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1. Introduction

1.1 Motivation
Some decades ago, computer viruses were written by a small number of skilled
individuals for fun and fame. As time passed, the affordability and with it the
number of computers grew, and consequently the amount of important infras-
tructure, and data being moved on it, also increased.

This rapid growth of the importance of computers together with the growing
percentage of computers connected to the Internet caused an important shift in
the attitude of hackers. They realized how powerful their knowledge had become
and so they started to use it to make profit. Later, as computer systems and
malware became more complex, hackers started to organize. Nowadays, many
hackers operate in groups, whose size and organizational structures can easily be
compared with smaller software companies.

Those “software companies” are working day and night to hack others, steal
their data, blackmail them, damage their business or simply use their computers
for various purposes such as sending spam, carrying out DDoS attacks or mining
cryptocurrencies.

Most of the mentioned activities require malware to use the Internet connec-
tion. This makes it possible to detect infection of a computer by inspecting the
network traffic.

1.2 Justification
One possible way to detect infected computers by analysis of their network com-
munication is to directly inspect the communication’s content. We can start
looking inside packets for groups of strings which are known to be specific to a
given malware. Unfortunately, authors of malware easily can, and do, prevent
this type of detection by communicating over a protocol employing encryption.
Arguably, the protocol most commonly used for this purpose is HTTPS, since its
frequent use by benign applications prevents it from being blocked.

It is difficult to detect malicious communication within HTTPS, because we
cannot rely on analysis of information obviously present in communication.

Connection to a previously unknown host cannot automatically be considered
suspicious, because load balancing frequently occurs on popular websites.

Analysis of used certificates and certificate authorities is also unlikely to pro-
vide much help. In the past, it was hard for attackers to get a valid certifi-
cate signed by a trusted authority because buying a certificate was a complex
procedure involving payment for the certificate and sometimes even telephone
screenings and other procedures. Hackers either had to undergo such procedures
and try to pay for the certificate anonymously, or they had to steal a certificate
from some previously infected computer. This made generation of certificates
risky and difficult to automate. Nowadays attackers’ position is easier because
there exist certification authorities, such as Let’s Encrypt, which are trusted by
browsers and used to sign regular domains, but which also sign certificates to
anybody, without any further controls and for free. Thus authors of malware can
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automatically generate certificates signed by the same certification authority as
legitimate traffic.

One way to directly inspect HTTPS communication is by utilizing a technique
resembling a man-in-the-middle attack. We can install our software between the
end-user and the Internet. Each installation of our product will have a separate
certification authority, which can be added to the list of trusted authorities on
the end-user’s computer. Then whenever the user wants to open a TLS/SSL
connection to a server, the first part of our security software opens one encrypted
connection between this server and itself and another part opens encrypted con-
nection between itself and the user. It shows the user a certificate created by the
program’s own certificate authority so that the user does not notice anything.
Then it forwards the user’s requests and the server’s replies. By this method the
software can monitor the communication. This method is currently in use e.g.
by Avast, but we decided not to go this way because we consider it too intrusive,
since applications which carry their own certificates and do not use certificate
authorities can break down. The method also does not allow users to check the
check-sums of certificates, which can be a security issue especially for websites
using self-signed certificates. Furthermore, we also consider the approach to be
difficult to scale.

To successfully detect malicious communication without having to rely on the
analysis of communication content, it is necessary to build the detection system
on a completely different basis: analysis of behaviour. Thus, we can analyse
with whom is the computer interacting, how much data it is transferring, how
often mutual interaction occurs, etc., and base the detection on such information.
If a computer for instance starts to send large amounts of data to computers
with which it has never communicated before, we can consider such an activity
suspicious and block it, as malware may be trying to steal our data. Of course,
malware authors can try to evade even behaviour-based detection, but this will
require much more work, and authors will be forced to completely change the
way their malware works.

To detect and block malware on the basis of its behaviour, we have to create
the rules on the basis of which our detection system makes decisions. This would
be difficult and time-consuming for humans, especially because of the number of
positive samples that must not be blocked and the overall difficulty of handling
unstructured data. For this reason, in the context of a large amount of data, we
can make use of machine learning methods and let the computer find the rules
by itself.

Several machine learning classification algorithms are suitable for this task.
Some of the most important are k nearest neighbours, random forests and neural
networks. This thesis seeks to apply neural networks; other members of our team
have tried the remaining methods.

1.3 Studied problems
This work focuses on two different problems. The first is detection of malicious
communication in HTTPS communication on the basis of metadata such as the
length of data transmitted from client to server or the duration of communica-
tion. We were provided a dataset containing labeled samples of metadata created
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by both benign and malicious activity. Our task was to teach neural networks
to distinguish between the classes and to provide a comparison of performance
of different architectures. We also provide a brief comparison with the results
achieved by our colleagues on the same task using different machine learning
techniques.

Our second task was to explore the methods of similarity search. Upon finding
an infected computer, one of the tasks that should be performed is a mapping of
the infection to find whether there are other computers which may be infected by
the same virus. We try to create a method which helps with this task by trying to
group together samples of communication created by the same malware family.
This will allow the administrator to take samples of communication from an
infected computer and look for other computers with similar network behaviour,
thus obtaining a list of computers she should inspect.

The data for this thesis were provided, aggregated and labelled by the Cisco
company and originate from measurements in 500 large companies. The network
activity was represented as a vector of numbers of a static length. We test three
different representations of the traffic developed by Kohout and Pevny [2015] and
Tomáš Komárek Kohout et al. [2017].

The questions that are in focus here are whether our representations contain
enough information and whether a given machine learning method can make use
of the information and learn to distinguish between malicious communication
and normal communication. We are not interested in the question of how easily
our detection system can be evaded by an adapting adversary; we can therefore
make a strong assumption that our adversary will not change her behaviour in
time. The question of an adapting adversary has been studied for instance in
Samusevich [2016].
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2. Data
The data are based on measurements of HTTPS traffic in 500 large companies
during two weeks in March and April 2016. The dataset was provided by a team
from Cisco, with whom we cooperate in the analysis. In the following chapter we
describe the data in greater detail.

2.1 Data content
The goal here is to detect malware which uses HTTPS to mask its communication.
Since HTTPS is a protocol employing encryption, it highly limits the amount of
useful information we are able to extract from the ongoing communication. We
further limit our options by not being willing to collect any sensitive information,
such as HTTPS certificates or domain names, while protecting our customers
with the trained system – although during the training process we had to collect
target IP addresses to make the training possible. Because of this limitation we
have to rely purely on collection of metadata.

For each HTTPS connection Cisco collected date, time, source and target IP
address, and a quadruple of metadata describing the communication: number of
bytes transferred from client to server (mup), number of bytes transferred from
server to client (mdown), time duration of the connection (mdur) and time interval
from the last opening of connection between client and server (min).

Additionally, they checked whether the host IP address is present in databases
of servers spreading malware, and provided each connection with the label In-
fected or Clean. Unfortunately, this approach does not guarantee that our labels
are 100% accurate. We may have missed an infected connection because the host
server is not in any of the used databases. Also, since the control servers can be
normal servers hacked by the authors of the malware, they may be serving some
benign purpose; therefore, not all the communication with them necessarily has
to be malicious.

When we look at the data we can see three main problems.
The first is that the amount of information contained in the available data is

very limited. Despite this, it is sufficient to successfully detect malicious commu-
nication with a very high accuracy, as we will show in Chapter 4.

The second problem is that malicious communication is extremely rare and
therefore we have a very limited number of infected samples in our data. This is
a big problem and will limit us in the training phase of all the experiments.

The third problem is that the data can hardly be used in this form. We have
to use some form of aggregation, which will allow us to compare and analyse
larger numbers of requests at the same time.

2.2 Data Aggregation
The researchers from Cisco developed two forms of aggregation. Since the goal of
this project is to develop means of detecting infected clients, they aggregated the
quadruples on the basis of the client’s IP address and the time. An alternative

5



would be to aggregate the traffic on the basis of the host IP and try to detect
infected hosts, but that is not covered in this project. The Cisco researchers
created a separate set of quadruples for each five minutes of activity of each
client. Each set contained client ID, the label Infected or Clean, and the quadru-
ples (mup, mdown, mdur, min), as described above. The resulting data comprise
43,813,135 aggregated sets of clean samples of communication and 2,800 sets of
infected communication in the first week, and 31,607,364 clean and 1,578 infected
aggregated samples in the second week. These figures show the aforementioned
disproportion between the number of clean and infected samples.

We now have to transform the sets into a form which can be handled by
machine learning algorithms. Such a representation should have fixed length,
should preferably be dense and should preserve information, and the structure of
output should resemble the structure of the initial data.

2.3 Soft Histograms
The first such form of aggregation is the “soft” histogram Kohout and Pevny
[2015]. The general idea behind this approach is to create one histogram from each
set generated above. Each set contains quadruples of form (mup, mdown, mdur, min).
We first re-scale those quadruples by application of mapping lg : R4 →< 0, +∞ >4

defined as:
lg((mup, mdown, mdur, min)) = (log(1+mup), log(1+mdown), log(1+mdur), log(1+
min))
Since the biggest value in each dimension of the histogram is smaller than 10, it
is created as a four-dimensional array {0, 1, .., 10}4 with 114 = 14641 bins. Then
we create mapping D() from space {< 0, 10)4}∗ occupied by sets quadruples into
space {0, 1, .., 10}4 of the histogram. This type of mapping is usually defined as
D : (< 0, 10 >4)∗ → {0, 1, .., 10}4 :
Histogram[∗][∗][∗][∗] = 0;
For each quadruple x:
Histogram[⌊lg(x)⌋]+=1

The result of this approach is a so-called “hard” histogram. Hard histograms
can behave well in a stable environment but our data contain a large amount
of noise, such as unpredictable network latency. If a quadruple is projected by
the mapping lg to value [2.9, 1.8, 4.49, 1.3], it then modifies the histogram by
increasing the value of bin [3,2,4,1]. We can see that even a minor, randomly
caused change in the duration of the communication can result in a vector [2.9,
1.8, 4.51, 1.3] being created instead. This results in our algorithm modifying
the value of bin [3,2,5,1]. Such behaviour is very problematic, since machine
learning algorithms do not usually take into account that bin [3,2,4,1] is close to
bin [3,2,5,1]. Therefore, moving the request into a different but nearby bin may
result in a completely different output of the machine learning algorithm, which
may cause this type of histogram to behave poorly.

This problem can be addressed by making the histogram soft. We can put the
information about a request not only into a single bin but also into its neighbours.
If we insert a request mapped via lg to a vector u=[2.9, 1.8, 4.3, 1.51] into the
histogram, we modify the values of bins in a multidimensional rectangle whose
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edges are parallel with axes and whose two vertices are ⌊u⌋ and ⌈u⌉. In our
example this means bins [w,x,y,z] such that w ∈ {2,3}, x ∈ {1,2}, y ∈ {4,5} and
z ∈ {1,2}. We construct the histogram in the following way.

At first, the histogram is filled with zeros. Then, whenever we add a request
represented by a quadruple u element of < 0, 10 >4, the following procedure is
followed:
1) “Lower” indices lk := ⌊uk⌋ are computed
2) Contributions of u to “lower” bins
ck := 1 − (uk − lk) are computed.
3) All bins with coordinates
{(l1 + k1, l2 + k2, l3 + k3, l4 + k4)|(k1, k2, k3, k4) ∈ {0, 1}4}
are increased by values∏4

j=1(c
(1−kj)
j ∗ (1 − cj)kj ).

2.4 Gaussian mixture models
The soft histogram representation has two disadvantages: it is very sparse and
has very large dimensions. To address these problems, Tomáš Komárek Kohout
et al. [2017] applied a Gaussian mixture model technique as a different method
of data aggregation.

Gaussian mixture models (GMM) rely on modelling the a priori probability
of quadruples m representing each request. They model this probability under
the assumption that those quadruples are taken from one of d random processes,
each of which produces output with four-dimensional Gaussian distribution with
mean value µ and covariance matrix Σi. Let Gk denote an event whereby message
m is created by the k-th of the processes, and G denote Gaussian distribution.
Then, we model the probability of a message m, P (m), as follows:

P (m) = ∑d
k=1 P (Gk) ∗ P (m|Gk)

P (m) = ∑d
k=1 P (Gk) ∗ G(m|µk, Σk)

Dimensionality reduction via GMM has two phases: in the first phase we
train our model to fit our training data; the second phase is inference. We use
the trained model to aggregate sets of quadruples into vectors of fixed length.
During the training phase, we first select the number of processes d, which will
be the number of dimensions of the output vectors. Then we train the model via
the expectation maximization algorithm.

This algorithm maximizes the probability P that the random process we de-
scribe will generate exactly the quadruples we have seen:
P = ∏number of quadruples

i=1 P (mi)
P = ∏number of quadruples

i=1 (∑d
k=1 P (Gk) ∗ G(m|µk, Σk))

by modification of P (Gk), µ1..d and Σ1..d.
During the inference phase we take the sets of quadruples which we are sup-

posed to aggregate and for each of those sets create a d dimensional vector x. Let
{m1,...mN} denote one of those sets. Then each dimension k of vector x contains
average of probabilities that given quadruples were created by the k-th Gaussian
process:

xk = 1
N

∗ ∑N
m=1 P (Gk|mi)

where P (Gk|mi) is computed as follows:
P (Gk|mi) = P (Gk&mi)/P (mi)
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P (Gk|mi) = P (mi|Gk) ∗ P (Gk)/ ∑d
j=1 P (mi|Gj) ∗ P (Gj)

During the inference phase we ignore the original probabilities P (Gk) and set
them as equal, because P (Gk) is simply a proportion of data created by a given
process k and this number likely changes over time.

P (Gk|mi) = P (mi|Gk)/ ∑d
j=1 P (mi|Gj))

P (Gk|mi) = G(mi|µk, Σk)/ ∑d
j=1 G(mi|µj, Σj)

Since this problem is very imbalanced, it is better to train separate Gaussian
mixture models for clean data and malicious data. The first part of the dc +
dm-dimensional output vector then contains the averages of probabilities that
each quadruple was generated by each of dc Gaussian distributions modelling the
generation of clean communication, and the second part contains the averages of
probabilities that each quadruple was generated by one of dm Gaussian processes
producing malicious communication. We simply train one model on malicious
communication and one model on clean communication, and in the inference
phase we take outputs for each of those models and concatenate them. With this
approach we can choose dc and dm differently. The data contain two versions of
data reduced via GMM: GMM600, which contains 300 elements trained on clean
quadruples and 300 elements trained on infected quadruples, and GMM600 480,
which contains 480 elements trained on clean quadruples and 120 trained on
infected quadruples.
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3. Neural networks
Neural networks are a group of machine learning techniques and algorithms. They
have a fixed architecture built from small units called neurons, which have train-
able numerical parameters. These parameters are trained iteratively. In each
training iteration the network receives input data and computes an output value.
We then modify the network on the basis of its intermediate results and the dif-
ference between its output value and the desired output value, in such a way that
if the modified network is run on this data again, its output will be closer to the
desired output. This process is supposed to teach the network to accomplish the
task using the training dataset. The hope is that if a neural network learns to
produce a correct output on the training set, then it will also generalize, i.e. pro-
duce correct output for inputs it has never seen before. In the following chapter
we describe neural networks in greater detail.

3.1 The perceptron
As we have mentioned, neural networks have a fixed architecture built from
smaller trainable components called neurons. A commonly used neuron archi-
tecture is the perceptron. We can formally define the perceptron with vector
of input data X ∈ Rn, weights W ∈ Rn, bias b ∈ R, and activation function
σ : R → R as a mapping f : Rn → Rm, f(X) = σ(wT x+b). Weights and bias are
modified during training. Commonly used activation functions include Sigmoid,
TanH (3.1) and recently also ReLU (3.2):
Sigmoid(x) = 1

1+e−x

TanH(x) = ex−e−x

ex+e−x

ReLU(x) = max(0, x)
Rosasco et al. [2004]

The function of the perceptron can be interpreted as a measurement of dis-
tance of input point X from hyperplane W T y + b = 0. The training process then
involves modification of the position and orientation of this hyperplane. From
this interpretation we can see that the ability of a single perceptron to fit the
input data is very limited.

To increase the flexibility of the network we have to use multiple perceptrons
at the same time. Most often, the perceptrons are organized in layers in such
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Figure 3.1: Sigmoid (left) and TanH (right) activation functions.
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Figure 3.2: ReLU activation function.

Figure 3.3: Perceptron computes function σ(∑n
i=1 wi ∗ xi + b).

a way that each perceptron in the first layer is connected to each component
of the input data, and in every layer each perceptron is connected to all the
outputs of the previous layer. The output of the last layer is considered the
output of the network. This architecture is called multilayer perceptron. Other
ways of organizing neurons include convolution and residual connections, used
e.g. in image classification, or recurrence, used for instance in natural language
processing or different fields involving operation with series of arbitrary length.

3.2 Training
As mentioned, a neural network is trained via an iterative process. First, we
initialize the weights and biases randomly, but in a carefully chosen way, because

OUTPUT

Hidden Layer

Weights

Weights

INTPUT

Figure 3.4: A multilayer perceptron consisting of three fully connected layers -
input layer, hidden layer and output layer.
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this can affect the speed of convergence Kumar [2017]. After the initialization,
an iterative process begins. This process is based on so-called “error backprop-
agation”. In each step we select a subset of training data, called a batch; then,
we evaluate the network using the data, analysing the network’s prediction error,
and modify the network in such a way that if we evaluated the network on the
same set of data again, its outputs would be closer to the desired outputs and its
error would be smaller.

How do we know which parameters to update, and how they should be up-
dated to make the error smaller? First, we need a function calculating a real
number which tells us the size of the error in the network’s predictions. We will
then try to find network parameters which minimize the output of this function.
In machine learning such a function is called a “loss function”.

One commonly used loss function is called Mean Square Error (MSE) Rosasco
et al. [2004]. Let f denote a mapping Rn → Rm computed by the neural network,
x ∈ Rn input vector and y∗ ∈ Rm, the desired output value for input x. The
MSE can then be defined as follows:
MSE(x, y∗, f) = 1

m

∑m
i=1(f(x)i − y∗

i )2).
Another common loss function is hinge loss Rosasco et al. [2004], usually used to
train two-class classifier networks with m = 1 and y∗ ∈ {−1, 1}:
HingeLoss(x, y∗, f) = max(0, 1 − f(x) ∗ y∗).
In each step we usually train the network on multiple inputs at the same time, and
therefore it is useful to define the MSE also for batches. Let X = (x1, x2, x3, ..., xk)
denote the input vectors and Y ∗ = (y∗

1, y∗
2, y∗

3, ..., y∗
k) desired outputs. Then, the

MSE is defined as the average of errors on the inputs from the batch:
MSE(X, Y ∗, f) = 1

k

∑k
j=1 MSE(X∗

j , Y ∗
j , f))

MSE(X, Y ∗, f) = 1
k

∑k
j=1

1
m

∑m
i=1(f(Xj)i − Y ∗

j,i)2))
The hinge loss for batches is defined in exactly the same way.

When we have chosen an error function we can use methods of mathematical
analysis. If a neural network and its loss function are composed purely of differ-
entiable parts, we can partially differentiate the whole loss function with respect
to all the trainable parameters. In the process of differentiation we take input
vectors X as constants. The goal is to compute the gradient (vector of first partial
derivatives), showing the direction of the fastest growth of the loss functions with
respect to the trainable parameters. If we find a gradient in point specified by
input vectors X, desired outputs Y ∗ and parameters of the neural network, we
can multiply the gradient by minus one and thus get the direction of the fastest
decrease of the loss function in the current state of the network with regard to
the trainable parameters. We can then shift the parameters by a small step in
the direction of the minus gradient. If the step is small enough, evaluation of
the modified network on the same inputs will show a decrease in error. Formally
we can write the change of the i-th neuron’ bias Bi and it’s j-th weight Wi,j as
follows:
Wi,j = Wi,j − α ∗ ∂f

∂Wi,j
(W, B, X)

Bi = Bi − α ∗ ∂f
∂Bi

(W, B, X)

A positive real number α is the size of the modification in the value of the
variable in the given direction. It is called the learning rate and its value usually
changes during the training. There exist algorithms which change it adaptively
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and algorithms which change it in a fixed way (e.g. multiplying alpha by 1
2 every

K iterations).
The algorithm we have just described is “stochastic gradient descent” (SGD)

Goodfellow et al. [2016]. Gradient descent means that we descend in the direction
of the biggest local decrease of the loss function and stochastic means, trying to
find a global optimum of the loss function on the whole training set via modifica-
tions of the neural network only on the basis of smaller subsets. Unfortunately,
gradient descent-based methods do not guarantee convergence towards a global
optimum and usually lead to convergence towards some local optimum instead.

A more advanced algorithm offering faster convergence rate is “Adam” Kingma
and Ba [2014]. This algorithm works in the same way as SGD except that it
provides momentum which improves its behaviour in unstable environments. It
remembers past gradients and combines them with the current gradient. For ex-
ample, if in the previous step we decreased the weight somewhat and now want
to increase it, Adam will increase the variable only by a small proportion.

Although the previous two algorithms converge to a local optimum of loss
function on the training dataset, we do not want to reach a state of complete
convergence, but only to get close to it. This is because a network trained to this
state would be too adapted to the training set and thus would generalize poorly
– it would perform badly with data it had never seen before. This effect is called
overfitting and is a common problem when training neural networks.

Overfitting becomes a bigger problem when a neural network has too great a
number of parameters in comparison with the amount of data, data dimension
and density. We can get some idea of why this effect occurs from the example
of approximating function g : R → R by a polynomial on the basis of a limited
number of pairs [x, g(x)]. If we try to interpolate the data with a polynomial
of adequate degree, we can often approximate the relationship between the data
points. If on the other hand we interpolate the data with a polynomial of too
large a degree, then this polynomial will adapt too well to our training dataset
and will completely miss the real relationship by which the data points were
generated (3.5). A similar thing happens if a network has too small a number of
parameters. A neural network, or a polynomial in the graph below, is not able
to handle the complexity of the relationship between the input data points.

Overfitting also increases with the length of training of the network as can be
seen on Figure 3.6. While training a network we can monitor the overfitting by
plotting the loss both on the training set and on another set of data, which has
not yet been shown to the network. This set should be different from the one on
which we run the final evaluation.

3.3 Advanced concepts
Having explained how a simple neural network looks and how the training algo-
rithm works, it is still necessary to explain several important details which justify
the high-level structure of neural networks and to introduce two more advanced
concepts used in our experiments.
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Figure 3.5: Overfitting shown on example of polynomials. If we are fitting the
data with a polynomial of too small a degree(red), it is unable to describe the
trend of data. If we on the other hand fit the data with a polynomial of too
big a degree(blue) it may adapt too well to our training data missing the real
relationship. If we use a polynomial of a proper degree (black) it approximates
the real trend well.

Figure 3.6: The graph shows a schematic comparison of the losses on the train-
ing(green) and testing(blue) sets. We can see that up to a certain point (marked
by a red line) both losses decrease – the network is learning to solve the problem.
After this point, the training set loss decreases further, while the loss on the test-
ing set increases – the network has started to overfit, i.e. to adapt too much to
the specifics of the training set.
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3.3.1 Universal approximation theorem
As mentioned, a single perceptron is not strong enough to accurately approximate
the vast majority of functions; we have therefore used the multi-layer perceptron
(MLP) architecture. But how powerful is this architecture? The ability of MLP
to approximate functions depends on its activation function. If the activation
function is linear, the whole MLP f : Rn → Rm will degenerate to a group of
m linear classifiers. On the other hand, for proper activation functions (for in-
stance Sigmoid, TanH and ReLU, as shown in figures 3.1,3.2) it can be proven
that a neural network with n inputs, m outputs and a single hidden layer con-
taining a sufficient number of neurons can approximate any continuous function
with arbitrary precision. This theorem is proven for Sigmoid and TanH by the
universal approximation theorem Hornik [1991] and by a different theorem for
ReLU Sonoda and Murata [2015]. Those theorems show that MLP is sufficiently
powerful. Unfortunately, they do not help in any way with the construction of
such a network. The proofs are based on direct construction of the network on the
basis of knowledge of almost the whole function which we want to approximate.
In practice we have the value of this function only for a very limited number of
points, so we cannot follow the procedure described in the proof.

Even though a sufficiently large network with a single hidden layer can ap-
proximate arbitrary continuous function arbitrarily well, using a network with
only one hidden layer may not always be ideal: there exist functions which can
also be approximated by a network with one hidden layer, but if we decide to
approximate them with such a network, we have to increase the size of the layer
exponentially (in terms of number of layers) in comparison with a network which
has multiple hidden layers and approximates the same function equally well.

3.3.2 Training of ReLU
As mentioned, if we want to train a neural network we have to first differentiate
it. But looking more closely at activation function ReLU, defined as ReLU(x) :=
max(0, x), we find that it has no derivative for x=0. What if the derivative is
required at this point? A commonly used method is to replace the derivative in
zero by either a derivative from the left in zero (0) or by a derivative from the right
in zero (1). It is argued [Goodfellow et al., 2016, p.192] that such an approach is
not problematic, for exactly the same reason a computer’s rounding errors during
training and inference are not problematic: in this case, we can imagine we have
simply shifted the value of x from 0 to 0 + ϵ or 0 − ϵ, ϵ > 0 before computing the
derivative. We can imagine that the epsilon is much smaller than the smallest
positive number our floating-point data type can represent. Therefore the effect
of our modification should be much smaller than the effect of normal rounding
done by computer [Goodfellow et al., 2016, p. 192]. The same approach can be
adopted for computation of the derivative of the hinge loss when f(x) = 1.

It can also be seen that for x < 0 derivatives of ReLU are zero, which means
that during certain training steps in a certain state of the network, and with a
certain input, we may be unable to modify the weights of a neuron containing
the ReLU activation function. This is usually not an issue, especially since the
training process is carried out on batches of data. Usually, there are enough
inputs in which this neuron has non-zero output value and therefore its weights
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can be modified. In addition, even if the neuron returns 0 for all inputs from the
training set, there is still a chance that other neurons from the same layer will
cause such a change in the rest of the network that this neuron will start to receive
different input values and so start producing non-zero outputs. Unfortunately, if
this does not happen our network will contain several neurons which will never
be activated.

An even bigger problem appears when a larger number of neurons reach such
a state: if one complete layer reaches this state, we will lose the ability to train
the network. We may be risking this problem for instance when we use too high
a learning rate, or when we are pushing some of the outputs of the network too
far towards zero.

ReLU also has another interesting property. As we have mentioned above,
if the activation function is linear, the neural network has only a very limited
ability to approximate functions. Therefore it might be seen as surprising that
ReLU, a function which is composed of two linear parts, is “nonlinear enough”
for a universal approximation theorem to hold for it too, and to behave well in
practice.

Why do we use ReLU despite knowing it suffers from serious problems? ReLU
started to be used in very deep neural networks (ca. 100 layers) because other
activation functions have problems with propagation of gradient in very deep
networks. If we calculate the value of the gradient for a given weight of a neural
network with n layers via the chain rule, we can see that its computation requires
multiplication of up to n derivatives of the activation function. If the value of
derivation of the activation function is smaller than one at many points, the
product can become very small and the limited precision of our floating-point
data type can mean large value changes due to rounding errors; the gradient can
also vanish completely. Thus, we do not know how to update the weights and so
will have problems training the network, or be unable to train it at all. ReLU
addresses this problem because its derivative is either zero or one.

Another property of ReLU which may sometimes be useful is that it can be
trained with the same speed in all the places where it has a non-zero derivative.
On the other hand, it has to pay the price of having no upper bound for output
values. We can compare this behaviour with TanH, which is trained faster when
its value is around 0 and slower with larger or smaller values. During the training
process, samples from the training batch may cause the value which goes into
the TanH function to be very close to -1. If in this state we find that we need
to increase the values which flow into the neuron, we have to undertake a large
number of small steps, because the derivatives of Sigmoid are small. This is not an
issue with ReLU and therefore its speed of convergence in some problems can be
faster (even several times faster) than that of TanH Krizhevsky et al. [2012]. On
the other hand, TanH has bounded output value, which also has some positives.

3.3.3 Dropout
The networks discussed up to now have had static structure. However, it has
been shown Srivastava et al. [2014] that a type of random temporary structure
change called dropout can lead to improved results. If we have a layer with
dropout, then during each iteration of the training process we select each neuron
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of that layer only with a given probability (usually 0.5 for hidden layers and
0.8 for the input layer). In cases where a neuron is selected, we work with it
as with a normal neuron present in a normal layer. We compute its values and
train it normally. In cases where a neuron is not selected, we behave as if it
was not in the network at all. During inference we use all the neurons of the
layer. We simply multiply the output of each of the neurons by the probability
that the neuron will be selected during the training phase, so that the input
values of the consequent layer will not become too large. Usage of dropout can
lead to the creation of more robust models and decrease the risk of overfitting
Srivastava et al. [2014]. We can look at a dropout network as if we were training
an exponentially large number of models with shared weights and then averaging
those models Goodfellow et al. [2013]. This process shows some similarity with
bagging, a general machine learning technique where we train multiple models
with independent parameters on different subsets of the training set and then
use some combination of their outputs during inference [Goodfellow et al., 2016,
p.258].

3.3.4 Maxout
Usually, the output value of a neural network is the output value of the neuron in
the last layer. However, network output can be defined also in a different way. We
can have multiple neurons in the last layer and select only the one with maximal
activation as the output of the network. We then propagate the prediction error
only through this neuron while ignoring the other neurons of the last layer. This
method is called maxout and has yielded interesting results on some problems
Goodfellow et al. [2013]. In order to be able to train a maxout network well, we
have to combine it with dropout. Otherwise, the last layer will be dominated
by just a few neurons, one of which will always have higher activation than the
remaining neurons, thus effectively preventing the training of those remaining
neurons.

3.4 Representation learning
Up to now we have discussed only one possible way of using neural networks,
in cases where the network is presented with some input and then shown the
desired result. But there exists also a completely different approach: We can
train a neural network in such a way that it’s output vectors will gain some
special properties. While training we will not care about the exact values of the
output vectors. We will only be interested in them having those properties.

For instance, we may want to create a network which transforms input data
into a representation where the Euclidean distance between two data points cor-
responds to some form of similarity in the original data.

From this point of view, the last layer of a classifier network can be seen as
a linear classifier seeking to linearly separate data, while the rest of the network
tries to learn to transform data so that they become linearly separable.
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Figure 3.7: Autoencoder. During the training phase we train the autoencoder to
produce the same values on the output layer as it was given on input. During the
inference time we just use the part of the network labeled as encoder to extract
the features.

3.4.1 Autoencoder
The autoencoder (3.7) is a common example of a network which learns represen-
tation. Its goal is to learn to compress the input data into a vector of smaller
dimensions and then to reconstruct the original input from its values. The au-
toencoder is constructed in such a way that it is a normal Rm → Rm neural
network with two special properties. The first is that the loss function penalizes
only the difference between the input and the output of the network. It wants the
network to learn the identity function. The second is that the network limits the
amount of information which can flow through it. The layer which limits the flow
the most (usually the middle one) is the layer from which we will later extract
the representation. A common way to limit the flow of information through the
layer is to make the number of its neurons smaller than the length of the input
data. Another frequently used method is to add random noise to the values go-
ing through this layer. Since the amount of information which can flow through
the middle layer is limited, the network will have to learn how to compress the
information before it reaches it, as well as how to decompress it back. Since only
a certain proportion of information can go through the middle layer, the autoen-
coder will try to select the most important information. Therefore, the part of
the autoencoder between the input and the middle layer will become an extractor
of the most important features.

Unfortunately, the term “most important” is not necessarily related to our
needs. It relates rather to the loss function. The compressed representation will
contain information whose absence would cause the greatest error. It can happen
that it will not contain the information of interest, because its absence causes only
a small difference between the input and output and therefore the autoencoder
considers the information unimportant, instead deciding to compress something
different.

To make the autoencoder extract the information we consider important, we
sometimes have to modify the loss function to better reflect our needs. For this
we can use so-called Siamese networks.
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3.4.2 Siamese networks
Siamese networks are based on the idea that we can connect two or more different
neural networks in such a way that these networks share part of their weights.
The resulting network can have multiple independent inputs and outputs and its
loss function is composed of multiple parts.

An example of such a network is a combination of autoencoder with classifier,
when seeking to reduce the dimensions of data in such a way that the compressed
representation will still contain the information which helps us to distinguish
between classes.

The loss function can then be defined for example as
loss = α ∗ (classifier(encoder(x)) − y∗)2 + (1 − α)(decoder(encoder(x)) − x)2,
where α is a hyperparameter which determines how much information the network
will store on the basis of the variability it causes in the original data, as compared
to how much it will store based on the extent to which a given piece of information
helps to distinguish the class of a given sample.

Another possible use of Siamese architecture is in a network which learns to
create a representation where the Euclidean distance between the outputs for two
inputs corresponds to some form of similarity in the original data. One example
of such a network is Google FaceNet Schroff et al. [2015], which learns to extract
a vector describing a person’s face from its photographic representation. The
goal is to make the distance between outputs correspond to a general similarity
between the people in the photos, so that we can say that if the distance between
two photos is below a certain threshold it is likely that they both contain the face
of a single person. This network is taught via a method called triplet loss, where
in each training step the network is shown three photos A1, A2, B. The first two
photos show the same person and the third photo someone different.
The loss function is defined as:
loss = (f(A1) − f(A2))2 − (f(A2) − f(B))2.
The loss function makes the network move its outputs for photos of the same
person closer to one another, and push its output for a photo of somebody else
further away.

3.5 TensorFlow
For training and evaluation of our experiments we used the TensorFlow frame-
work. This is an open-source framework developed by Google whose main purpose
is to allow people to run mathematical computations efficiently with a minimum
of work by allowing them to split the description of the computation from the
actual execution.

With their commands users do not run the actual computations but instead
only create a graph, where each node represents either a source of data or a
computation; from each computational node there are labelled edges to vertices
containing the input values of the computation. When a user completes the
creation of a graph, she says which node she wants to evaluate and provides the
data required for the computation. The TensorFlow framework finds which nodes
of the graph have to be evaluated in order to compute the desired result, finds
an efficient order of computation and computes the result.
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This approach allows users to describe experiments in a high-level language
such as Python while not losing any performance, because all the computations
are done by a highly optimized code making use of parallelism and GPUs with
the support of CUDA technology.

Since TensorFlow includes implementation of almost all the techniques used
to train neural networks and allows implementation of the rest, it has become
widely used in the field of machine learning.
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4. Classification
The first problem is how to distinguish whether a given sample of communication
contains activity generated by a malicious software (positive samples) or was
generated purely by activity of benign software (negative samples).

This problem belongs to a group of problems called classification problems.
Classification can be defined as the task of distinguishing which class a previously
unseen item belongs to, when we are given a set of examples for each class.

There are three basic approaches to classification. Either we can create only
two classes (benign and malign), or we can create a higher, but constant, number
of classes, or we can create a multi-class classifier which classifies data into a
previously unknown number of classes (e.g. a separate class for each class of
malware and several classes for benign communication). One example of the last
type is Google FaceNet Schroff et al. [2015], as mentioned in Chapter 3.

The last problem is generally the most interesting, but also the most difficult
because it requires a large amount of data, which also have to contain more
information about each sample.

Because we have no further information about the nature of each sample ex-
cept whether or not it contains malicious communication, we will study only the
first problem, although we try to group similarly behaving malware via unsuper-
vised means in the chapter on similarity search.

4.1 Evaluation
Before we can start experimenting, we have to specify the method of evaluation of
the results. Since the considered application of this classifier is in large companies
with a large number of computers, it is crucial that the classifier has a very small
false alarm rate. No business would install a system which produces a false alarm
every few minutes.

Before continuing with the description of the problem it is useful to mention
two terms frequently used in machine learning. The first is recall, which is the
probability that a positive sample will be classified as positive. The second is
precision, which is the probability that a sample classified as positive really is
positive. Recall and precision go against one another. We can have a high
recall and recognize almost all the positive samples, but then we will have small
precision, i.e. many false alarms. Or we can have a high precision, meaning a very
small number of false alarms, but then we will also have a low recall, meaning
only a small proportion of malware will be detected.

In this task the customers require extremely high precision. To achieve this,
we have to sacrifice the recall. From this motivation arose the measure known
as FP-50, which is regularly used in the field of malware detection via machine
learning in the field of network security Kohout and Pevny [2015]. The authors of
this measure hold the opinion that a recall of just 50% is enough, because usually
the malware will communicate with its control servers repeatedly yielding many
chances to detect it. Therefore, they defined FP-50 as follows:
FP − 50 = 1

C
∗ |{c|f(c) >= median(f(m), m ∈ M), c ∈ C}|,

where C is a set of clean samples and M is a set of malicious samples.
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If we take the median classifier output for malicious samples, then FP-50 is the
percentage of background samples for which classifier output is higher than this
median.

The rationale behind this is that in real-world application we will take this
median and use it as a decision boundary of our classifier. If confidence that a
sample is positive is at least as great as the median, we mark that sample as
positive. Otherwise it is marked as negative. This approach will yield a recall of
50% and a false alarm rate equal to FP-50.

4.2 Experiments
The goal here is to design a neural network which can be trained to distinguish
between samples of communication containing malware (positive samples) and
samples of communication generated by benign traffic (negative samples).

A general approach to create a neural network for the purposes of classification
is to take a classified sample x as the network’s input, then have several hidden
layers and on top of this architecture place one output neuron of output value
y, corresponding to a degree of confidence that a given sample is positive. The
network will be trained by minimization of difference between the output y and
the desired output y∗. We experimented with loss functions MSE and hinge loss,
both described in Chapter 3.

The use of hinge loss is important for training classifiers with ReLU as the
activation function of their last neurons (networks with maxout). Let us label
each negative sample with 0 and each positive sample with 1. Then, the MSE
will penalize the network for returning a value larger than 1 even if the sample
is positive. The training process will then try to reduce the network’s output for
the malicious sample, which is in direct opposition to our needs.

The layers of the networks are fully connected – each neuron of the next layer
is connected to each neuron of the previous layer. In the case of GMM data, this
design can be justified by the fact that the spatial structure of GMM data does not
contain any patterns we can exploit. If the histogram data had been structured
as “hard” histograms we might have considered a four-dimensional convolutional
layer with one element of stride 1 and shape 3X3X3X3, or similar, to help the
neural network train an architecture able to handle the noise created by rounding.
But since our histograms are created as “soft” this was not necessary, and there
was no other spatial structure of the input we could exploit.

We tested two basic designs of the output layer – either the last layer contained
only one neuron, or it contained multiple neurons and worked as a maxout layer.

The resulting networks were trained on 3 mil. background training samples
and 2,800 infected training samples in the case of GMM data, and on 10 mil.
background and 2,800 infected training samples in the case of soft histogram
data. An increase in the number of background samples was tested on a small
set of representatively chosen architectures and did not lead to an observable
improvement of results. This result is not very surprising, because the huge
disproportion between the number of clean and infected samples tells us that our
performance is most likely limited by the small number of infected samples.

Because of the limitedness of our set of positive samples (2,800 in the first
week of communication and 1,578 in the second week), no validation set is used.
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Architecture average FP-50
30 ReLU X 1 Sigmoid 0.00145
100 ReLU X 1 Sigmoid 9.68e-005
200 ReLU X 1 Sigmoid 6.07e-005
300 ReLU X 1 Sigmoid 5.70e-005
500 ReLU X 1 Sigmoid 5.38e-005
800 ReLU X 1 Sigmoid 5.52e-005

Figure 4.1: FP-50 of networks trained on GMM 600 via Mean Square Error.

We only use the first week as the training set and the second week as the testing
set.

This has important consequences. If we based our choices of the stopping
time, learning rate decay and architecture too much on the performance of our
other networks on the testing set, we would be at risk of accidentally tuning our
models to work well with the testing set. Which would cause us to overestimate
the performance of our models in evaluation.

To minimize this risk, fixed learning rate decay is used with a fixed number
of training steps, instead of guiding the training by comparing the loss on the
training dataset with the loss on a different dataset.

The results were validated by training each model twice with the same set
of malware samples and a different set of background samples. The results were
then averaged.

4.2.1 GMM600
In this section we describe our experiments on a GMM600 dataset. First of all
we tried basic networks with one hidden layer (4.1). We see that architectures
with 200 neurons and more provide interesting results.

During the experimental phase we also wanted to try networks with maxout
activation. At first we tried to train such networks with MSE, penalizing the
network via loss function
loss = (f(x) − y∗)2

where y∗ is the desired label (0 for a negative sample and 1 for a positive sample),
x is the input vector and f is the function computed by a neural network. As can
be seen in the first two columns of 4.2 the networks did not achieve good results.
To find the cause, we tried taking the average of the neuron activations in the
last layer of each network as the output of the network. Even though the results
improved (see the third column of the same table), they remained unsatisfactory,
especially because of the overall instability of the training.

It transpired that the loss function used for the training was incorrect. The
output of the maxout layer with ReLU neurons is potentially unlimited. This
means that the output of this layer for a positive sample can exceed 1. When
this happens, the MSE loss function starts to behave badly, considering the output
value of the network to be too large. It therefore starts to push it down, towards
one. Unfortunately, this is the opposite of what we want our loss function to do –
namely to always force the network to increase its output for positive samples and
decrease it for the negative ones. Thus, the loss function was effectively telling
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Architecture average FP-50 average FP-50
(average of outputs)

20 X 20 Maxout 0.00085 0.000190
50 X 50 Maxout 0.00062 7.38e-05
100 X 100 Maxout 0.00197 0.000170
200 X 200 Maxout 0.00316 7.23e-05
300 X 300 Maxout 0.00164 3.94e-05
400 X 400 Maxout 0.00172 8.83e-05
500 X 500 Maxout 0.00304 0.00141
700 X 700 Maxout 0.00163 0.00145
800 X 800 Maxout 0.00165 0.000107

Figure 4.2: FP-50 of Maxout architectures trained on GMM 600 via Mean Square
Error. Average of outputs means that instead of taking the highest activity of a
neuron in the last layer as the activation of the network we used the average of
activations of all the neurons in the last layer.

Architecture average FP-50
30 ReLU X 30 ReLU Maxout 4.26e-05
100 ReLU X 100 ReLU Maxout 3.59e-05
200 ReLU X 200 ReLU Maxout 3.49e-05
300 ReLU X 300 ReLU Maxout 3.57e-05
500 ReLU X 500 ReLU Maxout 3.28e-05
800 ReLU X 800 ReLU Maxout 3.18e-05

Figure 4.3: Networks with one hidden layer trained on GMM600 with hinge loss.

the network not to detect the positive samples.
To test whether this was the cause of our problems, we trained the same

networks with a loss function hinge loss defined as:
HingeLoss = max(0, 1 − f(x) ∗ y∗),
where x is the input vector, f the function computed by the neural network and
y∗ ∈ −1, 1 the desired class (-1 for negative, and 1 for positive samples). As we
can see, this loss does not suffer from the described problem. The results achieved
by the training with this loss function are shown in table 4.3. As can be seen, the
networks achieved better results than the same architectures trained with MSE
loss function, indeed even better than the networks with one hidden layer.

We then tried models with more hidden layers (two and three), but even with
only two hidden layers the networks did not train well and did not provide good
results. This was likely caused by the increase in the descriptive power of the
model, which allowed the models to overfit or to degenerate into a state where
f(x)=0.

To overcome this problem we used L2 weight normalization. This type of
normalization penalizes the model for having large values of weights by adding the
term α ∗ ∑n

i=0 w2
i to the loss function. Unfortunately, there is always a drawback

connected with this form of normalization. The bigger the value of α, the more a
neural network can be optimized to have small weights instead of small prediction
error. But the smaller the value of α, the more prone to overfitting the model.
This is an example of the variance vs. bias trade-off, which is a problem commonly
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Model α = 0.1 α = 0.01 α = 0.001 α = 0
30X30X30 Maxout 0.000240 0.000110 0.000070 0.000075
100X100X100 Maxout 0.000075 0.000365 0.000055 0.50
200X200X200 Maxout 0.000640 0.000590 0.000220 1
300X300X300 Maxout 0.000550 0.000450 0.000160 1
500X500X500 Maxout 0.000460 0.000285 0.000065 1
30X30X30X1 Sigmoid 1 0.500 0.500 1
100X100X100X1 Sigmoid 0.001890 0.006750 0.007720 1
200X200X200X1 Sigmoid 0.005120 0.007910 0.006800 1
300X300X300X1 Sigmoid 0.005750 0.008130 0.009020 1
500X500X500X1 Sigmoid 0.005750 0.007590 0.007410 1

Figure 4.4: Networks with two hidden layers trained on GMM600 with MSE loss
with weight decay α.

Architecture average FP-50
30 ReLU X 1 Sigmoid 0.00393
100 ReLU X 1 Sigmoid 0.00394
200 ReLU X 1 Sigmoid 0.00390
300 ReLU X 1 Sigmoid 0.00365
500 ReLU X 1 Sigmoid 0.00355
800 ReLU X 1 Sigmoid 0.00348

Figure 4.5: Networks trained on GMM600 480 with MSE loss.

faced in machine learning.
The results of our measurements are shown in table 4.4.
From the results we can notice several things.
Firstly, the L2 weight normalization helped us to train deeper models. Unfor-

tunately, even with this normalization, use of deeper models did not lead to any
improvement in results.

Secondly, once again, it can be seen that the presence of the maxout output
layer leads to better results.

4.2.2 GMM600 480
This section describes our experiments with the GMM600 480 dataset. Since
the structure of the GMM600 480 data resembles that of the GMM600, similar
architectures were investigated.

First we tried simple networks with one hidden layer (4.5).
We observed that their training was stable but for unknown reasons their

performance was much worse than the performance of the same architectures on
GMM600.

Then we trained models with maxout 4.6. After the experience with GMM600,
hinge loss was used.

The maxout models performed similarly to the same architectures on GMM600
(perhaps even slightly better, but more measurements would be required to be
sure). We also tried models with two hidden layers but they did not improve the
results.
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Architecture average FP-50
30 ReLU X 30 ReLU Maxout 0.00306
100 ReLU X 100 ReLU Maxout 0.000209
200 ReLU X 200 ReLU Maxout 2.55e-05
300 ReLU X 300 ReLU Maxout 2.34e-05
500 ReLU X 500 ReLU Maxout 2.96e-05
800 ReLU X 800 ReLU Maxout 0.0591*

Figure 4.6: Networks trained on GMM600 480 with hinge loss. * The second
model diverged and was replaced by a third model.

4.2.3 Soft histograms
The third dataset contained data aggregated in the soft histogram format. This
format has a very high dimensionality of 114 = 14641 bins, while being extremely
sparse – the average number of non-empty bins is approximately 63 for malware
samples and approximately 47 for clean samples. This combination of sparsity
and high dimensionality is the root of all problems faced during the training.

It causes problems because sparse high-dimensional data force us to accept
input vectors of a very high dimension but do not provide us sufficient infor-
mation about the “meaning” of different components of the input vectors. In
our histogram bins which have a non-zero value are found only in one, benign,
data sample. How sure can we be that the value of this bin helps us distinguish
between malicious and benign samples?

While inspecting our input data we found that a large number of bins of
histograms are empty in the whole testing set. If they can be efficiently removed,
the size of the network can be decreased, thus reducing its space requirements
and required evaluation time.

In the training dataset we know that there exist non-empty bins only at
coordinates (w,x,y,z), such that w ∈ {1,...,11}, x ∈ {1,...,11}, y ∈ {0,1,...,5} and
w ∈ {0,1,...,6}. By completely removing the bin coordinates which are outside
of those boundaries, we can effectively reduce the dimensions of our data to
10*10*5*7 = 3,500 dimensions. We thus reduce the number of weights in the
first layer of our neural network by 76%. This is positive, because the first layer
is likely to use the majority of the memory and computational power required
by the whole network. If during the testing phase a non-zero value falls into
one of the removed bins, we behave as if the value was not present at all. This
corresponds to the behaviour we expect from neural networks in such a case.

Of the remaining 3,500 bins, 1,317 were empty in all the samples from the
training set. We decided not to remove them, because they are spread all over
the histogram, which complicates their removal.

We began by training models with one hidden layer.
As we can see, both types of models show unsatisfactory behaviour. To check

whether this was caused by overfitting of the first layer to the training data, we
tried to add additional dropout regularization, but unfortunately Fig. 4.9 shows
that this did not lead to any improvement.

The architectures 4.9,4.10 were trained with both MSE and hinge loss func-
tions. While the FP-50 scores are almost the same, the MSE models surprisingly
have better precision-recall curves (4.11).
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Architecture average FP-50
30 ReLU X 1 Sigmoid 0.00677
100 ReLU X 1 Sigmoid 0.00523
200 ReLU X 1 Sigmoid 0.00468
400 ReLU X 1 Sigmoid 0.00327
800 ReLU X 1 Sigmoid 0.00178
1000 ReLU X 1 Sigmoid 0.00185

Figure 4.7: Networks trained on Soft histograms with MSE.

Architecture average FP-50
30 ReLU X 30 ReLU Maxout 0.00776
100 ReLU X 100 ReLU Maxout 0.00481
200 ReLU X 200 ReLU Maxout 0.00352
400 ReLU X 400 ReLU Maxout 0.00312
800 ReLU X 800 ReLU Maxout 0.00264
1000 ReLU X 1000 ReLU Maxout 0.00263

Figure 4.8: Networks trained on Soft histograms with MSE. Hinge loss was tested
and provided similar results.

Architecture average FP-50
100 ReLU Dropout X 100 ReLU Maxout 0.00622
200 ReLU Dropout X 200 ReLU Maxout 0.00483
400 ReLU Dropout X 400 ReLU Maxout 0.00336
800 ReLU Dropout X 800 ReLU Maxout 0.00294
1000 ReLU Dropout X 1000 ReLU Maxout 0.00266

Figure 4.9: Networks trained on Soft histograms with MSE loss.

Architecture average FP-50
100 ReLU Dropout X 100 ReLU Maxout 0.00613
200 ReLU Dropout X 200 ReLU Maxout 0.00460
400 ReLU Dropout X 400 ReLU Maxout 0.00357
800 ReLU Dropout X 800 ReLU Maxout 0.00282
1000 ReLU Dropout X 1000 ReLU Maxout 0.00277

Figure 4.10: Networks trained on Soft histograms with hinge loss.
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Figure 4.11: A graph of precision-recall curves of selected architectures. We can
notice that classifiers with Sigmoid activation function show poor performance.
Networks trained on Soft Histograms show better PR curves when trained with
MSE loss.

Training models using the soft histogram data were generally more compli-
cated than those using GMMs, and had worse results.

4.3 Evaluation
Generally speaking, we can conclude that neural networks with one hidden layer
and maxout activation did not produce worse FP-50 than the other neural net-
works, and that neural networks performed better with GMM data than soft
histograms. When we analyze the precision-recall graph 4.11 we can notice that
networks with output layer with sigmoid show worse performance than we would
expect from it’s FP-50. We can also see that classifier trained on Soft histogram
data is in fact relatively good. We would just have to sacrifice more recall to
reduce it’s false alarm rate.

We see that the best performance achieved on GMM data was around FP-50
3e-05. But what does this value mean in practice? If a model has an FP-50 equal
to 3.20e-05, while catching half of the malicious communication, it causes one false
alarm per 33,333 inspected samples. Since each sample contains five minutes of
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communication of one host, this means that one false alarm is caused per 347
man-days of network activity (considering eight-hour working days). This result
is promising. It shows that neural networks can learn to distinguish between
malicious and benign communication with a high level of accuracy even when
analysing encrypted traffic and relying purely on metadata. However, future
improvements will be necessary to make this method practical, because one false
alarm every day is unacceptable in a company with just 300 employees. Because
the number of positive samples is extremely low, we expect that the necessary
improvement can be reached purely by increasing it.

If we compare our results with the yet unpublished results of our colleagues
Přemysl Čech and Tomáš Komárek, Kohout et al. [2017] using different machine
learning methods on the same task, we can conclude that the results for neural
networks are slightly worse, but still comparable with the results of random forests
and better than the results of k nearest neighbours. It can also be seen that GMM
data aggregation leads to an improvement in the performance of all machine
learning algorithms.
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5. Similarity Search
The second problem studied is similarity search. If an infected computer is found
in a network, it is important to check whether there are any other computers
infected with the same or a similar virus. Since a computer infection may also
have been detected by a method other than our classification algorithm, this
algorithm should work also for samples which are below the decision boundary
of our classifiers.

To achieve this we would like to create a distance function d(x, y) from pairs
of communication descriptors into R such that the following two inequalities hold
with a high probability:
(1)d(m1, m2) < d(m1, n)
(2)d(m1, m2) < d(m1, c1)
where m1 and m2 are two distinct samples of communication of one piece of
malware from distinct computers, n is a sample of communication of a different
piece of malware and c1 are samples of clean communication.

These inequalities imply that if we take a sample m of malware communication
and order all the remaining samples of communication from our database y by
the value of d(m, y) in ascending order, then if there exists a different sample of
communication of the same malware, it will be in one of the first positions of this
ordering. It would also be interesting if inequality
(3)d(m1, n) < d(m1, c1)
held with a non-negligible probability, since if we inspect the similarity search
results, it is better if we find a computer infected with a different virus than the
one we were looking for than if we find a computer which is not infected at all.

Below we will discuss the construction of d() via the means of neural networks,
but first we have to show that having such a function really solves our problem.

With a function d() for which the first two inequalities hold, for use in a real-
world scenario we will first have to find Minf – a sample of communication of the
infected computer that contains some communication of the virus. We must then
compute d(Minf , x) for all the communication samples x of different computers.
Then we can select which samples are closest to Minf but come from a different
computer.

After the search, we can consider filtering the results by selecting only neigh-
bours with a distance from Minf smaller than a certain threshold, and not showing
the samples which are too far from Minf to be infected by the same virus.

Theoretically, this will provide a list of the computers most probably infected
by the same virus.

How does a user find a Minf sample? The similarity search should be used after
an administrator recognizes that a given computer is infected. She can recognize
this in either of the following ways. Either she is warned by our classification
system, whereupon she will be given a sample of infected communication by
that system, or she recognizes the infection by different means (e.g. after being
warned by antivirus software on the computer, or noticing visible behaviour of the
malware). Even in the second case, there is still a chance that the administrator
will be able to obtain an infected sample of communication. If she is not able
to do so, she must perform the search on all the samples of communication from
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that computer which were created within a certain period of time, as if each of
them was infected. Unfortunately, in this case the results of nearest neighbour
search may also include clean computers which have produced a certain clean
activity C, which is close to the clean activity C ′ of the infected computer at a
time when the virus was not communicating.

5.1 Implementation
This section will discuss how to create the mapping d().

The first way to implement d() is to create a neural network which takes
two input vectors, descriptors of communication, and produces one number, the
similarity of the communications.

This is disadvantageous because such a function would scale badly. For exam-
ple, a search for communications similar to one of k samples of communication of
infected computers within a database of n communication samples would require
n∗k evaluations of function d, and we would have to work with each of n samples
in the database. With a huge database this may easily be too much. It may
also prove difficult to train such a network with our limited number of positive
samples, because this architecture is likely to require a much greater number of
weights to work.

Instead, we can take inspiration from the structure of Google FaceNET Schroff
et al. [2015], which is trained to compare photos of faces and say whether they
contain the same person. This network does not implement the function d()
directly, but instead implements function f(), which takes one photo and computes
a vector of features such that the Euclidean distance between f()’s outputs for
two faces corresponds to their similarity. It basically implements the function
d(x, y) as d(x, y) = ||f(x) − f(y)||2, and we will do the same.

Google FaceNET was trained by enforcing
||f(x1) − f(x2)|| + α < ||f(x1) − f(y)||, where x1,x2 are images from the same
class (belonging to the same person) and y is from a different class, through
minimization of∑N

i=1[||f(ai) − f(bi)||22 − ||f(ai) − f(ci)||22 + α]+
where ai and bi are photos of faces of a single person, ci is a face of a different
person and [x]+ means that we consider x only when x > 0.

This approach is clearly much more efficient. If we want to run similarity
search requests on a database we may consider storing the data in the form of
transformed descriptors f(x). Then we need to compute the function f() only
once for each sample. While searching the database we may also take advantage
of the distance satisfying the metric axioms, which may help us to further speed
up our search Yianilos [1993].

To train the network, ideal would be the use of some modification which forces
the mapping f() both to project similar types of malware close to one another
and to project all clean samples far from all malware samples.

The present case is more difficult because of the small number of malware
samples, and because we cannot apply the Google FaceNET method directly, since
our data do not contain any information about which infected communication
sample contains what kind of malware. Therefore, we have to change our goal to
training a network which enforces only the third equation (a malware sample is
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closer to a malware sample than to a clean sample) and tries to enforce the first
one (similar pieces of malware are closer to one another than to other malware)
purely via unsupervised learning methods.

We will also try to exploit the possibility that the second-but-last layer of
classifiers trained in a supervised manner (with labels malware and clean) may
produce a useful representation of the input data, as e.g. in Razavian et al. [2014].

Unfortunately, there is another problem in the evaluation of the results. Ide-
ally, the similarity search would be run to check the extent to which nearest
neighbours are generated by the same type of malware. Unfortunately, there is
no information on which sample contains activity of which malware. Therefore,
the results must be evaluated indirectly.

Because of the nature of our data we can only evaluate whether the nearest
neighbours of samples of malware communication are samples of malware com-
munication. This is very unfortunate, because with this method we are unable
to distinguish between a network which creates a more advanced mapping and a
network which is in fact just a masked classifier and maps all the benign sam-
ples close to one point of m-dimensional space and all the malign samples close
to another point. We try to detect this behaviour from plots created by a non-
deterministic dimensionality reduction technique called TSNE van der Maaten
and Hinton [2008]. If we cluster the outputs of our network and see only two
large clusters, one for malicious and one for benign data, we know that the de-
scribed behaviour is likely to be happening. The result which does not show that
the network suffers with this issue is a larger number of clusters containing each
class.

When using similarity search, usage of some initial filtering of input data can
be considered: the fewer input data are used, the higher the precision of the
similarity search. For this, a classifier with a very high recall (ideally 100%)
and as high an accuracy as possible would be required. Unfortunately, from
the precision-recall curves computed for classification it seems that it would be
extremely difficult to create such a classifier; therefore, we cannot use this method.

5.2 Experiments
At first we considered pure autoencoder networks and networks which are trained
to just minimize the distance between positive samples and maximize distance
between positive and negative samples, but both of them have theoretical disad-
vantages.

The representation created by the first architecture is supposed to contain
compressed information about the nature of the input sample, but there is no
guarantee that the Euclid distance between the created representation of two
samples will carry the required meaning. There does not necessarily be anything
forcing network to put malicious samples close to other malicious samples.

The second architecture can on the other hand guarantee, that positive sam-
ples will be closer to other positive samples than to negative samples but does not
guarantee that it will store any information about the input but it’s class. It is
possible that it will just learn to classify the original samples and to project all the
malicious samples close to one point of m-dimensional space and all the benign
samples close to a different point, which renders similarity search impossible.
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We can notice that the previously mentioned architectures are in some way
complementary. This motivated us to create a siamese architecture combining
both of them into a single network.

Let encode() denote the function computed by the part of an autoencoder
preceding the layer from which we will extract the representation and decode()
the part following this layer, m1 and m2 malicious samples and c clean sample.
Then the loss function of our siamese architecture is defined as:
malware malware distance = (encode(m1) − encode(m2))2

malware clean distance = (encode(m1) − encode(c))2

autoencoder clean = (decode(encode(m1)) − m1)2

autoencoder malware = (decode(encode(c)) − c)2

loss = α ∗ (malware malware distance − malware clean distance) +
+ (1 − α) ∗ (autoencoder malware + autoencoder clean)

We can see that the loss function seeks to minimize the Euclid distance be-
tween samples of malware and maximize the distance between malicious and
benign samples while in the same time trying to force the representation created
by the function encode() to retain the information about the nature of samples
by minimizing the loss of autoencoders. Parameter α then balances between
these two behaviours. The smaller the α is, the more the network behaves as an
autoencoder and the less as the other prototypical network, and vice versa.

We have also tried to improve the resulting architecture by modification of
process of selection of m2. Normally, all the samples were selected randomly,
but we realized that it may not be optimal, since it forces all the malicious
samples to be close to one another. We considered it better to select m2 in such
a way that it is already close to m1 therefore we train the network to create
more clusters than just one. Unfortunately, a straightforward approach to find
the closest samples of malicious communication and use one of them as m2 is
computationally expensive, because it requires us to evaluate the network on all
the training samples of malware in each training round. Therefore we used only
randomly selected 100 samples to find the nearest neighbours in each round. We
also did not select the closest neighbour as m2 but instead selected randomly one
of the 10 nearest neighbours, because the closest one may be close enough to m1
already.

We tested the architectures with several values of α and several sizes of layer
producing the representation. We also experimented with using the ReLU activa-
tion function, which tends to produce sparser representation of the input data, as
the activation function of the narrowest layer, but we had problems with output
values of neurons of this layer increasing above all limits.

The results were evaluated in the way described above and compared with
results of the same evaluation of the original data and the representation ex-
tracted from distinct classification networks. In this comparison the precision
was computed as the average percentage of malicious samples among 10 nearest
neighbors of each infected sample. For this evaluation we used all the 1578 mali-
cious samples and 100,000 clean samples. The number of clean samples used for
evaluation was selected so that we can measure the difference between different
architectures.

32



Figure 5.1: TSNE plot of a representation produced by our siamese architecture
in setup with middle layer of size 400, α = 0.1 and m2 selected among nearest
neighbors of m1. We can see that our representation forms several small clusters.
1578 malicious samples (red) and 5000 benign samples(green).

First we show the results obtained by siamese networks:
We can see that the network with α = 0 (5.2) (pure autoencoder) produces a

completely spread set of points, while the network with α = 1 (5.3) concentrates
most of the malicious samples into two clusters. On the other hand the network
with α = 0.5 (5.3) creates several clusters of approximately equal size and there-
fore shows the behaviour similar to the behaviour expected from the networks
we would like to train. We can also see that networks with special process of
selection of m2 show slightly better precision. The performance of such networks
in clustering is comparable to the performance of standard networks.

We also discuss the results obtained by the classifier networks:
We see that the representations created by the last layer of classifiers do not

form clusters of malicious data, which can be considered a hint that the more
specific information about the nature of malware have been lost and therefore
the output of such a network cannot be used for similarity search.

More interesting results have been shown by the representation produced by
the first layer of network 300 X 1 Sigmoid 5.12, which looks 5.11 as if it was
naturally forming clusters of malicious data, and also has a very high precision.
The network shows results far superior to those of siamese networks, but before
being sure about it’s performance we have to take into account one possibility.
What if the similarity search is able to detect only the ”easy” samples, which
would be classified as malware anyway and so the network does not add anything
new to our problem, because we can just use it as a classifier instead of relying
on it’s performance in the similarity search?

Therefore we tested this architecture once again on similarity search. This
time we used only 789 ”hard” malicious samples which would normally be unde-
tected by this network if it operated in the classifier mode. Because we decreased
the number of malicious samples by one half, we decided to also decrease the
number of clean samples by one half to make the problem more balanced. Under
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Figure 5.2: TSNE plot of a representation produced by our siamese architecture
in setup with middle layer of size 100, α = 0.0.

such conditions the precision achieved by the representation was only 0.36 which
shows us that the representation of classifiers is in fact worse than the results
achieved by the siamese neural networks.

For comparison we also show the performance of the original data. The pre-
cision of the original data (5.15) is comparable with or better than the results
achieved by siamese networks, but the samples are mostly spread in the multidi-
mensional space and form only a few huge clusters, which does not correspond
with the properties of the representation we would like to have (5.13 and 5.14 ).

5.3 Evaluation
When we observe the TSNE graphs and precisions of siamese networks with α
being strictly between zero and one, we can conclude that it is possible that the
clusters in output representation of our siamese networks might be corresponding
to groups of viruses showing similar activity, because none of the results we were
able to measure is contradictory to this belief. But we still have to be careful,
because the data we were given did not allow us to verify this hypothesis with
100% accuracy. Therefore further research is necessary.
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Figure 5.3: TSNE plot of a representation produced by our siamese architecture
in setup with middle layer of size 400, α = 0.5 (up) and α = 1.0 (down). 1578
malicious samples (red) and 5000 benign samples(green).

Architecture α Average Precision
600X400[OUT]X600X600 0.0 0.47
600X400[OUT]X600X600 0.1 0.35
600X400[OUT]X600X600 0.35 0.39
600X400[OUT]X600X600 0.5 0.39
600X400[OUT]X600X600 0.65 0.40
600X400[OUT]X600X600 0.9 0.39
600X400[OUT]X600X600 1.0 0.38

Figure 5.4: The precision of the standard siamese architectures with sigmoidal
activation function.
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Architecture α Average Precision
600X400[OUT]X600X600 0.0 0.49
600X400[OUT]X600X600 0.1 0.36
600X400[OUT]X600X600 0.35 0.42
600X400[OUT]X600X600 0.5 0.43
600X400[OUT]X600X600 0.65 0.41
600X400[OUT]X600X600 0.9 0.41
600X400[OUT]X600X600 1.0 0.44

Figure 5.5: The precision of siamese architectures with sigmoidal activation func-
tion, employing the special process of selection of m2 as described above.

Architecture α Average Precision
600X200[OUT]X600X600 0.0 0.50
600X200[OUT]X600X600 0.1 0.38
600X200[OUT]X600X600 0.35 0.40
600X200[OUT]X600X600 0.5 0.40
600X200[OUT]X600X600 0.65 0.40
600X200[OUT]X600X600 0.9 0.39
600X200[OUT]X600X600 1.0 0.42

Figure 5.6: The precision of the standard siamese architectures with sigmoidal
activation function.

Architecture α Average Precision
600X200[OUT]X600X600 0.0 0.47
600X200[OUT]X600X600 0.1 0.42
600X200[OUT]X600X600 0.35 0.41
600X200[OUT]X600X600 0.5 0.41
600X200[OUT]X600X600 0.65 0.44
600X200[OUT]X600X600 0.9 0.39
600X200[OUT]X600X600 1.0 0.43

Figure 5.7: The precision of siamese architectures with sigmoidal activation func-
tion, employing the special process of selection of m2 as described above.

Architecture α Average Precision
600X100[OUT]X600X600 0.0 0.46
600X100[OUT]X600X600 0.1 0.41
600X100[OUT]X600X600 0.35 0.39
600X100[OUT]X600X600 0.5 0.42
600X100[OUT]X600X600 0.65 0.40
600X100[OUT]X600X600 0.9 0.38
600X100[OUT]X600X600 1.0 0.42

Figure 5.8: The precision of the standard siamese architectures with sigmoidal
activation function.
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Architecture α Average Precision
600X100[OUT]X600X600 0.0 0.47
600X100[OUT]X600X600 0.1 0.43
600X100[OUT]X600X600 0.35 0.39
600X100[OUT]X600X600 0.5 0.42
600X100[OUT]X600X600 0.65 0.43
600X100[OUT]X600X600 0.9 0.40
600X100[OUT]X600X600 1.0 0.43

Figure 5.9: The precision of siamese architectures with sigmoidal activation func-
tion, employing the special process of selection of m2 as described above.

Figure 5.10: TSNE plot of data produced by the last layer of 50 X 50 Maxout
classifier. We can see that this layer does not produce representation in which
malicious data form clusters.

Figure 5.11: TSNE plot of data produced by the first layer of 300 X 1 sigmoid
classifier. We can see that the output of this layer contains one big and a few
smaller clusters of malicious data. 1578 malicious samples (red) and 5000 benign
samples(green).
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Architecture Average Precision
50ReLU X 50ReLU Maxout [OUT] 0.62
800ReLU X 800 Dropout [OUT] 0.63
200ReLU X 200ReLU X 200ReLU Maxout [OUT] 0.64
200ReLU X 200ReLU[OUT] X 200ReLU Maxout 0.64
300ReLU X 1 Sigmoid 0.66

Figure 5.12: The precision of the classifier networks.

Figure 5.13: TSNE plot of GMM600 (up) and GMM600 480 (down) data. 1578
malicious samples (red) and 5000 benign samples(green).
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Figure 5.14: TSNE plot of the Soft histogram data. 1578 malicious samples (red)
and 5000 benign samples(green).

Data Average Precision
GMM600 0.38
GMM600 480 0.41
Soft Histograms 0.49

Figure 5.15: The top 20 precision of the original data.
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6. Conclusion
This thesis has explored the possibility of detection of malware within encrypted
HTTPS traffic on the basis of metadata measured and aggregated by Cisco. It has
tested distinct architectures with distinct types of aggregated data. Promising
results have been achieved, which once again shows that metadata contain enough
information to detect malware, and that neural networks are able to make use
of such information. Because networks were trained using a very small set of
infected samples, we expect that the achieved results can be further improved by
simply using a training dataset with a larger number of infected samples.

The achieved results were comparable with, although slightly worse than the
performance achieved by random forests, and better than the results achieved by
k nearest neighbours, which shows that neural networks can be efficiently used
on this type of problem.

In the second part of the thesis we experimented with training of neural net-
works for similarity search among samples of communication. The goal was to
create an architecture which groups together samples of communication contain-
ing activity of similar malware. We designed a class of architectures to help solve
the problem, and tried to train and evaluate these architectures on our dataset.
We achieved a partial success by creating an architecture which creates clusters
of infected communication and projects the infected samples close to one another,
but unfortunately our experiments were limited by the absence of more detailed
information about the nature of the traffic within the used dataset. Therefore,
we cannot determine whether each cluster contains only communication created
by a single malware family or whether all the communication of a single mal-
ware family is within a single cluster. Similarity search requires further research
on a different dataset containing information about the nature of data samples,
which would allow both a more precise evaluation of our partially unsupervised
architecture and testing of a multiclass classifier resembling the Google FaceNET
architecture (Schroff et al. [2015], described in Chapter 3).
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7. Appendix A: Implementation
of experiments

Programs
The CD attached to this thesis contains two sample programs:
classification.py (Attachment 1) implementing the training and evaluation of the
classification experiments and
similarity.py (Attachment 2) implementing the class of neural networks mentioned
in the similarity search chapter.

We also provide sample trained networks (Attachment 3) for each of the
programs and a small proportion of training and testing dataset containing the
GMM600 data (Attachment 4)

Both programs require Python 2.7 and TensorFlow 1.2. It is likely that they
will also work with different versions, although we cannot guarantee that espe-
cially because of the rapid development of TensorFlow.

Control of classification.py
The program classify.py (Attachment 1) can train a neural network to classify
the data or evaluate the performance of such a network. It is controlled from
command line.

The first argument has value either ”train” or ”test”, and specifies whether to
train or evaluate the network. Each of the modes accepts different arguments.

Training
Creates and trains a new network with specified shape. The accepted argument
are:

--model name of file where to store the trained neural network.
--shape shape of the network - number of layers, their activation functions and
numbers of neurons. It is of form described by regular expression
([1 − 9][0 − 9]∗X( sigmoid| relu)?( dropout)?X)∗

([1−9][0−9]∗X( sigmoid| relu)?( dropout)?). The default for each layer is ReLU
and no dropout.
--batch size number of samples in each batch
--epoch duration duration of period between decreases of the learning rate (de-
fault 200,000)
--number of epochs number of epochs before stopping the training (default 8)
--learning rate learning rate (default 0.0005)
--clean data clean data used for training
--malware data malicious data used for training

Example:
python classify.py train --model tfsaves/network1.tfsave
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--shape 600 dropout reluX1 sigmoid --epoch duration 200000
--number of epochs 8 --clean data dataset/gmm600 clean train.csv
--malware data dataset/gmm600 malware train.csv
This command trains a network 600 Dropout Relu X 1 sigmoid for 8 epochs of
duration 200,000 on the given data and stores it into tfsaves/network1.tfsave.

Evaluation
Evaluates an existing network. The accepted argument are:
--model, --shape have the same meaning
--clean data clean data used for evaluation
--malware data malicious data used for evaluation

Example:
python classify.py test --model tfsaves/network1.tfsave
--shape 600 dropout reluX1 sigmoid --clean data dataset/gmm600 clean test.csv
--malware data dataset/gmm600 malware test.csv

Evaluates a network with shape 600 Dropout Relu X 1 sigmoid on the given
dataset.

Control of similarity.py
The program similarity.py (Attachment 2) can train a neural network for simi-
larity search or evaluate the performance of such a network. It is controlled from
command line.

The first argument has value either ”train” or ”test”, and specifies
whether to train or evaluate the network. Each of the modes accepts different
arguments.

Training
Creates and trains a new network with specified shape. The accepted argument
are:
--model, --shape, --number of epochs have, --batch size, --epoch duration,
--learning rate, -- clean data, -- malware data have the same meaning as in train-
ing of classifiers.
--selected layer number of layer from which we should take the output (the first
layer has number 1. 0 means input of the network)
--alpha α as described in Chapter 5.
--size of set number of randomly chosen malicious samples from which to choose
the m2 (see the chapter 5 for details). Default is 0, which disables this function.

Example:
python similarity.py train --model tfsaves/network2.tfsave
--shape 600 sigmoidX400 sigmoidX600 sigmoidX600 sigmoid
--epoch duration 200000 --number of epochs 8
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--clean data dataset/gmm600 clean train.csv
--malware data dataset/gmm600 malware train.csv --selected layer 2 --alpha 0.4

Trains a siamese network 600 Sigmoid X 400 Sigmoid [OUT] X 600 Sigmoid
X 600 sigmoid with α = 0.4 for 8 epochs of duration 200,000 on the given data
and stores it into tfsaves/network2.tfsave.

Evaluation
Evaluates an existing network. The accepted argument are:
--model, --shape, --clean data, --malware data, --selected layer have the same
meaning as in evaluation of classifiers.

Example:
python similarity.py test --model tfsaves/network2.tfsave
--shape 600 sigmoidX400 sigmoidX600 sigmoidX600 sigmoid
--clean data dataset/gmm600 clean test.csv
--malware data dataset/gmm600 malware test.csv --selected layer 2

Evaluates a siamese network 600 Sigmoid X 400 Sigmoid [OUT] X 600 Sigmoid
X 600 sigmoid on a given dataset.
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