
MASTER THESIS
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za spolupráci.
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Abstract:
The thesis proposes a 3D navigation and planning system for an autonomous
remotely controlled quadcopter (drone). The solution uses the drone sensor da-
ta along with the data processed from the video camera image stream, without
having any knowledge of its surroundings beforehand and without using any nav-
igation signal (GPS). The video camera data are transformed into a sparse point-
cloud representation, from it is created an occupancy map of the surrounding
area with adaptive cell size. The planner can construct trajectory plans in the
map, respecting the detected obstacles. The planned trajectory is executed by a
simple drone controller.

The proposed system includes a simulator which enables virtual execution of the
whole process. The thesis composes originally independent and incompatible sub-
systems into a single compactly working system. The functionality of the system
is demonstrated on a few simple scenarios, one of which is the return of the drone
to its starting location.
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1. Introduction

There is a lot happening in the field of robotics, artificial intelligence and
automation in today’s world. A wide range of areas is being studied and we
are trying to achieve things, that seemed hardly possible just a few decades ago.
Robots come in different sizes and shapes. Various teams are trying to teach
human-like robots to walk, play football or even to dance. Other projects focus
on teaching swarms of small drones to cooperate and be more efficient in simple
tasks. Cars are really close to be able to drive autonomously, we have automated
package delivery and armies use certain types of Unmanned Aerial Vehicles (UAV)
to perform difficult tasks from a military base far away to make sure that their
pilots don’t get hurt.

All these projects are amazing, rather costly and require larger teams of people.
Human-like robots aside, they also hardly ever work really autonomously. Army
UAVs are controlled from a base and autonomous cars and mail delivery systems
often use some kind of a signal to locate themselves in a real world - either GPS
or other sources of radio waves.

1.1 Motivation

When flying with the drone situation of a signal loss might occur or the drone
might fly out of the operational range. In those cases it might be beneficial to
have the drone come back to its starting location on its own, because we might be
unable to operate the drone by original means. We may also consider a delivery
situation of a small object to the starting location. An autonomous return of
the drone in that situation will allow a person who would otherwise need to pay
attention to the delivery to do something else.

For a drone to be really an autonomous and independent unit, it needs to
gather all its sensor data on its own and as reliably as possible. A video camera is
one of the most common sensors which can gather data about the world around
the robot. It is cheap, provides huge amounts of data and recent increase of
CPU and GPU computation power and advances in computer vision assures,
that the robot can actually process the data provided by a video camera and use
it efficiently. Furthermore, a video camera is a passive sensor, which means that
more robots using it at the same time won’t interfere with each other. There are
millions of cheap drones with a single camera distributed among people already
and more are selling every day. Therefore it makes sense to focus on developing
autonomous and semi-autonomous systems with a monocular camera as their
main sensor because so many devices are equipped with it.
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It has been shown already in this article [3] that a precise control of a drone in
a specific coordinate system is possible. However we would like to expand that
idea and allow the system to build a reliable map using state-of-the art map-
building technology and at the same time to provide easy access to autonomous
planning framework to perform more complex and sophisticated tasks.

1.2 Thesis goals

The goal of this thesis is to implement a system for a Parrot Bebop drone,
which will be able to receive high level commands and generate and execute
a plan which avoids obstacles. To demonstrate the capability of the system,
it will autonomously navigate back to the location where it took off (starting
location). Parrot Bebop is a low-end quadcopter sold as a toy. The software will
control the drone via Wi-Fi from laptop, but will use drone internal sensors only.
Internal sensors are accelerometer, gyroscope, barometer, magnetometer which
are considered together to be a drone Internal Measurement Unit (IMU) and a
single video camera.

The system doesn’t have any information about its surrounding beforehand
and doesn’t use any type of external navigation signal. The drone will try to
reach the starting location via the shortest route possible and will try to avoid
any static obstacle it encounters. It doesn’t account for moving obstacles. As a
fallback plan, the drone will have a simple backtracking procedure implemented
which will navigate it back via original route and which will be run at demand.
The whole scenario will be executable on a simulator.

1.3 Proposed solution

Returning the drone to its starting location requires an orchestration of many
systems. We need a working system covering and combining sub-systems ranging
from the drone driver, across the visual navigation systems and data fusion, cov-
ering map building and planning environment to the drone controller. If designed
well, such system would be modular and could be easily modified to fit the needs
of a specific project. It would allow for development and improvement of a sin-
gle sub-system which we could swap with the old version of the sub-system and
immediately compare the results with each other. The existence of system like
that would limit the number of technical problems, which arise when we combine
a number of originally independent systems together and which effectively delay
the researchers in their intended research.
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Robot Operation System (ROS) [2] is the most widely used platform for robotic
research today. It has a large infrastructure behind it, which allows us to solve
many tasks using previous solutions. On the other hand, it has limited support
for the drone control systems. We found no over-arching project or complex
solution addressing the need for a system, that would provide a researcher with a
development environment which they could use as a base-line for their research.
We found systems however, which provide partial solutions for the underlying
problems which need to be orchestrated.

1.4 Thesis structure

We will discuss the state-of-the art in the field of drone automation in the
second chapter. There are some papers about this subject with interesting ideas
and results already. The system proposed by this thesis is introduced in chapter
three. The fourth chapter will present the Parrot Bebop Drone in detail along
with ROS which we will use as a platform to run the whole system. We will explore
recent computer vision advances and discuss a few possible approaches to solve the
Simultaneous Localization and Mapping (SLAM) and obstacle detection problems
in the fifth chapter. The sixth chapter describes the Moveit! planning framework.
The seventh chapter summarizes our implementation of the whole system. The
eighth and the last chapters present experimental results and evaluation of the
system.
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2. Problem formulation and
related works

We propose and implement a system which is able to solve the following general
problem:

Given the actual position of the drone, autonomously find and execute a tra-
jectory which leads to any target position in a specific set of coordinates, while
avoiding static obstacles and respecting the drone’s technical limitations. (gen-
eral problem)

The problem to return the Parrot Bebop drone to the starting position is a
specific case of the general formulation and thus a solution to the general problem
is a solution to the problem of returning the drone to its original location as well.
(the go-home problem)

2.1 Drone localization

One of the most critical tasks that each mobile robot needs to continually solve
is precise localization. Without knowing its own location, the robot can move
only using simple commands, such as “move forward for a while”. To issue the
robot with a command to move to a specific position, it must know its current
coordinates and where the specified position is relative to those coordinates.

Although external localization mechanisms such as GPS are very useful, there
are times where the robot cannot rely on them. Inside large buildings or under-
ground complexes like tunnels and caves, the GPS signal is usually disturbed or
not working at all. In environments like that, there is an increased need for the
robot to localize itself. Devices and systems that use external navigation signals
are therefore not comparable to our approach.

2.1.1 Common localization approaches

The goal of the independent localization system is to extract the path taken
by the device from the sensor input stream in real time. The basic way to do
that is to use the drone Internal Measurement Unit (IMU) estimations. Such
measurements are limited by the sensor accuracy and are subject to an error
that accumulates over time and usually does not provide information about the
drone surrounding objects. Therefore we have to use other means of detecting
the surrounding environment and correcting the IMU measurement over time.
Video camera image stream is a possible data source to do that.
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To process the data from the video camera stream into usable odometry and
surrounding object information, we have to identify points at the individual im-
ages and match them across multiple images. We can directly extract the camera
path from the corresponding point coordinates changes across the images, as il-
lustrated in figure 2.1.1. As a side effect of the solution, we have the previously
identified points at the images and their coordinates in 3D space. In environ-
ments where it makes sense to use a video camera as a sensor, those points are
always objects to avoid and therefore we consider them obstacles.

Figure 2.1.1: A schema comparing point coordinates in two different images.

The problem to solve then is to find matching points at different images and to
calculate their coordinates relative to those images. The width and height of the
point at any image is pretty much given. The difficult part is to get the depth
of the point. The most common sensors used to solve this problem today are
RGB-D camera and stereo cameras.

The RGB-D camera is an active sensor. It uses laser beams to scan the area
in front of it and obtains the point depth as an integral part of its measurements.
It is a very precise sensor used at multiple systems [31], [5]. The fact that it is
an active sensor might disturb measurements if we use multiple devices equipped
with this sensor.

In case of stereo cameras used as a main sensor [30] [8], we know the distance
between the two images with the identified corresponding points, because we
know their positions relative to each other. The solution to the problem then is
to solve goniometric equations. From those we have point coordinates relative to
the coordinates of the images and we could extract the depth of each point. Next
time we encounter the same point, we know how its position changed relative to
the previous encounter of the same point, which grants us the desired camera
path.
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In case of monocular camera though, we don’t have two simultaneous images
with a known distance between them. So the general idea is to take two or
more images from the video stream, match the points on them and estimate the
distance between those images from a mathematical model of a camera movement.
If we want to apply this approach with the mobile robots, we can use their IMU
estimations to provide us with some data regarding the movement between images
too.

2.2 Comparable projects

2.2.1 Obstacle avoidance

DARPA is working on high speed obstacle avoidance using various technologies
to detect the obstacles [5]. They used cameras, inertia measurement devices, and
LIDAR and sonar sensors and successfully flew in a series of test flights in a
hangar. The drone flew through an obstacle course avoiding all the obstacles and
through another, not as difficult, reaching speed of 45 MPH.

Skydio is a company founded by a team of researchers from MIT and Google
X’s Project Wing. It developed one of the first reasonably functional real time
high speed drone which flies in a real world and avoids stationary obstacles [6].
They showed a footage where the drone is following a guy on a bicycle in a park
while avoiding tree branches and staying on course. They supposedly not only
avoid obstacles but also fly with good path planning, so the drone is using an
efficient route. Their drone is captured in the figure 2.2.1.

Figure 2.2.1: A skydio drone following a bycicle
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A Chinese company DJI introduced a device “Guidance” [30] mountable on
top of a drone. It uses four stereo cameras to detect obstacles all around the
drone. Along with their SDK, the Guidance allows a robot to detect and react
to obstacles around it.

2.2.2 Autonomous navigation

The Blue Bear company in cooperation with the university of Bristol created a
system very similar to the system described in this thesis [8]. They don’t rely on a
GPS signal and they have created a program which they call “Smart boomerang”.
It uses a point cloud created from stereo cameras to navigate the drone through
environment back to the starting point. The fact they employ stereo cameras
as a sensor instead of a monocular camera in our system is the key difference as
we discussed in the Common localization approaches subsection. The following
figure 2.2.2 shows the drone used by Blue Bear.

Figure 2.2.2: The Blue Bear drone

The National Institute of Astrophysics, Optics and Electronics (INAOE) in
Mexico developed a vision and learning system to control and navigate the drone
outdoor without relying on a GPS signal or trained personnel. [7] The system
is supposedly able to account and react to air currents, while having limited
computational power. One of the authors was working with the Blue Bear previ-
ously. Their system is developed to work outdoors, which is a different navigation
problem due to the nature of the environment.
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There is an article presenting Micro Aerial Vehicle (MAV) autonomous nav-
igation [31] based on a RGB-D camera. They also use octrees as their map
representation. They tested their approach on both simulated and real drones,
one of which shows figure 2.2.3. The fact that they use a RGB-D camera as their
main sensor is the key difference between our systems as discussed before.

Figure 2.2.3: A custom built MAV with RGB-D camera

The article [3] shows that the monocular camera navigation of a quadcopter
is feasible and working approach to autonomous navigation. The article presents
sophisticated approaches to the problems, including PID Controller, Extended
Kalman filter to fuse the data and an effective SLAM system. However it does not
include an octomap [22] representation of the world and does not offer automated
planners, neither a simple way to build a custom plan and to easily modify the
planning scene.
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3. Parrot Bebop

Parrot Bebop drone (drone, Bebop, shown at Figure 3.0.1) is a radio controlled
flying quadcopter built by the French company Parrot. It can be controlled by
a wide variety of devices, mostly smart phones and tablets. It creates a Wi-Fi
hotspot to which the control device connects and sends commands. It supports
iOS and Android devices by default, but there is a lot of unofficial software
available for other platforms. It is used for video recording purposes, to play
games with it and for relaxation mostly. Bebop is a descendant of the Parrot AR
1.0 and 2.0 models.

Figure 3.0.1: The Parrot Bebop drone

3.1 The drone technical information

The drone is constructed to be able to fly both indoors and outdoors. It
is supplied with propeller protectors which are used indoors so the quadcopter
would withstand a bump into an obstacle without any serious propeller damage.
The protectors are usable outside as well, but the drone is then more likely to be
affected by a wind or a draft. The drone battery lasts up to 11 minutes of flight.

We will fly indoors for the purposes of this thesis, so we will consider the drone
with the propeller protectors always equipped. Bebop’s dimensions are 330 x 380
x 36 mm. It weights 420 grams. Maximum speed is 13 m/s. Operating range of
the controlling signal is 250 meters.
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Bebop has P7 dual-core CPU Cortex 9 with quad core GPU. It has an 8 Gb
internal flash memory used to store photos or videos. The propellers are energized
with 4 brushless outrunner electromotors. The operating system runs various low
level procedures to orchestrate the propellers and maintain flight stability. The
drone has the following sensors:

• 3 axis accelerometer

• 3 axis gyroscope

• 3 axis magnetometer

• Optical-flow sensor: vertical stabilization camera

• Ultrasound sensors for ground altitude measurement

• Pressure sensor

• “Fish-eye” lens 180°camera, 14 Mega pixels, digital video stabilization,
1920x1080p, 30 fps

In general the drone flight feels very stable and polished. It is much more
stable than its predecessors AR drone and AR drone 2.0.

3.1.1 Interface

The drone on-board processor runs the Linux operating system. It controls
the propellers, all the sensors, creates the Wi-Fi hotspot, provides starting and
landing procedures and flight maneuvers such as backflip. If any device connects
to the Wi-Fi access point, it is then able to communicate with the drone and
issue it with commands. Parrot provides an open source SDK for this.

Parrot also provides a way to control Bebop, a device called Skycontroller.
It comes with virtual reality glasses or a monitor. There are other independent
applications which are usable with smart phones or tablets, such as “FreeFlight”
for android and iOS devices.

As the drone primary purpose is meant as a portable toy, there is no official
application for PCs. We will use “bebop autonomy” ROS package, which will
handle the communication with the drone from ROS.

When Bebop bumps into anything during a flight so badly that any of its
propellers slow down, the drone switches its state into emergency mode. That
means that the drone stops all the propellers and lands. It is uncontrollable in this
mode, as the drone basic software attempts to prevent any permanent damage
taking this action and ignores all incoming commands.
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3.1.2 The sensor data

Apart from the drone using the sensor data itself to regulate its flight, it
also publishes an abstraction of the drone state to the channel defined in the
drone communication protocol with frequency of 5 Hz. It is called “navdata” and
contains estimated speed, orientation, movement and other information. We will
discuss the exact form of the navdata later in this chapter.

3.1.3 The video camera data

Bebop video camera records HD video at 30 fps rate with resolution 1920 x
1080p and has a digital stabilizer in all three axes. The video is encoded in H264
format. It is capable of taking photos with resolution 4096 x 3072p in JPEG,
RAW or DNG format. Both the video and the photos share 8GB internal flash
memory. The “fish-eye” type camera films a panoramic image and the Bebop
firmware converts it into the smaller resolution video so that the image is always
in front of the drone, even if the drone is tilted. It is also possible to receive a
different part of the main camera image than the forward view.

The feature to always see straight and not tilted image is very useful and it
is one of the reasons why Bebop is much better than AR drone for our purposes
as it allows us to detect obstacles reliably. It is possible to control which part of
the fish-eye image is send from Bebop. The mechanism controlling it is called a
virtual camera and the Bebop firmware always sends the front image if not told
otherwise. It is possible to move the virtual camera with a message containing
desired absolute tilt and pan of the camera in degrees.

3.2 Bebop interface to ROS

The drone is controlled via a laptop in this implementation. More specifically,
it utilizes the “Robot Operating System” (ROS) [2]. ROS is an open source
platform, used around the world to write robotic software for all kinds of robots.
It has many libraries providing sensor access, logging, experiment recording, video
processing and others. It is described in detail in the appendix A.

There is a “bebop autonomy” package [4] developed at Autonomy Lab of Si-
mon Fraser University, which provides an interface for all communication between
ROS and Bebop. It sends the commands to the drone and provides the sensor
and camera data from it.
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3.2.1 Commands

The package comes with a launch file for teleoperating Bebop with a joystick
using ROS “joy” package. It is very simple to adapt the launch file to the specific
controller. We are using a X-Box One controller.

Commands are sent to Bebop using topics with messages of certain types.
Basic commands such as takeoff, land and emergency are sent by publishing an
empty message to the corresponding topics specified by the driver.

Piloting the drone is done by publishing a message which contains a value
to move in a desired direction. The driver accepts values from [−1, 1] interval
in every Degree of Freedom (DOF) 1 the drone has. The meaning of the signal
values is explained in the list below when you map the [−1, 1] interval to it. It
also lists all DOFs the drone has:

• linear.x [backward, forward]

• linear.y [right, left]

• linear.z [descend, ascend]

• angular.z [rotate clockwise, rotate counter clockwise]

3.2.2 Bebop readings (navdata)

The real time video sent from Bebop via Wi-Fi is much lower quality than
the real drone capabilities as the Wi-Fi bandwidth is not able to transmit such a
high video quality in real time. The quality of video stream is therefore limited
to 640 x 368 at 30 fps. The field of view of this virtual camera is 80 horizontal
and 50 vertical degrees. Video stream from the front camera is published via an
image stream.

1 A Degree of Freedom (DOF) is the number of independent parameters that define the
system’s configuration. A floating object in a 3D space has 6 DOF - translation and rotation
along each of the three axis. The Bebop driver transforms this into 4 DOF as we have no direct
control over the rotation along the X and Y axis.
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The drone estimated position, orientation and velocity is published into the
“odom” topic. It is calculated from the Bebop navdata and is limited to update
rate of 5 Hz. The underlying navdata are published selectively by the Bebop
firmware at the specified rate and only when the value has changed. Most of
them are already processed into the odom topic, but it is possible to access other
data. The interesting subtopics in the odom topic are:

• the index of a record

• the time of a record

• the current estimated drone position in space

• the current estimated drone orientation in space

• the current estimated speed of the drone split into axis components
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4. Proposed Solution

To solve the general problem formulated in the chapter 2, the drone needs
to localize itself on its own. We can count on it having some kind of Internal
Measurement Unit (IMU) which is usually composed of accelerometer, gyroscope
and a flight altitude measurement device. It might have more sensors which might
improve the IMU position estimate. Bebop specifically also has a magnetometer,
optical-flow stabilization sensor and barometer.

We can count on a frontal camera in case of a low cost quadcopter, but the
system should be designed in a way that it could utilize dual cameras or an RGB-
D sensor as well. Any of these sensors will provide us with their own odometry
estimates along with the pointcloud of detected obstacles. Therefore we have two
sources of the odometry data which we need to fuse.

The map has to be built based on the pointcloud and the fused odometry data
and the drone needs to know its position in the map. That solves the localization
part of the problem we formulated.

We need a planner which generates a trajectory with respect to the built map
and with respect to the drone’s technical limitations.

Finally, we need a drone controller to execute the trajectory generated by the
planner.

Based on the requirements mentioned above, we propose the system architec-
ture displayed in figure 4.0.1.

Figure 4.0.1: The proposed system schematics
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The proposed architecture is composed of several sub-systems which fill their
specific roles. The communication between the subsystems is mediated by the
Robot Operation System (ROS) messages. Next section presents the packages we
use to implement specific sub-systems. If such a need arises, individual packages
are easy to replace by different packages which are able to fill the same role
because they share the same interface in the form of ROS messages. More about
how ROS works is at the attachment section and on the ROS web pages [2].

We didn’t include a Simultaneous Localization and Mapping (SLAM) system
in this thesis, which is why it is dashed in the schema. It naturally fits in as it
consumes pointcloud and odometry data (fused or not fused, based on the SLAM)
and produces corrected pointcloud and odometry data. We discuss the absence
of the SLAM system in the Visual odometry chapter. It comes down to the great
effectiveness of the used visual system.

4.1 Used sources

The “bebop autonomy” [4] Robot Operation System (ROS) package serves as
the drone driver in our implementation. We already discussed it in the previ-
ous chapter. Basically, the drone’s output consists of a video stream and of an
odometry estimate from the IMU mediated by the driver. The drone’s input is a
steering command stream with special commands to takeoff, land etc.

We use Direct Sparse Odometry (DSO) as the visual system implementation to
localize the drone [1] from the camera stream and to produce the obstacle point-
cloud. There are more sophisticated SLAM systems around, some of which will
be discussed in the chapter about visual odometry. DSO has good runtime results
and is capable of producing reasonable data even though it does not implement
a long term loop closure. Figure 4.1.1 shows an image generated by the DSO
system. We will look closely at it again in the visual odometry chapter.

Figure 4.1.1: An image rendered using an output from the DSO system
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If there arises a need for the long term loop closure 1, DSO can be swapped
with a full SLAM system or the SLAM part which deals with long term loop
closures could be added on top of the data produced by the DSO. The output of
the DSO is the same as the one of the SLAM would be - an odometry estimation
and a point cloud with detected obstacles.

The Extended Kalman filter and Unscented Kalman filter [34] are used to
smooth the output of DSO and to fuse it with the drone odometry. They are
implemented in robot localization package [28]. How to configure the package is
well documented in the robot localization tutorials.

We use Moveit! (Moveit) package [16] to create a planning scene represented
by the octomap [22] to store the explored map and to query it efficiently in a
real time environment. Moveit! uses Open Motion Planning Library (OMPL)
[23] internally to autonomously generate motion plans. We haven’t found other
comparable solutions both in complexity and reliability. When we were consid-
ering if we want to use Moveit planning environment, the other possibility was
to implement everything ourselves. That would require extensive development
and the result would implement only one of the simpler planning algorithms -
probably A* or some variant of it. We decided that it would be much better to
have a complex modular environment which is being developed for more than five
years right now.

We use Moveit modifications and a modified controller implementation based
on the work of Alessio Tonioni [21] to allow Moveit to work with a drone. Tonioni’s
project modifications are made for a Gazebo simulator [24]. The scene captured
in figure 4.1.2 shows the simulated scene from the modified Moveit. The use of
the simulator is shortly described in Appendix B. The modifications to use Moveit
with drones are greatly described by Wil Selby [19] who uses it to control a drone
via GPS. The simple controller used for the simulation is massively modified in
this thesis to fit the real drone instead of a simulated one. We added boost
mechanisms with speed limits and a simple pre-calibrated drone flight model to
improve the precision of the real drone control.

1 Loop closure is the problem of encountering and recognizing previously-visited location
and updating it accordingly. It might happen by visiting the same location for the second time
or by wrongly assigning an odometry update to a wrong location and visiting that location
later.
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We use a ros package Rviz [29] to view the scene with the drone. Moveit
introduces a plugin to Rviz which allows for easy use of planning environment.

Figure 4.1.2: An image of Moveit! with a simulated quadrotor and scene in Rviz

4.2 The go-home problem solution

The system described earlier in this chapter allows us to automatically generate
plans with obstacles included in the planning scene and to execute the plans at
demand. We will take two approaches to the problem. The trajectory generated
by both of the approaches will be visualized in Rviz. The plan will be executable
by the controller on demand.

4.2.1 Backtracker

First one will be a backtracker. We will record the odometry messages created
by the odometry fusion system and remember the positions in them. The records
will be gather with the same frequency the drone publishes its odometry data,
which is 5 Hz. We will slightly filter the messages, so that when the drone stays
in one place longer or moves very slowly, we do not have a lot of the same or very
similar messages in a row recorded. When demanded, we will create a plan from
the path taken backwards.

4.2.2 Boomerang

The second approach will be called a boomerang. It prompts a planner, which
is automatically assigned by Moveit from the pool of planners, to generate a
plan from actual drone location to the starting location, specified by coordinates
(0, 0, 1). The planner is set to optimize for the shortest route and respects the
obstacles recorded in the octomap. We will talk more about the specifics of the
planning process in chapter 6.
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5. Visual Odometry

The visual odometry is the most important part of navigating the robot as it
provides it with the data necessary to avoid obstacles. There are many systems
that provide monocular visual odometry or monocular Simultaneous Localiza-
tion And Mapping (SLAM) system. With recent development in this area, the
monocular systems could become viable alternative to RGB-D vision or stereo
cameras.

In this chapter, we will describe the Direct Sparse Odometry (DSO) [1] and
compare it with other monocular localization systems. We will also present our
integration of DSO into ROS.

5.1 Monocular odometry

In the past, the problem was mostly approached from the indirect perspec-
tive. Such cases were monocular SLAM [9], PTAM [10] or ORB-SLAM [11]. An
indirect approach first extracts features (often landmarks) from raw images and
then finds corresponding features on other images. Second, it interprets those
features as measurement from the camera and estimates the camera path and the
positions of surrounding objects.

In contrast, the direct approach uses points in raw images without any pre-
processing and attempts to match them directly onto each other to estimate the
path and the surrounding world. [12] [1]

Another classification of approaches to solve the problem is how they treat
the relations between points or features identified directly or indirectly. The
dense approach processes the whole image from the camera and the semi-dense
approach processes only parts of it, but in both of them the identified points
have defined neighbors. The sparse approach only uses an independent subset of
points, where no neighborhood is defined. According to the DSO authors, there
was one work trying to do the direct sparse approach before, but it didn’t use any
deeper camera model and only tried to employ Extended Kalman Filter which
didn’t prove competitive with other approaches at the time.
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5.2 Direct Sparse Odometry

The authors state and demonstrate in their paper [1] that this system out-
performs its current competitors in SLAMs mentioned before. Validated by real
performance of their system in this implementation, DSO is capable of stable and
sufficient run-time performance. With some minor changes to the interface and
adjustment of the bebop behavior, we were able to successfully use DSO in real
world implementation.

DSO operates with key-frames. The expectations on key-frames are that there
are sufficient differences between them with respect to the optical flow and the
distance between the key-frames themselves. DSO forces a new key-frame when
the optical environment changes significantly. In every key-frame, the DSO in
our implementation has 1200 candidate points. It tracks them, but doesn’t use
all of them in a model. The candidate points are chosen in a way, that covers the
whole image and that the parts of the image with the highest gradient are covered
the most. The algorithm splits the image into regions, evaluates the gradients
in them and picks the points with the highest gradients in every region. It also
tracks all of candidate points.

Figure 5.2.1: DSO images with calculated depth of tracked points.

DSO decides which points should be activated and used in a model based
on uniform spatial distribution across the image and to be equally distributed
across all key-frames. Figure 5.2.1 shows an example of the active points in
various frames. Each key-frame also remembers inverse depth of its activated
points. It has 1200 active points across all key-frames which is the same number
as candidate points in each key-frame. It marginalizes key-frames that cover less
then 5% of visible points and those that have the highest distance score when
DSO has too many key-frames. When a key-frame is marginalized, all points on
it are threw away.

The model is based on optimizing the photometric error with respect to the
camera calibration model for image formation. The model can account for ge-
ometric and photometric camera calibration and its vignette for every specific
device. The DSO has a complete tutorials on how to perform such calibrations.
The model is described in detail in the DSO paper [1] and is quite technical.
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5.3 Integration into our system

The integration with our system was bumpy, as the ROS wrapper interface
had a bug in it. The method “publishCamPose” published corrupt data without
knowing it. We reported the issue to the author and introduced a workaround,
which solved the problem.

The wrapper right now publishes camera pose update to the tf tree and actu-
al camera pose to the camera odometry topic. It also publishes the pointcloud.
As the DSO odometry measurements have a different coordinate base than the
drone odometry measurements, it is necessary to transform the data to the drone
coordinate base. We worked on a solution to this issue, which computes the
transformation matrix from the eigen library [14] based on the Least-Square Es-
timation [13]. The solution was somewhat working, but was less reliable than
simple constant transformation based on experimental data. There were two
possible explanations for it. The time-stamp of the messages might had been off,
so the system matched messages from the different real world positions. Or the
problem could have been that the odometry detected by the DSO system was
not a smooth line, but rather really curve one. It is possible, that messages took
from the DSO system were the ones that strayed from the real path and noised
the conversion.

We stopped the work on this problem so that we could finish the whole sys-
tem rather than have one sophisticated part in an incomplete system. So right
now, the system uses a fixed transformation along with the Unscented Kalman
Filter (UKF) to fuse both the odometry data into the bebop original coordi-
nate system. That specifically means, that the starting position we refer to is
framed in the drone natural coordinate system. The transformation constant is
parametrized from the ROS parameter server. If these parameters are not set,
no transformation happens as a default behavior.

The DSO behavior is relatively stable in our implemented setup, but we still
wanted to add some robustness for occasional shutdowns. So we created a node
responsible for monitoring the DSO system and when DSO crashes, the node
restarts the whole system. If that happens, there will obviously be a hole in the
pointcloud and odometry data from the DSO, but the new pointcloud is located
correctly and the Kalman Filter merging dso odometry and the drone odometry
handles the merge well too.
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5.3.1 Parametrization

To setup the dso to drone base transformation data, parameters should be
added to the launch file or to the ROS parameter server directly. They have a type
of double and their names are dso base tr [xyz] rotation, dso base tr [xyz] scale
and dso base tr [xyz] translation. The rotation is in radians and is applied first,
scale is a simple multiplication and is applied second and translation is in meters
and applied last. Future modification to update these parameters dynamically
which could be based on a more complicated model should be a simple matter of
one update procedure.

To stabilize the output of the DSO, we use speed limiter for our flight. The
speed limits should be a value between 0 and 1 as those are the acceptable values
for the drone command as specified in the driver documentation. The limits are
loaded from the ROS parameter server from the parameters cmd vel limit for
a translation limts and cmd vel rotation limit for a rotation limit, both of type
double. We use value 0.3 in our implementation for both of these limits.
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6. Moveit!

Moveit! [16] is an open source planning library, developed primarily to operate
robotic hands, but it has been used with some mobile ground robots too [15].
It incorporates motion planning, 3D perception, kinematics, control interface,
execution monitoring, and navigation in 3D space. It comes with an easy to
use rviz plugin, which presents the robotic scene with a control panel. The
planning scene is internally represented as an octomap. Moveit is a modular
system and already has a lot of automatic planners, a few kinematic solvers,
octomap updaters, and other components implemented. A new component can
be implemented easily thanks to the Moveit plug-in architecture. It is also very
straightforward to create and execute a concrete scenario from code. The whole
system can be used with the Gazebo simulator [24], which gives us a possibility
to test and refine plans or new planners in a simulation first.

ROS has a navigation stack [17], which does the same thing as Moveit does,
but only in 2D for mobile land robots. There is a project for navigation in 3D on
ROS wiki [18]. But in fact, it plans in what we call 2.5D as it introduces multiple
2D layers. It is meant for the mobile ground robots as the original navigation
stack is. I have not found a pure 3D navigation or planning library in ROS other
than Moveit.

6.1 Moveit architecture and concepts

The core object of the Moveit architecture is the move group object. Fig-
ure 6.1.1 captures the moveit architecture. Move group gets updates from the
robot, its sensors, robot controllers or from user interface. The robotic data
are loaded from unified robot description format (urdf) and semantic robot de-
scription format (srdf) files. Those files among other information contain the
description of robot parts as links, how they are joined together with joints and
which ones we can move and with which limitations.
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More data are loaded from configuration, which specify planners, kinematics,
sensors, controller interfaces, robot and joint state topics and other. Moveit
builds its own octomap [22] representation from the incoming pointcloud and
can also accept other objects which it incorporates into its planning scene. It
communicates with its surrounding systems utilizing ROS messages and services.
The generated trajectory is using the ROS action library [20] to provide an action
for controller to execute.

Figure 6.1.1: Moveit architecture schematics

6.1.1 Adaptation to drones

It was shown and tested in a different project [19] that it is possible to setup
the Moveit system to operate a quad-copter. We specify the drone as a virtual
floating joint to the world and allow planning for the drone base. Moveit provides
a Setup Assistant and following the instructions [19], it is possible to setup Moveit
for the quadcopter easily.

Moveit doesn’t have an action to follow the generated trajectory with a floating
joint. Therefore we need to define our own action and modify the action manager
the system uses to be able to process this new action. Figure 6.1.2 shows the
action server / action client interaction. When an action for a floating joint is
generated, the action server announces the action to be handled. Moveit controller
manager makes sure, that it is delivered to a controller with appropriate action
handle.

Figure 6.1.2: The schema of how the action is generated and processed using the
action library.
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6.2 Octomap

The planner needs a planning scene which we can update in real time and
we need to be able to quickly answer traversability queries to it. There are
many different possibilities how to represent a map, but a state-of-the-art map
representation for this job is the octomap. Figure 6.2.1 shows an example of an
octree scaling on a car model. Moveit uses its own encapsulation of the octomap.

Figure 6.2.1: An example of a octree scaling.

The octomap uses an octree structure to store information in cells with dynam-
ic edge sizes. Every node in the tree has none or eight children which represent
the node with eight subnodes. Every child has the edge length half of the original
node. An octree specifically remembers free space, occupied space and unex-
plored space. This representation saves a lot of memory for big chunks of the
same type of space. An encoded octree is displayed in figure 6.2.2 It is a bit
slower for the traversability checks though, because neighboring nodes are not
close to each other in memory. Those checks are still fast enough to be usable in
real time though.

Figure 6.2.2: Octree schema with encoding

The implementation used in Moveit allows to limit the minimum node edge
size and limit how big part of the environment around the robot should be re-
membered. This is very nice to save memory, so if we knew in advance the size of
the relevant map and if we could determine reasonable resolution of the map we
need to avoid obstacles, we could set up the octomap to effectively save memory.
Also the traversability queries will be faster, because the depth of the tree will
be limited. Based on the Bebop size and the fact that we need to have some
distance from obstacles, we decided to use the cell limit size of 10cm. We also
use map size constraints of 7.5 to save memory. That means that the map parts
that are more than 7.5m away from the actual drone position are forgotten. The
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areas outside of the map limit are not forgotten right away, but only when the
drone moves in the certain direction closer to the recent edge of the map. Both
the cell size and the map limit are loaded from the configuration file specified in
Moveit tutorials and could be changed easily.

Octomap uses a probabilistic model of a world. Every observation that certain
node is occupied or that it is free changes the probability of occupation in that
node. If that probability breaks a treshold, the node is either considered occupied
if it was free before or it is considered free if it was occupied. This probability
is internally represented in log scales to speed up computing. Furthermore, the
probabilities are clamped on each side with a clamping limit, which enables the
nodes to be more flexible and adapt to the change in the environment fast enough.
More information about octomaps could be found at its presenting paper [22].

6.2.1 Map updates

The map is updated every time our DSO wrapper publishes new pointcloud
message. It uses an original Moveit updater without a robot model consideration,
because it is not needed for the drone - none of the drone parts could possibly be
in front of the camera at any time - and because the drone model was disrupting
the measurements. It is furthermore modified in a way that allows the editation
of the underlying probabilistic octomap sensor model with a configuration file.

The original sensor model values were used with expectation of a dense point-
cloud input from the RGB-D camera. That doesn’t work well enough with our
sparse pointcloud input. The values used are determined by experimenting with
the settings and the output of a map on some test runs. The ability of our map
to reliably detect an obstacle is experimentally verified in the Evaluation chapter.

The map update itself utilizes a ray-casting routine, which casts rays from
every point in the pointcloud to the position of the camera. It increases the
probability of the octomap nodes in the ray path to be free space and it increases
the probability of the target point in the cloud to be occupied by the detection
probability specified at the sensor model.

The modified configuration file is the one described in Moveit in 3D perception
update tutorials as a sensor yaml configuration file. The new possible fields are:

• occupancy tresh sets the octomap occupancy treshold for a map node to the
specified value

• prob hit and prob miss which set the value of the new observation proba-
bility chance in a node

• clamping thres min and clamping thres max which set the value of the
clamping values for free and occupied space
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• disable model filtering which skips the filtering of the robot model

With an exception in the model disabling parameter, all the other values are
doubles and if not set, the default values from the octomap [22] are used in the
sensor model. The limitations and usage of these values are closely discussed in
the octomap paper. Values used in our project are well tested and if you have a
need to change them, read the octomap documentation first.

The parameter which disables model is an integer and accepts 0 as false and 1
as true. The model filtering is very handy when working with robotic hands, as
parts of the hand might sometimes be in front of the 3D sensors. It disturbs the
updates of our system though and the model filtering is not needed when working
with a small quadcopter with a camera at the front. We therefore disable the
model filtering for our purposes.

6.3 Controller

The new action defined when we bended Moveit system for the drone usage
requires a controller which can handle that action. We will be using a modified
controller from the Autonomous-flight-ROS project [21] which uses Moveit to
fly with a simulated drone. Because the original controller was used only in
simulations with the same drone model all the time, we need to modify it to work
well with the Bebop in real time. The result is still a simple controller without a
control loop, but it is a more precise one. Our controller is tested in chapter 8.

The modifications to the controller include a bug fix, which caused a drone
to have different real behavior when going left and forward than right and back-
ward. Furthermore, we modify the blocking time of the controller after each
command was issued with a new value, which is loaded from the ROS parameter
server. The value from the original project is the default value if the parame-
ter is not set. The parameter names are “simple controller rotation” and “sim-
ple controller movement” of a type double and specify how many seconds the
controller thread waits after issuing a command in a movement case and a sleep
modifier for the rotation case as the drone rotation has different dynamics than
the drone movement has.

The output of the original controller is good enough to run a simulation. With
the real drone however, the effect is not sufficient. Especially if the drone was
moving before, it takes too long for the new command to have a desired effect.
We therefore include a drone flight model and furthermore modify the output of
a controller with a boost technique. The flight model describes the behavior of
the specific drone and is set up with parameters from the ROS parameter server.
The boost technique increases the intensity at the start and at the end of the
signal to move in a certain direction.
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The values used in the model are based on the specific drone flight dynamics
and are obtained experimentally with individual drone. An ideal solution to this
problem would be a control loop which would monitor how the drone behavior
reflects the commands it receives and the controller would then be able to adapt to
the situation which would not only reflect the drone specific flight dynamics, but
also would be able to correct for detected drafts and air currents. We had plans
to implement a control loop at the beginnings of the project, however numerous
more serious technical issues prevented the control loop to be implemented.

The parameters loaded from the ROS parameter server are of a type double
and compensate the output of the cmd vel topic for the third of every second.
Their names are “compensation x”, “compensation y”, “compensation z” and
“compensation rot”. Their default values are 0.0 and they don’t modify the
output with default values.

The boost technique provides significant boost to the intensity of the drone
control message whenever the drone starts a movement in a new direction. There
is also a short boost in the opposite direction of the movement when the movement
in a certain direction is finished. The boost in the opposite direction serves as
a break, to stop the movement of the drone. The boost mechanism takes into
account the flight dynamics parameters so it is larger on the weaker directions of
the drone movement and is smaller on the more dominant directions of the drone
movement. The boost makes big difference for the good control of a real drone
as documented in the Evaluations chapter.

6.4 Planning

Moveit uses Open motion planning library (OMPL) [23] by default. It has
more planning libraries integrated and it is possible to write custom planner if
the need for it arises. It is also very straightforward to create custom scenarios,
such as flying in a square or flying a few meters back and forth which are used in
the evaluation section.

The OMPL library planners are totally abstract and operate without any
knowledge of a robot. That also means the library itself doesn’t implement any
viewers and collision checking. The concrete planning algorithms are described
and documented on the project pages. They can be split to geometric planners
which take into account kinematics and geometry of the scene and control-based
planners which also use differential constraints to limit speed at certain areas.

Moveit prompts OMPL to generate a few plans at the same time, checks for
collisions and then picks one of the valid plans. OMPL uses RRT and KPIECE
algorithms by default, because they provide good real time real world results [23].
It is very simple to pick a different planning algorithm if there is a need for that.
We will use the RRT planner for purposes of this implementation as we have good
experimental results with it.
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Moveit includes an infrastructure for the control loop of the planning execution
called an Execution monitor. It monitors the plan execution and in case some-
thing goes wrong or something unexpected happens, the monitor can respond
to the new situation. This feature is supported in all elements of Moveit which
means, that even though the monitor is not implemented in this thesis, it could
be added naturally to the system. That will allow us to react to unexpected
obstacles in the planned trajectory during the execution of the plan and re-plan
when that happens. The execution monitor differs from the controller control
loop, as the control loop in controller only assures precise execution of the plan.
The execution monitor assured that the system can react to new situations ac-
cordingly.

6.4.1 RRT

Rapidly-exploring random trees [33] is a tree based motion planning single
query algorithm which samples random state rs in a state space. Then it finds
already seen state ss which is the closest tree vertex to rs with respect to a given
distance metric. It expands towards rs until it finds a middle state ms which
satisfies given geometric and kinematic constraints. It then adds ms to the tree, if
the edge between ss andms satisfies the constraints as well. The edge sampling in
OMPL implementation is performed randomly for a given number of states on the
edge. When the new state is added to the tree, additional constraints are added
for the states reachable from the new tree vertex, respecting the kinodynamics of
the whole system.

The algorithm ends if it finds a valid trajectory which satisfies kinematic and
geometric constraints. It is terminated if it did not found a solution after a
specified time or when the tree reaches a specific size. The default time constraint
in our implementation is 0.08s as described in the Moveit documentation and we
have not found any vertex limit.

The state space is considered to be bounded and if not said otherwise, the
default value of the boundary is a cube 10x10x10 around the starting point. The
state space itself is not limited to poses in 3D space and obstacles (geometric con-
straints), but also includes speed and acceleration limits (kinematic constraints).
The limits are defined in a Moveit configuration file. The RRT random state gen-
erator has a massive bias towards the unexplored areas of the state space which
leads to a rapid exploration of the whole state space area.
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6.5 Custom plans

It is inteded to use the system this thesis proposes for goals other then to solve
the “go-home” problem. To do that, we need to provide a simple way to specify
navigation and planning goals from the code. We call that simple way a custom
plan. A more complex behavior of the drone would be created for example by
combining multiple custom plan nodes into a decision tree.

Moveit provides a way of creating a custom plan right of the box. How to
do that is well documented in Moveit tutorials. However with the modifications
for the use of drones we made, ways described in the Moveit tutorials do not
work. This section describes two types of plans we can create with our system
and provide examples of how to do that.

We call the two types “plans with specific planning” and “plans with automatic
planning”. We will now describe the general properties those two plan categories
share. The description of individual categories follows in next two subsections.
This thesis provides an implementation of both of these categories, which might
serve as a template to create more complicated plans for specific tasks.

A custom plan is instantiated as a ROS node and it publishes the plan it
generates to a topic. The plan is then displayed in Rviz and can be executed.
The custom plan node can subscribe and publish to topics, it can call ROS services
etc.

A basic way to interact with the planning node is with Rviz visual tools plugin
which is a part of Moveit. We run the custom plan node and when we want it to
do an action (plan, display trajectory, execute a plan etc), we press the button
in Rviz and the node does its job. If we wanted to prompt the node to perform
an action by other means, we could also do that as a service call or by notifying
the node on a topic it listens on.

All our implemented planning nodes wait on their launch to be prompted.
First prompt makes them to generate a plan and second prompt makes them to
execute the generated plan. Third prompt shuts the node down.

6.5.1 Specific planning

A plan with a specific planning is a ROS node, which allows us to create a
motion plan based on the list of poses. For example, we want the drone to move
in a square trajectory no matter what the environment around it looks like. We
have to specify all the poses we specifically want the drone to reach and their
correct order in the list. The specific planner converts that list of poses straight
into a valid trajectory plan. That plan can be viewed in Rviz as a trajectory to
execute or it can be directly executed.
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All the custom scenarios in the Evaluation chapter and the backtracker node
are specific planning nodes.

We have created a ROS service called get robot trajectory from path, which
takes a message of a type nav msgs/Path and creates a moveit msgs/RobotTrajectory
type message, which is directly accepted in Rviz as a planned trajectory and can
be directly executed by the move group. The nav msgs/Path message is basical-
ly a list of poses in space. The specific planner nodes all use this service. They
create a path message and convert it into the plan with this node.

6.5.2 Automatic planning

A plan with an automatic planning is a ROS node, which allows us to create a
motion plan based on a starting position and a list of targets. The planning node
then uses the OMPL planning library to automatically generate a valid motion
plan. The plan can be then viewed in Rviz or directly executed.

Our “boomerang” automatic planning node implementation is an example of
how to utilize Moveit planners from the code. Moveit tutorials don’t cover this
part, as we use modified Moveit actions and a floating virtual joint to control the
drone - not at all the same as with the robotic hands and ground mobile robots,
which are covered in Moveit tutorials well.

The move group instance has a wide range of different settings which can be
specified. They include custom distance metrics to optimize, workspace, type of
a planner to use, constraints on poses, speed etc. All the setting is available in
Moveit documentation.

Our “boomerang” implementation uses the same prompting rules as are the
rules in the specific planning nodes and could be easily changed as well.
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7. Implementation

We started the work on this system at the start of year 2014, originally with
the Parrot AR Drone 2.0 and with a different system than ROS. After creating a
solution that somewhat worked, the struggle with the system and the clunky AR
2.0 was too much to handle. The key decisions were to use ROS for the project
and to change from AR 2.0 to Bebop platform. Bebop is much more stable and
agile and its fish-eye lens allows the visual odometry to actually detect obstacle
during a flight. That was difficult with the old AR 2.0, because the camera didn’t
maintain the line of sight. It produced a lot of floor pictures when it was flying
forward which didn’t allow for stable obstacle detection.

We started the work with ROS and Bebop in september of 2016 and compared
to what we were able to achieve with the old system, this went much faster.
ROS is a wide spread system with big community and has a lot of already com-
pleted packages. That simplifies the development significantly. We are using
bebop autonomy [4] as a Bebop driver, robot localization [28] provide both Ex-
tended and Unscented Kalman filters configurable implementations and Moveit!
[16] as a planning framework which uses Rviz [29] as visualization tool, octomap
[22] to represent a scene and OMPL [23] to generate plans. We use Gazebo [24]
to simulate scenarios and try things in the simulator before attempting them in
reality.

Along with that, we employ Eigen [14] for vector calculations, pcl [26] to
operate easily with the pointcloud, part of the library [25] for mutex to stop
XBox controller overriding the commands the automated controller sends to it
and tf [27] for easy frame switching. We use a few more simple helper nodes
which are considered part of the ROS system and we do not list them specifically.

Our installation of ROS runs on the VirtualBox Ubuntu 16.04 on the machine
with Windows 10. The possibility to take snapshots of the system and return to
them according to the need proved invaluable, however I would strongly advise
against this approach for future work. The reason for that is that both Rviz
visualization and Gazebo simulator use 3D rendering and 3D computations. In
VirtualBox, all of those calculations are performed on the CPU and that is much
slower than with the GPU. It is possible to install “Guest additions for Virtual-
Box” to mediate usage of the real GPU on the simulated machine, but that makes
both Gazebo and Rviz crash on their startup. According to their documentation,
neither of them is indeed compatible with this approach.
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7.1 Proposed system implementation

This section will cover our actual realization of the proposed system with an
overall review of its capabilities and its shortcomings.

As a driver, we are using a bebop autonomy package. It provides us with the
odometry and visual stream data and mediates a steering signal, landing, takeoff
and emergency landing commands for the drone.

We employ DSO to process the visual data and create a sparse point-cloud
and odometry messages independent of the drone odometry.

We use configured values acquired experimentally and UKF to fuse the data
from the DSO and drone IMU. Specifically, we successfully transform the point-
cloud data generated by the DSO to the drone base frame.

The Moveit! planning framework is used for following tasks:

• We use octomap with modified underlying sensor model to update the map
from our sparse point-cloud. Figure 7.1.1 shows a point-cloud and the
octomap created from that point-cloud

• The OMPL is used to automatically generate plans.

• We create custom scenarios and custom plans with the standard Moveit
workflow.

• We use the Moveit Rviz plugin to monitor and view actual planning scene.

(a) Pointcloud received by the oc-
tomap

(b) Octomap representation of the
scene

Figure 7.1.1: A comparison of a point-cloud received from DSO and the octomap
representation of the scene, based on the received point-cloud.

We use a simple controller with limited and boosted output adjusted by an
experimentally acquired flight model to control the drone automatically.

We are using an X-Box One controller to fly with the drone manually.

A mutual exclusivity between the X-Box controller and the automatic con-
troller is ensured by a third party mutex node.
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7.1.1 Summary

The following list summarizes the capabilities of our current realization of the
proposed system:

• The system actual implementation is capable of manually flying with Bebop
using an X-Box controller and not interfering with the automatic controller
output.

• The DSO consumes the drone visual stream and extracts the drone’s sur-
roundings into a point-cloud.

• The point cloud is fused with the drone odometry to create a map of the
environment the drone is in. The map has an edge 7.5m distant from the
actual drone position. Figure 7.1.2 shows a real scene and its octomap
representation.

• On demand, we can automatically generate motion plans respecting the
obstacles in our map to reach the desired position.

• The simple controller we created can execute the motion plans on demand.

• We are able to easily generate custom scenarios.

• We can view the whole scene and send commands to the drone with only
one interface.

• We can run the whole system on a simulator to test the scenario before we
try it in reality.

(a) A photograph of the scene (b) The system’s perception of the
scene

Figure 7.1.2: A figure comparing the real scene and the scene perceived by the
system. The structure of the wall, the flower, the first table and the green bar-
rier are identifiable in the sparse map our system created. The floor has some
perceived triangles on it as well.
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This list summarizes the shortcomings of the actual realization of the system:

• The odometry data fusion is heavily weighted towards the bebop data. It
causes that the drift is not accounted for and therefore cannot be regulated.

• The use of a simple controller with no control loop limits the execution
precision of the planned trajectory and does not allow the controller to
modify its output.

• The lack of an execution monitor does not allow the planner to re-plan after
encountering an unexpected obstacle in the planned path during the plan
execution.

7.2 The go-home problem implementation

In this section, we will talk about the specific implementation of two solutions
to the go-home problem proposed in chapter 4. Both of those solutions are specific
plans in the broader proposed system. That means that they share the actual
realization of specific sub-systems along with their current limitations described
in the previous section.

For the general idea behind the implementation of both nodes, refer to the
chapter 4, section 2.

7.2.1 Backtracker

The mechanism behind specific plan implementation was described at the end
of the previous chapter. The backtracker node utilizes that mechanism.

We realize the remembering of the odometry messages with a ROS node
“Frodopathy”. The node expects two parameters, one specifying the odome-
try topic and the other specifying the output topic to which the result should
be published. The node creates a “nav msgs/Path” structure and adds the most
recent odometry message at the end of the path if its position differs from the
last message at least by certain value. This value is specified on the ROS param-
eter in parameter of type double called “frodo limit”. The default value of this
parameter is 0.05 which corresponds to 5cm in the drone coordinate system. Our
implementation uses the default value.

The backtracker node subscribes to the path topic specified in the launch file
and remembers the latest path published. When prompted for the plan, it un-
subscribes from the topic and sends a request to the node which offers the service
“get robot trajectory from path” described in the previous chapter. The plan
created from the path by the service is then published to Rviz for visualization
and to the move group object to be executed on demand.
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7.2.2 Boomerang

The mechanism behind automatic plan implementation, which this node uti-
lizes, was described at the end of the previous chapter. It specifies the maximum
planning time to be 2s and limits the planner workspace to an area 10m in x and
y directions for the drone and the flight altitude to be between 0.7m and 1.7m.
Then we specify our target position to be 0 in x and y coordinates and 1 in z
coordinate and let the planner to generate a plan automatically with respect to
the obstacles recorded in our octomap.

The result is published to Rviz and is viewed as a trajectory. It can be then
executed on demand.

7.3 System usage

This section presents how to use the system to navigate and create plans for
a quadcopter. It is assumed that a user uses a quadcopter operated from ROS.
A ROS description with more details is in the attachments chapter of this thesis.
Note that as a broader robotic community solution, ROS is well maintained and
documented. Almost every package or maintainer provides easy to use interface
and/or is well documented and has tutorials.

We recommend the “Parrot Bebop” described in chapter 3 for its affordability
and flight stability, however a comparable drone is certainly usable. Make sure
that different drone publishes its IMU data on the ROS topic. The system should
be also usable with different main sensors, such as with stereo cameras or with
the RGB-D camera with small modifications.

The whole system is started with three ROS launch files. They could be started
all at once, but because a few systems write their runtime output to the console,
we prefer that they are started in different terminals for readability and flight
monitoring. The first launch file starts a world representation which is either a
real drone, a bag file or the Gazebo simulator. The second file starts a controller.
The third file starts the Moveit planner and Rviz visualization.

There are many parameters to set before the full system works well. It is
necessary to provide DSO with a camera calibration data as described in the
documentation [1]. The Moveit planner needs to be setup by following the Setup
Assistant tutorial on the Moveit site [16] with the modifications described in
this project [19] to allow for the quadcopter control. The octomap probability
tresholds should be edited according to your sensor model in a Moveit sensor file.
Your drone flight model should be updated as a series of ROS parameters. Which
parameters and configuration files to use for those purposes was described in the
previous chapters.
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When all is correctly set up, a user is able to query Moveit from Rviz for plans
with a starting and target positions. Rviz then visualizes the planned path with
respect to the obstacles the octomap represents and executes it either on demand
or straight away. If the user wants to execute more sophisticated plans, they can
use some of our evaluation node plans or the backtracking node as a starting
point and modify them according to their needs.

7.4 Development

This implementation is developed on Ubuntu 16.04 with ROSKinetic and C+
+11. The developed code and the modified projects (DSO, Moveit, Controller)
are attached on the flash drive and everything is also shared on github. The code
is compiled with CMake in case of DSO and with catkin in case of all the ROS
packages. The catkin is a well documented ROS tool, which is able to locate and
build all the necessary packages based on each package dependency specifications.

The code is mostly object oriented with a few simple node exceptions. It is
written with the good practices in mind and it aims to be easily readable and
self-explanatory. The configuration files are documented either in the Moveit doc-
umentation, in previous chapters or in the configuration files with commentaries.
The class description of our nodes follows:

• dso node encapsulates the ros output wrapper node. It takes care of cor-
rect initializations of the DSO system and accepts the calibration files as
parameters. It resets the system in case of a failure. It is possible to acti-
vate the original dso viewer “Pangolin” in the launch file. It consumes the
drone image raw topic for DSO.

• ros output wrapper produces two output topics from the DSO into ROS.
The topic dso odom publishes the odometry estimated by the DSO system.
The topic pcl contains a pointcloud message based on the the DSO odometry
transformed into the base link frame. The transformation values are loaded
from the ROS parameter server.

• Modified DSOOutput3DWrapper interface and its implementations to workaround
a bug of the wrong memory address for the camera pose output.

• Modified Moveit! pointcloud octomap updater to allow probabilistic sensor
model modifications and to allow disabling robot model filtering. If the
configuration file doesn’t specify any model numbers, it still uses the original
octomap values.

• Modified controller action controller from the action controller package from
the Autonomous-flight-ROS project [21]. Modifications allow to specify the
controller blocking times after the command is sent. The new values are
loaded from the ROS parameter server and have their original values as
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default. The original implementation was sufficient for the Gazebo simula-
tor control but the real world scenarios require finer control over the drone.
Also fixed a serious bug when the drone behavior was different when flying
forward or left than when it was flying backward or right.

• cmdvelrepeater is a node which takes the command from the controller and
republishes it with desired frequency. The original node implementation
only sent a command once which was good enough for the simulation but
the bebop driver expects different input [4].

• cmdveladjustor is a manager node that covers the limiter, compensator and
booster in itself. It is technically a part of a controller and modifies the
output of the action controller node which is based on the controller for the
simulator.

• cmdvellimiter is a manager node that covers the limiter. It is applied in
case when we are controlling the drone directly to ensure that the flight is
smooth and slow enough for the DSO to be stable.

• cmdlimiter modifies the absolute maximum value of the command sent to
the drone. The limit is loaded from the ROS parameter server. The official
absolute maximum according to bebop driver [4] had a value of 1. This
number is lowered with the limiter to improve DSO behavior and to allow
the boost mechanism to take place. It limits both the translation and the
rotation commands and can accept different values for the two.

• cmdcompensator compensates the output of the drone according to specific
flight constants if they were provided. It applies the compensation for a
third of every second.

• cmdbooster adds a boost to the command signal when it receives a new di-
rection or a counter-boost when the movement in the direction is finished.
In a case when the new direction is opposite to the previous one, the boost is
significantly longer. When provided, the booster takes into account unique
flight constants of a drone and applies corrections according to the con-
stants. These constants also modify the boost behavior so that it is shorter
in dominant directions and longer in weak directions of a specific drone.

• transodom transforms the odometry of the DSO into the drone frame. It
accepts the same parameters from the ROS parameter server as the trans-
formation of the pointcloud.

• frodopathy node transforms the received odometry to the path message. It
is used to display the path the drone took and serves as an input to the
backtracking node.

• robottrajectoryfrompahtservice transforms the path message to the trajec-
tory message used by Moveit to display and execute the trajectory. It is
a service which is called on demand from planning nodes we use as our
custom plans and scenarios.
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• backtracker is a custom planner node which plans the return of the drone
to the starting position by backtracking on demand. It accepts the path
message from the frodopathy node, turns the path around and creates a
trajectory to execute from the path.

• boomerang is an automatic planner node which plans the trajectory for
the drone to return to the starting position by shortest route possible on
demand. It accepts the path message from the frodopathy node, turns the
path around and creates a trajectory to execute from the path.

• square and backandforth are our custom scenarios for the performance eval-
uation. They script the desired path, transform it into trajectory and send
it to the action server for the controller to execute the trajectory.
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8. Evaluation

To evaluate the results of our implementation, several experiments were de-
signed to observe some of the sub-systems performances. It is very straight-
forward to create a planned trajectory by hand, as some of these experiments
demonstrate to test the controller reliability. We provide some photographic
documentation as well as trajectory perceived by the system. Most of the exper-
iments are recorded into ROS-bags and can be downloaded at the project site
[37]. Their are too big to include them as attachment of this thesis.

The bags allow the experiment to be replayed using a script which is a part of
the thesis attachments. The bags contain all the odometry data, visual data, per-
ceived point-clouds and maps generated from them, the paths generated by either
automatic planner or designed as a part of the scenario and the commands which
the drone receives either from the automatic controller or our X-Box controller.

The experiments are presented in following sections and subsections. Each
section describes the scenario, expected behavior of the system or a subsystem,
actual behavior observed, photographic documentation of some of the experiment
instances and statistics based on a number of individual experiments executed. If
an experiment doesn’t go as planned, we examine the results for that and propose
a possible solution.

In general we expected that because of the simple controller the flight will not
be too precise, but should be reasonable. Because of the drift, caused by the
air currents from drone propellers near obstacles, and the inability of the current
implementation of the designed system to detect drift, there will be inaccuracies
when the drone is flying too close to the objects. Also some natural drone drift
happens when the drone stays still. It has been shown [3] that with a more
advanced controller, the drifts are detectable and the drone can counter them
properly.
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The experiments were executed in the large hall which floor is structured in-
to colored right triangles. For reference, their legs are 200cm and 75cm. The
photographs of the hall are presented in the figure 8.0.1 and more of them are
attached in the “Attachment 1”. The bag files recorded during these experi-
ments are available at the project site [37] for examination, as stated in the first
paragraph of this chapter.

(a) A view into the hall (b) Different view into the hall

Figure 8.0.1: Some of the photographs of the hall in which the experiments took
place. Other photographs are included as an attachment.

8.1 Obstacle detections

To test the ability of the octomap updates to create a map which captures
obstacles in front of the drone, we designed a simple experiment. We flew with
a drone left and right approximately one meter a few times with the camera
aiming into the room. The drone natural flight altitude is 1m. There were three
situations:

• an empty room

• a board 2.2m high and 3m wide in front of the drone in 3m distance

• a chair 1m high in front of the drone in 3m distance

43



We offer photos of the scene and screen-shots of the octomap created by the
system for evaluation in the figure 8.1.3. The detection of both, the board and
the chair, is visible in the images.

Figure 8.1.1: A photograph of a room used to conclude obstacle perception ex-
periments and the octomap representation of that room, created by the system’s
current implementation.

Figure 8.1.2: A comparison between the photograph of a scene with a board and
the octomap representation of the scene with the board. The board is clearly
visible to the drone when compared to the octomap created with an empty room.

Figure 8.1.3: A comparison between the photograph of a scene with a chair and
the octomap representation of the scene with the chair. The chair is also clearly
detectable by our perception system.
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8.2 Controller performance

To test the controller ability to follow the trajectory generated by the planner
or by hand, we designed two experiments.

First we created a scenario where the drone objective was to fly back and forth
3m in a line several times and measured the distance between the starting and
finishing positions.

Second scenario was a square with an edge of 3m and the drone had to fly in
the square. Again, we measured the distance between the starting and finishing
positions. This scenario should evaluate the drone behavior in execution of more
complex plan.

The original simple controller we took from the simulator was failing at these
scenarios miserably. The back and forth flight would usually result in a 6m
distance. The time the drone was supposed to fly in the opposite direction than
the one it started with was used only to stop the previous movement. The
square flight would be even worse. The drone would fly in the direction of the
first two commands and the second two commands would only stop the previous
movement. The drone would usually end up being around 5m away in both of
the first two movement directions. Unfortunately, we do not have records of the
flights we concluded with the unmodified controller. However they are replicable
by disabling the cmdveladjustor node in the launch file.

8.2.1 Back and forth flight

The planning node executing this scenario accepts a parameter “plan variant”
with integer value between 1 and 4 which specifies which direction the drone
should move first. It transforms one to forward, two to back, three to left and four
to right. We realized in our previous experiments, that the drone construction
makes sure the drone stays stable when flying back and forth and it is unstable
when flying left and right meaning, that the orientation of the drone slightly
changes at the second case. It is caused by the fact, that both propellers on the
left rotate clockwise and both propellers on the right rotate counter-clockwise.
Therefore we only include the back and forth variants of this experiment. The
screenshots and photographs of the left and right variants are documented at
“Attachment 1”.
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The drone flew the line four times in each experiment, two times in one di-
rection and two times in the other. We expected the distance to be close to the
3m every time and the resulting position being reasonably close to the starting
position. Figure 8.2.1 shows the trajectories the drone took when executing two
of our experiments.

(a) First experiment (b) Second experiment

Figure 8.2.1: The red line represents a trajectory the drone took when executing
the experiments based on the fused odometry. The drone with the arrows around
it represents the starting location. The ghost drone is just a drone representation
from Rviz, ignore it.

We executed a set of twelve flights. Six of them were forward first and six of
them were backward first. The deviations from the starting position when flying
forward first shows the table 8.1 and deviations when flying back first shows the
table 8.2. An average deviation from all twelve measurements is rounded to 66cm.

Table 8.1: The table presents deviation from the starting position when flying
forward first.

measurement no. 1 2 3 4 5 6
deviation from the start (cm) 30 25 90 80 45 50

Table 8.2: The table presents deviation from the starting position when flying
backward first.

measurement no. 1 2 3 4 5 6
deviation from the start (cm) 20 15 145 80 130 75

Photographs presented at figure 8.2.2 capture one of the experiment’s starting
and finishing positions. There are more photographs documenting the experi-
ments attached to the thesis in the Attachment 1. It is clear from the photographs
that the deviation happened mostly in the left to right axis. That indicates that
the deviation is probably caused by the drift.
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(a) Starting position (b) Finishing position

Figure 8.2.2: A deviation from the starting position after executing one of the
experiments.

8.2.2 Square flight

The planning node again accepts a parameter “plan variant”. This time with
integer value 1 or 2, where 1 specifies a counter-clockwise square with a start
forward and 2 specifies a clockwise square with a start backward. The drone does
not change the orientation in the corners, it only changes direction of the flight.

We expected the drone to be relatively more deviated when compared to the
first experimental scenario, because the fact that we only have a simple controller
without a control loop will have higher impact on the execution of a more com-
plex plan. However our expectation was that the drone will execute a reasonably
rectangular-like trajectory, thanks to our booster technique which should handle
the changes of the directions reasonably well. We didn’t expect any real differ-
ences between the two variants of this experiment. Two of the trajectories are
displayed in the figure 8.2.3

We executed a set of eleven flights. Six of them were counter-clockwise and six
of them were clockwise. The deviations from the starting position when flying
counter-clockwise shows the table 8.3 and deviations when flying clockwise shows
the table 8.4. An average deviation from ten measurements is rounded to 146cm.
The eleventh measurement did not finish due to the drift and is not accounted
for in the deviation average.

Table 8.3: The table presents deviation from the starting position when flying
counter-clockwise.

measurement no. 1 2 3 4 5 6
deviation from the start (cm) 130 50 140 75 DNF ∼200

Table 8.4: The table presents deviation from the starting position when flying
clockwise.

measurement no. 1 2 3 4 5
deviation from the start (cm) ∼200 150 160 150 ∼200
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(a) First experiment (b) Second experiment

Figure 8.2.3: As with the back and forth experiments, the red line represents a
trajectory the drone took when executing the experiments based on the fused
odometry. The orange drone represents the starting position and the red drone
the finishing position.

The figure 8.2.4 shows the difference between the starting and finishing posi-
tions in one of the experiments. We expected the results to be worse than with
the back and forth flight which they are. The trajectory seems to be mostly rect-
angular which indicates that the booster works as intended and our only problem
seems to be the controller precision.

(a) Starting position (b) Finishing position

Figure 8.2.4: A deviation from the starting position after executing one of the
square experiments.
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8.3 The go-home problem

It was the thesis objective to solve this problem. We have two ways of returning
the drone to its starting position.

The first is a simple backtracker. It remembers the flight path detected by the
drone and plans the trajectory following the exact same trajectory back. In fact,
it does not use obstacle detection at all.

The second way we implemented is a boomerang. It automatically plans a
trajectory respecting the detected obstacles using the Moveit planners.

8.3.1 Backtracker

The flights in this experiment consisted of two or three significant changes
of direction and a rotation. We didn’t fly more than eight meters away in one
direction and we also tried to fly seven to ten meters in total.

We expected that this experiment will have comparable results to the square
experiment, as it is executing relatively comparable plan with two or three changes
of directions and in addition to that there are some rotations. We expected that
the planned path will be the same as the path of the original drone path, only
backwards. We expected that the path executed will have a shape similar to
the path the drone took on the way there. Figure 8.3.1 captures two of the
experimental trajectories.

(a) First experiment (b) Second experiment

Figure 8.3.1: The executed backtracker trajectories have similar shape to the
original trajectories.

We executed a set of six flights. The deviations from the starting position
shows the table 8.5. An average deviation from five of the measurements is
rounded to 166cm. The sixth measurement did not finish due to the drift.
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Table 8.5: The table presents deviation from the starting position when returning
to the starting position by backtracking.

measurement no. 1 2 3 4 5 6
deviation from the start (cm) 180 120 DNF ∼200 ∼200 130

The figure 8.3.2 presents photographs of starting and finishing positions of one
experiment.

(a) Starting position (b) Finishing position

Figure 8.3.2: The deviation from the starting position is higher than the square
experiment.

We see that the overall results are slightly worse than the results with the
square experiment. The path taken by the drone seems to have a similar shape
to the original path. That indicates that a better controller would increase the
measured precision of the experiment.

8.3.2 Boomerang

The expectations from this experiment were that they will be similar to those
of the backtracking experiment. We expected that the system would detect some
noise obstacles in the general area of the experiment and that it would plan to
avoid them, therefore resulting in the plan in the same level of difficulty as the
backtracker.

The flights we took with the boomerang also did not fly more than seven to
eight meters away in one direction, but we didn’t have any restriction regarding
the flight trajectory. We basically flew for a while, changing directions very often,
sometimes rotating the drone. The trajectory of the flight was usually around
twenty meters long.

We executed a set of ten flights. Four of them were recorded to a bagfile
and six of them were not, as we ran out of disk space. The deviations from the
starting position of recorded flights shows the table 8.6 and deviations from not
recorded flights shows the table 8.7. An average deviation from ten measurements
is rounded to 88cm.
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(a) First experiment (b) Second experiment

Figure 8.3.3: The perception system did not register many noise obstacles. The
planned trajectories were therefore simple and could be executed relatively pre-
cisely even with our simple controller.

Table 8.6: The table presents deviation from the starting position when returning
to the starting position with recorded boomerang.

measurement no. 1 2 3 4
deviation from the start (cm) 75 ∼200 20 120

The figure 8.3.4 presents photographs of starting and finishing positions of one
experiment.

(a) Starting position (b) Finishing position

Figure 8.3.4: The results were quite close with the boomerang automatic planner.

As we can see, the results are a lot better then with the backtracking node.
The reason for it is probably that the noise obstacle detection rate was very low
and the planner planned simple trajectories to return to the original location. We
took more flights with the boomerang planner off the record as our hard drive
space was running low and each record of the longer flight took well over 3GB.
Those are the deviations in the brackets. We could see that the results were on
average below one meter of deviation from the original position for flights that
took longer time.
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Table 8.7: The table presents deviation from the starting position when returning
to the starting position with not recorded boomerang.

measurement no. 1 2 3 4 5 6
deviation from the start (cm) 60 120 35 15 80 150

8.3.3 Boomerang with obstacles

Next experiment with the boomerang planner was to fly around a board and
position the drone in a way that the board is in between the starting and actual
location when starting the automatic planner. We expected drift problems, but
we were hoping that some experiments would be successful.

• Plan not found due to the noise obstacle in the exact place of the starting
location,

• DNF - the plan created a valid trajectory to the starting point, but crashed
due to the drift

• DNF - the plan created a valid trajectory to the starting point, but crashed
due to the drift

Figure 8.3.5: The obstacle detected between the actual position and the desired
drone destination. The trajectory is planned around the obstacle.

As we see in the figure 8.3.5, the planner was able to generate a valid trajectory
but limitations of our system’s current implementation prevented us from reaching
the desired position. Supposedly, both lack of the drift detection and a simplicity
of our controller contributed to the failure of the generated plan execution.

We wanted to test the hypothesis that the planner generates correct plans
and only our current controller implementation fails at executing them at the

52



simulator. We created the exact same situation ten times and the whole scenario
was successfully completed every time. So the planner is able to generate correct
plan for specific situation and further improvement of our current implementation
is required in order to successfully complete this experiment.

8.4 Discussion

The experiments with the boomerang planner show, that the overall plan gen-
eration is good and we are able to generate trajectories which are among the
shortest possible and avoid obstacles at the same time.

The octomap detects the obstacles and allows the Moveit planners to generate
plans which avoid detected obstacles. We see that it also generates some noise,
meaning some small obstacles which are not real. We could eliminate some of
those at the cost of lowering the detection rate of smaller obstacles by modifying
the underlying octomap sensor model.

We see from the results that the controller is able to follow the trajectory,
but is not very accurate at it. That is what we expected when we designed the
controller in the first place, as it is a simple controller without a control loop. A
way to improve its behavior is to implement a control loop, which would give the
controller real time feedback about how well it sticks to the planned trajectory.
The controller would then adjust its output which would regulate the difference
between the expected and observed behavior.

Another problem is a drift detection. That should be resolved by finishing the
data fusion from the DSO and the drone odometry as the DSO odometry detects
the drift correctly. When we detect that drift and we have a controller with a
control loop, the system should be able to eliminate it easily [3]. The current
fusion is described in chapter
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9. Conclusion

When we were looking for a complex control system in which we would like to
solve the drone “go-home” problem, we realized there is no such system currently
available in Robot Operation System platform. We present the system we de-
signed for that purpose in this thesis along with two solutions to the “go-home”
problem within the proposed system.

The first proposed solution is a simple backtracking mechanism. It remembers
the path of the drone when flying somewhere. When prompted, this system
creates a reverse trajectory of the drone and attempts to return to the starting
position by backtracking.
The second solution we propose is an automatically generated plan. Its starting
point is the current drone location and it generates a plan to the original drone
coordinates. The generated plan is executed when prompted.

The proposed system aims to be as modular as possible and it is designed to
solve broader navigation and planning problems in real time. It covers a drone
driver, a visual perception system, data fusion, map building and maintaining,
automated planning and drone control.

The specific subsystems used in this thesis reflect the needs of a Parrot Bebop
which was the drone we were developing our system for. We use a visual processor
designed for a monocular camera. The data from the visual processing system
are used to update a map. The planning system then generates a trajectory with
respect to the created map, leading from the drone’s actual location to a desired
position. In a case of the “go-home” problem, the desired position coordinates
in the drone coordinate system are (0, 0, 1). The controller then executes the
generated trajectory.

The current system implementation has its problems. We are not able to detect
and regulate the drift of the drone, the controller we are using is not precise and
we are not able to detect new obstacles when we are already executing the planned
trajectory. However, the proposed system is designed to be modular and allows
individual subsystem replacement. Our proposal how to fix those problems is in
the next section.

The system’s overall functionality and the proposed solutions to the “go-home”
problem were evaluated by the series of experiments. We concluded that the
overall system design worked well as it detected the obstacles and was able to
create plans which avoid the detected obstacles. We were able to solve the “go-
home” problem with no obstacles. The boomerang solution had a deviation under
1m and the backtracking solution’s deviation was under 1.7m.
When the system encountered an obstacle in a more complicated scenario, the
obstacle was detected and the boomerang planner planned a trajectory around
it successfully. However the drift of the drone caused by the obstacle prevented
the controller to execute the trajectory correctly. The backtracker had a similar
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problem, as it also had a valid trajectory, but the drift had the same effect and
prevented the controller from the correct execution.

9.1 Future work

We encountered many technical problems when we were working on the system
this thesis presents. Those problems delayed the implementation of more sophis-
ticated subsystems. We solved some of the problems only sufficiently enough for
the overall system to work, but there are theoretical results already which should
allow a far better solution. The problems which remain to be solved are described
here in a descending perceived importance. Other problems we solved resulted in
a working implementation of the proposed system and solutions to some of the
more technical ones are described on github of this project [37].

The plan execution monitoring adds a new capability to the system - to react
to new obstacles when executing a trajectory. The controller improvement and
better odometry data fusion should improve the precision of the system greatly
and should allow more complex scenarios to be successfully completed. We would
consider implementations of these three features as major improvements to the
overall system.

When all of those three systems are implemented, we would be able to create
a complex solution to the go-home problem. It would be a single program, which
would generate a plan to the starting position. During the execution of that plan,
it would monitor the planned trajectory for obstacles. If it would have found a
new obstacle, it would be able to re-plan the solution and start the execution of
a new plan. The program would be also able to start the backtracking option at
any time. A good time would be if the battery was running low or if the execution
was taking too long. If the program was not successful in its execution, it could
find a safe place to land.

9.1.1 Problems to solve

Work on the data fusion in a way that the visual odometry plays more im-
portant role and helps to correct drift mistakes [3]. The drone does not detect
drift properly without it. We did quite an advancement when working on the
solution, but we were forced to move forward in order to create a working system
without finishing the work on this problem. The fused data with update to the
tf tree should greatly improve behavior of the system. The code covering our
advancement in the odometry data fusion is one of the attachments of this thesis.

• Add a control loop to the controller or write a full PID controller. That
will improve the plan execution precision.
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• Moveit supports a control loop over a plan execution. Use it to re-plan
when encountered an obstacle in a planned trajectory. It will add a new
and desired capability to the system.

• Create a model which estimates the point-cloud scale instead of using fixed
configuration all the time.

• Include the drone IMU in the DSO initialization process to get faster and
more robust initialization. It might help with the point-cloud scale and
odometry data fusion too.

• A long term loop closure would help for longer flights and with some of the
map updates. DSO is relatively good right now, but it is always possible
to improve sub-systems.
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A. Robot Operating System

ROS is a meta-operating system, providing services including hardware ab-
straction, low-level device control, message passing between processes, package
management, common-used libraries and tools to write and run own code even
across multiple computers or devices. It runs on Unix-based platforms. It is
primarily developed for Ubuntu and Mac OS X systems. ROS is highly modular
and very handy for reusing code.

ROS doesn’t guarantee real time processing, mainly because some messages
between processes might be delayed for a few milliseconds. For our purposes
it isn’t a huge problem, as the message transfer from and to Bebop is delayed
anyways with higher delay than within ROS processes. There is a documented
way to integrate real time systems in ROS if there is a need for that. There is
also a branch of ROS in development which would guarantee real time message
delivery for its processes.

A.1 ROS file system

File system mostly covers resources found on a hard drive.

Package is the basic ROS unit for organizing software. A package could contain
a runtime process(node), dependency library, data structures etc. It is the most
granular thing one could release in ROS.

Package manifest (package.xml) provides metadata about a package such as
name, description, author, dependencies etc.

Repository is a collection of packages which are logically bound together.

Message types are message descriptions stored in “path/package/msg/MessageType.msg”
which define the data structures for specific messages.

Service types are service descriptions stored in “pathpackage/srv/ServiceType.srv”
which define the data structures for specific services.

A.1.1 ROS Computation graph

The Computation graph is a peer-to-peer network of objects which perform a
task together.

Nodes are processes that perform computation and other tasks. A robot con-
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trol system is usually composed of many nodes. Some of them provide device
interface, some of them provide storage access, some execute algorithms etc. A
node is written using a ROS client library, such as roscpp or rospy.

Master provides a name registration and lookup for other parts of the system.
It is the core part of ROS.

Parameters server allows data to be stored by key in a central location.

Message is a data structure used for node communication. It supports primi-
tive data types, arrays and nested structures.

Topic is a system for a node to publish messages with publisher/subscriber
semantics. A node publishes messages to a topic and other nodes may subscribe
to that topic and consume messages there. Any number of nodes may publish to
a specific topic and a node can subscribe to any number of topics as long as they
are of the correct type. Publishers and subscribers are not aware of each others
existence.

Services are used for request/reply node interaction. A node providing a ser-
vice usually offers service by its name and input/output data types and a client
sends a request and awaits its result.

Bags are a format for saving and playing back ROS messages. They are very
useful for storing an experiment data and playing the experiment over and over
again to test and develop algorithms.

Master provides connection data to nodes in a way DNS server provides ad-
dresses. Nodes register their services and topics directly to master. It also pro-
vides any updates and changes which my occur at runtime, such as that some
node started providing new service, the topic changed its type etc.

After nodes get their information from master, they communicate directly
with each other or directly with the topics. The communication is very similar
to TCP/IP protocol in its socket usage and is called a TCPROS protocol. This
allows the communication and computation to be decoupled in a way that each
node does its job without caring about whether or what is consuming its output.
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A.2 Important packages

We described the most important ROS principals. What makes ROS such a
useful tool though is what is already done and usable inside it. We will present
few basic or low level ROS packages here.

Starting multiple nodes in the right order might get complicated. Roslaunch
is a tool which takes care of that task. It launches ROS nodes locally or remotely
as well as sets up values on parameter server. Everything is specified in a XML
file.

Rosbag is a tool for recording topics and replaying them later. It avoids serial-
ization and deserialization of messages. A bag has an option to run a simulated
clock which corresponds to the time the data was recorded.

Roswtf is a tool for diagnosing a running ROS system.

Tf2 is the second generation of transformation library. It keeps track of mul-
tiple coordinate frames over time. It maintains a tree structure of the frames in
time and lets user quickly get a transformation from any frame to another one at
any time. We will be using tf, the older library. It was rewritten in tf2 though
and only provides the same interface as tf did.

Joy package is a driver for generic joystick or gamepad device. It provides a
joy node which provides a “joy” message, containing state of all buttons and axis
on the joystick.
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B. Simulator

Gazebo [24] simulation of the whole system is available. We can fly the drone
around and create motion plans for it. The simulator is based on the work of
Alessio Tonioni [21].

To run the simulation, go to the BebopAutoFly project to the sh files directory
and open three command windows. Although the whole system could be run from
just one command window, three of them will make sure we do not get confused
with the outputs.

• In the first command window, run the bash script 1-simulator. That runs
Gazebo and spawns a drone in it.

• In the second command window, run the bash script 2-controller. It runs
the controller and it is usefull to have it in a separate window to see what
the controller is doing.

• The third command window should run the bash script 3-planner. It runs
the Moveit system and Rviz.

You can now control the drone by the means you are used to. It is now
possible to use the command window in Rviz to create and execute plans. All
created planner nodes as described in chapter 6 of this thesis, are usable in the
simulator as well. The simulator is very useful in custom plan development as we
don’t need to fly the real drone in order to test new planners.
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List of Abbreviations

• UAV - Unmanned aerial vehicle

• MAV - Micro aerial vehicle

• DOF - Degree of freedom

• ROS - Robot operating system

• SLAM - Simultaneous Localization and Mapping

• DSO - Direct sparse odometry

• GPS - Global positioning system

• IMU - Internal measurement unit

• RGB-D - Red, green, blue - depth camera, a camera with enhanced infor-
mation about the depth of the pixels

• RRT - Rapidly-exploring random trees
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List of Attachments

There is an USB flash drive attached to this work, referred to as “Attach-
ment 1”. It contains following items:

• A source code of the implementation along with the modified files from
other projects

• All the launch files necessary

• A documentation of how to run the whole project in a readme.md file used
on github

• An electronic version of this thesis in a pdf format

• A list of encountered technical problems not mentioned here and how to
solve them

• The photographic documentation of the experiments

• Screen-shots of the system perception when running the experiments
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