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Abstract 

This work sums up current knowledge of so-called homeostatic proliferation-induced 

memory CD8+ T cells (HP) and virtual memory CD8+ T cells. These populations do not represent 

true immunological memory because they are generated in the absence of a cognate foreign 

antigen. However, both HP-memory and virtual memory T cells share some phenotypical and 

functional features with true memory T cells, including the ability provide rapid immune 

response during infection. HP-memory T cells are generated via homeostatic proliferation 

during experimentally induced lymphopenia. Virtual memory T cells might arise via 

homeostatic proliferation during neonatal or age-related periods of lymphopenia, however, 

they can be generated also in healthy lymphoreplete hosts. Based on detail analysis of these 

two populations, I concluded that HP-memory CD8+ T cells and virtual memory CD8+ T cells 

most likely use identical differentiation program and represent the same T cell population.  

Keywords: homeostatic proliferation, lymphopenia, CD8+ T cells, immunological memory, 

virtual memory cells 
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Abstrakt 

Tato práce shrnuje dosavadní poznatky zabývající se homeostatickou proliferací 

vzniklými paměťovými buňkami (HP) a virtuálními paměťovými CD8+ T buňkami. Tyto dvě 

buněčné populace nepředstavují pravou imunologickou paměť, protože se tvoří 

v nepřítomnosti cizího antigenu. Nicméně, HP-paměťové i virtuální paměťové T buňky sdílejí 

některé fenotypické a funkční vlastnosti s pravými paměťovými buňkami, včetně schopnosti 

poskytnout rychlou imunitní odpověď během infekce. HP-paměťové buňky vznikají 

homeostatickou proliferací během lymfopenie. Virtuální paměťové buňky mohou vznikat také 

homeostatickou proliferací během neonatální nebo stařecké lymfopenie, ale objevují se i v 

jedincích, kteří mají normální počet lymfocytů v krvi. Na základě podrobné analýzy těchto dvou 

buněčných populací jsem došla k závěru, že HP-paměťové buňky a virtuální paměťové buňky 

pravděpodobně využívají stejný diferenciační program a představují stejnou populaci buněk.  

Klíčová slova: homeostatická proliferace, lymfopenie, CD8+ T buňky, imunologická paměť, 

virtuální paměťové buňky  
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Abbreviations 

B6 
 

C57BL6 mice 

GF 
 

germ free 

HP 
 

homeostatic proliferation 

IFN-𝛾 interferon gamma 

LMCV lymphocytic choriomeningitis virus  

Lm.OVA Ovalbumin expressing Listeria monocytogenes 

LN Lymph nodes 

MHC Major histocompatibility complex 

OVA Ovalbumin 

SPF specific pathogen free 

TCM central memory T cells 

TCR T-cell receptor 

TM true memory 

VM virtual memory 

VSV vesicular stomatitis virus 
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1. Introduction 

T cells play a major role in adaptive immune responses. Conventional T cells use their 

T cell antigen receptor (TCR) to recognize antigens, i.e., peptides derived from proteins of 

invading pathogens, which are presented by antigen presenting cells. The hallmark of the 

immune protection by T cells is that each T-cell clone expresses a unique TCR and recognizes 

a different set of antigens. Conventional T cells express either CD4 or CD8 invariant 

coreceptor. CD4+ T cells recognize antigens presented by MHCII (major histocompatibility 

complex), while CD8+ T cells recognize antigens presented by MHCI. 

After a T cell matures in the thymus, it migrates to peripheral lymphoid tissues as a 

naïve (i.e., antigen inexperienced) cell. Upon infection, a few T cell clones recognize antigens 

derived from the pathogen via their TCRs. Activation of the TCR signaling pathway induces 

rapid proliferation and differentiation into short-lived effector T cells and memory T cells 

which facilitate long-term protection against the same pathogen. 

The memory T cells can be distinguished from naive T cells using specific surface 

markers such as CD44, which is expressed in memory, but not naïve mouse T cells. Moreover, 

memory T cells exhibit specific antigenic responses that differentiate them from naive T cells. 

For instance, memory T cells, but not naïve T cells, rapidly secrete interferon gamma (IFN-𝛾) 

after TCR stimulation (1). Interestingly, antigen inexperienced CD8+ T cells with apparent 

memory phenotype have been described. Antigen-independent formation of memory-

phenotype CD8+ T cells can be induced by the lymphopenic environment. Because the 

differentiation into CD8+ memory phenotype T cells in lymphopenia is coupled with 

homeostatic proliferation (1), such memory-phenotype T cells were named homeostatic 

proliferation-induced (HP) memory T cells. Recently, antigen inexperienced memory-

phenotype T cells were identified in normal lymphoreplete mice (2). These T cells were called 

virtual memory (VM) T cells (3). 

In this thesis, I will review current knowledge of HP memory and VM CD8+ T cells. The 

main aim is to find out whether or not HP memory and VM T cells represent the same T cells 

population (i.e., they use identical differentiation program). 
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2. Memory CD8+ T cells 

Once naïve CD8+ T cells recognize invading pathogen-derived peptide MHC I 

complexes, CD8+ T cells undergo proliferation and differentiation to form a population of an 

effector cells. Effector cells rapidly eliminate pathogen-infected cells by using multiple 

mechanisms (i.e., IFN-γ and tumor necrosis factor (TNF-α) production, direct cell killing). After 

resolving the infection the majority of effector cells die by apoptosis. However, a small, 

heterogeneous population of long-lived memory CD8+ cells remain (4–6). 

T cells with memory phenotype are resting cells, which create at least two 

subpopulations, "central" (Tcm) and "effector" (Tem) cells (7). Central memory and effector 

memory cells are defined based on their differential expression of CCR7 and CD62L. Tcm 

express high levels of these receptors and home to secondary lymphoid tissues. In contrast, 

Tem do not express CCR7 and CD62L and localize mostly to nonlymphoid tissues and to the 

spleen (8). In this thesis, I will focus on T cells with an apparent central memory phenotype. 

Memory CD8+ T cells have protective advantage over naïve T cells. The secondary 

response of memory CD8+ T cells is faster than primary response because they are present in 

larger numbers. However, the magnitude of primary response of memory T cells to antigen in 

comparison to naïve T cells is not clear. Some studies showed that memory CD8+ T cells 

respond more rapidly than their naïve counterparts (9–11). By contrast, some recent studies 

found that memory CD8+ T cells have lower proliferative responses in the same host after 

antigen stimulation than naïve T cells on a per-cell basis (12–14). 

The characteristic hallmark of memory CD8+ T cells is high expression of CD45RO in 

humans and CD44 in mice (7,15). Murine memory CD8+ T cells can be identified as CD44hi, 

CD122hi, and Ly6Chi (16). Another important hallmark distinguishing memory CD8+ T cells from 

naïve T cells is rapid expression of IFN-𝛾 after antigenic stimulation (1), a key proinflammatory 

cytokine in most types of infection (17). 
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3. HP-memory CD8+ T cells 

Activation of naïve T cells by cognate antigens induces formation of effector and 

memory T cells that mediate immediate and long-term immune protection, respectively. 

However, it has been reported that memory-like T cells can arise in the absence of foreign 

antigens via homeostatic proliferation (HP) during lymphopenia (i.e., condition of low 

lymphocyte levels) in mice. These so called HP memory T cells share gene expression profile 

and some phenotypic features with antigen-induced memory (true memory; TM) T cells, 

although they do not constitute the bona fide immunological memory (1). 

3.1 Generation of HP-memory T cells 

3.1.1 TCR:self-pMHC interactions are essential for homeostatic proliferation of naïve T cells 

Homeostatic proliferation (also called lymphopenia-induced proliferation) of naïve T 

cells during lymphopenia is relatively slow, depends on low-affinity MHC/self-peptide 

complexes and is driven by various cytokines. Homeostatic proliferation of naïve T cells is not 

associated with up-regulation of activation-induced antigens, such as CD25 or CD69 (18,19). 

It was observed that certain clones of naïve TCR transgenic cells are not able to undergo 

homeostatic proliferation (e.g. H-Y cells) (20) and some clones undergo homeostatic 

proliferation faster than others. T cells with low level of self-reactivity (e.g. 2C, P14 or F5 cells) 

of their TCRs to MHC/self-peptide molecules undergo slower homeostatic proliferation than 

T cells with high level of self-reactivity TCR (e.g. OT-I cells) (21). 

Three different clones (OT-I, F5, and 2C) were used to analyze homeostatic responses 

and competition among naïve CD8+ T cells. By transferring naïve T cells into RAG- mice, it was 

observed that only OT-I cells expressed high levels of CD44, CD122, and Ly6C (i.e., markers 

specific for memory phenotype T cells.). OT-I T cells in F5/RAG- or 2C/RAG- recipient mice 

undergo slow proliferation not associated with up-regulation of CD69, which are characteristic 

hallmarks of homeostatic proliferation and this is the evidence that OT-I cells had access to 

MHC/self-peptide in these mice (22,23). 

These experiments showed that self-reactivity (measured as levels of a self-reactivity 

marker, CD5) of a particular T-cell clone correlates with its rate of homeostatic proliferation 

and ability to form HP memory. This indicates that HP memory formation is driven by TCR:self-

pMHC interactions (22,24–26). 
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3.1.2  The role of IL-7 and other cytokines 

It is known that particular cytokines are crucial for T cell development, survival, 

activation, and homeostasis. Homeostatic proliferation of naïve T cells is enhanced by several 

cytokines, including IL-7, IL-15, and IL-4. These cytokines are able to enhance homeostatic 

proliferation of CD8+ T cells in vitro. However, it was found that naïve T cells die in few days 

after a transfer to IL-7-/- hosts, whereas they undergo homeostatic proliferation in IL-15-/- and 

IL-4-/- hosts. This is the evidence that only IL-7 is essential for survival and homeostatic 

proliferation of naïve T cells in vivo (27,28). 

In contrast to naïve T cells, memory phenotype CD8+ T cells (CD44hi) express high levels 

of receptors for both IL-7 and IL-15. IL-7 or IL-15 alone are sufficient to stimulate homeostatic 

proliferation in CD44hi T cells, suggesting that once a naïve T cell becomes an HP memory T 

cells, it is not exclusively dependent on IL-7 (29).  
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3.2 Gene-expression profile of HP-memory T cells 

Goldrath et al. (16) analyzed naïve OT-I TCR transgenic cells at different time-points of 

homeostatic proliferation. They observed that the majority of OT-I T cells expressed high levels 

of CD44, CD122, and Ly6C after 15 days. However, after 40 days, the majority of cells 

expressed same levels of these memory markers as naïve T cells. They suggested that 

conversion of naïve T cells to HP-memory phenotype T cells is reversible process (16). 

In contrast, Goldrath et al. also analyzed naïve OT-I TCR transgenic CD8+ T cells at 

different time-points of homeostatic proliferation to investigate whether T cells in 

lymphopenic hosts display a unique gene-expression signature. After 6 days in lymphopenic 

host, only 60% of the genes specific for memory cells were expressed at a higher level in the 

HP population than in naïve cells. In contrast, 95% of the genes correlated with memory 

expression 4 months later (1,18). 

It was observed that naïve T cells acquire gene-expression profile identical to antigen-

experienced memory cells, over the homeostatic proliferation time course in lymphopenic 

host. This analysis did not reveal a unique gene-expression profile for HP-memory cells (18). 

The single important difference between HP-memory cells and TM T cells is distinct 

expression of α4-integrin (CD49d), a component of homing receptors VLA-4 and LPAM. HP-

memory cells express low levels of CD49d (CD49dlo) and their CD49d expression seems to be 

even lower than that of naive cells. In contrast, this integrin is normally expressed at high 

levels on TM cells (CD49dhi) (3). 
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3.3 Immune response of HP-memory T cells 

As mentioned, HP-memory CD8+ T cells acquire some functional and phenotypic 

characteristics similar to antigen-specific memory CD8+ T cells, such as up-regulation of 

memory cell markers or rapid production of IFN-𝛾. It is known, that antigen-specific memory 

CD8+ T cells facilitate rapid response to pathogens during secondary infections. However, the 

important question is if HP-memory CD8+ T cells can offer better immune protection against 

pathogenic infections than naïve T cells. 

3.3.1 Comparable protective effects of HP-memory TM T cells 

Protective capacity of HP-memory CD8+ T cells was observed by using a double 

adoptive transfer system. Both HP-memory and TM populations were generated from naïve 

ovalbumin-reactive (OVA) OT-I transgenic CD8+ T cells in sublethally irradiated mice or in mice 

infected with OVA expressing Listeria monocytogenes (Lm.OVA), respectively. Subsequently, 

the cells were transferred into healthy wild type (WT) recipients and infected with Lm.OVA. 

The bacterial clearance was observed 5 days after infection. HP-memory CD8+ T cells provided 

as robust protection against Lm.OVA infection as TM T cells on a per-cell basis (30). 

3.3.2 Functional differences between TM and HP T cells are revealed in a competitive setup 

Although monoclonal OT-I HP memory T cells and TM T cells showed comparable 

expansion and protection against Lm.OVA when transferred into separate recipients (30), 

some differences were reported when these two memory cell types were cotransferred into 

a single host (31). 

To analyzed numbers, phenotype, and localization of HP-memory and TM cells Cheung 

et al. generated these cells with distinct congenic markers CD45.1 and CD45.2, respectively, 

and transferred both populations in equal numbers into WT recipients and infected them with 

Lm.OVA 1 day later (31). They observed that despite the earlier expansion of HP-memory cells, 

the expansion of TM cell is more robust. Interestingly, it was shown that HP-memory cells 

rapidly up-regulated CD69L and localized to lymph nodes (LN), whereas TM T cells localized to 

the spleen during infection (8,31). 
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These data indicated that TM cells show superior antigenic responses to HP cells when 

they compete with each other for some limiting resources, potentially the antigen, 

costimulation signals, cytokines, or space. 

3.3.3 Protective capacity of HP-memory cells depends on CD4+ T cells help 

It was observed that CD4+ T cells are required for the establishment and maintenance 

of memory CD8+ T cells (32). Because it was shown that HP-memory T cells have similar 

properties with TM cells, the next step was to find out whether CD4+ T cells are important for 

homeostatic proliferation of HP-memory CD8+ T cells. 

OT-I cells transferred into irradiated MHC class II-deficient (i.e., devoid of CD4+ T cells) 

mouse underwent homeostatic proliferation and formed HP memory T cells. However, after 

adoptive transfer into WT recipients and Lm.OVA challenge, HP-memory T cells from MHC 

class II-deficient mouse did not provide better protection against the Lm.OVA than naïve T 

cells. In contrast, TM and HP-memory cells from WT mouse, generated in the presence of CD4+ 

T cells, were capable of mediating protection against Lm.OVA challenge. Nevertheless, all HP-

memory cells from MHC class II-deficient host, HP-memory cells, and TM cells from WT host 

expressed high levels of CD44, CD122, and Ly6C and showed rapid production of IFN-𝛾 after 

activation. These results indicate that generation of defective HP-memory cells from MHC 

class II-deficient host could not be caused by the failure of induction of the HP memory 

differentiation program. 

In summary, although CD4+ T cells are essential for the function and protective capacity 

of HP-memory CD8+ T cells, they are not necessary for their formation. However, how CD4+ T 

cells affect functionality of HP-memory cells remains to be elucidated (30,33,34). 
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3.4 HP-memory T cells in humans 

3.4.1 Presence of HP-memory T cells in humans is unclear 

The demonstration that HP-memory CD8+ T cells are present in mice leads to a 

question if populations of these cells exist in humans. Some studies observed presence of 

innate population of memory-phenotype T cells in the spleen and cord blood of fetus. 

However, it is difficult to find out the origin and function of these human memory-phenotype 

T cells and it is still unknown what happened with these cells after the end of pregnancy 

(35,36). In summary, presence of HP-memory CD8+ T cells in humans and healthy organism 

remains unclear (3). 

3.4.2 Potential role of HP-memory T cells in cancer immunotherapy 

HP-memory CD8+ T cells can induce protective immunity. Moreover, Dummer et al. 

observed that homeostatic proliferation of T cells during lymphopenia can also induce 

effective antitumor autoimmunity (37). Melanoma cells were injected into sublethally 

irradiated and nonirradiated WT mice followed by a transfer of 5 x 107 LN cells. After almost 

2 months, they observed that sublethally irradiated mice had significantly smaller tumors than 

control mice (37). 

In summary, this study (37) and some others (38,39) indicated that HP-memory T cells 

may be potentially useful in cancer immunotherapy and for immunotherapy of 

immunocompromised people. 
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4. Virtual memory CD8+ T cells 

Halusczak et al. have described a population of central memory phenotype (CD44+ 

CD62L+) CD8+ T cells that has not previously encountered its cognate antigen in unmanipulated 

WT mice (3). These cells were termed virtual memory CD8+ T cells  

4.1 Generation of VM CD8+ T cells 

4.1.1 Origin of VM CD8+ T cells 

There are two possible explanations why some naïve T cells differentiate into VM CD8+ 

T cells. First, they could differentiate from naïve T cells with relatively high affinity for self-

antigens. Second, VM CD8+ T cells may be generated by physiological homeostatic mechanism 

during neonatal or age-related lymphopenia (3,40,41). 

4.1.2  Factors important for VM T cells formation 

Sosinowski et al. (40) and others (42) observed that VM CD8+ T cells develop in the 

periphery rather than in the thymus in WT C57/BL6 (B6) mice. VM CD8+ T cells are minimally 

dependent on IL-4, whereas IL-15 has a key role in their formation because these VM T cells 

are substantially reduced in IL-15-/- mice (40). Likewise, formation and/or maintenance of VM 

T cells also requires expression of CD122, a subunit of IL-15 receptor, on CD8+ T cells (2,40). 

Administration of IL-15/Rα complexes induced rapid expansion and/or de novo generation of 

VM T cells. Next, Sosinowski et al. observed that VM CD8+ T cells expressed higher levels of a 

transcriptional factor Eomes than naïve T cells. They proposed that Eomes expression is 

another important factor in the development of VM T cells, because of the loss of VM T cells 

in T cell-specific Eomes deficient mice. Their hypothesis is that proliferation of T cells and 

conversion to VM CD8+ T cells are caused by higher expression of Eomes which induces higher 

expression of CD122 and higher sensitivity to IL-15 presented by CD8α+ dendritic cells (40). 

In summary, these data indicated that formation of VM CD8+ T cells depends on IL-15, 

CD8α+ dendritic cells, intrinsic expression of CD122, and Eomes (40,42). 
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Sosinowski et al. (40) characterized VM CD8+ T cells in B6 mice which have very low 

levels of IL-4 (43). In contrast to this study, Tripathi et al. (44) characterized VM CD8+ T and 

their dependence on IL-4 and IL-15 in both B6 mice and Balb/c mice. They observed that virus-

specific VM cells in Balb/c mice were significantly more reduced in the absence of IL-4 than in 

the absence of IL-15. However, naïve T cells were not reduced in the absence of either IL-4 or 

IL-15 or both. In summary, the development and/or maintenance of VM CD8+ T cells in Balb/c 

mice depends more on IL-4 than on IL-15, whereas development and/or maintenance of VM 

CD8+ T cells in B6 mice largely depends on IL-15 and minimally on IL-4 (44). 

A memory-phenotype IL-4 dependent population of so-called innate memory CD8+ T 

cells develops in the thymus of Balb/c, but not WT B6, mice (43,45). It is not clear if the VM 

CD8+ T cells observed by Tripathy et al. (44) in Balb/c mice and the innate memory T cells 

represent one or two independent lineages. Kurzweil et al. (43) observed, that deficiency in 

Ndfip1 adaptor protein leads to increased production of IL-4 in the periphery and subsequent 

generation/expansion of VM CD8+ T cells in the periphery, but not in the thymus (43). This 

suggests that IL-4 can induce and/or expand memory phenotype T cells in the thymus as well 

as in the periphery (Fig. 1). 

The relationships between the three experimentally observed populations of antigen-

independent memory-like T cells, i.e., canonical IL-15-dependent VM T cells in B6 mice, thymic 

IL-4-dependent innate memory T cells in Balb/c mice, and peripherally IL-4 induced memory-

phenotype in Ndfip1-/- B6 mice, remain to be addressed. 
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Fig. 1 Conversion of naïve T cells in the thymus and in the periphery under the control of IL-4 

and IL-15 (modified from Lauvau a Goriely, 2016 (46)) 
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4.1.3 The role of TCR in the generation of VM CD8+ T cells 

White et al. showed (2) that expression of CD5 (i.e., a self-reactivity marker) 

determines propensity of naïve T cells to become VM CD8+ T cells. They isolated naïve T cells 

expressing high or low levels of CD5 from unmanipulated WT mice and transferred them into 

lymphoreplete WT mice. After 3 weeks, they observed that 30% CD5hi T cells, but only 5% 

CD5lo T cells, acquired VM phenotype. These data indicated that VM CD8+ T cells are 

preferentially derived from T cells receiving stronger tonic TCR signals from self-antigens. 

However, it remains unclear whether TCR specificity plays an important role in the generation 

of VM CD8+ T cells (2). Importantly, this is the only experiment showing generation of VM 

population in lymphoreplete mice so far. 

Another study showed that T-cell clones expressing endogenous TCRα chains in OT-I 

Rag+ transgenic, but not monoclonal OT-I Rag-/-, mice display conversion into VM CD8+ T cells 

during aging (41). Based on their experiments, they concluded that TCR specificity plays an 

important role in age-related accumulation of VM CD8+ T cells. However, the authors suggest 

that TCR specificity is not the main factor that determinates the generation of VM CD8+ T cells 

in neonatal mice (41). 

4.2 Gene-expression profile of VM CD8+ T cells 

Two phenotypic differences distinguish VM T cells from TM T cells, i.e., low expression 

of CD49d and slightly higher levels of CD122 (3,47). However, these markers were not 

validated in GF mice. White et al. (2) used deep RNA sequencing to compared gene expression 

profiles of VM CD8+ T cells and naïve T cells. They found many genes that were differentially 

expressed between these two populations, including chemokine receptors (e.g. Cxcr3, Ifngr1), 

effector molecules (e.g. Fasl, Grzb), and adhesion proteins (e.g. CD44, Ccr9). However, they 

did not include TM T cells to their analysis and most of the genes differentially expressed 

between VM and naïve T cells are general markers of memory T cells. Moreover, they did not 

isolate the VM T cells from GF mice and thus it is not clear, whether they analyzed a pure 

population of VM T cells. Overall, the gene expression program of VM T cells is still poorly 

characterized (2). 
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4.3 Immune response of VM CD8+ T cells 

VM CD8+ T cells display some, but not all, features of antigen-specific CD8 T cells which 

facilitate rapid response to pathogens during secondary infections (47). This finding leads to a 

question, whether VM CD8+ T cells are capable of mediating protective responses to 

pathogens. 

4.3.1 Production of IFN-𝜸 by VM CD8+ T cells 

It was observed that TM and VM T cells expressed significantly higher levels of T-bet 

and Eomes (i.e., two key transcription factors of differentiation of memory CD8 T cells) than 

naïve T cells (47). These T-box transcription factors are positive regulators of IFN-𝛾 production. 

Therefore, IFN-𝛾 production was analyzed in OVA-specific TM, VM, and naïve T cells, following 

OVA peptide stimulation in vitro. It was observed that VM T cells display a capacity to produce 

IFN-𝛾 in response to TCR stimulation that is intermediate between naïve  (not producing IFN-

𝛾) and TM (robust production of IFN-𝛾) CD8+ T cells (47). Haluszczak et al. showed that 

production of IFN-𝛾 by VM CD8+ T  cells after IL-12 and IL-18 stimulation is similar to TM CD8+ 

T cells (3). 

4.3.2 VM T cells can provide potent antigen-specific protective immunity against infection 

Sosinowski et al. (40) transferred naïve and VM CD45.1 OT-I T cells into polyclonal 

CD45.2 hosts. CD45.2 mice were challenged with Lm.OVA and analyzed a few days later. They 

observed that VM population provides better protection against Lm.OVA than naïve 

population (40). 

Lee at al. (47) used polyclonal Vβ5 CD8 T cells to examine VM T cells for protective 

ability against Lm.OVA infection. Cells were isolated and transferred into separate hosts which 

were challenged with virulent Lm.OVA. After a few days they observed that TM Vβ5, as well 

as VM T cells, provide more robust protection against Lm.OVA infection than naïve Vβ5 T cells 

(47). 

Importantly, all published studies examined immune protection of VM CD8+ T cells only 

against Listeria monocytogenes and thus it is not clear, whether VM CD8+ T cells provide 

protection to a broad spectrum of pathogens. However, Decman et al. examined activation of 

CD44lo naïve and CD44hi VM T cells after Lymphocytic choriomeningitis virus (LCMV) and 

Vesicular stomatitis virus (VSV) challenge (48). CD44lo or CD44hi P14 (LCMV-specific T cell line) 



20 
 

CD8+ T cells were transferred into WT recipient mice and then infected with LCMV. Similarly, 

CD8+ OVA-specific T cells from OT-I Rag2-/- were sorted into CD44hi and CD44lo cells, 

transferred into congenic recipients and infected with VSV-OVA. After 8 days, they observed 

that the numbers of antigen-specific CD44hi T cell were significantly lower than numbers of 

CD44lo naïve T cells in both infection models. These data indicated that the response of VM T 

cells to viral infections is weaker than the response of naïve T cells (48). Unfortunately, this 

study did not analyze the effects of antigen-specific VM and naïve CD8+ T cells on the clearance 

of the virus. It is not clear, why Decman et al. observed different results than the studies using 

Listeria monocytogenes. It can be caused by using monoclonal cells. Decman et al. used OT-I 

CD8+ T cells from RagKO that developed in the absence of CD4+ T cells which are essential for 

the function and protective capacity of HP-memory CD8+ T cells and potentially also for VM T 

cells. The second possibility is that they used different pathogens (i.e., Decman et al. used viral 

pathogens (48), whereas other studies (40,47) used bacterial pathogens). It can be also caused 

by different timing of the analysis of the T-cell response. Decman et al. examined activation 8 

days after the infection, whereas others (40,47) analyzed protection against Lm.OVA 3 – 5 

days after the infection. 

4.3.3 VM T cells can provide protection in the absence of cognate antigen 

White et al. showed that VM CD8+ T cells expressed molecules, IL-12R, IL-18R, IFN-𝛾, 

Granzyme B, and NKG2D (2). These proteins had been previously shown to enhance so-called 

bystander protection of memory CD8+ T cells (i.e., protection of memory T cells in the absence 

of their cognate antigen) (49). To examine if VM CD8+ T cell can mediate bystander protection 

they sorted VM cells from OT-I (antigen-specific) and gBT-1 (antigen-irrelevant) transgenic 

mice, transferred them in 3KxRag-/- (Rag-/- mouse crossed to the 3K TCR transgenic mouse (50)) 

mice or IL-15-/- mice which were challenged with Lm.OVA one day later. Surprisingly, they 

observed that gBT-1 cells provided same protection against Lm.OVA challenge as OT-I cells in 

3KxRag-/- mice. However, only OT-I cells provided protection against infection in IL-15-/- mice. 

In summary, these data indicated that VM CD8+ T cells mediate bystander protective immunity 

and bystander protection of VM CD8+ T cells is dependent on IL-15 (2). 
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 However, Lee et al. observed protection of OVA-specific VM CD8+ T cells against 

Lm.OVA, but not against Lm.WT, suggesting that the antigen-specific protection is stronger 

than the bystander protection (47). 

4.4  Age-related accumulation of VM CD8+ T cells 

As mentioned above, VM CD8+ T cells are cells with an apparent central memory 

phenotype. It was observed that VM CD8+ T cells are present in highest frequency in 3-4 weeks 

old mice (42) and then accumulate during aging (41,51). 

By analyzing CD44 and CD62L expression of CD8 T cells in 20 months old unprimed 

mice, it was observed that more than half of cells acquired central memory phenotype. The 

numbers of Tcm cells in aged mice were significantly higher compared to young (4 months) 

mice. However, it was observed that Tcm in blood, spleen, and peripheral lymph nodes of aged 

mice expressed lower levels of CD49d than naïve T cells. These data indicated that majority of 

abundant Tcm cells in aged mice are VM CD8+ T cells (51). 

4.5 Presence of VM CD8+ T cells in humans 

To date, VM CD8+ T cells were characterized only in mice. Presence of these cells in 

humans is not well documented. However, some studies (2,52) addressed evidence whether 

humans produced an equivalent subset to murine VM CD8+ T cells. 

It was observed that KIR/NKG2A+ (i.e., natural killer-like phenotype) CD8+ T cells in 

healthy human adults share some similar characteristics with murine VM CD8+ T cells, such as 

elevated expression of Eomes, T-bet, and CD122 or rapid production of IFN-𝛾 after IL-12 and 

IL-18 stimulation (2,52). In addition, KIR/NKG2A+ CD8+ T cells represent 1% of human cord 

blood CD8+ T cells, suggesting that they might arise in the absence of foreign antigen (2). It 

was observed that these cells expressed higher levels of Eomes than KIR/NKG2A- CD8+ T cells. 

The frequency of KIR/NKG2A+ Eomes+ CD8+ T cells was markedly elevated in the liver, which 

corresponds to the enrichment of murine VM CD8+ T cells in the liver (2). Furthermore, it was 

examined if KIR/NKG2A+ Eomes+ CD8+ T cells accumulate during aging. The spleen samples 

from healthy patients ranging between 30 and 70 years showed that the frequency of these 

cells correlates with age (2,52). 
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In summary, these data indicated that there might be population of antigen-

inexperienced CD8+ T cells in humans. This population may represent the human equivalent 

of murine VM CD8+ T cells. KIR/NKG2A+ Eomes+ CD8+ T express natural killer receptors. This 

suggested that they may have an important role in anti-tumoral and anti-infection protection 

in humans (2,52). 
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5. Comparison of HP-memory and VM CD8+ T cells 

HP-memory CD8+ T cells and virtual memory CD8+ T cells are two antigen-

inexperienced memory-phenotype T cell populations, described from different mouse models 

(i.e., experimentally induced lymphopenia and steady-state unprimed mice, respectively). In 

this chapter, I will summarize facts presented in my thesis and compare reported features of 

these two populations to determine whether or not they actually represent a single CD8+ T 

cell subpopulation.  

Although the global gene-expression profile of HP-memory and VM T cells has not been 

directly compared, these two populations are characterized by the identical signature of 

surface markers (i.e., CD44hi, CD122hi, and CD49lo). The low levels of CD49d distinguish HP and 

VM T cells from TM T cells. Moreover, both populations express higher levels of T-bet and 

Eomes than naïve T cells. These data are in line with the hypothesis that HP-memory and VM 

T cells use the same differentiation program. 

Notable difference between HP-memory CD8+ T cells and VM CD8+ T cells is their 

dependence on different cytokines. It has been shown that particular cytokines enhanced 

homeostatic proliferation of naïve T cells in vitro (e.g. IL-7 and IL-15). However, only IL-7 was 

found as a crucial cytokine required for homeostatic proliferation of naïve T cells in vivo and 

for formation of HP-memory CD8+ T cells. In contrast, generation and/or maintenance of VM 

T cells is dependent largely on IL-15. However, these studies examined rather factors leading 

to the generation of HP-memory and VM CD8+ T cells than their cytokine requirements for 

survival or expansion. Because HP-memory and VM T cells are generated in different 

conditions (induced lymphopenia vs. physiological ontogenesis) by definition, the particular 

cytokines might have differential impact on formation of HP-memory and VM T cells. 

Nevertheless, once generated, HP-memory and VM T cells might still represent the identical 

cell type. 

HP-memory T cells are formed from highly self-reactive clones. TCR:self-pMHC 

interactions are important for formation of these T cells. Formation of VM T cells correlates 

with self-reactivity which corresponds to HP-memory T cells. However, the role of TCR 

specificity in the generation of VM T cells is unclear and most likely is not the main factor that 

determinates the generation of VM CD8+ T cells in neonatal mice. Formation of both HP-
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memory and VM T cells from relatively highly self-reactive clones indicate that HP-memory 

and VM T cells may use the same differentiation program. 

Importantly, both HP-memory and VM T cells are capable of producing IFN-𝛾 after TCR 

and cytokine (i.e., IL-12 and IL-18) stimulation and they have the ability to provide better 

immune protection against Listeria monocytogenes than naïve T cells. These findings also 

correspond to the hypothesis that HP-memory and VM T cells use the same differentiation 

program. 

It is clear, that HP-memory CD8+ T cells arise via homeostatic proliferation during 

experimentally induced lymphopenia. VM T cells occur in lymphoreplete hosts and they may 

be generated by physiological homeostatic mechanism during neonatal or age-related 

lymphopenia. However, VM T cells may arise upon an adoptive transfer of naïve T cells into 

young adult mice which implies that they can be generated in the absence of lymphopenia. 

In summary, detail analysis (Table 1) and comparison of HP-memory and VM T cells 

and their common features (i.e., gene expression profile, immune response, role of TCR) 

suggested that these two populations most likely represent a single CD8+ T cell subpopulation. 

In this scenario, VM T cells are naturally occurring HP-memory T cells. 

 
 

HP-memory T cells VM T cells 

Gene expression 
profile 

 

CD44hi, CD122hi, CD49dlo, 
T-bethi, Eomeshi 

 

CD44hi, CD122hi, CD49dlo, 
 T-bethi, Eomeshi 

 
Cytokines 

important for 
generation 

 

IL-7 IL-15 

Role of TCR 
 

formed from highly self-reactive 
clones, TCR self-MHC interaction is 

required  for formation 

 

unclear, formation correlates with 
self-reactivity 

 

Immune response 
 

rapid IFN-𝛾 production, robust 
protection against Lm.OVA infection 

 

rapid IFN-𝛾 production, robust 
protection against Lm.OVA infection 

 

Table 1. Summary of characteristics of HP-memory and VM CD8+ T cells 
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6. Conclusion 

The relationship of HP-memory T cells, that are induced by experimental lymphopenia 

and VM CD8+ T cells, that are found in lymphoreplete hosts, was unclear. The main aim of my 

thesis was to compare HP-memory and VM CD8+ T cells to find out whether or not HP memory 

and VM T cells represent the same T cells population. After a thorough review of published 

studies, I concluded that HP-memory CD8+ T cells and VM CD8+ T cells have identical 

phenotypical and functional hallmarks and most likely use identical differentiation program. 

However, a thorough side-by-side analysis of gene expression profiles and TCR repertoires of 

HP-memory and VM memory T cells is required to definitely resolve this issue. 

Functional characteristics of HP/VM CD8+ T cells indicate that they may play an 

important role in anti-tumor and anti-infection immunity. Moreover, they can be potentially 

used in tumor immunotherapy. However, the biological role of HP/VM T cells is still poor 

understood. The putative presence of HP/VM memory T cells in humans is unclear and 

deserves to be experimentally addressed in great detail.  
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