
BACHELOR THESIS

Václav Čamra

FPVS: FreePascal Visual Studio
Integration

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.

Study program: Computer Science

Study branch: Programming and Software Systems

Prague 2017

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: FPVS: FreePascal Visual Studio Integration

Author: Václav Čamra

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and Dependable
Systems

Abstract: The Pascal programming language was designed and is still used to
this day to teach procedural imperative programming. However, there are no
modern high quality integrated development environments (IDEs) that could be
used by students to write in the Pascal programming language.

In this thesis we attempt to fix this problem by creating a Visual Studio 2015
extension which would integrate Free Pascal programming language into Visual
Studio. This extension adds a Free Pascal project into Visual Studio, allows for
Free Pascal source code to be compiled, ran and debugged. Additionally, the
extension adds syntax highlighting and code completion for subset of the Free
Pascal language into Visual Studio.

Keywords: Visual Studio 2015, Free Pascal, Visual Studio extension

Název práce: FPVS: Integrace FreePascalu do Visual Studio

Autor: Václav Čamra

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı práce: Mgr. Pavel Ježek, Ph.D., Katedra distribuovaných a spolehlivých
systémů

Abstrakt: Programovaćı jazyk Pascal byl navržen a je i nadále použ́ıván pro
výuku procedurálńıho imperativńıho programováńı. Neexistuje však žádné mod-
erńı kvalitńı integrované vývojové prostřed́ı (IDE), které by mohli studenti pro
psańı v programovaćım jazyce Pascal použ́ıt.

V této práci se pokouš́ıme tento problém napravit tak, že vytvoř́ıme rozš́ı̌reńı
pro Visual Studio 2015. Toto rozš́ı̌reńı přidává nový typ projektu – Free Pas-
cal project – do Visual Studia, umožňuje zdrojový kód psaný v jazyce Free
Pascal zkompilovat a výsledný program spustit a ladit. Naše rozš́ı̌reńı nav́ıc
zahrnuje zvýrazňováńı syntaxe a napov́ıdáńı (code completion) pro podmnožinu
programovaćıho jazyka Free Pascal.

Kĺıčová slova: Visual Studio 2015, Free Pascal, Rozš́ı̌reńı pro Visual Studio

ii

I would like to thank my supervisor, Mgr. Pavel Ježek, Ph.D., for his patience
and for the advice he has given me. Without his guidance this thesis would hardly
reach the level of quality I believe it to have.

iii

Contents

1 Introduction 3
1.1 Curriculum on our faculty . 3
1.2 Existing IDEs for Pascal . 4
1.3 Requirements . 8
1.4 Goals . 9

2 Background 10
2.1 Common Object Model . 10
2.2 MSBuild . 11
2.3 Managed Extension Framework 12

3 Analysis 13
3.1 Pascal Language and Compiler 13
3.2 Project system . 14
3.3 Build . 16

3.3.1 Build target . 16
3.3.2 Compile task . 17
3.3.3 Error List . 18

3.4 Run without debugging . 18
3.5 Debugging . 18

3.5.1 Underlying debugger and Debug Engine 19
3.6 Syntax Highlighting . 20
3.7 Code completion . 21

3.7.1 Pascal library analysis . 21
3.7.2 Data structures for code completion 21

3.8 Source code analysis . 22
3.8.1 Data structure . 22
3.8.2 Parsing . 24

4 Implementation 25
4.1 MIDebugEngine solution . 25
4.2 FreePascalVisualStudioIntegration solution 26
4.3 ProjectSystem project . 27

4.3.1 Extension . 27
4.3.2 Global properties . 28
4.3.3 Free Pascal project . 28
4.3.4 New Free Pascal project creation 29
4.3.5 Adding new empty Pascal file 30
4.3.6 Free Pascal building . 30
4.3.7 Running the program with and without a debugger 31
4.3.8 Project properties . 32
4.3.9 Managing abstract syntax trees 33
4.3.10 Syntax highlighting . 34
4.3.11 Code completion . 36
4.3.12 Project constants . 38

1

4.4 Microsoft.VisualStudio.Project project 38
4.5 FreePascalTasks project . 39
4.6 Code Analysis . 40
4.7 FpLexer project . 41

4.7.1 Tokens . 41
4.7.2 SyntaxKind . 42
4.7.3 Lexer . 42

4.8 CodeAnalysis project . 43
4.8.1 Abstract syntax tree . 43
4.8.2 Parser . 44
4.8.3 Grammar . 44
4.8.4 Semantic Model . 45

5 User guide 46
5.1 Installation . 46
5.2 Creating a Free Pascal project . 46
5.3 Saving and loading a Free Pascal project 48
5.4 Compiling a Free Pascal project 48
5.5 Debugging a Free Pascal project 48

5.5.1 Stepping through the code 49
5.5.2 Inspecting current state of the program 49
5.5.3 Disassembler . 50

5.6 Options . 50

Conclusion 52

Bibliography 54

Attachments 55

2

1. Introduction
This thesis aims to improve the quality of teaching of programming on university
level. We are not attempting to find a universally applicable solution since we
have based this thesis only on the experience of teachers of the undergraduate
study program Computer Science on the Faculty of Mathematics and Physics of
the Charles University in Prague. It is important to note that while few decades
ago new students used to have some experience with programming when they
entered the university already, nowadays vast majority of the newcomers have no
experience at all. Because of that it is important to focus the first (winter) term
to bring every student to roughly the same basic level and to teach them basic
programming skills, e.g. dividing problems into subproblems, synthesis of the
subsolutions into the overall solution, conversion of abstract solutions into ones
that use basic programming constructs (variables, conditions, loops, expressions,
etc.). It is highly undesirable to teach these skills only on an abstract level,
therefore it is important to choose an existing programming language. It turns
out that Pascal is still a good programming language in which to teach these basic
skills to people who have never programmed before. Even though the students
are very unlikely to use Pascal in their future careers we still prefer Pascal to
other languages as it allows beginners to understand the basics of programming
more easily while not making it any harder for experienced newcomers, as they
have no issues learning in Pascal as well.

It is important to note that the amount of knowledge a programmer needs
to possess nowadays is much greater than what they used to need a few decades
ago. At the end of their studies, on top of the skills they already had to have (e.g.
create a new algorithm, write it down in some programming language), program-
mers need to be capable of writing programs spanning hundreds of thousands of
lines of code, to work in teams, to use modern frameworks, to write automatic
tests, etc. In order to ease developers their job and allow them to focus on the
more difficult tasks, it is important that developers have an Integrated Devel-
opment Environments (IDEs) of high quality. However in the context where we
want to teach students in Pascal we must note that Pascal has been developed
many decades ago and thus the IDEs that are built for Pascal are designed to
suit developers who used to write in Pascal around 20 years ago, and so there is
a collision with the requirements of high quality IDE.

We would like to combine both of these views (the Pascal programming lan-
guage and modern IDEs), because it is important for students to get used to
modern IDEs as soon as possible so that they could then smoothly transition
to learn more advanced programming concepts. This thesis shows in the next
sections that there really is no modern IDE for Pascal, therefore the goal of this
thesis is to propose an improvement.

1.1 Curriculum on our faculty
Before we examine the already existing IDEs we need to set criteria we will use
to compare these IDEs. To set these criteria we will first introduce the context
in which the teaching on our faculty takes place. As we have already stated,

3

the students on our faculty start by programming in the Pascal programming
language, in which we teach only procedural imperative programming and which
we do not use to teach any more advanced programming principles (e.g. object-
oriented programming, functional programming). On the other hand the Pascal
programming language is also used in course that describes the internal function-
ing of computers, where Pascal is used to write programs showcasing the various
described principles. This course makes use of some other features of the Pascal
language, for example pointer casting, pointer arithmetic and support for inline
assembler.

In the second (summer) term the students on our faculty are taught the prin-
ciples of object-oriented programming and event-driven GUI programming. It
would be highly contra productive to teach these concepts in Pascal, because
even though Pascal does support these features, they are implemented in an out-
dated manner. Instead, we choose the C# programming language as an example
of a modern object oriented programming language that is used in real projects.
It is important to note in the context of this thesis that for C# there do exist
modern IDEs, e.g. Visual Studio, MonoDevelop that students write in and in
which the students get used to working with such modern IDEs.

In the transition from winter to summer term students not only transition
to new programming language, but also to new IDE, which tends to be quite
difficult for students to cope with. Therefore we believe it would be good for
students to use an IDE similar to Visual Studio already in the winter term, so
that they could, at the start of summer term, focus only on the new programming
language.

1.2 Existing IDEs for Pascal
In order to examine the already existing IDEs, we must set some criteria which
will be used to compare the IDEs: It is important for students that the IDE has
gradual learning curve, so that they can focus on the programming itself. Also,
as we have stated in section 1.1, we would prefer the IDE to look similar to Visual
Studio, in order for students to have an easier transition to summer term.

Borland Pascal IDE
Borland Pascal IDE (for screenshot see Figure 1.1) has been popular since its
first release in 1983. It was very successful and was often used for commercial
projects. The benefit Borland Pascal IDE brings to students is that it supports
only the pure Borland Pascal programming language, without any additional
features. However, since the project has been abandoned, with its last version,
Borland Pascal 7, being released 25 years ago (in 1992), students are running
into issues with compatibility. These issues stem from the fact that Borland
Pascal IDE is only compatible with MS-DOS operating system. Since the most
used operating system among students nowadays – Windows – doesn’t include
MS-DOS subsystem in 64-bit installations[1] students need to emulate MS-DOS
environment (e.g. by using DOSBox) in order to run Borland Pascal. Since
emulation is necessary, depending on the used emulation software students may
not have copy-paste functionality between applications (between the IDE and
native Windows applications). Similarly, sharing files between the emulated MS-

4

DOS and native Windows can be problematic.

Figure 1.1: Borland Pascal IDE1

Feature wise Borland Pascal IDE doesn’t offer much for students – only a text
editor, a compiler support and a debugger. It lacks the features that programmers
nowadays are often used to and which students could use as well, e.g. syntax
highlighting and code completion.

Free Pascal IDE
Free Pascal team tried to address the compatibility issues Borland Pascal IDE
has. Since the source code for both the Borland Pascal compiler and the Borland
Pascal IDE is proprietary, they decided to create a new, open source compiler –
Free Pascal Compiler – and IDE – Free Pascal IDE (for screenshot see Figure 1.2).
The goal of the Free Pascal project is to have both the compiler and the IDE run
under more operating systems (including Windows and Linux).

Figure 1.2: Free Pascal IDE
1Source: http://img.informer.com/screenshots/3409/3409919 1 4.png

5

Free Pascal has been first released in 1998. Since at that time there was
no need to modify the design of Borland Pascal IDE, the Free Pascal IDE was
designed to resemble it (as can be seen from the screenshots). Since the Free
Pascal IDE does not need to run in emulated environment, many OS features
are now enabled for students to use, namely inter-application copy-paste and
accessing source code files from other SW than the IDE itself. On top of that
Free Pascal IDE supports syntax highlighting. On the other hand the benefit we
mentioned of the Borland Pascal IDE (the purity of the supported language) is
not present in the Free Pascal IDE, because while the team was making a new
compiler, they have added new features to the language as well, creating Free
Pascal programming language.

Delphi
The Borland company also tried to address the issues Borland Pascal IDE had.
They created a new, modern IDE – Delphi (for screenshot see Figure 1.3) –
in 1995. Borland has, like Free Pascal team, also modified the Pascal language
when rewriting the compiler for it, creating Object Pascal. Delphi is, like Borland
Pascal IDE, no longer supported (last version Borland Delphi 2005 was released
in 2004). Since Delphi was developed in time when it was popular to create
GUI applications, Delphi is focused on the development of these applications.
This leads to a lot of extra features that are unnecessary for students (e.g. GUI
designer). The existence of these features alone would not be an issue, but because
Delphi uses an extra window for every feature set and since these features are
turned on by default, it clutters the screen and confuses the students.

Figure 1.3: Delphi IDE on first start

Lazarus
Lazarus (for screenshot see Figure 1.4) is an IDE that tries to resemble Delphi.
The main difference between Lazarus and Delphi is that while Delphi supports
Object Pascal, Lazarus supports Free Pascal. Lazarus also shares the now out-
dated design paradigm of having an extra window for every feature. Since a lot of
the extra features, like GUI designer, are turned on by default on startup, many

6

students are confused even after several weeks of experience with Lazarus.

Figure 1.4: Lazarus IDE on first startup

As we can see in table 1.1, all of the mentioned IDEs offer compiler and debug-
ger support. In order to be viable as a Pascal IDE, our suggested improvement
will need to support at least that. A common feature in IDEs is syntax highlight-
ing. We believe it to be very helpful for beginners and would like to include it as
well. Another feature we would like to see in our extension is code completion.
Since Visual Studio supports syntax highlighting and code completion for other
languages, we believe it possible to integrate these for Pascal as well.

Bu
ild

su
pp

or
t

D
eb

ug
ge

r
su

pp
or

t

Sy
nt

ax
hi

gh
lig

ht
in

g

C
od

e
C

om
pl

et
io

n

Su
pp

or
te

d
la

ng
ua

ge

Borland Pascal IDE X X Borland Pascal
Free Pascal IDE X X X Free Pascal
Delphi X X X X Delphi
Lazarus X X X X Free Pascal
Visual Studio 2015 X X X X -

Table 1.1: Comparison of IDEs by selected features

Since there exist guides on how to extend projects [2] and how to extend
language service (syntax highlighting and code completion) [3] in Visual Studio
we believe that Visual Studio does support the addition of new programming

7

languages and since as we have stated before we would like the students to be
able to program in Pascal in an IDE like Visual Studio, we believe it would be
best to add the support for the Pascal programming language to Visual Studio.
Since the newest version of Visual Studio at the time of writing of this thesis is
Visual Studio 2015, we’ll be adding the support to that version.

1.3 Requirements
We need to create an extension for Visual Studio 2015 that will add the support
for the Pascal programming language. Because only the basics of programming
are taught, we don’t need to support unit or library files (only those starting
with the PROGRAM keyword). This IDE will therefore only need to be able to
compile a single file.

Next the students will need some debugging support as well, namely:

• Viewing values of global and local variables

• Stepping through the code

• Editing values of variables

• Viewing call stack

As we have mentioned in 1.1, Pascal is also used in a course which describes
the internal functioning of computers. For that course we also want to support
disassembler.

Additionally we would like this IDE to have syntax highlighting and to support
code completion at least for identifiers from the same file. It would be much better
though for students if we could also cover code completion for identifiers coming
from the system unit (built-in types, procedures, functions) as well. It would also
be helpful for students to offer code completion for keywords.

Since in our implementation we are likely to choose a variant of the Pascal
language which will support more constructs than we need (e.g. object-oriented
programming) we’ll limit ourselves only to the procedural subset of the language.
That includes:

• Basic statements (assignments, procedure and function calls)
• Conditions (if-then-else, switch-case)
• Loops (for, while, repeat-until)
• Expressions (arithmetic and logical operators)
• Procedures, functions
• Variables, constants
• Custom types (arrays, simple records, pointers to records)

Furthermore, we expect students to also want syntax highlighting for com-
ments. Additionally, as we have mentioned in section 1.1, for the course where
students learn about the internal functioning of computers, we will need to sup-
port in-line assembler and pointer arithmetic. Since the in-line assembler is not

8

used extensively by students, this support will only include the assembler code
not being marked as error. No syntax highlighting or code completion for the
assembler code will be supported.

Since the teachers on our faculty already have many example projects already
created using mostly Free Pascal IDE and Lazarus IDE, it would be good if we
could read the project files of these two IDEs. Since we will not need to modify
the projects, this reading process can include a one-way project file conversion.

1.4 Goals
The goal of this thesis is to fully integrate a variant of the Pascal language which
supports all constructs described in section 1.3 into Visual Studio 2015.

We want to add following features regarding Pascal programming language to
Visual Studio, ranked by importance:

1. (Required) Automatic compilation support.

2. (Required) Execution support (running the programs).

3. (Required) Debugging support.

4. (Highly desired) Syntax highlighting, including errors.

5. (Desired) Code completion for built-in identifiers (i.e. String, Writeln,
Readln).

6. (Desired) Code completion for custom identifiers.

7. (Desired) Code completion for keywords.

9

2. Background
In the Analysis and Implementation chapters we will be describing what de-
sign choices we had to make and the way the extension we created works. The im-
plementation uses various systems, frameworks and technologies that the reader
might not be familiar with. In order for the reader to fully understand some of the
implications that stem from writing a Visual Studio extension or that stem from
the design choices, some basic principles about the technologies will be explained
in this chapter. If the reader understands what Common Object Model (COM),
MSBuild and Managed Extension Framework (MEF) are and the basics of how
they are used, he can safely skip this chapter.

2.1 Common Object Model
The Microsoft Common Object Model (COM) is a mechanism that allows the
re-use of objects (components) independent of programming language (both the
one they were written in and the one they are re-used in) and independent of the
object’s location (they can be present in the same process, in other processes, or
even on another machine altogether).

COM strictly separates the interface and implementation. The interfaces are
defined in a programming language neutral way (using the Interface
Definition Language) and are identified by an Interface Identifier (IID),
which is a Globally Unique Identifier (GUID) – a 128-bit number1. The im-
plementation of these interfaces can be written in any programming language that
has a compiler which emits COM-compatible binaries. The classes which provide
the implementation are identified by their Class Identifiers (CLSIDs), which
are also GUIDs. When a program wants to create an instance of a specific class,
it provides the COM framework the CLSID of the class and COM will then load
the specific library (usually registered in Windows registry), create an instance
of the class and return a pointer to that instance.

It is important to note that COM interfaces do not support versioning – they
are identified by their IID only. This means that any changes to the interface
must be done by creating a new interface with its own IID. These interfaces can
inherit and extend the original one or can be completely new ones. Since Visual
Studio is built using COM and since Visual Studio has been in development for
over 20 years (the first Visual Studio – Visual Studio 97 was released in 1997)
there are many cases where the interfaces had to be updated, as can be seen on
e.g. IVsProject, IVsProject2, IVsProject3, IVsProject4 and IVsProject5
interfaces, where each interface (except the first) extends the previous one.

All COM interfaces are usable from .NET by creating a .NET version of
these interfaces and classes attributed with various .NET attributes (e.g. the
ComImport2 attribute). Programmers can then create and use these .NET classes
like any other .NET classes. Microsoft has already created all the
.NET variations of the COM interfaces of Visual Studio (e.g. the

1GUIDs are usually randomly generated, e.g. d34a656c-8582-4e4d-a83c-5722ac31a139
2Full name: System.Runtime.InteropServices.ComImportAttribute

10

Microsoft.VisualStudio.Shell.Interop assembly), which means that we as
the programmers of the extension do not have to do this ourselves.

2.2 MSBuild
MSBuild is a .NET based build engine which is used by Visual Studio for C#

projects, C++ projects and others. MSBuild uses XML-based script files, called
project files. These project files contain project data (i.e. which files are part of
the project, settings, etc.) and code that is called in order to perform an action
on the project (e.g. compile it).

There are two kinds of data in MSBuild project files – Properties and Items.
Properties are key-value pairs (e.g. OutputAssembly=MyProgram.exe – see Fig-
ure 2.1) that are mostly used to store project settings. Items are named sets (e.g.
Compile=[File1.cs; File2.cs] – see Figure 2.1) which are mostly used to store
sets of file paths relative to the project file.

There are two kinds of code in MSBuild project files – Tasks and Targets.
Tasks are the smallest units of executable code. The execution logic of Tasks is
written in .NET managed code (classes implementing the ITask3 interface [4])
and they are imported into MSBuild by using the <UsingTask> element. Note
that some tasks (like Message or Csc tasks) are imported into MSBuild project
files by default. Targets are the pieces of code that are exposed to the user of
MSBuild. Targets are defined in the project files (using XML elements) and use
a sequence of Tasks to perform their function. In the context of this thesis it is
important to note that both custom Tasks and custom Targets can be created
and added into the project files.

The project file shown in Figure 2.1 shows an example of Target and Task
usage: The project file defines a Compile target, which uses the Csc (C# compile)
task to compile the File1.cs and File2.cs files and generate the MyProgram.exe
executable. This Compile target can be invoked by running the MSBuild com-
mand line tool with the /target:Compile argument.

3Full name: Microsoft.Build.Framework.ITask

11

<Project xmlns="http :// schemas . microsoft .com/ developer /
msbuild /2003">

<PropertyGroup >
<OutputAssembly >MyProgram .exe </ OutputAssembly >

</ PropertyGroup >

<ItemGroup >
<Compile >File1.cs</ Compile >
<Compile >File2.cs</ Compile >

</ ItemGroup >

<Target Name=" Compile ">
<Csc Sources ="@(Compile)"
OutputAssembly ="$(OutputAssembly)"/>

</ Target >
</ Project >

Figure 2.1: Simple MSBuild project file example

2.3 Managed Extension Framework
When Visual Studio adopted WPF (in Visual Studio 2010 [5]) the text editor
component of Visual Studio was fully rewritten in C#. The text editor is no longer
using COM internally (although it is still a COM component from Visual Studio’s
point of view). Instead, the text editor uses Managed Extension Framework
(MEF) to obtain the specific instances of classes implementing certain interfaces.

MEF is a dependency injection framework. Instead of creating instances of
classes explicitly (using the new C# keyword and a name of the class) MEF allows
to discover classes and create their instances implicitly. Each MEF component
specifies both its dependencies (using the Import4 attribute) and its capabilities
(using the Export5 attribute). When creating an instance of a class with specific
capabilities, MEF uses reflection to find the appropriate class, create an instance
of it (this works recursively for its dependencies) and return it. If a dependency
cannot be fulfilled, MEF will simply not create the instance and return null.

Since the text editor usually uses MEF to create an IEnumerable of a specific
interface (i.e. instances of all classes which Export that interface) and since MEF
does not create instances of classes for which it cannot find all Imports, any bugs
in our extension’s code (e.g. a missing Export attribute) result in whole features
not working (e.g. the entire syntax highlighting), which sometimes makes for
challenging debug sessions.

4Full name: System.ComponentModel.Composition.ImportAttribute
5Full name: System.ComponentModel.Composition.ExportAttribute

12

3. Analysis
As we have stated in the Introduction chapter, we will be making a Visual
Studio extension. Our first goal therefore will be to figure out what our extension
needs to implement and how to connect it to Visual Studio itself. After that we
will follow the goals stated in section 1.4 by their importance.

For the first goal – Automatic compilation support – we first need to decide on
which version of the Pascal language and which compiler we will be using. Then,
since Visual Studio triggers the compilation when a user clicks on the Build project
button (which interacts only with projects), we will need to implement a custom
project kind (similar to Visual Studio’s C# project or C++ project). Then we
will need to find out how to add our own code to be run when the Build project
button is pressed. Likewise, to run the program (second goal) we will need to
figure out how to connect our code to the Start project without debugging button.
Then we will have to find out how to start the project with debugger attached
so that Visual Studio would show the debugger data correctly to the user (stack
trace, local/global variables, breakpoints, disassembly).

After these tasks are finished we will focus on syntax highlighting and code
completion (called Intellisense in Visual Studio). To implement these we will
need to be able to analyze the source code itself so that we can differentiate the
various lexical tokens (for syntax highlighting) and are able to determine which
tokens can be present at current text position (for code completion). Lastly we
will need to import data on the built-in procedures, functions and types, so that
we can offer code completion for those as well.

3.1 Pascal Language and Compiler
Before we can implement compilation support into Visual Studio, we have to first
choose which version of the Pascal language and which compiler we will use. As we
have stated in section 1.3, the Pascal language we choose must support pointer
arithmetic. The original Wirth Pascal and even the Borland Pascal does not
support pointer arithmetic directly, but allow for a work-around by casting the
pointers to integers, then doing the arithmetic and then casting the integers back
to pointer type. Since this process does not allow for clean examples of pointer
arithmetic, we would prefer not to use Wirth or Borland Pascal. The newer
Pascals – Object Pascal, Free Pascal, Delphi – all support pointer arithmetic
and all the other constructs we require, making them, from our point of view,
equivalent. For that reason we will choose a language based on how difficult
it would be to implement compilation of source code written in that particular
language into our extension. Therefore we need a language with a compiler that
can be run under the Windows operating system. Additionally, we would prefer
to use a compiler which can be legally acquired for as little cost as possible.

Object Pascal was created by Borland in 1986 and was replaced by Delphi in
1994. Because of the time of the replacement, Borland never created a Windows-
compatible Object Pascal compiler, which means that the only native Object
Pascal compiler can run only in MS-DOS environment. However, because Object
Pascal can be compiled by the Free Pascal Compiler (with appropriate argument

13

on command line), there is no need to emulate MS-DOS environment in order
to compile Object Pascal code. On the other hand, since Free Pascal Compiler
(FPC) would be used and because of the equivalence (based on our requirements)
of Object Pascal and Free Pascal, it will make more sense to actually use the Free
Pascal language when using the Free Pascal Compiler. It is important to note that
FPC can also compile Delphi. Since Delphi compiler must be bought and FPC is
free and open-source, it would be a better choice to use FPC to compile Delphi
instead. Since this would place us in the same situation as Object Pascal has, it
again makes more sense to use the Free Pascal language instead. It is worth noting
that with FPC, it is possible to extend our extension so that it supports Object
Pascal and Delphi, simply by calling the FPC with the appropriate argument.

Since our extension will also include syntax highlighting and code completion,
which will most probably require us to write syntax analysis (i.e. a compiler
frontend) of the Pascal source code written by students, it would maybe be better
to use a custom compiler with a custom version of the Pascal language. This
language would contain only the constructs that we mentioned in section 1.3,
which would allow us to limit which constructs that students can use on the
compiler level. On the other hand, since a compiler backend is prone to have
many hidden bugs, we would not only have to create this custom compiler, but
also spend a lot of time maintaining it once our extension is released. Since the
advantages of having a custom language do not outweigh the disadvantage of
having to maintain a custom compiler, we could consider creating an interpreter
instead. That would, however, be even more difficult, because the requirements
(disassembler support, in-line assembler) imply that a compiler has to be used.
Because of the difficulties a custom compiler would cause, we will rather use an
existing compiler.

For the reasons explained in this section, the best choice for our extension is
to use the Free Pascal language together with the Free Pascal compiler.

3.2 Project system
Since users can only use the Visual Studio’s Build Project button with an open
project, we will first need to add a new kind of project into Visual Studio – a
Free Pascal project – which will handle the compilation of the students’ source
code. Before we do that, it is important to note the terminology used by Visual
Studio:

• Project represents data (source code, images, libraries, settings, build
scripts, etc.) provided by the user (student) of Visual Studio. Projects usu-
ally store their internal data (settings, which files are part of the project,
etc.) in Project files (for example .csproj files for C#). Note that the
project file and build script can be the same (the mentioned .csproj project
file is also an MSBuild build script).

• Project template is a template used to create new instances of projects.
These templates usually consist of the default project file, default build
script (so that users do not need to create their own every time) and a
source code file. Project templates can be provided by both the creator of
the extension and the user of Visual Studio.

14

• Project system represents the code which will be called by Visual Studio
to act (build, remove an item, clean, etc.) on one specific project instance.
The project system is provided by the creator of the extension.

It is obvious that we will have to implement a Project system and provide at
least one project template. We will start by creating the project system.

From a programmer’s perspective, a project system is a COM component
(more about COM in section 2.1) implementing multiple COM interfaces (the
more implemented interfaces, the more features of Visual Studio are enabled for
that particular project). For example, to enable the Build Project button we need
to implement the IVsBuildableProjectCfg1 interface and provide it to Visual
Studio. In order to create a project instance, however, more interfaces need to
be implemented, for example IVsProject2, in order to add new items into the
project (even though we mentioned in section 1.3 that we will only be working
with a single-file projects, we still need to be able to add that single file into the
project, as projects start off empty), IPersistentFileFormat3 to allow saving
source code files, etc.

For our first prototype of the project system, instead of writing the implemen-
tations to all of these interfaces ourselves, we have decided to follow the Creating a
Basic Project System guide [6]. This guide uses Managed Package Framework for
Projects (MPF) – base source code which already implements all the aforemen-
tioned interfaces and many more. MPF is designed to allow other programmers
to easily add new kinds of projects into Visual Studio. These projects use, by
default, MSBuild (basics of MSBuild in section 2.2) based project files (similar
to C#). Since MSBuild can be extended with custom tasks [4], having MSBuild
based project files will not prevent us from adding Free Pascal compilation sup-
port later on. On the other hand, by not using the Free Pascal or Lazarus project
files we have lost compatibility with Free Pascal IDE and Lazarus respectively,
unless we write a tool that will be able to convert our MSBuild project files into
Free Pascal or Lazarus ones. Note that we would still have to write a tool to make
the conversion from Free Pascal/Lazarus project files into our new MSBuild ones
(as mention in section 1.3. Nonetheless, since we do not require the compatibil-
ity between our extension and Free Pascal IDE or Lazarus and since it will be
easier to write a conversion tool rather than to rewrite part of the MPF to use
Free Pascal or Lazarus project files, we have decided to keep using MPF with
MSBuild. Since MSBuild by default looks for build scripts in files ending with
the proj suffix, we have decided to have our project files use the .fpproj extension
(Free Pascal project), similar to C#’s .csproj.

It is important to note that the Creating a Basic Project System guide we
followed also included adding a project template. The project system created
by following this guide also supports replacing parts of the template’s files with
dynamically generated text. We have used this feature to set the program’s name
(the identifier after the PROGRAM keyword) based on the project’s name.

1Full name: Microsoft.VisualStudio.Shell.Interop.IVsBuildableProjectCfg
2Full name: Microsoft.VisualStudio.Shell.interop.IVsProject
3Full name: Microsoft.VisualStudio.Shell.Interop.IPersistentFileFormat

15

3.3 Build
As we can see in figure 3.1 when the Build project button is pressed, Visual Studio
calls MPF code, which in return calls MSBuild on our project file to perform the
Build target. To run the compiler we will need to add the Build target into our
project file template. Since there is no predefined task in MSBuild to run Free
Pascal Compiler, we will also have to implement a task that does so.

Figure 3.1: Build flow

It is important to note that we also need, in case of compilation errors, to
connect the output of the build process to the Visual Studio’s Error List (see
figure 3.2), thus showing the students the warnings and errors produced by the
compiler. This functionality must be implemented in both the MSBuild task
(to parse the compiler’s output and produce log messages) and in the Visual
Studio extension (to add items into the Error List). While the functionality
to convert log messages into Error List items is already contained in Managed
Package Framework (MPF), the generated items do not support navigation, i.e.
when user (student) double-clicks on an Error List item, we want to move the
text cursor (caret) exactly to the line and column the warning/error reffers to.

Figure 3.2: Build flow – warning and error messages

3.3.1 Build target
There are two ways to add the Build target into the project file. We can either
add it into the project file itself (meaning there will be Build target in each
project file) or we can create .targets file and reference it from the project file

16

(meaning there will be only a single file with the Build target). The former has
the advantage of allowing users to modify the arguments as they see fit, on the
other hand the latter allows for updates of our extension to also work on already
existing projects. It is worth noting that the external targets file method is used
by C#’s project files. Since we are aiming at students who we are not expecting
to have the need to modify the project file we believe it to be better to use an
external targets file.

However, having a separate targets file introduces another issue: portability
of projects between different computers. The project files need to know the path
(either absolute or relative) to the .targets file in order to import it, so we
need to find a path that will be the same on every computer. We could create
a constant path (e.g. C:\Free Pascal MSBuild targets) which we could use
to resolve the location of the external targets file. It is important to note that
MSBuild is multi-platform and also works on UNIX based operating systems,
which use different format for paths. While we are not targeting UNIX based
operating systems with our extension, we see no reason to make a design decision
which would block the possibility of using our project file format on UNIX.

Instead, we will use a builtin MSBuild variable called
MSBuildExtensionsPath (which is also used by C# projects), which is set by
MSBuild to contain the path to folder where MSBuild extensions (targets and
tasks) are stored.

3.3.2 Compile task
There are two ways we could implement the compilation task.

1. Use the already existing Exec task to run the Free Pascal compiler with
all the required command line arguments. This would make it so that the
entire compiler integration is written in MSBuild project file (or external
targets file respectively).

2. Implement a custom task (a .NET class implementing the ITask4 interface)
which would call the compiler.

Since the Exec task does not allow us to access the output of the called
program and since we need to access this output in order to parse the errors
and warnings out of it, we will need to implement a custom task. This custom
compile task will need to create the arguments for command line call to Free
Pascal Compiler, run the compiler, parse its output and log any warnings or
errors that the compiler emits.

Since this task needs to be accessible to the Build target in all project files,
we must put the assembly containing this task to a well-known location. The
best solution would be to keep it at the same place as the .targets file, i.e. the
folder referenced by the MSBuildExtensionPath variable.

4Full name: Microsoft.Build.Framework.ITask

17

3.3.3 Error List
It is important to note that our task cannot put errors and warnings into the Error
List straight away, because MSBuild is a separate tool and therefore has no refer-
ence to Visual Studio whatsoever. In order to gather the warnings and errors from
it we need to supply MSBuild with a custom logger (a .NET class implementing
the ILogger5 interface). The Managed Package Framework (MPF) already does
that with its own IDEBuildLogger class whenever it calls any MSBuild target.
This logger contains the code necessary to create the GUI messages in Error List,
so warning and error display works already.

A common feature of Error List is that upon double-clicking on the warning
or error the text editor moves the cursor to where the warning/error originated
from. Since IDEBuildLogger does not implement this feature, we will have to
implement it ourselves.

3.4 Run without debugging
When the Run without debugging button is pressed, Visual Studio first runs
the build process and then calls the DebugLaunch method (with an argument
marking it as launch without debugger) on the IVsDebuggableProjectCfg6 in-
terface, which is implemented in Managed Package Framework (MPF) by the
ProjectConfig class. In order to change the default behaviour we need to inherit
from ProjectConfig and override the DebugLaunch method. We also need to in-
herit from the ConfigProvider class and override the
CreateProjectConfiguration method and we will also need to override the
CreateConfigProvider method on the project node class.

Since we are sure that the build process is successfully completed before the
DebugLaunch method is called (Visual Studio always builds the project before
running the program), we do not need to make any additional checks. We only
need to create a separate process running the compiled executable. We have
decided instead to run the executable via cmd.exe (Windows command line),
which allows us to keep the console window active after the program has stopped
executing (the cmd.exe will pause with the Press any button to continue message),
which we believe the students will find helpful (since there will be no need to write
empty Readln() statements at the end of the program).

3.5 Debugging
Visual Studio does not communicate with debuggers directly. Instead it uses an
intermediate layer called the Debug Engine (see figure 3.3). Debug Engine is a
COM component which handles all debugging related commands (e.g. setting
breakpoints, reading/writing variable values) from Visual Studio and communi-
cates these commands to the underlying debugger. Since Debug Engine is a COM
interface, we can supply Visual Studio with our own. Because Debug Engine only

5Full name: Microsoft.Build.Framework.ILogger
6Full name: Microsoft.VisualStudio.Shell.Interop.IVsDebuggableProjectCfg

18

acts as intermediate layer between a debugger and Visual Studio, we will first de-
cide on which debugger to use, then we can attempt to find/implement a Debug
Engine which is capable of communicating with our chosen debugger.

Figure 3.3: Layers used when debugging in Visual Studio

3.5.1 Underlying debugger and Debug Engine
It would be easiest for us to implement debugger support if we were to use Win-
dows debugger (WinDbg), because Visual Studio contains by default a debug en-
gine that uses Windows debugger (WinDbg). Windows debugger can, however,
read only debug information written in the PDB (Program Database) format.
Free Pascal Compiler does not support generating debug information in the PDB
format (FPC can generate debug information in the DWARFv2, DWARFv3 and
DWARFv4 formats) which means that we will need to either convert the DWARF
debug information to PDB or find a debugger which would be able to use the
DWARF debug symbols. There is a cv2pdb project [7] designed to convert Code-
View and DWARF debug information generated by D compilers into PDB. How-
ever, since the project is scarcely updated and since we were unable to find any
positive reviews, we have decided to try cv2pdb only after we have attempted to
solve our problem with a DWARF compatible debugger.

Since both Lazarus and Free Pascal use GDB (GNU Debugger) and since
Visual Studio uses GDB in order to debug Android applications [8], which means
that there already exists a Debug engine capable of communicating with GDB,
it would be best to use GDB as the underlying debugger.

The Debug engine used in debugging Android applications is called MIEngine
(git repository at [9]). It is important to note that MIEngine is not distributed
with the default installation of Visual Studio (only when Android SDK is installed
as well) and it is also important to note that even the version that is included
in the android SDK does not support local debugging and debugging console
applications. For these reasons we would need to distribute a newer version of
MIEngine (downloaded from its repository at[9]) along with our extension.

It is worth noting that GDB has direct support for the Pascal language, includ-
ing Pascal expression evaluation, which means that by using GDB and MIEngine
our extension will also be capable of evaluating any valid Pascal expression during
debugging sessions.

Since implementing debugging using MIEngine and GDB will not be difficult
and since MIEngine is often updated we will use MIEngine and GDB instead of
trying to convert the debug information into PDB format by cv2pdb.

19

3.6 Syntax Highlighting
To make syntax highlighting work correctly under different themes, the Visual
Studio’s text editor does not highlight parts of the text directly. Instead, first
the various parts of the source code – text spans in Visual Studio’s terminology
(substrings of the entire source code file) – are annotated with tags (e.g. to mark
that given text span represents a keyword, a comment, or even an error) and then
the text gets highlighted based on its tags and the current Visual Studio theme’s
settings. Note that a text span can be annotated with multiple tags, for example
it can be marked as a keyword and as an error, making it (in the default theme
of Visual Studio) a blue word with a red squiggle below it.

Since the coloring of the text is already implemented in Visual Studio, we
will only need two things: A list of all the various tags we will want to support
and a tagger – a class that will annotate (tag) the student’s source code with the
appropriate tags.

While Visual Studio supports the addition of new kinds of tags, we will reuse
the ones which Visual Studio uses for C#, so that students will have an even easier
time transitioning into C#. Reusing tags also ensures that various themes that
students may install into their Visual Studio installation will have the desired
effect on Free Pascal’s syntax highlighting as well.

We have decided to reuse the following kinds of C# tags:

• Keyword tag for Free Pascal keywords

• Comment tag for all kinds of Free Pascal comments

• Class name tag for type identifiers (both basic types and records)

• Identifier tag for variables, procedures, functions, named constants
(apart from enums), labels, units and program identifier.

• Preprocessor keyword tag for in-line assembler statements

• Enum name tag for enum values

• String tag for strings

• Punctuation tag for semicolons, colons, commas, dots, brackets, parenthe-
ses, roofs and double dot (..) tokens.

• Operator tag for relational operators (=, <>, <, <=, >, >=), assign
operators (:=, +=, -=, *=, /=), arithmetic operators (+, -, *, /) and
bit shift operators (<<, >>). Note that all operators that are made of
alphabetical characters (e.g. DIV, MOD, NOT) are tagged as keywords.

• Whitespace tag for whitespace characters

The easiest way to tag the source code would be to analyze it only lexically
(turn it into a stream of lexical tokens) and tag according to the kinds of the
lexical tokens. This would, however, not be detailed enough (lexical analysis does
not distinguish identifiers, e.g. type names, enum constants, variable names), so
a more thorough syntax analysis will be required. It is important to note that

20

even though it is more difficult to implement and maintain the syntax analysis
(compared to lexical analysis alone), it will have to be implemented for the code
completion feature anyway. For that reason we will implement the tagger based
on syntax analysis.

3.7 Code completion
To implement code completion (called Intellisense in Visual Studio) our extension
has to provide a class implementing the ICompletionSource7 interface. This
class is responsible for generating possible completions once Intellisense session is
initiated. In order to generate the correct completions, the ICompletionSource
will need to know which syntax terminals of the Free Pascal language can be
present at the current text position and, if one of the possible terminals is an
identifier, which identifiers are visible at the current text position. It is important
to note that since the goals we set in section 1.4 included code completion both
for built-in identifiers and for custom identifiers, the ICompletionSource will
need to analyze not only the source code file the student is currently editing (to
obtain identifiers and decide visibility from the source code file), but it will also
have to analyze the Free Pascal library binaries (to obtain information on built-in
types, procedures, functions, etc.).

To determine which syntax terminal can be present at given position an ex-
plicit grammar of the supported subset of the Free Pascal language will have to
be included in our extension. However, unlike grammars used in parsers, this
grammar can use multiple identifier terminals (e.g. a procedure identifier and a
variable identifiers can be two separate terminals).

To determine which identifiers are visible from the given position in the source
code a data structure that can store the data on identifiers will be needed. This
data structure must take into account identifier visibility (e.g. an identifier that
has not yet been declared cannot be offered in code completion). To create this
data structure a full syntax analysis will have to be performed on the source
code. Since such an analysis will be useful for syntax highlighting as well, it will
be easiest to create an abstract syntax tree to perform this analysis on.

3.7.1 Pascal library analysis
The Pascal library files – Units – are stored in .ppu files. Free Pascal is distributed
with a console tool PpuDump.exe, which can create an XML output describing
the variables, constants, types, procedures and functions exported by a particular
unit file (e.g. System unit).

3.7.2 Data structures for code completion
To design a data structure for identifiers the visibility rules of the Pascal language
must be taken into account:

• Only identifiers that have been declared in the text before the cursor can
be used.

7Full name: Microsoft.VisualStudio.Language.Intellisense.ICompletionSource

21

• Upon leaving a block which declared new identifiers (i.e. the END at the
end of a procedure or function) all the identifiers declared by that block are
no longer accessible.

• Inner procedures/functions can use the identifiers used by the outer proce-
dure/function.

By examining these rules we can discover that the visibility can be represented
by an ordered tree, where root is the program itself, inner nodes are functions,
procedures and records and leafs are variables, constants, labels, fields and types.
The children are always ordered by the order in which they were declared in
the source code. Each node can see its predecessors, its parents and its parent’s
predecessors, its grandparents and its grandparent’s predecessors, etc. When
a query on this data structure asks for available identifiers in the body of a
subprogram (procedure/function), the available identifiers will be represented by
the node representing said subprogram, its children and all the identifiers visible
from the subprogram’s node.

3.8 Source code analysis
As we have discussed in sections 3.6 and 3.7), our extension will need to perform
syntax analysis on the source code so that it can answer the following questions:

• What kind of source code is in the given text span? (e.g. keyword, identifier,
operator, comment)

• Which terminal of the Pascal language can be added at the caret’s (text
cursor) position?

• Which identifiers are visible (according to Pascal language specification) at
the caret’s position?

Since our extension would have to parse the source code up until the caret’s
position every time one of these questions would be asked and since that approach
would be most probably highly inefficient and could cause performance issues, it
will be better to parse the source code only once and create an abstract syntax
tree (AST) instead. This tree will still need to be recreated (or at least modified)
every time the source code changes.

3.8.1 Data structure
Initially, we attempted to create the Abstract Syntax Tree (AST) by extending
Roslyn (C# and Visual Basic compiler platform) with custom Free Pascal syntax
tree and all the various syntax nodes. This would make it easier for us to imple-
ment the AST, because we could reuse the base syntax node classes Roslyn uses
(for example to have an efficient search algorithm for the tree structure). Addi-
tionally, since Roslyn is already integrated into Visual Studio, we would already
have all the required callbacks registered in Visual Studio (for example when
the source code changes). We have attempted to create a prototype of a data

22

structure extending Roslyn and found that it is impossible to extend the base
classes, because they contain several abstract internal methods returning objects
of internal types (thus making it impossible for us to implement these meth-
ods). A possible solution to this problem would be to fork the whole Roslyn, add
the InternalsVisibleTo attribute to the Roslyn’s source code and then redis-
tribute the modified Roslyn together with our extension (the way it is done in
Peachpie [10]). Since we also found out that we would have to implement many
methods on the abstract syntax node which we would not need for our analysis
(e.g. assembly references, public interface to programatically modify the data
tree, etc.) and since we would not gain as much as we believed we would from
extending Roslyn, we have instead decided to create a custom AST.

Before we start implementing our own AST, we need to take into considera-
tions the requirements we will have on the data structure in order for us to be
able to implement syntax highlighting and code completion.

• Every node of the tree represents a text span in the source code.

• Every character in the source code is represented by a node in the AST
(including whitespace).

• The tree can be traversed both up and down (e.g. both children and parent
can be accessed from each node).

• The tree should support persistency, i.e. ability to keep majority of the
tree structure when reparsing only part of the source code. This property
is important for performance reasons, as the extension will be reparsing the
source code every time it changes (e.g. with every written character).

• The tree should be immutable, so that we can make analysis of the tree in
other threads without any need for locking.

It is important to note that the requirements make it impossible to use a
single tree in this data structure, because having immutable tree which allows
traversal in both directions (i.e. it needs to have reference both for children and
parent) and also allows for persistency (only some of the nodes are replaced when
new tree is created) is impossible. Another issue rises with the combination of
immutability, persistency and bijection between nodes and source code text spans.
When the source code is modified (i.e. a whitespace is removed), all the nodes
that come after the change would need to be replaced, because the start/end
positions stored in the nodes would no longer be correct. In the end, we have
decided to use a data structure heavily inspired by Roslyn.

Roslyn uses two separate trees – a green tree and a red tree (named after the
colors of white board markers used when the team designed the structure). The
green one (we have renamed it to Persistent tree) can only be traversed down-
wards, each node only knows its length and the terminal nodes (leafs) are aware of
the string they represent. This tree is immutable and supports persistency. The
red tree (we have renamed it to On Demand tree) is created lazily on demand
from the Persistent tree. Whenever the source code changes, the Persistent tree
is modified to conform to the change and when it is first needed, On Demand
tree is created.

23

It is important to note that on top of the nonterminals and terminals of
the Pascal grammar the data structure also needs to represent whitespace and
comments (e.g. for syntax highlighting). We adapted the term trivia from Roslyn.
Each node has reference to all the trivia that precedes and follows said node.

3.8.2 Parsing
Last thing we need is to convert the source code into the AST. For this purpose
a lexical analyzer (lexer) and a syntax parser will be needed. The lexer will
transform the source code into a stream of lexical tokens (terminals of the Free
Pascal language and trivia – whitespace, comments, unknown tokens), then the
syntax parser will use this stream of tokens to create the AST.

There are two general ways the lexer could be implemented – use a lexer
generator, which would be supplied with a list of regexes and which tokens they
are to be converted to, or a custom lexer. Since the lexer generator way will
be easier to maintain than a custom lexer and since the performance of the
automatically generated lexer is likely to be adequate, we have decided to use a
lexer generator. However, if lexer proves to be a bottleneck, a custom lexer may
have to be written instead.

There are many different lexer generators, but we have focused mainly on the
ones with bigger communities around them – ANTLR[11] and Coco/R[12]. Since
ANTLR seems to be richer in features and since it also seems to be updated more
often, we have decided to use ANTLR as the lexer generator for our extension.

Syntax parser can also be generated either automatically (from a given gram-
mar) or implemented manually. It is important to note that since the generated
AST is to cover the entire source code, the syntax parser has to be able to recover
from any error (so that syntax highlighting works for the entire source code, not
only up until the first error). Since automatically generated syntax parsers are
not capable of recovering from any syntax error, a manually written parser will
be used instead. For this purpose a recursive-descent parser will be used.

24

4. Implementation
The Free Pascal Visual Studio integration implementation is contained in 2 solu-
tions (see Figure 4.1): MIDebugEngine and FreePascalVisualStudioIntegration.

Figure 4.1: FPVS Solutions

The MIDebugEngine solution’s goal is to create a .vsix (Visual Studio exten-
sion file) extension, which contains the modified MIEngine Debug engine. Since
only very minor changes (described in section

The FreePascalVisualStudioIntegration solution’s goal is to create
a .vsix extension which adds the Free Pascal support (in the range
described in section 1.3) into Visual Studio. Additionally, the
FreePascalVisualStudioIntegration solution also creates a separate assem-
bly containing the MSBuild FpCompile task and a .targets (MSBuild targets
file) file.

4.1 MIDebugEngine solution
The MIDebugEngine solution is a clone of the MIEngine github repository (found
at [9]). There were only two kinds of modifications we have done to the solution:

1. Replace the GUIDs which identified the Debug Engine (EngineId in the
EngineConstants.cs and Microsoft.MIDebugEngine.pkgdef files) and
the extension(guidMIDebugPackagePkg in the MIDebugPackage.vsct file).
This change allows users to have both ours MIDebugEngine extension and
the original MIEngine extension (used to debug Android applications) in-
stalled at the same time.

2. Since towards the end of our extension’s development Visual Studio 2017
was released, and since having both Visual Studio 2015 and 2017 installed in
parallel results in both Visual Studio’s using the Development Tools 2017
(including VsixInstaller.exe, which installs our .vsix extensions), we
had to modify the MIDebugEngine solution to emit vsix3-compatible ex-
tension (otherwise if users had both Visual Studio 2015 and 2017 installed,
they would have difficulties installing our extension). This change consisted
of installing the Microsoft.VisualStudio.Sdk.BuildTools.14.0. nuget
package into the MIDebugPackage project and adding the
<VsixType>v3</VsixType> property into the project’s project file.

25

4.2 FreePascalVisualStudioIntegration solution
The FreePascalVisualStudioIntegration solution consists of the following
projects (see figure 4.2):

Figure 4.2: Solution and project hierarchy

ProjectSystem is the core project representing the Visual Studio extension.
It contains the FpPackage package class and all the additional Visual Studio inte-
gration elements. It is responsible for adding every feature implemented by our ex-
tension into Visual Studio. As can be seen in figure 4.2 the ProjectSystem project
is dependent on the CodeAnalysis project for syntax highlightning and code com-
pletion and Microsoft.VisualStudio.Project (Managed Package Framework
– MPF) for project system, build and debugging functionality.

Microsoft.VisualStudio.Project is the Managed Package Framework (MPF)
source code. It represents majority of the project system code.

FreePascalTasks contains FreePascalCompile task for MSBuild. It also
contains the .targets file used by all Free Pascal projects. The FreePascalTasks
project is independent of Visual Studio, which means that the targets and task
implemented in this project can also be used on other platforms which can run
MSBuild (e.g. Linux).

FpLexer is a lexer for the Free Pascal language. The project defines all the
classes which represent lexical tokens (e.g. IdentifierToken). The project also
defines an enum to represent all terminals and nonterminals of the grammar
(SyntaxKind enum). The FpLexer project is independent of Visual Studio, which
means that it can be reused in non-Visual Studio related projects. The FpLexer
is only dependent on ANTLR4 lexer generator.

CodeAnalysis contains the definition of the subset of Free Pascal’s gram-
mar (according to section 1.3), Abstract Syntax Tree (AST), the FpParser class,
which handles the transformation of the token stream generated by the FpLexer
project to Abstract Syntax Tree, and the data structure for identifiers (for code
completion). The CodeAnalysis project is only dependent on the FpLexer

26

project. There is no dependency on Visual Studio. This should allow the
CodeAnalysis project to be distributed as a separate package (e.g. a nuget
package) to be used as a library for Free Pascal source code analysis.

4.3 ProjectSystem project
The ProjectSystem project’s goal is to create a .vsix (Visual Studio extension)
package containing the Free Pascal support functionality. The project contains
the central class – FpPackage class – of the extension, which implements the
IVsPackage COM interface. This package registers majority of the features (ex-
cept text editor based ones, i.e. Syntax highlightning and Code completion) our
extension provides to Visual Studio. In addition, the ProjectSystem project
exports text editor based functionality, i.e. Syntax highlightning and Code com-
pletion via Managed Extension Framework – MEF. Note that since these features
are not tied to the Free Pascal projects, they are available in any kind of project
(or even outside of them), as long as the opened files have the .pas extension.

Figure 4.3: ProjectSystem project internals

4.3.1 Extension
The central class of the extension is the FpPackage class. Since the FpPackage in-
herits from MPF’s (Managed Package Framework - the
Microsoft.VisualStudio.Project project) ProjectPackage class, the imple-
mentation of FpPackage can be nearly empty. In order for Visual Studio to delay
the instantiation of our package as much as possible (to boost Visual Studio’s
startup time), the features our extension provides are registered using C# at-
tributes on the FpPackage class. The specific attributes will be explained in the
chapters which describe the features the attributes are associated with.

Since the goal of the ProjectSystem project is to create a .vsix package, which
on top of the compiled binaries also constains various metadata describing the
extension (e.g. Product Name, License, Language, Release Notes, Product web

27

page) a source.extension.vsixmanifest file is used to provide these metadata
to the extension. Among other things, this manifest file also specifies which
versions of Visual Studio our extension is applicable to. Even though we have
designed and tested the extension using Visual Studio 2015, we have also made it
possible to install our extension on Visual Studio 2017 (which was released toward
the end of our extension’s development). In addition, the manifest also marks
MIEngine as its dependency and embeds it into ProjectSystem project’s resulting
.vsix extension. This makes it so that only one .vsix has to be installed by the
students.

4.3.2 Global properties
The extension uses the app.config file to store its project-independent settings
(e.g. Standard library folder path). These settings are accessed and modified in
the GlobalOptionsGrid class, which represents directly the GUI shown in Visual
Studio’s Options menu (Tools → Options → Free Pascal). This Option page
is registered by attributing the FpPackage class with the ProvideOptionPage1

attribute.

4.3.3 Free Pascal project
In this and the following subsections we will be describing the implementation
of the project system (project representation, project creations, project settings
and building, running and debugging of projects). As can be seen on figure 4.4,
nearly all classes of the project system inherit from classes from Managed Package
Framework (MPF). This means that in the implementation of these features
majority of the code is already provided to us by MPF and we only need to
override methods where we want the functionality to be different.

Figure 4.4: Free Pascal project main classes
1Full name: Microsoft.VisualStudio.Shell.ProvideOptionPageAttribute

28

The Free Pascal projects are represented by instances of the FpProjectNode
class. Majority of the project’s functionality comes from MPF (Managed Pack-
age Framework – the Microsoft.VisualStudio.Project project). The methods
that are overriden in the FpProjectNode class will be described in the subsections
which cover the features these methods are used for.

Since the MPF-implemented Free Pascal project supports the creation of new
folders within the project structure, but not their removal (which could be slightly
confusing to some users), a Remove button has been added to the Free Pas-
cal project’s (and its files and folders) context menu. This button is created
in the Commands.vsct file and the code executed upon pressing the button is
located in the overriden ExecCommandThatDependsOnSelectedNodes method of
the FpProjectNode class.

4.3.4 New Free Pascal project creation
As can be seen on figure 4.5 the instances of FpProjectNode are created by
the FpProjectFactory class. The FpProjectFactory class is responsible for
both the creation of new projects and the loading of already existing ones. The
FpProjectFactory is registered by attributing the FpPackage class with the
ProvideProjectFactory2 attribute. By registering the project factory we add
the Free Pascal project into Visual Studio’s New Project window. The phys-
ical project (the files themselves) are created from the template located in the
Templates/Projects/HelloWorldProject subfolder
of the ProjectSystem root folder. This path is registered by the
ProvideProjectFactory attribute.

Figure 4.5: ProjectSystem classes involved in project creation

As can be seen on figure 4.6, when the new project is being created, first
the HelloWorldProject.fpproj file is copied over (because the .fpproj ex-
tension is registered as the default Free Pascal project file extension by the

2Full name: Microsoft.VisualStudio.Shell.ProvideProjectFactoryAttribute

29

ProvideProjectFactory attribute) by the FpProjectFactory class into Visual
Studio, creating an instance of the FpProjectNode class, and then the
Program.pas file gets added by FpProjectFactory.

Figure 4.6: Project creation

When the file is being added the AddFileFromTemplate method of the
FpProjectNode class is called. This method is responsible for the replacement of
the $ProjectName$ token in the Program.pas file by the project’s name. This
replacement takes into account the lexical rules of Pascal identifiers, meaning
that all digits before the first alphabetical character (or an underscore) of the
project name and all non-alphanumerical characters (except for underscores) are
ignored when creating the project name. Note that the implementation does not
check for whether the result program’s name will be a keyword, meaning that
this process can create a source code file which will not compile.

Additionally, if the global setting of RenameSourceFileToMatchProjectName
is set to True, the Program.pas file will be renamed to match the $ProjectName$
token (with the .pas extension). Additionally, since the .pas extension is rec-
ognized by the IsCodeFile method, the program.pas (or the renamed file) is
added into the Compile Item Group in the project file (more about Item groups
in section 2.2).

4.3.5 Adding new empty Pascal file
The ProjectSystem project includes a template to add a single empty source code
file into an already existing project. This template is stored in the
Templates/Items/EmptyFile folder and is registered by attributing the
FpPackage class with the ProvideProjectItem3 attribute. Note that this tem-
plate has been added only for the purpose of re-adding the single source code file
in case a student would remove his previous one as this extension assumes that
there is only one source code file in one project (according to the requirements
set in section 1.3).

4.3.6 Free Pascal building
When the Build project button is pressed, the ProjectNode class (from MPF –
the Microsoft.VisualStudio.Project project) calls MSBuild to perform the
Build target on the Free Pascal project file (see figure 4.7. This functionality
is not overriden in the FpProjectNode class. The Build target calls the Free

3Full name: Microsoft.VisualStudio.Shell.ProvideProjectItemAttribute

30

Pascal Compiler and creates error and warning log messages according to what
the compiler emits (the MSBuild part – grey area in figure 4.7 – of the compilation
is explained in detail in section 4.5).

Figure 4.7: Build process within the ProjectSystem project

The warning and error log messages generated by MSBuild are captured by
the LoggerWithNavigation class. The LoggerWithNavigation inherits from the
IDEBuildLogger (from MPF) class, which contains the functionality of adding
new warning and error messages into Visual Studio’s Error List. The
LoggerWithNavigation extends on that functionality by adding a callback to
its Navigate method when the message is double clicked on. This callback
is added in the CreateTaskEvent method. Note that the CreateTaskEvent
method was not virtual in the original MPF. The addition of the virtual key-
word to the CreateTaskEvent method is one of the few changes made into the
MPF (Microsoft.VisualStudio.Project) project.

Likewise, the creation of the IDEBuildLogger was not virtual in the
SetOutputLogger method of the ProjectNode class. A virtual GetLogger
method was therefore added to the ProjectNode class in the MPF project.
Since the IDEBuildLogger was instantiated only in one place in the code (the
SetOutputLogger method), it has been rewritten to use the GetLogger method
instead. Additionally, the GetLogger method is overriden in the FpProjectNode
class to instantiate the LoggerWithNavigation class instead.

4.3.7 Running the program with and without a debugger
As can be seen in figure 4.8 when either of the Start debugging or the Start
without debugging buttons is pressed, the FpProjectConfig class is called. The
FpProjectConfig class then either runs the program by using cmd.exe or starts
the debugging session using MI Debug Engine.

31

Figure 4.8: ProjectSystem classes involved in debugging

Regardless of whether the program is run with or without a debugger, the
DebugLaunch method on the FpProjectConfig class is called. This method ac-
cepts a single uint argument, which represents a value in the

VSDBGLAUNCHFLAGS flag enum, which is used to determine whether to launch
the program with or without a debugger. When the program is ran without
debugger, it is ran by using cmd.exe and is continued by the pause command
(so that the Press any key to continue message is shown before closing the con-
sole window). Otherwise, the static LaunchDebugger4 method is used to run the
MIEngine Debug engine, which will then handle all debugging communication
with both the Visual Studio and the underlying debugger (GDB).

The Debug engine is configured by a XML string generated by the
GetMIOptions method in the FpProjectConfig class. This XML format is de-
fined by the LaunchOptions.xsd file (located in the MIEngine/src/MICore direc-
tory). This configuration, among other things, contains the <SetupCommands>
element, which allows us to specify which GDB commands we want to run before
the debugging begins. Currently it is used to set disassembly to intel syntax and
to tell GDB that it is debugging Pascal. The latter setting allows for expression
evaluation to work also for Pascal syntax.

The instances of the FpProjectConfig are created by the FpConfigProvider
factory class, which is created by the overriden CreateConfigProvider method
of the FpProjectNode class.

4.3.8 Project properties
There are two kinds of the project specific properties (accessible from a Free
Pascal project’s context menu): Configuration dependent (i.e. they may have
different values for e.g. Debug or Release configuration) and configuration inde-
pendent.

4Located in the Microsoft.VisualStudio.Shell.VsShellUtilities class

32

Figure 4.9: Free Pascal project properties

The configuration dependent properties are represented by the
FpProjectProperties class (see figure 4.9). This class acts as an intermedi-
ate layer between the GUI and the project file. The FpProjectProperties
class is registered to Visual Studio by attributing the FpPackage
class with the ProvideObject5 attribute. Additionally, the
GetConfigurationDependentPropertyPages method of the FpProjectNode
class has to be overriden to return the GUID of the property pages.

Similiarly, the extension is prepared to offer configuration independent prop-
erties (represented by the FpCommonProjectProperties class and returned by
the GetConfigurationIndependentPropertyPages method). Note that even
though this extension is currently not using any configuration independent prop-
erties, the GetConfigurationIndependentPropertyPages method must still be
overriden to return an empty array (since the base implementation returns an
array with a single GUID – a zero GUID), otherwise the project properties menu
would be inaccessible due to Visual Studio not being able to found property pages
with the zero GUID.

4.3.9 Managing abstract syntax trees
Since both syntax highlighting and code completion features require access to
the Abstract syntax tree (AST – described in subsection 4.8.1) representing the
current version of the source code, the TreeUpdater class was introduced (see
figure 4.10) to hold an instance of the tree and to listen to any changes in the
source code, so that the AST instance always represents the current version of
the source code.

5Full name: Microsoft.VisualStudio.Shell.ProvideObjectAttribute

33

Figure 4.10: ProjectSystem project – MEF section

Whenever a tree is first requested for a given ITextBuffer6 (an object rep-
resenting the open source code document), the TreeUpdater creates an instance
of the FpSyntaxTree class and it also registers a callback to the ITextBuffer’s
Changed event. Since the current Parser implementation does not support repars-
ing of only part of the source code, the entire source code is reparsed instead,
creating a new FpSyntaxTree instance, which then replaces the old one. Note
that the Changed event includes a list of exact changes which happened (e.g.
a character removed, a word inserted or replaced), which means that once the
parser can parse only part of the source code, it should be easy to detect which
part needs to be reparsed.

The TreeUpdater is exported via MEF(Managed Extension Framework, more
info in section 2.3), which means that it is not directly instantiated by any
other class within the ProjectSystem project. Instead, the classes which use the
TreeUpdater class attribute their public TreeUpdater instance with the Import
attribute.

4.3.10 Syntax highlighting
As described in section 3.6 Visual Studio uses tags to mark the source code
before highlighting it. The tags are instances of classes implementing the ITag7

interface. This extension uses two kinds of tags: the ClassificationTag8 to
mark pieces of source code as e.g. a keyword or an identifier and the ErrorTag9

to add red squiggles under pieces of source code. Both kinds of tags are created
by the FpHighlightningTagger class, which serves as the central class for the
syntax highlighting feature (see figure 4.11).

6Full name: Microsoft.VisualStudio.Text.ITextBuffer
7Full name: Microsoft.VisualStudio.Text.Tagging.ITag
8Full name: Microsoft.VisualStudio.Text.Tagging.ClassificationTag
9Full name: Microsoft.VisualStudio.Text.Tagging.ErrorTag

34

Figure 4.11: ProjectSystem project – Syntax highlighting classes

As can be seen on figure 4.12 when Visual Studio calls the
FpHighlightningTagger to tag a text span (an interval) of source code, the
FpHighlightningTagger class first finds the intersection between the interval
and the AST (abstract syntax tree – described in subsection 4.8.1) provided by
the TreeUpdater class. Then it uses the ClassificationTypeProvider class
to classify the text spans represented by the leaf nodes in the aforementioned
intersection (see figure 4.11).

Figure 4.12: Syntax highlighting process

The ClassificationTypeProvider class uses the
IClassificationTypeRegistryService10 class provided by Visual Studio’s text
editor (respectively by MEF) to obtain the already existing instances of the
IClassificationType11 interface. To decide which instance of the

10Full name:
Microsoft.VisualStudio.Text.Classification.IClassificationTypeRegistryService

11Full name: Microsoft.VisualStudio.Text.Classification.IClassificationType

35

IClassificationType interface to return, the ClassificationTypeProvider
class uses the SyntaxKind enum (which contains values for all terminals and
nonterminals of the supported subset of the Free Pascal language) together with
the SemanticModel instance obtained from the AST (SemanticModel is described
in subsection 4.8.4).

The ErrorTag version works by finding the intersection between the AST
and the given interval, then by searching the intersection for any node of the
UnexpectedTrivia class. Note that in the current implementation no ErrorTags
are created for missing keywords.

It is important to note that the FpHighlightningTagger is used in two dif-
ferent ways:

1. Visual Studio calls both the GetTags methods (for ClassificationTag
and for ErrorTag) on the FpHighlightningTagger instance, giving them
a collection of text spans (an ordered set of text intervals) to tag. This
collection usually consists of only a single interval covering the line of text
which was currently modified by the student (the only exception being when
the source code file is first opened, then the entire file is given to the tagger
to tag). This, however, does not update the highlightning properly when
the student e.g. removes the end of a multiline comment (then all the other
lines should get tagged as one huge comment).

2. The FpHighlightningTagger invokes the TagsChanged event which the
Visual Studio is hooked up to, which forces Visual Studio to call the GetTags
methods with the interval with which the TagsChanged event has been
invoked.

Since only the multiline comments are causing issues with syntax highlighting
when the tags are updated by whole lines (as described in 1.), the
FpHighlightningTagger is keeping track of multiline comments separately and
invokes the TagsChanged event when a multiline comment is created or removed.

4.3.11 Code completion
The code completion (Intellisense in Visual Studio) source code is based on the
code written in the Walkthrough: Displaying Statement Completion guide [13].
The functionality is split into two classes: CompletionCommandHandler and
CompletionSource (shown in figure 4.13).

36

Figure 4.13: Syntax highlighting process

The CompletionCommandHandler class is responsible for the management of
Intellisense sessions – the Initiation, to open a code completion window, the
Commitment, to use a selected code completion option to modify the source code
and close the Intellisense session, and the Dismissal, to close the Intellisense
session without modifying the source code. The CompletionCommandHandler
does this by integrating itself into the Visual Studio’s text editor event handler
pipeline, where it listens to commands (pressed keys on keyboard) and creates,
commits and dismisses the Intellisense sessions accordingly.

It is important to note that the original implementation (from the Walk-
through: Display Statement Completion guide [13]) was not good enough, as it
did not take into account that identifiers can contain underscores (underscores
would not initiate the completion session, but they would commit an existing
session), which we had to fix. In addition, when the Enter key was used to com-
mit the session, a newline was emitted in the editor. Since this functionality is
not present in the C# Intellisense, we have removed it. Lastly, we have added
the possibility to initiate an Intellisense session by using the CTRL + Space key
combination (same combination used in the C# Intellisense).

The CompletionCommandHandler instance is added into the text editor’s
pipeline by the CompletionHandlerProvider class, which is created by MEF.
The CompletionHandlerProvider class is fully based on the Walkthrough: Dis-
playing Statement Completion guide [13].

The CompletionSource class is responsible for the generation of correct code
completions in its AugmentCompletionSession method. To accomplish that the
CompletionSource first detects which kinds of syntax terminals can be used in
the currently active Intellisense session (by using the FpGrammar class) and then
it adds their string representations into the final CompletionSet instance. If one
(or more) of the possible syntax terminals are identifiers, then the SemanticModel
class (obtained from a FpSyntaxTree instance provided by TreeUpdater in-
stance) is queried for the possible identifiers and these are inserted into the
CompletionSet result as well.

The CompletionSource instance is created by the

37

CompletionSourceProvider class, which is created by MEF. The
CompletionSourceProvider imports an TreeUpdater instance for the
CompletionSource.

4.3.12 Project constants
There are two types of constants that are used in this project – string constants
and GUIDs. The string constants are stored in the FpConstants class. The
GUIDs are written in the Commands.vsct file. The .vsct (Visual Studio Com-
mand Table) file is an XML file which lists various GUI elements (e.g. menus,
buttons, windows) that the extension adds to Visual Studio. These files are used
so that Visual Studio can show these GUI elements without actually loading the
extension (the extension is loaded only after one of these GUI elements is used,
e.g. a button is pressed). It is important to note that these .vsct files are not
used directly, but instead are first compiled into binaries, which are then in turn
used by Visual Studio. During this compilation a C# source code file containing
all the GUIDs defined in the .vsct file is also created. This source code file con-
tains the PackageGuids class, which contains both the GUIDs and their string
representations. This PackageGuids class is used across the project to reference
the various GUIDs.

4.4 Microsoft.VisualStudio.Project project
Microsoft.VisualStudio.Project (see figure 4.14) is the source code of Man-
aged Package Framework (MPF) and its classes are used by the ProjectSystem
project as base classes. Judging from the vast amount of virtual and factory
methods contained within MPF it seems that MPF classes are designed to be
used primarily as base classes. We have used this fact to modify the MPF code
as least as possible, since MPF itself seems to be heavily undocumented. How-
ever, since methods that create and use MSBuild logger were not virtual and
we wanted to override their functionality (to provide our own logger), we had to
refactor and virtualise some methods in MPF. These modifications were described
in subsection4.3.6.

38

Figure 4.14: Solution and project hierarchy

4.5 FreePascalTasks project
The FreePascalTasks (see figure 4.14) project’s goal is to create a .targets
(MSBuild targets file, XML-based) file containing the Clean, Rebuild and Build
MSBuild targets. These targets are ran when the student presses the Clean
project, Rebuild project or Build project buttons respectively.

The Clean target will delete the folders defined by the OutputPath and
ObjectPath) MSBuild variables. These variables are defined in the various Free
Pascal project instances, which, unless changed by the student, define these vari-
ables as bin and obj respectively.

The Rebuild target uses the other two targets to do its job: it first runs the
Clean target, then the Build target.

The Build target uses a custom MSBuild task in its implementation (see
figure 4.15). By default, MSBuild does not know of any of our custom tasks (e.g.
FreePascalCompile task). We must import these into MSBuild by adding the
<UsingTask> element into the .targets file. This element contains a path to the
assembly file where the task’s code is contained and a full class name (including
namespaces) of the class containing the task’s code. The imported task will always
be called by its class name, i.e. the FreePascalCompile task must have its code
contained in the FreePascalCompile class. Since this poses an ambiguity issue
for this thesis, we will strictly use MSBuild, XML and Task when referring to the
.targets file (i.e. MSBuild properties, XML attributes and FreePascalCompile
task) and C#, class and instance, when referring to the .NET concepts (i.e.
C# properties, C# attributes and FreePascalCompile class/instance).

39

Figure 4.15: Build flow in FreePascalTasks project

The Build target redirects all its functionality to the Fpc target. The Fpc
target first defines Inputs and Outputs sets. The Inputs set contains the source
code file(s) and the Outputs set contains the .o (compiled object file) files and
the .exe (compiled executable) file. MSBuild uses these sets to decide whether
the source code file changed since the binaries were last compiled and if there
has been no change, MSBuild skips the Fpc target. If MSBuild decides to run
the Fpc target, first all the variables needed by the FreePascalCompile task are
checked whether they have been set. If some of the variables are unset, the Fpc
target fills them with default values. Then the FreePascalCompile task is called
with all the various parameters.

Once the FreePascalCompile task is called in the .targets file, MSBuild first
creates an instance of the FreePascalCompile class, then it uses reflection to fill
public properties of the FreePascalCompile instance using the values of equally
named XML attributes in the .targets file. Then MSBuild checks that all public
properties of the FreePascalCompile instance attributed with the Required12

C# attribute were filled in. If this check is successful, the Execute method on
the FreePascalCompile instance is called.

The Execute method first uses the CommandLineBuilder class to create the
command line arguments for the Free Pascal Compiler (fpc.exe). Then it runs the
compiler with the arguments generated by the CommandLineBuilder. Lastly, it
reads the output of the compiler and uses the MessageReporter class to generate
log messages with warnings and errors, which are then used by the ProjectSystem
project to generate entries to the Visual Studio’s Error List.

The CommandLineBuilder class uses the CmdBuilder MSBuild helper class,
which handles escaping and the addition of quotation marks (e.g. when the source
code file name contains a space).

4.6 Code Analysis
The following two sections will describe the CodeAnalysis and FpLexer projects
(see figure 4.16). Since it makes more sense to start with the FpLexer project,

12Full name: Microsoft.Build.Framework.RequiredAttribute

40

we will first describe the FpLexer project and then the CodeAnalysis one.

Figure 4.16: Solution and project hierarchy

4.7 FpLexer project
The FpLexer is responsible for the generation of Tokens out of ISourceText.
The source text is parsed by the FpTokenParser class (more specifically the
GetTokens method). Since the stream of Tokens also contains TriviaTokens
(whitespaces, comments, etc.), a TokenSequence is also defined in the FpLexer
project to allow for easier access to the Token stream (e.g. allows to access all
continuous trivia at once, to peek next non trivia, etc.). In order to unambigu-
ously identify the kind of a token, a SyntaxKind enum is defined in the FpLexer
project as well.

4.7.1 Tokens
The Token class is an abstract class representing a single lexical Free Pascal token.
Each token contains both the underlying string which the token represents and a
value of the SyntaxKind enum.

As can be seen on figure 4.17, there are various descendants of the Token class.
The TriviaToken abstract class is used to represent all tokens which have no
meaning for the Free Pascal language. That includes whitespace
(WhitespaceToken class), comments (CommentToken class) and characters which
cannot start a valid token (UnknownToken class), e.g. the ‘ character.

41

Figure 4.17: Token class hierarchy

The ConstantToken abstract class, which inherits directly from Token is used
to represent integer (UintToken class), real (RealToken class), string
(StringToken class) and pointer (NilToken class) constants found in the source
code. These classes contain public properties which expose the .NET alternative
(int, double, string) values to be used by further analysis.

The KeywordToken class is used to represent Free Pascal keywords. Note that
the KeywordToken also stores the string value of the used keyword. This is done
so that further analysis could see the exact case used in that specific part of
source code (because Free Pascal is case-insensitive).

The IdentifierToken class is used to represent all identifiers. It exposes
an additional property containing the upper case variant of the identifier. In
case of future expansion of this extension, this property can be used to strip the
underlying string of the & character (if a Free Pascal keyword is prefixed by the
& character, it is considered an identifier, similiar to C#’s @ symbol).

The PunctuationToken class is used to represent Free Pascal punctuation
and operator tokens.

Lastly, the EndOfSequenceToken is a special kind of token which has no mean-
ing for the Free Pascal language. It is used to mark the end of the source code.

4.7.2 SyntaxKind
The SyntaxKind enum defines all terminals and nonterminals used by the subset
of the Free Pascal grammar we use (as defined in section 1.3). In order to allow
easier queries for whether a specific syntax kind is e.g. a keyword, the enum values
are grouped together (e.g. keywords have underlying integer values between 50
and 199, inclusive, punctuation tokens have underlying integer values between 200
and 219, inclusive). These values are then used in the extension methods found
in the SyntaxKindExtensions class (e.g. IsTrivia or IsKeyword methods).

4.7.3 Lexer
The FpLexer uses ANTLR4 to generate the tokens. The ANTLR4 lexer is config-
ured by the AntlrLexer.g4 file, which generates source code for C# AntlrLexer
partial class. This class is then used by the GetTokens method of the
FpTokenParser class to generate the various Tokens.

Since no class other than FpTokenParser uses the AntlrLexer class, replace-
ment of the underlying lexer should not be difficult.

42

4.8 CodeAnalysis project
The CodeAnalysis project is responsible for the generation of abstract syntax
trees and most of its analysis. The project contains:

1. SyntaxTree, SyntaxNode classes and their descendants.

2. Custom recursive-descent syntax parser.

3. Explicit grammar of the subset of the Free Pascal language (as defined in
section 1.3).

4. Semantic model, i.e. identifier data for code completion.

4.8.1 Abstract syntax tree
The implementation of the abstract syntax tree consists of two separate tree
structures (as described in subsection 3.7.2) – a PersistentSyntaxTree (Per-
sistent one) and a FpSyntaxTree (OnDemand one). The trees mirror each
other in structure (each node of the FpSyntaxTree contains a reference to its
PersistentSyntaxTree counterpart), but differ in their internal data and pur-
pose.

Both of the trees share the following properties:

• Immutability.

• Each kind of nonterminal has its own node class.

• Children nodes cannot be null.

• Nodes can be missing (i.e. those that are not present in the source code,
but are required by the grammar, e.g. the PROGRAM keyword). These
nodes are then marked with the IsMissing property set to true.

The PersistentSyntaxTree nodes only knows their length, their children,
the symbol they represent in the grammar (as defined by the SyntaxKind enum
in the FpLexer project) and the trivia which immediately precedes and follows the
node. The FpSyntaxTree (On Demand tree) nodes also know their parent and the
exact index in the source text they start on. The On Demand tree is instantiated
only when it is required, and on top of that it also lazily builds the entire tree
strucutre (The children of the FpSyntaxTree nodes are lazily instantiated using
the System.Lazy class). The FpSyntaxTree nodes also have user-friendly API
(compared to the PersistentSyntaxTree), which allows for the traversal of the
tree by the specific children contained within the node (e.g. the FpBlock class
has the Declarations and the Body public properties)

The conversion between the two kinds of nodes is done using the
FpSyntaxNodeFactory class, which is called from the ChildrenInitialisation
method of the FpSyntaxNode class.

The FpSyntaxTree structure allows for intersection queries (to find nodes that
are present in given interval) by using the ChildrenIn method in the SyntaxNode
class.

43

4.8.2 Parser
The parsing process is initiated by calling the static Parse method on the
FpSyntaxTree class. This method will in turn call the static Parse method
on the PersistentSyntaxTree class, which will use the FpParser class to create
the tree.

The syntax parser logic is fully contained within the FpParser class. The
FpParser is a recursive-descent parser that uses the tokens generated by the
FpTokenParser class to create a tree of PersistentSyntaxNode (the FpParser
does not create the instance of the PersistentSyntaxTree itself). The meth-
ods of the FpParser class use other ParseXYZ methods (e.g. the ParseBlock
method uses ParseDeclarationBlock and ParseCompoundStatement methods)
the GetKeyword, GetPunctuation and GetIdentifier helper methods to get
the PersistentSyntaxTerminal leaf nodes of the tree. These helper methods
are also responsible for error recovery, i.e. they generate
PersistentMissingTerminal and PersistentUnexpectedSyntaxTrivia nodes.
The creation of a PersistentMissingTerminal instance represents that a gram-
mar production with a nonexistent terminal (token) occured (i.e. the FpParser
added a virtual token into the source code, e.g. if a semicolon is skipped). The
creation of a PersistentUnexpectedSyntaxTrivia instance represents that the
token was re-classified as trivia (i.e. has the same status as whitespace or com-
ments) and therefore has no meaning for the grammar.

To provide better code-readability all ParseXYZ methods are attributed with
Production attributes. These attributes mark which method is responsible
for which grammar productions and serve to ease synchronisation of the cur-
rently supported subset of the Free Pascal language between the FpParser and
FpGrammar classes (this was particularly helpful during the development of the ex-
tension, when various parts of the Free Pascal grammar were being implemented).

4.8.3 Grammar
The Free Pascal grammar is represented by the FpGrammar class, which allows its
users to get the lower-case string representation of all non-identifier terminals of
the Free Pascal language from a SyntaxKind enum value (the GetStringAlias
method). Additionally, the FpGrammar class contains the GetPossibleKinds
method, which allows its users to get a set of terminals (represented by the
SyntaxKind enum) which can be present in the source code at the start of the
n-th child of a given nonterminal (the nonterminal and n are input arguments of
the GetPossibleKinds method).

To support these two methods the FpGrammar class contains a Dictionary
which maps the SyntaxKind non-identifier terminals to their lower-case string
representation. Additionally, the FpGrammar class contains a set of Production
instances representing the Free Pascal grammar. These instances are provided
by the FpProductionProvider class, which uses the ProducionAttribute at-
tributes used in the FpParser class to create the Production instances.

44

4.8.4 Semantic Model
The Semantic model is responsible for maintaining information on identifiers
available in the student’s Free Pascal source code. The identifiers are repre-
sented by the classes implementing the ISymbol interface. These include the
VariableSymbol, ConstantSymbol, ProgramSymbol, ProcedureSymbol, FunctionSymbol,
UnitSymbol, ParameterSymbol and the descendants of the TypeSymbol classes.
The identifiers (ISymbols) form a tree structure where the root is the
ProgramSymbol and the descendants are the symbols which were declared within
their parent’s scope (in the student’s Free Pascal source code).

The Semantic model is represented by the SemanticModel class. The
SemanticModel class uses the UnitManager and SymbolLoader classes to create
the ISymbol tree structure. The UnitManager class obtains data on identifiers
declared by various units (mostly used to obtain data on the System unit) while
the SymbolLoader class is responsible for the analysis of the FpSyntaxTree to
obtain identifier data from the source code itself. Since the SemanticModel is
tied to a specific instance of a FpSyntaxTree, which is an immutable class and
which contains a reference to the SemanticModel instance, the SemanticModel
is also designed to be immutable.

The UnitManager uses the ppudump.exe program distributed with Free Pascal
compiler to analyse which symbols the given Free Pascal Unit file (.ppu) exports.
Since the UnitManager class is used to analyse the Free Pascal standard library
files (e.g. the System unit), which are not expected to be modified during the
run of our extension, the UnitManager caches the exported symbols for unit files
it has already analyzed In case a change would occur, the unit information will
be reanalyzed

The SymbolLoader traverses the FpSyntaxTree tree to create the ISymbols
representing the identifiers located in the source code represented by the tree. Ad-
ditionally, to obtain the values of constants (to display the constant values while
offering the constant identifiers by code completion) the ExpressionEvaluator
class is used. The ExpressionEvaluator can evaluate all constant expressions
allowed in the Free Pascal grammar, including those that use other named con-
stants.

45

5. User guide
FPVS -- Free Pascal Visual Studio integration is a Visual Studio 2015 ex-
tension designed to add support for the Free Pascal language into Visual Studio
2015. This user guide is designed for students who have never used Visual Studio
2015 before.

5.1 Installation
Before the installation of this extension make sure that you have a Visual Studio
2015 IDE (any version) and the Free Pascal Compiler installed. Note that while
it is possible to install this extension on Visual Studio 2017 as well, it has not
been tested and we can not guarantee that the extension will behave as intended.

To install the extension run the install.bat file (located in the Install
directory on attached CD) with elevated rights (Run as Administrator).

5.2 Creating a Free Pascal project
To create a Free Pascal project first open the File menu, choose New and Project
(see Figure 5.1).

Figure 5.1: Open New Project window

On the left side of the New Project window select Free pascal templates
(marked with number 1 on Figure 5.2), then choose the HelloWorldProject tem-
plate (number 2 on Figure 5.2), pick a name for the project, modify the location
where you want the project to be stored (number 3 on Figure 5.2) and click on
the Ok button (number 4 on Figure 5.2).

46

Figure 5.2: Creating project

Once the project is created, open the source code file via the Solution Explorer
window (by default open on the right side of the screen) by double clicking on
the NameOfProject.pas file (see Figure 5.3).

Figure 5.3: Opening Free Pascal code file from solution explorer

The result should look like figure 5.4.

47

Figure 5.4: Opened Free Pascal code file from solution explorer

5.3 Saving and loading a Free Pascal project
The project can be saved by opening the File menu and clicking the SaveAll
button (or by using the default shortcut Ctrl + Shift + S).

The project can be loaded by opening the File menu, opening the Open
submenu and clicking on the Project/Solution button, then by selecting the
.sln file in the root of the project folder.

5.4 Compiling a Free Pascal project
The project can be compiled by opening the Build menu and clicking the Build
Solution button (or by using the default shortcut Ctrl + Shift + B). As can be
seen on Figure 5.5 any warnings or errors regarding the compiled source code will
be emitted in the Error List (by default at the bottom of the screen).

Figure 5.5: Error List

5.5 Debugging a Free Pascal project
The debugging session is started by pressing the Start button (alternatively you
can open the Debug menu and click the Start debugging button) or by using the
F5 default shortcut.

48

5.5.1 Stepping through the code
To step through the code we first need to create a breakpoint. Breakpoints mark
a line of code before which we want the debugged program to pause. Break-
points are set by moving the caret (text cursor) to the line at which we want
the breakpoint to be made, then opening the Debug menu and clicking the Toggle
Breakpoint button (F9 shortcut by default). The line with a breakpoint is marked
by filled red circle to the left of it (see figure 5.6).

Figure 5.6: Breakpoint

Once the program pauses, you can step through the code by using the Step
Into (F10), Step Over (F11) and Step Out (Shift + F11) buttons in the Debug
menu.

5.5.2 Inspecting current state of the program
Once the program is paused, you can inspect the stack trace and current values
of live variables.

The values of currently visible variables can be inspected by using the Watch
windows (e.g. Watch 1 window). You can put any variable name (even any valid
Free Pascal expression) into the Name column, which will result in the variable
(or expression) value and type being shown in the watch window (as shown in
Figure 5.7). Note that the type of the variable (expression) may not match the
type used directly in the source code (e.g. the i variable in Figure 5.7 was defined
as Integer), because the compiler may internally use a different name for the
type.

Note that if only the variable name is provided in the Name column, you
can also modify the value of the variable by double-clicking on its Value and
modifying it there.

Figure 5.7: Watch List

49

The stack trace is visible in the Call Stack window. You can inspect the
context of the caller functions be double-clicking on the lines they represent.
This will change the variables that you can see and modify in the watch list.

5.5.3 Disassembler
The disassembly is accessible only when program is paused. To open the disas-
sembly open the context menu (by clicking with right mouse button) anywhere
within the text editor and press the Go to disassembly button. Example is shown
on figure 5.8.

Figure 5.8: Disassembly

Note that the disassembly also supports breakpoints and stepping through
the code one instruction at a time.

5.6 Options
The project specific properties can be accessed by opening the context menu of the
project in the Solution Explorer window (by default on right side of the screen)
and clicking the properties button. Then choose the Configuration Properties
property page on the left side of the Property Pages window. There are multiple
options you can configure in this window:

• Additional Library Paths – you can put project-specific paths to unit source
code or binary files.

• Optimization Level – you can specify the optimization level to be used
by the compiler, valid values are between 0 (lowest optimizations) and 3

50

(highest optimizations). If an invalid value is specified, then the compiler
is set to optimization level 0.

• Output Path – you can specify where the executable will be placed after
the compilation is successful. This path is relative to the project’s root
folder. By default Output Path is set to bin\Configuration\, for example
bin\Debug\.

• Console arguments – you can specify command line arguments to be used
when running or debugging the program from Visual Studio.

51

Conclusion
To conclude we will first verify that all goals as we have set them in section 1.4
were met by our extension:

1. (Required) Automatic compilation support – our extension allows the stu-
dent’s Free Pascal source code to be compiled by using the Build project
button in Visual Studio. The source code is compiled by fpc.exe (Free
Pascal compiler).

2. (Required) Execution support (running the programs) – the compiled pro-
gram can be run by using the Start without debugging button in Visual
Studio. This program is then run using cmd.exe (Windows command line).

3. (Required) Debugging support – the compiled program can be debugged by
using the Start debugging button in Visual Studio. This debugging supports
reading and writing of global and local variables, breakpoints, stepping
through the code, viewing call stack and viewing disassembled code.

4. (Highly desired) Syntax highlighting, including errors – our extension sup-
ports syntax highlightning for the subset of the Free Pascal language as
defined in section 1.3. The error highlighting (red squiggles by default) is
displayed for pieces of source code which do not conform to the syntax of
the subset of the Free Pascal language. The error highlighting, however,
does not show that a required token (e.g. a semicolon) is missing.

5. (Desired) Code completion for built-in identifiers (i.e. String, Writeln,
Readln) – All identifiers defined by the System unit (contains e.g. Integer
type) are offered in the code completion system. In addition to offering the
identifiers, the code completion also shows detailed information about the
identifiers, for example the type of a variable identifier (e.g. Integer) or
the base type of a named type (e.g. array [1..10] of Integer).

6. (Desired) Code completion for custom identifiers – All identifiers used by
the subset of the Free Pascal language as defined in section 1.3 are included
in the code completion system. Similar to the additional information of-
fered for built-in identifiers the code completion also offers more information
about custom identifiers.

7. (Desired) Code completion for keywords – all keywords that are used in the
subset of the Free Pascal language as defined in section 1.3 are offered in
code completion.

We have, however, not introduced a system to allow for loading of Free Pascal
IDE or Lazarus IDE project files and converting them into our own.

Future work
While our extension offers all features we required in section 1.3, we believe it can
still be enhanced to allow the students for better experience with our extension.

52

Following list contains possible features that could be added to this extension (in
no particular order):

• Because of the nature of how strings work in Pascal (a record consisting
of a length N, and an array of characters where only the first N are valid)
the debugger does not allow for an easy way to see the text represented by
a string. This could be improved by showing the string value next to the
name of the variable, while still allowing the students to ’open’ the string
and see its internal structure (for learning purposes).

• Allow to set the Free Pascal Compiler path (which is stored in the MSBuild
extension folder) from Visual Studio.

• Highlighting for paired parentheses, brackets and BEGIN and END keywords.

• Automatic formatting of the student’s source code (similar to C#) to show
students how code is usually formatted (while also helping them see the
structure of their own source code better).

• Tooltips while writing subprogram (procedure/function) calls that would
show the arguments the subprogram requires (similar to C#).

• Provide real-time Error List updates, either by running the compiler in the
background or by adding Error List entries whenever the error squiggles are
used to mark piece of the source code.

• Code snippets for e.g. procedure/function headers.

In addition, since Visual Studio 2017 was recently released (in March 2017 [14])
and even though our initial testing has shown that our extension works on Visual
Studio 2017 as well, the extension was marked as not compatible with Visual
Studio 2017. It would be helpful to modify our extension so that the warning
message would no longer appear during installation in Visual Studio 2017.

53

Bibliography
[1] Microsoft. List of limitations in 64-bit Windows. Avail-

able at https://support.microsoft.com/en-us/help/282423/
list-of-limitations-in-64-bit-windows.

[2] Microsoft. Extending projects. Available at https://msdn.microsoft.com/
en-us/library/bb286970.aspx.

[3] Microsoft. Editor and language service extensions. Available at https:
//msdn.microsoft.com/en-us/library/dd885118.aspx.

[4] Microsoft. Task writing. Available at https://msdn.microsoft.com/
en-us/library/t9883dzc.aspx.

[5] WPF in Visual Studio 2010 - Part 1 : Introduction. Avail-
able at http://blogs.msdn.com/b/visualstudio/archive/2010/02/16/
wpf-in-visual-studio-2010-part-1.aspx.

[6] Microsoft. Creating a basic project system, part 1. Available at https:
//msdn.microsoft.com/en-us/library/cc512961.aspx.

[7] Rainer Schuetze. cv2pdb. Available at https://github.com/rainers/
cv2pdb.

[8] Andrew B Hall. Debugging C++ code on Android with Visual Studio
2015. Available at https://blogs.msdn.microsoft.com/devops/2014/11/
12/debugging-c-code-on-android-with-visual-studio-2015/.

[9] Microsoft. MIEngine git repository. Available at https://github.com/
Microsoft/MIEngine.

[10] Peachpie. Available at http://www.peachpie.io/.

[11] ANTLR v4. Available at https://github.com/antlr/antlr4.

[12] Hanspeter Mössenböck, Markus Löberbauer, and Albrecht Wöß. The com-
piler generator Coco/R. Available at http://www.ssw.uni-linz.ac.at/
Coco.

[13] Walkthrough: Displaying Statement Completion. Available at https://
msdn.microsoft.com/en-us/library/ee372314.aspx.

[14] Join Us: Visual Studio 2017 Launch Event and 20th Anniversary.
Available at https://blogs.msdn.microsoft.com/visualstudio/2017/
02/09/visual-studio-2017-launch-event-and-20th-anniversary/.

54

https://support.microsoft.com/en-us/help/282423/list-of-limitations-in-64-bit-windows
https://support.microsoft.com/en-us/help/282423/list-of-limitations-in-64-bit-windows
https://msdn.microsoft.com/en-us/library/bb286970.aspx
https://msdn.microsoft.com/en-us/library/bb286970.aspx
https://msdn.microsoft.com/en-us/library/dd885118.aspx
https://msdn.microsoft.com/en-us/library/dd885118.aspx
https://msdn.microsoft.com/en-us/library/t9883dzc.aspx
https://msdn.microsoft.com/en-us/library/t9883dzc.aspx
http://blogs.msdn.com/b/visualstudio/archive/2010/02/16/wpf-in-visual-studio-2010-part-1.aspx
http://blogs.msdn.com/b/visualstudio/archive/2010/02/16/wpf-in-visual-studio-2010-part-1.aspx
https://msdn.microsoft.com/en-us/library/cc512961.aspx
https://msdn.microsoft.com/en-us/library/cc512961.aspx
https://github.com/rainers/cv2pdb
https://github.com/rainers/cv2pdb
https://blogs.msdn.microsoft.com/devops/2014/11/12/debugging-c-code-on-android-with-visual-studio-2015/
https://blogs.msdn.microsoft.com/devops/2014/11/12/debugging-c-code-on-android-with-visual-studio-2015/
https://github.com/Microsoft/MIEngine
https://github.com/Microsoft/MIEngine
http://www.peachpie.io/
https://github.com/antlr/antlr4
http://www.ssw.uni-linz.ac.at/Coco
http://www.ssw.uni-linz.ac.at/Coco
https://msdn.microsoft.com/en-us/library/ee372314.aspx
https://msdn.microsoft.com/en-us/library/ee372314.aspx
https://blogs.msdn.microsoft.com/visualstudio/2017/02/09/visual-studio-2017-launch-event-and-20th-anniversary/
https://blogs.msdn.microsoft.com/visualstudio/2017/02/09/visual-studio-2017-launch-event-and-20th-anniversary/

Attachments

Content of the attached CD
• src folder containing the FreePascalVisualStudioIntegration and

MIDebugEngine solutions. The solution folders contain packages folders,
which contain all nuget libraries neccessary to compile the extension.

• Install folder containing the installation script, the .vsix extension and
the MSBuild extension folder.

• thesis.pdf file containing this thesis.

• README.txt file containing information about the content of the CD and
the author’s email contact.

55

	Introduction
	Curriculum on our faculty
	Existing IDEs for Pascal
	Requirements
	Goals

	Background
	Common Object Model
	MSBuild
	Managed Extension Framework

	Analysis
	Pascal Language and Compiler
	Project system
	Build
	Build target
	Compile task
	Error List

	Run without debugging
	Debugging
	Underlying debugger and Debug Engine

	Syntax Highlighting
	Code completion
	Pascal library analysis
	Data structures for code completion

	Source code analysis
	Data structure
	Parsing

	Implementation
	MIDebugEngine solution
	FreePascalVisualStudioIntegration solution
	ProjectSystem project
	Extension
	Global properties
	Free Pascal project
	New Free Pascal project creation
	Adding new empty Pascal file
	Free Pascal building
	Running the program with and without a debugger
	Project properties
	Managing abstract syntax trees
	Syntax highlighting
	Code completion
	Project constants

	Microsoft.VisualStudio.Project project
	FreePascalTasks project
	Code Analysis
	FpLexer project
	Tokens
	SyntaxKind
	Lexer

	CodeAnalysis project
	Abstract syntax tree
	Parser
	Grammar
	Semantic Model

	User guide
	Installation
	Creating a Free Pascal project
	Saving and loading a Free Pascal project
	Compiling a Free Pascal project
	Debugging a Free Pascal project
	Stepping through the code
	Inspecting current state of the program
	Disassembler

	Options

	Conclusion
	Bibliography
	Attachments

