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Abstract:

Despite active development during past years, the task of sequencing a genome
still remains a challenge. Our current technologies are not able to read the whole
genome in one piece. Instead, we shatter the target genome into a large amounts
of small pieces that are then sequenced separately. The process of assembling
these small pieces together, in order to obtain sequence of the whole genome,
is painful and rsource-consuming. Multiple algorithms to solve the assembly
problem were developed.

This thesis presents yet another assembly algorithm, based on the usage of de
Bruijn graphs, and focusing on sequencing short genome regions. The algorithm
is compared to well-known solutions in the field.
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1. Introduction
Despite technological advances in the past fifteen years, genome sequencing (de-
termining the DNA sequence of an organism) remains a challenging task. With
the current technology it is not possible to the DNA sequence in one piece from
the beginning to the end. Instead, relatively short fragments must be sequenced
individually and then painstakingly assembled into the complete sequence. This
is a very laborious and expensive process, complicated by the fact that large
proportion of most genomes consists of repetitive sequences. Therefore, instead
of the pure de novo approach of assembling the complete sequence from scratch,
most of the sequencing done today merely aims to determine differences between
the sequenced organism and a complete, gold standard reference genome obtained
previously by other means. This approach is known as resequencing and is, com-
paratively, a much simpler task.

The most widely used sequencing platform today is Illumina and the algo-
rithms developed in this work assume Illumina data on input. The platform
takes advantage of massive parallelism, where an ensemble of DNA molecules is
fragmented into very short pieces (usually ˜500 bp) and then sequenced in paral-
lel from both ends. In one sequencing run, more than 109 of short sequences are
obtained simultaneously. These sequences are called reads. Due to technical lim-
itations, reads are only ˜150 bp long, but when they are mapped to the reference
genome, many will overlap and cover the whole genome, thus enabling to deter-
mine the differences between the sequenced organism, such as single nucleotide
polymorphisms (SNPs) or short insertions and deletions (indels). Collectively,
these differences are referred to as variants and the process of determining the
variants is known as variant calling.

In order to distinguish between random sequencing errors and real variants,
we need sufficient coverage (the average number of reads mapped to a position of
the genome). Thus for variant calling we need first to confidently place the reads
to the correct location of the genome (the problem known as mapping), correctly
determine the exact sequence of matches, mismatches, insertions and deletions at
the location (alignment) and finally apply a statistical model to tell apart true
variation from random sequencing errors, mapping errors and alignment errors
(variant cal ling).

Single nucleotide variants are easier to call, indels are more problematic. This
is partly because reads containing indels can be often aligned in multiple ways,
leading to ambiguous alignments and false calls, especially in difficult parts of the
genome of low complexity or high repeat content.

1.1 Basic Terms
For the rest of this thesis, a genome is viewed as a string of character, each
represents a nucleotide, at certain position. Since DNA molecules consist of four
types of nucleotides, only four characters, A, C, G or T, appear in the string. The
four nucleotides have similar chemical structure. They are composed of a sugar
molecule and a phosphate group, which are identical for all four of them, and a
unique nitrogenous base. Hence the term base is often used when referring to a
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nucleotide at a specific position. Each of the bases pairs with one other, A with
T and C with G, therefore knowing the sequence of one strand of a DNA double
helix determines the sequence of the complementary strand. Hence the terms
base pair and base are used interchangeably.

The algorithm developed and discussed in this work expect a large bunch of
short reads on input. It expects that the sequenced organism and the reference
genome are similar enough to, so an assumption that reads are correctly mapped
can be made. Its task is to resolve local differences arising from incorrect read
alignments. This is a subproblem of the assembly one, called microassembly.

Some assembly algorithm transform each read into a sequence of k-mers, sub-
strings of equal length, usually named k. The read sequence of length l is decom-
posed into l − k + 1 k-mers k0, ..., kl−k of length k. If we denote bases in the read
as b0, ..., bl−1, the k-mer ki covers bases from bi to bi+k−1. Such definition implies
that adjacent k-mers overlap by k − 1 bases.

An example of transforming e sequence TACTGGCC into k-mers of length 3 is
illustrated on Figure 1.1. The sequence has 8 bases in length and 6 k-mers are
created from it. The read sequence, as in all other figures in this work, is marked
red, contents of individual k-mers is in yellow.

Figure 1.1: Sequence transformation into k-mers

1.2 The Model
The simplest mathematical assembly model, assumes that we are assembling
genome string of length g, given a set of n reads of length l (l << g), each
potentially transformed into a sequence of l − k + 1 k-mers. The model assumes
that reads are sampled from the genome string uniformly and randomly and that
they are error-free. Since the probability of sampling a base at certain genome
position is very low for single sampling event, and the number of sampling events
is large, genome coverage (i.e. the number of reads covering a position) follows a
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Poisson distribution. In other words, the probability that base at certain position
is covered by k reads is

ck

k! ∗ e−c

c is a base coverage depth, also known as sequencing depth, and can be computed
simply as a total number of bases within the input read set divided by the length
of the genome.

c = n ∗ l

g

Very similar relations apply for k-mer coverage depth, only the formula for the k-
mer coverage depth needs to be changed to n∗(l−k+1)

g−k+1 . These details brings answers
to at least two important questions. Primo, how many reads need to be created
to (statistically) cover the whole genome string, and, secundo, how to determine
whether a given read set is free of sequencing errors?

The percentage of genome not covered by any read from the set is equal to
P (k = 0) = e−c. Multiplying it by the genome size g gives us the expected
number of bases with zero coverage. So, to cover the whole genome, this number
must be lower than 1 which places condition of c > lng. For example, to cover
the whole human genome (g = 3 ∗ 109), the read coverage depth must be at least
22.

Answer to the second question is implied by the facts that k-mer coverage of
the genome follows the Poisson distribution. In an ideal case, the k-mer frequency
distribution function of an error-free read set would follow the probability mass
function of the Poisson distribution, meaning that frequencies of most of the k-
mers are near the k-mer average depth. However, when we introduce possibility
of sequencing errors, some k-mers would be sampled less often and some become
even unique. The k-mer frequency distribution of such a read set does not follow
the Poisson distribution. The aspect of sequencing errors and their means of their
correction are described in great detail in Chapter 3.

1.3 The Real World
In contrast to the idealized model described in the previous section (1.2), read
sequencing data contain sequencing errors. In other words, some of the reads
contain incorrectly interpreted bases. To help with identifying such bases, each
base of a read has its base quality, a probability that the given base is incorrect.
Base quality (BQ) is usually represented as a Phred score Q defined as

P (base is wrong) = 10− Q
10

Phred score has a natural interpretation, for example Q = 40 indicates one
error in 10000 bases, Q = 30 one error in 1000 bases and so on (Figure 1.2 map
the score values to probabilities). When stored in a text format, such as SAM
or FASTQ, base qualities are encoded as ANSI characters. Because the first 32
ASCII characters are not printable, and the space character is coded by 32, the
base quality values are incremented by 33. When loading the reads from such a
text format, this needs to be taken in account.
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Figure 1.2: Mapping Phred score values to probabilities. Be aware of the loga-
rithmic scale on the y axis

Mapped reads are accompanied by their position (POS) in the reference se-
quence, by additional alignment details and a mapping quality (MQ), which is a
measure of mapping confidence expressed as a Phred score. Although the posi-
tion information may be wrong, it may help us in cases when we are interested
in correcting only a part of the genome and would like to filter out reads that do
not map confidently.

The alignment details are given in form of a CIGAR string which describes
how the individual bases of the read map to the reference. The string is formatted
as a set of numbers defining the number of bases, and a character code describing
the alignment alignment. The most common operations include:

• Match (M). Alignment match. That can represent both sequence match
and mismatch.

• Mismatch (X). The sequence mismatch. In practice, this code is seldom
used since M may code both matches and mismatches

• Insertion (I). The sequence is inserted to the reference at a given position.
Then, the read continues to follow the reference at this position plus one
unless alignment operation following the insertion tells otherwise.

• Deletion (D). The read sequence skips the corresponding part of the ref-
erence.

• Hard-clip (H). The original read was longer, but was trimmed in down-
stream analysis.
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• Soft-clip (S). This part of the read could not be aligned well and was
excluded from the alignment.

For example, assume a reference sequence CAGGTGTCTGA and the read GGT-
GAATCTA aligned as follows:

1 2 3 4 5 6 7 8 9 A B
Reference: C A G G T G T C T G A
Read: G G T G A A T C T A

The read was mapped to the reference position 3 and the CIGAR string of the
alignment is 4M2I3M1D1M.

Genomes of diploid organisms, introduce another problem not covered by the
simple mathematical model covered earlier. Since such organism owns two sets
of chromosomes (one from each of its parents), both sets are present within the
read set obtained by chopping the genome to short reads. That implies that two
genome strings are present within, and need to be reconstructed, from the input
read set.

1.4 Major Assembly Algorithm Classes
Currently, there are two widely used classes of algorithms: overlap-layout-consensus
(OLC) and de-bruijn-graph (DBG) [1]. Algorithms belonging to the former base
their idea on construction of a graph recording overlapping reads and extracting
the alternate sequences from it. Main idea behind the DBG approach is to de-
compose all reads into k-mers that are then used to construct a de Bruijn graph
which, after some optimizations, is subject to derivations of alternate sequences.

1.4.1 De Bruijn Graphs
De Bruijn graphs (DBG) were originally invented as an answer to the superstring
problem (finding a shortest circular string containing all possible substrings of
length k (k-mers) over a given alphabet) [2]. For a given k, de Bruijn graph is
constructed by creating vertices representing all strings of length k − 1, one per
string. Two vertices are connected with a directed edge if there exist a k-mer such
that the source and destination vertices represent its prefix and suffix of length
k − 1 respectively. The k-mer labels the edge.

Formally, let Lk be a language containing all words of length k over an alpha-
bet σ, then de Bruijn graph B(V, E) is defined as

V = {vw|w ∈ Lk−1} (1.1)
E = {(vu, vw)|x ∈ Lk, uisitsprefixandwitssuffix} (1.2)

(1.3)

The shortest superstring is found by concatenating all k − 1-mers represented
by vertices on any Eulerian cycle of the corresponding de Bruijn graph. Since a
polynomial-time algorithm for finding an Eulerian cycle is known, the superstring
problem can be effectively solved.
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Application to Genome Assembly

Similarly, de Bruijn graphs can be used for genome assembly, especially if the
genome question is circular. Assume that, for a fixed k, all k-mers of the target
genome are known. Then a DBG can be constructed in two different ways:

• K-mers are represented by edges. Each edge is labeled by a k-mer in
the same way as in the graph used for solving the superstring problem. Each
edge connects vertices representing (k-1)-mers forming prefix and suffix of
its k-mer. The genome string can be reconstructed by choosing the right one
from all possible Eulerian cycles. This approach is presented and discussed
in [2].

• K-mers are represented by vertices. Each k-mer is represented as a
single vertex. Edges reflect the k-mer order within reads. To recover the
genome, one needs to find a Hamiltonian path of the graph, which is one
of NP-complete. problems. Among others, HaploCall [3] used by GATK
takes advantage of this way of de Bruijn graph usage.

HaploCall

Rather than assembling whole genome at once, HaploCall starts with detection
of regions that are likely to contain variants[4]. A score is computed for every
genome position, reflecting the probability of variant occurrence. Regions are
formed around positions classified as interesting. As subset of the input reads
is assigned to each of the regions; reads are selected based on their mapping
position. Each region is then processed separately and independently of others.

The active region processing phase starts by decomposing the reference se-
quence covering the region into k-mers and using them as vertices in a newly
constructed de Bruijn graph. Edges connect vertices representing k-mers adja-
cent by their position within the reference. For each edge, a weight value is
initialized to zero.

When the reference is transformed into the graph, a similar process happen
with each of the input reads assigned to the active region. The read is decomposed
into k-mers that are inserted into the graph in the same manner as the reference
k-mers. Again, edges follow the order of k-mers within reads. New vertices are
created only for k-mers not seen in the reference, similar case applies to new
edges — if an edge denoting adjacent position of two k-mers already exists, its
weight is increased by one. Otherwise, a new edge with weight initialized to 1
is inserted into the graph. The weight values actually count number of reads
covering individual edges.

After inserting all the reads into the graph (the HaploCall documentation
refers to the step as Threading reads through the graph), it is time to simplify
the graph structure a little bit. The main concern here is to remove graph sections
created due to sequencing errors present in the input reads. Such sections are
identified by their low read coverage and removed. Other structure refinements
are performed, including removal of paths not leading to the reference end.

In the next stage, most probable sequences are extracted from the resulting
graph. Each sequence is represented by a path leading from the starting k-mer of
the reference to ending one and its probability score is computed as the product

7



of so-called transition probabilities of the path edges. Transition probability of
an edge is computed as its weight divided by the by the sum of weights of all
edges sharing the same source vertex. By default, 128 most probable paths are
selected.

The Smith-Waterman algorithm is used to align each of the selected sequences
to the reference. The alignment is retrieved in form of a CIGAR string that
indicates places of possible variants, such as SNPs and indels. Indel positions are
normalized (left aligned).

The CIGAR strings actually contain a super set of the final set of called
variants. To filter out false positives, other solutions are employed (for example,
the HaploCall documentation mentions UnifiedGenotyper for GATK).

AbySS

AbySS[5] is another representative of assembly algorithms using de Bruijn graphs.
Unlike HaploCall, it does not use the reference sequence for assembly. One of
its interesting features is a support for running on multi-computer environment
with fast network connection. Most of the computation is massively parallelized
and the MPI (Message Passing Interface) is used for communication between
individual computing units.

AbySS starts by decomposing all input reads to k-mers and constructing a de
Bruijn graph. Except being distributed among nodes of the computing cluster,
it treats k-mers and their reverse-complements as equals. Both are represented
by a single vertex and when one is inserted, the other also starts its existence.

Structure of the distributed de Bruijn is then optimized mainly by remov-
ing short branches with dead ends that usually results from sequencing errors.
Then, linear sequences of vertices without branching are merged into contigs,
representing longer sequences of the assembled genome.

The paired-end information is then used to put individual contigs together.
A link is created within two contigs if the number of paired-end reads joining the
contigs exceed a given threshold. The final step lies in determining a path going
through all contigs linked together.

Although utilizing the de Bruijn graph approach, AbySS actually shares a
lot with the overlap-layout-consensus class of assembly algorithms. The main
difference, at a high level of abstraction, is the usage of k-mers, while the OL-
C algorithms construct their graphs from whole reads and do not perform the
decomposition step.

1.4.2 Overlap-Layout-Consensus
Algorithms taking advantage of this approach usually do not decompose reads
into k-mer sequences. Reads are considered to be the smallest units. As the name
suggests, the work is done in three steps.

Main purpose of the overlap phase is, not surprisingly, to compute overlaps
between all possible pairs of the input reads. Since number of short reads within
high coverage data sets may go to millions, the process of overlap computation
may take a lot of processor and memory resources. Overlapping reads are connect-
ed into longer sequences called contigs. Actually, a graph is being constructed,
its vertices represents individual reads (or contigs) and edges represent overlaps.
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The definition of read overlapping is not strict. Two reads are considered
overlapping (and thus, are connected by an edge) if they overlap at least by t
bases, allowing several mismatches. The constant t is a parameter of the algorithm
and is called a cutoff.

During the layout phase, a read-pairing information is used to put disconnect-
ed parts of the read overlapping graph together and resolving structures created
by sequencing errors. The consensus phase is responsible for deriving candidate
sequences for variant calling from the graph. In an ideal case, the candidate
sequences would be the Hamiltonian paths of the graph.

1.5 Goals of this Work
Main goal of this work is to develop an algorithm capable of variant calling on
high-coverage data sets, comparable to, or more precise than methods currently
employed. The approach used by HaplotypeCaller (HaploCall) should be used as
an inspiration which implies the newly developed algorithm would take advantage
of the reference sequence and would belong to the class of algorithms utilizing de
Bruijn graphs.

The new algorithm should accept the input data set in widely used formats,
such as SAM for the read set and FASTA for the reference sequence, and output
the called variants in the VCF format[6]. Its results need to be compared to at
least two other assembly and variant calling tools. GATK (HaploCall) [3], as a
representative of the DBG class and reference-aided methods, and Fermikit [7],
utilizing the OLC concept.
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2. The Algorithm
Our algorithm takes a reference sequence and a set of reads as inputs, and outputs
a VCF file containing all detected variants. Both inputs are read into memory
during the initialization phase, there are no memory-saving optimizations em-
ployed. In other words, no index files are used for the input data.

The variant calling is done on region basis. The reference sequence is divided
into regions of constant length (2000 bases by default), sometimes also referred
as active regions and with 25 % overlap. Reads are assigned to individual regions
according to their mapping position. All regions are called independently and in
parallel. To detect the variants, the following steps are performed:

• the reference sequence covering the active region is transformed into a De
Bruijn-like graph,

• reads assigned to the active region are integrated into the graph,

• the graph structure is pruned and optimized,

• variants are extracted,

• genotypes and phasing are determined,

The k-mer size used to build the de Bruijn graph belongs to parameters of
the algorithm (Section 2.2). If the graph is too complex after the structural opti-
mizations, it is discarded and the algorithm makes another attempt using higher
value for k-mer size. This behavior is very similar to the HaploCall algorithm.

2.1 Input, Output and Preprocessing
The reference sequence is expected to be in the FASTA format and starting at
position 1. In a typical scenario, the whole chromosome is provided as an in-
put. The FASTA file may contain multiple distinct reference sequences (covering
multiple chromosomes). Reference sequences are processed one at a time which
means that at most one sequence is present in memory at any moment. Only
characters A, C, G and T are considered valid nucleotides. Other characters, such
as N used to mask low-complexity regions, are treated as invalid and reference
regions filled with them are not subject to variant calling.

The read set needs to be stored in a text file reflecting the SAM format.
Presence of header lines is not required, all information is deduced from the
reads. Since the algorithm does not perform any error correction on its own,
the input reads must be corrected beforehand. The error correction is supported
as a separate command of the tool implementing our algorithm. The correction
method was adopted from the Fermi-lite[8] project and Chapter 3 describes it in
detail.

After the whole SAM file is read into memory and parsed, reads considered
useless for the purpose of variant calling are removed from the set. Contents of
the FLAGS column of the SAM file serves as a main filter, since it is used to detect
the following types of undesirable reads:
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• unmapped, recognized by the bit 2 set to 1,

• secondary alignments, detected by the bit 8 set to 1,

• duplicates, bit 10 is set to 1,

• supplementary, bit 11 is 1.

Also, reads with the mapping position (POS) set to zero and with mapping
quality (MAPQ) lower then certain threshold, defined to 10 by default, are removed
from the set. Read’s mapping quality is also used to update individual base
qualities. Each base quality q is updated according to the formula

q = min(q, MAPQ)

Several other SAM fields play a role in read preprocessing. The CIGAR string
is used to detect and remove soft-clipped bases. The QNAME values are used to
detect paired end reads, RNAME gives the name of the input reference sequence
(chromosome).

The SAM file format is described in great detail in [9].
When all the reads are preprocessed this way, they are assigned to that re-

spective active regions based on the mapping position. Then, the main algorithm
comes into play.

2.2 Algorithm Parameters
Behavior of the algorithm and produced results can be controlled by several
parameters:

• Initial k-mer size. Defines the initial k-mer size used to build the de
Bruijn-like graph. If the resulting graph is too complex, another attempt is
made with higher k-mer size. By default, this parameter is set to 21.

• Minimum position quality. Only reads which mapping quality (MAPQ)
is greater than this parameter are used. The default value is 10.

• Global threshold. Defines a threshold value used globally through the
algorithm. Edges of the de Bruijn graph with read coverage lower than
the threshold are automatically removed. Similar approach is used when
computing genotypes and phasing information; variant connection covered
by less reads than the global threshold are ignored. The default value of
the parameter is 4.

• Region length. Length of active regions. Set to 2000 bases by default.

• Low quality variant threshold. If the number of reads supporting a cer-
tain variant is not above this value, the variant is considered as a low quality
variant. Such variants are subjects to a binomial test that decides whether
they will be written to the resulting VCF. By default, this parameter is set
to 3.
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• Binomial threshold. Defines a threshold for accepting low quality vari-
ants. The binomial test gives a probability how a given low quality variant
is reliable. If this probability is above the threshold (set to 1% by default),
the variant is reported in the resulting VCF.

2.3 K-mer Representation
Our algorithm works with k-mers only through an interface consisting from several
functions and macros. The k-mer implementation is used as a black box which
allows us to make several implementations and then choose the best fitting one
without any consequences on the rest of the algorithm, except those implied by
the interface.

We currently use two implementations representing k-mers in different ways,
shown on Figure 2.1. For performance reasons, the implementations may be
switched only in compile time.

The upper part of the figure shows the representation of the debugging k-
mer. The main idea behind this type of k-mer is to make the content easily
human-readable, which is excellent for debugging purposes. The k-mer sequence
is stored in a character array, each element represents one base. Except its context
number, the purpose of which is explained in the next section, each debug k-mer
also remembers its size. That value is used for debugging purposes only, mainly
to recognize attempts to pass wrong k-mer size argument to one of the k-mer
interface routines. Debug k-mers also have an advantage of potentially unlimited
maximum size. It is clear that debug k-mers are not a good option in terms of
performance, especially for bigger k.

Compact, k-mers in contrast, are more optimized for performance and quick
append and prepend operations (moving the k-mer sequence forward or back-
ward). Their design is greatly inspired by the k-mer implementation of the Fermi-
lite project. The k-mer substring is stored in three 64-bit integers. Each base is
represented by three bits, each stored separately in the three integer fields. To
read a ith base (starting from zero), one needs to combine (k − i − 1)th bits of the
integers and then translate the result by rules described in Table 2.1. The table
also describes the meaning of the eight possible values.

Structure of a compact k-mer is displayed in lower part of Figure 2.1. Its
advantages are a fixed size of 28 bytes regardless of k and performance (on the
other hand, space occupied by a debugging k-mer depends on used k value and
is not known at the compilation time). However, limiting the maximum k-mer
size to 63 bases this way may impose a problem in case of assembling repetitive
regions.

All k-mer implementations usable by our algorithm must reserve some space
for storing a k-mer context number. The number is used to differentiate even
between k-mers that contain the same substring of length k. That implies that
a k-mer, according to this new definition, is unique only if it differs in both the
substring and the context number from all other k-mers. K-mers that differ only
in the context number are sometimes referred as equal by (sub)string or equal by
sequence. The context number proves to be useful when fighting repeats within
the reference sequence (described in Section 2.4).
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Table 2.1: Base representations in debugging and compact k-mers
Compact value Debugging value Meaning

0 A The base A
1 C The base C
2 G The base G
3 T The base T
4 B Denotes beginning and and

of the active region.
5 H Used to represent k-mers of

helper vertices.
6 D Used to represent k-mers of

helper vertices.
7 N -

Figure 2.1: Two possible k-mer representations used by our algorithm; debugging
(the upper part) and compact (the lower part).

The whole chapter uses the term k-mer in this sense described
above, unless explicitly specified otherwise.

The Fermi-lite project uses two bits to represent each base in the k-mer. Our
algorithm can be modified to do the same, since the helper vertices actually
do not need k-mers and exist mostly for the sake of code simplicity (no special
handling regarding helper vertices is required). Similarly, there is no real reason
for marking beginning and end of the active region by a special character, this
was only useful for debugging.

2.4 Reference Transformation
The first step of the algorithm lies in transforming a reference sequence covering
the selected active region into a de Bruijn-like graph. The idea behind this step
is very similar to other assembly algorithms based on these graph types.

The reference is decomposed into k-mers, each overlaps with the adjacent ones
by k −1 bases. K-mers representing the same sequence are differentiated by their
context number, so each k-mer derived from the reference is unique. Two extra
k-mers, denoting the beginning and the end of the active region are added to the
set. Then, each k-mer is represented by a single vertex in the graph, and edges
are defined by the order of the k-mers within the reference.
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Formally speaking, with the active region of length l represented as a string
b1 . . . bl, k-mers k0, ..., kl−k+2 are derived from the region as follows:

• k0 = (Bb1 . . . bk−1, 0)

• k1 = (b1 . . . bk, 0)

• . . .

• ki = (bibi+k−1, ci), 2 ≤ i ≤ l − k + 1

• . . .

• kl−k+2 = (bl−k+2 . . . blB)0)

ci represents the context number of the k-mer ki. The number is set to zero for
k-mers unique within the active region. On the other hand, let’s assume that
k-mers ki1 , ..., kin , i0 < ... < in, contain the same string. Their context numbers
are defined as

cij
= j,

k0 and kl−k+2 are special k-mers added to the set in order to show the start and
end of the active region within the graph. B is a virtual base that ensures these
k-mers are unique. The bases must not appear anywhere else within the active
region. All k-mers created in this step and all vertices created from them are also
called as reference k-mers and reference vertices. Similarly, k-mers and vertices
created during the read integration phase, are sometimes referred as read k-mers
and read vertices.

Each k-mer ki is transformed into a single vertex vi. Edges follow the order
of the k-mers in the active region. In other words, the edge set of the graph is

E = {(vi, vi+1)} 0 ≤ i ≤ l − k + 1

Figure 2.2 displays a graph created by transforming the active region ATCTGTATATATG
with k-mer size of 5. The algorithm creates the following k-mers:

k0 = (BATCT, 0)
k1 = (ATCTG, 0)
k2 = (TCTGT, 0)
k3 = (CTGTA, 0)
k4 = (TGTAT, 0)
k5 = (GTATA, 0)
k6 = (TATAT, 0)
k7 = (ATATA, 0)
k8 = (TATAT, 1)
k9 = (ATATG, 0)

k10 = (TATGB, 0)

The figure follows a coloring scheme preserved in de Bruijn graphs across
the whole thesis — green color for reference, red for reads, yellow and blue for
marking start and end of an active region.
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As can bee seen, there are two k-mers representing sequence TATAT, namely
k6 and k8. Because of their distinct context numbers, they are represented as
separate vertices. Introduction of the context numbers removed a loop from the
graph. The loop can be observed on Figure 2.3 that shows a standard de Bruijn
graph constructed from the same active region. K-mers k6 and k8 are represented
by the same vertex. In order to recover the sequence, it is required to know how
many times the loop was actually used during the transformation step.

Figure 2.2: Graph resulting from the transformation of ATCTGTATATATG sequence

Although this solves the problem of cycles for now, at least for now, things be-
come more complicated in the next step of the algorithm which inserts individual
reads into the graph

2.5 Adding Reads
The basic idea behind this stage is fairly simple and similar to the approach used
in the previous case. The read being added is decomposed into k-mers. If the
k-mer is not present in the graph already, a new vertex is created. Again, vertices
representing adjacent k-mers in the read are connected by edges.
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Figure 2.3: Transformation of the ATCTGTATATATG sequence to a standard de
Bruijn graph (with no k-mer context numbers)

Figure 2.4 shows a graph created by transforming a region of ACCGTGGTAAT
and adding the read ACCGTAGTAAT to the resulting graph. K-mer size is set to 5.
The read is divided into the following k-mers:

k0 = (ACCGT, 0)
k1 = (CCGTA, 0)
k2 = (CGTAG, 0)
k3 = (GTAGT, 0)
k4 = (TAGTA, 0)
k5 = (AGTAA, 0)
k6 = (GTAAT, 0)

In this example, the k-mers k0 and k6 were already present in the reference
graph but new vertices has to be created for the rest.

Finally, edges are added (if necessary) to show the k-mer order within the
read. When talking about classical de Bruijn graphs, edges do not need to be
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expressed explicitly since they always connect adjacent k-mers. In case of our
modification to de Bruijn graph, we chose to make the k-mer connection explicit.
Two reasons led us to such decision:

• our definition adds context number to k-mers and we wish to connect only
certain k-mers adjacent by their strings,

• we need to make connections between non-adjacent k-mers, e.g. shortcuts
representing paths with no branches, or fulfilling purposes discussed mainly
in Section 2.6.

Keeping graph edges explicitly has also its drawbacks, especially those related to
performance. Classical de Bruijn graphs can be represented only by a set of their
vertices, since the edges can be deduced on demand.

The figure also suggests how to retrieve the alternate sequence introduced by
the read — by going through edges supported by the read and concatenating the
last bases from the k-mers present on the path. K-mers covering start and end
of the reference region are the only exceptions; all except the B is used from the
former, nothing from the latter.

Figure 2.4 reflects an ideal state, meaning that all places, where the read differs
from the reference, are covered by distinct k-mers, and the distance between each
two of them is greater than k. If these conditions are met, each single n-base
long difference (SNP, insertion or deletion) adds at most n + k − 1 new vertices
to the graph. Each difference then creates only two linear paths, one covering
the reference, the other for the alternate allele. Such structures are called bubbles
and are easy to work with.

However, it may happen that some of the k-mers covering a difference collide
by sequence with either k-mers of the reference, or k-mers of other reads cover-
ing a totally different place of the active region. To minimize such problematic
cases, additional graph transformations need to be made after all the reads are
integrated into the graph.

Unfortunately, the basic idea does not work in our case. Introduction of
the k-mer context numbers prevented loops in the graph derived purely from the
reference. But since multiple k-mers representing the same sequence may exist, it
is not always possible to easily determine which of the vertices should be assigned
to individual k-mers of the read. For example, if looking at the graph from Figure
2.2, it is not clear which vertex (or vertices) should be assigned to a k-mer with
TATAT sequence.

We decided to solve the issue by transforming the basic idea into the following
steps:

• decompose the read into sequence of k-mers (a so-called short variant opti-
mization, described later, may be applied),

• to each k-mer assign a set of vertices with the same k-mer sequence (differ-
ences in context numbers are permitted),

• from each set, select one vertex to represent the k-mer of the read (the
selection process is described later in this section),

• connect all read vertices in a way that respects the order of the k-mers in
the read.
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Figure 2.4: Basic idea behind adding a read into a de Bruijn graph

2.5.1 Transforming the Read into K-mers
Let’s define a read of length n as a sequence r1 . . . rn of bases. If the short
variant optimization, described in the next paragraph, is not applied, the read
is decomposed into individual k-mers k1, . . . , kn−k+1 in the same way as for the
reference case, except that no extra k-mers to denote read start and end are
created. The k-mers look as follows:

k1 = (r1 . . . rk, 0)
...

kn−k+1 = (rn−k+1 . . . rn, 0)

Then, the step described in Subsection 2.5.2 is applied.
As described above, in an ideal case, a n-base long difference from the reference

produces n + k − 1 k-mers different from all reference k-mers. To reduce the
probability that some of the new k-mers actually collide with either the reference,
or another read, the short variant optimization may be applied. The optimization
reduces the number of k-mers representing a n-base long difference to:
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• n for an insertion,

• zero for a deletion,

• 1 for a SNP.

The optimization assumes that when recovering a sequence from the graph, only
the last base of each k-mer, with the exception of the starting one, is used. So,
only k-mers covering the difference by their last base need to be added; reference
k-mers may be used for the rest in case the difference is followed by a reasonable
number of bases equal to the reference.

To make the k-mers covering a n base long difference by their last bases really
unique, the first n bases of the first k-mer is changed to D, a virtual base used
for helper purposes only. Rest of the k-mers is obtained by appending the bases
of the difference to the first one. Keep in mind that n is always smaller than the
k-mer size, since we are talking about the short variant optimization.

Figure 2.5 shows how the graph is optimized for a read containing SNP. The
reference and read sequences are taken from Figure 2.4. Since the difference has
1 base in length, only one k-mer (DCTGA 0) is used to represent it. The k-mer is
followed by reference k-mers. As can be seen, their last base are equal to one of
k-mers from Figure 2.4.

The short variant optimization is applied for k-mer ki if the following holds:

• There is only one reference vertex with a k-mer equal to ki−1 by sequence.
Let’s assume this is vertex vj−1

• There is at most one vertex for ki that either is a result of a read addition,
or is a reference one but do not immediately follows the vertex vj−1 in the
reference.

Such conditions are met when the read differs from the reference at base ri+k−1.
To determine whether the difference is only a short one, the Smith-Watterman
algorithm is applied. If this is the case, the action depends on the difference type:

• for n-base long deletion, ki is defined as vj+n−1,

• for insertion of length n, ki, ..., ki+n−1 are defined as with no short variant
optimization and ki+n is set to vj,

• for SNP, ki is left as such and ki+1 is defined as vj+1

2.5.2 Assigning Sets of Vertices to K-mers
The process of assigning vertex sets to individual k-mers derived from the read
in the previous step is quite straightforward — a set assigned to a certain k-
mer x contains exactly the vertices sharing the same k-mer string. The k-mer
context number is not taken into account. If a k-mer is not represented by any
vertex of the current graph (thus, the k-mer would receive an empty set), a new
vertex is created to represent it. With a classical de Bruijn graph, all sets would
contain exactly one vertex. With k-mer context numbers, there can be multiple
vertices per k-mer. This complicates the task of integrating reads into the graph

19



Figure 2.5: Short Variant optimization
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because the graph may contain multiple paths representing a single read (by using
different vertices with k-mers equal by sequence).

Previous steps of the algorithm, described above, impose the following condi-
tions on the assigned vertex sets:

• each set contains either read, or reference vertices, but not both,

• if a set contains read vertices, its size is always one,

• sets containing reference vertices do not have such restriction,

• each two sets are either distinct (their intersection is an empty set) or equal.

The second and third condition holds because k-mer context numbers are used to
differentiate reference k-mers but not the read ones. The fourth one is implied by
the fact that each set contains all existing vertices with k-mers equal by sequence
to the read k-mer being processed. So, if two sets have a non-empty intersection,
they actually refer to the same read k-mer (k-mer context numbers are not used
when processing read k-mers).

In formal terms, a set Mi is assigned to a k-mer ki where

Mi = {vij
|vij

∈ V (G), kmer(vij
) equals to ki by sequence}

When a set is assigned to each k-mer, it is time to integrate the read into the
graph in the form of a path, starting in the vertex representing k1 and ending in
the vertex covering kn−k+1. Since Mi sets may contain more than one vertex, it
is necessary to select vertices to form a path best fitting to the read. To derive a
good path, we decided to assume the following:

• they should follow the reference sequence in the forward direction,

• The probability of skipping large number of reference vertices (long dele-
tions) is low,

• multiple reads cover one place, sharing appropriate parts of their paths.

These requirements cannot be enforced too strictly as de Bruijn graphs are not
very suitable for coping with repeats of length k or more. The case of a difference
containing a copy of reference at least k bases in length might be enough to break
the first assumption. The second assumption permits exceptions by definition.
The third forms a base for most of the genome assembly algorithms.

In order to choose the correct vertices from the Mi sets, we decided to reduce
it to a shortest-path problem on a helper graph the structure of which is defined
by the sets and their contents as explained in 2.5.3.

2.5.3 The Helper Graph
The helper graph is an oriented layered graph. Each layer consists of all vertices
contained in one reference Mi set. The order of the layers respect the order of
Mi sets. Sets consisting of read vertices are not part of the helper graph. Only
adjacent layers are connected by edges, their orientation reflects the order of the
sets. Each subgraph consisting of two adjacent layers is a full bipartite graph.
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The structure of the helper graph does not take equality of Mi into account. In
other words, when Mi = Mj for i ̸= j, both sets are represented within the helper
graph as individual layers, even if they refer to the same vertices of the (main,
non-helper) graph.

Formally speaking, let Mi = {v1
i , ..., vni

i } and let i index the reference sets
only. Then the helper graph Gh can be defined as follows:

Gh = (Vh, Eh)
Vh = ∪iMi

Eh = {(u, v)|u ∈ Mi, v ∈ Mi+1}

By finding the shortest path leading from a vertex in the first layer to one in the
last layer, we perform the process of selection of vertices representing the read in
the main graph. The shortest path depends on weights of edges connecting the
adjacent layers. In general, the weighting function follows these rules:

• the weight is increased by a missing edge penalty if there is a missing edge
on the path from u to v in the main graph,

• the weight is increased by a reference backward penalty if reference position
of u is greater or equal to the reference position of v,

• the weight is increased by a reference forward penalty if reference potion of
u is far less than reference position of v.

The rules actually indicate why Mi sets covering read vertices are not parts of
the helper graph – since their vertices maintain no reference position, only the
missing edge penalties would apply and that can be included within missing edge
penalties of the reference vertices only.

For an example of a helper graph, let’s have a reference sequence ACTATACTA
and a read ACTAGACTA. The left part of Figure 2.6 shows the main graph just
after adding vertices for the reference and the read k-mers with short variant
optimization applied. The resulting helper graph is shown on the right part of
the figure.

Six k-mers are derived from the read which means that vertex sets M0, ..., M5
are assigned to them. Since the second k-mer is represented by a read vertex, the
M1 set is not included as a layer of the helper graph. Other sets contains reference
vertices, so they form individual layers. Adjacent layers are then connected.
Edges with applied penalties (only the reference backward penalty in this case)
are depicted red. The black edges show the shortest path.

The shortest path select the first vertex from M0 and the second one from M5
to represent the read within the main graph (since other sets contain only one
vertex, the selection process is trivial there). The resulting path in the graph can
be used to correctly recover the sequence covered by the read.

As Figure 2.7 indicates, both graphs look a little bit differently when the short
variant optimization is not applied. The main graph contains more read vertices
which reduces the number of layers in the helper graph. Although the graphs
are different, the sequence covered by the rad is the same and can be correctly
recovered again.
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Figure 2.6: Helper graph creation with short variant optimization

2.6 Graph Structure Optimization
When all reads are integrated into the de Bruijn-like graph, it is time to optimize
its structure in order to get rid of unpopulated paths, usually created by read
errors, and resolve some other issues caused mostly by repetitive regions inside
either the reference or the reads.

2.6.1 Connecting Bubbles
Figure 2.8 demonstrates one class of the structural problems. A subset of reference
sequence was transformed into vertices 1, 2, 3, 4, 5 and 6. A set of reads is
represented by a ”path” 2, 3, 4, 5, R1, R2, 1, 2, 3, R3, 6. The left part of the
figure shows how such a graph would look like without any optimizations. It is
clear that recovering the correct sequence would not be trivial.

However, since we know that the path leads from R2 to R3 (through 1, 2,

23



Figure 2.7: Helper graph creation without short variant optimization

3), we can theoretically replace edges (R2, 1) and (3, R3) by a special edge
(R2, R3), as the right part of the figure suggests. An information about the
sequence covered by vertices 1, 2 and 3 needs to be recorded within the new edge.
Recovering the correct sequence from the right part of the figure does not impose
a problem since it is just a simple bubble.

A more general, and a very typical, situation is shown on Figure 2.9. The
subgraph contains a subset of the reference (vertices 1, ..., n+1) and two bubbles;
one ending by R1 and connected to 2, another starting at R2 and leading from n.
If edges I1 (the input edge) and O1 (the output edge) share reasonable amount of
reads (|reads(I1)∩reads(O1)| > threshold), the subgraph may also be interpreted
as that the reads contain a sequence of length n − 1 that is also present in the
reference. In that case, it is wise to connect the vertices R1 and R2 directly the
same way as on Figure 2.8, bypassing the reference part. The edge maintaining
the direct link is marked as C1 (the connecting edge). Reads shared by the input
and the output edges are moved to the connecting one.

If C1 is created, the read set intersection is also used to decide whether the
edges I1 and O1 should be removed. The input edge is deleted if does not share
enough reads with the next reference edge (meaning there are no valid sequences
leading through both these edges). Similarly, the output edge is deleted in case
it does not share enough reads with the last reference edge (no valid paths goes
through the edges).

Figure 2.10 depicts probably the most general case; multiple reads share the
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Figure 2.8: Benefits of connecting bubbles. Green color marks vertices added
during the reference transformation, red is used for read vertices

Figure 2.9: A subgraph required for connection, colors have the same meaning as
in Figure 2.8

same sequence of n bases (R1, . . . , Rn). There is k input and l output edges.
To determine the association between individual input and output edges, the
intersection of covering reads is used again and connecting edges are created if
necessary. More precisely, the following rules apply:

• If ith input and jth output edges share reasonable amount of reads (|reads(Ii)∩
reads(Oj)| > threshold), a connecting edge Ci,j is created and the shared
reads are moved to it. The new edge starts in source(Ii) and ends in
dest(Oj).

• Ii and Oi are removed in case their read coverage drops below threshold as
a result of moving it to the newly created Ci edges.

2.6.2 Helper Vertices
The bubble connection optimization works well when the bubbles being connected
contain at least one read vertex. If this is not the case, however, the effect of
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Figure 2.10: A general form of the subgraph

replacing input and output edges with connecting edges leads to a destruction of
the sequences recorded within the graph.

As an example, consider a case illustrated by the left part of Figure 2.11.
The relevant part of the reference runs from vertex 1 to 7 and the read coverage
supports a path of 3 → 4 → 5 → 6 → 1 → 2 → 4 → 5 → 7. Applying steps
described in this section results in creation of connecting edges 6 → 4 and 2 → 7
and removal of the edges 6 → 1, 2 → 4 and 5 → 7. Such a graph cannot be used
to recover the alternate sequence.

As this problem arises only when the bubbles are formed entirely by edges
connecting reference vertices (the short variant optimization produces such cases
for deletions), the countermeasure is quite straightforward; the solution is to
insert special placeholder vertices with an empty sequence. We use a conservative
approach for their insertion which means they divide the following types of edges:

• output degree of their source vertex is greater than one,

• input degree of their destination is greater than one.

The right part of Figure 2.11 indicates where the helper vertices would be inserted.
They divide edges 6 → 1, 2 → 4 and 5 → 7. If the bubble connection is applied
now, it leads to creation of edges H1 → H2 and H2 → H3 and deletion of H1 →
2, 3 → H2, H2 → 4 and 5 → H3. Thanks to the optimization, the alternate
sequence can be now recovered (3 → 4 → 5 → 6 → H1 → H2 → H3 → 7).

2.7 Variant Calling
The graph structure optimization phase ends by removing nodes and edges with
insufficient read coverage. Then, alternate sequences covered by the reads are
extracted. Because the intra species variability of biological sequences is relatively
small, it is practical to work with a list of differences (variants), rather than
whole sequences. The algorithm identifies parts of the sequence shared with the
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Figure 2.11: Use case for helper vertices

reference genome and the alternate alleles, which roughly correspond to one line
of a VCF file.

Variants are extracted by detecting certain subgraphs. When such a subgraph
is discovered, the variant sequence is determined and integrated back into the
graph by replacing its reference edges by a single variant edge. Read edges unique
to the variant are also removed from the subgraph which simplifies its structure.
The process of variant detection stops when no suitable subgraphs are found.

Figures 2.12 and 2.13 show four types of subgraphs used for variant extraction
and demonstrate how they are modified in the process. The reference part of the
graph must always start in vertex 1, end in n and all inner nodes must have one
input and one output edge Only edges of reference or variant type may be present
in the reference part. In all cases, this path is replaced with a variant edge, shown
as blue, connecting directly 1 and n. All edges that are removed as a result of
the extraction are plotted as discontinuous lines.

Simple Bubble

Read edges and vertices form a linear path leading from 1 to n. Since the edges
are not part of any other variant, they all are removed and the whole subgraph
degenerates only to two reference vertices connected by a variant edge (Figure
2.13a).

27



Figure 2.12: Variant detection cases; bubble with outputs (a), bubble with inputs
(b)

Bubble with Inputs

Figure 2.12b shows a subgraph where the read node has more than one input
edge. In such case, only the sequence of read edges leading from the 1 vertex
to the first vertex with more inputs than one is removed. Other read edges may
take part also in other variants.

Bubble with Outputs

This subgraph may be viewed as an opposite to the bubble with inputs. All read
vertices in the subgraph are allowed to have more outputs than one, but only
one input. Only the last sequence of edges, starting in the last read vertex with
output greater than one and ending in the n vertex is removed, since it may
participate only in one variant (Figure 2.12a).

Diamond

The most complicated case is shown under in Figure 2.13b. The sequence of read
vertices may contain one with output degree greater than one followed (not nec-
essarily directly) by one with unrestricted input degree. Only the edges covering
one part of the supposed diamond are present in one variant only and hence are
removed.

2.8 Variant Graph and Variant Filtering
When variants are extracted from the de Bruijn-like graph, they need to be filtered
and their genotype and phasing computed. For this, a variant graph is built and
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Figure 2.13: Variant detection cases; simple bubble (a), diamond (b)

the task is transformed into a graph coloring problem.
However, not all variants reach this stage. If a variant extracted in the previ-

ous step is considered as a low quality variant (number of supporting reads is not
above the low quality variant threshold), a binomial test is applied to check the
variant reliability. Variants with low read support may be caused by sequencing
errors and such need to be eliminated. The binomial test computes a probability
that the variant is not false positive by the formula

P (variant is reliable) = 2 · I0.5(r, a + 1)

where r is a number of reads supporting the reference part of the variant, a counts
the read support for the alternate part and I is the regularized incomplete beta
function.

If the probability falls below the binomial threshold, the variant is treated as
a false positive and is removed.

The variant graph represent each variant by two vertices; one for its reference
and one for its alternate sequence. The final task is to color each vertex by one
of these colors:

• Blue. The variant part is used by the first sequence.

• Red. The variant part is used by the second sequence.

• Purple. Both sequences go through the variant part.

If a vertex is colored purple, the vertex representing the other part of the vari-
ant is not required (no sequence goes through it) and is removed from the graph.
The deletion usually happens only to the vertices representing the reference pats,
since removing a vertex of the alternate path means that the variant was filtered
out.

Before coloring, graph vertices are connected by several types of bidirectional
edges that place various conditions on the color of their sources and destinations.
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• Variant edges connect vertices representing parts of one variant. Their
source and destination must be colored differently.

• Read edges connect variant parts covered by the same subset of reads
with size greater than a threshold, such vertices need to be colored by the
same color, with exception of purple. If one of the vertices is purple, an
arbitrary color may be assigned to the other.

• Pair edge put together variant parts that are covered by paired-end reads.
Since paired-end reads indicate that the variants covered by them belong
to the same alternate sequence, the coloring restrictions are the same as for
the read edges. Two vertices are connected by a paired edge if the share a
sufficient number of paired-end reads.

The graph usually has a form of many components. Variants in one component
share the same phasing. All the information used to create read and pair edges
remain stored in the graph vertices and can be used to detect false positives among
the variants, possibly together with a detection method based on searching for
certain types of subgraphs.

An example of a colored component of the variant graph can be seen on Figure
2.14. The component puts together two variants (at reference positions 534324
and 534447) and a residuum after a variant evaluated as a false positive (position
534547). Blue edges connect parts of each variant together, black edges report
connections based on paired-end information and parts sharing some amounts
of reads are connected by red. Numbers on the edges specify number of reads
participating in the connection.

The coloring clearly indicates that both variants are present only in one of
two alternate sequences (blue one). Since the variant at 534547 is considered as
false positive, both alternate sequences are directed through its reference part
and its alternate part is removed from the graph. Keeping residues after fake
variants may makes sense because other variants may connect through them. It
can also be observed that the phasing of the two true variants is enforced by the
paired-end information, not by reads covering both variants directly.

When the graph is colored, the genotype and phasing information are known.
The variants are written to the resulting VCF file.
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Figure 2.14: An example of a variant graph component
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3. Read Error Correction
Read data used as an input to many assembly algorithms contain plenty of errors,
such as wrongly read bases. To make the data usable for assembly, an error cor-
rection step is required. However, it does not remove all the errors and assembly
algorithms must cope with that fact, especially when dealing with read ends.

Currently, two different approaches are used to correct read errors, and both
are based on transforming individual reads into series of k-mers. One is based
on detecting errors as low covered edges (or paths) in a de Bruijn graph, the
other works with a k-mer frequency distribution. During development of our
algorithm presented in this thesis, we made several attempts to implement an
error correction algorithm based on de Bruijn graphs. Since we use these graphs
also during assembly performing error corrections on them seemed to be a natural
choice. Although they definitely helped to improve the quality of input reads,
all our attempts performed worse compared to the k-mer frequency distribution
approach.

In the end, we decided to adopt the error correction algorithm used by the
Fermi-lite library [8] and based on k-mer frequency distribution. This chapter
describes both approaches.

3.1 De Bruijn Graphs
This method transforms the input set of reads into a de Bruijn graph in a way
very similar to one used by our assembly algorithm. Although implementation
details may differ, the basic idea is the same: each read mapped to certain active
region is divided into a sequence of k-mers, each k-mer serves as a vertex and the
edges follow the k-mer order within the sequence. Reference sequence, covering
the active region, may also be included in the graph.

The basic assumption is that errors produce unique k-mers and thus also
nodes and edges with low coverage. Low-covered edges with source vertices that
have output degree greater than one are especially interesting. A change of even
a single base can divert a read path through edges with higher read coverage.
The locality of the change depends on the k-mer size used.

A simple example demonstrating the main idea behind the method is displayed
in Figure 3.1. Many reads share a sequence of TTGCGCTAA. However, there is also
a single read that contains one error — TTGCACTAA. The de Bruijn graph shown
on the figure uses k-mers 4 bases long. Combination of both sequences produces
a standard bubble.

If the bubble was supported by reasonable amount of reads, it would be treat-
ed as a SNP. However, because there is only one supporting read, it may be
reasonable to consider its divergence from other reads as an error, and to correct
it, so the read path would follow more populated edges. When the correction is
done, the resulting graph becomes linear, as shown on the right side in Figure
3.1.
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Figure 3.1: Simple example of a read error detection by utilizing de Bruijn graphs

3.2 K-mer Frequency Distribution
The method is based on the assumption that k-mer frequency distribution of
an error-free read set has certain statistical properties. Specifically,it follows the
Poisson distribution centered around the average k-mer coverage depth. Figure
3.2 shows the frequency distribution for an error-free read set and for a read set
with error rate 1%.

As can be seen in the figure, errors lead to enrichment of unique and rare
k-mers. The idea behind the correction algorithms based on this method is to
transform the low-frequency k-mers into those with frequencies in the right place.

This approach is also used by the Fermi-lite[8] software and is covered in the
next section.

Figure 3.2: K-mer frequency distribution for erroneous and error-free read sets[1]

3.3 The Fermi-lite Approach
Fermi-lite is a standalone C library as well as a command-line tool for assembling
Illumina short reads in regions from 100 bp to 10 million bp in size. It is largely
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a light-weight in-memory version of Fermikit[7] without generating any interme-
diate files[8]. Results of the assembly are not produced in the VCF format, but
as a graph. Read error corrections are not the main goal of the project, although
this step is definitely required for a successful assembly.

We have successfully extracted the error correction algorithm from the project.
The implementation should work well on multiprocessor systems and trades per-
formance over memory consumption. The algorithm proceeds in the following
steps:

• Preprocessing. The input read sequences are divided into k-mers, k-mer
frequencies are calculated.

• Error correction. The problem is reduced into a shortest path graph
problem and is solved by a modified version of Dijkstra’s algorithm.

• Unique k-mer filtering. Unique k-mers introduced during the error cor-
rection phase are removed from the read sequences.

Description of the error-correction algorithm is based on analysis of Fermi-
lite’s source code, Since the source, especially the analyzed part, lacks comments
and other characteristics typical for easy-to-read codes, some minor aspects of
the algorithm still remain unclear.

3.3.1 Data Preprocessing
The main goal of the preprocessing phase is to compute frequencies for all k-mers
found in the input read set. The frequencies are computed by inserting the k-mers
into a k-mer table. During this phase, several terms related to k-mers and their
occurrences are introduced:

• A k-mer occurrence is defined as high quality if quality of all bases covered
by it is greater than certain threshold (set to 20 by default). If not all bases
satisfy this condition, the occurrence is considered as low quality.

• A k-mer is considered solid if its frequency is greater than certain threshold.

• A k-mer is considered unique if it its frequency is zero.

• A k-mer is referred as absent if it its frequency is is below certain threshold.

K-mers are implemented as four 64-bit integers (Figure 3.3). Each base is repre-
sented by two bits. This limits the maximum k-mer size to 64 but allows effective
implementations of standard k-mer operations. The first 64-bit integer stores
least significant bits of the k-mer bases, the second contains their most signifi-
cant bits. The bases are stored in an opposite order — the first base resides in
bits k − 1, the second to k − 2 and so on. The second two integers store the same
content, but with different order — the first base is stored in bits 0, the second
in bits 1 etc. Such a k-mer form vastes memory; only two 64-bit integers are
required to hold all the necessary information. The error correction algorithm
often takes advantage of the two-integer representation.

Such a representation allows quick appends or individual base changes. To
append a base into the first two integers, they just need to be shifted by one to
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the left, ORed with the new base, and ANDed with 2k − 1 to set the unused bits
to zero.

Since the k-mer representation reserves only 2 bits for one base, it is used
to represent k-mers containing at most four types of bases which seems to be
OK since the genome also consists from four types of bases. However, a virtual
base N may appear within a read sequence, denoting places that the sequencing
technology was unable to read. Fermi-lite solves the issue by ignoring all k-mers
containing any number of Ns.

Figure 3.3: K-mer representation used by the Fermi-lite project

The k-mer table is actually a set of 2lpre khash tables. When a k-mer is being
inserted or looked up, lpre bits of its data are used to select the table and the rest
serves as an input to the hash function. lpre = 20 by default. This representation
of the k-mer table increases overall memory consumption, but has great impact
on its performance in parallel environments.

The table uses 14 bits to track occurrences of each k-mer. Lower 8 bits count
low quality occurrences, higher 6 bits are used by high quality ones. The counting
stops on values of 255 and 63, no integer overflow happens. The table actually
stores their hashes and occurrences, rather than full k-mers. Hence, distinct k-
mers may be treated as one, since the table may use up to lpre of k-mer content
to choose the right khash table, and up to 50 bits may be stored as a key. That
means, key collisions may be avoided if the k-mer size drops below 35 (the table
actually has a different hash function for k-mers size below 33).

After the insertion stage, a k-mer frequency distribution is computed individ-
ually for low quality and high quality occurrences. The most common frequency
is named mode and is used during the second and third phase of the algorithm.

All phases of the algorithm are partially driven by its parameters. Table 3.1
provides a short description of them.
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3.3.2 Error Correction
The error correction is performed separately for each read sequence. The cor-
rection problem is transformed into a shortest-path search in a layered oriented
graph. Vertices represent individual k-mers, edges connect adjacent ones and
their weights reflect the cost of transforming one k-mer to another. The weight
function is defined by formula

w(ki) = wabsent high · nhq(ki) + wabsent · nlq(ki) + wec · ec(ki) + wec high · bq(ki)

nhq(ki) =

⎧⎨⎩0, ki is a high quality k-mer
1, otherwise

nlq(ki) =

⎧⎨⎩0, ki is a low quality k-mer
1, otherwise

ec(ki) =

⎧⎨⎩0, the edge ending in ki does not introduce an error correction
1, otherwise

bq(ki) =

⎧⎨⎩0, the last base of ki has quality above q
1, otherwise

Dijkstra’s search algorithm is used and its main loop can be decomposed into
the following steps:

• Retrieve the vertex with lowest price, and its k-mer from the heap.

• by separately appending A, C, G, and T to the k-mer, touch the adjacent
vertices on the next layer and compute the cost of their connections. With-
out appropriate pruning, this step would produce exponential amount of
new vertices. Thus, error correction resulting into non-solid k-mers are not
tracked. Additional criteria, such as proximity of a corrected high-quality
k-mer, or clustering of corrected bases, are applied, however, this part of
the code still remains unclear.

• Insert the newly created vertices into the heap.

Each path from the starting vertex to a vertex in the last layer represents one
possible corrected part of the read sequence. Four such paths are computed. The
path computation stops if a gap greater than max path diff is detected in their
costs.

The error correction algorithm described above is applied to both the read
sequence and its reverse complement, which is reverse-complemented again after
the correction is finished. Thus, two potentially error-free sequences are generated
for one read. The resulting corrected sequence is their combination — if one of
the source sequences contains the N base at certain position, content of the second
one is used instead. This approach reduces number of Ns in the corrected read
set.
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3.3.3 Unique k-mer Filtering
The error correction phase may produce unique k-mers which, as Figure 3.2 indi-
cates, are not desirable. The Fermi-lite library attempts to get rid of such k-mers.
Each corrected read sequence is processed separately (and in parallel with others).

At first, the longest k-mer sequence covered by non-unique k-mers is found.
Denote its length, in k-mers, as n and the read sequence length as l. Then, the
read sequence between the read start and the first base covered by the found
k-mer sequence is removed from the read. If the read is covered only by non-
unique k-mers, nothing is removed, since the k-mer sequence covers the whole
read. However, if the following condition holds:

n + k − 1
l

< min trim frac

the read is removed from the read set. This case includes also zero-length k-mer
sequences that appear when the read contains unique k-mers only.
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Table 3.1: Parameters of the Fermi-lite algorithm
Parameter Default value Description

k - K-mer size. By default, this
value is set to the base-two
logarithm of the total num-
ber of bases.

q 20 Base quality threshold used
to recognize high quality
content from low quality
one. P (error) = 10− q

10

min cov 4 Mimi mum frequency for
solid k-mers.

win multi ec 10 Takes part in pruning the
graph created during the er-
ror correction phase. The
exact meaning, however, re-
mains unclear.

lpre 20 Number of khash tables in
the k-mer table, defined as
2l pre

min trim frac 0.8 Defines how long the se-
quence of solid k-mers must
be in order not to remove
the read during unique k-
mer filtering.

wec 1 Participates in the weighing
function used in the error
correction step.

wec high 7 Participates in the weighing
function used in the error
correction step.

wabsent 3 Participates in the weighing
function used in the error
correction step.

wabsent high 1 Participates in the weighing
function used in the error
correction step.

max path diff 15 Defines a maximum cost dif-
ference between paths found
by the modified Dijkstra’s
algorithm. If this value is
reached, no additional path-
s are examined.
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4. Results
When developing a new algorithm, an important part is testing and evaluation
against existing solutions. This chapter describes this stage, informing about a
data set used to debug and improve our solution, and the method of comparison
with other solutions, such as Fermikit and GATK.

4.1 Test Data Set
chr1:1-40,000,000 region of the high-coverage data from the 1000 Genome Project.
In addition to the input reads [10], also variants called by Fermikit and GATK
are available in form of VCF files [11]. The VCF files were used to compare the
accuracy of the algorithm. In order to be able to make meaningful comparisons
and to avoid remapping of all reads, we used the same version of the reference
genome which was used also by the 1000 Genome Project (GRCh37 [12]).

The test read set consists of 12,475,011 reads with length of 151 bases. Figure
4.1 shows k-mer frequency distribution of the set with k-mer size of 21 bases. The
shape of the graph, when compared to Figure 3.2 suggests that the set indeed
contains read errors, therefore the error correction step was applied.

Figure 4.1: K-mer frequency distribution of the raw input read set

As Table 4.1 indicates, the error correction process removed and shortened a
significant proportion of the reads. Approximately 21% of the input reads was
subject to repairs. Figure 4.2 shows a distribution of the number of repaired bases
per read, not including effects of read trimming.

Figure 4.3 shows the k-mer frequency distribution of the corrected read set.
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Table 4.1: Statistics related to error correction of the test data set
Category Value Percentage

Total reads 12,475,011 -
Removed 64,653 0.52% of all reads.
Shortened 944 0.0076% of all reads
Total bases 1,880,123,991 -

Bases repaired 5,098,764 0.27% of all bases

Figure 4.2: Distribution of a number of repaired bases in a single read

Although still not perfect, the distribution of corrected reads resembles the the-
oretical distribution of an ideal error-free set more than the distribution of raw
reads.

As described in Section 2.1, not all input reads, even from the corrected set,
can be processed by our algorithm. Table 4.2 summarizes numbers of reads
discarded for various reasons. The preprocessing phase removed nearly one fifth
of the corrected data set (18.99%). Most of the reads were removed due to being
possible duplicates (87.65%). Quite a large portion of reads were not accepted
because of their low mapping quality (12.97%). Also, about 3% of all the reads
were shortened in order to remove soft-clipped regions.

4.2 Quality Evaluation
In order to evaluate the algorithm, the generated VCF files were compared to
those generated by the following variant calling toolchains:

• GATK. These VCFs were taken as reference points, since the method used
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Figure 4.3: K-mer frequency distrubtion of the corrected read set

Table 4.2: Categories of reads present within the corrected test data set
Name Value Percentage

Total reads 12,410,475 -
Bad reads 2,357,002 18.99% of all reads

Low MAPQ 305,588 12.97% of bad reads
Unmapped 5,020 0.21% of bad reads

Supplementary 33,621 1.43% of bad reads
Duplicate 2,065,795 87.65% of bad reads

Soft-clipped 305,209 3.04% of accepted reads

by GATK should be very similar to our algorithm. Hence, results of all
algorithms were compared against them.

• Fermikit. Unlike GATK and our algorithm, Fermikit’s assembly algorithm
is based on the OLC concept.

• Fermikit on regions. This is a combination of the OLC approach used
by Fermikit and the short region one adopted by our algorithm (and also
by GATK). The fermikit assembly algorithm was run on exactly the same
regions as our algorithm. The aim of this test case was to force the Fermikit
to minimize differences of outputs generated by DBG and OLC algorithms.

• samtools mpileup, bcftools call. A traditional variant caller implement-
ed by SAMtools and BCFtools packages [13].

Results generated by these algorithms were compared to those of GATK using
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the toolrtgeval. Rtgeval is a wrapper for RTG’s vcfeval, a sophisticated open
source variant comparison tool developed by Realtime Genomics. It simplifies the
use of vcfeval and potentially helps to get consistent results given VCFs produced
by different variant callers [14].

Rtgeval accepts two VCF files on input: a test set and a truth set. The
truth set is a VCF file generated by a reference algorithm, in our case GATK.
The test set VCF is produced by the algorithm to be tested. The evaluation is
done separately for SNPs and indels and each variant is sorted into one of three
categories:

• True positive (TP). The variant is present in both sets.

• False negative (FN). It is present in the truth set only.

• False positive (FP). It can be found only in the test set.

Rtgeval can compare VCF files in three different modes: positional, allelic
and genotypic. The positional mode is intuitive; the tool is determining whether
the same varaints are present at approximately the same position inside both test
and truth set. If the positions difference does not exceed 10 bases, the variants
are considered true positives. Otherwise, either false negative, or fale positive
is reported. In allelic mode, the tool focuses on biallelic variants and evaluates
whether they are correctly detected by both tested algorithms. The genotyping
mode compares genotype and phasing information of the variants.

4.2.1 Positional
The comparison in positional mode is shown in Table 4.3. It is clear that variants
called by OLC and DBG classes of algorithms indeed are not the same. The
percentages were counted from the total number of variants in GATK’s VCF file,
separately for SNPs and indels.

Fermikit, as a representative of the OLC class, performs well when looking
at numbers of false positives (below 1% in case of SNPs, ˜2.3% indels), which
is, however, trated off by quite big percentage of undetected variants (about
10% for SNPs and 28% indels). Numbers of false negatives are reduced when
the algorithm is run on the region basis, although false positives roughly triple.
Such situation seems to be typical also for other algorithms or different parameter
settings of one algorithm; when the number of false negatives drops, false positives
rise and vice versa.

Our algorithm was run with default settings described in Section 2.2. The
value of 4 for the global threshold is, compared for example to HaploCall that
uses 2, high. It was chosen to fight high numbers of false positives. The default
settings actually removes the binomial test from the variant filtering process since
no low quality variants actually emerge. As discussed later, the binomial test,
although useful in some cases, did not prove to be a world-saver.

When talking about SNPs, results produced by the SAMTools and BCFTools
tandem form quite the opposite to those of the Fermikit run at the whole genome.
Less than 3% of SNPs found by GATK were left undiscovered, however, howerver,
the number of false positives increased. It is true that our algorithm did not
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Table 4.3: Positional comparison of results generated by our algorithm

/ Fermikit Fermikit (regions) mpileup Our algorithm
SNP TP 45,241 (89.3%) 47,630 (94%) 49,201 (97.1%) 48,172 (95%)
SNP FN 5,432 (10.7%) 3,043 (6%) 1,472 (2.9%) 2,501 (5%)
SNP FP 385 (0.76%) 1,441 (2.84%) 2,090 (4.12%) 816 (1.61%)

INDEL TP 7,853 (71.6%) 9,602 (87.55%) 8,707 (79.39%) 9,476 (86.4%)
INDEL FN 3,114 (28.4%) 1,365 (13.45%) 2,260 (20.61%) 1,491 (13.6%)
INDEL FP 250 (2.28%) 835 (7.61%) 1,412 (12.95%) 1,255 (11.4%)

achieved nearly the same number of false negatives even when run with low
global threshold causing loads of false positives.

A deeper analysis of the results obtained by running our algorithm with lower
values of the global threshold (2 and 3 to be precise) and different initial k-mer
sizes suggests that the variant filtering step needs additional work to be done. It
is true that information stored inside the variant graph can be used to get hints
what variants should be filtered out. Variants with the reference and alternate
sequences covered by the same reads, or paired-end reads seem to be, at first
glance, good candidates for false positives. Unforunately, these information need
not to be treated as hard facts. Simply classifying variants with such properties ad
false positives did not bring expected results. Furthermore, coloring restrictions
of the variant graph do not permit to deduce genotypes for such cases.

Furthermore, the analysis suggested that many of the undetected GATK vari-
ants were removed because of their low read coverage. The low number of sup-
porting reads was not, howerver, cuased by a sequencing error, but by a lower
read coverage of the whole active region. Hence, introducing a binomial test to
resolve such cases seemed to be a good idea. Effects of the test addition were
observed more closely on our algorithm run with the initial k-mer size set to 31,
and with global threshold of 2. Figure 4.4 shows number of TPs and FPs filtered
out when the binomial test had been applied to all called variants. Figure 4.5 is
a result of applying the test only to variants with less than 4 supporting reads
(the low quality variant threshold was set to 3).

The test run produced a total of 59062 variants shared with GATK’s VCF,
and 4738 false positives. As Figure 4.4 illustrates, even setting a value of the
binomial threshold to 1% removes about 2100 of true positives. Although this
is roughly only 3%, we do not consider the case as a good trade-off even with
regard to percentage of removed false positives (nearly 50%).

When applied only to the variants with low read support, the binomial test
gives much more sense. Setting the binomial threshold to 1% removes only 411
true positives but has great effect on sorting out the false variants. Unfortunate-
ly, we do not consider the effect as great enough, since running our algorithm
with lower global threshold produces more false positives than the binomial test
removes.
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Figure 4.4: Numbers of TPs and FPS removed by the binomial test applied to
all called variants

Figure 4.5: Numbers of TPs and FPS removed by the binomial test applied to
variants with less than 4 supporting reads
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4.2.2 Genotyping
We were unable to use the Rtgeval tool in the genotypic mode, causes of its
failure are unknown. Error reporting mechanisms of the tool are not too advanced
because the failure is reported as an exception caused by opening a non-existent
file. All input VCF files were validated.

Nevertheless, results would not be better than the positional case. Our al-
gorithm fails to color about 5% of the variant graph. Genotyping information
of uncolored variants is incorrect by design. Also, we are filling the phasing in-
formation, based on paired-end information and read coverage intersections of
individual variants, much more aggresively than other solutions. For this reason,
the test data set may prove improper for genotypic evaluation.
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5. Conclusion and Future Work
We have developed an algorithm for reference-aided local genome assembly. We
have compared it against well-known solutions, such as GATK, Fermikit or the
traditional caller implemented in SAMTools. Although the comparison did not
ended badly, there definitely is a space for improvements. Our implementation,
stored on a DVD-ROM attached to this work, should be viewed as a prototype,
not a solution ready for production. The implementation is not as fast as it
should be, since no extra performance optimizations were made.

The algorithm should also be tested with more data sets, not just only at a
40 MB region of the first human chromosome. Additional testing may prevent
over-tuning to certain test cases. One of the test cases should include variants
with more phasing information. Our algorithm deduces the phasing information
much more aggressively than others.

Probably the weakest part of the algorithm is the variant filtering step which
should recognize and eliminate fake variants. More sophisticated methods than
a binomial test and read coverage should be applied. For example, the algorithm
does not utilize base qualities because our attempts to do so did not improve
the results in any significant manner. Because of an absence of a good variant
filtering mechanism, a constant quality value is assigned to all called variants
since we are not able to reliably tell how much a certain variant may be fake.
The binomial test seemed to be a reasonable solution, however, it succeeded only
on variants with low read coverage, and even then its successes were limited.

The variant graph constructed during computation of genotype and phasing
information, also may have a great potential in recognizing fake variants. Unfor-
tunately, all attempts to do so failed so far.
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