FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

MASTER THESIS

Tomas Musil

Neural Language Models with
Morphology for Machine Translation

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Ondfej Bojar, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2017



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague, 21. 7. 2017 signature of the author



I would like to thank my thesis supervisor, RNDr. Ondfiej Bojar, Ph.D., for his
advice and his patience. I also owe my thanks to my parents, who supported me
during my studies.

i



Title: Neural Language Models with Morphology for Machine Translation
Author: Tomas Musil
Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Ondrej Bojar, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: Language models play an important role in many natural language
processing tasks. In this thesis, we focus on language models built on artificial
neural networks. We examine the possibilities of using morphological annotations
in these models. We propose a neural network architecture for a language mod-
el that explicitly makes use of morphological annotation of the input sentence:
instead of word forms it processes lemmata and morphological tags. Both the
baseline and the proposed method are evaluated on their own by perplexity, and
also in the context of machine translation by the means of automatic translation
quality evaluation. While in isolation the proposed model significantly outper-
forms the baseline, there is no apparent gain in machine translation.
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Introduction

Machine translation is a fast developing branch of natural language processing.
In recent years, we have witnessed a move towards general machine learning
methods (mostly recurrent neural networks), which are linguistically uninformed
and can be used to translate arbitrary sequences of symbols, not only natural
languages. For these methods, the main limitation seems to be the amount of
training data that we are able to obtain and process. Data sparsity greatly affects
the translation of inflected languages, where we are unlikely to see all forms of
rare words in the training data.

One way to fight the data sparsity in inflected languages is to use lemmas and
morphological information instead of word forms. That way, we do not have to
encounter all the word forms of the given lemma in the training data.

In this thesis, we compare different ways of representing morphological infor-
mation in the neural network. As the evaluation measure, we use both perplexity
of the model and results of its use in a translation task.

In the first chapter, we describe the theory that our work is based on. We
cover the basics of artificial neural networks, language models in general and
their combination—mneural language models. In the following chapter, we review
the related works. We describe available implementations of neural language
models and results of relevant experiments. In the third chapter we discuss the
architecture of our model and its implementation. In the fourth and fifth chapter,
we evaluate the results of our experiments.



Chapter 1

Neural Language Models

In this chapter, we explain the theory behind neural language models (NLMs),
as first described by Bengio et al. [2003]. Because the theory behind artificial
neural networks (ANNs) is quite extensive, this is more of a guide to related
literature than a comprehensive description. For an exhaustive description of
today’s state-of-the-art, see for example [Goodfellow et al., 2016].

We begin this chapter with a brief introduction to neural networks and learn-
ing by backpropagation. Then we describe the architecture of NLMs and its use
in machine translation.

1.1 Neural Networks

ANN (or just neural network (NN)) is a computational model inspired by the cen-
tral nervous system. In an ANN, each neuron is a small computational unit, that
takes some numbers as inputs and produces an output (also called activation).
We will denote each input by x;, x will denote the vector of inputs. Each input
has a weight (w;, w being the vector of weights). The output (y) of a neuron
with n inputs is given by

y= S ww), (1)

where f is the activation function. We can also write this in the vector form:
y = f(z"w).
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Figure 1.1: Mathematical neuron.



Various activation functions (plotted in Figure 1.2) are being used:

e sigmoid (logistic) function: f(x) = ﬁ,
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e hyperbolic tangent: f(z) =
e rectified linear function: f(x) = max(x,0),

e and other.
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Figure 1.2: Various activation functions.

To form a NN, neurons are connected together—the output of one neuron is
taken as the input of another neuron. NNs are usually organized in layers. The
first layer is the input layer. The activities of the input layer are given to the NN
from outside. The last layer is the output layer. The activities of the output layer
are the results of the computation. The layers between the input layer and the
output layer are called hidden layers. In the simplest case, inputs of each neuron
are connected to outputs of all the neurons in the previous layer (except for the
input layer, which has no previous layer and gets input from the data).

input hidden output

Figure 1.3: Simple feedforward neural network.

The architecture described above may be referred to as feed-forward NN with
fully connected layers. There are other, more complicated architectures, notably
recurrent neural networks (RNNs), described later in Section 1.1.4.

1.1.1 Backpropagation

Backpropagation is the most commonly used method of training of NNs. The
goal is to find the parameters of the model (the weights of inputs for neurons)
that minimize the error of the output for the dataset (or rather the expected



error for the unseen data). The error function and the activation function of
neurons must be differentiable. The main principle of backpropagation consists
in propagating derivatives of the error back through the network and adjusting
the weights accordingly.

The backpropagation algorithm computes the gradient of the weights of the
network, with respect to the error function. If the error function were convex
and we computed the gradient over the whole dataset in each step, we could use
gradient descent, which (with sufficiently small learning rate) would converge to
the optimal weights (with respect to the error function, for the given dataset).
However, computing the gradient over the whole dataset is usually too expensive.
What we can do instead is to compute the gradient for a single data-point and
apply it to the weights before computing the gradient for the next point. This
algorithm is called stochastic gradient descent (SGD). It is not guaranteed to
converge to the global optimum, it might get stuck in a local one. A compromise
between the computationally expensive gradient descent and its stochastic variant
is to average the gradient over a batch of training examples. The size of the batch
is selected so that it can be computed quickly. The bigger batch size we choose,
the slower will the weights converge, but with bigger batch size the gradient
descent is less likely to get stuck in a local optimum.

There are also more sophisticated algorithms for gradient-based optimization.
We use Adam [Kingma and Ba, 2014], which computes individual adaptive learn-
ing rates for different weights from estimates of first and second moments of the
gradients. It only requires first-order gradient, it is memory efficient and it can
be effectively used without tuning any hyperparameters.

1.1.2 Training

There are some technical terms related to the training process, that we will use
later on. We explain them in this section.

During the training we go through the training data repeatedly. Each pass
through the data is called an epoch (or sometimes an iteration).

We periodically measure the performance on a separate dataset, called the
development set or the devset for short (sometimes also called the wvalidation set).
The main reason to do this is to detect overfitting, that is a situation when the
model fits the training data well, but fails to generalize to data that it did not
see in the training set.

A technique to prevent overfitting is generally called a reqularization method.
Intuitively, most regularization methods make the machine learning task “harder”
by introducing additional constraints on the model or by modifying the dataset,
to prevent the model from “remembering” the whole dataset and forcing it to
generalize. Examples of regularization include constraining the parameters of the
model, introducing noise into the data, or stopping the training early, before the
model starts overfitting.

If we tune any hyperparameters based on the performance on the development
set, we should also report the performance on yet another set of data, that did
not influence the learning of the model. This dataset is called a test set.

A plot displaying a performance measure with respect to training step (or
epoch, or time) is called a learning curve.



1.1.3 Softmax Estimation

If we want to use an NN to estimate a probability distribution, we need to nor-
malize the values of the output layer to sum to 1. This is usually achieved by
applying the softmax function

e%i

ZkK:1 e*k

to the layer. The normalization is computationally expensive, particularly during
training.

The usual way to build an n-gram NLM is to build an NN that takes n — 1
words as input and estimates the probability distribution for the next word. As
the output layer needs one neuron for each possible word, the training is getting
prohibitively expensive for a large vocabulary. This so-called softmax problem is
the main problem in building a NLM.

One solution consist in dividing the words into classes and work with the
softmax in a hierarchical fashion [Le et al., 2011]. Chen et al. [2015] suggest that
this is only efficient for very large vocabularies.

Other solution is to estimate the gradient of the softmax layer from a random
sample of its neurons during the training and only compute the whole softmax
for evaluation and inference. There are various ways to do that, we present noise
contrastive estimation and sampled softmaz below.

o) = (1.2)

Noise Contrastive Estimation

Noise contrastive estimation (NCE), introduced by Gutmann and Hyvérinen
[2010], is a method for efficiently estimating the error of the softmax layer, with-
out having to compute the sum over the whole layer. The basic intuition behind
this method is to transform the classification problem into a small set of decision
problems. We have a true candidate (the class that we encountered in the data)
and we sample the classes for a set of false candidates. The task then becomes to
distinguish whether each candidate is the true one or a sampled one. The error
from this task is then backpropagated to the softmax layer, where the weights and
approximate normalization constants are learned. Mikolov et al. [2013b] proposed
a simplified variation of NCE called negative sampling.

Mnih and Teh [2012] first proposed to use NCE to train NLMs and Mnih and
Kavukcuoglu [2013] used it to efficiently learn word embeddings. Baltescu and
Blunsom [2014] examine the combination of NCE and class-factored output layer.

Sampled Softmax

Jean et al. [2014] proposed another approach, based on a work by Bengio and
Senécal [2008]. It consists in using importance sampling to reduce the size of
the softmax computed during the training. To ensure that all the words in the
dictionary get their representations updated, the training corpus is partitioned
and different subset of the vocabulary is used as a sample for each part of the
corpus.



1.1.4 Recurrent Neural Networks

A RNN is type of NN where connections form a directed circle. This means
that outputs of some neurons are connected—possibly through other neurons—
to their own inputs. The circular part of the network can work as a memory,
reading data and feeding them back to itself in the next time step. This allows
RNNSs to process input sequences of arbitrary length and makes them suitable to
work with temporal data, for example in speech recognition. RNNs are also used
in neural machine translation.

RNNs operate in discreet time steps. For the learning, the so-called backprop-
agation through time is used. The activation values are computed for several time
steps in advance by unfolding the network—computing each time step in a new
copy of the network. The gradient is then computed and propagated back through
the time steps. This can lead to very long paths between the neurons where the
error is computed and the neurons that are being updated by the backpropaga-
tion algorithm. Long backpropagation paths often suffer from the vanishing or
exploding gradient problem. As the gradient gets multiplied by many weights, it
tends either to disappear (if the weights are small) or to grow to infinity. Either
way, the network is not learning.

The first RNN architecture to overcome these problems was the long short-
term memory (LSTM) method [Hochreiter and Schmidhuber, 1997]. It does not
use any activation function in the recurrent component, so the gradient is not
repeatedly squashed and does not vanish. LSTM networks are usually imple-
mented in blocks, where each block contains several neural layers, one that works
as a memory cell, and two or three that serve as gates that control the flow of
information through the block: the input gate controls what information from
the input gets to the cell, the forget gate controls what information is kept to the
next time step and the output gate controls what information the block outputs.
The input and forget gates are in some implementations merged into one.

1.2 Neural Language Model

A statistical language model (LM) assigns a probability to a sequence of m words
(or other tokens) P(w,...,w,). Most sequences of words are very rare—for
example this sentence probably only occurs in this thesis (and with each next
word the probability that the exact same sentence occurred elsewhere decreases
rapidly). Therefore the task has to be split into reasonable subtasks. We can use
the chain rule

N wj) (13)

Jj=1

(fm)- il

k=1

to decompose the probability of a sequence of words into a product of proba-
bilities that a word occurred given that its predecessors did. For example, a
decomposition of four words sequence would look like this:

P(w4,w3,w2,w1) = P(w4 | wg,wg,wl) . P(U)g | wg,wl) P(’UJQ | U}1> . P(’LUl) (]_4)

To further simplify the matter, we can assume that every word depends only
on the last n — 1 words. With this assumption, we can use an n-gram model to



estimate the sequence probability. The statistical n-gram model estimates the
probability of an n-gram as its relative frequency in the training corpus. Various
smoothing techniques are used to assign non-zero probability to unseen n-grams
and address the imbalance between frequent and infrequent n-grams [Chen and
Goodman, 1996].

1.2.1 Neural Language Model Architecture

In a neural language model, the probability distribution is realized by an artificial
neural network. The first effective NN architecture for language modelling was
introduced by Bengio et al. [2003]. A comprehensive (although already somewhat
dated) introduction to NLMs is given by Mikolov [2012]. In this thesis, we fo-
cus on n-gram (feedforward) NLMs. Although NLMs based on recurrent neural
networks can process sequences of arbitrary length, their training is more com-
plicated, both training and inference are computationally expensive, and RNN
language models (as such—not counting end-to-end neural machine translation)
are relatively rare in machine translation [Alkhouli et al., 2015].

If we want to use a feedforward NN as a language model, we need to address
a few complications. The NN accepts a numeric input of fixed length. A sentence
in a natural language is a sequence of tokens (for example words) of arbitrary
length.

The problem of the arbitrary length of input can be solved by the n-gram
approach. This method uses a sliding window, as illustrated in Figure 1.4. We
construct a NN to take a sequence of words with one of them missing (typically
the last one for LMs intended for use in machine translation, or the middle one if
the goal is to extract word representations from the model) and train it to output
a probability distribution over all possible words for the empty position. When
we use the language model, we move this window over the whole sentence and
collect the probability for each word given its context. The probability of the
sentence is the product of probabilities of all the words in the sentence.

The problem of numerical representation of words is solved like this: the
vocabulary is enumerated, each word is given an unique number in range from
one to the size of the vocabulary. Then we construct a so-called one-hot vector
for each word: it is a vector from R", where v is the size of the vocabulary, and it
is filled with zeroes, except for the position indicated by the position of the word
in the dictionary, where there is a one. If by w;; we denote the j-th position in
the vector representing the i-th word, then

1 if =g
wi,jz{ B (1.5)

0, otherwise.

Getting and processing the whole vocabulary of a natural language is of course
impossible. The NLM will therefore encounter words that are unknown to it.
This is usually solved by designating a special word as an unknown word token
and replacing the words that are not in the model’s vocabulary with it. There
must also be some unknown words left in the training data, otherwise the model
will not learn when to expect an unknown word. Unlike a translation model, a
LM only evaluates the sequence, it does not generate sequences, therefore the
unknown words are not a serious problem.

9
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Figure 1.4: The learning of the n-gram neural language model, with the middle
word of the n-gram being the predicted one.

1.2.2 Word Embeddings

An interesting feature of NLMs (an other neural methods of text processing) are
the so-called word embeddings, vectors that represent words in the NLM. As we
explained above, each word is represented by a one-hot vector. The multiplication
of a one-hot vector by the matrix of weights of the first layer of the neural network
is equal to selecting a single column from the matrix. Therefore, each word from
the vocabulary is associated with a vector of real numbers—the column of the
weight matrix.

Word embeddings capture both semantic and syntactic information. In Fig-
ure 1.5, you can see a t-SNE [Maaten and Hinton, 2008] two dimensional projec-
tion of 300 dimensional embeddings for the one thousand most frequent words
from a language model trained on the Czech part of the CzEng corpus (see Sec-
tion 4.1). In the global picture, we see various part-of-speech forming clusters
(nouns on the left, verbs in the middle and the top and so on). In the marked
areas, we see that semantically similar words tend to have similar embeddings.

Mikolov et al. [2013c] describe even more interesting properties of word em-
beddings. They demonstrate various relationships between the embeddings. Each
relationship (syntactic, for example singular—plural and semantic, for example
man—woman, as illustrated in Figure 1.6) is represented by a vector in the embed-
ding space, that is the difference between the two words for which the relationship
obtains. For example, in case of singular—plural, Vears — Vear, Vappies — Vapple and
Ukings — Uking Should all be the same (or at least a fairly similar) vector. Another
example would be the equation

Vking — Uman + Vwoman ~ Vqueen (16)

which means that if we take the embedding for the word king, subtract the em-
bedding for man and add the embedding for woman, the embedding nearest to
the resulting vector would represent the word queen. In other words: the left side

10
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Figure 1.5:

One thousand most common words from a language model trained

on the Czech part of CzEng corpus. Projected from R3*% to R? by t-SNE
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of the equation poses the question “the word man is to the word king as the word
woman is to which word?” and if we do the vector arithmetic, we find that the
answer is the word queen.

There are also attempts to model subword units this way, see for example
Mikolov et al. [2012], or Kocmi and Bojar [2016].

woman queens
/ ‘\
. \
man aunt kings |
(3 \
\ \
uncle Y \
queen \ queen
\\ /
\
king king

Figure 1.6: Relations between embeddings according to Mikolov et al. [2013c].

1.2.3 Evaluation

In this section, we describe metrics that are used to evaluate language models.
A better result in these metrics does not guarantee that the model will work
better in a real machine translation scenario. We review the metrics for machine
translation quality in Section 1.3.3.

Perplexity Perplexity is a measure of how well the model can predict the word
given its context. Intuitively, it can be interpreted as a measure of “confusion”
of the model—high perplexity means that the model is “confused” by the data,
low perplexity means that the data correspond with the predictions of the model.
We use perplexity if we want to evaluate the model on its own. It is easy to
compute during training, because we use cross-entropy as the error function for
the backpropagation. Perplexity measures the uncertainty of the model. The
lower the perplexity, the better the model is assumed to be. For a probability
model, the cross-entropy is defined as

H(p,q) = = >_p(x)log, q(z), (1.7)

where p denotes the empirical distribution, ¢ denotes the distribution given by
the model and b is customarily 2 or e. Perplexity is then defined as

P(p,q) = pH(B:a) — p= >, B(x)logy a(x) (1.8)

In the case of language models, the reported perplexity is usually the perplexity
per word.

Comparing perplexity is only meaningful for a single task. For a difficult task,
the perplexity can reach values over 1000, while on easy tasks, it is common to
observe values below 100 [Mikolov et al., 2011].

12



Accuracy/Word error rate Accuracy measures how often would the model
select the correct word—assign the largest probability of all possibilities to the
one that actually occurred in the data. The word error rate is the complement
to the accuracy.

1.3 Machine Translation

In this section, we give an overview of machine translation, with focus on the use
of NLMs in classical statistical machine translation (SMT) and their relation to
neural machine translation (NMT) systems.

1.3.1 Language Models in Statistical Machine Translation

SMT is a wide field with a variety of approaches and a rich history. In this thesis,
we will only cover the absolute basics, to understand the role of language models
in SMT. For a broader introduction to SMT theory, see Koehn [2009] or Bojar
[2012] (in Czech).

The idea behind statistical machine translation comes from information the-
ory. We assume that there is a probability distribution p(e | f) that a string e in
the target language (for example English) is the translation of the string f in the
source language (for example French). The aim of the translator, who is given
the string f, is to find the string e that maximizes p(e | f). By applying the
Bayes’ theorem to the distribution, we get

_p(fle)-ple)
p(f)

Because we want to maximize the probability, we can disregard the denominator
and write

plel f) (1.9)

¢ = argmaxp(e | f) = argmax p(f | e)p(e), (1.10)

ece* ece*

where € is the best translation of f and e* is the set of all possible strings in the
target language. The component p(e) in Equation 1.10 is the language model—
the probability of a string in the target language.

The other component is called the translation model. We can keep them sepa-
rated. The translation model produces a list of n best translation hypotheses and
their respective scores. We then use the language model to score the hypotheses,
combine the scores from the translation model and the language model and select
the best hypothesis according to the final score. This procedure is referred to as
reranking (or rescoring) the n-best list. Very large or complex language models
are often used in the reranking stage [Olteanu et al., 2006].

Another possibility is to use the LM directly in the process of hypothesis gen-
eration. The so-called decoder is the part of the SMT system that generates the
hypotheses. It scores partial hypotheses to guide the search. The most straight-
forward method is to generate the hypothesis from left to right, using the beam
search algorithm to reduce the combinatorial explosion of possible hypotheses.

13



Factored Language Model

The factored language model [Bilmes and Kirchhoff, 2003] was introduced and im-
plemented in SRI language modeling toolkit [Stolcke et al., 2002]. In a factored
LM, each word is viewed as a vector of factors. Each factor contains different in-
formation about the word, for example morphological information, part-of-speech,
or the relationship to other words in the sentence.

1.3.2 Language Models and Neural Machine Translation

The relation between language models and NMT is not so clear. NMT systems
include end-to-end translation in one neural network, so there is no clearly sepa-
rated LM component. In this subsection, we briefly explain how NMT works and
then discuss its relation to NLMs.

Neural Machine Translation

The majority of approaches to NMT are based on the sequence-to-sequence NN
architecture (see Figure 1.7) first proposed by Sutskever et al. [2014]. There is
a RNN, called the encoder, that reads the input sentence and encodes it into a
state vector. The state vector is then used by another RNN, called the decoder,
that outputs the translation. Britz et al. [2017] present a large-scale analysis of
architecture variations for NMT.

IR R S
B e N N S I R
R S .
A B C <EOS> W X Y Z

Figure 1.7: Sequence-to-sequence architecture according to Sutskever et al. [2014].
Each rectangle represents one step of a LSTM network computation. The network
reads the sequence “ABC” and outputs the sequence “WXYZ".

Neural Machine Translation and Language Models

There is no separate LM in a NMT system. However, both the encoder and the
decoder can be considered a kind of LMs.

The research of NLMs and words representations in particular is relevant to
NMT as well, because the methods of representing text are the same for both
NLMs and NMT systems.

1.3.3 Evaluation

Machine translation evaluation is itself an area of intensive research.

One way to evaluate translation results is to have people who understands
both languages to rate the translation. There are various methodologies to do
this.
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The other possible approach is automatic translation evaluation, where quality
of the translation is measured as similarity to one or more reference translations.
A sentence can usually be translated in hundreds thousands of equally valid ways
[Bojar et al., 2013a] and for a meaningful evaluation the reference translations
should cover as much variants as possible. This makes even automatic machine
translation evaluation a costly task, because in ideal setting, the test data should
be translated by several human translators. For latest results in automatic eval-
uation, see Bojar et al. [2016D].

BLEU BLEU (Bilingual Evaluation Understudy, Papineni et al. [2002]) is the
most widespread metric for machine translation evaluation. It is based on the
precision measure. To compute unigram precision, one counts the number of
words in the candidate translation which occur in any reference translation and
divides it by the length of the candidate translation. The problem with precision
is that it gives high score to sentences such as “the the the the the”, which has
precision of 5/5 if any reference contains at least one “the”. BLEU uses modified
unigram precision, that clips the count of each candidate word to the maximal
number of occurrences that a word has in any reference translation. In our
example, if the reference translation with maximum occurrences of “the” had 2
of them, the modified unigram precision for the candidate sentence would be 2/5.
This captures the intuition that a word should not contribute to precision, unless
there is a matching word that it can be assigned to in a reference translation.
Modified n-gram precision is computed similarly for any n. BLEU is a geometric
mean of modified n-gram precisions (usually up to 4-gram, sometimes denoted
BLEU4) multiplied by a brevity penalty that serves to punish sentences that
are too short (without brevity penalty, the sentence “the” would seem perfect
translation with BLEU of 1 if any reference contained a definite article).

As defined above, BLEU score is a value between 0 and 1, but in the following

chapters, we follow the common convention of reporting BLEU scores multiplied
by 100.

METEOR Lavie [2014] describe Meteor, a language specific translation evalu-
ation metric that evaluates hypotheses by aligning them to reference translations
and calculating sentence-level similarity scores. It uses four different matchers for
the alignment: exact matching, stem matching, synonym matching, and para-
phrase matching. Meteor shows higher correlation with human ranking than
BLEU.

TER Translation Edit Rate (TER), proposed by Snover et al. [2006], is a trans-
lation evaluation measure based on the number of edits needed to transform the
hypothesis to match one of the references. Possible edits include the insertion,
deletion, and substitution of single words as well as shifts of word sequences.
This can be intuitively understood as the amount of work needed to correct the
translation.
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1.4 Neural Language Models and the Language
Itself

The author of this thesis believes that one of the main goals of the research of
machine translation (and other natural language processing) should be to get a
better understanding of the way language itself works. Our reflections on the
relationship between NLMs research and our understanding of the essence of
language exceed the scope of this thesis. However, we will present a brief summary
and hope to publish a more detailed account elsewhere at a later date.

There is not much literature concerning the relation between NLMs and phi-
losophy of language. The only article we found [Honkela, 2007] is ten years old
and mostly concerned with self-organizing maps and Quine’s version of semantic
holism.

We would like to argue that recent developments in the NLM and word em-
bedding research bring strong arguments for Frege’s thoughts on holism. Their
subsequent reformulation by Tugendhat [1970] almost reads as instructions to
construct a Skip-gram model, an NN architecture proposed by Mikolov et al.
[2013a] to compute word embeddings that work well in various semantic tasks.

The relation between NLMs and the theory of meaning of the word as its use
in language, as first proposed by Wittgenstein [1953] in his later phrase, should
also be considered, as well as connections between word embeddings, methods of
computing them and various structuralist theories of language.
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Chapter 2
Related Works

In this chapter, we describe various implementations of NLM and work related
to factored NLMs.

2.1 Neural Language Models

There are many variants of NLMs. Here we concentrate mainly on those that
have an open-source implementation and work with the Moses decoder. We focus
on n-gram NLMs, because they are directly comparable with our architecture.

The works below present improvements in machine translation with NLMs.
Baltescu and Blunsom [2014], on the other hand, present a pessimistic view,
saying that NLMs are only better than traditional n-gram back-off models in
memory constrained environments.

2.1.1 Continuous Space Language Model

The first freely available! implementation of neural LM was the Continuous Space
Language Model toolkit (CSLM) [Schwenk, 2007, 2010, Schwenk et al., 2012,
Schwenk, 2013].

The softmax problem is solved by reducing the vocabulary size and falling back
on SRILM n-gram model. The neural network is trained on a so-called short list
of most common words. The current version (v4, June 2015) has support for
rescoring HTK lattices, continuous space translation model, and runs on a GPU.

CSLM is used to rescore n-best lists, there is no support for it in the Moses
decoder.

2.1.2 Neural Probabilistic Language Model

Another available? implementation is the Neural Probabilistic Language Model
Toolkit (NPLM) [Vaswani et al., 2013].

The softmax problem is solved by using the NCE method. To achieve speed
sufficient for the use of NPLM in a SMT decoder, the softmax layer is not normal-
ized during decoding. Ironically, even though it has “probabilistic” in its name,

http://www-lium.univ-lemans.fr/cslm/
2http://nlg.isi.edu/software/nplm/
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Figure 2.1: Schematic representation of the NPLM NN architecture. There are
four layers: the input layer i, the embedding layer e, the hidden layer h, and the
output layer o. Each input word is represented by a one-hot vector f,. The one-
hot vector is multiplied by the embedding matrix W, to get the corresponding
word embedding. These are then concatenated and multiplied by the weight
matrix W}, to get the input activations for the hidden layer. After the activation
function is applied, the output of the hidden layer is multiplied by the weight
matrix W, to get the input activations of the output layer. The softmax function
is computed over the layer and the result is a probability distribution over the
vocabulary for the output word.

it does not produce a probability distribution. It improved translation by up to
0.6 BLEU on French to English and German to English language pairs.

In Figure 2.1, we see the NN architecture used in NPLM. The context words
in the input layer ¢ are represented in one-hot representation. Fach of them is
then projected (by a shared weight matrix W,) to the embedding layer e. The
rest is a conventional feed-forward NN, with one hidden layer and softmax output
layer.

2.1.3 OxLM

Another open-source® implementation of a neural LM is OxLM [Baltescu et al.,
2014]. It can be used in the Moses decoder. It can be trained in various con-
figurations, with class-factorization and direct features. The softmax problem is
solved by NCE, the architecture of the basic configuration is similar to NPLM.

2.1.4 Neural Language Models with Subword Units

Botha and Blunsom [2014] computed embeddings for morphological segments.
They then represented words as sums of embeddings for their morphemes. With
this approach, they were able to achieve a gain of 1 BLEU point in machine
translation from English to Czech compared to translation with back-off n-gram
models.

Kim et al. [2016] describe a simple neural language model that relies only on
character-level input. The model combines a recurrent neural network, outputs

3http://github.com/pauldb89/oxlm
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from a convolutional neural network and a so-called highway network. On lan-
guages with rich morphology, they outperform word-level /morpheme-level LSTM
baselines in perplexity measure, despite having fewer parameters than them.

A similar architecture is used by Passban et al. [2017], who extend it to handle
small subword units as well as characters. They report lower perplexity than Kim
et al. [2016] and improved English to Farsi and English to German translation.

2.1.5 Other Neural Language Models

Devlin et al. [2014] used a bilingual NLM to improve translation from Arabic to
English. Their model is fundamentally an n-gram NLM, with additional source
context. They integrated it into a SMT decoder and produced a gain of 3 BLEU
points.

2.2 Factored Neural Language Models and Trans-
lation

The oldest paper on factored neural LMs we found is by Alexandrescu and Kirch-
hoff [2006]. They trained and tested their model on Arabic and Turkish corpora
and only compared perplexities.

Niehues et al. [2016] used factored NLM for rescoring of n-best lists. They
used a RNN based model with the word surface form, part of speech (POS) tag
and word clusters as factors. They used embedding for each factor and then
concatenated them. They report gains between 0.3 and 0.7 BLEU points on
English-Romanian, English-German, and German-English WMT16 data.

Our model differs in using lemmata instead of surface forms. We hope that
this will help us with data sparsity. We also represent POS tags in one-hot
encoding instead of embedding them.

Sennrich and Haddow [2016] used linguistic input features in neural MT. They
use lemmata, morphological features, POS tags and dependency labels. They
train an embedding matrix for each feature. They report gains between 0.6 and
1.5 BLEU points on English—-Romanian, English-German, and German—English
WMT16 data.

Our model differs in representing features other than lemmata in one-hot
encoding.
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Chapter 3

Neural Language Models with
Morphology

In this chapter, we discuss the motivation for our experiments, the architecture
of our models and their implementation.

3.1 Motivation

There are tools capable of automatically tagging Czech text with morphological
tags that achieve more than 95 % accuracy. We also have a parallel Czech-English
corpus, where the Czech side is annotated with morphological information. We
wanted to see if we can improve translation by including this information in the
language model. With morphological information included, it makes sense to
use lemmata instead of word forms in the LM. Traditional statistic LMs were
sometimes trained on lemmata, because n-grams of lemmata are less sparse than
n-grams of forms. Take for example these two sentences:

Na okné sedéla kocka.
(A cat sat at the window.)
Vidél jsem u okna sedét kocku.

(I saw a cat sitting at the window.)

A NLM trained on word forms has no way of knowing that the marked words are
the same in both sentences. A NLM trained on lemmata and morphological tags
is not only explicitly told that these are the same words, but it is also given a
description of the syntactic situation that causes the word forms to differ.

Neural LM architecture allows to easily combine embeddings of lemmata with
encoded morphological information. We hope that this approach will benefit
from denser lemmata n-grams without losing the morphological information that
is striped away if we just replaced word forms with lemmata.

To test this hypothesis, we designed a neural LM architecture that uses lem-
mata and morphological tags instead of words forms. We decided to use a neural
n-gram model (as opposed to a recurrent NN model) because existing tools and
LMs for machine translation follow the n-gram approach.
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shaw|Shaw_;S|NNMS1----- A-——-
selse_"(zvr._zajmeno/lastice) |P7-X4--———————-
v|v-1|RR--6--—————-——-

duchu|duch|NNMS6----- A---1
na|na-1|RR--4---—-—-—--
sebel|se_"(zvr._zajmeno/castice) |P6-X4-——--————-
zlobil|zlobit_:T|VpYS---XR-AA---
12—

zelze-1|J,-———————-—-—-
nezacal|zagit-1|VpYS---XR-NA---

pravé | pravé-1|Db-------------
tady|tady|Db------------—-

ANz

Figure 3.1: An example of annotated Czech sentence (“Shaw cursed himself under
his breath for not starting here.”).

3.2 Morphology

The morphological annotation that we use was obtained by the Morce tagger
[Haji¢ et al., 2007]. The annotation format is the same as in the Prague Depen-
dency Treebank (PDT) [Haji¢ et al., 2006]. There is a manual for morphological
annotation by Zeman et al. [2005], also available online.! For detailed overview
of computational morphology of Czech, see Haji¢ [2004].

The morphology is annotated in form of positional tags. The lemma and
the tag together should uniquely identify the word form. FEach positional tag
is a string of 15 characters. Every position encodes one morphological category
(see Table 3.1) with one character (mostly upper case letters or numbers). An
example of annotated sentence is displayed in Figure 3.1.

The information about each word is organized in factors, divided by the ver-
tical bar (“1”). The first factor contains the lowercased word form, the second
factor contains the lemma, and the third factor contains the morphological tag.

To encode the tags for the neural network, we converted them to binary
vectors. For each possible value of all morphological categories (in the order in
which they appear in the documentation), we reserve one position in the binary
vector. The position is filled with 1 if the tag has the corresponding value and
with 0 otherwise. The resulting vector has 139 positions, where up to 13 values
are 1, the rest is 0. In other words, it is concatenation of a series of one-hot
vectors, one for each morphological category in the tag (or a zero vector of the
corresponding dimension if the category is not used in that tag).

We also tried shorter representation, where we decided to ignore some of
the categories (notably category “SubPOS”, which has almost as many possible
values as the rest of the tag combined) and ended up with 60-dimensional binary
tags. The reasoning behind this experiment was that if there are many possible
values, each individual value will be relatively rare in the training data, therefore
hard to learn to use properly. Also, general usefulness of very specific linguistic

lhttp://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/index.html
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position name description

1 POS Part of speech
2 SubPOS Detailed part of speech
3 Gender Gender
4 Number Number
5 Case Case
6 PossGender Possessor’s gender
7 PossNumber Possessor’s number
8 Person Person
9 Tense Tense
10 Grade Degree of comparison
11 Negation Negation
12 Voice Voice
13  Reservel Reserve
14 Reserve2 Reserve
15 Var Variant, style

Table 3.1: Positions in Czech morphological tags.

classification seemed questionable. However, in our experiments, the full 139
position tags worked better.

3.3 Architecture

In this section, we describe the architecture of neural networks for our baseline
and proposed model.

Both models are feed-forward n-gram NLMs, trained to predict the last word
of an n-gram.

3.3.1 Baseline Model

The baseline architecture is modeled after NPLM. The architecture is the same
as in Figure 2.1. The main difference is that we use two hidden layers.

3.3.2 Proposed Model

The architecture of our experimental model (Figure 3.2) is similar. The model
predicts word forms (so it is directly comparable to the baseline) but the em-
beddings are trained on lemmata. We add the information from binary-encoded
morphological tags to the embedding layer.

3.4 Implementation

In this section we describe the implementation of our models.
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Figure 3.2: Schematic representation of the proposed LM architecture. Compare
with Figure 2.1. The input layer is split into two parts. Each [, denotes one-
hot vector representation of the k-th lemma, e is the embedding of the lemma
and t; is the corresponding morphological tag, encoded in a binary vector. For
simplicity, the second hidden layer is omitted in this schema.
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3.4.1 Tools Employed

In this subsection, we describe the tools that we used to implement our models
and run our experiments.

TensorFlow

Our NLMs are implemented in TensorFlow? [Abadi et al., 2015]. TensorFlow is an
open source software library for numerical computation using data flow graphs.
It has support for a wide variety of neural network components. Computations
can be executed on CPUs or GPUs.

We decided to use TensorFlow because it offers all the needed NN compo-
nents, including various softmax layer estimation methods. Because the same
model can be easily run either on a CPU or a GPU, we can run many smaller
experiments on a CPU cluster to broadly search the parameter space, as well as
longer experiments on bigger data on a GPU.

Moses

Moses [Koehn et al., 2007] is a state-of-the art statistical machine translation
system. It offers two types of translation models: phrase-based and tree-based.
Moses features factored translation models [Koehn and Hoang, 2007], which en-
able the integration linguistic and other information at the word level. It supports
several different language model implementations.

We used Moses to test our models in an SMT task.

Eman, UFAL SMT Playground

Eman [Bojar and Tamchyna, 2013] is an experiment manager developed at the
Institute of Formal and Applied Linguistics, Charles University ([,JFAL MFF
UK). It is written in Perl and it comes with UFAL SMT Playground,® a set of
tools for experimenting in SMT.

We used Eman to manage our corpora and run baseline experiments with
Moses.

In the Eman workflow, each experiment is composed of steps. A step is a self-
contained part of an experiment. It may depend on other steps. It may be used
and reused in various experiments. An experiment is a directed acyclic graph of
depending steps. A step seed is a recipe to build individual steps.

In the course of writing this thesis, we have contributed the following seeds
to the UFAL SMT Playground:

nplmbin downloads and compiles the NPLM toolkit,
nplm trains a NPLM language model,
oxlmbin downloads and compiles the OxLM toolkit,

oxlm trains an OxLM language model.

’https://www.tensorflow.org/
Shttps://redmine.ms.mff.cuni.cz/ufal-smt/
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3.4.2 morphLM

To carry out our experiments, we wrote a tool called morphLLM. The source
code is available online* under the MIT license. It is written in Python using
TensorFlow. It contains code to

e read the data in factored format,

e convert the data to use them in the NN,

e create a computation graph for training the NN,
e run the training,

e compute evaluation metrics,

and save the model.

The usage of morphLLM is described in Attachment A.1.

‘https://github.com/tomasmcz/morphlm
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Chapter 4

Experiments with Language
Models

This chapter contains experiments with language models evaluated by perplexity.
We first introduce the datasets on which we run our experiments. Then we
describe experiments with other people’s implementations of NLM. Finally, we
describe experiments with our implementation of the baseline model and the
proposed architecture.

4.1 Datasets

All our datasets are taken from the CzEng 1.0 corpus [Bojar et al., 2012b]. There
is also a newer version, CzEng 1.6 [Bojar et al., 2016a]. Table 4.1 lists the sizes
and sources (from which part of CzEng they were taken) of our datasets.

The data in CzEng are tokenized with TrTok [Marsik and Bojar, 2012]. For
simplicity, we only work with lowercased word forms.

For the LM, each sentence is padded with sentence-start tokens (“<s>"). For
n-gram model, we add n — 1 start tokens, so the model starts its prediction on
the first word of the sentence. Each sentence is ended by one sentence-end token
(“</s>"). Words that are not in the vocabulary are replaced with unknown-word
tokens (“<unk>").

corpus part sentences tokens
train 197k 4218 k

heldout - 500

RS ey 2k 4Tk
test 2 k 41 k

train 4248 k56432 k

c-fiction dev 43 k 571 k
test 43 k 573 k

Table 4.1: Datasets and their sizes. The heldout set is a subset of the training
set.

NLMs are trained with limited vocabulary. The training data contain only
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finite amount of different words. For the NLM to learn to estimate the prob-
ability of an unknown word, it needs to encounter unknown words even in the
training data, so the vocabulary has to be made even smaller. The tokens that
are not present in the vocabulary are called the out of vocabulary (OOV) tokens.
In comparing language models, they need to have the same vocabulary (imagine
a NLM with vocabulary size 0: all the words are unknown, that is exactly what
the model predicts, the perplexity is 0). Unless noted otherwise, following ex-
periments are done with a vocabulary of 50000 words. For the c-news dataset,
approximately 3.5 % of the tokens are OOV with this vocabulary.

4.2 Baseline Experiments

In this section, we describe our experiments with existing NLM implementations.

4.2.1 NPLM

In Table 4.2, we see various configurations of NPLM run on the c-news dataset.
The reported perplexity is the smallest perplexity achieved on the development
set during training for 10 epochs. The parameters were selected to achieve a
reasonable time of training and inference, so we did not test long n-grams with
high-dimensional embeddings.

The best configuration we found was a 7-gram model with embeddings of size
200, hidden layer of size 200, and output embedding (the second hidden layer) of
size 100.

In experiments with NPLM, we used a smaller development set. NPLM sep-
arates the development data from the training set during the data preparation
step. We will refer to this dataset as the heldout set. The first experiments with
our models were run on the heldout set to be comparable with this experiment.

4.2.2 OxLM

We also trained a few different configurations of OxLM. For unknown reasons,
it did not report perplexity, so we only state the value of the training objective.
The results are listed in Table 4.3, n-gram order is 5, the size of the vocabulary
is 50 000 words.

4.3 Neural Language Model on Word Forms

For a baseline, we trained a model with the architecture similar to NPLM (see
Figure 2.1) trained on word forms. We will refer to this model as formLM.

We will refer to our proposed model (described in Chapter 3) as morphL M.

In this section, we discuss the results of experiments with formLM, our own
baseline model, trained on word forms.

Unless specified otherwise, all presented time measurements were performed
on Intel® Core™ i5-4210Y CPU and the time is reported for 200 batches of 1000
examples each.
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order hidden input emb. output emb. noise perplexity

7 200 200 200 100 195.32
7 300 300 300 20 210.26
7 200 200 200 20 212.21
7 100 200 200 20 220.29
7 200 200 200 25 224.42
7 100 200 200 25 227.28
7 100 100 100 100 227.55
11 50 50 50 25 228.19
7 100 100 100 20 228.22
7 20 300 300 20 229.55
7 50 200 200 50 232.41
7 0 150 150 25 236.01
7 50 100 100 50 237.59
11 20 20 20 25 239.20
5 0 150 150 25 246.96
3 20 100 100 25 248.34
7 50 20 20 25 260.09
5 100 50 50 25 261.48
5 50 20 50 50 263.49
5 20 20 20 25 269.69

Table 4.2: NPLM trained on the c-news dataset, evaluated on the heldout set.

noise clusters objective

10 0 1.74
10 387 4.79
25 387 6.25
25 0 6.29
25 0 6.29
25 0 6.29
0 0 6.29

Table 4.3: Results for OxLM trained on the c-news dataset.
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All parameters that are not specified in the experiment description are set to
their default values (listed in Attachment A.1).

We use a simple version of early stopping introduced by Prechelt [1998]. We
measure the perplexity of the development set after each epoch and if it is higher
than the last one, we take the model from the last epoch as the final model.

Unless noted otherwise, we report perplexity on the development set in the
following experiments.

4.3.1 Embedding Size

In Table 4.4, we see the results of training the model with different embedding
sizes for a 5-gram model. The perplexity in this table is reported on the heldout
dataset. The performance of our baseline model is similar to the performance of
NPLM.

In Table 4.5, the same experiment is repeated with full development set. For
the c-news dataset, the ideal embedding size seems to be around 300.

In Table 4.6, we see the results of the same experiment repeated on the c-
fiction training dataset. The difference between embedding size from 200 up to
1000 was not significant in this experiment. This may be because the processing of
the larger dataset is computationally expensive and we did not have the resources
to repeat the training as many times as with the smaller dataset. Or it may be
a consequence of the bigger dataset acting as regularization, enabling the model
to use bigger embeddings without overfitting.

4.3.2 N-gram Order

Table 4.7 shows perplexity of models of different n-gram orders on the c-news
dataset. The best results were obtained with n-gram order of 7. It seems that
models with higher order n-grams are slightly overfitting.

4.3.3 Computation Time

Training of neural networks can take a lot of time. When we run the default
configuration of formLM on the Intel® Core™ i5-4210Y CPU, it takes around
34 seconds per 200 batches (with 1000 datapoints each). On the computer cluster
at UFAL MFF UK, it takes between 20 and 40 seconds per 200 batches, depending
on which cluster node is the job assigned to.

Training runs faster on hardware that is constructed to perform fast matrix
multiplication. TensorFlow supports computations on GPU. On Nvidia GeForce
GTX 1080, the same configuration of morphLM takes approximately 2.7 seconds
per 200 batches, which is around 10 times faster than on a CPU.

4.3.4 Final Model

Based on the experiments described above, we selected parameters for the formIL M
model that was compared against the morphLM architecture:

word embedding size: 300,
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emb. size perplexity o

50 214.34 7.50
100 203.13 10.03
150 203.07 2.95
200 199.38 6.59
250 201.94 3.58
300 203.11 7.78
400 203.10 5.02
200 200.80 0.23
600 206.59 7.88
750 211.69 6.64

1000 222.91 9.94
1250 223.28 8.15
1500 233.04 7.23

2000 238.11 11.60

Table 4.4: FormLM results on the c-news dataset, evaluated on the heldout set.
Perplexity is averaged over 10 runs for each configuration.

emb. size perplexity o

50 474.30 51.31
100 421.07 28.60
200 409.28 41.60
300 355.49 11.77
200 388.23 16.93

1000 384.17 9.92
2000 429.79 11.93

Table 4.5: FormLM results on the c-news dataset.

emb. size perplexity

20 230.44
100 219.73
200 213.47
300 214.22
500 214.32
750 214.08

1000 211.89
1500 218.28
2000 216.75

Table 4.6: FormLM results on the c-fiction dataset.
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first hidden layer size: 500,

second hidden layer size: 500,
n-gram order: 7,

softmax estimation: sampled softmax,
sampling noise: 500,

maximum number of epochs: 15.

We trained 5 models and selected the one with the lowest perplexity on the
development set (246.81). The perplexity of this model on the test dataset was
273.26.

4.4 Neural Language Model with Morphology

In this section we discuss the experiments with morphL M, our proposed NLM
architecture.

4.4.1 Embedding Size

The results of training a 5-gram model on the c-news dataset with different em-
bedding sizes are in Table 4.8. These are the numbers evaluated on the same
dataset as in the NPLM and first formLM experiments—the heldout set. Fig-
ure 4.1 shows the comparison of formLM and morphLM.

Table 4.9 shows the results of the same experiment with full development set.
The ideal size of the embeddings seems to be around 300. The morphLM model
has an overall lower perplexity than the formLM model.

The results of the same experiment on the c-fiction dataset are shown in Ta-
ble 4.10. We see that even on the bigger dataset, morphL M has lower perplexity
than formLM.

4.4.2 Computation Time

When we run the default configuration of morphLM on the Intel® Core™ i5-
4210Y CPU, the training takes around 54 seconds per 200 batches (with 1000
datapoints each). Compared to formLM, this is roughly 60 % more time. On the
Nvidia Tesla K40c GPU the training takes around 36 seconds per 200 batches.

4.4.3 Hidden Layers Size

Table 4.11 shows how the size of the hidden layers affects the perplexity and
training time. The perplexity decreases with growing hidden layers, but the
number of variables (and time needed for training) grows quadratically. The size
of the second hidden layer has a slightly larger effect. This is to be expected,
because increasing the size of the second layer adds more variables to the model
than increasing the size of the first layer. Setting the size of both hidden layers
to 500 seems like a good trade-off.
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order perplexity o

) 360.06 5.59
7 352.62 5.56
9 363.39 6.97

11 373.91 11.41

Table 4.7: Perplexity of formLM trained on the c-news dataset for different n-
grams orders. Evaluated on the c-news development set.

emb. size perplexity o

50 180.30 7.62
100 174.52 5.32
150 168.97 5.41
200 167.48 4.92
250 169.39 4.99
300 166.37 6.04
400 167.47 3.91
500 167.61 5.50
600 170.48 4.20
750 167.32 2.59

1000 170.36 4.47
1250 166.54 5.01
1500 172.63 6.68
2000 174.40 8.06

Table 4.8: MorphLM trained on the c-news dataset, evaluated on the heldout set
for comparison with NPLM. Averaged over 10 runs.
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Figure 4.1: Perplexity as a function of embedding size.
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emb. size perplexity o

50 302.30 25.22
100 290.08 26.22
200 262.62 13.89
300 249.20 6.83
500 274.80 33.05

1000 253.80 11.60
2000 274.86 10.86

Table 4.9: MorphLM trained on the c-news dataset. Evaluated on the c-news
development set.

emb. size perplexity

20 193.73
100 186.96
200 182.99
300 184.39
500 187.17
750 188.10

1000 183.82
2000 189.08

Table 4.10: MorphL M trained on the c-fiction dataset. Evaluated on the c-fiction
development set.
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4.4.4 Different Morphological Tags

Table 4.12 shows the difference between using the short, 60-bit representation of
the morphological tags and the full, 139-bit representation. Models trained with
the full representation achieve a lower perplexity.

When we run the configuration with full tags on the Intel® Core™ i5-4210Y
CPU, the training takes around 86 seconds per 200 batches (with 1000 datapoints
each). Compared to the default configuration with shorter tags, this is roughly
60 % more time.

4.4.5 Training Method

We tested two training methods, Adam and SGD. The training setup was mor-
phLM with embedding size of 200 and 50 noise samples for each data sample.
The resulting learning curves for 5 runs of each method are plotted in Figure 4.2.
We can see that Adam gets its best results around epoch 7, then it is rather prone
to overfitting. SGD reaches the best results around epoch 15 and doesn’t overfit
that much. Average perplexity is shown in Table 4.13.

On the Intel® Core™ i5-4210Y CPU, it takes around 38 seconds to train 200
batches (1000 datapoints each) using SGD. Using Adam, the same amount of
training takes around 50 seconds, so it is around 25 % slower. Because it achieves
the best results in approximately half number of epochs, it would be faster to
train the model with Adam for a lower number of epochs.

4.4.6 Sampled Softmax versus NCE

Table 4.14 shows the comparison between the sampled softmax method and NCE.
The experiment was performed on the c-news dataset, with 10 runs for each
method. Sampled softmax outperformed NCE in perplexity. In some experi-
ments, NCE suffered from arithmetic underflow.

In our experiments, there was no significant difference in training time between
sampled softmax and NCE.

4.4.7 Number of Noise Samples

Table 4.15 shows the relation between number of noise samples and perplexity
for the sampled softmax method. The more noise the better, although at around
500 samples the effect starts to fade out.

4.4.8 Number of Epochs

In Figure 4.3, we see learning curves for 5 runs each of morphLM and formLM on
the c-news dataset. After epoch 20, both models start to overfit. The morphL M
model is overfitting less, even though we used larger embeddings for the lemmata
(300) than for the forms (200) in formLM, so morphLM has more parameters.
This is probably because the word forms are sparser, making them easier to overfit
to.
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hy size h, size perplexity o  time (s)

200 150 305.54 9.56
200 200 301.40 8.98 60.00
200 300 283.30 6.59
200 500 278.85 8.30
200 750 265.41 3.67
300 150 293.41 7.97
300 200 285.85 9.72
300 300 283.33 4.46 67.52
300 500 268.26 2.14
300 750 261.94 4.60
200 150 292.24 6.66
200 200 281.14 7.47
500 300 272.34 6.28
500 500 262.07 5.09 86.06
200 750 258.85 4.88
750 150 280.88 5.84 85.21
750 200 275.55 4.50
750 300 263.49 4.06
750 500 253.49 3.41
750 750 250.57 4.18  113.47

Table 4.11: Effect of the hidden layers size.

tags perplexity o

full 274.90 6.12
short 285.30 9.83

Table 4.12: Effect of different encoding of morphological tags.

method perplexity o

adam 309.27 2.45
SGD 246.59 3.18

Table 4.13: Effect of different training methods.

method perplexity o

NCE 323.48 12.71
sampled softmax 288.47 9.89

Table 4.14: Sampled softmax versus NCE.
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Figure 4.2: Learning curves for Adam and SGD.

noise perplexity o  time (s)

10 440.30 12.27 04.23

20 280.80 4.42 55.54
100 24777 2.07 D7.75
200 226.26 2.06 59.72
300 218.84 9.21 62.61
500 203.84 3.53 68.08
750 197.51 2.55 75.49

1000 204.64 4.59 82.68
1500 194.86 3.21 96.57

Table 4.15: Perplexity and time with respect to sampling noise size.
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4.4.9 N-gram Order

Table 4.16 shows the results for different n-gram orders on the c-news dataset,
averaged over 5 runs. It seems that 7-grams are the best for this dataset, however
the difference between orders 7 and 9 is not as big as in case of formLM. This
may signal that morphLM is less prone to overfitting.

4.4.10 Final Model

Based on the experiments described above, we selected parameters for the mor-
phLM model that was compared against the formLM architecture:

lemma embedding size: 300,

first hidden layer size: 500,

second hidden layer size: 500,

n-gram order: 7,

softmax estimation: sampled softmax,
sampling noise: 500,

morphological tags encoding: full (139 bits),

maximum number of epochs: 15.

We trained 5 models and selected the one with the lowest perplexity on the
development set (193.66). The perplexity of this model on the test dataset was
206.46, significantly lower than test perplexity for formLM (273.26). The com-
parison of average perplexities for all models is in Table 4.17, their learning curves
are plotted in Figure 4.4.

In the experiments that we performed to select the best parameters, the vari-
ance was relatively high, so we cannot be sure that we really selected the best
parameters. We also did not have the resources to test the whole parameter
space—we always tested one parameter at the time, not accounting for possible
interaction between changes of different parameters. The parameters were se-
lected to minimize the expected perplexity of the model, given the results of the
experiments that we were able to perform.

From the final experiment, it is clear, that morphLM achieves lower perplexity
than formLM.

Our implementation also reports accuracy on the development set. The accu-
racy was growing during the training, achieving the maximum of 22 % for formLM
and 24 % for morphLM. The top-10 accuracy (probability that the correct word
was within the first ten highest-scoring possibilities) achieved the maximum of
46 % for formLM and 49 % for morphLM.

In this final setup, morphLM training was on average around two times slower
than formLM training.
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Figure 4.3: Learning curves for morphLM and formLM.

order perplexity o

) 286.12 5.85
7 282.01 7.51
9 282.61 4.94
11 289.21 5.16

Table 4.16: Perplexity for different n-grams orders.

model dev o test o

morphlm 161.93 1.28 272.55 8.45
formlm 211.91 247 354.97 21.56

Table 4.17: Perplexity for final models.
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Figure 4.4: Learning curves for the final models.
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Chapter 5

Experiments with Machine
Translation

In this chapter, we describe our experiments with statistical machine translation.

5.1 Datasets

For training the SMT systems, we used the c-news dataset, described in sec-
tion 4.1.

For testing the systems, we used the c-news test set and also the WMT2013
test set [Bojar et al., 2013b] with multiple reference translations (see Table 5.1).
We will refer to this dataset as the bigref dataset.

English Czech # Refs # Snts
newstest2011 official + 3 more from German 4 3003
newstest2011 2 post-edits of a system 2 1997

similar to Bojar et al. [2012a)

newstest2009 official 1 2525
newstest2008 official 1 2051
newstest2007 official 1 2007
Total 4 11583

Table 5.1: The contents of the bigref dataset. Table reproduced from [Bojar
et al., 2013b].

5.2 Baseline Experiments

We trained Moses on the c-news dataset with various language models to compare
our models with. In the end, we selected three configurations for further testing.
All configurations contain a basic back-off LM, estimated with KenLM Toolkit
[Heafield et al., 2013]. It is inexpensive to compute and use and it is standard
practice to use the NLM alongside a statistical n-gram model. In these experi-
ments, the NLM was used directly in the Moses decoder. The results, averaged
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over b runs, are shown in Table 5.2. Both models were 7-gram models, with con-
figuration selected on the basis of experiments described in the previous chapter.
OxLM took much more time to train and to translate with, but it seems to help,
although the gain of 0.3 BLEU points is not significant. NPLM was faster, but
did not improve the translation.

5.3 Experiments with the Proposed Architec-
ture

We first tried to use our models in the Moses decoder. We wrote a plugin for
Moses to run TensorFlow language models. Unfortunately, TensorFlow turned
out to be too slow to be usable in the decoder.

5.3.1 N-best List Reranking

We used our models to rerank n-best lists. We produced a 500-best list for
the development set using Moses with a 5-gram KenLM. The hypotheses were
lemmatized and tagged with MorphoDiTa [Strakova et al., 2014]. We added
the score from our models as a new feature to the 500-best list and trained the
reranking weights with k-best MIRA [Cherry and Foster, 2012].

Because the last stage of Moses training—MERT [Och, 2003]—and the train-
ing of the reranking weights are both random processes, we repeated each of
them five times and processed the results with MultEval [Clark et al., 2011]. In
the following tables, the baseline is just the translation of the test set with the
same model that produced the 500-best list for the development set, formLM and
morphLM are 100-best lists of the test set translations reranked by our models.

We tested our final formLM and morphLM models (described in the previous
section) on the c-news test set. We also tested two models trained with a larger
(100000) vocabulary. The results are summarized in Table 5.3. We also tested
our final models on the bigref dataset (Table 5.4) with multiple references. With
multiple references, there is lower risk of the situation where a system actually
achieves better translation, but it is not evaluated as such, because it deviated
from the reference too much.

Reranking n-best lists improves translation for both formLM and morphL M,
although not significantly. MorphLM did not perform better than formLM in
these tests. Models with larger vocabulary performed slightly better, but the
difference is not significant.

We also tested our models on a single MERT run, that produced much better
translations, than the rest. The results are in Table 5.5. The effect of the rerank-
ing was stronger here and morphL M performed slightly better than formLM. We
think that reranking works better on better baseline, because the LMs are only
trained to distinguish good sentences from noise, not bad sentences from worse
sentences. However, we were not able to replicate this result and the difference
between formLM and morphL M probably is not significant here.
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LMs dev test

KLM + OxLM 26.9 19.9
KLM + NPLM 26.3 19.3
KLM 26.2 19.6

Table 5.2: Translation results for Moses with various configurations of NPLM
and OxLM. BLEU for the c-news development and test datasets. Test results are
averaged over 5 MERT runs.

Metric System Avg  Sgel STest p-value
baseline 196 08 0.1 -
formLM 19.9 0.8 0.0 0.00

BLEU 7t morphL M 19.8 0.8 0.0 0.00

formLM100 20.0 0.8 0.0 0.00
morphLM100 20.0 0.8 0.1 0.00

baseline 23.1 04 0.0 -
formLM 232 04 0.0 0.00
METEOR 1 morphLM 232 04 0.0 0.00
formLM100 23.3 04 0.0 0.00
morphLM100 23.2 04 0.0 0.00

baseline 67.1 0.7 0.2 -
formLM 66.8 0.7 0.1 0.00
TER | morphL M 669 0.7 0.1 0.00

formLM100 66.6 0.7 0.1 0.00
morphLM100 66.7 0.7 0.1 0.00

baseline 102.2 04 0.2 -
formLM 1024 04 0.1 0.00
Length morphL M 1024 04 0.0 0.01

formLM100  102.3 04 0.0 0.24
morphLM100 102.3 04 0.2 0.32

Table 5.3: Reranking with final formLM and morphLM models. Measured on
the c-news test set. FormLM100 and morphLM100 are models with 100 000
words vocabulary. Metric scores for all systems: jJBLEU V0.1.1 (an exact reim-
plementation of NIST’s mteval-v13.pl without tokenization); Meteor V1.4 ¢z on
rank task with all default modules NOT ignoring punctuation; Translation Error
Rate (TER) VO0.8.0; Hypothesis length over reference length as a percent. P-
values are relative to baseline and indicate whether a difference of this magnitude
(between the baseline and the system on that line) is likely to be generated again
by some random process (a randomized optimizer). Metric scores are averages
over multiple runs. s, indicates the variance due to test set selection and has
nothing to do with optimizer instability.
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Table 5.4: Reranking with final formLM and morphLM models.

Metric System Avg  Ssa1 STest p-value
baseline 290 04 0.1 -
BLEU 1t formLM 29.2 04 0.1 0.00
morphLM 29.2 0.4 0.0 0.00
baseline 25.7 0.2 0.0 -
METEOR 1 formLM 25.9 0.2 0.0 0.00
morphLM 25.9 0.2 0.0 0.00
baseline 61.3 03 0.2 -
TER | formLM 614 03 0.2 0.01
morphLM 61.3 0.3 0.1 0.46
baseline 105.2 0.1 0.2 -
Length formLM 105.6 0.1 0.3 0.00
morphLM 105.6 0.1 0.2 0.00

the bigref test set. For description of the metrics, see Table 5.3.

LMs dev-BLEU test-BLEU
morphLM 26.62 24.86
formLM 26.72 24.76
baseline 26.24 24.14

Measured on

Table 5.5: Reranking results for our models on the single best baseline MERT

run.
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Conclusion

We have examined various architectures of neural language models, both in theory
and empirically. We proposed a new NLM architecture, that works with explicit
morphological information, to take advantage of annotation tools and annotated
datasets.

We were able to train language models with a significantly lower perplexity
with the proposed architecture. However, it did not bring significant improve-
ments to statistical machine translation with n-best list rescoring, compared to
baseline NLM architecture.

Our implementation is too slow to be used in a SMT decoder. It might be
significantly faster, if it was reimplemented in C++-, but our results suggest that
this is not worth the effort.

Our results suggest that there is a potential to improve machine translation by
including morphological information into language models. Recent developments
in machine translation seem to favor neural machine translation with various
subword approaches. An NMT system that combines a subword encoding with
explicit morphological information might be a more promising way of including
morphological annotation into machine translation.
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Future Work

While this thesis explored possibilities of using neural language models with mor-
phology in statistical machine translation, many opportunities for extending the
scope of this thesis still remain. This section presents some of these directions.

Different tasks NLMs with morphology may be used in task other than ma-
chine translation, for example spelling correction. For inflected languages, typing
errors may result in word forms that exist, but are not correct in the given con-
text. Dictionary-based spellcheckers have no way to correct errors of this type. A
LM that works with morphology might be a good tool for this task. Richter et al.
[2012] used language models on factors in Korektor,! a statistical spellchecker and
(occasional) grammar checker. Our proposed model may be effective in a similar
tool. Other possible applications include speech recognition, text summarization,
and other tasks where LMs are used.

Embeddings analysis In this thesis, we worked with various embeddings. It
may be interesting to compare how for example word form and lemmata em-
beddings perform in various semantic tasks (e.g. the word similarity task from
Mikolov et al. [2013a]), similarly as e.g. Hill et al. [2017] compare embeddings
from LM-like tasks and NMT. Our hypothesis is that lemmata embeddings would
work better than word form embeddings and that lemmata embeddings trained
with an architecture that processes the morphological information would work
better than embeddings trained on lemmata alone.

Using morphology in NMT Because an NMT system may be regarded as
two connected recurrent language models, our approach to morphology can be
used in NMT as well. Possible variants include:

e using lemmata and morphological tags in a single encoder,

e using an encoder for lemmata and another one for morphological tags in a
multi-encoder architecture (similar to the architecture used for multimodal
translation by Libovicky et al. [2016]),

e using an encoder for morphological tags in combination with an sub-word
units encoder.

Ihttp://ufal.mff.cuni.cz/korektor
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Usage of morphological tags It may be possible to find interesting infor-
mation about the morphological tags usage. This would consist in training the
proposed architecture with various subsets of morphological tags, testing them
on various tasks and determining which parts of the tag are most useful for which
task.

More languages Similar experiments may be carried out for other inflected
languages than Czech, for example other Slavic languages, Baltic languages, Ger-
man or Sanskrit. We expect that our proposed architecture would be better for
languages that are highly inflected.
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List of Abbreviations

ANN artificial neural network

LM language model

LSTM long short-term memory

NCE noise contrastive estimation
NLM neural language model
NMT neural machine translation

NN neural network
OOV out of vocabulary

PDT Prague Dependency Treebank

POS part of speech
RNN recurrent neural network

SGD stochastic gradient descent

SMT statistical machine translation
TER Translation Edit Rate

UFAL MFF UK Institute of Formal and Applied Linguistics, Charles Univer-
sity
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Appendix A

Attachments

A.1 morphLM User Manual

This is the user manual for morphLLM, a neural language model implementation
that works with Czech morphological information.

A.1.1 Download

morphLLM is available on GitHub: https://github.com/tomasmcz/morphlm.

A.1.2 Installation

All you need to run morphLM is to have Python and TensorFlow (version 1.1 or
newer) installed.

A.1.3 Training the Model
The training is executed by running the morphlm.py script. To get the list of

all possible options, run ./morphlm.py -h. The most important options are
described below.

Mandatory Arguments

--data-train DATA_TRAIN Training data.

--data-dev DATA DEV Development data.

Data files should be in the following format: one sentence per line, words sep-
arated by spaces, each word containing the word form, lemma and morphological
tag, separated by vertical bars (“|”).

--voc-size VOC_SIZE Vocabulary size.
--vocab-forms VOCAB_FORMS Vocabulary for forms.
--vocab-lemmata VOCAB_LEMMATA Vocabulary for lemmata.

Vocabulary files should contain one word per line, starting with special tokens
(<unk>, <s>, </s>) and then sorted by frequency in the training data in decreasing
order.
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Optional arguments

--order ORDER N-gram order. The default value is 5.

-—emb-size EMB_SIZE Embedding size. The default value is 200.

--hl-size H1_SIZE Size of the first hidden layer. The default value is 750.
--h2-size H2_SIZE Size of the second hidden layer. The default value is 150.
--max-iter MAX_ITER Maximum number of iterations. The default value is 10.
--batch-size BATCH_SIZE Batch size. The default value is 1000.

--keep-models KEEP_MODELS Number of saved models to keep. The default
value is 3.

--sampled-softmax Use sampled softmax. The default value is True.
--use-nce Use NCE. The default value is False.

--adam Use Adam instead of SGD. The default value is False.
--morph Use lemmata and morphological tags. This is the default.
--nomorph Use word forms.

--noise NOISE Number of noise samples. The default value is 10.

--prefix PREFIX Path prefix for storing the experiment data. The default value
iS “'77'

-—experiment EXPERIMENT Experiment label. The default value is “test”.
--11-c L1_C L, regularization coefficient. The default value is 0.
--12-c L2_C L, regularization coefficient. The default value is 0.

-—dropout DROPOUT Dropout coefficient. The default value is 1, meaning that
no dropout is used.

--full-tags Use the longer, 139 bit reprezentation of morphological tags. The
default is the shorter, 60 bit representation.

A.1.4 Running the Model

To run a trained model, use the morphlm-run.py script. The mandatory argu-
ments are:

-—data DATA_FILE Data in the format described above.

--prefix PREFIX and --experiment EXPERIMENT Path and experiment label
to find your model data.

--vocab-forms VOCAB_FORMS Vocabulary for forms.
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--vocab-lemmata VOCAB_LEMMATA Vocabulary for lemmata.

The following arguments have to be set to the same values as in the training
of the model: --order, --morph, and --full-tags.

For each sentence in the data, the script prints a line with the sum of the log-
arithms of the inferred probabilities and the number of tokens in that sentence.
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