.0185 −18.2183 < 2E-16 ***
HA_Up2 −0.1597 0.0162 −9.8855 < 2E-16 ***
HA_Same −0.0718 0.0128 −5.6014 1.22E-08 ***
HA_Down2 −0.1094 0.0206 −5.3019 6.41E-08 ***
HA_Down3 −0.3234 0.0249 −13.0013 < 2E-16 ***
a one-sided

Given the small p-values for HA_Up3, HA_Up2, HA_Same, HA_Down2 and
HA_Down3 we reject all

H
SB2,i

0 : βHA_Dif1exact ≤ βHA_i, i ∈ {Up3, Up2, Same, Down2, Down3}

and the second assumption is proven.

Hypothesis: Biggest bias appears when the home team is losing by one
goal

Code. S1.4
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In this model we use HA_Down1 as an intercept.

Estimate Std. E. t value p-valuea

(Intercept) 5.0597 0.0552 91.5926 < 2E-16 ***
HA_Up3 −0.3535 0.0206 −17.1873 < 2E-16 ***
HA_Up2 −0.1759 0.0185 −9.5343 < 2E-16 ***
HA_Up1 −0.0293 0.0161 −1.8168 3.47E-02 *
HA_Same −0.0873 0.0154 −5.6707 8.21E-09 ***
HA_Down2 −0.1242 0.0222 −5.6016 1.22E-08 ***
HA_Down3 −0.3379 0.0261 −12.9437 < 2E-16 ***
a one-sided

Given the small p-value for HA_Up1 we reject

HSB3
0 : βHA_Down1 ≤ βHA_Up1.

and the third assumption is proven.

4.3.3 Interpretation
Combining all the hypotheses we have proved the following sequence of types of
matches order by the extent of the referees’ bias:

[Difference90 = −1] ≻ [Difference90 = 1] ≻ [Difference90 = 0]
≻ Any other Difference90,

where ≻ compares the extent of the bias.

This has been expected, since based on already mentioned studies, the home
crowd has a significant influence not just on the players and their performance,
but also on the referees. But it is important to take into consideration that each
team plays the exact same number of home and away matches.

4.4 Individual Bias Model
Note. We will refer to this model as the IB Model or IB for short.

4.4.1 Approach
In this section we do not formulate any hypotheses. We have fitted values of
Overtime with and without considering the systematic bias. We look into those
matches in which there was a goal scored in the time “that should not be played
anymore” according to one or both Basic and SB Models. We will look for
common characteristics (especially teams and referees).

In our analysis we do not include all the matches in which an overtime goal was
scored. We define the Suspicious goal as a goal that changed the result in the
sense of win-draw-loss. The matches in which more than one overtime goal was
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scored, we approach individually and we turn them into a game with only one
goal. The specific approach to all 7 matches can be found in the special section
at the end of this thesis.

4.4.2 Results
Code. S2

Note. The diagram for this section can be found in the section with the figures.

There are only 5 matches in which the time of the overtime goal exceeds the fitted
values of Overtime of both Basic and SB Models. There is no match that would
exceed just one. The following table shows these matches.

Fitted values
Sa Match Referee Basic SB OGTb OTc

1 Man. City – Tottenham Webb 267 250 280 356
2 Liverpool – Chelsea Friend 342 349 392 479
4 Leicester – Burnley Dowd 288 321 330d 439
4 Tottenham – West Ham Moss 298 315 330d 407
5 Cr. Palace – Liverpool Marriner 298 294 330d 381

a Season b Overtime goal time (in seconds after 90:00) c Overtime
d Approximate (± 30 s)

4.4.3 Interpretation
The number of matches is very small — 1 per season in average. There is always
a different referee. When we look at the diagram we can see that the goals were
scored quite shortly after the fitted values of Overtime. We can definitely say
that there were no contributions of stalling the end of a match waiting for a goal
to be scored.

4.5 Big-Small Teams Model
Note. We will refer to this model as the BST Model or just BST.

4.5.1 Approach
Code. S3.1–S3.2

We only use those matches in which one Big and one Small team are playing.
We do not want to lose information about the bias related to the home
team when creating this model, therefore we use the same method as in the
section 4.3 and just split each variable into two according to whether the
home team is Big or Small. This would result in 14 variables, which is a
bit too much given that we already cannot use all observations. So we reduce
the original goal differences to only 5 categories (0, 1, –1, 2 and more, –2 and less).

Thus, we define 10 binary variables as follows:
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• BST_Up2_BigHome for Difference90 ≥ 2 and home Big team,

• BST_Up1_BigHome for Difference90 = 1 and home Big team,

• BST_Same_BigHome for Difference90 = 0 and home Big team,

• BST_Down1_BigHome for Difference90 = –1 and home Big team,

• BST_Down2_BigHome for Difference90 ≤ –2 and home Big team and

• 5 other with suffix BigAway analogically.

Now we properly formulate our assumptions into null hypotheses for this model:

• H
BST1,i

0 : βHA_i_BigHome ≥ βHA_i_BigAway, i ∈ {Up2, Up1},

• H
BST1,j

0 : βHA_j_BigHome ≤ βHA_j_BigAway, j ∈ {Same, Down1, Down2}.

That corresponds with the following statements:

• If there is a Big home team is in the lead, the match will be shorter than if
it were a Small home team in the lead with the same goal difference.

• If there is a Big home team is not in the lead, the match will be longer than
if it were a Small home team not in the lead with the same goal difference.

Choosing the ”Big” Teams

We use a simple method to compare the size of fanbases nowadays, number of
likes on Facebook and followers on Twitter (valid to 17. 3. 2017). The following
table shows the top of the list:

Team Facebook likes Twitter followers
Manchester United 72.9 10.5
Chelsea 47.7 8.2
Arsenal 37.8 9.5
Liverpool 29.7 7.0
Manchester City 23.5 4.1
Tottenham 8.3 1.9
Leicester 6.6 1.0
Everton 2.9 1.1
Aston Villa 2.3 0.9
West Ham 2.0 1.1
Newcastle 2.0 1.0
in milions

We decide to set the cut off line between Manchester City and Tottenham which
created the set of Big teams as follows: Manchester United, Chelsea, Arsenal,
Liverpool and Manchester City.
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4.5.2 Results
In the Table 5.5 we can see the whole table without an intercept and with all the
relevant variables, for the hypotheses (referencing with various variables) we will
only display the coefficients at the binary variables, similarly to the section 4.3.

Difference90 = 2

Code. S3.3

In this model we use HA_Up2_BigHome as an intercept.

Estimate Std. E. t value p-valuea

(Intercept) 4.7952 0.0902 53.1505 < 2E-16 ***
BST_Up2_BigAway 0.1371 0.0453 3.0239 1.29E-03 **
BST_Up1_BigHome 0.2609 0.0301 8.6537 < 2E-16 ***
BST_Up1_BigAway 0.3084 0.0393 7.8475 7.62E-15 ***
BST_Same_BigHome 0.2759 0.0343 8.0448 < 2E-16 ***
BST_Same_BigAway 0.1612 0.0332 4.8586 7.25E-07 ***
BST_Down1_BigHome 0.2881 0.0417 6.907 5.42E-12 ***
BST_Down1_BigAway 0.2668 0.0322 8.2785 2.99E-16 ***
BST_Down2_BigHome 0.2877 0.0901 3.1912 7.39E-04 ***
BST_Down2_BigAway 0.0597 0.0306 1.9471 2.60E-02 *
a one-sided

Given the small p-value for BST_Up2_BigAway we reject the null hypothesis

H
BST1,Up2
0 : βHA_Up2_BigHome ≥ βHA_Up2_BigAway

and the one-sided alternative is proven.

Difference90 = 1

Code. S3.4

In this model we use HA_Up1_BigHome as an intercept.

Estimate Std. E. t value p-valuea

(Intercept) 5.0561 0.0935 54.0626 <2E-16 ***
BST_Up2_BigHome −0.2609 0.0301 −8.6537 <2E-16 ***
BST_Up2_BigAway −0.1238 0.0478 −2.5922 4.86E-03 **
BST_Up1_BigAway 0.0476 0.0414 1.1478 1.26E-01
BST_Same_BigHome 0.015 0.037 0.4049 3.43E-01
BST_Same_BigAway −0.0997 0.036 −2.7692 2.88E-03 **
BST_Down1_BigHome 0.0273 0.0444 0.6141 2.70E-01
BST_Down1_BigAway 0.0059 0.0351 0.1682 4.33E-01
BST_Down2_BigHome 0.0268 0.091 0.2949 3.84E-01
BST_Down2_BigAway −0.2012 0.0344 −5.8419 3.90E-09 ***
a one-sided
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Given the big p-value for BST_Up1_BigAway we cannot reject the null
hypothesis

H
BST1,Up1
0 : βHA_Up1_BigHome ≥ βHA_Up1_BigAway

and one-sided alternative is not proven.

Difference90 = 0

Code. S3.5

In this model we use HA_Same_BigHome as an intercept.

Estimate Std. E. t value p-valuea

(Intercept) 5.0711 0.0939 54.0142 <2E-16 ***
BST_Up2_BigHome −0.2759 0.0343 −8.0448 1.76E-15 ***
BST_Up2_BigAway −0.1388 0.0508 −2.734 3.20E-03 **
BST_Up1_BigHome −0.015 0.037 −0.4049 3.43E-01
BST_Up1_BigAway 0.0326 0.0444 0.733 2.32E-01
BST_Same_BigAway −0.1147 0.0391 −2.934 1.73E-03 **
BST_Down1_BigHome 0.0123 0.0468 0.2616 3.97E-01
BST_Down1_BigAway −0.0091 0.0384 −0.2368 4.06E-01
BST_Down2_BigHome 0.0118 0.0919 0.1286 4.49E-01
BST_Down2_BigAway −0.2162 0.0383 −5.6501 1.15E-08 ***
a one-sided

Given the small p-value for BST_Same_BigAway we reject the null hypothesis

H
BST1,Same

0 : βHA_Same_BigHome ≤ βHA_Same_BigAway

and one-sided alternative is proven.

Difference90 = –1

Code. S3.6

In this model we use HA_Down1_BigHome as an intercept.

Estimate Std. E. t value p-valuea

(Intercept) 5.0833 0.0995 51.0964 <2E-16 ***
BST_Up2_BigHome −0.2881 0.0417 −6.907 5.42E-12 ***
BST_Up2_BigAway −0.151 0.0567 −2.6622 3.97E-03 **
BST_Up1_BigHome −0.0273 0.0444 −0.6141 2.70E-01
BST_Up1_BigAway 0.0203 0.0519 0.3912 3.48E-01
BST_Same_BigHome −0.0123 0.0468 −0.2616 3.97E-01
BST_Same_BigAway −0.1269 0.0469 −2.7038 3.51E-03 **
BST_Down1_BigAway −0.0214 0.0459 −0.4656 3.21E-01
BST_Down2_BigHome −0.0004 0.0954 −0.0045 4.98E-01
BST_Down2_BigAway −0.2285 0.0452 −5.0546 2.73E-07 ***
a one-sided
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Given the big p-value for BST_Down1_BigAway we cannot reject the null
hypothesis

H
BST1,Down1
0 : βHA_Down1_BigHome ≤ βHA_Down1_BigAway

and one-sided alternative is not proven.

Difference90 = –2

Code. S3.7

In this model we use HA_Down2_BigHome as an intercept.

Estimate Std. E. t value p-valuea

(Intercept) 5.0829 0.1271 39.9799 <2E-16 ***
BST_Up2_BigHome −0.2877 0.0901 −3.1912 7.39E-04 ***
BST_Up2_BigAway −0.1506 0.0973 −1.5486 6.10E-02 .
BST_Up1_BigHome −0.0268 0.091 −0.2949 3.84E-01
BST_Up1_BigAway 0.0207 0.0941 0.2202 4.13E-01
BST_Same_BigHome −0.0118 0.0919 −0.1286 4.49E-01
BST_Same_BigAway −0.1265 0.0914 −1.3841 8.34E-02 .
BST_Down1_BigHome 0.0004 0.0954 0.0045 4.98E-01
BST_Down1_BigAway −0.0209 0.0908 −0.2304 4.09E-01
BST_Down2_BigAway −0.228 0.0905 −2.5204 5.97E-03 **
a one-sided

Given the small p-value for BST_Down2_BigAway we reject the null hypothesis

H
BST1,Down2
0 : βHA_Down2_BigHome ≤ βHA_Down2_BigAway

and one-sided alternative is proven.

4.5.3 Interpretation
For three of the five hypotheses the p-value was small enough, so as to prove any
bias related to Big teams. It is interesting that the two hypotheses which we
could not reject were the hypotheses related to the most dramatic matches — in
which one team was in the lead by only one goal.

We think that this is not a coincidence. It shows that if the end of the match is
tense, there is no difference whether the team in the lead is Big or Small. All
that matters is whether the team losing is home or away. The social pressure of
the stadium turns out to be much stronger than the social pressure induced by
the general popularity of the team.

In the matches whose ends are not that dramatic, the referees are more likely to
be influenced by the general popularity of the team, and it has been proven that
the Bigger teams play longer in average.
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If there was a significant bias in favour of Big teams, this would definitely result
in our rejecting of all five hypotheses. Showing that the difference at the begging
of the overtime affects the actual existence of a Big team advantage indicates that
the Big team advantage is barely perceptible and negligibly minor in comparison
to the Home advantage.
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5. Conclusion
In the theoretical part we have introduced the linear model and its main
properties, especially under normality. Then we have shown how to add
categorial random variable into the model and how to test hypotheses of the
effects of various values of this variable.

In the practical part we have studied three areas of assumptions — Home-Away
systematic bias, individual bias and Big-Small Teams bias.

We have shown evidence that there is a significant effect of the home crowd —
we have shown that there is a sequence of goal differences at the time 90:00
ordered by how much extra overtime is added in comparison to the others. It
has been shown that the most time is added when the home team is losing by
one goal. But the home bias does not work the other way round. The matches
in which the home team is leading by one goal, are right behind in this sequence.
That shows an advantage for the away team which, however, is not as big as
the one for the home team in a reversed situation. The third difference in this
sequence is a draw at the begining of the overtime. After this three differences
which create a competetive ending, come all the matches in which the goal
difference is greater than one.

We have found a big difference between English Premier League and Spanish
Premira División. Similar research to ours had shown the goal difference +1 to
be at the end of the sequence for Spanish league rather than second (for English
league).

Regarding the second model, we have shown that there is no phenomenon of
stalling the end of the match waiting for a goal. There was not a significant
number of matches in which the referee would make the overtime unnecesary
long and would end the match after an equilizer or a winner of one of the teams.

Regarding the third model, a small Big team advantage has been proven, but
only in those matches in which the goal difference was different from 1 (and –1).
It indicates that the Big team bias appears only when the last part of the match
is less tense.

In conclusion, it has been shown that the referees in Premier League are of a
high quality, they tend to give extra overtime when the end of match can change
the outcome. The home team is a bit favoured. The Big team is also a bit
favoured, but by a significantly smaller amount. No individual bias on concrete
matches has been proven.

The dataset attached to this thesis has a potential that was not completely used
in this thesis. We have explored only one thing — whether the length of the
overtime can be explained by game stoppages alone or by referees’ favouritism
as well. For instance, we did not try to differentiate individual referees. As the
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dataset contains dates of all the games, we could evaluate the league table at any
time and thus take a team’s current position into consideration.
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Figures, tables, special
approaches
Figures
Diagram: Goals and Fitted values for Overtime in the matches with Suspicious
goal
Legend:

• Dots Time of the goal; Green = Home, Brown = Away.

• Red triangle Fitted value of Overtime not considering SB.

• Blue triangle Fitted value of Overtime considering SB.

• Filled blue triangle Blue triangle that is lower than the Red triangle.

• Black line Real overtime (not always plotted).
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Tables

Response R1a R2a D1b D2b D3b ETc

1415.89 87.29 26.19 1 0 0 11.98
1235.7 85.39 18.77 0 1 0 −19.63
1129.17 91.9 8.73 0 1 0 7.27
1459.73 112.15 15.94 0 0 1 10.67
1295.96 109.91 11.44 1 0 0 −18.15
690.47 43.5 6.62 0 1 0 0.09

1233.67 113.1 5.89 1 0 0 −3.27
1128.72 46.82 26.93 0 0 1 5.78
1204.82 65.33 22.59 0 0 1 12.2
577.31 25.91 8.6 1 0 0 −2.9

a Regressors 1 and 2 b Decomp. 1 to 3 c ErrorTerm

Table 5.1: Generated dataset for the Example.

Estimate Std. E. t value p-valuea

(Intercept) 4.8484 0.0633 76.5385 < 2E-16 ***
Goals_1stHalf_H −0.0377 0.0072 −5.2552 1.65E-07 ***
Goals_1stHalf_A 0.0021 0.0084 0.2509 8.02E-01
Goals_2ndHalf_H −0.0082 0.0067 −1.2265 2.20E-01
Goals_2ndHalf_A 0.0299 0.0075 4.0057 6.43E-05 ***
OvertimeGoals_H 0.1727 0.0229 7.5509 6.71E-14 ***
OvertimeGoals_A 0.132 0.0246 5.3611 9.30E-08 ***
SubIn_H 0.0376 0.0103 3.6468 2.73E-04 ***
SubIn_A 0.0501 0.0106 4.7359 2.34E-06 ***
Red_H 0.0682 0.0237 2.8758 4.08E-03 **
Red_A 0.0362 0.0192 1.8907 5.88E-02 .
Yellow_H 0.0339 0.0055 6.1815 7.77E-10 ***
Yellow_A 0.034 0.0051 6.6994 2.76E-11 ***
Fouls_H 0.0062 0.0019 3.2117 1.34E-03 **
Fouls_A 0.0039 0.0019 2.0974 3.61E-02 *
Corners_H 0.0079 0.002 4.0203 6.04E-05 ***
Corners_A 0.0029 0.0023 1.291 1.97E-01
Throws_H 0.0026 0.001 2.7493 6.03E-03 **
Throws_A 0.0031 0.001 2.9766 2.95E-03 **
Handballs_H −0.0094 0.0084 −1.1088 2.68E-01
Handballs_A 0.0012 0.0079 0.1568 8.75E-01
Offsides_H 0.0038 0.0035 1.0896 2.76E-01
Offsides_A 0.0021 0.0034 0.6257 5.32E-01
Penalties_H −0.0074 0.0141 −0.5286 5.97E-01
Penalties_A 0.0184 0.0195 0.9448 3.45E-01
a two-sided

Table 5.2: Log model with all objective variables and without Injury.
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Estimate Std. E. t value p-valuea

(Intercept) 4.8531 0.0587 82.7204 < 2E-16 ***
Goals_1stHalf_H −0.041 0.0067 −6.1409 1.00E-09 ***
Goals_1stHalf_A 0.005 0.0078 0.6413 5.21E-01
Goals_2ndHalf_H −0.0075 0.0062 −1.2011 2.30E-01
Goals_2ndHalf_A 0.0285 0.007 4.0978 4.35E-05 ***
OvertimeGoals_H 0.1548 0.0214 7.2215 7.43E-13 ***
OvertimeGoals_A 0.1277 0.0231 5.5391 3.47E-08 ***
SubIn_H 0.0351 0.0097 3.625 2.97E-04 ***
SubIn_A 0.046 0.0099 4.6414 3.70E-06 ***
Red_H 0.0611 0.0221 2.7652 5.74E-03 **
Red_A 0.0384 0.0178 2.1585 3.10E-02 *
Yellow_H 0.035 0.0051 6.8212 1.21E-11 ***
Yellow_A 0.034 0.0048 7.1673 1.09E-12 ***
Fouls_H 0.0067 0.0018 3.7859 1.58E-04 ***
Fouls_A 0.0046 0.0017 2.6588 7.91E-03 **
Corners_H 0.0078 0.0018 4.2312 2.44E-05 ***
Corners_A 0.0036 0.0021 1.6943 9.04E-02 .
Throws_H 0.0023 0.0009 2.5113 1.21E-02 *
Throws_A 0.0034 0.001 3.5396 4.10E-04 ***
Injury 0.7477 0.0471 15.8759 < 2E-16 ***
a two-sided

Table 5.3: Basic log model with all relevant variables including Injury.
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Estimate Std. E. t value p-valuea

HA_Up3 4.7062 0.0544 86.5838 < 2E-16 ***
HA_Up2 4.8838 0.0544 89.7362 < 2E-16 ***
HA_Up1 5.0305 0.0548 91.804 < 2E-16 ***
HA_Same 4.9724 0.053 93.8194 < 2E-16 ***
HA_Down1 5.0597 0.0552 91.5926 < 2E-16 ***
HA_Down2 4.9355 0.0556 88.8391 < 2E-16 ***
HA_Down3 4.7218 0.0578 81.6282 < 2E-16 ***
OvertimeGoals_H 0.1451 0.0195 7.438 1.55E-13 ***
OvertimeGoals_A 0.1105 0.021 5.2717 1.51E-07 ***
SubIn_H 0.0491 0.0089 5.4934 4.48E-08 ***
SubIn_A 0.053 0.0091 5.8341 6.35E-09 ***
Red_H 0.0608 0.0202 3.0149 2.60E-03 **
Red_A 0.0413 0.0162 2.5509 1.08E-02 *
Yellow_H 0.0267 0.0047 5.6961 1.42E-08 ***
Yellow_A 0.0312 0.0043 7.2093 8.12E-13 ***
Fouls_H 0.005 0.0016 3.1398 1.72E-03 **
Fouls_A 0.0008 0.0016 0.5133 6.08E-01
Corners_H 0.006 0.0017 3.5809 3.51E-04 ***
Corners_A 0.0028 0.0019 1.4241 1.55E-01
Throws_H 0.0012 0.0008 1.485 1.38E-01
Throws_A 0.0012 0.0009 1.3681 1.71E-01
Injury 0.7116 0.0428 16.6113 < 2E-16 ***
a two-sided

Table 5.4: SB model with all categorial variables.
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Estimate Std. E. t value p-valuea

BST_Up2_BigHome 4.7952 0.0902 53.1505 < 2E-16 ***
BST_Up2_BigAway 4.9323 0.1007 49.0005 < 2E-16 ***
BST_Up1_BigHome 5.0561 0.0935 54.0626 < 2E-16 ***
BST_Up1_BigAway 5.1036 0.0961 53.1307 < 2E-16 ***
BST_Same_BigHome 5.0711 0.0939 54.0142 < 2E-16 ***
BST_Same_BigAway 4.9564 0.0921 53.8011 < 2E-16 ***
BST_Down1_BigHome 5.0833 0.0995 51.0964 < 2E-16 ***
BST_Down1_BigAway 5.062 0.093 54.4222 < 2E-16 ***
BST_Down2_BigHome 5.0829 0.1271 39.9799 < 2E-16 ***
BST_Down2_BigAway 4.8549 0.0912 53.2233 < 2E-16 ***
OvertimeGoals_H 0.1309 0.0308 4.2528 1.19E-05 ***
OvertimeGoals_A 0.1589 0.0371 4.2817 1.05E-05 ***
SubIn_H 0.0087 0.016 0.5463 2.93E-01
SubIn_A 0.0546 0.0164 3.3368 4.45E-04 ***
Red_H 0.0144 0.0437 0.3283 3.71E-01
Red_A 0.0406 0.0269 1.5074 6.61E-02 .
Yellow_H 0.016 0.0082 1.9517 2.57E-02 *
Yellow_A 0.0323 0.0074 4.3719 7.06E-06 ***
Fouls_H 0.0095 0.0028 3.4483 2.98E-04 ***
Fouls_A 0.0013 0.0027 0.4608 3.23E-01
Corners_H 0.0054 0.0029 1.8404 3.31E-02 *
Corners_A 0.003 0.0035 0.8478 1.98E-01
Throws_H 0.0015 0.0015 0.987 1.62E-01
Throws_A 0.0024 0.0016 1.4771 7.00E-02 .
Injury 0.8704 0.0785 11.0875 < 2E-16 ***
a two-sided

Table 5.5: BST model with all categorial variables.
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Handling two or more overtime goals
There were 7 matches with more than one goal in the overtime:

Sa Match FSb D90c SOd

1 Man. United – Man. City 1:6 -3 0:2
1 Man. City – QP Rangers 3:2 -1 2:0
3 Man. City – Arsenal 6:3 3 1:1
3 West Bromwich – Cardiff 3:3 0 1:1
4 QP Rangers – Liverpool 2:3 -1 1:1
5 Bournemouth – Everton 3:3 0 1:1
5 Norwich City – Liverpool 4:5 -1 1:1

a Season b Final score c Difference90
d Score in the overtime

1. Man. United – Man. City: Since nothing of great importance regarding
the result happened in overtime, the goals are not considered Suspicious.

2. Man. City – QP Rangers: Since the game was completely turned
around, the goals are considered Suspicious. The first goal was scored
in the 92nd minute which is too soon to be considered a bias. The time of
the second goal is regarded as that of an overtime goal.

3. Man. City – Arsenal: Since nothing of great importance regarding the
result happened in the overtime, the goals are not considered Suspicious.

4. West Bromwich – Cardiff: There were two goals to change the score.
However, even the first one was scored in the 94th minute, so we reject this
observation entirely (we do not consider the goals Suspicious).

5. QP Rangers – Liverpool: There were two goals to change the score.
However, the first one was scored in the 91st minute which is too soon to
be considered a bias. The time of the second goal is regarded as that of an
overtime goal.

6. Bournemouth – Everton: There were two goals to change the score.
However, even the first one was scored in the 95th minute, so we reject this
observation entirely (we do not consider the goals Suspicious).

7. Norwich City – Liverpool: There were two goals to change the score.
However, the first one was scored in the 92nd minute which is too soon to
be considered a bias. The time of the second goal is regarded as that of an
overtime goal.
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List of Attachments: Electronic
Data

• EPL_dataset.csv Source data imported to R software.
Duration fantasyfootballscout.co.uk
SubIn to 20. 10. 2013 Jan Večeř
SubIn from 21. 10. 2013 premierleague.com
Half time premierleague.com
Overtime Goals bbc.com, bbc.co.uk, premierleague.com
Referees premierleague.com
everything else Jan Večeř

• EPL_180+residuals.csv List of matches with the residual greater or
equal to 180 seconds with an indicator of whether one can find information
about an injury in a log. The reason in the log.

• script.txt R script for the practical part of the thesis.

• example.txt R script for the theoretical part of the thesis — example.
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