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Introduction
The subject of coloring graphs on surfaces goes back to the work of Heawood
[1890], who proved that any graph G drawn on surface Σ is t-colorable for any t
satisfying t ≥ H(Σ) := ⌊(7 +

√
24γΣ + 1)/2⌋ unless Σ is the sphere. The symbol

γΣ denotes the Euler genus of Σ defined as γ = 2g when Σ = Sg (orientable
surface of genus g), and γ = k when Σ = Nk (non-orientable surface with k
crosscaps). Incidentally, the assertion holds for the sphere as well, as stated by
the Four-Color Theorem (Appel and Haken [1977], Appel et al. [1977], Robertson
et al. [1997]).

The bound given by Heawood’s formula is tight. As proven by Ringel and
Youngs [1968], the bound is best possible for all surfaces except the Klein bottle,
for which the correct bound is 6.

While Heawood’s formula gives a tight bound on the possible values of chro-
matic number of graphs on almost all surfaces, values close to the bound are
achieved by only relatively few graphs. An improvement of Heawoods’s formula
in this sense was brought by Dirac [1952] and Albertson and Hutchinsonn [1979]
who showed that the only graphs with chromatic number exactly H(Σ) contain
a subgraph isomorphic to the complete graph on H(Σ) vertices.

Further improvements are possible for large enough graphs. A graph G is
k-critical if its chromatic number is exactly k and every proper subgraph of G
has a chromatic number at most k−1. It follows from Euler’s formula that if Σ is
a fixed surface and a graph G drawn on Σ has sufficiently many vertices, then G
has a vertex of degree at most six. Consequently, for every k ≥ 8 a graph drawn
on Σ is not k-critical except for finitely many exceptions with bounded number
of vertices. The same argument can be extended to k = 7.

From the work of Thomassen [1997] we have an extension of the same argu-
ment even to k = 6. Thus it is shown that for every surface there are only finitely
many 6-critical graphs that can be drawn on Σ. An immediate consequence from
a computational point of view is that for every k ≥ 6, fixed surface Σ and a graph
G drawn on Σ it is possible to efficiently test whether G is (k − 1)-colorable by
testing the presence of all possible k-critical subgraphs of G in linear time. Such
algorithm can be constructed if an explicit full list of k-critical graphs on Σ is
provided. The lists of 6-critical graphs are explicitly known for the projective
plane (Albertson and Hutchinson [1979]), the torus (Thomassen [1994a]) and the
Klein bottle (Kawarabayashi et al. [2008], Chenette et al. [2012]).

Since the problem of testing 2-colorability is polynomial-time solvable, and
the problem of testing 3-colorability for planar graphs is NP-complete (Garey
and Johnson [1979]), the only remaining non-trivial case is 4-colorability. It is
an open problem whether there is a polynomial time algorithm for testing 4-
colorability of graphs on a fixed surface Σ other than the sphere. However a
characterization similar to the one described for (≥ 5)-colorability above does
not exist, as shown by an elegant construction of Fisk [1978].

Let us consider the analogous problem for embedded graphs of larger girth.
Chromatic number of graphs of girth at least five is characterized by a deep
theorem of Thomassen [2003] who showed that for every k ≥ 4 and every surface
Σ there are only finitely many k-critical graphs of girth at least five that can
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be drawn on Σ. Thus testing (k − 1)-colorability of graphs with girth at least
five again reduces to deciding the presence of finitely many obstructions for any
k ≥ 4. There actually turn out to be no 4-critical graphs of girth at least five on
the projective plane and the torus (Thomassen [1994b]) and on the Klein bottle
(Thomas and Walls [2004]).

Theorem 1 (Thomassen [2003]). If G is a graph drawn on torus such that all
contractible cycles have length at least five, then G is 3-colorable.

The presence of cycles of length four complicates matters. Similarly as in
the general case, if G is a triangle-free graph drawn on a fixed surface Σ and
G has sufficiently many vertices, then G has a vertex of degree at most four.
Analogously to the general case we get that G is not 6-critical and the result can
be strengthened to show that G is not even 5-critical. Thus testing k-colorability
of triangle-free graphs on a fixed surface Σ is a linear-time solvable for any k ≥ 4.
However for k = 3 the situation is more complicated. The well-known theorem of
Grötzsch [1959] shows that every triangle-free planar graph is 3-colorable. This
theorem, while fully characterizing 3-colorability of planar graphs, also motivates
the study of the problem on other surfaces.

Theorem 2 (Grötzsch [1959]). Every planar triangle-free graph is 3-colorable.

Unfortunately, Grötzsch’s theorem cannot be extended to any surface other
than the sphere. For instance, the graphs obtained from an odd cycle of length five
or more by applying Micielski’s construction (Bondy and Murty [1976]) provide
an infinite class of 4-critical graphs embeddable in any surface other than the
sphere. This of course means that 3-colorability of triangle-free graphs on a fixed
surface Σ cannot be decided by testing the presence of finitely many obstructions
(however a more sophisticated algorithm already exists as we will see below).

The only non-planar surface for which the 3-colorability problem for triangle-
free graphs is fully characterized is the projective plane. Building on earlier work
of Youngs [1996], Gimbel and Thomassen [1997] obtained an elegant characteriza-
tion stating that a triangle-free graph drawn in the projective plane is 3-colorable
if and only if it has no subgraph isomorphic to a non-bipartite quadrangulation
of the projective plane. Less is known regarding surfaces of higher genus.

For a graph G embedded on a surface, let S(G) denote the multiset of lengths
of (≥ 5)-faces of G (thus, the aforementioned result of Gimbel and Thomassen
[1997] implies that S(G) = ∅ for every 4-critical projective-planar triangle-free
graph G). Dvořák et al. [2015a] proved that for any surface Σ, there exists a
constant cΣ such that every 4-critical triangle-free graph G embedded in Σ with-
out non-contractible 4-cycles satisfies ∑

S(G) ≤ cΣ; i.e., G has only a bounded
number of faces of length greater than 4 and these faces have bounded size. Such
a bound does not hold in general if non-contractible 4-cycles are allowed (but
it does hold for toroidal graphs, as we will see below). A more detailed treat-
ment of 4-critical triangle-free graphs with non-contractible 4-cycles was given by
Dvořák and Lidický [2015]. Dvořák et al. [2015b] proved that for any surface Σ,
a triangle-free graph embedded in Σ with large edgewidth is 3-colorable unless
Σ is non-orientable and the graph contains a quadrangulation with an odd ori-
enting cycle. They also designed a linear-time algorithm to test 3-colorability of
embedded triangle-free graphs (Dvořák et al. [2016]).
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The goal of this thesis is to contribute to filling in the remaining gap, in
particular to provide a partial characterization of 3-colorability of triangle-free
graphs embedded in the torus. Král’ and Thomas [2008] studied the special case
of 4-critical triangle-free graphs embedded in the torus without odd-length faces,
and showed that there is only one such graph (depicted as I4 in Figure 5.2). On
the other hand, the theory of Dvořák et al. [2015a] can be used to show that if
G is a 4-critical triangle-free graph embedded in the torus (even possibly with
non-contractible 4-cycles), then ∑

S(G) ≤ 500. We strengthen this bound sub-
stantially, providing in particular the exact list of multisets that can be realized
as S(G) for some such graph G.

Thomassen [2003] proved that every graph embedded in the torus without
contractible (≤4)-cycles (but possibly with non-contractible triangles or 4-cycles)
is 3-colorable. Consequently, every 4-critical triangle-free graph drawn in the
torus has a 4-face. As a first step we show the following much stronger claim.
Lemma 11. If G is a 4-critical triangle-free graph drawn in the torus, then every
vertex of G is incident with a 4-face.

All these results emphasize the importance of 4-faces in the considered prob-
lem. In particular the previously mentioned results together imply that the struc-
ture of every 4-critical triangle-free graph drawn on torus can be deconstructed
into a set of 4-faces and a constant-limited number of additional edges.

A natural way of dealing with 4-faces is to unify opposite vertices of one of
them, effectively removing it from the graph. This operation is of particular
interest as while reducing size of the graph it never produces graphs with lower
chromatic number. In particular, if we use such an operation on a 4-critical graph
and limit it to produce only triangle-free results, it always produces further graphs
with chromatic number at least 4 from which we can obtain smaller 4-critical
triangle-free graphs. We formalize this process as a reduction.

The main focus of our work is a study of graphs that cannot undergo any
further reduction. We say that a 4-critical triangle-free graph G embedded in the
torus is irreducible if each two opposite vertices incident with a 4-face of G are
joined by a path of length three, so that their identification creates a triangle.
Since all 4-critical graphs eventually reduce into these irreducible graphs, we may
use them to study properties of the whole class. A number of properties of 4-
critical triangle-free toroidal graphs can be proven by induction using the (inverse)
reduction operation in the inductive step. The importance of irreducible graphs
stems from the fact that they form the base case of such inductive arguments.

We provide a way to enumerate all the irreducible graphs. Let B denote the
graph obtained from K4 by subdividing edges of its perfect matching twice, with
its unique embedding in the torus that has a 4-face. By considering a 4-face in any
irreducible graph G and the two paths of length three certifying its irreducibility,
we conclude that G contains B as a subgraph. Based on Lemma 11 we can then
build up any irreducible graph from B by repeatedly adding 4-cycles that bound
faces, and by adding paths of length three between their opposite vertices to
guarantee irreducibility.

It is not a priori clear that the number of irreducible graphs is finite. How-
ever, we design and implement an algorithm that carries out the enumeration
process (and avoids repeated enumeration of isomorphic graphs as well as elim-
inates graphs containing substructures incompatible with 4-criticality of their
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supergraph to increase efficiency). Running this algorithm produces four irre-
ducible graphs (depicted in Figure 5.2) and its termination shows that there are
no other irreducible graphs.

The explicit knowledge of irreducible graphs enables us to prove a number of
properties of 4-critical triangle-free toroidal graphs. All irreducible graphs have
representativity at least two and they have at least seven 4-faces. We argue that
both of these parameters are non-increasing in respect to reduction operation
which shows that both of these bounds also hold for every 4-critical triangle-free
toroidal graph.

In the last part, we present a partial analysis of a process inverse to reduc-
tion. In doing so, we prove the following theorem. Recall that S(G) denotes the
multiset of lengths of (≥ 5)-faces of G.

Theorem 36. Every 4-critical triangle-free graph G drawn on torus satisfies one
of the following properties:

1. S(G) = {7, 5}

2. S(G) = {6, 5, 5}

3. S(G) = {5, 5, 5, 5}

4. S(G) = {5, 5}

5. S(G) = ∅ and G = I4 (see figure 5.2)

In further work we intend to analyze this reverse process in a more detailed
way to provide the complete characterization of 4-critical toroidal triangle-free
graphs.
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1. Preliminaries
A graphG consists of finite set V (G) of vertices and a finite set E(G) of undirected
edges. The graphs we generally consider have no parallel edges and no loops,
although some of our constructions will require considering multigraphs with
loops. If for an edge e and vertices u and v we have e = uv, we say that e
connects u and v and that u and v are neighboring vertices.

A walk is a sequence of not necessarily distinct vertices p0, p1, ..., pk connected
by edges p0p1, p1p2, ..., pk−1pk. A path is a walk with all vertices distinct. We
may further specify that a walk is a k-walk resp. k-path (often denoted as Pk) to
specify its length in the number of edges. A closed walk is a sequence of vertices
p1, p2, ..., pk connected by edges p1p2, p2p3, ..., pk−1pk, pkp1. A cycle is a closed walk
with all vertices pairwise distinct. We may further specify that a closed walk is
a closed k-walk resp. that cycle is a k-cycle to specify its length in the number
of edges.

We always consider graphs associated with a specific drawing on torus. We
explicitly acknowledge this by stating that G is drawn on torus. The drawing δ of
a graph G on torus T is defined as a pair of functions δ : V (G) → T associating
distinct vertices of G with distinct points in T, and δ : E(G) → 2T associating
distinct edges of G with pairwise disjoint open arcs in T such that for every
uv ∈ E(G) we have δ(uv) = δ(uv) ∪ δ(u) ∪ δ(v) where bar denotes a set closure
and for every w ∈ V (G) : δ(uv) ∩ δ(w) = ∅.

The arcwise connected components of the surface minus the drawing are called
faces. A face is 2-cell, if it is homeomorphic to an open disk. The boundary of
a 2-cell face is an image of a closed walk called the facial walk. A 2-cell face is
a k-face if its facial walk has length k. A drawing is a 2-cell drawing if all of its
faces are 2-cell and thus have a single facial walk. Generally we will only consider
2-cell drawings of graphs.

A cycle C is contractible if its drawing can be continuously transformed within
the surface into a single point and is non-contractible otherwise. The interior
of a contractible cycle C is the component of torus minus the drawing of C
homeomorphic to an open disk, the other component is the exterior. A cycle C is
facial if it is a facial walk for some face. A cycle C is separating if it is contractible
and it is not facial, equivalently there are elements of G drawn in the interior of
C, as well as in the exterior of C.

We consider two graphs drawn on a surface isomorphic if and only if their
drawings can be transformed into one another by a homeomorphism.

A 2-cell embedding of a graph can be described purely combinatorially by
specifying the cyclic ordering of edges incident with each vertex. This ordering
corresponds to a clockwise order of edges in the drawing as they appear around
given vertex. Two graphs are then isomorphic, if and only if the underlying graph
structures are isomorphic and the edge orderings are the same or reversed.

For all constructions, we consider the properties of drawing to be hereditary
to all shared elements. Thus for a graph G drawn on torus, a drawing of each
subgraph of G is well defined. Similarly constructions such as insertion of a
new edge into specific face or a contraction of an edge inherit drawings of all
shared elements from the original graph. For 2-cell drawings we always define the
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drawing of the new elements in the only (up to isomorphism) natural way so that
the resulting graph is drawn on torus. We consider these drawing manipulations
trivial and omit explicit technical descriptions, although we will always keep in
mind validity and uniqueness of all such constructions and will perform graph
modifications with respect to a drawing.

A cornerstone of our study will be the following theorem. Let C be a proper
subgraph of G. We say that G is C-critical for k-coloring, for some constant k, if
for every proper subgraph H ⊂ G such that C ⊆ H, there exists a k-coloring of
C that extends to a k-coloring of H, but not to a k-coloring of G.

Theorem 3 (Gimbel and Thomassen [1997]). Let G be a connected triangle-free
plane graph with the outer face bounded by a cycle C of length at most 6. Then
G is C-critical if and only if C is a 6-cycle, all internal faces of G have length
exactly four and G contains no separating 4-cycle.

This theorem enables us to characterize local properties of 4-critical graphs
drawn on torus. Let Λ be a subset of the torus homeomorphic to the open disk.
We say that a closed walk C bounds the disk Λ if Λ is a face of the subgraph of
G consisting of vertices and edges of C and C is the facial walk of this face.

Let C be a closed walk bounding a disk Λ. If C is a contractible cycle, then
Λ is exactly its interior. Similarly, the facial walk of a 2-cell face f is a closed
walk that bounds the disc f . As another example, let C be a contractible 6-cycle
abcdef and ∆ its interior. Let cf be an edge drawn in the exterior of C. By
contraction of cf we obtain a closed walk of length six, abcdec, bounding a disk
Λ which naturally corresponds to a deformation of ∆. On the other hand if the
edge cf is drawn in the interior of C, then the contraction of cf splits ∆ into two
3-faces none of which is bound by the closed walk abcdec and so we obtain no
closed walk of length 6 bounding a disk as the disk Λ no longer exists.

The closed walk C bounding the disk Λ is separating if it is not a facial walk;
equivalently, this is the case if there are elements of G drawn in Λ, as well as
elements of G that are not elements of C and are drawn outside of the closure
of Λ. A chord of a closed walk C bounding a disk Λ is an edge connecting two
vertices of C that is drawn inside Λ. This is a natural extension of standard
definition of chord for (contractible) cycles.

Lemma 4. Let G be a graph drawn on torus. Let C be a closed walk in G
bounding disk Λ, and let H be the subgraph of G drawn in the closure of Λ. If G
is 4-critical and Λ is not its face, then H is C-critical for 3-coloring.

Proof. Let G′ denote the subgraph of G drawn in the closure of the complement
of Λ. Note that C is the intersection of G′ and H (Λ is an open disk).

Consider a proper 3-coloring φ of C which can be extended to G′. Then φ
cannot be extended to H because G = G′ ∪H and G is not 3-colorable. However,
for every edge e ∈ E(H)\E(C) there exists a proper 3-coloring of G − e. This
coloring defines a proper 3-coloring of C which extends to H − e but not to H.
Therefore, H is C-critical.

An intuitive interpretation of Lemma 4 is that 4-critical graphs can be locally
thought of as C-critical graphs for 3-coloring.

Finally, we summarize some of the previously mentioned key properties in the
following useful lemma.
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Corollary 5. Let G be a 4-critical graph drawn on torus with no contractible
triangles. Then G satisfies all of the following:

• The graph G has a 4-face.

• The graph G has no separating closed walk of length 4 or 5 bounding a disk.

• Let Λ be a disk bound by a separating walk of length 6 in G. Then all faces
contained in Λ are 4-faces.

Proof. Joint consequence of Theorem 1, Theorem 3 and Lemma 4.
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2. Deflation
The natural way of dealing with 4-faces in general graphs is to unify their opposite
vertices; this effectively removes a 4-face from the graph while keeping some
key properties related to chromatic number unchanged. In this section we will
formally define such operation and explore some of its structural properties related
to triangles and 4-faces.

Let G be a graph drawn on torus with a 4-face f . Consider the following
operation. Let v1v2v3v4 denote the cycle bounding f . We identify vertices v1 and
v3 into a single vertex v′ and remove one of the two parallel edges v′v2 and one
of the two parallel edges v′v4. We consider v′ to be a new vertex.

Let H be the graph obtained by the described operation. We say H is a
deflation of G. More precisely we may say that H is an f -deflation of G. Note
that while we generally consider graphs without parallel edges and loops, H may
contain them (e.g. if v1v3 was an edge in G).

Alternatively we may understand this operation as a contraction of an imagi-
nary v1v3 edge placed so that it forms a chord of f (in other words, the imaginary
v1v3 edge is drawn inside f). In this view we may obtain the new drawing by a
natural continuous transformation of the imaginary edge into a single point which
becomes the drawing of v′.

Note that exchanging vertices v1 and v3 or v2 and v4 would not change H.
On the other hand, every 4-face can be deflated in two directions, as the role of
pairs v1, v3 and v2, v4 is different. Exchanging the pairs results in two generally
different deflations.

Since it is often necessary to denote many elements of a given graph when
discussing properties of deflations, we will use the following notation. We say
that deflation of G is of form (v1v2v3v4) → (v2v

′v4) if v1v2v3v4 is the facial walk
of the deflated 4-face in G and v′ is the unification of v1 and v3; and therefore
the path v2v

′v4 corresponds to the deflated 4-face in the drawing of H.
Consider the path v2v

′v4 in H. Since we consider H being drawn on torus, we
can distinguish edges that were incident with v1 from edges that were incident
with v3 before deflation (up to exchanging v1 and v3), depending on from which
side they attach to the path v2v

′v4 (this naturally extends even to a potential loop
on v′). We observe that there exists only one way to inflate such a path back
into a 4-face. Because of symmetry of deflation, we do not need to distinguish
the endpoints of the path v2v

′v4.

Lemma 6. Let G be a graph with no proper 3-coloring. Let G′ be a deflation of
G. Then G′ has no proper 3-coloring, and hence has a 4-critical subgraph.

Proof. For contradiction, let G′ have a proper 3-coloring ψ. Let v1 and v3 be the
vertices of G unified into vertex v′ by deflation.

We observe that ψ is a proper coloring of G−{v1, v3}. We extend ψ by setting
ψ(v1) = ψ(v3) := ψ(v′); ψ is now a proper 3-coloring of G.
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2.1 Substructure inheritance
We define natural correspondence between substructures of a graph and its defla-
tion, which we use to work more easily with deflations. The following definition
is merely a formal tool to acknowledge that some substructures in a graph are
preserved in its deflation although they may not be strictly speaking identical.

Let G be a graph and G′ its deflation of form (v1v2v3v4) → (v2v
′v4). Let H

be a subgraph of G containing at most one of v1 and v3. We say that H appears
in G′ as H̄ if H̄ ⊆ G′ and H̄ is obtained from H by substitution of v1 or v3 by
v′. Symmetrically for any subgraph H ′ of G′ we say that H ′ appears in G as H̄ ′

if H̄ ′ ⊆ G and H̄ ′ appears in G′ as H ′.
Similarly, we say that a walk C from G appears in G′ as a walk C̄, if after

substitution of all occurrences of v1 and v3 in C we obtain C̄ which is a valid walk
in G′. Notice that we allow C to pass through both v1 and v3, possibly several
times. Symmetrically a walk C ′ in G′ appears in G as a walk C̄ ′ if there exists a
walk C̄ ′ in G such that C̄ ′ appears in G′ as C ′.

Generally, all substructures (subgraphs and walks) of G that are not incident
with v1 or v3 appear in G′ and similarly all substructures of G′ not incident with
v′ appear in G. In other cases the deflation may transform the substructures in
various ways depending on the exact way these substructures coincide with the
aforementioned vertices. Exact description of some of these cases is the main
focus of this section.

We also define a correspondence of faces as a natural extension of previous
definition. We say a face f of G appears in G′ if its bounding walk appears in G′

and bounds a face.

Lemma 7. Let G be a graph and let f be its 4-face. Let G′ be the f -deflation of
G of form (v1v2v3v4) → (v2v

′v4). Let C ′ be a closed walk in G′ bounding a disk.
If v′ has at most one instance in C ′ and C ′ does not appear in G as a closed walk,
then there exists a closed walk D in G, D = v1c1c2...cnv3vi, where i ∈ {2, 4},
{c1, cn} ∩ {v2, v4} = ∅ and C ′ = c1c2...cnv

′. Thus the length of D is greater by
exactly two than the length of C ′. Furthermore, D can be chosen so that it bounds
a disk Λ in the drawing of G and f ⊆ Λ.

Proof. As C ′ does not appear in G, we immediately get that v′ ∈ V (C ′). Let a
denote vertex preceding v′ on C ′ and b denote the vertex following v′ on C ′.

If a ∈ {v2, v4}, then av1, av3 ∈ E(G) and either bv1 ∈ E(G) or bv3 ∈ E(G),
thus C ′ would appear in G as its structure has not changed. This would contradict
the assumptions. Hence a /∈ {v2, v4}. Symmetrically b /∈ {v2, v4}.

If av1, bv1 ∈ E(G) or av3, bv3 ∈ E(G) then C ′ appears in G up to substitution
of v′ by v1 or v3. Otherwise either av1, bv3 ∈ E(G) or av3, bv1 ∈ E(G). As we
may switch the role of a and b, we assume the former without loss of generality.
We may take C ′ and define the closed walk C in G by replacing the subwalk av′b
with av1v2v3b. Similarly, we define C̄ by replacing av′b with av1v4v3.

Consider the alternative definition of deflation operation using the imaginary
chord v1v3 of the face f . Let D′ be a closed walk obtained from C ′ by replacing
the subwalk av′b with av1v3b using the imaginary edge. Consider the transition
from the drawing of G to the drawing of G′ by continuous contraction of the
drawing of v1v3 into a single point which is the drawing of v′. We may clearly
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see that since C ′ bounds a disk in G′, D′ also bounds a disk in G. Let ∆ denote
the disk bounded by D′. Since D′ passes through the middle of f , the disk ∆
contains either the imaginary triangle v1v3v2 or the imaginary triangle v1v3v4.
From the symmetry let us assume the former case, otherwise we may switch the
roles of v2 and v4. We define the walk D by bypassing the edge v1v3 via vertex
v4 in the walk D′. Notice that D bounds a disk which is exactly ∆ extended by
the imaginary triangle v1v3v4 and thus contains the whole 4-face f .

For a graph G and its deflation G′, if a closed walk D bounding a disk in
G and a closed walk C ′ in G′ correspond as in Lemma 7, then we say C ′ is a
deflation of D and D is an inflation of C ′.

We immediately apply the rather technical Lemma 7 to characterize behavior
of triangles and 4-faces in a more convenient way.

Lemma 8. Let G be a 4-critical graph without contractible triangles drawn on
torus. Then deflations of G do not contain contractible triangles. Furthermore,
if G is triangle-free, then deflations of G do not contain loops.

Proof. Let f be a 4-face of G and let G′ be the f -deflation of G that is of form
(v1v2v3v4) → (v2v

′v4). We will prove the first part by contradiction. Let G′

contain a contractible triangle T , T = t1t2t3. Since G does not contain any
contractible triangles, T does not appear in G. Without loss of generality t1 = v′.
From Lemma 7 we have a closed walk D of length five in G bounding a disk Λ
which contains f . Since D has length five, the 4-face f cannot be the whole disk
Λ, and thus D is separating. This contradicts Corollary 5.

To prove the second part, simply note that loop can only be a result of an
edge such that its end vertices are unified. Such an edge connects v1 and v3,
which is a contradiction with G being triangle-free as v1v2v3 and v1v4v3 would
form triangles.

Lemma 9. Let G be a graph drawn on torus without contractible triangles and
f one of its 4-faces. Let G′ be an f -deflation of G and let C ′ be a facial 4-cycle
in G′ such that C ′ does not appear in G. Then there exists a closed walk C in G
of length six, C is an inflation of C ′, C bounds a disk Λ, all faces of G contained
in Λ are 4-faces, there are at least three such faces and one of the vertices from
the boundary of f is drawn in the interior of Λ.

Proof. Let G′ be of form (v1v2v3v4) → (v2v
′v4). Since C ′ does not appear in G,

v′ ∈ V (C ′). We may apply Lemma 7 from which we have a closed walk D of
length six bounding a disk Λ which contains f . From the length of D, the 4-face
f clearly cannot be the whole disk Λ and so D is separating. From Corollary 5
we have that all faces contained in Λ are 4-faces.

From Lemma 7 we know that at least one of the vertices v2 and v4 is element
of D. Since we also know that f ( Λ, both are drawn in the closure of Λ. If
either v2 or v4 is not drawn on the boundary of Λ, then the quadrangulation of Λ
contains a vertex and since D is of length six, the quadrangulation must consist
of at least three 4-faces. Let us assume for contradiction that both v2 and v4
are drawn on the boundary of Λ. From Lemma 7 we get that D has a subwalk
av1viv3b where i ∈ {2, 4} and {a, b} ∩ {v2, v4} = ∅. Without loss of generality let
i = 2 and D = av1v2v3bv4. Since f ( Λ, the edges v1v4 and v3v4 must be drawn
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in the closure of Λ and therefore inside Λ as they are not on the boundary. We
conclude that G contains contractible triangles av1v4 and bv3v4 embedded in the
closure of disk Λ, which is a contradiction.
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3. Reduction
In this section we build on the previously defined deflation operation and focus
our attention to 4-critical triangle-free graphs drawn on torus. Deflations of
such graphs need not be 4-critical or triangle-free. We will deal with this via
encapsulation of the deflation into a more complex and limited operation with
immediate useful applications.

Let G be a triangle-free 4-critical graph drawn on torus. Graph H is a reduc-
tion of G if H is a 4-critical subgraph of a triangle-free deflation of G.

Note that according to Lemma 6, if G is 4-critical, then deflations of G have no
proper 3-coloring and hence contain 4-critical subgraphs. Therefore, a reduction
of G exists if and only if a triangle-free deflation of G exists. Unlike deflations,
reductions never contain parallel edges as graphs with parallel edges are not 4-
critical.

A triangle-free 4-critical graph G drawn on torus is reducible if G has a reduc-
tion; equivalently if G has a 4-face f such that at least one of the two possible
f -deflations of G is triangle-free. A triangle-free 4-critical graph G drawn on
torus is irreducible if G has no reduction; equivalently if deflation of every 4-face
in G (in either direction) creates a triangle. Note that according to Lemma 8
such a triangle is always non-contractible.

We only define terms reducible and irreducible for the class of triangle-free
4-critical graphs. Therefore, when we state that a graph G is (ir)reducible, we
implicitly state that it is also triangle-free and 4-critical.

It is clear that the number of vertices and edges strictly decreases with every
iteration of the reduction operation. We show that the same is true for the
number of 4-faces. For a graph G drawn on torus, let c(G) denote the number of
its 4-faces.

Lemma 10. Let G be a 4-critical graph drawn on torus, with no contractible
triangles. Let H be a 4-critical subgraph of a deflation of G. Then c(H) ≤ c(G)−
1. Also, if H contains a 4-face that does not appear in G, then c(H) ≤ c(G) − 2.

Proof. Let G′ denote a deflation of G of form (v1v2v3v4) → (v2v
′v4) such that H

is a subgraph of G′ and let f denote the deflated 4-face.
Suppose H has some 4-faces that are not 4-faces of G and let h be one of

them. Since H is a subgraph of G′, the boundary of h is a closed walk C ′ of
length four in G′. If C appeared as a closed walk bounding a disk in G, it would
bound a 4-face according to Corollary 5. This would contradict the choice of h.
Hence we use Lemma 9 on the boundary of h. There exists a closed walk C of
length six in G such that C ′ is a deflation of C. Furthermore C bounds an open
disk Λ consisting of a quadrangulation with at least three 4-faces and the drawing
of either v2 or v4 in its interior.

First suppose there is only one such 4-face h. Then none of the three 4-faces
from the associated quadrangulation is present in H as they would be nested
inside the 4-face h. Therefore c(G) ≥ c(H) + 2.

It holds that if v2 is drawn in the interior of Λ in G, then it is also drawn in
the interior of C ′ in G′; here we use the fact that v2 is not unified with v4 during
deflation. From symmetry the same holds for v4. From this we know that each
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new 4-face in H contains an interior point corresponding to either the drawing of
v2 or v4 in G′. Since no two faces share an interior point, there are at most two
new 4-faces h1 and h2.

By an analogous argument, if there was a 4-face g in G other than f that is a
member of both quadrangulations (associated with h1 and h2), then the interior
of g is transformed via deflation into subset of both h1 and h2. This is again a
contradiction and we get that Λ1 ∩ Λ2 = f for Λi denoting the disk associated
with hi.

In G we have a total of at least five 4-faces forming the two quadrangulations
that are not present on H. In H we have exactly two 4-faces that do not appear
in G. Together we get c(G) ≥ c(H) + 3.

Finally, let us consider the case that H has no 4-faces that do not appear in
G. Then it trivially follows that c(G) > c(H), as f is deflated in G′. Together
with the previously proven inequalities we get c(H) ≤ c(G) − 1 for every H, and
c(H) ≤ c(G) − 2 whenever H has a 4-face that does not appear in G.

The assumptions of Lemma 10 are satisfied whenever G is a reducible graph
drawn on torus and H is a reduction of G. As an immediate corollary, any such
reduction H has strictly fewer 4-faces than G. The more general formulation of
Lemma 10 allows us to obtain a similar result under a less restrictive relation
between H and G which will be useful later on.

The following application of the reduction operation is a key improvement of
the Theorem 1 (and of Corollary 5).

Lemma 11. If G is a 4-critical graph drawn on torus such that every triangle is
non-contractible, then every vertex of G is incident with a 4-face.

Proof. For contradiction, let us take a counterexample G with minimum number
of vertices. Let v be a vertex of G that is not incident with any 4-face.

As G is 4-critical, G− v has a 3-coloring ψ. According to Corollary 5, G has
a 4-face. Let v1v2v3v4 denote a boundary of one such 4-face. Without loss of
generality, we assume that ψ(v1) = ψ(v3).

Let H denote a 4-critical subgraph of the deflation of G of form (v1v2v3v4) →
(v2v

′v4). Since ψ gives a proper 3-coloring of H − v and H is not 3-colorable, it
follows that v ∈ V (H).

We will now show that H is a counterexample with fewer vertices, which
will be a contradiction. Firstly, according to Lemma 8 all triangles in G′ are
non-contractible. We claim that v is not incident with any 4-face in H. For
contradiction let C be a cycle that bounds a 4-face in H such that v ∈ V (C).
Clearly C is contractible, and so if C appeared as a 4-cycle in G, it would bound
a 4-face according to Corollary 5. However this does not happen since v is not
incident with any 4-face in G. Applying Lemma 9 to C however shows that C
inflates into a 6-cycle which bounds a quadrangulation in G. Thus all vertices
of C are incident with a 4-face in G. This is in contradiction with G being a
minimal counterexample.

As the last direct application we derive a key description of local properties of
irreducible graphs related to their 4-faces. This description of irreducible graphs
will serve as a basis for their enumeration later on.
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Lemma 12. Let G be an irreducible graph drawn on torus. Let f be one of its
4-faces, and v1v2v3v4 a cycle bounding f . Then the following properties hold:

• There exist paths P1 and P2 in G such that v1, v3 are the ends of P1, v2, v4
are the ends of P2 and both P1 and P2 have length exactly 3.

• Paths P1 and P2 are edge-disjoint from v1v2v3v4.

• Paths P1 and P2 are disjoint.

• Path P1 together with edges v1v2 and v2v3 forms a non-contractible 5-cycle in
G. Similarly, P2 together with edges v2v1 and v1v4 forms a non-contractible
5-cycle.

Proof. Since G is irreducible, any deflation of f of form (v1v2v3v4) → (v2v
′v4) pro-

duces a triangle. Let us denote one such triangle t1t2t3, without loss of generality
t1 = v′.

For the first property, without loss of generality v1 is a neighbor of t2 and
we put P1 = v1t2t3v3. Symmetrically we get existence of P2 considering the
f -deflation in the other direction.

Let us prove the second property via contradiction. Let P1 share an edge e
with the cycle bounding f . Since P1 is a proper path, e is either the first or
the last edge of P1. Without loss of generality, let e be the first edge of P1 and
e = v1v2. If we now consider the edge v2v3 and the last two edges of P1, we get
a triangle. Symmetrically we also reach contradiction for P2.

The third part will also be proven by contradiction. Let v ∈ V (P1) ∩ V (P2).
Then v is not an endpoint of either path according to the previous property.
Without loss of generality we can assume P1 and P2 are oriented so that v is the
second vertex in both of them. Note that any endpoint of P1 is a neighbor of any
endpoint of P2. Thus v1vv2 is a triangle, which is a contradiction with G being
triangle-free.

To prove the last property we first notice that the previous properties imply
that the paths together with the specified edges are proper cycles. It is only
necessary to show that the 5-cycles are non-contractible. Let us consider a triangle
t1t2t3 created by deflation of G. According to Lemma 8 it is a non-contractible
triangle. Cycle v1v2v3t2t3 is therefore also non-contractible. From symmetry we
get the same property for the other 5-cycle.
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4. Bound on the number of
4-faces
In this section we use the previous results to give an explicit combinatorial lower
bound on the number of 4-faces of all triangle-free graphs drawn on torus that
are not 3-colorable. We do this by lower-bounding the number of 4-faces in all
irreducible graphs. As we previously proved in Lemma 10, the number of 4-faces
strictly decreases with each iteration of reduction. Thus the number of 4-faces of
all 4-critical triangle-free graphs drawn on torus (and thus of all their triangle-
free supergraphs) is lower-bounded by some irreducible graph with the minimal
number of 4-faces. We define an operation that further simplifies irreducible
graphs and use it to show that any irreducible graph requires at least four 4-faces
to allow existence of an obstruction to 3-colorability. This bound will be improved
later on as a consequence of the main result based on a computer enumeration.

Let us consider a slightly different kind of reduction. Let G be a 4-critical
graph drawn on torus with no contractible triangles. Let G′ denote a loop-free
deflation of G. A graph H is a strong reduction of G if H is a 4-critical subgraph
of G′. Note that this is a valid definition since Lemma 6 gives existence of such
a 4-critical subgraph.

Both reduction and strong reduction of G are 4-critical subgraphs of deflations
of G. The difference is in the conditions we require. For the (simple) reduction
we require G to be triangle-free and the deflation to be free of (non-contractible)
triangles. In the process of strong reduction, we allow non-contractible trian-
gles, we only require G to be free of contractible triangles and the intermediate
deflation to be free of loops.

Recall that Lemma 8 states that deflation does not create contractible tri-
angles and that there are no loops in deflations of a triangle-free graph. In
particular every reduction is also strong reduction, while irreducible graphs have
further strong reductions.

Analogously with the terminology regarding the (simple) reduction operation,
we say that graph G is strongly reducible if it has a strong reduction, and strongly
irreducible otherwise. We also say that 4-face of G is strongly reducible if it can
be deflated so that no loops occur, and strongly irreducible otherwise.

We only define terms strongly reducible and strongly irreducible for 4-critical
graphs, thus if we state that graph is strongly (ir)reducible, we implicitly state
that it is also 4-critical. Unlike with the simple (ir)reducibility, we do not imply
the graph to be triangle-free as we in fact allow non-contractible triangles.

Lemma 13. Graph K4 is the only strongly irreducible graph drawn on torus with
no contractible triangles.

Proof. Let G be a strongly irreducible graph with no contractible triangles drawn
on torus. According to Corollary 5 there exists a 4-face f in G. Let v1v2v3v4 be
the facial walk of f . Since G is irreducible, identifying v1 and v3 produces a loop.
Consequently v1v3 ∈ E(G) and similarly v2v4 ∈ E(G). From this we deduce that
vertices v1, v2, v3, v4 induce a clique of size 4 (which we denote K4) in G.

The graph K4 is 4-critical, it can be drawn on torus without contractible
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Figure 4.1: K4 drawn on torus without contractible triangles

triangles (see Figure 4.1) and is thus strongly irreducible. On the other hand, if
K4 ( G, then G is not 4-critical. Therefore G = K4.

Note that Lemma 13 can be interpreted as the following simplification of the
characterization of strong irreducibility: any 4-critical graph drawn on torus is
strongly irreducible if and only if at least one of its 4-faces is strongly irreducible.
Corollary 14. Let G be a triangle-free 4-critical graph drawn on torus. Then G
contains at least two 4-faces.
Proof. Recall Lemma 10 which was used to show that number of 4-faces decreases
with every reduction. Notice that assumptions of this lemma also hold for strong
reduction. According to Lemma 13, any triangle-free graph G is strongly re-
ducible and repeated iteration of strong reduction eventually transforms it into
K4. Since K4 drawn on torus without contractible triangles has exactly one
4-face, we immediately get that G has at least two 4-faces.

4.1 Junctions
Let G be a graph drawn on torus and let H be a result of iterated application of
strong reduction on G. Vertex v is a G-junction in H if v ∈ V (H) and v /∈ V (G).
Note that any such vertex v is a result of unification of two or more vertices of
the original graph G.

We show that G-junctions relate to existing triangles in the (iterated) strong
reductions of G. In fact we show that all triangles cluster around these G-
junctions in a particular way. By tracking the G-junctions we may avoid cluster-
ing triangles in a way that is compatible with the existence of K4 as a subgraph.

As we demonstrated before, if G is a 4-critical graph then iteration of strong
reduction (in an arbitrary way) necessarily produces K4. This obstruction to
3-colorabilty is therefore both sufficient and necessary condition. We exploit this
formulation to show that if G has only a few 4-faces we may in fact design a
sequence of strong reductions of G such that K4 is never reached, thus proving
that G cannot in fact be 4-critical.

17



Lemma 15. Let J be an irreducible graph drawn on torus, let G be an iterated
strong reduction of J and let H be a strong reduction of G. Then H contains
exactly one J-junction w such that w is not present in G and all triangles in
H not appearing in G are incident with w. Furthermore, all triangles in H are
incident with a J-junction.

Proof. Let G′ be a deflation of G such that H ⊆ G′, and let w be the new vertex
in G′. Since both G and H are 4-critical and H − w ⊂ G, we get w ∈ V (H)
and w is a J-junction. On the other hand, from the definition of J-junction, it is
clear that one deflation can only produce a single new J-junction. It is a simple
observation that any new triangle in H is a result of unification of two vertices
from G. Thus for every such triangle T in H we get w ∈ V (T ).

To prove the second part, note that every newly formed triangle is incident
with a J-junction when it first appears during iterated strong reduction. Consider
for contradiction a situation where in one steps of the iteration one of the triangles
loses incidence with one of its J-junctions. One possibility is that the J-junction
was unified with a different vertex by deflation. However then the triangle be-
comes incident with a new J-junction and the property still holds. The only
other possibility is that the J-junction is removed from the graph when taking a
4-critical subgraph of a deflation. That however also destroys the triangle.

Lemma 16. Let G be an irreducible graph drawn on torus. Let H be a result of
iterated strong reduction of G. Let f be a strongly irreducible 4-face in H and C
its bounding cycle. Then C is incident with two G-junctions. Furthermore if f
appears as a 4-face in G, then C is incident with two G-junctions neighboring in
C.

Proof. According to Lemma 13, C is a subgraph of K4 and therefore each triplet
of its vertices forms a triangle in H.

SinceG was originally triangle-free, all of these triangles were formed by strong
reductions and are incident with G-junctions according to Lemma 15. Let j1 be
a G-junction in C. Vertices V (C)\{j1} form a triangle which is not incident with
j1. Therefore, there exists a G-junction j2 ∈ V (C) such that j1 ̸= j2.

Suppose f is a face of G. Let us assume for contradiction that C = j1aj2b
where neither a nor b is a G-junction in H, thus a, b ∈ V (G). We already know
that aj1b is a triangle in H but not in G. As a, b ∈ V (G) we also have ab ∈ E(G).
From G being triangle-free we have that a and b do not share any neighbors in
G. This is however contradiction with f being a 4-face in G.

The previous two lemmas characterize conditions necessary for a 4-face to be
strongly irreducible, in other words for K4 to arise as a result of strong reduction.
To guarantee avoiding K4 we need to use Lemma 16 in its stronger form. To do
that we put forward the following specific observation.

Lemma 17. Let G be an irreducible graph on torus with at most three 4-faces.
Let H be a product of iterated strong reduction of G such that H is strongly
irreducible. Let f denote a 4-face of H. Then f is also a 4-face in G.

Proof. Let us assume for contradiction that f is a 4-face of H, but it is not a
4-face in G. Recall Lemma 10 stating that if a new 4-face is produced by deflation
then the total number of 4-faces is reduced by at least two. Since H has at least

18



one 4-face, this means at most one strong reduction took place transforming G
into H. Lemma 15 then shows that there is at most one G-junction in H. This is
in contradiction with Lemma 16 as an irreducible 4-face f must be incident with
at least two G-junctions.

Lemma 18. Let G be a triangle-free graph drawn on torus without separating
4-cycles and with at most three 4-faces. Then G is 3-colorable.

Proof. Suppose G is not 3-colorable. Without loss of generality we can assume
that G is 4-critical. We will show that for every such graph there exists a way
to perform (iterated) strong reduction so that K4 is never reached. If G was not
3-colorable, this would contradict Lemma 13.

Suppose iterated strong reduction reaches K4. This happens in at most two
steps according to Lemma 10. On the other hand, since every iteration produces
at most one junction, Lemma 16 shows that at least two iterations are needed.
And Lemma 17 shows that only 4-faces from G are present in the whole process.
In particular we can assume that each step removes exactly one 4-face and creates
no new 4-faces.

Let x, y, z denote 4-faces of G and X, Y, Z their respective bounding cycles.
Let us now consider several cases.

Case 1: Let x and y be two 4-faces such that x and y share three or more
vertices. Since G has no loops, parallel edges or triangles, no two vertices of X
can be identical or connected by any edge that is not part of X. The bounding
cycle Y cannot share all edges with X as they are not identical, thus Y has a
vertex v that is not a vertex of X and is connected to two vertices a, b ∈ V (X).
If ab was an edge then abv would form a triangle, so a and b are opposite in X.
Clearly we have a vertex c of X such that edges ac and bc are shared between X
and Y . The degree of c is two, which contradicts G being 4-critical.

Case 2: Let x and y be two 4-faces such that x and y share an edge. Let
X = abcd and Y = cdef . Since case 1 does not apply, no vertices a, b, c, d, e, f
can be identical in G. Let G′ be the y-deflation of G such that vertices f and
d are unified into a junction v and let H be a 4-critical subgraph of G′. If
bv ∈ E(H), then either bd or bf ∈ E(G) and either bcd or bcf forms a triangle in
G. Therefore, bv /∈ E(H) and x can be deflated so that b and v are unified into
junction v′, which is the only junction in the resulting graph with a single 4-face.
This contradicts Lemma 16.

Case 3: Let x and y share two vertices a and c but case 2 does not occur.
Let PX be a shortest path in X connecting a and c; and let PY denote a shortest
path connecting a and c in Y . As X and Y are edge-disjoint, PX and PY are also
edge disjoint. Since G contains no triangles, the union PX ∪ PY is a closed walk
of length at least four. As PX and PY have each length at most two, both must
be of length two and therefore a and c are opposite in both faces x and y. Let
X = abcd and Y = ceaf . None of the vertices a, b, c, d, e, f can be identical in G.
Let G′ be the y-deflation of G such that a and c are unified into a G-junction v
and let H be a 4-critical subgraph of G′. Then x becomes vbvd in G′, and since
H does not contain parallel edges, x is not a 4-face in H. This is a contradiction
with previous observation that each strong reduction removes exactly one 4-face.

Case 4: Let X = abcd. Assume that a, c /∈ V (Y ∪Z). Let G′ be the x-deflation
of G that a and c are unified into a G-junction v and let H be a 4-critical subgraph
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of G′. The vertex v is not incident with any remaining 4-face in H. This means
that in the following strong reduction v cannot become incident with any present
4-face and according to observation from the beginning of this proof, no new
4-face is created. As at most one additional junction can be created, we get a
contradiction with Lemma 16.

Let us now assume that none of the cases 1–4 occurs. From symmetry we
assume this to be true even when we permute the labels of the three 4-faces. We
will show that G is not triangle-free which is a contradiction. Since cases 2 and
3 do not occur, we get that |V (X ∩ Y )| ≤ 1, |V (Y ∩ Z)| ≤ 1, |V (X ∩ Z)| ≤ 1.
Also, since case 4 does not occur, we get that |V (X ∩ (Y ∪ Z))| ≥ 2 and by
symmetry also |V (Y ∩ (X ∪ Z))| ≥ 2 and |V (Z ∩ (X ∪ Y ))| ≥ 2. Note that if
a ∈ V (X ∩ Y ∩ Z) then the first three inequalities do not allow any more shared
vertices and the remaining three inequalities are necessarily violated. Thus we
have |V (X ∩ Y ∩ Z)| = 0 and |V (X ∩ Y )| = |V (X ∩ Z)| = |V (Y ∩ Z)| = 1.

Let a, b and c be vertices such that a ∈ V (X ∩ Y ), b ∈ V (Y ∩ Z) and
c ∈ V (X ∩ Z). Note that a ̸= b ̸= c ̸= a from the inequalities above. Since case
4 does not occur, a and c are not opposite in X, and therefore are neighbors.
Similarly a and b are neighbors in Y and b and c are neighbors in Z. We get that
abc is a triangle in G which is a contradiction.
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5. Irreducible graph enumeration
In this section, we describe a theoretical basis for enumeration of all irreducible
graphs drawn on torus via a computer program. We do this in several steps. First
we provide a process that can enumerate all irreducible graphs, but is potentially
infinite. Then we introduce extra steps that significantly limit the extent and
complexity of created graphs. Finally we introduce a number of optimizations
for practical implementation of the process. Using this process, we show that
there are only four irreducible graphs, which we present in the section 5.5. Based
on the explicit knowledge of these graphs, we derive new properties of all 4-critical
triangle-free graphs drawn on torus.

Recall the description of 4-faces of irreducible graphs from Lemma 12. Let
f be a 4-face of an irreducible graph G and let F be its bounding cycle. Each
pair a, b of opposite vertices of F is linked if it is connected via a 3-path P such
that P ∩F = {a, b} and P together with a path connecting a and b in F forms a
non-contractible 5-cycle. The pair a, b is unlinked otherwise. A link is any such
3-path and an ab-link is a link with end vertices a and b. A face f is linked if
both of the opposite pairs of vertices of its bounding cycle are linked and their
links do not intersect. Otherwise, f is unlinked. Similarly, graph G is linked if all
of its 4-faces are linked, and unlinked otherwise.

Let B denote the unique (up to isomorphism) inclusionwise-minimal graph
drawn on torus with a linked 4-face. We call this graph the base graph and denote
it as B. Equivalently, we may define the base graph as the graph obtained from
K4 by subdividing edges of its perfect matching twice, with its unique embedding
in the torus that has a 4-face. Notice that base graph has exactly two 2-cell faces,
a 4-face and a 16-face. Thus, all faces of connected supergraphs of B are always
2-cell faces.

Since all irreducible graphs drawn on torus are linked and contain at least one
(linked) 4-face, we have B ⊂ G for any irreducible graph G drawn on torus. This
simple observation serves as a basis for our enumeration.

Recall Lemma 11 which can be narrowed into a statement that every vertex of
any irreducible graph drawn on torus is incident with a 4-face. This key property
serves as a driving force of our enumeration via the following structural argument.

Lemma 19. Let G be an irreducible graph drawn on torus. Let H be a subgraph
of G and f a 2-cell face of H such that f is not a face of G. Then in the drawing
of G either the interior of f contains a chord or G has a 4-face g and an edge e
such that g ( f and e has one end contained in the boundary of f and the other
end contained in the boundary of g.

Proof. Since f is not a face of G, either f contains a chord or at least one vertex
of G. Suppose the former does not hold. Since G is connected, there exists a
vertex v ∈ V (G)\V (H) such that v is connected to the boundary of f via an
edge e. According to Lemma 11 v is incident with a 4-face which we can choose
to play the role of g.
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5.1 Expansion
The previous lemma provides us with a crude process to generate all irreducible
graphs. We describe this basic ingredient of enumeration and prove its correct-
ness.

Let H be a graph drawn on torus such that all faces of H are 2-cell. Let c be
a face in H of length at least six. Perform one of the following operations:

1. Insert a new 4-cycle into the interior of c so that it shares some vertices
(and possibly some edges) with the boundary of c.

2. Insert a new 4-cycle F and an edge e into the interior of c so that F and
the boundary of c share no vertices and e is incident with both of them.

3. Insert a chord into c.

If H ′ is the result of applying one of the previous operations, then H ′ is an
expansion of H, also H ′ is an expansion of face c. Note that expansion of a graph
is always a strict supergraph.

Lemma 20. Let G be an irreducible graph drawn on torus. Let H1 be a connected
graph drawn on torus such that B ⊆ H1 ⊆ G. Then there exists a sequence of
connected graphs H1, H2, ..., Hk such that Hk = G and for every value of i from
1 to k − 1 a graph Hi+1 is an expansion of Hi.

Proof. Consider a graph Hi such that Hi ( G. Recall that all faces of H1 are 2-
cell faces as H1 is a connected supergraph of B. We will show that applying one of
the described expansion operations produces a graph H ′ such that Hi ⊂ H ′ ⊆ G.

Let c be a 2-cell face of H that does not correspond to a face in G and let C
be its facial walk. From Corollary 5 we know that the length of C is at least six.

If c contains no vertices of the drawing of G, then it contains a chord and we
can apply operation 3. On the other hand, if a vertex of G is drawn inside c, we
use Lemma 19 on c to show that it contains a 4-face g of G. If the boundary
of g shares vertices with C, then we apply operation 1. Otherwise, we get from
Lemma 19 that there exists a choice of g and an edge e in G such that e and g
are constructed applying via 2.

To better understand what structures are possible to construct via the ex-
pansion operation 1, we specifically describe the possible options in the following
lemma. As a simplification, we also allow insertion of a chord, which technically
falls under the expansion operation 3.

Lemma 21. Let G be an irreducible graph drawn on torus. Let H be a subgraph
of G and C a facial walk of one of the 2-cell faces c of H such that c is not a face
in G. If G has a 4-face f ( c and the boundary of f shares at least one vertex
with C, then H can be expanded into a subgraph of G by inserting elements into
c in one of the following ways (see Figure 5.1 for illustration):

1. Insert a new 4-cycle sharing exactly one edge with C (Figure 5.1(a)).

2. Insert a new 4-cycle sharing exactly two edges with C and these edges are
consecutive on C (Figure 5.1(b)).
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3. Insert a new 4-cycle sharing exactly one vertex with C (Figure 5.1(c)).

4. Insert a new 4-cycle sharing exactly two of its opposite vertices with C
(Figure 5.1(d)).

5. Insert a new chord into C (Figure 5.1(e)).

Proof. Let F be the boundary of f .
Case 1: Suppose that one of the edges of F is a chord of C. Then it suffices

to insert a chord applying option 5. Note that applying the option 5 may not
construct the 4-face c but it still gives a valid expansion of H.

Case 2: Suppose |V (F ∩C)| = 4. Then all edges of F are either also edges of
C or chords. Supposing case 1 does not occur, we reach a contradiction.

Case 3: Suppose |V (F ∩C)| = 3 and suppose case 1 does not occur. Then two
consecutive edges of F are also consecutive edges of C and the option 2 applies.

Case 4: Suppose |V (F ∩ C)| = 2 and suppose case 1 does not occur. If the
shared vertices are consecutive in F , then the edge connecting them is an edge
of C and the option 1 applies. Otherwise the vertices are opposite in F and the
option 4 applies.

Case 5: Suppose |V (F ∩ C)| = 1. Then the option 3 clearly applies.

5.2 Linkage
While the iterated expansion can construct any irreducible graph, it does not
utilize the previously described property that all 4-faces of an irreducible graph
are linked, as implied by Lemma 12. Since the expansion alone generates any
irreducible graph, it would naturally create all the necessary links without any
explicit construction. However the expansion alone is not finite. As an example,
consider a face f of length six. The iterated expansion can iteratively construct
an arbitrarily complex quadrangulation inside f , for example by arranging new
4-faces in concentric layers, each layer forming a new separating 6-cycle embedded
inside the previous one. If however we force all 4-faces to be linked, then all the
nested 4-faces have a very limited distance from the boundary of f . Though we
do not formally prove that such limitations make enumeration finite, it is implied
by the fact that our practical implementation takes only a finite time to finish.

Let H be a graph drawn on torus such that all faces of H are 2-cell faces and
H is not linked. Consider the following operation:

Let f be a 4-face unlinked in H and a, b a pair of unlinked opposite vertices
on its boundary. Let P be an path axyb for some vertices x, y such that H ∪ P
is a triangle-free graph drawn on torus with linked pair a, b. Then H ∪ P is a
linkage of H and P is a link.

While vertices a and b are vertices of H, vertices x or y may be new vertices.
The resulting linkage of an unlinked graph is always its strict supergraph.

We intend to use iterated linkage operation to construct linked supergraphs of
a given graph. It is important to realize that iteration is necessary. It may seem
that defining linkage of H as H together with links for all unlinked vertex pairs
would produce a linked supergraph of H in a single step. However such operation
may produce new 4-faces and thus give a result with new unlinked 4-faces. For
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(a) One common edge (b) Two common edges

(c) One common vertex (d) Two common vertices

(e) Chord (f) No common elements

Figure 5.1: Expansion operation 1, as described by Lemma 21, and expansion
operation 2
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this reason we adopt weaker and less technical definition which constructs one
link at a time and achieves the desired properties through iteration.

Recall that we defined a chord of a closed walk C bounding a disk Λ as an
edge connecting two vertices of C that is drawn inside Λ. Let f be a 2-cell face
of a graph and let F be its facial walk. A Pk-chord of f is a chord of its facial
walk subdivided into a path of length k (a path with k edges).

To better understand the way a link may be constructed, we offer the following
description.

Lemma 22. Let G be an unlinked triangle-free graph drawn on torus such that all
faces of H are 2-cell faces and let H be a linkage of G. Then H can be constructed
from G by extending G in one of the following ways:

1. Add at most three and at least one chord into faces of G.

2. Add a P2-chord and at most one additional chord into faces of G.

3. Add a P3-chord into one of the faces of G.

Proof. Let P denote the link in H. Let us consider several cases:
Case 1: Suppose |V (G) ∩ V (P )| = 4. Then clearly all edges of P are either

also edges of G or chords of faces of G and the option 1 applies as G ( G ∪ P .
Case 2: Suppose |V (G) ∩ V (P )| = 3. Let P = axyb and let y ∈ V (G). Then

clearly edges ax and xy are contained in the interior of the same face of G as G∪P
is drawn on torus, and thus axy is a P2-chord of a face in G. Since y, b ∈ V (G),
either yb ∈ E(H) or yb is a chord in G. Either way, the option 2 applies.

Case 1: Suppose |V (G) ∩ V (P )| = 2. Let P = axyb. Similarly to case 2, all
edges ax, xy, yb are contained in the interior of the same face of G and thus P is
a P3-chord and the option 3 applies.

Finally we prove that a suitable combination of expansion and linkage gives
us a correct means of enumeration.

Lemma 23. Let G be an irreducible graph drawn on torus. Let H1 be a connected
graph drawn on torus such that B ⊆ H1 ⊆ G. Then there exists a sequence of
connected graphs H1, H2, ..., Hk where Hk = G and for every i from 1 to k− 1, if
Hi is linked then Hi+1 is expansion of Hi, and Hi+1 is a linkage of Hi otherwise.

Proof. We proceed via induction. We can assume that in the i-th step Hi ( G
and we will prove that there exists a graph Hi+1 such that Hi ( Hi+1 ⊆ G.

From Lemma 20 we know that if B ⊆ Hi ⊂ G then there exists a suitable
expansion Hi+1. This solves the case when Hi is linked.

If Hi is unlinked, consider a pair of unlinked vertices a, b opposite on the
boundary of some 4-face in H. Since Hi ( G and G is linked, there exists an
a, b-link P in G. Linkage of Hi using P gives a suitable graph Hi+1.

5.3 Enumeration
Let us focus on the algorithmic side of enumeration. We formalize the scheme
from Lemma 23 to provide the following concept algorithm, which enumerates all
irreducible graphs drawn on torus, starting from the base graph.
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function Concept-Enumeration
Concept-Search(B)
Output remembered graphs

end function
function Concept-Search(Graph G)

if G is linked and 4-critical then remember G and return end if
if G is linked then

ψ := set of all expansions of G
else

ψ := set of all linkages of G
end if
for H ∈ ψ do Concept-Search(H) end for

end function
The Concept-Search method is a simple DFS-like search through all possible

sequences of expansions and linkages, following the construction from Lemma 23.
To show correctness, for every irreducible graph H we use Lemma 23 to produce
a graph sequence with the first element B and the last element H. For any
element H ′ from such sequence, when the variable G is equal to H ′ in some
level of recursion, then the next element in the sequence appears in the set ψ.
Inductively this means that the sequence is explored at some point during the
search, if we assume that the program finishes in a finite time. Thus, if the
program finishes, all irreducible graphs drawn on torus are present in the output.

To make the actual enumeration effective, we adopt a number of pruning
mechanisms. The main idea is that instead of actually following the program
above, we will perform a DFS search through the state space of all possible
values of G in the Concept-Search method.

5.3.1 Isomorphism based pruning
Since our goal is to search the state-space of the concept-program above, we can
cut off any branch where G is a graph already encountered in a different branch,
more specifically if a graph H isomorphic to G has already been encountered.
Recall that according to our definition of isomorphism, a graph is isomorphic to
its mirror image. To apply this in practice, we use a canonical graph encoding
which is invariant to renaming vertices, renaming edges and mirror image.

5.3.2 Separation based pruning
Recall Corollary 5 stating that a triangle-free 4-critical graph drawn on torus
contains no separating closed walks of length four or five bounding a disk. This
property is inherited by any subgraph. In every recursion node all graphs from
ψ are supergraphs of G and so we can exclude all branches where G contains any
such separating closed walk. In practice we only need to test walks incident with
(some of) the new edges maintaining the desired property incrementally.
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5.3.3 Systematic search
To enumerate the set ψ in a systematic manner, we use Lemmas 21 and 22. Both
of these lemmas describe the expansion and linkage operations in a form of simple
constructions that can be systematically explored.

Recall that we require that every expansion and linkage is always triangle-
free. This condition can also be ensured effectively by extending schemes from
the mentioned lemmas introducing early checks ensuring this property holds for
any actually constructed graph. E.g. each new edge must connect vertices with
distance at least three.

In order to achieve a systematic exploration of the whole state space, we
show that it is possible to switch the order of operations. We show this in the
following lemma and then discuss the rather technical applications as strategy-
based pruning mechanisms.

Lemma 24. Let G be an irreducible graph drawn on torus and let H1 be a con-
nected graph drawn on torus such that B ⊆ H1 ⊂ G. Let κ denote the set of all
sequences from Lemma 23. If H1 is linked, then for any face c of H1, either c
is a face of G or there exists a sequence from κ such that c is expanded in H2.
If H1 is unlinked, then for any unlinked 4-face f of H1 and a, b fixed pair of its
unlinked vertices there exists a sequence in κ such that pair a, b is linked in H2.

Proof. First consider H1 linked. Without loss of generality let c be a face of H1
that is not a face of G. Either the interior of c contains a vertex in the drawing
of G, then we use Lemma 19 to find a suitable 4-face in the interior of c, or c
contains a chord in the drawing of G. In either case, there exists a graph H2 such
that H2 is an expansion of H1 with expanded face c and B ⊆ H2 ⊆ G.

Consider H1 unlinked. Let f be an unlinked 4-face of H1 and a, b its fixed
unlinked vertex pair. Then clearly G contains an a, b-link P . Let us put H2 =
H1 ∪ P . Clearly H2 is a linkage of H1 such that B ⊆ H2 ⊆ G.

Finally note that in both cases H2 satisfies conditions of Lemma 23 which gives
us a sequence S with the first element H2 and the last element G. Concatenation
of H1 and any sequence S (H2, ..., G) gives a sequence from κ with the desired
properties.

5.3.4 Linking-strategy based pruning
One of the corollaries of Lemma 24 is that if G is unlinked, the order in which
we link the unlinked vertex pairs does not matter. It clearly follows that we can
fix any strategy of choosing such an unlinked pair and only link this chosen pair
in every node of recursion (where G is unlinked).

We propose a strategy to first compute the number of possible links for every
unlinked vertex pair and then explore all linkages for the pair with the lowest
number of possibilities. Computing the number of possibilities precisely is a
non-trivial task, however we can easily obtain an upper bound tight enough for
practical purposes, as we will describe later. This strategy reduces the branching
factor of the search and may completely eliminate some unlinked graphs from the
search while keeping all linked (and therefore all irreducible) graphs. It also allows
for an early detection of bad search branches, as whenever there is any unlinked
vertex pair with no possible links in graph G (upper bound is zero), then the
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whole branch may be cut off, as there exists no linked triangle-free supergraph of
G, and therefore no irreducible supergraph of G.

To bound the number of links, we use a modified DFS search from one of the
vertices with depth limited to three. The DFS is modified so that it may traverse
faces via non-existing k-chords. It also does not check which vertices have been
visited (as we look for all alternatives) and is forbidden to visit the other two
vertices of the 4-face being linked (recall Lemma 12). Such DFS reaches the
other vertex repeatedly, at least once for each possible link. We ignore all cases
where the other vertex is reached via path of length shorter than three to avoid
counting invalid-links.

The one sided error is caused by the fact that DFS does not alter the structure
of the graph and may therefore traverse a single short face multiple times although
this face cannot in fact obtain multiple chords while also avoiding triangles. In
all other cases it is possible to guarantee that the resulting linkage would be
triangle-free, if constructed.

5.3.5 Expansion-strategy based pruning
Similarly to the previous pruning mechanism, we want to apply the Lemma 24
to expansions. To do that, we need to introduce a technical modification to the
search algorithm. We would like to fix a strategy which always chooses one specific
face to be expanded so that we limit branching factor and avoid cases where the
same graph is constructed via different order of equivalent operations. Obtaining
strategy satisfying the former is much easier than in the previous application, as
the number of possible expansions of a face is very well determined by the length of
the face (more precisely its square) up to some errors caused by the requirements
to avoid triangles and separating cycles, which is negligible for practical purposes.

Lemma 24 shows that we can indeed fix any such strategy as long as the chosen
face of G is not a face of the irreducible supergraph we are attempting to reach.
The clear issue is that we do not know which faces to expand and which to keep
unexpanded. Indeed this often differs for different irreducible graphs we wish to
reach through the search. We therefore modify the search when G is linked so
that a fixed face is chosen, all possible expansions of this face are explored, and
one additional possibility of not-expanding this face is explored. In doing so we
face a number of technical difficulties.

The recursion node representing the choice to not-expand a face has the same
value of G as its predecessor. Since our strategy of face choice is fixed, it would
presumably produce the same decision which leads to a possibly infinite branch
of recursion. Therefore, we need to keep the set of faces of G which have pre-
viously been decided to be kept not-expanded and our strategy needs to respect
these previously made decisions by always choosing a face which is not in this
set. Another problem is that the previously described isomorphism-based prun-
ing optimization would cut off branches with the same value of G and different
sets of not-expanded faces. We do not wish to modify this optimization to con-
sider two graphs with different sets of not-expanded faces to be non-isomorhic
as this would allow the program to produce a wide variety of otherwise isomor-
phic graphs. Instead, each time we decide to not-expand a face, we exempt this
particular recursion node from being cut off by the isomorphism-based pruning.
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For this modification to be correct we also need to require that the not-expand
possibility is always explored as last (as we will demonstrate later). Furthermore,
we should also modify the linkage so that it does not consider links that tra-
verse not-expanded faces via Pk-chords. Such modification of linkage generation
clearly only removes duplicities (recall Lemma 19). A simple advantage of this
modification is that we avoid further technical issues regarding identification of
not-expanded faces after splitting them into multiple faces.

We will now show correctness of the expansion-strategy based pruning, in
particular we will show that the isomorphism-based pruning, which is oblivious
to the sets of not-expanded faces, does not cause loss of any output. Let A be
a search algorithm with all previously described pruning mechanisms, and let B
be the same algorithm without the isomorphism-based pruning. Consider τ , the
recursion tree of the algorithm B together with ordering of all recursion nodes
according to the order of visitation by the algorithm B. Note that the equivalent
tree for algorithm A is a subtree of τ and has the same ordering of all shared
nodes. For a recursion node a of τ , let us denote G(a) the graph in a and N(a)
the set of not-expanded faces of G(a) in a.

Suppose for contradiction H is an irreducible graph not found by the search
algorithm A. Let c be the first (according to visitation order) node in τ such that
G(c) = H and path leading to c has been cut off in a predecessor node a because
of a previous node b where G(a) is isomorphic to G(b). We know that a is not
a descendant of b, as then either G(b) ( G(a) or a is a not-expand possibility of
its parent in which case it would be exempt from being cut off. First consider
the case where all elements in N(b) are also faces in H. Then the graph H is
reachable from b and thus c was not first or H was previously found. Therefore,
there exists an element f in N(b) not present in N(a) such that it represents a
face which is not a face in H. Let d be the lowest predecessor of b such that N(d)
contains no such element. From the choice of d there exists a descendant e of d
on the path from d to b in τ that has a not-expanded face f which is not a face
in H. Therefore, face chosen by the fixed strategy in d is f . However this means
that all the other descendants of d representing all possibilities of expansion of f
precede node e, including an expansion which is a subgraph of H. Thus c is not
first or H has been found.

5.4 Enumeration Algorithm
We are now ready to put together the full algorithm, applying all the previously
described pruning mechanisms.

For the purposes of the description, we use the following notation. Let f be a
face of a graph. We denote l(f) the length of the face f . Let G be a graph, N a
set of faces of G and a, b an unlinked pair of opposite vertices of on of the 4-faces
of G. Let linkG,N(a, b) denote the upper bound on the number of possible links
in G such that the links do not traverse any face from the set N .

function Enumeration
Search(B, ∅)
Output remembered graphs

end function
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function Search(Graph G, faceset N)
if G is linked then

if G is 4-critical then remember G and return end if
F := {f ′ : f ′ is face of G, f ′ /∈ N , l(f ′) ≥ 6}
if F = ∅ then return end if
f := argmin{l(f ′) : f ′ ∈ F}
ψ := all expansions of f in G with no separating walk of length 4 or 5
for H ∈ ψ previously unencountered do Search(H,N) end for
Search(H,N ∪ {f})

end if
if G is unlinked then

a, b := argmin{linkG,N(a′, b′) : a′, b′ unlinked pair in G}
n := linkG,N(a, b)
if n = 0 then return end if
ψ := all linkages of a, b in G with no separating walk of length 4 or 5
for H ∈ ψ previously unencountered do Search(H,N) end for

end if
end function

5.5 Results
Theorem 25. There are exactly four non-isomorphic irreducible triangle-free
graphs drawn on torus: I4, I5, I

a
7 , I

b
7, as depicted in figure 5.2.

Proof. Proof of this theorem is computer-assisted and was performed by imple-
mentation of a search program as described in this chapter.

We provide an example of implementation in attachment 1.

Corollary 26. Let G be a triangle-free graph drawn on torus without separating
walks of length 4 and with at most six 4-faces. Then G is 3-colorable.

Proof. Suppose G is not 3-colorable. Without loss of generality, we can assume
that G is 4-critical. If G is irreducible then Theorem 25 shows G has either
thirteen 4-faces (for I4), eight 4-faces (for I5) or seven 4-faces (for Ia

7 and Ib
7). If G

is reducible, then Lemma 10 shows that G has more 4-faces then its reduction and
thus more than one of the irreducible graphs. Together we reach a contradiction
with the assumed number of 4-faces in G.

Consider a graph G drawn on torus. The representativity of G is the minimum
number of intersections ofG and l where l is a non-contractible simple closed curve
on torus. Let r(G) denote the representativity of G.

Lemma 27 (Mohar and Thomassen [2001]). Let G be a graph and H a minor of
G. Then the representativity of H is upper-bounded by the representativity of G.

Corollary 28. Let G be a triangle-free graph drawn on torus such that r(G) ≤ 1.
Then G is 3-colorable.
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(a) Graph I4 (b) Graph I5

(c) Graph Ia
7 (d) Graph Ib

7

Figure 5.2: Irreducible 4-critical graphs drawn on torus
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Proof. From Theorem 25 we may observe that all irreducible graphs have repre-
sentativity at least two.

For contradiction, let G have no proper 3-coloring. Without loss of generality,
we can assume that G is 4-critical. Then iterated reduction of G terminates
in an irreducible graph. Thus the iterated reduction must have increased the
representativity parameter in at least one of the steps.

Consider the case when r(G) = 0. Let l be a non-contractible simple closed
curve with no intersection with the drawing of G. We cut the torus along l
transforming it into a cylinder with no edges going over the boundary. Such
drawing is equivalent to a planar drawing of G. Thus G is a planar triangle-free
graph. This is in contradiction with Theorem 2. Thus we may assume that the
representativity of G is exactly one.

Consider a reducible graph H drawn on torus such that r(G) = 1. Let l
be a non-contractible simple closed curve intersecting the drawing of H exactly
once. Then l is contained (up to the intersection point) within a face h of H,
as l without its intersection with H is still a single curve. The existence of such
intersection implies that at least one vertex appears twice on the facial walk of
the face h.

Let f be a 4-face of H with a facial walk C. No vertex appears twice on C
as otherwise G would contain either a loop or a parallel edge. We conclude that
the curve l does not pass through f for any choice of f .

Let H ′ be an f -deflation of H identifying u and v from the boundary of f .
Recall the definition of deflation via imaginary edge uv. Consider the graph H̄
obtained by adding this edge to H. Clearly r(H̄) = r(H) as the curve l does not
pass through f . By contraction of the edge uv in H̄ we obtain a supergraph of
H ′, thus H ′ is a minor of H̄. Let H ′′ be a reduction of H. Since H ′′ is a subgraph
of H ′ for a suitable H ′, we get that any reduction of H is a minor of H̄. Together
with Lemma 27 we get that r(H ′′) ≤ r(H̄) = r(H). This is a contradiction with
G reducing to an irreducible graph via iterated reduction.

Corollary 29. Let G be a triangle-free 4-critical graph drawn on torus. Then
every face of G is bound by a cycle.

Proof. Let f be a face of G and C its bounding walk. Suppose C is not a cycle,
then there is an vertex v that repeats on C. Let us add two imaginary pendant
edges e1 and e2 into the face f incident with v in such a way that in the clock-wise
ordering of edges around v there is at least one edge between e1 and e2 and at
least one edge between e2 and e1.

Consider a simple open curve l contained inside the face f with its ends
touching the drawing of v from the same direction as the hypothetical drawings
of e1 and e2 would. The curve l together with a drawing of v form a closed curve l′
which intersects the drawing of G in exactly one point. According to Corollary 28
r(G) ≥ 1 and so l′ is contractible. This means that v is a vertex cut, which is a
contradiction with G being 4-critical.
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6. Face lengths in k-critical
graphs
In this section we apply the results of irreducible graph enumeration to charac-
terize face lengths in triangle-free 4-critical graphs drawn on torus. As we already
know, all such 4-critical graphs eventually reduce to irreducible graphs. Based on
the explicit knowledge of all the irreducible graphs we may reverse the process of
reduction to generate the whole class of triangle-free 4-critical graphs drawn on
torus. We do not attempt to actually construct the 4-critical graphs, we focus on
study of possible lengths of their faces.

In the section about deflations, we already implicitly dealt with structural
changes during deflation and its inverse. The main issue we solve in this section
is the inverse of taking of a 4-critical subgraph of a deflation. To reconstruct the
original, and potentially much more complex graph, we return back to Lemma 4.
Based on this lemma we know that once we have a suitable subgraph of a 4-critical
graph, each of its 2-cell faces f can be filled with a C-critical planar graph, where
C is the bounding cycle of the outer face of the planar graph of the same length as
the boundary of f . Provided all faces we encounter are 2-cell faces, such operation
would construct the original 4-critical graph. Before we formalize this operation,
we need theoretical tools to deal with the necessary planar graphs.

A graph G embedded in the plane has one unbounded (outer) face; all other
faces of G are internal. For a graph G embedded in the plane let S(G) denote
the multiset of lengths of internal (≥ 5)-faces of G and for graph G drawn on
torus let S(G) denote the multiset of lengths of all (≥ 5)-faces of G.

Let Gg,k denote the set of all plane graphs of girth at least g and with outer
face formed by a cycle C of length k that are C-critical. Let Sg,k denote set
{S(H) : H ∈ Gg,k}.

We use a definition from the work of Dvořák et al. [2015a]. Let S1 and S2 be
multisets of integers. We say that S2 is a one-step refinement of S1 if there exists
k ∈ S1 and a set Z ∈ S4,k ∪S4,k+2 such that S2 = (S1\{k})∪Z. We say that S2 is
a refinement of S1 if it can be obtained from S1 by a (possibly empty) sequence
of one-step refinements.

Lemma 30 (Dvořák et al. [2015a]). For every k ≥ 7, each element of S4,k other
than {k − 2} is a refinement of an element of S4,k−2 ∪ S5,k. In particular, if
S ∈ S4,k then the maximum of S is at most k − 2, and if the maximum is equal
to k − 2, then S = {k − 2}.

Theorem 31 (Thomassen [1994b]). Let G be a planar graph of girth at least 5.
Then G is 3-colorable. Furthermore, if G has an outer cycle C of length ≤ 9,
then any 3-coloring of G[V (C)] can be extended to a 3-coloring of G, unless C
has length 9 and G − C has a vertex joined to three vertices of C, which have
three distinct colors.

Lemma 32. The following inclusions hold:
S4,4 = S4,5 = ∅ and S4,6 ⊆ {∅}
S4,7 ⊆ {{5}}
S4,8 ⊆ {{6}, {5, 5}, ∅}
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S4,9 ⊆ {{7}, {6, 5}, {5, 5, 5}, {5}}

Proof. Recall Theorem 3 which implies the first inclusion.
To obtain the remaining inclusions, we will use Lemma 30. First we re-

formulate the corollary of Theorem 31 as similar inclusions. Note that in the
formulation of Theorem 31 a 3-coloring of G[V (C)] refers to any 3-coloring of C
respecting the restictions enforced by any chords of C. We consider all 3-colorings
of C, and thus any cycle with a chord is also C-critical. We obtain the following
inclusions:

S5,k = ∅ for k ≤ 7
S5,8 ⊆ {{5, 5}}
S5,9 ⊆ {{6, 5}, {5, 5, 5}}
To derive the superset of S4,7, we take {5} together with refinements of S4,5 ∪

S5,7. However this union is empty. Therefore, we get no refinements and the
inclusion for S4,7 holds.

Similarly, for the superset of S4,8 we take {6} together with refinements of
{5, 5} and ∅. Notice that a one-step refinement where k = 5 has Z = {5} and
therefore yields the original elements. From this we see that refinement creates
no new elements.

Finally, for superset of S4,9 we consider {7} together with all refinements of
{6, 5}, {5, 5, 5} and {5}. From the previous case we already know that it suffices
to consider one-step refinements for k = 6, where Z is either {6}, {5, 5} or ∅.
Clearly we get no new elements and therefore we do not need to consider iteration
of one-step refinements.

6.1 Amplification
Let G be a reducible 4-critical triangle-free graph drawn on torus and H a re-
duction of G. We would like to design an inverse operation producing G from H.
Recall that H is a 4-critical subgraph of a deflation H ′ of G.

Consider the following process applied to graph H. First we pick an arbitrary
vertex v′ ∈ V (H). Then we consider all possible P3 paths P such that v′ is the
middle vertex of P and H ∪P is drawn on torus. While P can be subgraph of H,
we also allow for paths introducing one or two new vertices and edges as long as
these are placed into distinct faces of G. Finally we inflate P in graph H∪P . We
denote a set of all results of such process as λ(H), a set of partial amplifications
of H.

Consider a graph H ′ ∈ λ(H). For some faces f of H ′ with boundary walk F
we replace f with a C-critical triangle-free planar graph for C a cycle of the same
length, identifying C with F . We denote set of all possible triangle-free 4-critical
results of this process Λ(H), a set of amplifications of H.

Lemma 33. Let G be a triangle-free 4-critical graph drawn on torus and let
H ∈ λ(G). Then every face of H is bound by a cycle.

Proof. Let v2v
′v4 denote the path P3 used to obtain H from G and let v1v2v3v4

be the inflated face f in H. The face f is bound by a cycle, as all if the vertices
from its bounding path are distinct. Let us consider any face g of H, distinct
from f .
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For every choice of g and its facial walk C there exists a corresponding face
g′ in G bound by a facial walk C ′. According to Corollary 29, C ′ is a cycle. If
C = C ′ then the lemma holds for g. We can therefore assume C ̸= C ′, which can
only happen if v′ ∈ C ′.

First suppose that there were no new vertices added into the interior of g to
form the path v2v

′v4, then C is obtained from C ′ by substitution of v′ by either
v1 or v3 and as none of these two vertices exist in G, no vertices on C repeat and
C is a cycle in H.

Now suppose that exactly v2 was added into the interior of g (the case for v4
is symmetrical). Then C is obtained from C ′ by substitution of v′ by either a
substring v1v2v3 or v3v2v1. Again, since none of the vertices v1, v2, v3 exist in G
and v′ is in C ′ only once, we have that C is a cycle in H.

Together we get that every face in G′ is bound by a cycle.

Lemma 34. Let G be a reducible graph drawn on torus and H its reduction.
Then G ∈ Λ(H).

Proof. Let G′ be a deflation of G such that H is its 4-critical subgraph.
Let v′ be the vertex of G′ which is a unification of two vertices from G, let

us denote these two vertices v1 and v3. Clearly v′ ∈ V (H) as otherwise H ( G
which is a contradiction with both H and G being 4-critical. Let P be the P3
subgraph of G′ obtained by deflating a 4-face of G and let us denote its vertices
v2v

′v4. First suppose that v2, v4 /∈ V (H) and both are located in the interior of a
single face g of H. Then H ( G, which is a contradiction. Otherwise the process
of partial amplification constructs an inflation H ′ of H ∪ P such that H ′ ⊆ G.

Consider H ′ ∈ λ(H) such that H ′ ⊆ G. Clearly H ′ is connected and all faces
of H ′ are 2-cell faces, as this holds for H. From the Lemma 33 we also have, that
each face of H ′ is bound by a cycle.

Consider each face f of H ′ that is not a face of G and let C denote the
boundary of f . Let ∆ be the closed disk bounded by C. Recall Lemma 4 stating
that the subgraph of G drawn in ∆ is C-critical. Therefore, for each such face
f there exists a C-critical triangle-free planar graph such that it is subgraph of
G drawn in ∆. We replace all such faces f with the respective planar graphs,
concluding that G ∈ Λ(H).

We now focus on changes in the multiset of lengths of faces. To describe the
effect of amplification, we define an amplification of the integer multiset and show
its relevance to the graph amplification in the following lemma.

Let I be a multiset of integers. A multiset A is an amplification of I if there
exists a partition {Ai : i ∈ I} of A into multisets such that Ai ∈ S4,i for each
i ∈ I. In this definition we understand the elements i ∈ I in a labeled way, that
is each instance of an integer has its own associated multiset Ai.

For an integer multiset I and an integer j we also define a multiset I + j as
{i+ j|i ∈ I}.

Lemma 35. Let H and G be 4-critical triangle-free graphs drawn on torus such
that G ∈ Λ(H). Then there exist integer multisets I, J, J ′, K,K ′ such that S(H) =
I∪̇J∪̇K, and S(G) = I ∪ J ′ ∪ K ′, where J ′ is an amplification of J , K ′ is an
amplification of K + 2 and |K| ≤ 2.
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Proof. Let H ′ ∈ λ(H) such that H ′ ⊆ G. Then from definition of Λ(H) we get
the following relation between S(H ′) and S(G). There exist partitions I ∪ L of
S(H ′) and I ∪ L′ of S(G) where L′ is an amplification of L. The multiset L
corresponds to the lengths of faces that are replaced with critical triangle-free
planar graph during the process of constructing graph amplification G from the
partial amplification H ′. Notice that all 4-faces are kept as 4-faces.

Let us consider the relation of S(H) and S(H ′). Let P be the P3 subgraph
such that H ′ is inflation of P in H ∪ P . Each face of H such that no elements of
P are inserted into it remains a face of H ′ as inflation does not alter faces other
than the inflated 4-face. There are at most two faces with new inserted elements.

First let us consider faces that have an end vertex of P and a corresponding
edge inserted into them. Each such face increases its length by two, this follows
from the joint consequence of Lemma 33 and 7. We show that the elements of
S(H) with increased size in S(H ′) correspond to faces in S(H ′) which are replaced
by non-trivial planar graphs in the second step of amplification. Consider the
vertex v added into the interior of some face f . After inflation, this vertex has
degree two. Since all vertices in G have degree at least three, one of the faces
incident with v has to be replaced by a non-trivial planar graph. Since v is only
incident with a 4-face and the face f , the face f has to be replaced.

The last class of faces are faces with edge forming a chord inserted into them.
Let a cycle C bound such a face. This change can be simply understood as a
replacement by a C-critical triangle-free-planar graph, as chord gives a trivial
C-critical graph. The resulting sub-faces may or may not be replaced by a planar
graph in the second part of the amplification. Either way, the cycle C remains
intact in G, and therefore its interior must contain a C-critical graph in G. There-
fore it is possible to describe the insertion of a chord and potential replacement
of resulting faces as a single replacement of the original face.

To finish the proof we need to consider possible transformations of 4-faces, as
these are hidden in S(H). Clearly, if a 4-face of H ′ is not replaced with a non-
trivial planar graph, it does not produce any new faces. On the other hand, there
is no suitable non-trivial planar graph to replace a 4-face. The only remaining
possibility is if a 4-face increases its length to six (due to an end-vertex of P being
placed in its interior). Using the same argument as above, we get that such 6-face
is replaced with a non-trivial planar graph, which is always a quadrangulation
and thus contains only more 4-faces that are not expressed in S(G). Thus value
of S(G) is not affected by 4-faces in H.

The multiset I from the formulation of this lemma I corresponds to the lengths
of common faces of H and H ′ that are kept in G. Multiset J corresponds to
lengths of faces of H which are replaced with non-trivial planar graphs. These
faces come either from the set L, if they are replaced in the second step of
amplification, or come from the two faces with extra elements inserted during
the first part of the amplification. The multiset K corresponds to lengths of the
at most two faces of H which have end-vertices of P inserted into them.

We are now ready to prove the final result, a description of lengths of faces
of all triangle-free 4-critical graphs drawn on torus, up to the number of their
4-faces.
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Theorem 36. Every 4-critical triangle-free graph G drawn on torus satisfies one
of the following properties:

1) S(G) = {7, 5}
2) S(G) = {6, 5, 5}
3) S(G) = {5, 5, 5, 5}
4) S(G) = {5, 5}
5) S(G) = ∅ and G = I4 (see Figure 5.2.)

Proof. For each 4-critical triangle-free graph G drawn on torus we have an irre-
ducible graph H such that H is a result of iterated reduction of G. Then clearly
iterated amplification of H constructs G. Also, from Theorem 25 we know that
S(H) has one of the values ∅, {5, 5, 5, 5} or {7, 5}.

Consider application of Lemma 35 to the multiset S(F ) for some graph F .
We adopt the same notation of multisets I, J,K. We will understand amplifica-
tion of F into F ′ ∈ Λ(F ) as a transformation of S(F ) into S(F ′). Notice that
amplification replaces each value of S(F ) with a multiset of values. The possible
values of such multiset are determined only by the partition of elements of S(F )
into multisets I, J,K. Note that we do not consider the condition |K| ≤ 2.

Consider value 5 in S(F ). Notice that 5 cannot be an element of J as there
is no suitable non-trivial planar graph (S4,5 = ∅). If 5 is an element of K, then
amplification replaces it with one of the elements of S4,7, however there is only one
such element, namely {5}. Together we get that value 5 can only remain as value
five and thus never decomposes into any multiset (including empty multiset).

Analogously, consider value 6 in S(F ). If 6 is an element of J , it can only be
replaced by ∅. If 6 is an element of K, it can only be replaced by elements {6} or
{5, 5}. Together we get that value 6 either remains unchanged, decomposes into
two values 5, or decomposes into no values.

Finally, consider value 7 in S(F ). If 7 is an element of J , it can only be
replaces by {5}. If 7 is an element of K, it can either remain unchanged or be
replaced with elements {6, 5}, {5, 5, 5} or {5}.

Now we will apply iterated amplification to the specific possible values of
S(H) to obtain all possible values for S(G).

If S(H) = {7, 5} then only the value 7 can decompose, namely into into
{6, 5}, {5, 5, 5} or {5}. Further amplifications can then only decompose value
six into two further values 5. Together we get possible values for S(G) to be
{7, 5}, {6, 5, 5}, {5, 5, 5, 5} and {5, 5}.

Similarly, if S(H) = {5, 5, 5, 5} then S(G) = {5, 5, 5, 5} as values 5 do not
decompose.

Finally, if S(H) = ∅, then clearly also S(G) = ∅. Furthermore, from the
work of Král’ and Thomas [2008] we know that the only even-faced triangle-free
4-critical graph drawn on torus is exactly I4.
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Conclusion
We introduced a framework of studying the class of triangle-free graphs embedded
in the torus that are not 3-colorable. Our method is an inductive argument on
the subclass of graphs that are 4-critical. The basis of our induction is formed
by the irreducible graphs and the inductive step is the reduction operation, resp.
its inverse operation amplification.

We demonstrate that each 4-critical triangle-free graph embedded in the torus
must satisfy several properties. Particularly, the multiset of lengths of its (≥ 5)-
faces must take one of only five possible values. On the other hand we demonstrate
that every triangle-free graph embedded in the torus with representativity at most
one or with at most six 4-faces is always 3-colorable.

To achieve our results we used a computer-assisted enumeration of the irre-
ducible graphs, which completely characterizes all basis of the induction argu-
ment. The inductive step, which is mainly based on the analysis of amplification,
allows further refinement of our result. Our analysis focuses only on the develop-
ment of certain properties while neglecting the fine structure of individual graphs.
Such depth of analysis seems unattainable without further computer-assisted enu-
meration. In future work, we intent to extend our result in this direction in order
to provide a structural description of all possible 4-critical triangle-free graphs
embedded in the torus.
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Z. Dvořák, D. Král’, and R. Thomas. Three-coloring triangle-free graphs on
surfaces VI. 3-colorability of quadrangulations. ArXiv e-prints, 1509.01013,
September 2015b.
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