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Abstract:

This thesis is about graph-indexed random walks, Lipschitz mappings and graph
homomorphisms. It discusses connections between these notions, surveys the
existing results, and shows new results.

Graph homomorphism is an adjacency-preserving mapping between two graphs.
Our main objects of study are graph homomorphisms to an infinite path. We
are interested in two parameters: maximum range and average range. The av-
erage range of a graph is the expected size of the image of a uniformly picked
random homomorphism to an infinite path. We obtain formulas for several graph
classes and investigate main conjectures on this parameter. For maximum range
parameter we show a general formula and an algorithm to compute it for gen-
eral graphs. Besides that, we study the problem of extending a prescribed partial
graph homomorphism to a full graph homomorphism. We show that this problem
is polynomial in some cases.
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Abstrakt:

Tato diplomová práce se zabývá náhodnými procházkami, Lipschitzovskými zo-
brazeńımi a grafovými homomorfismy. Diskutujeme propojeńı těchto pojmů,
dáváme přehled dosavadńıch výsledk̊u a ukazujeme nové výsledky.

Grafový homomorfismus je zobrazeńı mezi dvěma grafy zachovávaj́ıćı sousednost.
Hlavńım předmětem zkoumáńı jsou pro nás homomorfismy graf̊u do nekonečných
cest. Konkrétně nás zaj́ımaj́ı dva parametry: maximálńı rozsah a pr̊uměrný
rozsah. Pr̊uměrný rozsah grafu je očekávaná velikost obrazu uniformně a náhodně
zvoleného homomorfismu do nekonečné cesty. Ukazujeme, jak odvodit vztahy pro
výpočet pr̊uměrného rozsahu na r̊uzných tř́ıdách graf̊u a zabýváme se hlavńımi
hypotézami, které se týkaj́ı tohoto parametru. Pro maximálńı rozsah ukazu-
jeme přesný vztah a zp̊usob výpočtu na obecném grafu. Kromě toho studujeme
problém rozšǐrováńı částečného homomorfismu, kde ukážeme jeho polynomialitu
pro některé př́ıpady.
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Chapter 1

Introduction

This thesis is about graph homomorphisms, Lipschitz mappings, random walks
and about their interplay.

We are mostly interested in random homomorphisms into an infinite path graph
and some other closely related graphs. Roughly speaking, our main focus is on
answering the question of how big is the homomorphic image of a uniformly at
random chosen homomorphism to an infinite path.

Our secondary goal is to understand how can we effectively decide if it is possible
to extend some partial mapping to a full homomorphism to an infinite path (or
to related graphs).

The area covered in this thesis falls into algebraic graph theory, the branch of
mathematics studying combinatorial structures known as graphs by using the
theory of both abstract and linear algebra. More specifically, this thesis fits into
the study of graph homomorphisms. For more background on algebraic graph
theory in general, we invite reader to check [21]; for graph homomorphisms,
see [24].

We will cover essential preliminaries in later chapter; this thesis should be self-
contained and expects only the basic knowledge beforehand. The main aim of
this chapter is to informally introduce our work in broad context, leaving the
needed formalities and mathematical formulations to the next chapter.

1.1 Prolog

Many processes in real life, for example stock movement or motion of particles,
are so complex that it is impossible for us to observe, record and evaluate all the
effects that influence their behavior and future state. In these cases it is often
convenient to somehow approximate the reality by more simple models.
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Figure 1.1: Drunkard’s walk [20, Chapter VIII].

For example, let us talk about a path traced by a molecule in some fluid. The
number of variables affecting the trajectory of such path is often gigantic and
contemporary technology is incapable of simulating this process. However, to
observer, the movement of such molecule seems to be completely random. That
is so called Brownian motion. See Figure 1.2 for an illustration. This phenomenon
of randomness allows us to analyze these motions by stochastic methods. Note
that Brownian motion is the process continuous in time.

Informally, random walk is a discretization of Brownian motion. We have some
underlying discrete space and a set of possible steps. In time t, one of the possible
steps is taken uniformly at random. The sequence of n consecutive steps is then
a random walk.

Consider the classical example, explained e.g. in [59]. A drunken man is standing
in the middle of a city square. Every minute he picks a random direction (north,
south, east or west) and walks one meter forward. This is also a random walk,
this time on a discrete space isomorphic to Z2.

If we would simplify this example by restricting the drunkard to take only west
or east direction in every step, we would get a random walk on Z. See Figure 1.3
for a visualization of 100 steps of eight random walks on Z.
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Figure 1.2: An example of Brownian motion [58].

Figure 1.3: An example of eight one-dimensional random walks with 100 steps.
The x-axis is time, the y-axis is the position on integers [59].

In this thesis, we are interested in a special kind of graph homomorphisms –
homomorphisms of graphs into integers. We postpone the formal definitions to
Section 2.3. Informally, we will assign integers to vertices of graph in such a way
that every two adjacent vertices get assigned integers which are in distance at
most M . See Figure 1.4 for an initial example. One can quickly check that the
numbers assigned to vertices satisfy this condition for M = 1.
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This definition, maybe not apparently on the first sight, entails many notions
and concepts. We will show that this type of mappings – so called M-Lipschitz
mappings of graphs – generalize the concept of random walk on Z we just saw.
We will further show a connection with certain problems in statistical physics.
We will explore motivations and connections more thoroughly in Chapter 2.

0

1 1 0

−1

0

0
0

Figure 1.4: An example of a homomorphism of the Their graph [45] into integers.
The images of the endpoints of every edge are in distance at most one.

1.2 Structure this thesis

The structure of this thesis is as follows:

• Chapter 2 is about preliminaries. It introduces the main definitions, shows
their relations, motivation and some basic properties as well.

• Chapter 3 is a short chapter considering the problem of the maximum range
(the size of the homomorphic image) among all M -Lipschitz mappings of a
given graph.

• Chapter 4 is devoted to the parameter of the average range and it is the
main chapter of this thesis containing our main results. Namely, we prove
precise formulas for this parameter for the class of complete graphs, com-
plete bipartite graphs, paths and cycles. We will also survey the most
important conjectures regarding this parameter.

• In Chapter 5, we introduce a new algorithmic problem regarding the exten-
sion of some special-type prescribed homomorphism. We give a context to
other existing extension problems and we show that some cases of this new
problem can be solved in polynomial time.

• Chapter 6 concludes the thesis with a brief summary of our contribution
and a list of open problems.

Figure 1.5 shows the structure of essential interdependence between chapters:
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Figure 1.5: The graph of the structure of this thesis.





Chapter 2

Preliminaries

This chapter introduces a basic terminology and presents needed background on
the theory of graph homomorphisms. Besides that, basic definitions regarding
Lipschitz mappings and their basic properties are discussed. We also show more
detailed information on motivations.

2.1 Basic graph terminology and notation

Contrary to the majority of works in graph theory, we will need a more general
definition of graph. This section is similar to the introduction of the book by Hell
and Nešetřil [24].

Our main definition is the definition of digraph. Digraph G is a pair of vertex set
V = V (G) and edge set E = E(G) which is a binary relation on V . In our case,
V can be infinite. We call digraph symmetric, reflexive, or irreflexive if its edge
set has the corresponding property.

We define loop as an edge (v, v) ∈ E, v ∈ V . Therefore, reflexive digraphs are
those with loops in each vertex. We call symmetric digraphs as undirected graphs
and undirected graphs without loops, i.e. irreflexive undirected graphs, as simple
graphs. We denote all n-vertex simple graphs by Gn. See Figure 2.1 for inclusion
diagram of subclasses of digraphs.

For graph G = (V, E), the cardinality of V is called the order of G and the
cardinality of E is called the size of G. As for other notation, we refer to Diestel’s
monograph [14].

To avoid cumbersome notation, we will often write uv for undirected edge.
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Note. As for the notation specific to Lipschitz mappings of graphs, we decided
to introduce our own notation since it was hard to decide which of the many
existing notations we should use. We hope that the result is more clear, logical
and unified notation than those in the existing literature.

Reflexive digraphs

Irreflexive digraphs Graphs

Reflexive graphs

Symmetric digraphs

=
Graphs with loops allowed

=

=

=

Digraphs

Figure 2.1: Main subclasses of digraphs. [24]

2.2 Graph homomorphisms

We define a graph homomorphism between digraphs G and H as a mapping
f : V (G) → V (H) such that for every edge uv ∈ E(G), f(u)f(v) ∈ E(H). That
means that graph homomorphism is an adjacency-preserving mapping between
the vertex sets of two digraphs. The set I := {w ∈ V (H) | ∃v ∈ V (G) : f(v) = w}
for a graph homomorphism f is called the homomorphic image of f .

A function f is a vertex-surjective homomorphism if it is surjective, the same goes
for vertex-injective homomorphisms. By the property of preserving adjacency, we
get for each graph homomorphism f a mapping f ∗ : E(G) → E(H) by setting
f ∗(uv) := f(u)f(v). We are then able to define edge-surjective and edge-injective
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homomorphisms analogously. Bijective variants can be defined in the same way
as well.

By graph endomorphism, we mean a graph homomorphism of G to itself. By
graph isomorphism, we mean a graph homomorphism which is bijective (both
edge-bijective and vertex-bijective).

For a comprehensive and more complete source on graph homomorphisms, the
reader is invited to see [24]. A quick introduction is given in [21] as well.

2.3 Main definition: Lipschitz mapping of a graph

Definition 2.1. For M ∈ N, an M-Lipschitz mapping of a connected graph
G = (V, E) with root v0 ∈ V is a mapping f : V → Z such that f(v0) = 0 and for
every edge (u, v) ∈ E it holds that |f(u)−f(v)| ≤ M . The set of all M -Lipschitz
mappings of a graph G is denoted by LM(G).

By the term Lipschitz mappings of graph we mean the union of sets of M -Lipschitz
mappings for every M ∈ N .

The importance of having rooted graphs is the following. We want to have finitely
many Lipschitz mappings for a fixed graph G. Mappings with f(v0) ̸= 0 are just
linear shifts of some mapping with f(v0) = 0. Formally, consider a mapping f ′

with f ′(v0) = a. Then we can define a linear transformation Ta as Ta(f) ↦−→ f −a.
Applying Ta to f ′ yields a Lipschitz mapping of G with v0 as its root.

We note that we are interested in connected graphs only. Components without
the root would also allow infinitely many new 1-Lipschitz mappings. Consider
this example.

Example. Let H denote the graph with the vertex set {a, b, c} and the edge set
{bc}. Let us root H in a. Assuming that we would extend Definition 2.1 to
disconnected graphs, all the 1-Lipschitz mappings of H would form the following,
clearly infinite, set:{

{(a, 0), (b, x), (c, y)}| |x − y| ≤ 1, x, y ∈ Z
}
.

In literature, we will often meet a slightly different definition of 1-Lipschitz map-
pings. In it the restriction |f(u) − f(v)| ≤ 1, for all uv ∈ E, is removed and
instead, the restriction |f(u) − f(v)| = 1, for all uv ∈ E, is added. In [38] au-
thors call these mappings strong Lipschitz mappings. We generalize this in the
following definition.

Definition 2.2. For M ∈ N, a strong M-Lipschitz mapping of a connected graph
G = (V, E) with root v0 ∈ V is a mapping f : V → Z such that f(v0) = 0 and for
every edge (u, v) ∈ E it holds that |f(u) − f(v)| = M . The set of all M -Lipschitz
mappings of a graph G is denoted by L±M(G).
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Note that strong M -Lipschitz mappings are a special case of M -Lipschitz map-
pings of graph. Also, B-Lipschitz mappings are a superset of A-Lipschitz map-
ping whenever B ≥ A. See Figure 2.2 for the Hasse diagram of various types of
Lipschitz mappings.

Analogously, by the term strong Lipschitz mappings of graph we mean the union
of sets of strong M -Lipschitz mappings for every M ∈ N .

The following two lemmata shed some light on the definition of strong Lipschitz
mappings.

strong 3-Lipschitz

strong 2-Lipschitz

strong 1-Lipschitz

3-Lipschitz

2-Lipschitz

1-Lipschitz

Figure 2.2: The Hasse diagram of different types of Lipschitz mappings of graphs.

Lemma 2.1. A graph has a strong M-Lipschitz mapping if and only if it is
bipartite.

Proof. First of all, observe the fact that in strong M -Lipschitz mapping, all ver-
tices are mapped to some number of the form k · M , where k ∈ Z.

Consider a non-bipartite graph G and a strong M -Lipschitz mapping f of G.
There is a well-known characterization of bipartite graphs:

A graph is bipartite if and only if it does not contain
a cycle of odd length as a subgraph.

Therefore, G contains some odd cycle C with edges v1v2, . . . , vlv1. Let us denote

ei := v(i+1 mod l) − v(i mod l), ∀i ∈ {1, . . . , n}.

We see that ei ∈ {+M, −M}. Moreover, ∑n
i=0 ei = 0 from the definition of ei.

However, this sum has an odd number of summands and thus we get a contra-
diction.

Lemma 2.2. For every graph G there exists a bijection between L±A(G) and
L±B(G) for every A, B ≥ 1.
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Proof. For fixed A, B ∈ N, let us define the function FA→B : L±A(G) → L±B(G):

FA→B(fA) := B · A−1 · fA.

We have to show that this is the desired bijection.

Injectivity follows from the existence of the inverse function. In our case we have
the inverse function FB→A(fB) := A · B−1 · fB. Furthermore, surjectivity is clear
since FB→A is defined for all fB ∈ L±B(G).

2.4 Motivation and different views

Homomorphism to Z and to an infinite path

M -Lipschitz mappings map graph vertices to integers. There is a natural bijection
between M -Lipschitz mappings and graph homomorphisms to a suitable graph
associated with Z. Consider a graph ZM with the vertex set V (ZM) = {vi|i ∈ Z}
and and the edge set E(ZM) = {vivj : |i − j| ≤ M}. Every M -Lipschitz mapping
corresponds to a graph homomorphism to ZM .

We can define a graph Z±M analogously for strong mappings.

Note that in the case of strong 1-Lipschitz mappings, we get that they correspond
to homomorphisms to an infinite path and in the case of 1-Lipschitz mappings,
we get a correspondence to homomorphisms to an infinite path with loops added
to each vertex (Figure 2.5). See Figure 2.3 for an example of such homomorphism
of C4.

Note. We emphasize that one can generalize the definition of Lipschitz mapping
to map not into Z but into Zd for some natural number d instead. This was
studied too, for example in [16]. In Figure 2.4 we have an example of a generalized
Lipschitz mapping into Z2.

Gas models and physical motivation

As is noted by Zhao [62] and Cohen et al. [9], a homomorphism from G to
P3 with loops added to each vertex corresponds to a partial (not necessarily
proper) coloring of the vertices of G with red or blue, allowing vertices to be left
“uncolored” such that no red vertex is adjacent to a blue vertex. This coloring
is known as the Widom–Rowlinson configuration [57] and this target graph is
denoted as HWR. Observe that Widom-Rowlinson configuration corresponds to
some 1-Lipschitz mapping with the size of the homomorphic image at most 3.
See Figure 2.6 for an example.

Widom-Rowlinson configurations have a physical interpretation. Consider parti-
cles of a gas B (blue vertices) and of a gas R (red vertices). W-R configurations
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0

1

2

-1

3

r

Figure 2.3: A homomorphism of C4 rooted in r to Z1 graph. In fact, this homo-
morphism is a 1-Lipschitz mapping of C4.

Figure 2.4: A homomorphism of a graph into Z2 grid.

Figure 2.5: An infinite path with loops – Z1

then model situations in which particles of gases A and B do not interact. This
model is sometimes referred to as the hard-core model. The name emphasizes
the hard restriction that particles of gases cannot be directly adjacent, i.e. their
molecules do not interact.
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For more on Widom-Rowlinson configurations and on the connection of graph
homomorphisms to phase transition models, see [6] and [7] respectively.

1

0

−1

Figure 2.6: An example of Widom–Rowlinson configuration on a grid. On the
right is the target graph HWR.

Random walks

We emphasize the importance of this section as it gives a valuable context to
this thesis. There is yet another view on Lipschitz mappings of graphs. We
encountered this view in the introductory chapter of this thesis.

We will first introduce a formal definition of random walks on Z.

Definition 2.3 (Simple random walk in Z). A simple random walk (on Z) of n
steps is a sequence X1, X2, . . . , Xn of random variables, each attaining values from
the set {−1, 0, 1}. We further assume that these random variables are uniformly
distributed and independent. The displacement of the walk after i steps is defined
as

Si :=
i∑

s=1
Xs.

In this definition, Xs represents the movement on Z from time (s − 1) to s. We
assume that the walk starts at time 0 at 0.

We note that every simple random walk X on Z induces a lattice path sn defined
as s0 := (0, 0) and si := (i, Si) for i ∈ {1, . . . , n}.

The bijection with 1-Lipschitz mappings of a path graph Pn should be clear
now. However, for completeness, we will explain it in more detail. Consider a
path graph Pn and a 1-Lipschitz mapping f of G. Denote the vertices of Pn as
v1, v2, . . . , vn consecutively. Every difference f(vi) − f(vi−1), for i ∈ {2, . . . , n},
corresponds to a change (or a step) in the random walk.

We will occasionally use the term G-indexed random walk for M -Lipschitz map-
pings of G. The term is used in such way in other paper as well, e.g. in [29, 19].
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This term expresses that 1-Lipschitz mappings are a generalization of simple ran-
dom walks on Z with simple random walks being the Pn-indexed random walks.

Finally, see Figure 2.7 for an illustration.

Figure 2.7: A visualization of all C7-indexed walks and all P7-indexed walks. Lat-
tice paths (in the sense of Section 2.4) that use only the purple edges correspond
to all C7-indexed walks. Those that use both purple and black edges are the
P7-indexed walks.

For more information regarding random walks, see Lovász’s seminal survey [39] or,
for more general treatment, Häggström’s comprehensive monograph on Markov
chains [23], or more up-to-date monograph [37].

2.5 Number of Lipschitz mappings

Although examining the number of Lipschitz mappings of a given graph is not
the main problem of this thesis, it is a problem of independent interest. More
generally, counting the number of homomorphisms between two graphs is natural
and widely studied question. Let us mention the quickly evolving theory of graph
limits [40].

We show some basic properties regarding the number of 1-Lipschitz mappings of
a given graph.

Theorem 2.1. For every connected graph G = (V, E) and for every two vertices
a, b ∈ V such that ab ̸∈ E, holds that

L1(G) ≥ L1(G ∪ {a, b}).
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We will postpone the proof of this theorem to Chapter 3.

Lemma 2.3. For every tree T ∈ Gn, the number of M-Lipschitz mappings of T
is equal to (2M + 1)n−1. As a special case, the number of 1-Lipschitz mappings
of T is 3n−1.

Proof. The root r of T is allways mapped to zero. Perform a breadth-first search
on T rooted in r. For each visited vertex other than r, only its parent vertex has
a value. Thus we can choose any of the 2M + 1 integers at distance at most M
from the parent vertex value. We proceed inductively.

We can state the following corollary on the graphs with extremal numbers of
1-Lipschitz mappings.

Corollary 2.1. Among connected graphs of order n, trees have the maximum
number of 1-Lipschitz mappings and a complete graph Kn has the minimum num-
ber of 1-Lipschitz mappings.

Finally, we remark that for strong Lipschitz mappings on trees, the very similar
claim to Lemma 2.3 holds.

Remark 2.1. For every tree T ∈ Gn, the number of strong M -Lipschitz mappings
is equal to 2n−1.

2.6 Maximum and average range

First of all, let us define the range of a mapping.

Definition 2.4. The range of a Lipschitz mapping f of G is the size of the
homomorphic image of f . Formally:

rG(f) := |{z ∈ Z | z = f(v) for some v ∈ V (G)}| .

Remark 2.2. The homomorphic image of a connected subgraph under some 1-
Lipschitz mapping is a closed interval in Z. The image is not necessarily closed
interval if we would have a graph with more than two components, but as we
said, we are interested only in connected graphs.

We define the average range of graph G as follows.

Definition 2.5. (Average range) The average range of graph G over all M -
Lipschitz mappings is defined as

rM(G) :=
∑

f∈L(G) r(f)
|L(G)| .

We can view this quantity as the expected size of the homomorphic image of an
uniformly picked random M -Lipschitz mapping of G.
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Definition 2.6. (Maximum range) The maximum range of graph G is defined as

rmax(G) = max
f∈L(G)

r(f).

The average range is the main theme of Chapter 4 and we devote Chapter 3 to
the maximum range.

Whenever we want to talk about the counterparts of these definitions for strong
Lipschitz mappings, we denote it with ± in subscript. For example, r±M is the
average range of strong M -Lipschitz mapping of graph.

Whenever we write average range or maximum range without saying which M -
Lipschitz mappings we use, it should be clear from the context what M do we
mean.

It is worth noting that for maximum range and average range, the choice of root
does not matter. That is why we often omit the details of a picking one. For
better analysis in proofs we occasionally pick a root in some convenient way.

Lemma 2.4. For a connected graph G rooted in r1, (G, r1), and G rooted in r2,
(G, r2), the following holds:

rM((G, r1)) = rM((G, r2)),

and
rmax

M ((G, r1)) = rmax
M ((G, r2)).

In other words, maximum range and average range are invariant under the choice
of root.

Proof. Let us define the function R : LM((G, r1)) → LM((G, r2)) as

R(f) := r2 − r1 + f.

It suffices to observe that R is a range-preserving function, i.e.

r(f) = r(R(f)).

That implies the desired conclusion.

Analogous lemma for strong M -Lipschitz mappings is true as well.

Height vs. range

In literature, height parameter is often studied; for example in [61, 2].

Definition 2.7. The height for the graph G is the function hG : L(G) → R
defined as

hG(f) := max
u∈V (G)

f(u) − min
v∈V (G)

f(v).
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We note that it is important to distinguish between the size of the homomorphic
image, i.e. the range, and the height of a Lipschitz mapping. Observe that the
following relation holds:

hG(f) = rG(f) − 1. (2.1)





Chapter 3

Maximum range

In preliminaries we introduced the notion of maximum range (Definition 2.6). We
will show how can we algorithmically compute it. Also, we will show the relation
of this parameter to other existing ones. This shorter chapter also provides results
which will be useful in analyzing average range in Chapter 4.

3.1 Diameter

In this section we observe one important fact giving us an upper bound on the
range of a graph. Then we will show that this upper bound is tight. We remind
the reader the graph parameter called diameter.

Definition 3.1. The diameter diam(G) of a graph G is the maximum distance
between any two vertices of G. We define the distance of two vertices u, v ∈ V (G),
d(u, v), as the length of the shortest path between these two vertices. The distance
of vertex to itself is defined as zero. The distance between two vertices from
different components is defined as ∞.

We will first prove an important, yet easy lemma.

Lemma 3.1. For any connected graph G with diam(G) and every M-Lipschitz
mapping f of G, holds that

r(f) ≤ M · (diam(G) + 1).

Proof. The existence of f with r(f) > M ·(diam(G)+1) would imply the existence
of a path subgraph in G with endpoints u, v such that their images would be in
distance |f(u) − f(v)| = M · (diam(G) + 1). However, that would mean that
all paths between u and v have to map to some connected subgraph of Z of size
greater than M · (diam(G) + 1) which is a contradiction with the definition of
diameter.
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Now we show that we can always construct a mapping where equality holds and
thus we conclude that the diameter and the maximum range are tightly connected.

Theorem 3.1. For any connected graph G, rmax
M (G) = M · (diam(G) + 1).

Proof. From the definition of the diameter, there must exist vertices u1 and u2
such that their distance is equal to diam(G). Without loss of generality we set
r := u1. Now let us define the mapping f : V (G) → Z so that for every v ∈ V
we have f(v) := M · d(r, v).

We see that f(r) = 0, and f(u2) = M · d(r, u2) so the image of the shortest path
connecting u1 and u2 has the size diam(G) + 1. On the top of that, for every
uv ∈ E(G), |f(u) − f(v)| ≤ M , otherwise we would get a contradiction with the
definition of the distance. Thus f is an M -Lipschitz mapping and its range has
to be at least M · (diam(G) + 1). Combining this with Lemma 3.1, we get the
claim we wanted to prove.

3.2 The case of strong Lipschitz mappings

By Lemma 2.1 we showed that strong Lipschitz mappings can exist on bipartite
graphs only. We will now extend Theorem 3.1.

Theorem 3.2. For any bipartite connected graph G, rmax
±M (G) = M ·(diam(G)+1).

Proof. We can take Lipschitz mapping f as in Theorem 3.1. However, we have
to check if it is a strong M -Lipschitz mapping.

Suppose that f is not a strong M -Lipschitz mapping. That means that there exist
two vertices a, b ∈ V (G) such that ab ∈ E(G) and f(a) = f(b). Furthermore,
from the definition of f , d(r, a) = d(r, b). Define l := d(r, a).

From the definition of the distance, we get that there exist an (r, a)-path and (r, b)-
path, both of length l. Since G is bipartite, parts to which vertices belong have
to alternate along the (r, a)-path and along the (r, b)-path as well. Additionally,
parts to which a and b belong are determined by the parity of their distance
from root. But that means that a and b belong to the same part. Since they are
neighbors, we get a contradiction.

Finally, we note that the previous argument works also in the case of r being
either the vertex a or b.

3.3 Application

We will apply our results to prove Theorem 2.1, which was left unproven. We
will first need the so called “lemma about cherries”. It is widely known lemma,
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but we prove it here for completeness.

Lemma 3.2. A graph G is a disjoint union of complete graphs if and only if it
does not contain K1,2 as an induced subgraph.

Proof. The if part is obvious.

For the only if part: There must exist a connected component with two vertices
u and v in it such that there is no edge between them. Consider some shortest
path between u and v. It must have at least three vertices. Take some three
vertices u, x, y that are consecutive on this path. We claim that they induce K1,2.
If they do not form K1,2, the first and the third vertex must be connected. But
that contradicts the choice of the shortest path between u and v.

Now we can prove Theorem 2.1.

Proof of Theorem 2.1. The graph G cannot be a complete graph. Therefore, by
Lemma 3.2, induced K1,2 exists in G. Let vertices a and b from the statement of
Theorem 2.1 be the two non-adjacent vertices of induced K1,2.

We see that G has the diameter at least 2, since a and b are in distance 2. Let
us root G in a for auxiliary reasons.

By the construction of 1-Lipschitz mapping from Theorem 3.1, there must exist
a mapping f with f(b) = d(a, b) = 2.

Clearly, L1(G ∪ ab) ⊆ L1(G). However, f cannot be a 1-Lipschitz mapping of
G ∪ ab rooted in a. That implies

|L1(G ∪ ab)| ≤ |L1(G)| − 1,

and we are done.

3.4 Algorithmic aspects

Let us consider the following algorithmic problems – M-MaxRange and M-
Strong-MaxRange.

Problem: Maximum range problem – M-MaxRange
Input: A connected graph G.

Question: What is the maximum range of M -Lipschitz mapping of
G, i.e. rmax

M (G)?

Problem: Strong maximum range problem – M-Strong-
MaxRange

Input: A connected bipartite graph G.
Question: What is the maximum range of strong M -Lipschitz map-

ping of G, i.e. rmax
±M (G)?
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Because of Theorem 3.1, we can use the existing algorithms for finding graph
diameter and distance in graphs for both of these problems. The following table
is a quick survey of them. In it we denote by V and E the order and the size of
the input graph, respectively.

Name of algorithm Complexity Source
Floyd-Warshall algorithm O(V 3) [18]
Johnson’s algorithm O(V 2 · log V + V E) with Fibonacci

heaps for Dijkstra subroutine
[28]

Seidel’s algorithm O(V 2.376 · log V ) [51]

Table 3.1: Summary of selected algorithms for graph diameter.

Observe that these algorithms are suitable for general graphs. We can achieve
a better complexity for some classes. Take for example trees for which we can
compute diameter by a linear-time algorithm using one clever depth-first search
traversal.

Connection to the surjective homomorphism problem

We saw that 1-Strong-MaxRange is easily solvable by algorithms for graph
diameter. However, we would like to show a broader context of this problem by
pointing out a connection with problems of finding surjective graph homomor-
phisms. We need to formulate Surjective Coloring problem first. We note,
that by surjective homomorphisms we mean vertex-surjective homomorphism,
not the edge-surjective one.

Problem: Surjective Coloring
Input: Graphs G and H.

Question: Does there exist a graph homomorphism of G to H that
is surjective?

The graph G is called the guest graph and the graph H the host graph. If all the
guest graphs are from a graph class G and all the host graphs are from a graph
class H, we speak about the Surjective (G, H)-Homomorphism problem.

Golovach et al. [22] proved the following theorem.

Theorem 3.3. [22, Proposition 1] The Surjective (G, H)-Homomorphism
problem can be solved in polynomial time in the following two cases:

1. G is the class of complete graphs and H is the class of all graphs;

2. G is the class of all graphs and H is the class of paths.

We get the following corollary for 1-Strong-MaxRange. Observe that we need
to binary search for suitable n∗ such that a vertex-surjective homomorphism to
a host graph H isomorphic to Pn∗ exists.
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Corollary 3.1. The problem 1-Strong-MaxRange can be solved in polynomial
time.

Proof. We have a connected bipartite graph G as the input graph. Let us denote
its order n. We need to binary search for suitable n∗. We start with the closed
interval I = [1, n] and we choose n∗ :=

⌈
n
2

⌉
. Start the instance of Surjective

Coloring with G and Pn∗ . Depending on the result, we will continue to binary
search in some corresponding subinterval and set n∗ to a new value, i.e. we binary
search for the maximum n∗ ∈ I such that G admits a surjective homomorphism
to Pn∗ . At the end of the algorithm, we will output the resulting n∗ as the
answer.

For more information on surjective homomorphism problems, we refer to [5, 24].





Chapter 4

Average range

At the first place, we will explain the main problem on the average range, present
connections to other similar problems and show some properties of this graph
parameter. Then, each of the subsequent sections will deal with a special class
of graphs which is widely known. Our focus is to give precise formulas for the
average range of some classes of graphs. We have obtained such formulas for
complete graphs, compete bipartite graphs, paths, and cycles. These are one of
the main results of this chapter and thesis.

4.1 Main conjectures on average range

Fundamental conjectures on the average range of (strong) 1-Lipschitz mappings
say that paths Pn are extremal with regard to this parameter on the n-vertex
graphs.

The first one is from Benjamini, Häggström and Mossel.

Conjecture 4.1. [1] (Benjamini-Häggström-Mossel) For any connected bipartite
graph G ∈ Gn, r±1(G) ≤ r±1(Pn) holds.

Newer version which generalizes the previous one is the following conjecture by
Loebl, Nešetřil and Reed.

Conjecture 4.2. [38] (Loebl-Nešetřil-Reed ) For any connected graph G ∈ Gn,
r1(G) ≤ r1(Pn) holds.

We will occasionally abbreviate Conjecture 4.1 to BHM Conjecture and Conjec-
ture 4.2 to LNR Conjecture.

In [38] Leobl et al. further proved that LNR Conjecture holds modulo a constant
factor.

Theorem 4.1. [38] For every connected G ∈ Gn there exists an absolute con-
stant C such that r1(G) ≤ C

√
n.
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The paper also presents other two interesting and useful theorems. In the fol-
lowing two theorems, the function f denotes an uniformly chosen 1-Lipschitz
mapping of G.

Theorem 4.2. [38] For every connected G ∈ Gn there exists an absolute con-
stant C such that for any u and v at distance d in G, the expected value satisfies

E[|f(u) − f(v)|] ≤ C
√

d.

Theorem 4.3. [38] For any pair of vertices u and v in a connected G ∈ Gn,
E[|f(u) − f(v)|] is no more than the expected value obtained when u and v are
the endpoints of Pn.

4.2 Related results and problems

This section presents a couple of results and problems related to the average range
parameter.

Counting endomorphisms

Csikvári and Lin showed [12, Theorem 1.8] that in the class of n-vertex trees, the
path Pn has the smallest number of endomorphisms and the star Sn the largest
number of endomorphisms. The problem is in fact similar to ours and the use of
KC-transformation is the important tool to prove the recent result on LNR and
BHM Conjecture on trees [61].

Lattice paths and their enumeration and height

As we saw in Section 2.4, analyzing the range of Pn is in fact similar to enumer-
ating a special kind of lattice paths.

Lattice path enumeration is an important area of combinatorics. For a survey
on lattice paths, see [35] or specific chapters of [17]. Let us remind you Catalan
numbers and their bijection with Dyck paths [55]; paths from (0, 0) to (n, 0) with
the possible steps to northeast (1, 1) and to southeast (1, −1) such that we are
forbidden to go below the x-axis. We note that for Dyck paths the average height
is known (see [13]).

Flat Lipschitz functions

Peled et al. [50] studied grounded M-Lipschitz functions on rooted d-regular trees.
A d-regular tree is a tree with every non-leaf vertex of the degree equalt to d.
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Definition 4.1. A grounded M-Lipschitz mapping f of a graph G = (V, E) is a
function f : V → Z such that every leaf vertex is mapped to zero and for every
edge uv ∈ E, |f(u) − f(v)| ≤ M holds.

Clearly, this definition is slightly different from our definition of M -Lipschitz
mapping in two things:

• Peled et al. do not have the restriction on root image.

• We do not have the restriction on the images of leaves.

Peled et al. proved that the probability that the uniformly at random chosen
grounded M -Lipschitz mapping maps the root of a d-regular tree to a value
greater than M + t is doubly-exponentially small in t.

It is shown in another paper by Peled et al. [49] that on expander graphs random
M -Lipschitz function takes only M + 1 different values on the large part of the
graph. The motivation was to investigate some class of highly connected graphs
and see if this high connectivity implies smaller fluctuations of a typical random
Lipschitz mapping.

For more sources on expanders, we recommend surveys [25, 41].

Long-range connections

Spinka studied in his master thesis [52] and in the subsequent paper with Peled
[53] a generalized version of paths and probabilities of obtaining certain ranges
for random strong 1-Lipschitz mapping on these generalized paths.

We will need to define what graphs Pn,d are.

Definition 4.2. For every n, d ≥ 1, let the graph Pn,d be defined as

V (Pn,d) := {0, 1, . . . , n},

E(Pn,d) := {(i, j) : |i − j| ∈ {1, 3, . . . , 2d + 1}}.

Observe that for Pn,0 we get a standard path graph Pn. The main result of
Spinka’s thesis is the following theorem.

Theorem 4.4. [52] For any positive integers n, d and r, we have

P (r(fn,d) ≥ 3 + r) ≤
(

n

r

)
2−dr

and
P (r(fn,d) < 3) ≤ 21−n/2.

Furthermore, if n2−d(n) → 0 as n → ∞, then

P (r(fn,d(n)) = 3) → 1 as n → ∞.
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4.3 General properties

In this section we will show two important examples warning us not to use in-
tuition when working with the parameter of average range. By a cut vertex of a
connected graph G we mean a vertex of G such that its removal disconnects the
graph. Observe that by this definition, leaves are not cut vertices. The following
examples are taken from [61].

Less cut vertices does not imply lesser average range

See Figure 4.1. Graph T1 has

r1(T1) = 23003009/4782969 ≈ 4.80936

and graph T2 has

r1(T2) = 23013183/4782969 ≈ 4.81148.

However, T1 has 12 cut vertices in total but T2 has only 11 cut vertices in total.

T1:

T2:

Figure 4.1: An example of two trees. Tree T1 has more cut vertices than T2.
However, the average range of T1 is lesser than the average range of T2.

Adding an edge can increase the average range

See Figure 4.2. Graph G2 is formed from G1 by adding edge e. However, G1 has

r1(G1) = 31717/9315 ≈ 3.40494,

and G2 has
r1(G2) = 31231/9153 ≈ 3.41211.
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G1 G2

e

Figure 4.2: An example of two graphs G1 and G2. We have G2 = G1 ∪ {e} but
r1(G1) ≤ r1(G2).

4.4 Experimental results

With an aid of our own computer program, we performed an experimental check-
ing of the validity of Conjectures 4.1 and 4.2 for small-order graphs.

Corollary 4.1. Conjecture 4.2 holds for graphs up to 10 vertices. Conjecture 4.1
holds for bipartite graphs up to 13 vertices.

For details on our computer program, check Appendix A.

Note. All the following sections will deal with some particular class of graphs.

4.5 Complete graphs

For completeness of the picture we will show the formula for r1(Kn) and prove
that complete graphs are minimal graphs with respect to the average range.

Theorem 4.5. For a complete graph Kn we have r1(Kn) = 2 − (2n − 1)−1.

Proof. Let us count the number of 1-Lipschitz mappings of Kn. We cannot choose
the image of the root r but we can do it for other vertices. Namely, we must choose
integers from interval [−1, 1] due to the fact that every vertex v ̸= r is a neighbor
of the root. Furthermore, 1-Lipschitz mapping f with vertices u, v ∈ V (Kn) such
that f(u) = −1 and f(v) = 1 cannot exist since uv ∈ E(Kn). Thus, apart from
the trivial case of setting image of all vertices to 0, we can choose to map vertices
other than r either to −1 and 0, or to 1 and 0 – exclusively. For each of this
choice we have 2n−1 − 1 of such 1-Lipschitz mappings and each of them has the
range equal to 2. We conclude:

r1(Kn) = 2 · 2 · (2n−1 − 1) + 1
2 · (2n−1 − 1) + 1 = 2 − 1

2n − 1 .
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Theorem 4.5 implies the limiting behavior of r1(Kn).

Corollary 4.2. It holds that limn→∞ r1(Kn) = 2.

Finally, we will prove that complete graphs have the minimum average range
among all n-vertex graphs.

Theorem 4.6. For any connected G ∈ Gn which is not isomorphic to the complete
graph Kn, r1(Kn) < r1(G) holds.

Proof. We recall Chapter 3 and Theorem 3.1 which states that for every connected
graph G, rmax(G) = diam(G) + 1.

We see that graphs where the diameter is equal to one are precisely complete
graphs. Thus any connected G with the diameter strictly greater than one has
a Lipschitz mapping of range at least 3. Since there is always exactly one Lipschitz
mapping of range 1 (set all to zero), we get that such G has an average range
greater or equal to 2. Combining this with Theorem 4.5 yields the proof.

4.6 Complete bipartite graphs

We prove an exact formula for another well-known class of graphs, complete
bipartite graphs.

Theorem 4.7. For every p, q ∈ N, a complete bipartite graph Kp,q satisfies

|L1(Kp,q)| = 3p + 3q + 2p+q − 2p+1 − 2q+1 + 1,

and
r1(Kp,q) = 3 − 2p+q · (3p + 3q + 2p+q − 2p+1 − 2q+1 + 1)−1.

Proof. We use Theorem 3.1 that implies that the possible ranges of Kp,q form a
subset of {1, 2, 3}. We analyze separate cases of possible ranges and count how
many such mappings exist. Let us denote the part of size p by P and the other
one, with the size q, as Q. Without loss of generality, assume that all 1-Lipschitz
mappings are rooted in some fixed vertex of P .

• Range equal to 1: Clearly, there is exactly one such mapping, sending ev-
erything to zero.

• Range equal to 2: A homomorphic image of a 1-Lipschitz mapping is some
closed interval, as we observed earlier in preliminary chapter. Thus the pos-
sibilities for the homomorphic image of the range 2 are {0, 1} and {−1, 0}.
These cases are symmetric to each other, so let us analyze, without loss of
generality, the case {0, 1}.
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range homomorphic image number of such mappings
1 {0} 1

2 {0, 1} 2p+q−1 − 1
{0, −1} dtto

3
{0, 1, 2} 3p−1 − 2p−1

{−2, −1, 0} dtto
{−1, 0, 1} 3p−1 + 3q − 2p − 2q+1 + 2

Table 4.1: Table for Theorem 4.7.

There are 2p+q−1 possibilities how to assign 0 and 1 to the vertices excluding
the root. However, one of these possibilities is the trivial mapping of the
range 1 (everything mapped to zero). The result is that there are 2p+q−1 −1
mappings with the homomorphic image {0, 1}.

• Range equal to 3: Again we have multiple cases. The cases {0, 1, 2} and
{−2, −1, 0} are symmetric, the third is {−1, 0, 1}.

Let us solve the case {0, 1, 2} first. Clearly, 0 and 2 cannot be in different
parts, otherwise there would exist an edge with endpoints mapped to 0 and
to 2, violating the definition of 1-Lipschitz mapping. That further implies
the impossibility of vq ∈ Q mapped to 2. By a similar argument we get
that only in the case that all vertices of Q are mapped to one we can get
the homomorphic image {0, 1, 2}. We can then place any of the numbers
from {0, 1, 2} on the part P . However, we must exclude assignments with
no 2 on the part P . That yields 3p−1 − 2p−1 possibilities.

The remaining case is {−1, 0, 1}. Again, we see that 1 and −1 cannot be
in different parts. Thus, either the part P has all vertices mapped to zero
and on Q we can choose for every vertex an image from the set {−1, 0, 1},
or vice versa. That gives us 3p−1 + 3q choices from which we must exclude
those that use only some propper subset of {−1, 0, 1}. Finally, we get the
formula

3p−1 + 3q − 2p − 2q+1 + 2

for this case.

Table 4.1 summarize all the cases. The number of 1-Lipschitz mappings of Kp,q

is equal to
3p + 3q + 2p+q − 2p+1 − 2q+1 + 1,

i.e. the sum of the third column of Table 4.1. By straightforward calculations we
get

r1(Kp,q) = 3 − 2p+q · (3p + 3q + 2p+q − 2p+1 − 2q+1 + 1)−1.
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We conclude this section with the observation on the limiting behavior of r1(Kp,q)
as (p + q) → ∞. Clearly, the average range is 3 in limit.

4.7 Stars

Definition 4.3. A star graph Sn is a tree with n vertices; one vertex of degree
n − 1 and n − 1 leaves (vertices of degree one). Or, alternatively, it is a complete
bipartite graph K1,n−1.

Figure 4.3: A star S5 with five vertices and four leaves.

Theorem 4.8. A star Sn satisfies

r1(Sn) = 3 − 2n

3n−1 ,

and
r±1(Sn) = 3 − 22−n.

Proof. We will use the definition of stars as a special case of complete bipartite
graphs. We can then use Theorem 4.7 for the case of 1-Lipschitz mappings with
p := 1 and q := n − 1. The desired claim follows.

We will now prove the second formula. Without loss of generality, we will root
our graph in the central vertex. Observe that all leafs will get either +1 or −1 and
only cases in which range is equal to 2 are the cases of either all leaves mapped
to 1 or to −1. The rest of the cases have the range equal to 3. Totally, there are
2n−1 of strong 1-Lipschitz mappings. That concludes our claim.

4.8 Hypercubes

Hamming cubes, also known as hypercubes or d-dimensional cubes, were exten-
sively studied. We use the definition by Diestel [14].

Definition 4.4. [14] Let d ∈ N and V := {0, 1}d; thus, V is the set of all binary
sequences of length d. The graph on V in which two such sequences form an edge
if and only if they differ in exactly one position is called the d-dimensional cube
or hypercube. Sometimes, we write Qd.



4.9 Paths 35

Galvin [19] proved the conjecture of Kahn [29] that as d goes to infinity, every
hypercube Qd has the average range of strong 1-Lipschitz mapping equal to 6.
This inspired us to present the following open problem.

Problem 4.1. What is the limit of the average range of 1-Lipschitz mapping of
Qd as d goes to infinity?

4.9 Paths

In [61], authors compute several values of r1(Pn) (see Table 4.2) and claim that
no explicit formula for an average range of a path is known. We fill this gap and
present such formula, exploiting the tool used in the random walk analysis called
reflection principle.

n 2 3 4 5 6 7 8 9 10 11 12

r1(Pn) 5
3

19
9

67
27

227
81

751
243

2445
729

7869
2187

25107
6561

78767
19683

250793
59049

786985
177147

Table 4.2: Table of values of r1(Pn) for 2 ≤ n ≤ 12.

We will define auxiliary random variables and we will speak for a while also
in the language of standard random walks which are naturally encoded in 1-
Lipschitz mapping of Pn. We remind the reader Section 2.4 where we discussed
this connection (bijection) in detail.

• M+
n is a random variable corresponding to the maximum non-negative num-

ber in the image of a 1-Lipschitz mapping f .

• M−
n is a random variable corresponding to the minimum non-positive num-

ber in the image of a 1-Lipschitz mapping f .

• Xn denotes the number f(vn), i.e. image of the second endpoint of Pn.

Theorem 4.9. For a path Pn we have

r1(Pn) = 1 + 3−n+1 · 2 ·
n−1∑
k=0

k ·
⌊ n−1−k

2 ⌋∑
i=0

⎛⎝(n − 1
k + i

)(
n − k − i − 1

i

)
+

(
n − 1

k + 1 + i

)(
n − k − i − 2

i

)⎞⎠.

Proof. The average range of path Pn can be formulated as:

r1(Pn) = E[M+
n − M−

n + 1].
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From the symmetry of M+
n and M−

n and from the linearity of expectation, one
gets:

r1(Pn) = E[M+
n + M+

n + 1] = E[M+
n ] + E[M+

n ] + 1 = 2E[M+
n ] + 1.

Set Mn := M+
n . Now let us prove that P (Mn ≥ r) = P (Xn ≥ r)+P (Xn ≥ r+1).

The walks with Mn ≥ r fit into two groups. Either such walks end in s ≥ r or
in s < r. In the second case, we can reflect the section of the path after the first
time we get to r and we get a new walk which now ends in s′ > r. See Figure 4.4
for an illustration. Since this process is invertible and every path that reaches
s ≥ r must have Mn ≥ r, we get:

P (Mn ≥ r) = P (Xn ≥ r) + P (Xn ≥ r + 1).

r

Figure 4.4: An illustration of the reflection principle.

Next we will prove that: P (Mn = r) = P (Xn = r) + P (Xn = r + 1).

P (Mn = r) = P (Mn ≥ r) − P (Mn ≥ r + 1)
= P (Xn ≥ r) + P (Xn ≥ r + 1) − P (Xn ≥ r + 1) − P (Xn ≥ r + 2)
= P (Xn = r) + P (Xn = r + 1).

Now we need to determine P (Xn = r). Recall the aforementioned bijection
between {1, −1, 0}-sequences and walks from Section 2.4.

We have n − 1 edges so if we want to attain some fixed k, we need to sum up
our sequence to k. Thus we need to pick k additional 1’s over −1’s. Summing up
through the all possible values of the number of −1’s we get:

P (Xn = k) = 3−n+1 ·
⌊ n−1−k

2 ⌋∑
i=0

(
n − 1
k + i

)(
n − k − i − 1

i

)
. (4.1)
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And for P (Xn = k + 1) analogously:

P (Xn = k + 1) = 3−n+1 ·
⌊ n−1−k

2 ⌋∑
i=0

(
n − 1

k + 1 + i

)(
n − k − i − 2

i

)
. (4.2)

We are now ready to combine all of this together and we get:

r1(Pn) = 1 + 2 ·
n−1∑
k=0

k ·
(
P (Xn = k) + P (Xn = k + 1)

)
.

We note that
(

a
b

)
is defined as zero if b > a. Substituting P (Xn = k) by (4.1)

and P (Xn = k + 1) by (4.2) we get the desired claim.

Besides the exact formula for the average range of a path, we prove the following
relation between the r1 of paths Pn and Pn+1.

Lemma 4.1. For every n ∈ N, r1(Pn+1) − r1(Pn) ≤ 2/3.

Proof. Let us write v1, v2, . . . , vn for vertices of Pn consecutively and let

E(Pn) := {v1v2, v2v3, . . . , vn−1vn}.

For Pn+1, set V (Pn+1) := V (Pn) ∪ {vn+1} and E(Pn+1) = E(Pn) ∪ {vnvn+1}.

Pick v1 as the root of Pn and Pn+1 as well and consider all 1-Lipschitz mappings
L(Pn) and L(Pn+1). Choose an arbitrary f from L(Pn). Now f(vn) = r for some
r ∈ Z. If we want to extend this f to a 1-Lipschitz mapping f ′ of Pn+1, we see
that we can set f ′(vn+1) to either r, r + 1 or r − 1. Choosing r does not increase
the range. Since we want to do an upper estimate, let us presume that choosing
r + 1 or r − 1 always increases the range. Thus we get:

r(Pn+1) ≤ r(Pn) + 2/3.

Which is only a different form of the desired claim.

This simple upper bound has two corollaries.

Corollary 4.3. For every r, q ∈ N, r > q, r1(Pr) ≤ r1(Pq) + (r − q) · 2
3 holds.

Proof. Use Lemma 4.1 (r − q) times.

Corollary 4.4. For every Pn, r1(Pn) ≤ 2n+1
3 holds.

Proof. Choose r := n and q := 1. Then use the previous lemma and observe that
r1(P1) is equal to one.

We remark that for all paths in general we cannot get a better upper bound by
a constant than in Lemma 4.1 since r1(P2) − r1(P1) = 2

3 .
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4.10 Wired regular trees

Wired regular trees are k-regular trees (every non-leaf vertex has the same degree
k) which are “wired” by adding one isolated vertex which is then connected by
edge with every leaf. See Figure 4.5 for an example.

Benjamini et al. [1] proved that for any k-regular wired tree W on n vertices,
r±1(W ) = O(log n), i.e. the average range of a strong Lipschitz mapping is asymp-
totically logarithmic.

Figure 4.5: An example of a 3-regular tree with wired leaves.

4.11 Trees

The most recent result in the area of graph-indexed random walks is the result
of Wu, Xhu and Zhu from 2016 [61]. The authors tried to attack the LNR and
BHM conjecture and got the following partial result.

Theorem 4.10. [61] For any tree Tn on n vertices holds the following,

1. r1(Tn) ≤ r1(Pn),

2. r±1(Tn) ≤ r±1(Pn).

Their approach is to use a special transformation called KC-transformation,
named by Kelmans [30], which we already mentioned in Section 4.2. Csikvári
[10, 11] proved that this transformation induces a partially ordered set on the
class of all n-vertex trees with the path Pn as the maximum element and the star
Sn as the minimum element. By carefully choosing a right chain in this poset
they prove Theorem 4.10.

We note that by proving Theorem 4.8 and Theorem 4.9 we showed the precise
formulas for the minimum and the maximum possible average range of trees on
n vertices for the case of 1-Lipschitz mappings.
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4.12 Cycles

In this section, more specifically in Theorem 4.12, we will show a formula for the
average range of cycle graphs Cn.

See Table 4.12 for values of r1(Cn) of smaller cycles computed with code from
Appendix A.

n 3 4 5 6 7 8 9 10 11 12

r1(Cn) 13
7

41
19

121
51

365
141

1093
393

3281
1107

9841
3139

29525
8953

88573
25653

265721
73789

Table 4.3: Table of values of r1(Cn) for 3 ≤ n ≤ 12.

First, let us introduce what the trinomial triangle is.

Trinomial triangle

The trinomial triangle is similar to the Pascal (binomial) triangle of binomial
coefficients. One can similarly define trinomial coefficients in a recursive way.

Definition 4.5. (Trinomial triangle and central trinomial coefficient) Trinomial
numbers (coefficients)

(
n
k

)
2

are defined as:
(

0
0

)
2

= 1

(
n + 1

k

)
2

=
(

n

k − 1

)
2

+
(

n

k

)
2

+
(

n

k + 1

)
2

for n ≥ 0,

where
(

n
k

)
2

= 0 for k < −n and k > n.

Central trinomial coefficients are the numbers
(

n
0

)
2
, where n ∈ N0.

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

Figure 4.6: The trinomial triangle with central trinomial coefficients in blue color.

The sequence for central trinomial coefficients in OEIS is A123456 [48]. See
Figure 4.6 for a visualization of the trinomial triangle with highlighted central
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trinomial coefficients. Trinomial coefficients appear quite often in enumerative
combinatorics. Let us show one particular example.

Example. Suppose you have a king on a chessboard (it does not have to be the
usual 8 × 8 one). Each entry of the triangle corresponds to the number of paths
using the minimum number of steps between some cells of the chessboard. See
Figure 4.7.

Useful fact is that central trinomial coefficients satisfy the following identity (for
its derivation, see for example [4]):

(
n

0

)
2

=
n∑

k=0

n(n − 1) · · · (n − 2k + 1)
(k!)2 =

⌊n/2⌋∑
k=0

(
n

2k

)(
2k

k

)
. (4.3)

Figure 4.7: Each number represents the number of ways how to get to that cell
with the minimum number of step with the figure of king. [60]

Motzkin numbers

For the proof of the formula for r1(Cn) we need to define generalized Motzkin
number and paths. We will further write only Motzkin numbers and Motzkin
paths.

Definition 4.6. Consider a lattice path, beginning at (0, 0), ending at (n, k) and
satisfying that y-coordinate of every point is non-negative. Furthermore, every
two consecutive steps (i, a) and (i + 1, b) must satisfy |a − b| ≤ 1. Such lattice
path are called Motzkin paths.

The set of all the possible paths ending in (n, k) is denoted by m(n, k) and
the cardinality of this set is denoted by M(n, k). We call M(n, k) the Motzkin
number.
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For more details we refer to the seminal paper [15], Motzkin numbers M(n, 0)
form the sequence A001006 in OEIS [46]. See Figure 4.8 for an example of a
Motzkin path.

Figure 4.8: A Motzkin path from (0, 0) to (8, 0).

Main theorem

Theorem 4.11. For any cycle graph Cn, n ≥ 3, we have

r1(Cn) = 3n + (−1)n

2 ·
(

n
0

)
2

.

We will prove Theorem 4.12 in series of lemmata that will be put together later.

Lemma 4.2. There is a bijection between 1-Lipschitz mappings of Cn and the
set of lattice paths starting at (0, 0), ending at (n, 0), and satisfying that for every
two consecutive steps (i, a) and (i + 1, b), |a − b| ≤ 1.

Proof. The proof is analogous to other bijections we made between 1-Lipschitz
mappings of some type and some class of lattice walks. Take the sequence

v1, v2, . . . , vn, v1

of the vertices of Cn such that v1 is the root and the vertices appear consecutively
on the cycle precisely as in this sequence. For every 1-Lipschitz mapping f of Cn

we can define another sequence

(v1, f(v1)), (v2, f(v2)), . . . , (vn, f(vn)), (v1, f(v1)).

The lemma follows easily.

Let us prove the formula for |L(Cn)|.

Theorem 4.12. For any Cn, n ≥ 3, |L(Cn)| =
(

n
0

)
2
.
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Proof. We will encode all 1-Lipschitz mappings of the cycle into the sequences
{−1, 0, 1}n. Consider the lattice walks constructed in Lemma 4.2. For each
sequence

(v1, f(v1)), (v2, f(v2)), . . . , (vn, f(vn)), (v1, f(v1)),
one can define the new sequence

f(v2) − f(v1), f(v3) − f(v2), . . . , f(v1) − f(vn).

We know that these sequences must add up to 0. Thus for any total number
k of ones in this sequence we must have k times −1 in this sequence as well.
Furthermore, we have k ≤ ⌊n/2⌋.

Summing over all possible k’s we first pick 2k edges which have either +1 or −1.
Then from these 2k edges, we choose k edges for placing 1. The rest of n − 2k
edges gets 0’s and the rest of 2k − k = k edges gets (−1)’s. Formally:

⌊n/2⌋∑
k=0

(
n

2k

)(
2k

k

)
.

This coincides with identity (4.3) if we take into account that
(

a
b

)
is defined to

be equal to zero if b > a.

Definition 4.7. We denote by L(Cn, −d) the set of 1-Lipschitz mappings f of
Cn satisfying

min
v∈V (Cn)

f(v) = −d.

In other words, L(Cn, −d) denotes the set of all 1-Lipschitz mappings of Cn with
−d as the minimum value in their homomorphic images.

Another ingredient we need is the following theorem of Van Leeuwen.

Theorem 4.13. [56] Within the class of walks on Z starting at 0 and with steps
advancing by +1, 0 or −1, there is a bijection, conserving both the length of the
walk and the number of steps 0, between on one hand the walks that end in 0,
and on the other hand the walks that do not visit negative numbers. The bijection
maps walks ending at 0 and whose minimal number visited is −d, to walks ending
at 2d, and is realized by reversing the direction of the d down-steps that first reach
respectively the numbers −1, −2, . . . , −d.

Now we need to show a bijection between L(Cn, −d) and the set m(n, 2d).

Lemma 4.3. There exist a bijection from the set of Motzkin paths m(n, 2d) to
the set L(Cn, −d).

Proof. The existence of such sequence follows straightforwardly from combining
Theorem 4.13 and Lemma 4.2.

For technical convenience, we will define the irregular trinomial triangle and ir-
regular trinomial coefficients; see the sequence A027907 in OEIS [47]. See Figure
4.4, depicting a part of the irregular trinomial triangle.
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n/k 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1 1 1
2 1 2 3 2 1
3 1 3 6 7 6 3 1
4 1 4 10 16 19 16 10 4 1
5 1 5 15 30 45 51 45 30 15 5 1
6 1 6 21 50 90 126 141 126 90 50 21 6 1

Table 4.4: A part of the irregular trinomial triangle. The entries of the table are
numbers T ∗(n, k).

Definition 4.8. The irregular trinomial coefficients are defined as

T ∗(n, k) =
(

n

k + n

)
2
.

The following lemmata, showing the relation of Motzkin paths and irregular tri-
nomial coefficients will be crucial for the proof of the main theorem.

Remark 4.1. For every n, k ∈ Z the following identity holds:

T ∗(n, k) = T ∗(n − 1, k) + T ∗(n − 1, k − 1) + T ∗(n − 1, k − 2).

Proof. This is easily verified from the definition of the trinomial coefficients.

Lemma 4.4. The following identity holds for every n, k ∈ N0, k ≤ n,

M(n, k) = T ∗(n, n − k) − T ∗(n, n − k − 2). (4.4)

Proof. We prove this theorem by induction on n. For n = 0, 1, the identity holds.

We divide the rest of the proof into two cases (the first case is needed because in
case of n = k, we would not be able to use induction hypothesis):

Case 1: n = k. Then 1 = M(n, n) = T ∗(n, 0) + T ∗(n, −2) = 1 + 0, so this case is
done.

Case 2: n > k. Now suppose the identity holds for all numbers up to n − 1. By
the definition of the generalized Motzkin numbers we have

M(n, k) = M(n − 1, k) + M(n − 1, k − 1) + M(n − 1, k + 1). (4.5)

And by induction hypothesis we can write

M(n, k) = T ∗(n − 1, n − k) − T ∗(n − 1, n − k − 2)
+ T ∗(n − 1, n − k − 1) − T ∗(n − 1, n − k − 3)
+ T ∗(n − 1, n − k − 2) − T ∗(n − 1, n − k − 4).
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From Remark 4.1 on the recurrence relation of irregular coefficients we get that
the even summands and odd summands are equal to T ∗(n, n−k) and −T ∗(n, n−
k − 2), respectively. Our claim follows.

Now we need the last lemma, concerning the sum of irregular coefficients.

Lemma 4.5. For every even n ∈ N0 holds:
n∑

k=0
T ∗(n, 2k) = (3n + 1)/2, (4.6)

and for odd n ∈ N0 holds:
n∑

k=1
T ∗(n, 2k − 1) = (3n − 1)/2. (4.7)

Proof. We will prove these identities by induction. For n = 0, 1, the respective
identities hold. Now assume that both identities hold for all n′ < n. By parity of
n we distinguish two cases. We will prove the lemma for the case of n even. Odd
case is very similar.

n∑
k=0

T ∗(n, 2k) =
n−1∑
k=1

T ∗(n, 2k − 1) + 2 ·
n−1∑
k=0

T ∗(n, 2k) (4.8)

= 2 · 3n−1 −
n−1∑
k=1

T ∗(n, 2k − 1) (4.9)

= 2 · 3n−1 − (3n−1 − 1)/2 (4.10)
= (3n + 1)/2. (4.11)

• The first equation follows from Remark 4.1.

• The second equation follows from the fact that the sum of the n-th row of
T ∗ is equal to 3n. That can be easily proved by induction.

• The third equation follows from the induction hypothesis.

• The fourth equation is straightforward calculation.

We can finally prove the main theorem of this section and one of the main results
of this thesis.

Proof of Theorem 4.12. We will first show the following identity for every n ≥ 3.

⌊n/2⌋∑
k=0

(2k+1)(T ∗(n, n−2k)−T ∗(n−1, n−2k−2)) =

⎧⎨⎩
∑n

k=0 T ∗(n, 2k), n even∑n
k=1 T ∗(n, 2k − 1), n odd

This identity follows from the straightforward calculations and from the observa-
tion that T ∗(n, n − k) = T ∗(n, n + k) for every n, k ∈ Z.
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For brevity, we will do the following calculation for n odd. The proof for n even
is different in the last two equations but the only difference is the use of the
different parts of lemma and identity 4.12, depending on the parity.

r1(Cn) · |L(Cn)| =
⌊n/2⌋∑
k=0

(2k + 1) · M(n, 2k)

(by Lemma 4.3 and linearity of expectation)

=
⌊n/2⌋∑
k=0

(2k + 1) ·
(
T ∗(n, n − 2k) − T ∗(n − 1, n − 2k − 2)

)
(by Lemma 4.4)

=
n∑

k=1
T ∗(n, 2k − 1)

= 3n − 1
2 . (by Lemma 4.5)

Together with Theorem 4.12 taken into account we conclude the formula for
r1(Cn).

We present the following corollary regarding the asymptotics of r1(Cn).

Corollary 4.5. For every n ≥ 3, r1(Cn) ∼ 2
√

π
3 n holds.

Proof. The asymptotics of central trinomial coefficients is known, see e.g. [17, p.
588]. Central trinomial coefficients satisfy

(
n

0

)
2

∼ 3n+1/2

2
√

πn
.

The sign ∼ denotes the relation of two sequences. Two sequences an and bn are
in relation an ∼ bn if limn→∞

an

bn
= 1. Using Theorem 4.12 and the mentioned

asymptotics, we get: r1(Cn) ∼ 2
√

π
3 n.

4.13 Pseudotrees

Definition 4.9. We call a graph unicyclic if it contains exactly one cycle.

Definition 4.10. We call a graph pseudotree if it is a tree or a unicyclic graph.
Equivalently, pseudotrees are graphs with at most one cycle.
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Counting the number of 1-Lipschitz mappings

Lemma 4.6. The number of 1-Lipschitz mappings of unicyclic graphs with order
n and cycle size c, c ≤ n, is equal to(

c

0

)
2

· 3n−c.

Proof. Let us denote our unicyclic graph of order n and cycle size c by G and the
subgraph induced by the vertices on its cycle by C. We use Theorem 4.12 to get
the number of 1-Lipschitz mappings of the subgraph C. Now let us fix some f ,
a 1-Lipschitz mapping of C.

By deleting all the edges of the cycle C we get a forest T of trees T1, . . . , Tc. In
this forest, exactly one vertex in each tree Ti has an image under the mapping
f . Thus we obtain 3|V (Ti)|−1 different 1-Lipschitz mappings for each of the tree
in T . Because we can choose all these mapping independently on each other, we
obtain, summing over all possible mappings f , the following identity.

L1(G) =
(

c

0

)
2

· 3
∑c

i=1 |V (Ti)|−1 =
(

c

0

)
2

· 3n−c.

Observe that Lemma 4.6 implies that two same-order unicyclic graphs with the
same-length cycle have the same number of Lipschitz mappings.

KC-transformation

In this section it will be useful for us to give a name to one special subset of
unicyclic graphs. See Figure 4.9 for an example.

Definition 4.11. A corolla graph is a unicyclic graph obtained by taking a cycle
graph and joining some path graphs to it by identifying their endpoints with some
vertex of that cycle. Every path is joined to exactly one vertex of the cycle. And
every vertex of the cycle has at most one path attached.

We note that cycles form a subset of corolla graphs.

Now we are ready to introduce the generalized KC-transformation and the main
result of [61].

Definition 4.12 (Generalized KC-transformation). Take a connected graph G

and pick {a, b} ∈
(

V (G)
2

)
. Let Va;b(G) denote the set of those vertices which cannot

reach b without passing by a in G. If it is satisfied the following condition that

min(|Va;b(G)|, |Vb;a(G)|) > 1,

then we can get a new graph Ga→b by modifying G in the following way.
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Figure 4.9: An example of corolla graph.

Remove the edges bb1, . . . , bbt, where b1, . . . , bt are all the neighbors of b in Vb;a(G)
and add new edges ab1, . . . , abt.

Definition 4.13. Let G be a connected graph. Take two different cut vertices a
and b of G. We write V (G; a, b) for the set(

V (G) \ (Va;b(G) ∪ Vb;a(G))
)

∪ {a, b}.

Theorem 4.14. [61] Let G be a connected graph. Take two different cut vertices
a and b of G. Let H be the subgraph of G induced by V (G; a, b). Assume that H
has an automorphism σ such that σ(a) = b and σ(b) = a. Then r1(G) ≥ r1(Ga→b).

It is worth noting that one of the corollaries of Theorem 4.14 is the aforementioned
Theorem 4.10. We will use Theorem 4.14 to show that for every unicyclic graph
that is not a corolla graph there exists some corolla graph of the same order and
cycle size that has higher or equal r1.

Theorem 4.15. For every unicyclic graph U on n vertices that is not a corolla
graph there exist a corolla graph R on n vertices such that r1(R) ≥ r1(U).

Proof. Take an inclusion-wise maximal tree T rooted in r such that r is a vertex
of the cycle of U and T is not isomorphic to a path graph. Furthermore, T must
satisfy V (U) ∩ V (T ) = {r} . Since U is not a corolla graph, such tree must exist.

Consider a sequence T1, T2, . . . , Ts with T1 = T and Ts being a path graph such
that for every i ∈ {2, . . . , s}, r1(Ti−1) ≤ r1(Ti) holds. The existence of such
sequence directly follows from Theorem 4.14.

We can easily extend this argument and define the sequence U1, U2, . . . , Us such
that Ui is the graph in which T is replaced by Ti. Clearly, r1(Ui−1) ≤ r1(Ui).

We can repeatedly find another tree T ′ in Us, satisfying the same conditions
as T (except that the root has to be of different of course) in U and proceed
similarly until we cannot find some next T ′. We get a corolla graph and our
claim follows.

We suspect that this theorem might be the first step to prove LNR and BHM
conjectures for the class of pseudotrees.





Chapter 5

Extending partial Lipschitz
mappings

While studying Lipschitz mappings we came up with an algorithmic problem
which falls into widely studied paradigm of a partial structure extension. We
give three examples of such problems to show a broader context.

5.1 Related problems

The following problems are briefly introduced together with some surveys and
important references.

Precoloring extension. The following problem was introduced in the series
of papers [3, 26, 27].

Problem: Precoloring Extension
Input: An integer k ≥ 2, a graph G = (V, E) with |V | ≥ k, a

vertex subset W ⊆ V , and a proper k-coloring of GW .
Question: Can this k-coloring be extended to a proper k-coloring of

the whole graph G?

To current date, more than twenty papers on the precoloring extension problem
were published. No up-to-date survey is available, but Daniel Marx gathers an
unofficial list of relevant papers on his webpage:

http://www.cs.bme.hu/˜dmarx/prext.php.

The partial representation extension problem. The reader surely knows
a planar drawing of graph. A particular drawing of the underlying graph can
be seen as one of the possible representations. Studying the representations of
various graph classes is a wide area of graph theory and we refer reader to the
comprehensive monograph of Spinrad [54]. One can ask for a given graph G and

http://www.cs.bme.hu/~dmarx/prext.php
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some partial representation R′ of G if it can be extended to some full represen-
tation R of G such that R′ ⊆ R. This problem was studied for various graph
classes, for example intersection graph classes [32, 33, 31] or planar graphs [8].
For a presentation of state of the art in partial representation extension problems,
consult the PhD thesis of Klav́ık [34].

Homogeneous structures. Macpherson in his survey [42] defines the homoge-
neous structure as a countable first order structure M over a relational language
(usually assumed finite) such that any isomorphism between finite substructures
of M extends to an automorphism of M .

Homogeneity of structures is widely studied question so for brevity, we refer
interested reader to the aforementioned survey of Macpherson [42] or to Lachlan’s
one [36].

5.2 Definition of our problem

We will define two similar problems in the setting of integer homomorphisms:

Problem: Partial M -Lipschitz mapping extension - M-LipExt
Input: A connected graph G = (V, E), a subset V ′ ⊆ V with a

function f ′ : V ′ → Z.
Question: Does there exist an M -Lipschitz mapping f of G such

that f ′ ⊆ f?

Problem: Partial strong M -Lipschitz mapping extension - Strong
M-LipExt

Input: A connected bipartite graph G = (V, E), a subset V ′ ⊆ V
with a function f ′ : V ′ → Z.

Question: Does there exist a strong M -Lipschitz mapping f of G
such that f ′ ⊆ f?

If the answer for a given instance of M-LipExt (or Strong M-LipExt) is
YES, we say that f ′ is extendable for the given G and the given type of problem.
We often say only that f ′ is extendable when it is clear from the context which
problem we are trying to solve.

See Figure 5.1 for an initial example. Clearly, this mapping cannot be extended
to a 1-Lipschitz mapping but it can be extended to an L-Lipschitz mapping for
every L ≥ 2.
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0

1

5

Figure 5.1: An example of a partial mapping with three prescribed vertices.

5.3 Partial strong M-Lipschitz mappings

We will show that Strong M-LipExt can be solved by a special linear pro-
gram (LP) with the property that all its feasible solution are integral and a
feasible solution exists if and only if f ′ is extendable.

Theorem 5.1. Strong M-LipExt is solvable in polynomial time.

Proof. We prove the theorem by constructing a linear program for the given
instance with polynomially many inequalities of polynomial size. We will further
show that we are interested in feasible solutions only and that if a feasible solution
exists, it is always integral. As we know, LP can be solved in polynomial time
with respect to the size of the program, as is explained e.g. in [43]. We note
that it might be possible to simplify the following theorem by employing total
unimodularity but we were unable to do that.

Step 1: Checking the mapping f ′.

For the images of mapping f ′, we can easily check the necessary conditions on
the difference of their images in quadratic time.

Note that if V ′ = V (G) then it suffices to check the differences on every edge,
check that at least one vertex maps to zero, and we are done.

So assume that V (G) \ V ′ is nonempty and for all u, v ∈ V ′, if uv ∈ E(G) then
|f ′(u) − f ′(v)| = M .

Step 2: Creating the LP.

We denote by NG(v) the set of vertices adjacent to v in G. We have the variables
yv for every vertex v ∈ V (G)\V ′. We need feasible solutions only, so the objective
function is of no interest to us.

minimize 0
subject to |f ′(i) − yj| = M ∀i, j : i ∈ V ′, j ∈ NG(i) ∩ (V (G) \ V ′)

|yk − yl| = M ∀k, l ∈ V (G) \ V ′, k ̸= l
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However this is not a linear program yet. Absolute values violate the definition
of LP. However, these can be changed to linear inequalities by the standard trick
of adding two additional variables for each of inequalities (see for example [43]).

Step 3: Enforcing the existence of a root.

We still have a problem. We need to ensure that at least one vertex is mapped to
zero, i.e. that we have some root. If there is no such vertex in V ′, i.e. f ′−1(0) = ∅,
then, unfortunately, we do not have a strong Lipschitz mapping yet.

However, this can be fixed rather easily. We iterate over the vertices r′ ∈ V (G)\V ′

and extend f ′ in the following way:

f ′ := f ′ ∪ (r′, 0).

Then we continue building our LP as previously. If there is no feasible solution,
remove (r′, 0) from f ′ and try to add some other vertex r′′ ∈ V (G) \ V .

Step 4: Complexity.

We will compute our LP program at most O(V (G)) times to ensure that we have
G rooted. Every LP program consists of polynomially many inequalities, because
we had one O(E(G)) inequalities with size bounded by a constant and by striping
the absolute values away, we increased the number of inequalities only by some
constant factor.

Thus the size of our program is polynomial in V (G) and E(G) and we indeed
have a polynomial running time of our algorithm due to the polynomiality of
linear programming.

Step 5: Correctness.

We claim that every output of our program is integral. Every f ′′ for which we
build our LP has some vertex mapped to zero. Inequalities ensure that neigh-
boring vertices get values either +M or −M ; an integer value. We can proceed
inductively and integrality follows.

To finish, we need to prove the following. For a given instance of Strong M-
LipExt, our algorithm outputs a complete M -Lipschitz mapping f , such that
f ′ ⊆ f , if and only if f ′ is extendable.

Every output of our program has to satisfy that some vertex from V (G) is mapped
to zero and it also has to satisfy that for every uv ∈ E(G), |f(u) − f(v)| = M .
Thus it an M -Lipschitz mapping of G. That finishes the proof of the if part.

If for every assignment of integers to the program variables there is no feasible
solution, then some of the inequalities must be violated. Inequalities of our LP
are precisely the conditions from the definition of strong M -Lipschitz mapping
and therefore f ′ is not extendable.
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5.4 Partial M-Lipschitz mappings

A simple generalization of the previous algorithm does not work for M -Lipschitz
mappings, or at least we were unable to prove it. However, we were able to find
a polynomial algorithm in the case that the input graph is a tree. We present
Algorithm 1 for solving M-ParExt on trees.

Algorithm 1 Wave algorithm for M-ParExt on trees.
Require: A tree graph G, a vertex set V ′ ⊆ V (G), and a partial M -Lipschitz

mapping f ′ : V ′ → Z.
1: Check if |f ′(v) − f ′(u)| ≤ M for all u, v ∈ V ′. If not, f ′ cannot be extended.
2: Set P (v) := [f ′(v), f ′(v)] for every v ∈ V ′.
3: Set P (v) := [−∞, ∞] for every v ∈ V (G) \ V ′.
4: for every v′ in V ′ do
5: Start the DFS on G from v′.
6: In DFS, whenever you process vertex v with P (v) = [P (v), P (v)], do the

following:
7: for every w ∈ NG(v) do
8: P (w) := [P (v) − M, P (v) + M ] ∩ P (w).
9: end for

10: end for

11: Find r ∈ V (G) such that 0 ∈ P (v).
12: if no such r then
13: return The mapping f ′ cannot be extended.
14: end if
15: Set f(r) := 0.
16: if P (v) = ∅ for some v ∈ V (G) then
17: return The mapping f ′ cannot be extended.
18: end if

19: Launch the BFS from r and for every visited vertex v ̸= r, set f(v) so that
for parent vertex p, f(v) ∈ [f(p) − M, f(p) + M ] holds.

20: if the previous BFS could not be completed then
21: return The mapping f ′ cannot be extended.
22: end if

23: return The mapping f : V (G) → Z.

We will now prove the correctness and complexity of this algorithm.

Lemma 5.1 (Correctness). Algorithm 1 is correct. It finds an M-Lipschitz map-
ping f that extends f ′ if and only if f ′ is extendable.

Proof. We will write V for V (G) and we will denote the iterations of code between
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the lines 4 and 10 DFS phases and the code executed between the lines 19 and
22 the BFS phase.

Suppose that the algorithm returns a mapping f . We claim that it is an M -
Lipschitz mapping extending f ′. Obviously, there exists a vertex mapped to zero
under f – the vertex r. Furthermore, the condition

|f(u) − f(v)| ≤ M, ∀uv ∈ E(G)

holds, otherwise the algorithm would stop on Line 19. Finally, we observe that for
every v′ ∈ V ′, interval P (v′) is equal to [f ′(v′), f ′(v′)] at the end of the algorithm
so f extends f ′. That finishes the only if part of the equivalence.

Now let us prove the if part. We will prove that if the algorithm does not find
an M -Lipschitz mapping f extending f ′, then f ′ is not extendable.

Algorithm can stop and fail to find such f exactly from the following reasons:

1. Algorithm could not find a candidate for the root. (Line 13)

If at the end of the algorithm for every vertex v ∈ V , 0 ̸∈ P (v), then for
every v ∈ V exists some vertex v′ ∈ V ′ such that |f(v′)| > M · d(v, v′).
Clearly, f ′ is not extendable.

2. There exists v ∈ V such that P (v) = ∅. (Line 17)

If such v exists, then it implies that there exist two vertices c, d ∈ V ′ such
that the intersection I = [f ′(c) − M · (c, v), f ′(c) + M · (c, v)] ∩ [f ′(d) −
M · (d, v), f ′(d) + M · (d, v)] is empty. However, I is exactly the set of all
possible images that we can assign to v if c is set to f ′(c) and d is set to
f ′(d). We conclude that f ′ is not extendable.

3. Algorithm could not complete the BFS phase. (Line 21)

We will actually show that this case is not possible since the only possibility
how 3) can happen is that some final interval P (v) for some v ∈ V is empty
and the algorithm will halt even before the BFS phase can start (more
precisely, the algorithm will stop at line 17).

Assume that all intervals P (v) are nonempty. Consider an edge xy ∈ E(G).
Assume further without loss of generality that in the last DFS phase (line
6), x was processed before y. Consider intervals P ′(x), P ′(y) defined as the
intervals P (x), P (y), respectively, before the last DFS phase. Clearly, when
x was processed in the last DFS phase, P ′(y) ∩ [P ′(x) − M, P ′(x) + M ] was
set to a nonempty interval and therefore,

∀i ∈ P (x), ∃j ∈ P (y) : |i − j| ≤ M.

And conversely,

∀j ∈ P (y), ∃i ∈ P (x) : |i − j| ≤ M.

We conclude that the case 3) cannot occur.
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This proves the if part and we are done.

Lemma 5.2 (Complexity). Algorithm 1 is quadratic, i.e. its time complexity is
O(n2), given that n is the number of vertices of the input graph.

Proof. We are running O(|V (G)|) times DFS on G plus we perform a constant
number of linear traversals of data structure for G. That concludes that the
algorithm runs in quadratic time.

From these two lemmas we conclude the following theorem.

Theorem 5.2. M-ParExt for trees is solvable in quadratic time.

Of course, the natural open problem is to ask whether it is possible to find a
polynomial algorithm for M-ParExt on general graphs. We strongly suspect
that M-ParExt is indeed polynomial-time solvable for general graphs.

Problem 5.1. Decide the complexity of M-ParExt on general graphs.





Chapter 6

Conclusion

We presented a survey of results in the area of graph-indexed random walks, pre-
sented similar problems, showed new results and listed a couple of open problems.

We would like to summarize our own main results.

• Exact formulas for the average range of some classes of graphs. Namely,

– complete graphs (Theorem 4.5),

– complete bipartite graphs (Theorem 4.7) and stars (Theorem 4.8),

– paths (Theorem 4.9),

– cycles (Theorem 4.12).

For all these cases except for paths we also showed the limiting behavior.

• We prove an exact formula for maximum range in Chapter 3.

• Chapter 5 introduces the problem of partial Lipschitz mapping extension.
We show that the problem is:

– polynomial for all graphs if we are extending strong M -Lipschitz map-
pings,

– polynomial for trees if we are extending M -Lipschitz mappings.

6.1 Open problems

The area of graph-indexed random walks is full of unsolved and, by my humble
opinion, both interesting and difficult problems. To stimulate research in the
area, we conclude this thesis with a list of open problems. Together with the
open problems mentioned in the previous text they make a modest collection of
problems to solve. Some of these problems are work in progress.

We quickly remind the open problems that were already mentioned:
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• Deciding if Conjecture 4.1 and Conjecture 4.2 are true or false. Do these
conjectures hold when restricted to some superset of trees; for example pseu-
dotrees or even cacti graphs? A cactus graph is a graph with the property
that every edge belongs to at most one cycle.

• Problem 4.1 on the limiting behavior of the average range of 1-Lipschitz
mappings of hypercubes.

• Finding a polynomial-time algorithm for M-ParExt on general graphs.

The following problems were not mentioned in the previous text. For the first
one, we need to define the average endomorphism range. By End(G) we denote
the set of all endomorphisms of G.

Definition 6.1. The average endomorphism range of a connected graph G is a
function r End : G → R, such that

r End(G) :=
∑

σ∈End(G) r(σ)
|End(G)| .

Now we can state the problem, originally posed in [61].

Problem 6.1. Decide if the following holds for all n ∈ N, and connected G ∈ Gn,

r End(Pn) ≥ r End(G) ≥ r End(Sn).

As we saw in Section 4.2, Csikvári and Lin already studied this question for
the number of endomorphisms and they proved [12, Theorem 1.8] that for every
G ∈ Gn, the inequality |End(Pn)| ≥ |End(G)| ≥ |End(Sn)| holds.

The second problem is connected to Section 4.3.

Problem 6.2. Find a characterization of graphs G = (V, E) such that for every
edge e ∈ E, and graph G \ e, holds that

r1(G) ≤ rl(G \ e).

And finally, the following problem settled in affirmative would imply Conjecture
4.1 and 4.2 by taking Theorem 4.10 into account.

Problem 6.3. Is it true that for every connected graph G and its spanning tree
T

r1(T ) ≥ r1(G) and r±1(T ) ≥ r±1(G)?

On the other hand, if Problem 6.3 does not hold, conjectures might still be true.
As this problem seems to be quite difficult, at least by my opinion, it may be
convenient to try to prove it for some restricted class of graphs first.
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Code listings

To experimentally prove Conjecture 4.2 and Conjecture 4.1 for small-order graphs
we have written a tester program in C++. All the following code can be down-
loaded, together with further instructions, from

http://iuuk.mff.cuni.cz/˜bok/master_thesis/.

All the input graphs were generated using nauty and Traces by McKay and
Piperno [44].

1 #inc lude <iostream>
2 #inc lude <vector>
3 #inc lude <s t d l i b . h>
4

5 us ing namespace std ;
6

7 i n t number = 0 , rangesum = 0 , onesidesum = 0 , v e r t i c e s , edges ;
8 vector<int > d i s t r i b u t i o n ;
9 vector<int > sumwithzerosteps ;

10

11 vector< vector<int > > graph ;
12

13 void t e s t ( i n t remains , vector<bool> ismapped , vector<int > &mapping ,
vector<int > l a s t , i n t rmin , i n t rmax , i n t next , i n t nextimage ,
i n t zeroes , bool s t rong )

14 {
15 bool i s n e x t s e t = f a l s e ;
16

17 f o r ( i n t i =0; i<graph [ next ] . s i z e ( ) ; ++i )
18 i f ( ismapped [ graph [ next ] [ i ] ] && abs ( mapping [ graph [ next ] [ i ] ] −

nextimage ) > 1)
19 re turn ;
20

21 ismapped [ next ] = true ;
22 mapping [ next ] = nextimage ;
23 rmin = min( rmin , nextimage ) ;
24 rmax = max(rmax , nextimage ) ;
25 l a s t . push back ( next ) ;
26

http://iuuk.mff.cuni.cz/~bok/master_thesis/
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27 i f ( ! i s n e x t s e t )
28 f o r ( i n t i=l a s t . s i z e ( ) −1; i >=0; −− i )
29 i f ( ismapped [ i ] )
30 f o r ( i n t j =0; j<graph [ i ] . s i z e ( ) ; ++j )
31 i f ( ! ismapped [ graph [ i ] [ j ] ] && ! i s n e x t s e t )
32 {
33 next = graph [ i ] [ j ] ;
34 nextimage = mapping [ i ] ;
35 i s n e x t s e t = true ;
36 }
37

38 i f ( remains == 1)
39 {
40 rangesum += rmax−rmin+1;
41 onesidesum += rmax ;
42 ++d i s t r i b u t i o n [ rmax ] ;
43 ++number ;
44 sumwithzerosteps [ z e r o e s ] += rmax−rmin+1;
45 }
46 e l s e
47 {
48 t e s t ( remains −1, ismapped , mapping , l a s t , rmin , rmax , next , nextimage −1,

zeroes , s t rong ) ;
49 t e s t ( remains −1, ismapped , mapping , l a s t , rmin , rmax , next , nextimage +1,

zeroes , s t rong ) ;
50 i f ( ! s t rong )
51 t e s t ( remains −1, ismapped , mapping , l a s t , rmin , rmax , next , nextimage ,

z e r o e s +1, s t rong ) ;
52 }
53 } ;
54

55 i n t main ( )
56 {
57 i n t a , b ;
58 vector<int > empty ;
59

60 c in >> v e r t i c e s >> edges ;
61

62 vector<bool> ismapped ( v e r t i c e s , f a l s e ) ;
63 vector<int > mapping ( v e r t i c e s , 0 ) ;
64 d i s t r i b u t i o n . r e s i z e ( v e r t i c e s +1 ,0) ;
65 sumwithzerosteps . r e s i z e ( v e r t i c e s +1 ,0) ;
66

67 f o r ( i n t i =0; i<v e r t i c e s ; ++i )
68 graph . push back ( empty ) ;
69

70 f o r ( i n t i =1; i<=edges ; ++i )
71 {
72 c in >> a >> b ;
73 graph [ a ] . push back (b) ;
74 graph [ b ] . push back ( a ) ;
75 }
76

77 // the l a s t parameter determines i f the mappings w i l l be s t rong or
not
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78 t e s t ( v e r t i c e s , ismapped , mapping , empty , 0 , 0 , 0 , 0 , 0 , t rue ) ;
79

80 cout << ”The average range in f r a c t i o n form : ” << rangesum << ” /
” << number << endl ;

81 cout << ”The average range : ” << rangesum ∗1 .0/ number << endl ;
82 cout << ” D i s t r i b u t i o n : ” << endl ;
83 f o r ( i n t i =0; i<=v e r t i c e s ; ++i )
84 cout << i << ”\ t ” ;
85 cout << endl ;
86 f o r ( i n t i =0; i<=v e r t i c e s ; ++i )
87 cout << d i s t r i b u t i o n [ i ] << ”\ t ” ;
88 cout << endl ;
89

90 re turn 0 ;
91 } ;

Listing A.1: Main tester tester.cpp
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[10] Csikvári, P. On a poset of trees. Combinatorica 30, 2 (2010), 125–137.



64 BIBLIOGRAPHY
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