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Abstrakt: Práce se zabývá studiem charakteristik průměrných a extrémních srážek 
v pozorovaných datech a regionálních klimatických modelech s ohledem na jejich 

konvekční a vrstevnatý původ. Na základě informací o stavu počasí a typu oblačnosti 
z dat SYNOP byl navržen a otestován algoritmus na rozlišení srážek na převážně 
konvekční a vrstevnaté. Časové řady 6-hodinových úhrnů konvekčních a 
vrstevnatých srážek pro oblast České republiky z let 1982–2010 byly použity pro 
analýzu základních klimatologických charakteristik srážek, včetně extrémů, a pro 
validaci regionálních klimatických modelů pocházejících z projektu ENSEMBLES. 

Budoucí změny konvekčních a vrstevnatých srážek ve střední Evropě (v České 
republice) byly analyzovány na základě regionálních klimatických modelů z projektu 

EURO-CORDEX. V poslední části práce je zaveden nový statistický model pro 
analýzu extrémů srážek, který využívá informaci o původu extrémů, tedy zda se 
jedná o srážky z konvekční nebo vrstevnaté oblačnosti. Do budoucna lze očekávat 
nárůst konvekčních a vrstevnatých srážek ve všech sezónách kromě léta, kdy podle 
simulací klimatických modelů mají vrstevnaté srážky klesat. Extrémní srážky budou 
intenzivnější bez ohledu na jejich původ a větší nárůst intenzity se očekává v případě 
vyššího nárůstu teploty. Nárůst podílu konvekčních srážek v létě a obecně vyšší 
intenzita srážek může mít významné důsledky pro půdní erozi nebo výskyt 
bleskových povodní. 

Klíčová slova: konvekční srážky, vrstevnaté srážky, regionální klimatické modely, 
extrémy, střední Evropa 

 

 

 

 

 

 

 

 

 



v 

 

Title: Frequency analysis of precipitation amounts 

Author: Mgr. Zuzana Rulfová 

Department: Department of Atmospheric Physics 

Supervisor: RNDr. Jan Kyselý, Ph.D., Institute of Atmospheric Physics CAS 

Abstract: This thesis deals with analysing characteristics of mean and extreme 

precipitation in observations and regional climate models (RCMs) with respect to 

their convective and stratiform origin. An algorithm for subdivision of precipitation 

amounts into predominantly convective and stratiform using station weather data is 

proposed and evaluated. The time series of convective and stratiform precipitation 

from the Czech Republic over 1982–2010 are used for analysing basic climatological 

characteristics of precipitation, including extremes, and evaluating RCMs from the 

ENSEMBLES project. Projected changes of convective and stratiform precipitation 

in Central Europe (the Czech Republic) are analysed using data from RCM 

simulations from the EURO-CORDEX project. The last part of the thesis introduces 

a new statistical model for analysing precipitation extremes. This model takes 

advantage from knowledge of origin of precipitation extremes. In future climate we 

could expect more convective and stratiform precipitation amounts in all seasons 

except summer, when climate models project decline in amounts of stratiform 

precipitation. Extreme precipitation is projected to increase for both convective and 

stratiform precipitation, and more extremes are expected with a larger increase of 

temperature. An increasing proportion of convective precipitation in summer and 

generally growing intensity of precipitation may have important implications for soil 

erosion and occurrence of flash floods. 

Keywords: convective precipitation, stratiform precipitation, regional climate 

models, extremes, Central Europe 

 

 

 

 

 

 

 

 

 



vi 

 

First of all, I am grateful to my supervisor, Jan Kyselý, for the careful scientific 
guidance of my work. I thank the Institute of Atmospheric Physics for creating 

excellent conditions for my scientific work. The study was supported under projects 

GAP209/10/2045 and GA14-18675S funded by the Czech Science Foundation, by 

the European Social Fund and the Ministry of Education of the Czech Republic 

under project CZ.1.07/2.3.00/20.0086, and by GAUK No. 851713. Part of the work 

was carried out while working in a Visiting Scientist position at Royal Netherlands 

Meteorological Institute (KNMI). I would like, therefore, to give special thanks to 

Adri Buishand and Martin Roth from KNMI. Finally, I am grateful to Mykhaylo for 

his support and patience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 1 - 

 

Contents 
 

 

Introduction 4 

  

1 Algorithm for subdivision of convective and stratiform precipitation 7 

1.1 Introduction …………………………………………………………... 7 

1.2 Data …………………………………………………………………… 9 

1.3 Methodology ………………………………………………………….. 10 

1.4 Performance of the algorithm ………………………………………… 13 

1.5 Discussion and summary ……………………………………………... 15 

  

2 Characteristics of convective and stratiform precipitation 17 

2.1 Introduction …………………………………………………………... 17 

2.2 Data and methods …………………………………………………….. 18 

2.3 Results ………………………………………………………………... 19 

2.3.1 Annual cycle of precipitation ……………………………………. 19 

2.3.2 Dependence on altitude ………………………………………….. 21 

2.3.3 Dependence on temperature ……………………………………... 23 

2.3.4 Trend analysis …………………………………………………… 25 

2.4 Discussion …………………………………………………………….. 26 

2.4.1 Annual cycle of precipitation ……………………………………. 26 

2.4.2 Spatial patterns of convective and stratiform precipitation and 

dependence on altitude …………………………………………... 27 

2.4.3 Dependence of precipitation on temperature ……………………. 28 

2.4.4 Trends of convective and stratiform precipitation ………………. 29 

2.5 Summary ……………………………………………………………… 29 

  

3 Convective and large-scale precipitation in regional climate models 31 

3.1 Introduction …………………………………………………………... 31 

3.2 Data and methods …………………………………………………….. 34 

3.2.1 Observed data ……………………………………………………. 34 

3.2.2 Regional climate model (RCM) simulations …………………….. 34 



- 2 - 

 

3.2.3 Precipitation characteristics and methods ……………………….. 36 

3.2.4 Effects of areal averaging on extremes ………………………….. 37 

3.3 Results ………………………………………………………………... 38 

3.3.1 Mean annual cycle of precipitation characteristics …………….... 38 

3.3.2 Proportion of convective precipitation in total amounts ………… 42 

3.3.3 Dependence on altitude ………………………………………….. 43 

3.3.4 Extremes …………………………………………………………. 46 

3.4 Discussion …………………………………………………………….. 48 

3.4.1 Simulation of mean characteristics ……………………………… 48 

3.4.2 Simulation of extremes …………………………………………... 49 

3.4.3 Possible effects of horizontal resolution ………………………… 51 

3.4.4 Comparison of RCMs ……………………………………………. 52 

3.4.5 Parameterization in RCMs ………………………………………. 53 

3.5 Summary ……………………………………………………………… 54 

  

4 Convective and large-scale precipitation scenarios in the Czech 

Republic 56 

4.1 Introduction …………………………………………………………... 56 

4.2 Data and methods …………………………………………………….. 58 

4.3 Results ………………………………………………………………... 60 

4.3.1 Validation of simulated precipitation characteristics 

for 1989–2008 …………………………………………………… 60 

4.3.2 Projected changes of precipitation characteristics 

for 2071–2100 …………………………………………………… 65 

4.4 Discussion …………………………………………………………….. 70 

4.5 Summary ……………………………………………………………… 74 

  

5 A two-component generalized extreme value distribution for 

precipitation frequency analysis 76 

5.1 Introduction …………………………………………………………... 76 

5.2 Data …………………………………………………………………… 78 

5.3 The regional TCGEV distribution ……………………………………. 79 

5.4 Homogeneity and goodness-of-fit tests ………………………………. 82 



- 3 - 

 

5.4.1 Homogeneity tests ……………………………………………….. 82 

5.4.2 Anderson-Darling tests …………………………………………... 85 

5.5 Comparison of return levels ………………………………………….. 88 

5.6 Discussion and summary ……………………………………………... 91 

  

Conclusions 93 

  

Bibliography 96 

  

List of Figures 116 

  

List of Tables 122 

  

List of Abbreviations 124 

  

Attachments 126 

Attachment A.1 ………………………………………………………………... 126 

Attachment A.2 ………………………………………………………………... 128 

Attachment A.3 ………………………………………………………………... 130 

 

  



- 4 - 

 

Introduction 

 

Motivation 

Characteristics of precipitation extremes are important in many practical 

applications, including hydrological modelling, design of hydraulic structures, urban 

planning, and others. Numerous studies have examined the distributions of 

precipitation extremes in observed data and climate model simulations, using 

methods of local or regional frequency analysis of different complexity (e.g., Stewart 

et al., 1999; Hanel et al., 2009; Svensson and Jones, 2010a). One of the main 

assumptions of extreme value theory is that the maxima belong to the same 

population (e.g., Coles, 2001). This assumption is not fulfilled for extreme 

precipitation in mid-latitudes, however, as this is caused by different physical 

mechanisms. Precipitation extremes arise from convective processes at small spatial 

scales (convective precipitation) or from cloud belts associated with cyclones and 

atmospheric fronts at larger scales (stratiform precipitation). 

The classification of precipitation into convective and stratiform is useful not only 

in the analysis of extremes but also in a variety of meteorological and climatological 

applications. It is important in understanding cloud physics, for instance, as these 

types are associated with different precipitation growth mechanisms. Furthermore, 

subdivided precipitation data can be used for evaluating climate models which 

simulate convective (subgrid) and stratiform (large-scale) precipitation separately 

through cumulus and large-scale precipitation parameterizations (Dai, 2006), as well 

as for analysing climate change effects on precipitation patterns. 

Many studies focusing on European precipitation changes agree with the general 

intensification of precipitation, predominantly increasing trends in mean precipitation 

in northern Europe, and decreasing trends in the south (e.g., Frei et al., 2006; Boberg 

et al., 2010; Heinrich and Gobiet, 2012; Rajczak et al., 2013). Central Europe (and 

the Czech Republic) lies in a transition zone between increasing and decreasing 

precipitation trends. 

The possible influence of global warming on change in the ratio of convective and 

stratiform precipitation has been discussed in many studies (e.g., Lenderink and van 

Meijgaard, 2008, 2010; Haerter and Berg, 2009; Fischer et al., 2015). Convective 

precipitation increases with temperature faster than does stratiform precipitation, as 
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shown, for example, by Berg et al. (2013) for observed data in Germany, and the 

ratio of seasonal convective precipitation amount to the total precipitation amount 

tends to be higher in future climate projections in all seasons when convective 

precipitation plays an important role (i.e., spring, summer, and autumn), as shown by 

Fischer et al. (2015) for Switzerland. 

Extreme precipitation is thought to increase with warming at rates similar to or 

greater than that of the water vapour holding capacity of air, which is ~ 7% per 1°C, 

the so-called Clausius–Clapeyron (CC) rate (Trenberth et al., 2003). This rate seems 

to be dependent on the time scale corresponding to the origin of precipitation 

extremes. Analyses of precipitation data at sub-daily resolution generally show 

higher (so called super-CC) rates of increase in intensity with temperature (e.g., 

Allan and Soden, 2008; Lenderink and van Meijgaard, 2008, 2010; Lenderink et al., 

2011; Loriaux et al., 2013). These super-CC rates are caused by a mixing of storm 

types, with stratiform lower-intensity precipitation at low temperatures and 

convective higher-intensity precipitation at high temperatures (Haerter and Berg, 

2009; Berg et al., 2013). Molnar et al. (2015) showed for observed data in 

Switzerland that extreme precipitation events accompanied by lightning (convective 

events) exhibit consistently higher rates of increase with air temperature (8–9% per 

1°C) than do stratiform events (6–7% per 1°C) for mean and peak 10 min intensity. 

However, both storm types have lower rates than do all events combined (11–13% 

per 1°C). 

These results imply that the increase of precipitation extremes in future climate 

will depend on air temperature and the relative proportions of convective and 

stratiform precipitation at a given temperature. Furthermore, the intensification of 

extreme precipitation seems to depend not only on temperature but also on moisture 

availability (Panthou et al., 2014; Westra et al., 2014). Lenderink et al. (2011) have 

studied hourly precipitation extremes in Hong Kong and the Netherlands and found 

that precipitation intensity increases up to about 24°C but thereafter rises more 

slowly or even diminishes. This change is probably associated with moisture deficits.  

 

Structure of the thesis 

This thesis is organized as follows: In Chapter 1, an algorithm for subdivision of 

observed precipitation amounts into convective and stratiform is proposed and 

evaluated. The algorithm is based on SYNOP (surface synoptic observations) reports 
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from weather stations in the Czech Republic. Time series of 6-hour convective and 

stratiform precipitation amounts over 1982–2010 obtained using the algorithm are 

analysed in Chapter 2 with respect to such of their basic climatological 

characteristics as annual cycle of precipitation amounts, dependence on altitude and 

temperature, and trends in precipitation amounts and the number of wet days. 

Ability of regional climate models (RCMs) to reproduce properties of convective 

(subgrid) and stratiform (large-scale) precipitation for recent climate over the Czech 

Republic, including extremes, is investigated in Chapter 3. The simulations from 11 

RCMs with horizontal resolution of 0.22° driven by the ERA-40 reanalysis originate 

from the ENSEMBLES project database. Projected changes of convective (subgrid) 

and stratiform (large-scale) precipitation characteristics (for 2071–2100 vs. 1971–

2000) are analysed in Chapter 4. For this purpose, RCM simulations with finer 

horizontal resolution (0.11°) from the EURO-CORDEX project are examined. 

In Chapter 5, a new statistical model for analysing precipitation extremes is 

introduced. A two-component generalized extreme value (TCGEV) distribution is 

based on an assumption that the annual maxima for convective and stratiform 

precipitation follow two separate GEV distributions. The regional TCGEV model is 

applied to analyse 6-hour precipitation data for stations in the Czech Republic over 

1982–2000. The return levels from the regional TCGEV distribution are compared 

with those obtained using the common method of fitting a regional GEV distribution 

to the overall annual maxima, thus ignoring their convective or stratiform origins. 

The thesis is based on three papers published in peer-reviewed international 

journals (Atmospheric Research, Climate Dynamics, and Journal of Hydrology), and 

a fourth which is currently under review at International Journal of Climatology. I 

am first author of three of the papers and second author of one paper for which my 

supervisor, J. Kyselý, is first author. I am responsible for all calculations and the 

preparation of all figures and tables used in all papers, and I was a principal 

participant in interpreting the results.  I drafted the manuscripts of all papers for 

which I am the first author, and I was responsible for revisions of the manuscripts. I 

participated actively also in preparation of the manuscript of which I am not the first 

author, including interpretation of the results. 
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1 Algorithm for subdivision of convective and 

stratiform precipitation
*
 

 

 

1.1 Introduction 

 

Several works have aimed at discriminating convective and stratiform precipitation 

on the basis of different instruments and techniques. Many methods originate from 

studies of ground-based measurements. Some authors have used subjective criteria 

for subdivision of precipitation based on analysis of synoptic maps for extreme 

precipitation (e.g., Štekl et al., 2001). Others subdivide precipitation from the 

viewpoint of relative spatial distribution. For example, Ungewitter (1970) 

distinguished widespread precipitation (occurring at 90–100% of stations in a study 

area), which corresponds with long-lasting rain or snow; isolated precipitation 

(occurring at 1–50% of stations); and precipitation-poor day (0–20% of stations), 

corresponding with rain or snow showers. An analogous method was used by Brázdil 

and Štekl (1řŘ6) for the Czech Republic (using data from 1ř72–1974). Some authors 

have used quantitative criteria for subdivision of long-lasting precipitation and rain 

showers based on the precipitation amount, average and maximum intensity, and area 

affected by precipitation (Kurejko, 1978; Orlova, 1979; Alibegova, 1985). A big 

disadvantage of these criteria has been their subjectivity and applicability only for 

specific data and areas for which they had been designed. 

More recent methods devised for subdivision of rainfall often use data from radar 

and satellite measurements (e.g., Sempere-Torres et al., 2000; Anagnostou, 2004; 

Lam et al., 2010; Thurai et al., 2016). These methods originate from studies of rain 

gauge data (e.g., Austin and Houze, 1972; Houze, 1973) in which those gauge 

rainfall rates exceeding a specified threshold were classified as convective, which 

may not always be justified. This background-exceeding technique (BET) generally 

identifies the core of convection. The technique has been extended to two dimensions 

using radar reflectivity observations, where convective cores were identified by BET 

                                                 
* This chapter is based on: 

Rulfová Z, Kyselý J. 2013. Disaggregating convective and stratiform precipitation from station 

weather data. Atmospheric Research 134: 100–115. 
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and then a fixed radius of influence was taken to assign convective areas (Churchill 

and Houze, 1984). Steiner et al. (1995) improved this approach and used a variable 

radius of influence along with a variable threshold while both the radius and the 

threshold were functions of the area-averaged background reflectivity. Alder and 

Negri (1988) applied a variation of BET to subdivide convective and stratiform 

precipitation using infrared satellite data. Instead of searching for local maxima, they 

looked for local minima in the cloud-top temperatures to determine the location of a 

convective core. Methods using information about cloud water content and vertical 

motion (e.g., Tao and Simpson, 1989; Tao et al., 1993, 2000) are based on a principle 

similar to the methods described above and identify the convective core as an area 

with values above a given threshold. 

The main advantage of the methods based on radar and satellite data is that they 

are spatially more homogeneous than station data and are easily comparable with 

model outputs which are in spatial grid form too. On the other hand, precipitation 

amounts are not directly measured by radar and satellite and are estimated on the 

basis of empirical formulae. Furthermore, relatively short time series and 

inhomogeneities make these data unsuitable for analyses of trends and extremes and 

for validating characteristics from climate model outputs. 

Ruiz-Leo et al. (2013) presented a relatively new method based on the study of 

Tremblay (2005). The distribution of cumulative precipitation (in a given intensity 

class) versus intensity follows a near exponential law, albeit with anomalies. They 

suggest that the exponential term is associated with the stratiform precipitation 

predominating for smaller intensities, whereas the term expressing positive 

anomalies of the curve is related to the convective precipitation which is more 

important for larger intensities. Furthermore, they found a threshold of intensity 

separating precipitation into predominantly stratiform (i.e. intensity below a given 

threshold) and predominantly convective (i.e. intensity above a given threshold) 

origin. This method is based on 6-hour precipitation amounts from stations (standard 

synoptic data) and provides the opportunity to acquire long time series of convective 

and stratiform precipitation for analyses of changes in precipitation regimes. The 

disadvantage of this method is that extreme precipitation cannot be determined as 

stratiform in principle, which contradicts reality inasmuch as precipitation extremes 

may occur also in the form of widespread heavy rains from stratiform clouds even 

without embedded convection. 
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In this study, we propose an alternative algorithm for subdivision of precipitation 

into predominantly convective and stratiform on the basis of SYNOP reports (surface 

synoptic observations) at weather stations. Unlike most radar and satellite data, these 

data are long term and allow analysing trends and estimating high quantiles and 

design values of precipitation amounts as well as validating climate model outputs. 

Our approach is based on the same type of data as used in the method proposed by 

Ruiz-Leo et al. (2013), but we relax their simplifying assumption that heavy 

precipitation is of convective origin only. The algorithm we propose and test is based 

on different criteria, allowing also for subdivision of heavy precipitation into 

predominantly convective or stratiform. 

The stations and data used are described in section 1.2. A detailed overview of the 

algorithm for subdivision of precipitation and its performance are presented in 

section 1.3 and 1.4, respectively. A discussion and summary follow in section 1.5. 

 

 

1.2 Data 

 

Observed precipitation data used in this study originate from SYNOP reports at 11 

stations operated by the Czech Hydrometeorological Institute (CHMI). Table 1.1 

shows the station names, locations and altitudes; their geographical positions are 

depicted in Figure 1.1. The altitudes of the stations range from 241 to 1322 m a.s.l., 

and the stations cover different climatological regions from lowlands to high 

mountains. The observations span from 1982 to 2010. The dataset includes 6-hour 

precipitation amounts, codes of present and past weather (weather state) during the 6-

hour interval, and hourly data on cloud cover, cloud type, air pressure and 

temperature. 

The quality of the data was checked in a standard manner to uncover possible 

errors and suspicious 6-hour precipitation records. Some missing and incorrect 

readings were filled in by comparing daily totals from climatological measurements 

(aggregated 24-hour amounts). The majority of stations have a negligible percentage 

of missing 6-hour precipitation data (less than 0.1%). Exceptions were the stations 

116řŘ KuchaĜovice, with 4 months of missing values (January–April 1989), and 

11406 Cheb, with 3 months of missing values (October–December 1993). 
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Figure 1.1: Location of stations. 

 

 

Table 1.1: Characteristics of stations analyzed. 

WMO code Station name  Longitude [°E] Latitude [°N] Altitude [m a.s.l.] 

11723 Brno-TuĜany 16.70 49.16 241 

11782 Ostrava-Mošnov 18.12 49.69 251 

11698 KuchaĜovice 16.09 48.88 334 

11518 Praha-Ruzyně 14.26 50.10 364 

11603 Liberec 15.03 50.77 398 

11406 Cheb 12.39 50.07 471 

11636 Kostelní Myslová 15.44 49.16 569 

11414 Karlovy Vary 12.91 50.20 603 

11683 Svratouch 16.03 49.74 737 

11457 Churáňov 13.61 49.07 1118 

11787 Lysá hora 18.45 49.55 1322 

 

 

1.3 Methodology 

 

Convective and stratiform precipitation fall from different clouds and are 

characterized by different types of weather events, coded as weather state in the 

SYNOP reports (e.g., thunderstorm, rain shower, drizzle). Therefore, present and 

past weather (weather state, which is the main criterion) and cloud type (the 
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secondary criterion) are the variables employed in the algorithm for subdivision of 

precipitation into predominantly convective and stratiform. 

The codes of weather states associated with convective and stratiform 

precipitation are summarized in Tables A.1 and A.2 (see Attachment A.1), 

respectively. The two main groups of weather states typical for convective 

precipitation (Table A.1) are showers (codes 80–90) and thunderstorms (codes 91–

99). We include also codes that report thunderstorm or shower without precipitation 

at the station at the time of observation, corresponding to a situation wherein the 

precipitation event ends before the observation term or occurs in the station’s vicinity 

(codes 17–19, 25–27, and 29). The three main groups of weather states typical for 

stratiform precipitation (Table A.2) are drizzle (codes 50–59), rain (not in the form of 

showers; 60–69) and snow (not in the form of showers; 70–79). No weather state 

codes other than those included in Tables A.1 and A.2 report precipitation events. 

The secondary criterion used in the algorithm for subdivision of precipitation into 

convective and stratiform is information on cloud type. Convective precipitation is 

associated with cumulonimbus and cumulus clouds while stratiform precipitation 

with nimbostratus, stratocumulus, stratus and altostratus. We use this information as 

an auxiliary criterion, as explained below. 

 

 

Figure 1.2: Scheme of the algorithm. 

 

The algorithm is structured into three main steps (Figure 1.2). First, it searches for 

non-zero 6-hour precipitation amounts and reads all hourly data for weather state and 

cloud type during the 6-hour period. Second, it subdivides precipitation into 
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convective and stratiform using the main criterion. If the precipitation amount is 

classified as mixed/unresolved at this stage (occurrence of codes of weather state 

associated with both convective and stratiform precipitation within the 6-hour 

interval, or data on weather state is missing), the secondary criterion based on the 

cloud type is used. This leads to additional subdivision. Finally, time series of 

convective, stratiform and mixed/unresolved 6-hour precipitation amounts are 

created. 

In section 1.4, we compare performance of three versions of the algorithm. In the 

first, precipitation is subdivided into convective and stratiform only in cases when 

codes of weather state (main criterion) or cloud type (if secondary criterion is 

applied) associated with only one type of precipitation (convective or stratiform) 

occurred through the 6-hour period (hereafter termed ‘strict’ subdivision). If this is 

not the case, the 6-hour precipitation amount is always classified as 

mixed/unresolved.  

The second tested version of the algorithm, leading to ‘maximum’ subdivision of 

precipitation, is based on prevailing counts of values (of weather state or cloud type) 

associated with convective and stratiform precipitation within the 6-hour period, and 

so a part of the mixed/unresolved precipitation is further subdivided. The main 

criterion is adjusted to reflect that heavy convective precipitation contributes more to 

precipitation amounts by giving larger weights to codes associated with heavy 

precipitation (codes 91–99 and 29, Table A.1). For example, if there is a 

thunderstorm with heavy rain (convective event) and drizzle and rain (stratiform 

event) during the 6-hour period, the whole 6-hour precipitation amount is classified 

as convective. Although such an assumption is reasonable and leads only to 

negligible errors in most cases, we use this ‘maximum’ subdivision only for purposes 

of comparison with the other two versions of the algorithm. 

The final algorithm is a compromise between the ‘strict’ and ‘maximum’ 

subdivision. First, precipitation is subdivided using the algorithm for ‘strict’ 

subdivision. Precipitation classified as mixed/unresolved is then further subdivided 

on the basis of whether there are codes of weather state corresponding to heavy 

convective precipitation in combination with codes corresponding to light stratiform 

precipitation only, and vice versa. For example, if codes of weather state denoting a 

moderate to heavy shower (convective event) are combined with light drizzle or light 

rain (stratiform event) during the 6-hour period, as is sometimes the case, and there 
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are no codes of weather state for moderate or heavy rain (corresponding to stratiform 

precipitation), then the 6-hour precipitation is classified as convective. This is a 

reasonable approach given the fact that precipitation rates for light drizzle or rain are 

negligible compared to those for moderate to heavy showers or thunderstorms. In 

cases when both convective and stratiform precipitation occurred within the 6 hours, 

on the other hand, and there is no indication that contribution from one of the types is 

negligible, then these 6-hour amounts are classified as mixed/unresolved. 

 

 

1.4 Performance of the algorithm 

 

Comparison of the results of the final algorithm with those for the ‘strict’ and 

‘maximum’ subdivision is shown in Figure 1.3 for stations 11723 Brno-TuĜany (241 

m a.s.l.), 116Ř3 Svratouch (737 m a.s.l.) and 117Ř7 Lysá hora (1322 m a.s.l.), which 

correspond with lowland, highland and mountain location, respectively. 

The final version of the algorithm subdivides about 95% of precipitation amounts, 

compared to 78–ř0% for the ‘strict’ subdivision and about řř% for the ‘maximum’ 

subdivision. An even slightly higher subdivision rate is achieved in the final 

algorithm for the number of heavy precipitation events, defined as 6-hour 

precipitation amounts ≥ 5 mm (last column in Figure 1.3), while the algorithm is 

somewhat less successful for the total number of events with non-zero 6-hour 

precipitation. It follows that the proposed algorithm, as expected, subdivides larger 

precipitation amounts (which are linked to more distinct weather conditions) better 

than light precipitation, which means that it is particularly suitable for analysis of 

extremes. Comparing the results from the ‘strict’ subdivision and the final algorithm 

shows that the majority of initially mixed precipitation is ultimately classified as 

predominantly convective (Figure 1.3). 

In annual data, precipitation of stratiform origin represents 54–77% and 

convective 19–37% of total precipitation amounts (Figure 1.3, Table 1.2). The 

percentage of mixed/unresolved precipitation is similar in all seasons, between 5% 

and 7% if averaged over the stations. It is largest at mid-elevated stations (about 

600–800 m a.s.l.), probably because the ratio of convective and stratiform 

precipitation is most balanced here, and 6-hour events with both convective and 
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stratiform precipitation are most common (the percentage of convective precipitation 

increases with altitude first and then declines, so the dependence is not monotonous). 

 

 
Figure 1.3: Percentage of precipitation amounts, number of non-zero precipitation 

events and number of heavy precipitation events (6-hour precipitation ≥ 5 mm) of 
convective (red), stratiform (green) and mixed/unresolved (blue) precipitation:  

‘strict’ subdivision (top), ‘maximum’ subdivision (middle) and the final algorithm 

(bottom). 

 

 

Table 1.2: Percentage of convective, stratiform and mixed precipitation amounts in 

all-year data and individual seasons: average (minimum – maximum) over 11 

stations. 

 Spring Summer Autumn Winter All year 

Convective 
28.5 

(17.8 – 38.3) 

48.8 

(35.0 – 57.7) 

13.9 

(8.9 – 20.9) 

6.2 

(1.5 – 10.6) 

29.1 

(19.0 – 36.7) 

Stratiform 
64.2 

(53.2 – 77.7) 

45.0 

(33.4 – 60.8) 

79.8 

(66.9 – 86.7) 

88.6 

(79.4 – 96.6) 

64.6 

(54.0 – 77.0) 

Mixed 
7.1 

(3.1 – 11.5) 

6.2 

(3.3 – 8.9) 

6.3 

(1.8 – 12.1) 

5.2 

(1.2 – 9.9) 

6.3 

(2.6 – 10.4) 
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1.5 Discusion and summary 

 

Methods utilizing radar and satellite data are widely used for subdivision of 

convective and stratiform precipitation (e.g., Lam et al., 2010; Sokol and Bližňák, 

2009). Although they provide useful tools for such meteorological applications as 

predicting precipitation and analysing development of precipitation systems (e.g., Yu 

et al., 2010), they are not applicable for climatological studies because of the short 

records of available data. From this point of view, the methodology proposed by 

Ruiz-Leo et al. (2013) was a step forward, because it was able to provide long time 

series of convective and stratiform precipitation (although they applied it to an 11-

year time series only). However, this method classifies heavy 6-hour precipitation as 

convective by definition, which may be reasonable for the specific study area (north-

eastern coast of Spain) but this is not the case in other mid-latitudinal regions. 

Another simplifying assumption was that all precipitation amounts can be classified 

as either convective or stratiform. 

While the algorithm we propose is based on 6-hour precipitation amounts as well, 

it makes use also of additional hourly weather data from SYNOP reports 

(information on weather state and cloud type during the 6-hour interval). Therefore, 

it allows for subdivision of precipitation into convective and stratiform on the basis 

of other weather characteristics, not the precipitation rate itself. In this way, heavy 

precipitation amounts, too, are subdivided into convective and stratiform (or 

mixed/unresolved), which is in contrast to the method proposed by Ruiz-Leo et al. 

(2013). We note that heavy precipitation associated with several recent major floods 

in Central Europe was stratiform (ěezáčová et al., 2005a; Bissolli et al., 2011), so it 

is important to relax the assumption that all 6-hour precipitation amounts exceeding a 

given threshold are of convective origin. The proposed method therefore has great 

potential also for the analysis of extremes, both as to their statistical distributions and 

analysis of their long-term variability and change (the time series available in the 

present study cover almost 30 years). 

The proposed algorithm subdivides about 95% of precipitation amounts into 

convective and stratiform. Inasmuch as it is more successful in subdivision of 

moderate and heavy precipitation than light precipitation, it is particularly suitable 

for applications to analyse precipitation extremes. 
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In annual data, approximately one-quarter to one-third of precipitation amount is 

convective and the rest is stratiform. In all seasons, 5–7% of precipitation is 

classified as mixed/unresolved. This finding is not unexpected, as the two basic types 

of precipitation may both occur within the 6-hour interval (and both may contribute 

significantly to the 6-hour amount), and they can even occur simultaneously. We 

note that the concepts of stratiform and convective precipitation are simplified and 

there is no clear borderline between the two (for example in the case of embedded 

convection within large-scale stratiform clouds and related spatial patterns of 

precipitation). In spite of these limitations, the algorithm may be useful in follow-up 

applications, including for evaluating regional climate models which simulate 

convective and stratiform precipitation through separate parameterizations (Dai, 

2006), but only aggregated precipitation amounts are usually evaluated in their 

outputs, which yields limited insight into sources of model biases. 
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2 Characteristics of convective and stratiform 

precipitation
*
 

 

 

2.1 Introduction 

 

When studying characteristics of precipitation in mid-latitudes, it is appropriate to 

focus on the basic types, convective and stratiform. Stratiform precipitation is large-

scale precipitation from stratiform clouds (mainly nimbostratus, but also altostratus, 

stratocumulus and stratus). It is usually long-lasting, has smaller intensity and, due to 

relatively small updraft movements (~10
−2–10

−1
 m.s

−1
), its precipitation elements are 

smaller (Houze, 1993). Convective precipitation is that from convective clouds 

(cumulus congestus and cumulonimbus). It occurs predominantly in the form of 

more localized rain showers and thunderstorms, it may have larger intensity, and its 

precipitation elements may grow to large sizes (e.g., hailstones several centimetres in 

diameter; Houze, 1993) due to strong updraft movements (~1–10 m.s
−1

). 

Although the concepts of stratiform and convective precipitation are simplified 

and there is no clear borderline between the two (for example in the case of 

embedded convection within large-scale stratiform clouds and related spatial patterns 

of precipitation), these two types are associated with different precipitation growth 

mechanisms and both play important roles in precipitation amounts falling during 

warm half-year in Central Europe. 

After a short description of the data and methods in section 2.2, basic 

characteristics of convective and stratiform precipitation are presented in section 2.3. 

Section 2.4 contains a discussion of the results, and summary of results follow in 

section 2.5. 

 

 

 

 

                                                 
* This chapter is based on: 

Rulfová Z, Kyselý J. 2013. Disaggregating convective and stratiform precipitation from station 

weather data. Atmospheric Research 134: 100–115. 
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2.2 Data and methods 

 

The data and the algorithm for subdivision of observed precipitation into convective 

and stratiform was described in Chapter 1. Time series of 6-hour convective and 

stratiform precipitation amounts obtained using the final version of the algorithm are 

analysed in this chapter with respect to their basic climatological characteristics such 

as annual cycle of precipitation amount, dependence on altitude and temperature. 

Furthermore we analyse trends in precipitation amounts and the number of wet 

days (defined as days with precipitation ≥ 1.0 mm; Moberg and Jones 2005) over 

1982–2010, separately for total, convective and stratiform precipitation. Seasonal 

precipitation characteristics are analysed. We exclude winter season, however, as 

then convective precipitation amounts are very small (cf. Table 1.2) and thus lead to 

inconclusive results as to temporal changes and trends. 

Since precipitation has large random spatial variability and the study area is 

relatively small, we evaluate time series obtained by averaging data from all stations. 

The averages are calculated from scaled stations’ data in order to give the same 

weight to all stations (notwithstanding the observed precipitation amount and number 

of wet days, which are larger at higher-elevated stations). Characteristics at 

individual stations were first divided by their mean values over the studied period 

and then averaged over all 11 stations. 

Trends of indices were estimated using non-parametric Sen’s estimator of slope, 

also known as the ‘median of pair-wise slopes’ or Theil-Sen estimator (Sen, 1968; 

Kyselý, 200ř). The statistical significance of the trends was tested using the Mann–

Kendall test (Mann, 1945; Kendall, 1975). This is a rank-based test that is robust to 

outliers and does not depend on the assumption of Gaussian distribution of residuals. 

The statistical significance of precipitation trends is usually lower compared with 

other climate elements due to large spatial and temporal variability of precipitation. 

Therefore, we evaluate the results at lower significance levels of p = 0.1 and p = 0.2.  

Since most climate series are serially correlated due to the multi-year nature of 

natural climate variability, an approach to computing trends and their significance 

described in Wang and Swail (2001) or Zhang et al. (2000) was used, as it is able to 

remove autocorrelation from the time series. This method produces a slightly smaller 

magnitude of trend than does the traditional linear model, and, therefore, some trends 
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identified as statistically significant using linear regression are, in this case, not 

significant due to positive autocorrelations in the data. All trend magnitudes were 

expressed as relative changes of the examined characteristics in %/10 years, allowing 

easier comparison among all indices and seasons. 

 

  

Figure 2.1: Example of boxplots of convective and stratiform precipitation for each 

month: all non-zero 6-hour precipitation amounts (left), and maximum monthly 6-

hour precipitation amounts (right). 

 

 

2.3 Results 

 

2.3.1 Annual cycle of precipitation 

Boxplots of non-zero 6-hour precipitation amounts and their monthly maxima 

(Figure 2.1) at lowland station 11723 Brno-TuĜany show that larger 6-hour 

precipitation amounts occur in summer for both convective and stratiform 

precipitation, and that there is greater variance of the 6-hour precipitation amounts in 

summer than in winter. In summer and May, maximum precipitation is 

predominantly convective; in the cold half of the year, maximum precipitation is 

stratiform. The differences between characteristics of convective and stratiform 
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precipitation are smaller for all non-zero precipitation amounts than the monthly 

maxima. Similar behaviour of 6-hour precipitation is found at all stations (see 

Attachment A.2) except for the highest-elevated one, 11787 Lysá hora (Figure 2.1). 

This mountain station has stratiform precipitation maximum greater than convective 

in all months except July.  

Precipitation has a clear annual cycle in Central Europe, with the monthly 

maximum occurring between June and August at all stations (Figure 2.2). This 

annual cycle is determined by the annual cycle of convective precipitation only (with 

its maximum in June/July and its minimum in January/February), while the 

contribution of stratiform precipitation is relatively constant during the year at all 

stations (Figure 2.2). 

 

 
Figure 2.2: Annual regime of monthly precipitation amounts by different type. 

 

In year-round data, stratiform precipitation predominates at all stations and the 

fraction of convective precipitation is very small in winter (5% of total precipitation 

if averaged over the stations; Table 1.2). On average, the contribution of convective 

and stratiform precipitation to summer amounts is almost balanced: 49% and 45% of 
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precipitation is of convective and stratiform origin, respectively, and the remaining 

6% is mixed/unresolved. Convective precipitation tends to prevail at lower-elevated 

stations and in the south-western part of the country in summer, while stratiform 

precipitation dominates throughout the year at higher-elevated stations and in the 

northeast (Figure 2.2). The contribution of convective precipitation is by far the 

smallest at the highest-elevated station, 117Ř7 Lysá hora. 

 

 
Figure 2.3: Dependence between mean seasonal precipitation amount and altitude (t 

represents relative change of convective or stratiform precipitation amount in %/100 

m). 

 

 

2.3.2 Dependence on altitude 

Precipitation amounts increase with altitude, and this dependence is found for both 

precipitation types (Figure 2.3). There is, however, a large difference in the slopes of 

the dependence on altitude between stratiform and convective precipitation, with 

dependence of stratiform precipitation on altitude being much stronger. Particularly 

noteworthy is that very similar slopes are found in all seasons (increase by 10–14% 

per 100 m for stratiform, and by 5–9% per 100 m for convective precipitation). The 
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slopes are the same in summer and spring (12% per 100 m for stratiform and 5% per 

100 m for convective precipitation), when the contribution of convective 

precipitation is largest (Table 1.2). This suggests a robust feature of the dependence 

on altitude and different roles of orography for the two components. 

Dependence of mean seasonal 6-hour precipitation maxima on altitude is much 

weaker than is that of total seasonal precipitation amount (Figure 2.4), particularly in 

the case of convective precipitation, and it is again consistently stronger for 

stratiform precipitation in all seasons. 

 

 
Figure 2.4: Same as in Figure 2.3 but for mean seasonal 6-hour precipitation 

maxima. 

 

In summer, when proportion of convective and stratiform precipitation is almost 

balanced on average, we can study dependence of this proportion on precipitation 

rates (Figure 2.5). The fraction of convective precipitation tends to increase with 

rising precipitation rates, yet again except for the highest-elevated station 11787, 

where precipitation of all rates is predominantly of stratiform origin and even heavy 



- 23 - 

 

precipitation is more likely stratiform than convective. The percentage of 

mixed/unresolved precipitation declines with precipitation rates at most stations. 

 

 
Figure 2.5: Dependence between precipitation amount and type of precipitation in 

summer. Percentage of the total precipitation amount above given threshold is shown 

on the vertical axis; threshold (6-hour precipitation amount) is shown on the 

horizontal axis. 

 

 

2.3.3 Dependence on temperature 

The relationship of convective and stratiform precipitation to mean daily temperature 

in summer is shown in Figure 2.6. We stratified the precipitation data based on the 

mean daily temperature into 1°C wide bins, and computed the percentage of 

convective and stratiform precipitation in each bin. At all stations, stratiform 

precipitation prevails for lower mean daily temperatures (to about 15°C at lowland 

stations and 10°C at the highest-elevated stations) and convective for higher 

temperatures. This relationship becomes much weaker at the seasonal time scale, 

however, if the fraction of convective and stratiform precipitation is evaluated 

against mean summer temperature anomaly (Figure 2.7).  
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Figure 2.6: Dependence between precipitation amounts of different type and mean 

daily temperature in summer. Precipitation amounts were divided into 1°C wide bins 
and the data were fitted by polynomial function. Bins with less than 20 precipitation 

events at the margins were disregarded. 

 

 

Figure 2.7: Dependence between precipitation amounts of different type (averaged 

over the stations) and anomaly of mean summer temperature (with respect to the 

station mean over 1982–2010). Precipitation amounts were divided into 0.5°C wide 
bins. 
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2.3.4 Trend analysis 

In all three examined seasons and for both precipitation characteristics, convective 

precipitation increases more than stratiform (Table 2.1, Figure 2.8). The increase is 

largest in autumn (16–20%/10 years in both characteristics of convective 

precipitation, significant at p = 0.1) and far exceeds the increase in stratiform 

precipitation in this season (5–11%/10 years). Since there is a clear tendency to 

positive trends in both convective and stratiform precipitation in autumn, the 

increases in total precipitation characteristics are largest in this season. 

 

Table 2.1: Trend magnitudes (expressed as relative changes of the examined 

characteristics in %/10 years) of averaged precipitation characteristics over 1982–
2010 in spring, summer and autumn. The data obtained by the algorithm were scaled 

for individual stations by their long-term mean and then averaged over the stations. * 

(**) denotes trend significant at the 0.2 (0.1) level. 
 Spring Summer Autumn 

 Total Convective Stratiform Total Convective Stratiform Total Convective Stratiform 

Precipitation 

amount 

 

2.6 8.0* -3.0 5.2 7.4* 2.7 11.5** 15.9** 10.7** 

Number of 

wet days 
1.5 14.5** -3.7 1.9 6.3* -9.4 5.7* 20.2** 4.4 

 

 

 
Figure 2.8: Time series of precipitation amounts (top) and number of wet days 

(bottom) for total, convective and stratiform precipitation over 1982–2010 in spring, 

summer and autumn. The data obtained by the final algorithm were scaled for 
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individual stations by their long-term mean and then averaged over the stations. 

Linear trends estimated by the non-parametric method are plotted.  

 

In spring, by contrast, only characteristics of convective precipitation increase 

(significant at p = 0.1 for the number of wet days and p = 0.2 for precipitation 

amounts) while those of stratiform precipitation decline. A similar pattern is found in 

summer when trends of convective precipitation are significant at p = 0.2. These 

counterbalancing trends of convective and stratiform precipitation lead to the fact 

that trends in characteristics of total precipitation are relatively small (but increasing 

for both precipitation amounts and the number of wet days) in spring and summer. 

Trend analysis of precipitation characteristics was supplemented by trend analysis 

of mean seasonal temperatures, calculated again by averaging temperature data from 

the 11 stations. Trends of mean seasonal temperatures over 1982–2010 are increasing 

in all seasons, notwithstanding whether seasonal means are calculated from daily 

maximum, minimum or mean temperature. The trends are statistically significant in 

summer (p = 0.05) and spring (p = 0.1, for mean and maximum temperatures only; 

Table 2.2). Except for autumn, the trends are stronger for seasonal temperatures 

calculated from daily maxima (which are more closely linked to conditions suitable 

for convection) than minima. This points to a possible link of increasing convective 

precipitation to warming surface temperatures. 

 

Table 2.2: Trend magnitudes (expressed in °C/10 years) of averaged daily 
maximum, minimum and mean temperature over 1982–2010 in spring, summer and 

autumn. * (**) denotes trend significant at the 0.1 (0.05) level. 

 Spring Summer Autumn 

Mean daily temperature 0.43* 0.75** 0.19 

Tmin 0.26 0.66** 0.29 

Tmax 0.55* 0.70** 0.06 

 

 

2.4 Discussion 

 

2.4.1 Annual cycle of precipitation 

In Central Europe, the annual precipitation cycle has a single maximum in June and 

July and minimum in January and February (Tolasz et al., 2007). We find that this is 
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entirely due to the annual cycle of convective precipitation while stratiform 

precipitation is almost constant throughout the year.  

Stratiform precipitation dominates at all stations in all seasons except summer. In 

summer, the fraction of convective precipitation is largest as a result of optimal 

weather conditions supporting the formation of convective cells. Convective 

precipitation does not prevail in summer at all stations, however, and this contradicts 

previous assessments (Tolasz et al., 2007) based on qualitative analysis only. This is 

the case of several higher-elevated stations and stations in the eastern part of the 

Czech Republic, where cloud belts associated with Mediterranean cyclones play a 

more important role in inducing precipitation (Hanslian et al., 2000). This 

precipitation falls usually from widespread stratiform clouds, so the fact that 

convective precipitation does not dominate even in summer at these stations has a 

climatological interpretation. 

 

2.4.2 Spatial patterns of convective and stratiform precipitation and 

dependence on altitude 

In summer, low and moderate precipitation rates are associated with stratiform and 

convective precipitation whereas heavy precipitation is predominantly of convective 

origin at all stations except for mountain station 117Ř7 Lysá hora. The peculiarity of 

this station probably relates to the relatively common occurrence of stratiform 

precipitation associated with Mediterranean cyclones in the eastern part of the Czech 

Republic, and the prevailing flow from the northern quadrant leads to orographically 

enhanced precipitation at the windward side of the Beskydy mountains (Hanslian et 

al., 2000; ěezáčová et al., 2005a). We also find that stratiform precipitation has 

much stronger dependence on altitude than does convective, and the slopes of the 

dependence are consistent among seasons for both types of precipitation. The 

dependence is weaker for mean seasonal maxima of 6-hour precipitation of both 

stratiform and convective origin. The latter agrees with the results of Sokol and 

Bližňák (200ř), who studied the precipitation–altitude relationship of short-term 

precipitation from radar data divided into total and convective. They showed that 6-

hour total precipitation depends on altitude for low and high precipitation rates while 

6-hour convective precipitation depends on altitude for low rates only. The slopes of 
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the fitted lines were smaller for heavy precipitation in the cases of both total and 

convective precipitation. 

Our findings support to some extent the general concept that heavier convective 

precipitation is more likely to arise at lower-elevated stations while heavier 

stratiform precipitation is more likely at higher-elevated stations. Although 

convective precipitation is more frequent at higher-elevated stations (Bek et al., 

2010) due to conditions suitable for its formation (topographically triggered 

convection; Frei and Schär, 1řřŘ), it is mostly weaker than is heavy convective 

precipitation at lower-elevated stations (Bek et al., 2010), which is mostly associated 

with atmospheric fronts.  On the contrary, heavy stratiform precipitation is more 

likely at higher-elevated stations where influences of altitude, declination and 

prevailing wind direction affect the precipitation amount (Karagiannidis et al., 2012). 

Despite these facts, the spatial distribution of precipitation in the mountains can vary 

to a large extent. For instance, during strong winds and due to redistribution 

processes over the mountainous ridges, the largest amount of precipitation can 

appear in the valley and the smallest on the exposed windward slopes (Sevruk, 

1997). 

 

2.4.3 Dependence on temperature 

There is ongoing discussion concerning possible changes in precipitation rates and 

relative contributions of convective and stratiform precipitation with increasing 

surface temperatures. Our analyses as to the dependence of convective and stratiform 

precipitation on mean daily temperature in summer shows results similar to those 

reported by Haerter and Berg (2009) for simulated data in the Netherlands, namely 

increase of convective precipitation and decrease of stratiform precipitation with 

surface air temperature at the daily scale. Convective precipitation prevails over 

stratiform at mean daily temperatures higher than about 15°C at lowland stations and 

10°C at the highest-elevated stations. At the seasonal scale, however, there is only 

weak dependence of the proportions of convective and stratiform precipitation on 

mean summer temperature. Therefore, the data suggest that possible climate change 

and increase of mean seasonal temperature may have weaker influence on changes in 

the proportions of convective and stratiform precipitation in warm season. 
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2.4.4 Trends of convective and stratiform precipitation 

For all three examined seasons in which convective precipitation represents an 

important part of total precipitation (spring, summer and autumn), convective 

precipitation is increasing over time more than stratiform. The sign of the trends in 

characteristics of total precipitation (precipitation amounts and number of wet days) 

are governed by trends in convective precipitation. Increasing trends in convective 

precipitation correspond with increasing trends in mean seasonal temperatures, 

which support conditions suitable for the formation of convective precipitation. This 

topic deserves further investigation to determine whether similar patterns for trends 

in seasonal temperature and convective precipitation are to be found also in other 

regions, as well as whether these represent manifestations of a single underlying 

physical mechanism or happen by coincidence. Our results contrast with those of 

Ruiz-Leo et al. (2013), who found steeper (positive) trends for stratiform than 

convective precipitation in the eastern Spanish coast. They, however, had examined a 

much shorter time period (1998–2008) and used a different algorithm for subdivision 

of precipitation, as discussed above. 

 

 

2.5 Summary 

 

Based on analysis of station data in the Czech Republic over 1982–2010, we show 

that:  

 Stratiform precipitation predominates at all stations in all seasons 

except summer, at which time the proportion of convective precipitation 

increases and leads to slightly higher precipitation amounts of convective 

than stratiform origin at most (but not all) stations. Stratiform precipitation is 

relatively constant throughout the year (and does not contribute to the annual 

cycle of total precipitation) while convective has a strong annual cycle. 

 Stratiform precipitation amounts increase with altitude much faster 

than convective, and the slopes of the altitudinal dependence are consistent in 

all seasons for both stratiform and convective precipitation. 
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 Proportions of convective and stratiform precipitation strongly depend 

on mean daily surface air temperature in summer. Percentage of convective 

precipitation sharply increases and stratiform decreases with rising daily 

temperature. This relationship is much weaker at the seasonal scale, however, 

which indicates that climate change may have smaller influence on the ratio 

of convective and stratiform precipitation than suggested by the analysis at 

the daily scale. 

 Increasing trends in convective precipitation are found in all three 

examined seasons (spring, summer, autumn) over 1982–2010, the slopes 

being larger than those for stratiform precipitation in each season and relating 

to both precipitation amounts and number of wet days. This suggests that the 

observed increases in total precipitation is primarily due to increases in 

convective precipitation, and this effect may also be related to an observed 

warming of surface air temperatures, which, in turn, may enhance instability 

and support conditions for stronger convection. 
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3 Convective and large-scale precipitation in 

regional climate models

 

 

 

3.1 Introduction 

 

Precipitation is one of the variables with the largest uncertainty in climate models, 

due to the large number of parameterized processes involved in its simulation. This is 

particularly the case for summer precipitation in mid-latitudes, which is controlled by 

convective processes at small spatial scales while cloud belts associated with 

cyclones and atmospheric fronts at larger scales. Although the two components may 

be comparable in their contribution to overall rainfall amounts (see Chapter 2), they 

differ substantially in manifesting spatial and temporal variability that is crucially 

related to the hydrological response. Uncertainty and errors associated with 

reproducing the convective processes in climate models are particularly large (e.g., 

Dai et al., 2006; Déqué et al., 2007; Brockhaus et al., 2008; Hohenegger et al., 2008; 

Kendon et al., 2012) and contribute significantly to uncertainty in climate change 

projections. Biases in the relative proportion of convective and stratiform 

precipitation are important also because associated processes affect other aspects of 

the simulated climate through different mass and heating profiles, which may have 

important implications for atmospheric circulation and thermodynamics (Houze, 

1997). For an ensemble of 18 global climate models (GCMs), Dai et al. (2006) 

reported large overestimation of convective precipitation over tropical regions and 

generally smaller biases in the mid-latitudes. 

While many studies have dealt with evaluation of precipitation characteristics in 

regional climate model (RCM) simulations over Europe (e.g., Fowler et al., 2007; 

Jacob et al., 2007; May, 2007; Boberg et al., 2010; Hanel and Buishand, 2010; 

Herrera et al., 2010; Kjellström et al., 2010; Kyselý et al., 2012), including 

dependence on horizontal resolution (e.g., Durman et al., 2006; Boyle and Klein, 

2010; Rauscher et al., 2010; Li et al., 2011; Kendon et al., 2012) and links to 

                                                 
 This chapter is based on: 

Kyselý J, Rulfová Z, Farda A, Hanel M. 2016. Convective and stratiform precipitation characteristics 

in an ensemble of regional climate model simulations. Climate Dynamics 46(1): 227–243. 
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atmospheric circulation (Maraun et al., 2012; Plavcová et al., 2013), little attention 

has been devoted to investigating the ability of RCMs to reproduce basic properties 

of convective (subgrid) and stratiform (large-scale) precipitation that are simulated 

separately through deep (precipitating) convection and large-scale precipitation 

parameterizations. One reason is the lack of long-term series of observed 

precipitation data subdivided according to their origin into convective and stratiform, 

to which the simulated characteristics can be compared. 

Precipitation in current climate models (except for very high-resolution 

convection-permitting RCMs) originates from two distinct parameterization 

schemes: the large-scale scheme, which deals with precipitation events affecting 

larger areas (typically on mesosynoptic and synoptic scales), and the subgrid scheme, 

typically capturing small-scale precipitation events usually associated with deep 

(moist) convection episodes. This dual approach roughly corresponds to processes in 

the real atmosphere, although, important differences exist between convection in the 

real atmosphere and its formulation in numerical weather prediction and climate 

models. The differences are related to model resolution that separates scales directly 

resolved by a model from subgrid scales for which parameterizations must be 

deployed. When grid spacing falls below about 50 km, it becomes increasingly likely 

that assumptions of the scale-separation will be violated (Molinari and Dudek, 1992). 

The resolution in which convective clouds are partly resolved but convective 

parameterizations are still needed is termed “grey zone” in the modelling 

community. Both parameterized and unparameterized convective clouds may exist 

simultaneously in a grid column, and the separation of the large-scale and convective 

precipitation components becomes physically unsound as the resolution increases (cf. 

Williamson 2013). Although typical grey zone scales are in the range of 1–10 km 

(http://www.knmi.nl/samenw/greyzone/), some large convective storms may get 

resolved also at a coarser resolution of ~25 km used in the present study (see below). 

Organised convective systems may be captured directly in the form of large-scale 

vertical movements and attributed to large-scale (stratiform) precipitation, while on 

the other hand, stratiform precipitation within mesoscale convective systems may be 

treated partly by the convection parameterization (e.g., Gregory and Guichard, 2002; 

Hu et al., 2011). These effects may compensate for one another to some extent but 

add to the model convection/stratiform precipitation uncertainty. 

http://www.knmi.nl/samenw/greyzone/
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In this study, we adopt the simplified assumption that the subgrid (large-scale) 

precipitation computed in climate models corresponds to convective (stratiform) 

precipitation in the real atmosphere, although the results have to be interpreted with 

respect to the above-mentioned caveats in the model separation of the two 

components. The same approach, in which the RCM-simulated convective and large-

scale precipitation were considered proxies for precipitation types, has recently been 

employed by Fischer et al. (2015) to study projected changes in precipitation 

characteristics over Switzerland. 

A number of studies mention the convective parameterization scheme as the main 

source of error in simulating precipitation in current climate models. This conclusion 

is often drawn, however, from inference based upon biases in daily or hourly 

precipitation extremes (Frei et al., 2003; Lenderink and van Meijgaard, 2008; Hanel 

and Buishand, 2010; Gregersen et al., 2013) or from comparison of climate models 

involving a convection parameterization scheme with cloud-resolving/convection-

permitting models explicitly representing convection (Guichard et al., 2004; 

Hohenegger et al., 2008; Kendon et al., 2012). As shown by Kendon et al., (2014), 

the deficiencies in simulating convective precipitation may have severe 

consequences for the estimated changes in precipitation extremes. Although the 

results from convection-permitting climate models are promising, their high 

computational cost might impede wider availability of their simulations. Therefore, 

the identification of deficiencies in precipitation simulated by the convective 

parameterization schemes is relevant for further model development and assessment 

of future changes.  

In this study, we evaluate characteristics of convective and stratiform precipitation 

in an ensemble of 11 ERA-40 driven RCM simulations for recent climate over the 

Czech Republic (Central Europe). We make use of a recently proposed algorithm for 

sudvivision of precipitation into predominantly convective and stratiform based on 

SYNOP reports described in Chapter 1.  

The data and methods are introduced in section 3.2. The simulation of convective 

and stratiform precipitation in recent climate (1982–2000) is evaluated against 

observations in Section 3.3. The discussion and summary of results follow in 

sections 3.4 and 3.5, respectively. 
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3.2 Data and methods 

 

3.2.1 Observed data 

The observed precipitation data originate from SYNOP reports at 10 stations 

operated by the Czech Hydrometeorological Institute (for more details see Chapter 

1). The time series of daily convective and stratiform precipitation amounts were 

obtained using the algorithm proposed and evaluated in Chapter 1. Because the 

algorithm subdivides precipitation into three categories (convective, stratiform and 

mixed), the mixed precipitation amounts were split in two halves that were added to 

the convective and stratiform amounts, respectively (on the daily basis). 

By contrast to previous chapter, we excluded the highest-elevated station (Lysá 

hora, 1322 m a.s.l.) from the analysis, for two main reasons: 1) it is located on a 

summit of a relatively isolated mountain, i.e. in a location that is not well represented 

in RCMs with the given resolution; 2) the mean altitude of grid boxes and stations 

over the study area is much closer when the highest-elevated station is excluded, 

which allows for a more fair comparison of spatially averaged or pooled data (see 

also below). 

We note that the comparison of convective and stratiform precipitation 

characteristics against RCMs cannot be carried out for gridded station data, as there 

are no other SYNOP stations with high-quality and relatively complete records in the 

study area, and the subdivision into two basic types of precipitation cannot be carried 

out in common rain-gauge data that have a much denser network of measuring sites 

but other variables auch as the weather state or cloud type are not observed. 

 

3.2.2 Regional climate model (RCM) simulations 

The RCM simulations originate from the ENSEMBLES project 

(http://www.ensembles-eu.org) database. We examine runs driven at the lateral 

boundaries by meteorological fields from the ERA-40 reanalysis (Uppala et al., 

2005), forcing the atmospheric motion to be close to the observations. Details of the 

11 examined RCMs are given in Table 3.1. Horizontal resolution of all simulations is 

25 km (0.22°) and the number of grid boxes in the studied area ranges from 148 to 

174. 

 

http://www.ensembles-eu.org/
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Table 3.1: RCM simulations examined. 

Acronym Institute Reference Grid type 
No. of 

grids 

Mean 

altitude 

[m] 

CLM ETHZ (Swiss Federal Institute 

of Technology Zürich) 
Jaeger et al. (2008) Rotated lon-lat 174 456 

HIRHAM DMI (Danish Meteorological 

Institute) 

Christensen et al. (1996)  Rotated lon-lat 174 456 

RACMO KNMI (Royal Netherlands 

Meteorological Institute) 

Lenderink et al. (2003) Rotated lon-lat 174 456 

RCA SMHI (Swedish Meteorological 

and Hydrological Institute) 

Kjellström et al. (2005) Rotated lon-lat 174 456 

RCA_C4I C4I (Community Climate 

Change Consortium for Ireland) 

Kjellström et al. (2005) Rotated lon-lat 174 457 

REMO MPI (Max-Planck Institute) Jacob (2001) Rotated lon-lat 174 456 

      

Aladin CNRM (National Centre for 

Meteorological Research) 

Radu et al. (2008) Lambert conformal 165 447 

Aladin_CZ CHMI (Czech 

Hydrometeorological Institute) 

Farda et al. (2007) Lambert conformal 166 446 

RegCM ICTP (International Centre for 

Theoretical Physics) 

Giorgi et al. (2004) Lambert conformal 148 443 

PROMES UCLM (University of Castilla-

La Mancha) 

Sanchéz et al. (2004) Lambert conformal 154 452 

GEMLAM EC (Environment Canada) Zadra et al. (2008) Rotated lon-lat 174 456 

OBS    10 509 

 

Despite the same horizontal resolution, orography differs among the models 

(examples are shown in Figure 3.1). The largest difference is between RegCM on 

one hand, in which orography is most smoothed (with no grid boxes exceeding 700 

m a.s.l.), and CLM on the other, with most realistic orography (Figure 3.1). 

Differences between model and real altitude are largest in mountain regions: While 4 

highest mountain ranges in the Czech Republic exceed 1300 m a.s.l. and the highest 

mountain reaches 1602 m a.s.l., the altitude of grid boxes does not excess 1000 m 

a.s.l. in most of the RCMs. Hence differences in altitude between mountain summits 

and covering grid boxes may far exceed 500 m a.s.l., which would make comparison 

between station and related grid box data biased. 

Therefore, we focus on comparison of characteristics which are spatially averaged 

and/or pooled (in the form of boxplots across stations and grid boxes) and do not 

discuss features related to locations of individual stations or differences between 

regions of the Czech Republic. 

Because observed data span 1982–2010 while the RCM runs cover the 1961–2000 

period, we analyse the 19-year overlapping period (1982–2000) common to all 

datasets. 
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Figure 3.1: Locations of stations (black dots) and examples of orography in RCMs: 

RegCM (left) and CLM (right). 

 

 

3.2.3 Precipitation characteristics and methods 

Examined are the following characteristics of convective and stratiform precipitation, 

computed at the ten stations and in all grid boxes in the area of the Czech Republic in 

individual RCMs: 

- mean annual cycle of monthly precipitation amounts, number of wet days 

(defined as days with precipitation of a given origin >= 0.5 mm) and rain 

intensity index (RII, defined as mean precipitation amount on wet days; cf. 

Klein Tank et al., 2002); 

- proportion of convective and stratiform precipitation on total amounts for 

individual seasons; 

- dependence of mean annual precipitation amounts on altitude; and 

- mean annual maxima and 20-year return values of daily precipitation 

amounts. 

The characteristics are computed for convective (subgrid), stratiform (large-scale) 

and total precipitation. Note that the term ‘wet day’ may refer either to convective, 

stratiform or total precipitation. Dependence of precipitation amounts on altitude is 

analysed using the least-squares regression with t-test (e.g., Wilks, 1995). 

For estimatinf high quantiles of precipitation amounts (corresponding to 20-year 

return values), the Generalized Extreme Value (GEV) distribution (Coles, 2001) is 

fitted to samples of annual maxima of daily precipitation amounts. We use the 
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method of L-moments, which is more suitable for smaller samples than are methods 

based on maximum likelihood (Hosking and Wallis, 1997). A GEV parameterization 

in which positive values of the shape parameter correspond to heavy-tailed 

(unbounded) GEV distribution is used. Uncertainty for individual stations and grid 

boxes is large (due to relatively small sample size), so we avoid discussing location-

specific results and focus on general tendencies when comparing the mean annual 

maxima, the estimated shape parameter of the GEV distribution, and the 20-year 

return values for observed and RCM-simulated data (in terms of boxplots across 

stations/grid boxes). 

 

3.2.4 Effects of areal averaging on extremes 

The interpretation of differences between characteristics of grid box and station 

maxima is not straightforward since grid box maxima represent an areal average 

rather than a point value.  The effect of areal averaging on the magnitude of extremes 

is typically summarized by the area reduction factors (ARFs) representing the ratio 

between the areal average and point rainfall extreme for a given area, temporal 

aggregation and exceedance probability (see e.g., Svensson and Jones, 2010b for a 

comprehensive overview). In some studies, the effect of the latter is, however 

neglected. Based on 6 years of radar data, ěezáčová et al. (2005b) derived relations 

for the upper envelope of the observed ratios between areal average and point rainfall 

for the Czech Republic for various temporal aggregations. For the daily data and area 

corresponding to a grid box (625 km
2
) the maximum ARF value is 0.84. This value is 

not directly applicable, however, to mean annual maxima and/or 20-year return 

values. In a more general study and using 11 years of radar data, Overeem et al. 

(2010) derived functional relations between area, temporal aggregation and 

parameters of a GEV model for precipitation maxima in the Netherlands. These 

relations result in ARFs of 0.88 and 0.77 for mean annual and 20-year precipitation 

maxima, respectively, and the shape parameter drops from 0.17 to 0.09. Although 

these semiempirical relations were derived for a different region than that studied 

here, we consider them to be more relevant for the discussion of our results as they 

account for dependence on the return level. Therefore, the ARFs and the areal 

dependence of the shape parameter given by Overeem et al. (2010) are further 
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considered in addition to the characteristics obtained from the station data to reflect 

the area reduction. 

The reported ARFs were derived from total precipitation. Several studies have 

shown (Huff and Shipp, 1969; Skaugen, 1997), however, that the reduction of 

magnitude especially applies to convective events than in contrast to large-scale 

frontal rainfall. We therefore assume that the ARFs are relevant only for total and 

convective precipitation. 

 

 

3.3 Results 

 

3.3.1 Mean annual cycle of precipitation characteristics 

While observed convective precipitation has a clear annual cycle of precipitation 

amounts, intensity and number of wet days, with a maximum during the summer 

months, observed stratiform precipitation has an annual cycle with a maximum in 

summer only for intensity of precipitation (Figure 3.2). Observed stratiform 

precipitation amounts are almost evenly distributed throughout year, and the number 

of wet days is slightly larger in winter. The annual cycle of observed total 

precipitation characteristics is dominated by the convective precipitation. 

All RCMs reproduce the basic behaviour of the annual cycle of convective 

precipitation characteristics (Figure 3.2, left column). The summer peak of 

convective precipitation amounts and the number of wet days is too high in several 

RCMs, mainly Aladin and Aladin_CZ. These two RCMs simulate 20–25 days with 

convective precipitation ≥0.5 mm in summer months (averaged over grid boxes), 

which is almost twice as much as in observations. The peak in the annual cycle of 

convective precipitation tends to occur too early in most RCMs (mostly in June but 

already in May in RCA_C4I). Intensity of convective precipitation is reproduced 

most poorly, as all RCMs substantially underestimate it in the warm half-year 

(April–September). In cold half-year (October–March), intensity of convective 

precipitation is better simulated but several RCMs produce almost no convective 

precipitation in winter, which contradicts observations as well. 
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Figure 3.2: Mean annual cycle of monthly precipitation amount (top), number of wet 

days (with precipitation ≥0.5 mm, middle), and rain intensity index (RII, bottom), 
averaged over all stations and grid boxes in the area of the Czech Republic. 

 

Most RCMs tend to underestimate also intensity of stratiform precipitation, 

mainly in summer and autumn (Figure 3.2, middle column). The stratiform 

precipitation amount and the number of wet days are reproduced better. Large 

differences exist among the individual RCMs, however, and the RCMs tend to 

overestimate stratiform precipitation in the cold half-year. An unrealistic annual 

cycle of stratiform precipitation and the number of wet days is simulated in RCA, 

with maximum in late summer and autumn (when the number of wet days is 

overestimated by a factor of 2). Stratiform precipitation is severely underestimated in 

Aladin (i.e. in the RCM with the largest overestimation of convective precipitation). 
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Figure 3.3: Mean annual cycle of monthly precipitation amount (top), number of wet 

days (middle) and rain intensity index (bottom) for stations and grid boxes with 

altitude ≤450 m a.s.l. (dashed lines) and >450 m a.s.l. (solid lines). Thicker lines 
show the observed annual cycle while thinner lines the RCMs’ ensemble mean. The 
shaded area indicates the spread among RCMs expressed in terms of standard 

deviation (the striped-shaded area refers to lower-elevated grid boxes while the solid 

shaded area to higher-elevated grid boxes).  

 

The annual cycle of total precipitation is dominated by convective precipitation 

also in the RCMs (Figure 3.2, right column), except for RCA in which it is governed 

by the unrealistic annual cycle of the stratiform component. In some RCMs, mainly 

in Aladin, biases in characteristics of convective and stratiform precipitation 

compensate for one another to some extent, and hence the total precipitation 

characteristics are much better simulated than are the individual components. The 

main features of the annual cycles of convective and stratiform precipitation 
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characteristics are similar at lowland (≤450 m a.s.l.) and higher-elevated (>450 m 

a.s.l.) locations in both observed and RCM data (Figure 3.3). 

 

 

 

Figure 3.4: Frequency of wet days in summer (JJA) according to the origin of 

precipitation: convective (convective precipitation ≥0.5 mm while stratiform <0.5 
mm), stratiform (stratiform precipitation ≥0.5 mm while convective <0.5 mm) and 
mixed (both convective and stratiform precipitation ≥0.5 mm). The boxplots (top) are 

calculated across grid boxes or stations. The bottom and top of the box are the first 

and third quartiles, and the band inside the box shows the median. The whiskers 

represent the 5 and 95% quantiles. For observed data, individual station values are 

depicted by crosses. The grey dotted line shows the median of observed values. In 

pie charts (bottom), dry days are the days with both convective and stratiform 

precipitation <0.5 mm. C (S) denotes convective (stratiform) origin. 

 

The distribution of wet days according to the origin of precipitation is further 

scrutinized by splitting all wet days in summer into those of convective origin (with 

convective precipitation ≥ 0.5 mm while stratiform < 0.5 mm), stratiform origin (vice 

versa) and mixed (both components ≥ 0.5 mm). In the observed data, the frequency 

of convective and stratiform wet days is balanced (around 15%), and mixed wet days 

occur less often (around 8% of summer days; Figure 3.4). A good reproduction of the 

distribution of wet days according to convective, stratiform and mixed origin of 

precipitation is found for several RCMs, mainly PROMES (in which the frequency 

of wet days of each origin agrees with observations almost perfectly), RegCM, 

REMO and HIRHAM. In Aladin and Aladin_CZ, significant stratiform precipitation 

occurs only on days when convective precipitation is also significant. An opposite 
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pattern (significant convective precipitation usually associated with stratiform 

precipitation occurrence) appears for RCA, RCA_C4I and RACMO. Most RCMs 

overestimate the number of wet days in which both components are important. 

 

3.3.2 Proportion of convective precipitation in total amounts 

Percentage of precipitation amounts that fall in the form of convective precipitation 

is shown for individual seasons in Figure 3.5. In observed data, the proportion of 

convective precipitation is highest in summer, when it is close to 50%, followed by 

spring (~30%) and autumn (~15%). 

 

 

Figure 3.5: Percentage of convective precipitation in total amounts for individual 

seasons. The boxplots are calculated across grid boxes or stations. The bottom and 

top of the box are the first and third quartiles, and the band inside the box shows the 

median. The whiskers represent the 5 and 95% quantiles. For observed data, 

individual station values are depicted by crosses. The grey dotted line shows the 

median of observed values. 

 

The proportion of convective precipitation in summer is captured best by CLM 

(Figure 3.5). A very large spread among the RCMs is found, with values of the 

median (across grid boxes) ranging from 29 to 92% in summer. CLM is also the only 

RCM in which proportions of convective precipitation are reasonably reproduced in 

all four seasons. Two RCMs (Aladin and Aladin_CZ) suffer from large 
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overestimation of the proportion of convective precipitation in all seasons, while in 

some other RCMs (HIRHAM, RegCM, GEMLAM), this proportion is 

underestimated throughout the year. The latter RCMs simulate no convective 

precipitation in winter and almost no in autumn, which also contradicts observations. 

Unrealistically high proportions of convective precipitation in Aladin are particularly 

suspicious in autumn (~62%) but this RCM is clearly an outlier from the ensemble in 

all seasons (possible reasons are discussed in section 3.4.5). In most other RCMs, on 

the other hand, the fractions of convective precipitation in total amounts in winter 

and autumn are captured well.  

 

3.3.3 Dependence on altitude 

In observed data, both convective and stratiform precipitation amounts increase with 

altitude, and the slope is larger for the latter (Table 3.2). 

 

Table 3.2: Slopes of dependence of convective, stratiform and total precipitation 

amounts on altitude, expressed as changes of precipitation amount in mm/100 m.  

 Convective Stratiform Total 

OBS   14.8 *    39.1 *    53.9 *  

CLM     9.7 *    39.2 *    48.9 *  

HIRHAM   15.7 *  151.7 * N 167.4 * N 

RACMO   13.2 *    52.6 *    65.8 *  

RCA   51.0 * N   47.0 *    98.0 * N 

RCA_C4I   91.4 * N   46.2 *  137.5 *  N 

REMO –11.5 * N    -0.2 N –11.7 * N 

Aladin   21.7 * N   27.0 *    48.7 *  

Aladin_CZ     5.2 * N   61.5 *    66.7 *  

RegCM   –6.0 * N   40.1 *    44.2 *  

PROMES   –2.5  N   41.0 *    38.5 *  

GEMLAM     0.3 N   70.7 *    71.1 *  
 

* Denotes statistical significance at the 0.05 level; N denotes RCMs’ estimated slopes that 
fall outside the 95% confidence interval of the observed slope 

 

Most RCMs reproduce the magnitude of the increase with altitude reasonably well 

for stratiform and total precipitation. For convective precipitation, RCA and 

RCA_C4I have unrealistically large slopes of dependence (overestimated by a factor 

of 3–6), while three RCMs (REMO, RegCM and PROMES) produce negative 

dependence on altitude. Only in three RCMs (CLM, RACMO and HIRHAM) do the 

estimated slopes of the dependence for convective precipitation lie within the 95% 

confidence interval of the observed one (Table 3.2). 
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For stratiform precipitation, the estimated slope lies within the 95% confidence 

interval of the observed slope in 9 out of the 11 RCMs, and the spread among the 

RCMs is much smaller (Table 3.2). REMO (zero slope) and HIRHAM (largest 

overestimation of the slope) are the least realistic (Figure 3.6). All RCMs except for 

RCA and RCA_C4I also agree with observed data on the fact that the dependence on 

altitude is stronger for stratiform than convective precipitation. 

 

 

Figure 3.6: Dependence between mean annual precipitation amount and altitude for 

convective (left), stratiform (middle) and total (right) precipitation. For RCMs, mean 

values in elevation bins (≤300 m, 301–500 m, 501–700 m, and >700 m) are plotted; 

for observed data, station values are shown. 

 

For total precipitation amounts, the RCMs’ slope is close to that for the observed 

data except in cases of those RCMs that suffer from substantial bias in one or both 

components (RCA, RCA_C4I – overestimated dependence of convective 

precipitation; HIRHAM – overestimated dependence of stratiform precipitation; 

REMO – underestimated dependence of both; Figure 3.7, Table 3.2). In several 

RCMs, biases compensate for each other: underestimated dependence for convective 

amounts together with overestimated dependence for stratiform amounts result in 

good reproduction of the slopes for total precipitation amounts in Aladin_CZ, 

GEMLAM and RegCM. It is also noteworthy that unrealistic (in)dependence of 

precipitation on altitude in REMO is not manifested in a large bias in spatially-

averaged precipitation amounts (cf. annual cycles for REMO in Figure 3.2), although 

it is obvious that spatial precipitation patterns (that are governed mainly by 

orography) cannot be realistic in this RCM. 
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Figure 3.7: Examples of dependence between mean annual precipitation amount and 

altitude for convective (left), stratiform (middle) and total (right) precipitation in 

three RCMs with the largest biases, in comparison to observed data. Trends 

estimated by the linear regression and their 95% confidence bounds are plotted. 

 

In general, CLM and RACMO simulate realistic dependence of both convective 

and stratiform precipitation amounts on altitude. In all other RCMs, the slope of the 

dependence lies outside the 95% confidence interval of that for the observed data for 

one or both precipitation components. The main conclusions concerning comparison 

of the RCMs and observed data do not change when the highest-elevated station 

(11457 Churáňov) is excluded from the data. The above-reported results refer to 

annual data but similar patterns appear also in individual seasons (not shown). 
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3.3.4 Extremes 

Similarly to the study of the proportion of convective precipitation, we evaluate 

spatially pooled mean annual maxima, the shape parameter of the fitted GEV 

distribution (which governs the tail of the GEV distribution), and the estimated 20-

year precipitation maxima in terms of boxplots (Figure 3.8). Mean annual maxima 

are underestimated for convective precipitation and, with the exceptation of CLM, 

also for total precipitation. If a reduction due to ARF is considered (Overeem et al., 

2010), however, the mean annual maxima of total precipitation are reproduced 

reasonably well. For stratiform precipitation, both negative and positive biases 

appear with the latter being more frequent. Aladin is the only RCM suffering from 

large underestimation of both convective and stratiform mean annual maxima. 

 

 

Figure 3.8: Mean annual maxima of daily precipitation amounts (top), shape 

parameter of the GEV distribution (middle) and 20-year return levels of annual 

maxima of daily precipitation amounts (bottom). The bottom and top of the box are 

the first and third quartiles, and the band inside the box shows the median. The 

whiskers represent the 5 and 95% quantiles. For observed data, individual station 

values are depicted by crosses. The lower boundary of the shaded area for extremes 

of total precipitation corresponds to the median of observed data after correction 

using ARFs from Overeem et al. (2010); for convective extremes, the same reduction 

(in mm) as for total precipitation was applied. 
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As mean annual maxima are mostly due to stratiform precipitation in the RCMs 

(in contrast to observations in which they are comparable for convective and 

stratiform precipitation, Figure 3.9), the shape parameter of the GEV distribution is 

similar for total and stratiform precipitation. Positive values of the shape parameter 

(corresponding to heavy tails) prevail, and the GEV distribution has a slightly 

heavier tail for total and stratiform precipitation in most RCMs compared to 

observations. For simulated convective precipitation, by contrast, the shape 

parameter tends to be smaller than in observed data and mostly close to zero. The 

exceptions are again CLM, which is the only RCM capturing the heavy-tailed 

behaviour also for convective extremes, and HIRHAM with clearly negative values 

corresponding to a right-bounded GEV distribution. Considering the decrease in the 

shape parameter with increasing area (from station to grid box) indicated by 

Overeem et al. (2010), the bias in the shape parameter for convective precipitation 

extremes is likely small for most of the RCM simulations. For total precipitation, 

however, similar reduction increases the tendency to positive bias of the shape 

parameter.  

 

 

Figure 3.9: Number of annual maxima (in total 19) of convective (left), stratiform 

(middle) or mixed (right) origin. Annual maxima are considered to be of convective 

origin when the daily amount of stratiform precipitation is <0.5 mm, and vice versa. 

Mixed cases correspond to both components ≥0.5 mm. 
 

A similar pattern as for mean annual maxima appears also for 20-year return 

values. These are severely underestimated for convective precipitation (even after 

consideration of the ARF, Figure 3.8), which is related not only to the 

underestimated annual maxima but also to the suppressed heavy-tailed behaviour of 

convective extremes in the RCMs, and they are slightly overestimated in most RCMs 

for stratiform precipitation. This results in a tendency towards slight underestimation 

of the 20-year return values of total precipitation amounts, which is found in most 

RCMs. The reproduction of extremes in total precipitation is much better compared 
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to that for the two components evaluated separately, however, and the tendency 

towards underestimating the 20-year total precipitation disappears when the 

reduction of the station values by the ARF from Overeem et al. (2010) is considered. 

 

 

3.4 Discussion 

 

3.4.1 Simulation of ‘mean’ characteristics 

In general, the RCMs show a relatively good agreement with observed data for mean 

annual cycles of convective and stratiform precipitation characteristics. They tend to 

reproduce the pronounced annual cycle of convective precipitation with a single 

maximum in summer and a minimum in winter while stratiform precipitation is 

almost constant throughout the year. The convective component governs also the 

annual cycle of total precipitation in both observed data and the RCMs. The main 

and rather general deficiencies with respect to annual cycles are the shift of the peak 

of convective precipitation to early summer or late spring, and overestimation of 

stratiform precipitation in the cold half-year. The former could be related to more 

general problems with parameterization of convection in climate models, which often 

report too-early onset (and maximum) of convection in the diurnal cycle (Dai and 

Trenberth, 2004; Lee et al., 2007; Brockhaus et al., 2008). The latter may be related 

to overestimated flow strength in some RCMs (Plavcová et al., 2013). Many RCMs 

also simulate too many wet days (cf. Noguer et al., 1řřŘ; Déqué et al., 2007; 

Rauscher et al., 2010), particularly for stratiform precipitation in the cold half-year, 

and most RCMs overestimate the percentage of those wet days in which both 

convective and stratiform precipitation are important. A maximum in early summer 

(June) was found also in ERA-40 precipitation data for the nearby Danube basin 

(Hagemann et al. 2005) but a dry bias prevailed throughout the year, especially in the 

cold half-year. ERA-40 uses a convective parameterization based on the Tiedtke 

(1989) acheme, similarly to several RCMs (CLM, HORHAM, RACMO and REMO; 

see also section 3.4.5). Except for RACMO, these RCMs simulate a rather 

pronounced peak in the annual cycle of precipitation in July–August (Figure 3.2). A 

dry bias in the cold half-year is simulated only in Aladin. Due to very different 
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resolutions, other characteristics are difficult to compare between ERA-40 and the 

examined RCMs. 

The increase with altitude is captured better for stratiform than convective 

precipitation amounts in most of the RCMs. Several RCMs simulate unrealistically 

strong or weak dependence on altitude, especially for convective precipitation. A 

decline of convective precipitation amounts with altitude in REMO – found also for 

total precipitation – is particularly suspicious and suggests a severe bias with respect 

to links between orography and precipitation in this RCM. 

In some RCMs the biases in convective and stratiform precipitation characteristics 

are found to partly offset one another. This can be attributed to the fact that excessive 

moisture which is not converted to precipitation in the convection scheme is at least 

partly removed from the atmosphere by the large-scale scheme and vice versa, and 

illustrates that the model separation of the two components may be difficult to 

interpret since it is prone to design and formulation errors (cf. Williamson, 2013). 

This in turn can severely affect the whole model performance. Although such 

compensation effect may result in mean (climatological) characteristics of 

precipitation that are in good agreement with observations, it is likely that the spatial 

and temporal structure of precipitation, which is related to the underlying processes 

and is crutial, for example, with respect to the hydrological response, is 

misrepresented in those cases. 

 

3.4.2 Simulation of extremes 

The main limitation of the RCMs is found for extremes of convective precipitation, 

which are severely underestimated. However, this bias has to be interpreted with 

caution. First, the RCM (grid box) data are compared against station (point) data, so 

they represent precipitation at a different spatial scale. The convection 

parameterization schemes are not designed to represent individual storms and local 

rainfall events, but they describe the average properties of convection over a model 

grid box. Moreover, these schemes were usually designed for coarse-resolution (>50 

km) models and for tropical convection, and they are less appropriate for higher 

resolutions and outside the tropics (Swann, 2001; Kendon et al., 2012). The daily 

amounts of convective precipitation rarely exceed some specific threshold in RCMs 

(Durman et al., 2006; Li et al., 2011; Kendon et al., 2012) and contribute little to 
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extreme total precipitation at the tail of the distribution. The effect of areal averaging 

– as estimated by the ARFs from Overeem et al. (2010) – is nevertheless small in 

comparison to the identified biases, so the underestimation of convective extremes in 

the RCMs is not only due to spatial smoothing. Suppressed heavy-tailed behaviour of 

extremes leads to even larger biases for 20-year return values of convective 

precipitation than for mean annual maxima. 

Second, one has to take into account that, at the given 25 km resolution, large 

(mesoscale) convective systems affect multiple grid boxes simultaneously, and 

precipitation associated with them may be simulated as partly large-scale and partly 

subgrid in climate models whereas it is usually classified as convective in station 

data. This is a direct consequence of the fact that mesoscale systems and 

precipitation associated with them are only partially captured in model simulations 

with 25 km grid spacing. 

The origin of annual maxima of daily precipitation in observed and RCM data is 

summarized in Figure 3.9. In most RCMs, the annual maxima are never or almost 

never solely of convective origin, and convective maxima are underrepresented 

compared to observations also in all remaining RCMs (this remains the case also 

when the threshold allowed for the stratiform component increases from 0.5 to 1 ar 5 

mm). The same behaviour has been reported by Kendon et al. (2012) for the Met 

Office Hadley Centre Global Environmental Model. By contrast, all RCMs except 

for HIRHAM overestimate the proportion of annual maxima of mixed origin, i.e. 

when both convective and stratiform amounts play a role (which holds true also for 

the higher thresholds). In HIRHAM, most maxima are of stratiform (large-scale) 

origin, while in Aladin and Aladin_CZ, almost all maxima are mixed. The latter 

relates to the pronounced overestimation of convective precipitation and the number 

of days with convective precipitation in these two RCM simulations. Even in these 

RCMs, however, the annual maxima of daily precipitation are rarely (Aladin) or 

never (Aladin_CZ) of solely convective origin. 

Extremes of stratiform precipitation are reproduced better than those of 

convective precipitation, with a tendency towards overestimation in most RCMs. 

Because the two biases (in convective and stratiform precipitation) compensate for 

each other to some degree, extremes of total precipitation are usually simulated better 

than are the individual components, and there is only slight tendency towards 

underestimation. 



- 51 - 

 

Generally good representation of (total) daily precipitation maxima was also 

concluded by Hanel and Buishand (2010) for the Netherlands. Although convective 

precipitation was not examined separately, the authors concluded from the severe 

biases in the simulated hourly precipitation extremes that convective processes may 

not be properly represented in some RCMs. 

 

 

Figure 3.10: Percentage of convective precipitation in total amounts for individual 

seasons (top) and mean annual maxima of daily precipitation amounts (bottom) in 

three simulations of Aladin_CZ with 50, 25 and 10 km horizontal resolution. 

 

 

3.4.3 Possible effects of horizontal resolution 

Preliminary results concerning the influence of horizontal resolution on convective 

and stratiform precipitation based on three simulations of Aladin_CZ with 50, 25 and 

10 km resolution (Skalák et al., 2014) show no important differences in 

characteristics of mean convective and stratiform precipitation, including the 

proportion of convective precipitation in the total amounts (Figure 3.10, upper 

panel). The horizontal resolution has a stronger effect on extremes (Figure 3.10, 

lower panel), which is in agreement with findings reported by Boyle and Klein 

(2010) and Li et al. (2011). Extremes of convective precipitation depend little on the 
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horizontal resolution in these Aladin_CZ simulations, however, while extremes of 

stratiform precipitation increase and become more realistic. This suggests that the 

biases in convective precipitation persist within a range of horizontal resolutions 

under which current RCMs are typically run and that better simulation of 

precipitation characteristics with increasing resolution (Boberg et al., 2010; Rauscher 

et al., 2010; Larsen et al., 2013) is mainly due to improved large-scale precipitation 

in relation to better representation of topography. 

Convection-permitting models, commonly used in numerical weather prediction 

but computationally very costly for extended time scales in climatological studies, 

were reported to improve the diurnal cycle of convection (Hohenegger et al., 2008), 

hourly extremes (Wakazuki et al., 2008), and the spatial and temporal structure of 

rainfall in general (Kendon et al., 2012), so they probably represent a more 

promising route towards realistic representation of precipitation of convective 

precipitation in climate models. 

 

3.4.4 Comparison of RCMs 

CLM is the only RCM that does not suffer from a large bias in any examined 

characteristic of convective and stratiform precipitation. In several aspects, including 

proportion of convective precipitation, dependence of both convective and stratiform 

precipitation amounts on altitude, and heavy-tailed behaviour of convective 

extremes, this RCM performs best in the examined ensemble. The finding of CLM’s 

good performance is in line with results of previous studies that evaluated 

performance of the ENSEMBLES RCMs over Europe with respect to various 

characteristics of surface climate (e.g., Christensen et al., 2010; Holtanová et al., 

2012). 

Severe biases in some precipitation characteristics appear in most other RCMs. 

Again, these may be to some extent compensated for in total amounts. Nevertheless, 

the biases point to drawbacks in the reproduction of precipitation processes that 

should be taken into account when interpreting the RCM data, in particular, in further 

developing and improving the RCMs. 
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3.4.5 Parameterizations in RCMs 

Although different parameterizations of deep convection and large-scale 

precipitation are applied in the RCMs, they often are based on similar approaches. 

Convective parameterizations in most of the RCMs examined are formulated as bulk 

mass flux schemes. Nevertheless, no similarity was found in the behaviour of 

convective or stratiform precipitation in such RCMs having similar 

parameterizations, except for RCA and RCA_C4I which are almost identical. For 

example, CLM, HIRHAM, REMO and RACMO apply a similar parameterization of 

convection which is based on the mass flux scheme by Tiedtke (1989). 

Characteristics of convective precipitation, however, differ substantially amongst 

these models (cf. Figure 3.5 and 3.8). This finding is in line with a recent study by 

Fischer et al. (2015), who analysed modelled precipitation types in ENSEMBLES 

RCMs that were driven by GCMs instead of ERA-40. 

Aladin and Aladin_CZ, which have the largest proportion of convective 

precipitation (Figure 3.5), use a deep convection scheme according to Bougeault 

(1985) that was designed for the “grey zone” with many differences from other 

common convection schemes (Gerard and Geleyn, 2005). This may contribute to the 

fact that Aladin stands out in many simulated characteristics and also to a strong 

compensating tendency of biases in characteristics of convective and stratiform 

precipitation in this RCM. Nevertheless, implementation of the convective 

parameterization differs as to the model cycle between Aladin and Aladin_CZ, and 

the two versions differ also in other specific parameterizations applied (Farda et al., 

2010). This may contribute to rather large differences between Aladin and 

Aladin_CZ. 

The last set of RCMs with a similar parameterization of convective clouds and 

subgrid precipitation is RCA, RCA_C4I, GEMLAM and PROMES, in which 

parameterization based on the Kain and Fritsch (1993) scheme is applied. The 

differences among these RCMs in convective precipitation characteristics are again 

large, and they are pronounced also for the dependence on altitude (Table 3.2). As 

pointed out by Fischer et al. (2015), differences in land-surface schemes and 

simulated land-surface characteristics, particularly soil moisture, probably contribute 

to the variability in precipitation composition among models. It should also be noted 

that some typical errors relating to parameterization of convection, such as too-early 



- 54 - 

 

onset of convection, have been reported to depend only slightly on the particular 

convection scheme (Brockhaus et al., 2008). 

Precipitation is related to such other variables as atmospheric circulation, 

temperature and humidity, and their differences and biases affect the simulation of 

precipitation. On the other hand, biases in the convective and stratiform precipitation 

components may have large impacts on other aspects of the simulated climate 

because of their different effects on heat and mass transport (Dai, 2006). 

Representation of precipitation in climate models is therefore linked to atmospheric 

dynamics, land-atmosphere interactions and vertical profiles in a complex way. This 

may explain why RCMs with closely related parameterizations of precipitation 

processes differ in precipitation characteristics. 

 

 

3.5 Summary 

 

The present study evaluated biases in characteristics of convective (subgrid) and 

stratiform (large-scale) precipitation in an ensemble of 11 RCM simulations driven 

by the ERA-40 reanalysis in Central Europe. The main findings are summarized as 

follows: 

 The RCMs on average reproduce the annual cycle of convective 

precipitation reasonably well but underestimate its intensity throughout the 

year.  The peak tends to be shifted to early summer or even late spring. 

 Stratiform precipitation tends to be overestimated in the cold half-

year. 

 The distribution of wet days according to convective, stratiform and 

mixed origin of precipitation is reproduced well in several RCMs, while some 

other RCMs substantially overestimate the proportion of wet days of 

convective or stratiform origin. Wet days when both components are 

important are too frequent in most RCMs. 

 There is a large spread among the RCMs in the proportion of 

convective precipitation to total amounts; some of the RCMs consistently and 

substantially overestimate or underestimate this proportion throughout the 

year. 
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 Dependence on altitude is simulated better for stratiform and total 

precipitation than convective precipitation. 

 Extremes (mean annual maxima, 20-year return values) are 

underestimated for convective precipitation while they tend to be slightly 

overestimated for stratiform precipitation. This results in a relatively good 

simulation of extremes in total precipitation amounts. For convective 

precipitation extremes, the effect of areal averaging (as estimated by the area 

reduction factor) is small in comparison to the identified biases. 

 Characteristics of total precipitation are often better simulated than are 

those of the individual components, which is due to compensating biases in 

convective and stratiform precipitation. In REMO, the annual cycle and some 

other precipitation characteristics (including spatially averaged amounts) are 

simulated reasonably well in spite of an unrealistic negative dependence of 

precipitation amounts on altitude. 

 There remains an open question why pair of closely related RCMs 

(Aladin and Aladin_CZ) that use a similar parameterization of convective 

precipitation and are run at the same resolution and with the same driving 

data produces very different results. Analogous differences are much smaller 

for another pair of simulations with the same RCM (RCA). 

 Errors in precipitation characteristics in climate models are mainly 

related to drawbacks in the representation of convection. 
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4 Convective and large-scale precipitation scenarios 

in the Czech Republic

 

 

 

4.1 Introduction 

 

Climate change observed in recent years is associated primarily with increasing 

global temperature, but there is evidence that the hydrological cycle is affected as 

well. Analyses of observed precipitation data show increases in mean precipitation in 

the tropics and high latitudes and decreases in the subtropics (Frich et al., 2002; 

Alexander et al., 2006), and intensification of precipitation even in regions where 

mean precipitation decreases (Alexander et al., 2006; Donat et al., 2013; Madsen et 

al., 2014; Dittus et al., 2015). 

Because climate (including the precipitation regime) is affected by strong 

interannual and spatial variations (e.g., Pauling et al., 2006), which makes detection 

of significant trends in observed data almost impossible, climate models could better 

estimate possible future precipitation changes than can trend analyses based on a few 

decades of observations. From a theoretical point of view, we could expect changes 

in precipitation given by changes in the dynamics and thermodynamics of the 

atmosphere. The dynamic effects are associated with changes in large-scale 

circulation. Precipitation regimes in Europe may be affected by changing frequency 

and persistence of circulation types (e.g., Cahynová and Huth, 2010) and a shift of 

extratropical storm tracks to the north (e.g., Lehmann et al., 2014), although the 

relationships between precipitation and large-scale atmospheric circulation are rather 

weak in the warm season, when convective precipitation prevails (e.g., Huth and 

Kyselý, 2000). The thermodynamic effect is associated with changes in atmospheric 

humidity and stratification. Because the capacity of the atmosphere to hold water is 

governed by the Clausius–Clapeyron equation, intensification of precipitation is 

expected with increasing temperature (Trenberth et al., 2003). However, 

                                                 
 This chapter is based on: 

Rulfová Z, Beranová R, Kyselý J. 2016. Climate change scenarios of convective and large-scale 

precipitation in the Czech Republic based on EURO-CORDEX data (submitted to International 

Journal of Climatology). 
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intensification of extreme precipitation depends not only on temperature but on 

moisture availability too (Panthou et al., 2014). Lenderink et al. (2011) have studied 

hourly precipitation extremes in Hong Kong and the Netherlands and found that 

precipitation intensity increases up to about 24 °C and then rises more slowly or even 

decreases, which is probably associated with moisture deficits.  

All these aforementioned mechanisms, however, influence precipitation in 

different ways. Results of the analysed precipitation changes depend on precipitation 

indices (i.e. different results for mean vs. extreme precipitation) and on the time scale 

used for precipitation aggregations (e.g., Gaál et al., 2014). This is related especially 

to the different origin of precipitation. Convective precipitation increases with 

temperature faster than does stratiform precipitation, as shown, for example, in Berg 

et al. (2013) for observed data in Germany, and the ratio of seasonal convective 

precipitation amount to the total precipitation amount tends to be higher in the future 

climate in all seasons when convective precipitation plays an important role (i.e. 

spring, summer, and autumn), as shown by Fischer et al. (2015) for Switzerland. 

Many studies focusing on European precipitation changes agree with the general 

intensification of precipitation, predominantly increasing trends in mean precipitation 

in northern Europe, and decreasing trends in the south (e.g., Frei et al., 2006; Boberg 

et al., 2010; Heinrich and Gobiet, 2012; Rajczak et al., 2013). Because Central 

Europe (and the Czech Republic) lies in the transition zone between increasing and 

decreasing precipitation, we focus our analyses on this region. Furthermore, we study 

convective and stratiform precipitation separately to gain a detailed view of projected 

precipitation changes.  

We analyse here the output of four RCM projections from the EURO-CORDEX 

project (http://www.euro-cordex.net). The horizontal resolution of the RCMs (0.44° 

and 0.11°) allows one to analyse simulations with a finer resolution and to compare 

results of simulations with different horizontal resolutions. As shown in previous 

studies (e.g., Giorgi and Marinucci, 1996; Rauscher et al., 2010; Chan et al., 2013), 

model grid spacing influences precipitation characteristics simulated by climate 

models. RCMs with finer horizontal resolution better simulate spatial characteristics 

of mean and especially extreme precipitation, and these improvements are more 

visible in topographically complex regions. Casanueva et al. (2015) and Prein et al. 

(2016) confirm similar results for precipitation characteristics simulated by RCMs 

from the EURO-CORDEX project. Although both show benefits of the finer 

http://www.euro-cordex.net/
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horizontal resolution in spatial patterns of precipitation, Casanueva et al. (2015) 

found that this improvement is not statistically significant after bias correction.  

The data and methods are introduced in section 4.2. The results of validation of 

RCMs and projected changes of convective and stratiform precipitation are presented 

in section 4.3. The discussion and summary of the results follow in sections 4.4 and 

4.5, respectively. 

 

 

4.2 Data and methods 

 

The observed precipitation data analyzed in this study come from SYNOP reports at 

10 stations (operated by the Czech Hydrometeorological Institute) during 1982–

2010. The same dataset had been used to represent observations in Chapter 3 that 

examined the ability of ENSEMBLES RCMs to simulate convective and stratiform 

precipitation characteristics. 

 

Table 4.1: Overview of the RCMs analysed and their parameterizations. 
 CCLM HIRHAM RACMO2 RCA4 

Institution CLM Community 

(CLMCOM) 

Danish 

Meteorological 

Institute (DMI) 

Royal 

Netherlands 

Meteorological 

Institute (KNMI) 

Swedish 

Meteorological 

and Hydrological 

Institute (SMHI) 

Convection 

scheme 

Tiedtke, 1989 Tiedtke, 1989 Tiedtke, 1989; 

Nordeng, 1994; 

Neggers et al., 

2009 

Kain and Fritsch, 

1990; Kain, 2004 

Microphysics 

scheme 

Doms et al., 

2011; Baldauf 

and Schulz, 2004 

Lohmann and 

Roeckner, 1996 

Tiedtke, 1993; 

Tompkins et al., 

2007; ECMWF-

IFS, 2007; 

Neggers, 2009 

Rasch and 

Kristjánsson, 
1998 

Model 

references 

Rockel and 

Geyer, 2008 

Christensen et al., 

2007 

van Meijgaard et 

al., 2012 

Samuelsson et al., 

2011 

     

EC-EARTH 

realisation 

r12 r3 r1 r12 

 

 

The RCM simulations originate from the EURO-CORDEX project 

(http://www.euro-cordex.net) database. We examine runs of four RCMs driven by 

the ERA-Interim reanalysis (Dee et al., 2011) and scenario simulations of the same 

RCMs driven by global climate models (GCMs). Table 4.1 provides details of the 
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examined RCMs. All simulations driven by the ERA-Interim reanalysis cover the 

1989–200Ř period and have grid resolutions of about 12 km (0.11° on a rotated grid) 

or 50 km (0.44° on a rotated grid). The 20-year overlapping period (1989–2008) 

common to the observed and RCM datasets was used for validation. Thirty-year time 

slices (1971–2000 and 2071–2100) are examined in analysing projected changes of 

precipitation characteristics. In this case, the RCMs with 0.11° horizontal resolution 

driven by GCMs and with two different RCP scenarios (RCP4.5 and RCP8.5, see 

van Vuuren et al., 2011) were used. All RCMs are driven by the EC-EARTH GCM, 

which is derived from a numerical weather prediction model and has a relatively high 

resolution compared to other models that participated in CMIP5 (Taylor et al., 2012). 

As a consequence it simulates atmospheric dynamics comparatively well (e.g., Zappa 

et al., 2013). The influence of the driving GCM on projected changes is discussed 

using four simulations of the CCLM RCM driven by different GCMs (EC-EARTH, 

MPI-ESM-LR, CNRM-CM5-LR, and HadGEM2-ES). 

Because we evaluate runs of RCMs with different horizontal resolutions, 

orography differs slightly among the models and especially among resolutions 

(examples are shown in Figure 4.1). Orography is more realistic in RCMs with the 

horizontal resolution of 0.11°, although differences between model and real altitude 

are still large.  

 

 

Figure 4.1: Locations of stations (black dots) and examples of orography in 

RACMO2 model with two horizontal resolutions: 0.44° (left) and 0.11° (right). 
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The following characteristics of convective, stratiform and total precipitation 

computed at the 10 stations and in all grid boxes in the area of the Czech Republic in 

individual RCMs are examined: 

- mean seasonal precipitation amounts, number of wet days (defined as days 

with precipitation amount ≥0.5 mm), and rain intensity index (RII, defined as 

mean precipitation amount on wet days; cf. Klein Tank et al., 2002); 

- proportion of convective and stratiform precipitation to total amounts for 

individual seasons; and 

- mean annual maxima, 20- and 50-year return values of daily precipitation 

amounts. 

High quantiles of precipitation amounts (corresponding to 20- and 50-year return 

values) are estimated by the generalized extreme value (GEV) distribution (Coles, 

2001) fitted to samples of annual maxima of daily precipitation amounts. For 

estimating parameters of the GEV distribution, the method of L-moments is used 

(Hosking and Wallis, 1997).  

 

 

4.3 Results 

 

4.3.1 Validation of simulated precipitation characteristics 

for 1989–2008 

Before assessing the climate change scenario simulations, it is important to evaluate 

the corresponding model performance over the region. Since reanalysis data provide 

a spatially coherent record of the actual historical atmospheric fields, the simulations 

driven by reanalysis are useful in determining biases of the RCMs themselves and 

thus without the influence of biases in the driving data. 

Mean seasonal characteristics of convective, stratiform, and total precipitation are 

shown in Figure 4.2 (top row). All RCMs reproduce the basic behaviour of the 

annual cycle of convective precipitation amounts with maximum in summer and 

minimum in winter. Convective seasonal amount is underestimated by most RCMs, 

especially in summer, when the HIRHAM RCM simulates only about 50% of the 

observed value. Observed stratiform precipitation amounts are almost evenly 

distributed throughout the year, which is reproduced by most RCMs. In contrast to 
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convective precipitation, stratiform precipitation is predominantly overestimated by 

all models in all seasons except for summer. The annual cycle of total precipitation 

amounts is dominated by convective precipitation in observations as well as in the 

RCMs, but the RCMs rather generally simulate a flatter annual cycle with 

overestimated winter, spring, and autumn precipitation but underestimated summer 

precipitation. This means that total seasonal amounts are overestimated in all seasons 

when the stratiform component dominates. 

The number of wet days and RII (Figure 4.2, middle and bottom rows) are slightly 

underestimated or overestimated in the RCMs for convective precipitation (with 

ensemble mean close to observations) while almost all RCM simulations 

overestimate these precipitation characteristics for stratiform and total precipitation. 

For characteristics of convective and stratiform precipitation, there is a larger 

difference between the RCMs than between any two single simulations of the same 

RCM with different (0.44° or 0.11°) resolutions. The HIRHAM model has the largest 

bias for the majority of studied characteristics of convective and stratiform 

precipitation. Since these biases compensate for one another to a large extent, the 

characteristics of total precipitation are simulated in HIRHAM similarly to how they 

are in the rest of the RCMs.  

The percentage of precipitation amounts falling in the form of convective 

precipitation is shown for individual seasons in Figure 4.3. In the observed data, the 

proportion of convective precipitation is highest in summer (approximately 50%), 

followed by spring (~35%) and autumn (~15%). Models CCLM and HIRHAM tend 

to underestimate the percentage of convective precipitation in all seasons. In summer 

(and notwithstanding its resolution), HIRHAM simulates only 20% of convective 

precipitation. That is the lowest value across all studied RCMs. On the other hand, 

RACMO2 and RCA4 perform reasonably well in all seasons. All models except 

RCA4 underestimate the dispersion (interquartile range) of the simulated values. 

There are only slight differences between simulations of a single model with 

different horizontal resolutions.  
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Figure 4.2: Mean seasonal precipitation amount (top row), number of wet days (with 

precipitation ≥0.5 mm, middle row), and rain intensity index (RII, bottom row) in the 
observed data (OBS) and RCM simulations (1989–2008), averaged across all stations 

or grid boxes in the area of the Czech Republic. 
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Figure 4.3: Percentages of convective precipitation in total amounts for individual 

seasons in the observed data (OBS) and RCM simulations (1989–2008). The 

boxplots are calculated across stations or grid boxes. The bottom and top of the box 

are the first and third quartiles, and the band inside the box shows the median. The 

whiskers represent the 5 and 95% quantiles. The grey dotted line shows the median 

of observed values. 

 

Mean annual maxima of convective, stratiform, and total daily amounts are 

depicted in Figure 4.4. For comparison of grid box maxima, which represent areal 

averages, with station characteristics (point values), we use the area reduction factors 

(ARFs) representing the ratio between the areal average and point rainfall extreme 

for a given area, temporal aggregation, and exceedance probability (see e.g., 

Svensson and Jones, 2010b for a comprehensive overview). According to Overeem 

et al. (2010), we consider ARFs of 0.92 and 0.86 for mean annual maxima of total 

precipitation in RCMs with the 0.11° and 0.44° horizontal resolution, respectively. 

As the reduction of magnitudes applies especially to convective events in contrast to 

large-scale frontal precipitation (e.g., Huff and Shipp, 1969; Skaugen, 1997), we 

applied the same reduction (in mm) for convective precipitation as for total 

precipitation and no reduction for stratiform precipitation (cf. Chapter 3).  
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Figure 4.4: Mean annual maxima of daily precipitation amounts in the observed data 

(OBS) and RCM simulations (1989–2008) with horizontal resolution of 0.44° (top 

row) and 0.11° (bottom row). The boxplots are calculated across stations or grid 

boxes. The bottom and top of the box are the first and third quartiles, and the band 

inside the box shows the median. The whiskers represent the 5 and 95% quantiles. 

For observed data, individual station values are depicted by crosses. The lower 

boundary of the shaded area for extremes of total precipitation corresponds to the 

median of observed data after correction using areal reduction factor; for convective 

extremes, the same reduction (in mm) as for total precipitation was applied. The grey 

dotted line shows the median of observed values. 

 

Although observed mean annual maxima of daily convective and stratiform 

precipitation are both about 30 mm, convective maxima simulated by the RCMs are 

markedly underestimated while stratiform maxima are predominantly overestimated. 

Convective maxima are underestimated slightly more in RCMs with the coarser 

0.44° horizontal resolution, but the differences between the two resolutions are rather 

marginal and if the reduction due to ARF is considered, the biases are almost the 

same. Stratiform maxima are overestimated most by HIRHAM, in which, on the 

other hand, convective maxima are underestimated most. Total precipitation maxima 
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are reproduced reasonably well regardless of the biases for the convective and 

stratiform component in most RCMs. Although mean annual maxima are 

predominantly due to stratiform precipitation in the RCMs (in contrast to 

observations in which annual maxima originate almost equally from convective and 

stratiform precipitation), there is a tendency towards increase of mean annual 

maxima of convective precipitation in all models in the finer horizontal resolution 

(not shown). 

In summary, characteristics of mean convective and stratiform precipitation are 

simulated reasonably well in all RCMs although the seasonal precipitation amount of 

convective precipitation is slightly underestimated and all characteristics of 

stratiform precipitation are predominantly overestimated. Extreme precipitation of 

convective origin is systematically underestimated and that of stratiform slightly 

overestimated, which results in a relatively good simulation of extreme total 

precipitation. For all precipitation characteristics, there is a tendency towards larger 

differences between RCMs than between two simulations of the same RCM with 

different horizontal resolutions (0.44° and 0.11°). Finally, the RACMO2 model 

seems to be the best in reproducing most characteristics of convective and stratiform 

precipitation. 

 

4.3.2 Projected changes of precipitation characteristics 

for 2071–2100 

In this section, we analyse RCM simulations driven by GCMs under RCP4.5 and 

RCP8.5 scenarios, and evaluate projected future changes (2071–2100) relative to the 

control runs of the RCMs (1971–2000). As shown in section 4.3.1, there are only 

small differences between RCM simulations with 0.11° and 0.44° horizontal 

resolutions. Because the spatial characteristics of precipitations are better captured in 

simulations with finer resolution, we analyse future projections for the RCMs using 

only the 0.11° (~12 km) horizontal resolution.  

Changes of the mean annual precipitation cycle under RCP4.5 and RCP8.5 

scenarios simulated by all RCMs driven by EC-EARTH are depicted in Figure 4.5 

(top). The mean annual cycle of convective precipitation in future climate has still a 

maximum in summer and minimum in winter, but precipitation amounts tend to 

increase in all seasons, and especially in spring (RCP4.5: by 15%, RCP8.5: by 26% 
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relative to 1971–2000 on average) and summer (RCP4.5: by 10%, RCP8.5: by 6% 

relative to 1971–2000 on average). In these two seasons, there is a larger variance of 

the simulated changes between the RCMs. Stratiform precipitation amounts 

substantially increase in winter (RCP4.5: by 12%, RCP8.5: by 16% relative to 1971–

2000 on average) and spring (RCP4.5: by 14%, RCP8.5: by 18% relative to 1971–

2000 on average) while they slightly decrease in summer (RCP4.5: by −1%, RCPŘ.5: 

by −Ř% relative to 1ř71–2000 on average) and remain almost unchanged in autumn. 

Projected changes in stratiform precipitation amounts have a larger spread between 

the RCMs in all seasons except summer in comparison to convective precipitation. 

Changes of total precipitation amounts reflect changes in both convective and 

stratiform components although the stratiform precipitation plays a more important 

role in all seasons except for summer. The majority of RCMs simulate maximum in 

the annual cycle in summer and minimum in winter in the future climate regardless 

of the RCP scenario, but mean precipitation amounts tend to increase (in comparison 

to the control period) in all seasons except summer. The changes of convective, 

stratiform, and total seasonal precipitation amounts tend to be more pronounced 

under the RCP8.5 scenario. 

The number of days with convective precipitation ≥0.5 mm is projected to 

increase in all seasons except summer while for stratiform precipitation this number 

tends to increase in winter and spring and decrease in summer and autumn (Figure 

4.5, middle row). The number of wet days is usually smaller in the RCM simulations 

under the RCP8.5 scenario for both convective and stratiform precipitation. Total 

precipitation again reflects especially behaviour of the stratiform precipitation. 

Intensity of precipitation expressed by RII increases for both convective and 

stratiform precipitation in all seasons (Figure 4.5, bottom), and that increase is more 

pronounced in simulations under the RCP8.5 scenario. Larger increases are 

simulated for stratiform precipitation (by 2–3 times in absolute value) than for 

convective precipitation. The simulated intensity has also a larger spread between the 

RCMs for stratiform than convective precipitation. Increases in intensity of total 

precipitation are projected in all seasons by all RCMs under both RCP scenarios, and 

there is a clear tendency towards larger increases under the RCP8.5 scenario.  
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Figure 4.5: Projected changes of mean seasonal precipitation amount (top row), 

number of wet days (with precipitation ≥0.5 mm, middle row), and rain intensity 
index (RII, bottom row) in RCM simulations for 2071–2100 with respect to 1971–
2000, averaged across all grid boxes in the area of the Czech Republic. For each 

season, the left (right) column refers to the RCP4.5 (RCP8.5) scenario. Arrows 

accentuate differences between changes of the studied characteristics (averaged over 

all RCMs) under the RCP4.5 and RCP8.5 scenarios.    
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Figure 4.6: Percentages of convective (black) and stratiform (grey) precipitation in 

RCM simulations driven by the EC-EARTH GCM for spring, summer, and autumn. 

The red (white) coloured part represents the additional portion to which the 

convective (stratiform) fraction increases in the future climate (2071–2100) under the 

RCP4.5 (top) and RCP8.5 (bottom) scenarios against the 1971–2000 time slice.  

 

The percentages of convective and stratiform precipitation amounts in the RCMs 

control period for spring, summer, and autumn (the convective component is 

negligible in winter) and their additional portions which are simulated for the future 

climate under RCP4.5 and RCP8.5 scenarios are shown in Figure 4.6. The increasing 

percentage of convective precipitation is most pronounced in summer, when the 

proportion of convective precipitation on seasonal totals is largest (see Figure 4.5). 

This increase is more pronounced in RCM simulations under the RCP8.5 scenario 

(increase by about 3–5% vs. 1–3% under RCP4.5). As both convective and stratiform 

precipitation amounts increase in spring and autumn in a majority of the RCMs 

(Figure 4.5), the change in the percentage of convective and stratiform precipitation 
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is smaller in these seasons. Increase in the percentage of convective precipitation still 

prevails in autumn under both RCP4.5 and RCP8.5, as well as in spring under 

RCP8.5. 

 

 

Figure 4.7: Projected changes of mean annual maxima (top row), 20-year return 

level (middle row), and 50-year return level (bottom row) of daily convective, 

stratiform, and total precipitation amounts in RCM simulations for 2071–2100 with 

respect to 1971–2000 under the RCP4.5 (_45) and RCP8.5 (_85) scenarios. The 

boxplots are calculated across grid boxes. The bottom and top of the box are the first 

and third quartiles, and the band inside the box shows the median. The whiskers 

represent the 5 and 95% quantiles. 
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Projected changes in mean annual maxima and 20- and 50-year return levels of 

daily convective and stratiform precipitation amounts are shown in Figure 4.7. Mean 

annual maxima tend to increase for both convective and stratiform precipitation in a 

similar way, and the changes tend to be more pronounced under the RCP8.5 scenario 

(an increase of about 20% vs. 10% under RCP4.5). Projected 20-year and 50-year 

return levels usually increase faster than do mean annual maxima (increase of about 

15% and 35% for both return levels under RCP4.5 and RCP8.5, respectively). 

Although positive changes prevail on average across all RCMs for both convective 

and stratiform precipitation, the changes are spatially incoherent in magnitude and 

sign, especially for stratiform precipitation. In most RCMs, the precipitation 

extremes intensify more under the RCP8.5 than RCP4.5 scenario, and the difference 

between the two scenarios is particularly large for HIRHAM and RACMO2. 

As all the aforementioned results of projected precipitation changes are based on 

RCM simulations driven by the EC-EARTH GCM, we repeated all analyses for 

single RCM (CCLM) simulations driven by four GCMs (a CCLM ensemble) for 

assessing possible uncertainty of the projected changes. The effect of GCM on 

simulated changes is larger for stratiform than for convective precipitation due to a 

closer connection of stratiform precipitation to the large-scale circulation. The 

CCLM ensemble mean of simulated changes in mean precipitation characteristics 

(Figure 4.8) is similar to the EC-EARTH-driven RCMs ensemble mean, and an 

increase in mean precipitation intensity and mean annual maxima of daily 

precipitation amounts and their return levels tends to prevail in both ensembles. 

Although the magnitude of the projected precipitation changes could differ in 

individual RCMs driven by different GCMs, the tendency towards positive or 

negative change seems to remain similar regardless of the GCM used. 
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Figure 4.8: Projected changes of mean seasonal precipitation amount (top row), 

number of wet days (with precipitation ≥0.5 mm, middle row), and rain intensity 
index (RII, bottom row) in CCLM simulations driven by four GCMs for 2071–2100 

with respect to 1971–2000, averaged across all grid boxes in the area of the Czech 

Republic. For each season, the left (right) column refers to the RCP4.5 (RCP8.5) 

scenario. Arrows accentuate differences between changes of the studied 

characteristics (averaged over all RCMs) under the RCP4.5 and RCP8.5 scenarios. 
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4.4 Discussion 

 

All the studied EURO-CORDEX RCMs show reasonably good agreement with 

observations for mean annual cycle of convective and stratiform precipitation 

characteristics over 1989–2008. They reproduce the annual cycle of convective 

precipitation with a maximum in summer while stratiform precipitation amount is 

almost constant during the year. The main deficiency with respect to the annual cycle 

is an overestimation of stratiform precipitation amounts and the number of wet days, 

especially in the cold half of the year. The results are largely in line with the 

strengths and drawbacks of the ENSEMBLES RCMs identified in Chapter 3, and 

correspond also to results for total precipitation reported by Kotlarski et al. (2014) 

for a larger RCM ensemble from the EURO-CORDEX project. 

The most important limitation of the RCMs appears for extremes of convective 

precipitation. Although the rain intensity index (RII) is simulated quite well, the 

mean annual maxima of convective precipitation are severely underestimated. As 

shown previously, the daily amounts of convective precipitation rarely exceed some 

specific threshold in RCMs (Durman et al., 2006; Li et al., 2011; Kendon et al., 

2012) and contribute little to extreme total precipitation. After applying ARFs, which 

compensate the comparison of station (point) data and RCM (grid box) data, the 

identified biases of convective extremes are still large and cannot be explained 

merely by spatial smoothing. On the other hand, the RII of stratiform precipitation is 

overestimated and mean annual maxima of daily precipitation amounts are slightly 

overestimated. These biases in convective and stratiform precipitation maxima offset 

each other to some degree, which results in a good representation of total 

precipitation maxima with only a slight tendency towards underestimation (cf. 

Chaper 3). 

The influence of horizontal resolution on convective and stratiform precipitation 

characteristics is more pronounced for extreme precipitation. Especially for 

convective precipitation, the RCMs with the 0.11° horizontal resolution simulate 

higher values for mean annual maxima of daily precipitation amounts. These results 

agree with findings of Casanueva et al. (2015) and Prein et al. (2016), who studied 

the influence of horizontal resolution of RCMs on precipitation characteristics in 

some parts of Europe and found that the resolution effects are more pronounced for 
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higher precipitation intensities and in regions with complex orography. They also 

concluded that the differences between simulations with the 0.44° and 0.11° 

horizontal resolutions could be reduced by spatial and temporal averaging or bias 

correction. For instance, our results show that the biases identified in the 0.11° and 

0.44° simulations of mean annual maxima of daily convective precipitation amounts 

are almost the same after applying the ARFs (Figure 4.4), which compensate for 

spatial smoothing of climate model data. The simulations with finer horizontal 

resolution are nevertheless still preferred for analyses of daily and sub-daily 

precipitation amounts due to their better representation of orography and convection. 

For the analysis of projected future precipitation patterns (2071–2100 against 

1971–2000), we examined RCM simulations driven by GCMs under RCP4.5 and 

RCP8.5 scenarios. Mean seasonal amounts of total precipitation tend to increase in 

all seasons except summer. A similar pattern is found for stratiform precipitation 

while convective precipitation tends to increase throughout the year. The projected 

summer drying is associated mainly with a decrease of stratiform precipitation due to 

a decrease in the number of wet days. This decrease in the number of days with 

stratiform precipitation in summer (and autumn) could be caused by a decrease in the 

frequency of frontal systems reaching Central Europe due to a northwards shift of the 

Atlantic-European storm track (e.g., Lehmann et al., 2014). 

The increase of convective precipitation and decrease of stratiform precipitation in 

summer result in an increasing proportion of convective precipitation to total 

precipitation amounts. The percentage of convective precipitation increases only 

slightly in autumn, and there is a negligible change in spring because both convective 

and stratiform precipitation amounts increase in these seasons. These findings largely 

agree with those of Fischer et al. (2015) for Switzerland, where the percentage of 

convective precipitation is projected to increase in all seasons when convective 

precipitation plays an important role (i.e. spring, summer, and autumn). 

Expected intensification of total precipitation in Europe (e.g., Alexander et al., 

2006; Giorgi and Coppola, 2009; Wagner et al., 2013; Rajczak et al., 2013; Jacob et 

al., 2014; Lehtonen et al., 2014; Fischer et al., 2015) is a consequence of 

intensification in both the convective and stratiform components. For all examined 

extremes (mean annual maxima of daily precipitation amounts and their 20- and 50-

year return levels) of convective and stratiform precipitation, increases prevail over 

decreases. Most changes of precipitation characteristics tend to be more pronounced 
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in simulations driven by the RCP8.5 scenario, with a larger increase of temperature, 

and these changes are larger for precipitation with higher intensity. 

 

 

4.5 Summary 

 

We analysed precipitation characteristics over Central Europe in simulations of four 

RCMs from the EURO-CORDEX project. First we evaluated the ability of RCM 

simulations driven by the ERA-Interim reanalysis with two different horizontal 

resolutions (0.11° and 0.44°) to reproduce characteristics of convective (subgrid) and 

stratiform (large-scale) precipitation over 1989–2008. For the analysis of projected 

future precipitation patterns (2071–2100 against 1971–2000), we examined RCM 

simulations driven by GCMs under RCP4.5 and RCP8.5 scenarios. 

The main findings can be summarized as follows: 

 The RCMs capture relatively well the annual cycle of convective 

precipitation with its maximum in summer and minimum in winter. 

 All characteristics of mean stratiform precipitation tend to be 

overestimated throughout the year. 

 Extreme convective precipitation is systematically underestimated and 

stratiform slightly overestimated, which results in a relatively good 

simulation of extreme total precipitation. 

 For all precipitation characteristics, there is a tendency towards larger 

differences between RCMs than between two simulations of the same RCM 

with different horizontal resolutions (0.44° and 0.11°). 

 The increase of convective precipitation and decrease of stratiform 

precipitation in summer result in an increasing proportion of convective 

precipitation to total precipitation amounts. A tendency to increasing 

proportion of convective precipitation prevails also in autumn.  

 Regardless of its convective or stratiform origin, there is a tendency 

towards intensification of extreme precipitation. 

 Most changes of precipitation characteristics tend to be more 

pronounced in simulations driven by the RCP8.5 scenario, with a larger 
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increase of temperature, and these changes are larger for precipitation with 

higher intensity. 

 Increasing proportion of convective precipitation in summer and 

generally increasing intensity of precipitation may have important 

consequences, e.g., for soil erosion, replenishment of soil moisture, and 

occurrence of flash floods and droughts. 
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5 A two-component generalized extreme value 

distribution for precipitation frequency analysis

 

 

 

5.1 Introduction 

 

Extreme value theory (EVT) is the branch of probability theory and statistical 

science that deals with modelling and inference for extreme values (Coles, 2001). 

One of the main assumptions of EVT is that extremes belong to the same population 

(see Coles, 2001). However, this assumption is not fulfilled for extreme precipitation 

in mid-latitudes, which is caused by two different physical mechanisms (i.e. 

convective and stratiform precipitation).  

Where observations are generated by two independent processes, the distribution 

function of the overall extremes is the product of the distribution functions F1(x) and 

F2(x) of the extremes from the separate processes (e.g., Gumbel, 1958; Canfield et 

al., 1980; Waylen and Woo, 1982; Tabony, 1983):  

 �ሺ�ሻ = �ଵሺ�ሻ. �ଶሺ�ሻ                                                                                               (5.1) 

 

Gumbel (1958) suggested the use of such a two-component distribution to analyze 

floods arising from snow melt in spring and precipitation in autumn. Waylen and 

Woo (1982) fitted Gumbel distributions to the annual maxima of snowmelt and 

precipitation generated floods, and concluded that the resulting two-component 

Gumbel distribution provided a good fit to the overall annual maximum floods. The 

two-component Gumbel distribution has also been used for flood frequency 

modelling by Rossi et al. (1984), Strupczewski et al. (2012) and Kochanek et al. 

(2012), and for describing the distribution of extreme wind speeds (e.g., Gomes and 

Vickery, 1978; van den Brink et al., 2004; Escalante-Sandoval, 2008) and 

precipitation extremes for different durations (e.g., Caporali et al., 2008). In a 

number of these applications, however, the four parameters of the distribution were 

                                                 
 This chapter is based on: 

Rulfová Z, Buishand A, Roth M, Kyselý J. 2016. A two-component generalized extreme value 

distribution for precipitation frequency analysis. Journal of Hydrology 534: 659–668. 
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estimated jointly by fitting the distribution to the overall annual maxima, because an 

a priori subdivision of the observations according to the two generating mechanisms 

was not feasible. This leads in general to a larger standard error of quantile estimates 

(Strupczewski et al., 2012). 

In this study, we analyze annual maxima of 6-hour precipitation amounts in the 

Czech Republic (Central Europe) over the period 1982–2010 using a two-component 

generalized extreme value (TCGEV) distribution, which consists of two generalized 

extreme value (GEV) distributions (e.g., Coles, 2001). As sub-daily precipitation 

extremes have usually a longer upper tail than the Gumbel distribution (e.g., Alila, 

1999; Overeem et al., 2008), use of the GEV distribution as basis for a two-

component model for extreme precipitation is more appropriate. For parameter 

estimation of the TCGEV distribution, we take advantage of a subdivision of 

observed precipitation into predominantly convective and stratiform type based on 

surface weather observations described in Chapter 1. The return levels from the 

TCGEV distribution are compared with those obtained by the common practice of 

fitting a GEV distribution to the overall annual maxima. We apply a regional 

frequency analysis, which assumes that the most uncertain distribution parameters 

are constant over the study area. The advantage of a regional frequency analysis is 

that sampling variations in the estimates of model parameters and high return levels 

can be substantially reduced compared to a single-site analysis (e.g., Lettenmaier et 

al., 1987; Cunnane, 1988, Stedinger et al., 1993). The homogeneity assumption is 

tested with a bootstrap procedure that takes spatial dependence into account. In 

addition, goodness-of-fit of the regional model is tested for each individual station 

and for all stations simultaneously, using the Anderson-Darling statistic. 

After a short description of the data and precipitation patterns in the Czech 

Republic in section 5.2, the extreme value models and parameter estimation are 

discussed in section 5.3. Spatial homogeneity of distribution parameters and testing 

goodness-of-fit are dealt with in section 5.4. The return levels from the GEV and 

TCGEV distributions are compared in section 5.5. Section 5.6 presents a discussion 

and summary. 
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5.2 Data 

 

The observed 6-hour precipitation data originate from SYNOP reports at 11 stations 

(operated by the Czech Hydrometeorological Institute) over 1982–2010. The time 

series of 6-hour convective and stratiform precipitation amounts were obtained using 

the algorithm proposed and evaluated in detail in Chapter 1. Extreme 6-hour 

precipitation classified as mixed comprises no more than one annual maximum at 

each station over the 29-year period (Table 5.1). These mixed maxima are taken into 

account in the analysis of the overall annual maxima but they are omitted from the 

analysis of the convective and stratiform components. As Eq. (5.1) assumes two 

independent processes, we tested the independence of the 6-hour annual maxima of 

convective and stratiform precipitation using Kendall’s tau rank correlation 

coefficient (e.g., Wilks, 2006). No significant correlation at the 5% level was found. 

 

Table 5.1: Percentage of the largest 6-hour precipitation amounts in each year 

originated from convective, stratiform and mixed precipitation. 

Station Convective Stratiform Mixed 

11723 76 24 0 

11782 55 41 3 

11698 69 28 3 

11518 83 17 0 

11603 48 48 3 

11406 62 38 0 

11636 69 28 3 

11414 62 38 0 

11683 55 41 3 

11457 69 31 0 

11787 28 69 3 

 

The Czech Republic is characterized by large spatial and temporal variability in 

precipitation (see Chapter 2). Sub-daily precipitation extremes occur in relation to 

thunderstorms (convective precipitation) or cloud belts associated with cyclones that 

usually originate in the Mediterranean area (stratiform precipitation, e.g., Štekl et al., 

2001). Heavy precipitation at lowland stations is mostly of convective origin, while 

at high altitudes and at stations influenced by nearby mountains; intense stratiform 

precipitation becomes more important (Chapter 2). Box plots of the 6-hour annual 

maxima for convective and stratiform precipitation and the overall 6-hour annual 

maxima are depicted in Figure 5.1. The distributions are usually positively skewed 
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and the distribution of the overall 6-hour maxima is similar to that for convective 

precipitation especially at stations where more than 60% of the extremes come from 

convective precipitation (Table 5.1). Mountain station 117Ř7 Lysá hora is the only 

station with predominantly stratiform extremes (69% of the annual extremes is of 

stratiform origin for that station). 

 

 

Figure 5.1. Distributions of the 6-hour annual maxima for convective and stratiform 

precipitation and the overall 6-hour annual maxima. The bottom and top of the box 

are the first and third quartiles, and the band inside the box is the median. The 

whiskers represent the minimum and maximum values. 

 

 

5.3 The regional TCGEV distribution 

 

The GEV distribution has been widely used to describe the distribution of annual 

maximum precipitation amounts (e.g., Schaefer, 1990; Alila, 1999; Overeem et al., 

2008; Papalexiou and Koutsoyiannis, 2013). In a regional frequency analysis of 1-

day and multi-day annual precipitation maxima in the Czech Republic (Kyselý and 

Picek, 2007), the GEV distribution was identified most frequently as the best three-

parameter distribution using L-moment diagrams and a goodness-of-fit test.  

Moreover, the GEV distribution is based on asymptotic theory about the distribution 
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of maxima. It combines the three extreme value distributions (i.e., Gumbel, Fréchet, 

and reverse Weibull) into a single distribution. The cumulative distribution function 

is given by 

 

�GEVሺ�ሻ = {     exp {− [ͳ + � ቀ�−µ� ቁ]−1�} , � ≠ Ͳexp {−exp [− ቀ�−µ� ቁ]} , � = Ͳ                                                    (5.2)   

 

with µ, α and � the location, scale, and shape parameter, respectively. The shape 

parameter controls the behavior of the tails of the distribution;  > 0 implies a finite 

lower bound, L =  – /, and a heavy upper tail (Fréchet distribution), whereas for 

 < 0 the distribution has a finite upper bound, U =  – / (reverse Weibull 

distribution). For � = 0 the GEV distribution reduces to the Gumbel distribution. In 

the subsequent regional analysis the ratio of the scale parameter to the location 

parameter, � = � µ⁄ , is considered. This dispersion coefficient is comparable with 

the coefficient of variation. 

The use of the GEV distribution function in the right-hand side of Eq. (5.1) leads 

to the two-component generalized extreme value model: 

 �୘CGEVሺ�ሻ = �Cሺ�ሻ. �ୗሺ�ሻ 

       = exp {− [ͳ + �C ቀ�−µC�C ቁ]− 1�C − [ͳ + �ୗ ቀ�−µS�S ቁ]− 1�S} , �C ≠ Ͳ, �ୗ ≠ Ͳ,      (5.3) 

 

and max (LC, LS) < x < max (UC, US). The subscripts C and S refer here to the 

convective and stratiform component, respectively, and L and U to the lower and 

upper bounds of the GEV distributions for these components. For C = 0 and S = 0, 

the TCGEV distribution reduces to the two-component Gumbel distribution.  

The distribution has six unknown parameters, i.e., two sets of three GEV 

parameters. Because the observed precipitation data were subdivided into convective 

and stratiform precipitation, these two sets could be separately estimated from the 

annual maxima of each component.  
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Figure 5.2: Dependence of the shape parameter and the dispersion coefficient on 

altitude for the 6-hour annual maxima of convective and stratiform precipitation and 

the overall 6-hour annual maxima.  

 

Initially, the method of L-moments (Hosking and Wallis, 1997) was used to obtain 

estimates of the GEV parameters. Figure 5.2 shows the estimated shape parameters 

and dispersion coefficients for the 11 stations. A dependence on altitude is not 

observed. A difficulty with the at-site estimates in Figure 5.2 is that their standard 

errors are large owing to the limited sample size. To reduce the uncertainty in 

parameter estimates, a regional model is considered where both � and γ are constant 

over the study area. These assumptions imply that the annual maximum distributions 

at the various sites are the same apart from a constant scaling factor (e.g., Hanel et 

al., 2009), which is a basic assumption in regional frequency analysis in hydrology 

(Hosking and Wallis, 1997). The parameters in the regional model are estimated 

simultaneously by maximizing the log-likelihood (e.g., Arnell and Gabriele, 1988; 

Buishand, 1991): 

 �ሺ�ሻ = ∑ ��ሺ�ሻ��=ଵ                                                                                                   (5.4) 

 

where ��ሺ�ሻ is the log-likelihood for site i, � is the vector of GEV parameters and n 

is the number of sites. In our case this vector contains the common shape parameter, 
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the common dispersion coefficient and the location parameter for each site, thus 

1+1+11=13 parameters for 11 sites. The resulting estimates of  and  will have a 

smaller standard error than the at-site estimates of these parameters, because they are 

based on more data. This results in more accurate estimates of return levels provided 

that the homogeneity assumption is met. The use of alternative regional models 

where the location parameter is related to the altitude or mean annual precipitation is 

explored.  

The return levels from the regional TCGEV distribution are compared with those 

based on fitting a regional GEV distribution to the overall 6-hour annual maxima. 

The T-year return level x� or (1–1/T) quantile of the annual maximum distribution 

F(x) is given by �ሺx�ሻ = ͳ − ͳ �⁄  and can be expressed for the single GEV 

distribution as 

 

�� = {   µ − �� [ͳ − (−ln ቀͳ − ଵ�ቁ)−�] , � ≠ Ͳ,µ − �ln [−ln ቀͳ − ଵ�ቁ] , � = Ͳ                                                       (5.5) 

                                                                                     

Because an explicit form for the return levels of the TCGEV distribution does not 

exist, the inverse function �୘CGEV−ଵ  must be found by an iterative technique. We use 

Newton’s iterative method in this study. Note that the return levels of the TCGEV 

distribution are always larger than the return levels of the GEV distributions for the 

convective and stratiform components. 

 

 

5.4 Homogeneity and goodness-of-fit tests 

 

5.4.1 Homogeneity tests 

The regional GEV model assumes that the dispersion coefficient and shape 

parameter are constant over the region. Estimated return levels may be seriously 

biased if this homogeneity assumption is not met. In the hydrological literature 

spatial homogeneity has often been tested by comparing the regional spread of L-

moment ratios (Hosking and Wallis, 1997) or the estimated 10-year event (Lu and 

Stedinger, 1992) with the standard deviation of these statistics. Viglione et al. (2007) 
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showed that for highly skewed data the n-sample Anderson-Darling rank test has 

better performance than the Hosking and Wallis test based on the L-coefficient of 

variation (L-CV). A difficulty with these tests is that they assume that the annual 

maxima at different sites are independent. In our case this is not fulfilled for 

stratiform precipitation for which some weak dependence is observed (the average 

spatial correlation of the annual 6-hour maxima is 0.20). Castellarin et al. (2008) 

suggested a correction of the Hosking and Wallis L-CV test for spatial dependence, 

assuming a multivariate normal dependence structure. Van de Vyver (2012) 

accounted for spatial dependence using a bootstrap procedure to estimate the spatial 

correlation between estimated GEV parameters following Buishand et al. (2009). 

Here an alternative is considered, where the bootstrap is used directly to determine 

the significance of the statistic: 

 � = ∑ (�̂� − �̅)ଶ��=ଵ                                                                                                  (5.6) 

 

with �̂� the estimate of the GEV parameter of interest (,  or ) for station i and �̅ = ∑ �̂�/���=ଵ  (see Attachment A.3). The null hypothesis is that the tested parameter 

is constant over the study area and the alternative hypothesis is that it is not constant, 

resulting in relatively large values of R. This method was used by Hanel et al. (2009) 

for testing for differences between GEV parameters of seasonal precipitation maxima 

for several sub regions of the Rhine basin. No assumptions on the underlying spatial 

dependence structure are needed. 

 

Table 5.2: The p-values for testing spatial homogeneity of the GEV parameters 

(using the statistic R in Eq. (5.6)) and for testing the dependence of these parameters 

on altitude and mean annual precipitation amount for the annual maxima of 

convective and stratiform precipitation and the overall annual maxima. 
 Homogeneity Altitude Amount 

 κ � µ κ � µ κ � µ 

Convective 0.941 0.223 0.121 0.936 0.158 0.009 0.984 0.346 0.012 

Stratiform 0.965 0.153 0.000 0.468 0.240 0.000 0.318 0.498 0.000 

Overall 0.601 0.182 0.000 0.614 0.130 0.000 0.546 0.116 0.000 

 

Table 5.2 (first three columns) presents p-values of the test for homogeneity of the 

parameters κ, γ and µ over the study area. These p-values are based on 5000 

simulations (see Attachment A.3). Because the p-values for κ and γ are higher than 

0.1 for convective and stratiform precipitation as well as for the overall annual 
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maxima, these parameters can be considered to be constant over the study area. For 

the location parameter there is, however, strong evidence of spatial heterogeneity. 

The p-values are < 0.001 for stratiform precipitation and the overall annual maxima, 

and only for convective precipitation is the statistic not significant at the 10% level. 

 

 

Figure 5.3: Linear dependence of the location parameter on altitude and mean 

annual precipitation amount for the 6-hour annual maxima of convective and 

stratiform precipitation and the overall 6-hour annual maxima.  

 

In addition to the homogeneity test based on the statistic R, we tested the 

significance of a linear regression of the parameters κ, γ and µ on altitude and the 

mean annual precipitation amount. The null hypothesis is again that the tested 

parameter is constant over the study area, which implies that the slope is zero in the 

regression on altitude and mean annual   precipitation amount. The alternative 

hypothesis is that the slope for κ and γ differs from zero and that the slope for µ is 

greater than zero both for altitude and mean annual precipitation amount. The p-

values are presented in Table 5.2. These are based on the same bootstrap samples as 

those used for testing the significance of the statistic R (see Attachment A.3). The 

results for κ and γ confirm that these parameters can be considered to be constant 

over the study area. However, for the location parameter, the linear dependence on 

altitude and the mean annual precipitation amount is significant at the 10% level. 
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Figure 5.3 shows the increase of the location parameter with altitude and mean 

annual precipitation amount. For convective precipitation the increase is weaker than 

for stratiform precipitation and the overall annual maxima. 

To test the adequacy of the regression, the statistic R was also calculated for the 

residuals of the least-squares fit. The null hypothesis in this test is that the location 

parameter depends linearly on altitude or mean annual precipitation amount and the 

alternative is that each station has a specific value for this parameter. The results are 

shown in Table 5.3. The regression on altitude is rejected at the 10% level for 

stratiform precipitation and the overall annual maxima. However, the regression on 

the mean annual precipitation amount is not rejected. In particular for stratiform 

precipitation, Figure 5.3 shows a reduction of the scatter around the regression line if 

the location parameter is related to the mean annual precipitation amount. 

 

Table 5.3: The p-values for the test on the residuals from the regression of the 

location parameter on altitude or mean annual precipitation amount for the annual 

maxima of convective and stratiform precipitation and the overall annual maxima. 

 Altitude Amount 

Convective 0.334 0.313 

Stratiform 0.000 0.190 

Overall 0.006 0.112 

 

 

5.4.2 Anderson-Darling tests 

The Anderson-Darling goodness-of-fit test (Anderson and Darling, 1952) is used to 

test whether a sample comes from a population with a specific distribution. It gives 

more weight to the tails of the distribution than the popular Kolmogorov-Smirnov 

test (Massey, 1951). The null hypothesis in the original Anderson-Darling test is that 

the data follow a fully specified distribution, F0(x), and the alternative is that the 

distribution F(x) differs from F0(x). It is thus assumed that the parameters of F0(x) 

are known. Lower critical values should be used when these parameters are estimated 

from the sample. Though critical values of the Anderson-Darling test have been 

obtained for the GEV distribution with estimated parameters (Ahmad et al., 1988; 

Laio, 2004), these critical values cannot be used in the case of a regional GEV model 

with common parameters. Simulation from the fitted GEV model is then necessary to 

determine the critical value of the Anderson-Darling statistic. For this simulation 

exercise the annual maxima at the different sites were first transformed to standard 
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normal variables (Hanel et al., 2009). Samples from the multivariate standard normal 

distribution with the same average spatial correlation as the transformed annual 

maxima were then generated. These generated normal variables were subsequently 

transformed to GEV variables using the parameter estimates from the fitted regional 

model. 

 

Figure 5.4: Values of the Anderson-Darling statistic for the regional model with a 

site specific location parameter (top), a linear dependence of the location parameter 

on altitude (middle) and a linear dependence of the location parameter on mean 

annual precipitation amount (bottom) for the 6-hour annual maxima of convective 

and stratiform precipitation and the overall 6-hour annual maxima. 

 

Figure 5.4 gives values of the Anderson-Darling statistic for each station together 

with critical values for a test at the 0.1 significance level. Both the local critical 

values and the critical values of a global test at the 10% level are shown. The chance 

that one or more of the site-wise Anderson-Darling values exceed the latter is 10% in 

the case of an adequate fit. For the local critical values this chance is considerably 

larger, on average 10% of the Anderson-Darling values (1.1 value here) will exceed 

the local critical value if the model is true. The critical values in Figure 5.4 are based 
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on 3000 bootstrap samples. The global critical value is derived from the same 

bootstrap samples as the local critical values (see Hanel et al. (2009) for details).  

For the regional model with a site-specific location parameter the Anderson-

Darling statistic is significant for only one or two stations and the global critical 

value is not exceeded (Figure 5.4, top). The regional model with dependence of the 

location parameter on altitude is rejected at more than half of the stations for 

convective and stratiform precipitation as well as for the overall annual maxima, and 

the values of the Anderson-Darling statistic are often higher than the global critical 

value (Figure 5.4, middle). Better results are obtained for the regional model with 

dependence of the location parameter on mean annual precipitation amount (Figure 

5.4, bottom). However, the global critical value is still exceeded at one station for 

convective precipitation and at two stations for the overall annual maxima. For 

stratiform precipitation, the Anderson-Darling statistic is locally significant at 4 

stations, which is unsatisfactory (in only 2.2% of the bootstrap samples the statistic is 

locally significant at more than 3 stations). This result indicates that the assumption 

of a linear dependence of the location parameter on the mean annual precipitation 

amount is too restrictive. The Anderson-Darling statistic seems to have better 

performance to detect this than the statistic R. The Anderson-Darling statistic was 

also used to test the goodness of fit of the regional TCGEV distribution to the overall 

annual maxima, confirming the result that a spatial model with site-specific location 

parameter performs well and that a linear dependence of the location parameter on 

mean annual precipitation amount is less adequate. The regional model with site-

specific location parameters is therefore chosen for the estimation of return levels of 

the regional TCGEV distribution and the comparison with the results obtained by the 

regional GEV distribution with site-specific parameter. 

 

Table 5.4: Common shape parameter κ, common dispersion coefficient � and site-

specific location parameter for the annual maxima of convective and stratiform 

precipitation and the overall annual maxima. 
 κ � 

µ [mm] 

 11723 11782 11698 11518 11603 11406 11636 11414 11683 11457 11787 

Convective 0.18 0.36 22.6 21.5 18.0 19.6 20.2 18.2 21.8 18.2 20.6 23.4 26.6 

Stratiform 0.10 0.32 16.1 19.4 15.7 13.6 17.6 13.7 15.7 14.5 19.2 20.5 30.9 

Overall 0.13 0.32 24.8 25.9 22.1 21.1 24.1 20.4 25.7 21.4 24.8 26.6 36.0 

 

The common shape parameter, common dispersion coefficient and site-specific 

location parameter for convective and stratiform precipitation and the overall annual 

maxima are presented in Table 5.4. The GEV distribution for convective 
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precipitation is heavier tailed than the GEV distribution for stratiform precipitation. 

The location parameter is usually also larger for convective precipitation. 

 

 

5.5 Comparison of return levels 

 

Estimated return levels of the 6-hour annual maxima from the regional GEV and 

TCGEV distributions are shown for three stations in Figure 5.5. For long return 

periods the return levels from the TCGEV distribution are larger than those from the 

GEV distribution at the lowland station 11723 Brno–TuĜany, which is the result of 

the larger shape parameter and dispersion coefficient of the GEV distribution 

describing the convective component (Table 5.4). For T = 100 years, the difference is 

on average 6.1% (with respect to the estimate for the regional GEV distribution) for 

lowland stations with dominant convective precipitation. The differences between 

the estimated return levels of the overall annual maxima from the regional GEV and 

TCGEV distributions are even smaller (1.1% on average at the 100-year return 

period) at stations affected by mountains where stratiform precipitation becomes 

more dominant, e.g., station 11603 Liberec. Only at the highest station 11787 Lysá 

hora, where the return levels of the 6-hour annual maximum for convective and 

stratiform precipitation are comparable, are the estimated return levels from the 

regional TCGEV distribution smaller than those from the regional GEV distribution.  

 

 

Figure 5.5: Return level plots for the overall 6-hour annual maxima as obtained by 

the regional GEV distribution and the regional TCGEV distribution together with the 

return levels for the convective and stratiform components.  
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Confidence intervals for return levels are usually constructed using the delta 

method, which relies on the covariance matrix of the estimated parameters (e.g., 

Coles, 2001). For spatially dependent data the covariance matrix should be based on 

the Godambe (or sandwich) information matrix rather than the Fisher information 

matrix (e.g., Blanchet and Lehning, 2010; Varin et al., 2011; Van de Vyver, 2012). 

However, it is difficult to estimate the Godambe information matrix in the case of 

many different location parameters.  Therefore, the nonparametric and parametric 

bootstrap (e.g., Davison and Hinkley, 1997) are used in this study. While the 

nonparametric bootstrap is based on resampling with replacement from the given 

sample, the parametric bootstrap relies on randomly generated samples from a 

parametric model fitted to the data. In the latter, the effect of spatial dependence was 

accounted for in the same way as was done for the Anderson-Darling test making use 

of the multivariate normal distribution, whereas in the non-parametric bootstrap 

spatial dependence was preserved by resampling the data for a certain year 

simultaneously. Percentile confidence intervals were derived from 5000 samples for 

both the nonparametric and parametric bootstrap. Because of prevailing positive 

(negative) biases in the estimated return levels in the nonparametric (parametric) 

bootstrap, the confidence intervals were corrected for bias (Efron, 1987). 

Examples of return level plots with 95%-confidence intervals are depicted in 

Figure 5.6. For the mountainous station 117Ř7 Lysá hora the confidence intervals for 

the regional TCGEV distribution are narrower than those for the regional GEV 

distribution, in particular at long return periods, as a result of the relatively large 

influence of the stratiform component at this station. This reduces the sampling 

variability of return levels because of the relatively low value of the shape parameter 

and dispersion coefficient for stratiform precipitation. For the majority of the other 

stations the confidence intervals for the regional TCGEV distribution are slightly 

wider than those for the regional GEV distribution. The upper confidence limit from 

the parametric bootstrap is considerably higher compared to that from the 

nonparametric bootstrap in a number of cases. The parametric bootstrap results 

therefore on average in a wider confidence interval.  For the GEV distribution the 

differences are on average 6.4% for T = 20 years and 15.4% for T = 100 years, and 

for the TCGEV distribution the differences are 12.0% and 28.8% for these return 

periods. The wider confidence intervals for the parametric bootstrap are in agreement 
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with the simulation results of Kyselý (2010) for univariate samples, where the use of 

the parametric bootstrap was advocated for extreme value data. 

 

 

Figure 5.6: Return level plots for the overall 6-hour annual maxima from the 

regional GEV (top) and TCGEV (bottom) distributions. The observed overall annual 

maxima, including 6-hour events form mixed origin, are depicted by pluses and the 

maxima of convective and stratiform precipitation by crosses. The 95% confidence 

interval obtained by the parametric and the nonparametric bootstrap is depicted by 

the shaded area and the area between the two dotted lines, respectively. 

 

The nonparametric bootstrap used here is based on the empirical distribution of 29 

annual maxima for each site, which is subject to large sampling variability. Since the 

maxima from convective precipitation are almost independent, the bootstrap 

procedure for the convective component can be improved by resampling from the 

pooled sample of annual maxima, scaled by the at-site location parameter. This 

results on average in somewhat wider confidence intervals for the return levels from 

the regional TCGEV distribution. There remains, however, a considerable difference 

between those from the parametric bootstrap (9.0% and 21.8% for T = 20 and T = 

100 years, respectively). 
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In the parametric bootstrap it was assumed that spatial dependence can be 

described by the multivariate normal distribution. To explore the sensitivity of the 

width of the confidence intervals to the assumed dependence structure, the 

parametric bootstrap was repeated with a multivariate Gumbel distribution of the 

logistic type (Stephenson, 2003). For the lowland stations the results were similar to 

those for the multivariate normal distribution because of the strong dominance of 

convective precipitation. But for the elevated stations the standard errors of the 

estimated 20-year and 100-year return levels increased by 12% and 20%, 

respectively, using the logistic-Gumbel dependence (for station 11787 Lysá hora 

even by 17% and 42%). This is caused by the stronger spatial association of large 

values in the logistic-Gumbel model. Diagnostic measures to distinguish between the 

two types of dependence models have been presented by Coles et al. (1999). These 

did not offer a clear conclusion for our data because of the large sampling variability 

due to the small sample size. 

 

 

5.6 Discussion and summary 

 

The two-component Gumbel distribution that has frequently been used to describe 

the distribution of extremes of environmental data, was generalized as a distribution 

having two GEV components, which is more suitable for precipitation extremes. This 

TCGEV distribution was used to analyze 6-hour precipitation maxima of convective 

and stratiform origin in the Czech Republic over 1982–2010. As the 6-hour 

precipitation amounts could be subdivided into predominantly convective and 

stratiform precipitation, the parameters of the underlying GEV distributions could be 

estimated for each component separately. To reduce the uncertainty in parameter 

estimates, a regional model with common shape parameter and common dispersion 

coefficient was considered for each precipitation type. The adequacy of a linear 

dependence of the location parameter on altitude or mean annual precipitation was 

explored using a homogeneity test on the residuals from a least-squares fit and the 

Anderson-Darling statistic. The latter showed that these models did not fit the 

observed annual maximum distributions well. The location parameter was therefore 

estimated for each site separately. 
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The return levels of the overall 6-hour maxima from the regional TCGEV 

distribution were compared with those obtained by fitting a regional GEV 

distribution to these maxima. The estimated return levels were quite similar. For T = 

100 years the difference between the return levels from the TCGEV and GEV 

distributions is on average 6.1% and 1.1% at lowland and elevated stations, 

respectively. The larger values for the TCGEV distribution at low altitudes are due to 

the relatively high shape parameter and dispersion coefficient of the GEV 

distribution describing the maxima of convective precipitation. As a consequence, 

the common method of fitting a GEV distribution to the overall annual maxima may 

underestimate design values of precipitation extremes when convective precipitation 

is important. Another implication of the heavy upper tail of the convective extremes 

is that the return levels of the 6-hour annual maxima for convective precipitation can 

be larger than those from a GEV fit to the overall 6-hour annual maxima as is 

observed in Figure 5.5 for station 11723 Brno–TuĜany, which does not match reality 

because convective precipitation represents a part of the total precipitation. The use 

of the TCGEV distribution guarantees that the estimated return levels of the overall 

6-hour annual maxima are larger than the values for the convective and stratiform 

component from the GEV distribution. 

Confidence intervals for return levels were derived using the nonparametric and 

parametric bootstrap. For the majority of the stations the confidence intervals based 

on the TCGEV distribution are slightly wider than those based on the GEV 

distribution as a result of the relatively high value of the shape parameter and 

dispersion coefficient for the convective component. The confidence intervals from 

the parametric bootstrap are generally wider than those from the nonparametric 

bootstrap. This holds for both the GEV and TCGEV distribution. The wider 

confidence intervals for the parametric bootstrap are in line with the simulation 

results of Kyselý (2010) for univariate samples. 
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Conclusions 

 

An algorithm for subdivision of 6-hour precipitation amounts into predominantly 

convective and stratiform using station weather data was proposed and evaluated. In 

contrast to other studies, the new algorithm is not based on precipitation rates 

(usually taken from radar or satellite data) but makes use of information on weather 

state and cloud type reported in SYNOP data. The main advantages of this approach 

are that it makes use of precipitation data that are directly measured, rather than 

converted from radar reflectivity or other proxy variable, and that relatively long 

time series are available, which allows for analysing climatology of convective and 

stratiform precipitation and possible changes in their proportions over time. 

The algorithm subdivides about 95% of precipitation amounts, and it performs 

better for moderate to heavy precipitation than light precipitation. This suggests that 

it may be particularly useful for analysis of precipitation extremes, which, in contrast 

to the assumptions of conventional extreme value models, obviously do not originate 

from a single process (distribution) at mid-latitudes. Sensitivity analysis showed that 

the time series and spatial patterns of convective and stratiform precipitation 

obtained using alternative versions of the algorithm (leading to ‘strict’ and 

‘maximum’ subdivision) were very similar. Therefore, the particular setting of the 

algorithm has a rather small influence on results concerning basic characteristics of 

convective and stratiform precipitation. 

The time series of convective and stratiform precipitation were used for 

evaluating climate models which simulate convective (subgrid) and stratiform (large-

scale) precipitation separately through cumulus and large-scale precipitation 

parameterizations. The results based on comparison of observed and simulated 

precipitation characteristics from an ensemble of 11 RCMs from the ENSEMBLES 

project driven by the ERA-40 reanalysis showed that characteristics of mean 

convective and stratiform precipitation are reproduced reasonably well in all RCMs. 

The main limitation of the RCMs is found for extremes of convective precipitation, 

which are severely underestimated. Errors in precipitation characteristics in climate 

models mainly relate to drawbacks in the representation of convection, which finding 

is in line with previous studies based upon biases in daily or hourly precipitation 

extremes, as well as with comparisons of climate models involving a convection 
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parameterization scheme with cloud-resolving/convection-permitting models 

explicitly representing convection. 

Although the model separation of the two components must be interpreted with 

caution, the evaluation of their simulated characteristics may be useful for further 

improving the models inasmuch as the biases may point to erroneous representation 

of physical processes. As our results refer to still relatively coarse horizontal 

resolution of RCMs in which both convective and stratiform precipitation need to be 

parameterized, similar analyses with convection-permitting models (e.g., Kendon et 

al., 2012) are needed. High computational costs might nevertheless impede wider 

availability of these simulations in the near future. 

As changes in precipitation regime are crucial for impact studies, and in particular 

those in hydrology and agriculture, we analysed projected future convective and 

stratiform precipitation patterns simulated by four RCMs from the EURO-CORDEX 

project driven by GCMs under RCP4.5 and RCP8.5 scenarios. The main results for 

the end of the century (2071–2100) are an increase of convective precipitation 

amounts and a decrease of stratiform precipitation amounts in summer, a tendency 

towards intensification of extreme precipitation regardless of its convective or 

stratiform origin, and a tendency to more pronounced changes, especially for 

precipitation extremes, in simulations driven by the RCP8.5 scenario (i.e., with a 

larger increase of temperature). 

Our results imply a rising probability of extreme precipitation events and 

important changes in soil moisture characteristics, especially in summer. Stratiform 

precipitation is by its nature more important for agriculture, and a decrease of 

stratiform precipitation amounts in combination with higher temperatures can lead to 

larger soil moisture deficits. More frequent and intense precipitation, projected for 

the future climate, is not able fully to compensate the deficit of light and moderate 

precipitation because dry soil cannot absorb all water from intense precipitation 

events. Furthermore, extreme convective precipitation may cause flash floods and 

landslides, thus representing additional hazards and damages. 

Because there is ongoing need for more accurate estimation as to frequency of 

precipitation extremes, we proposed a new methodology for extreme value analysis 

which takes advantage of information about the origin of precipitation extremes (i.e., 

convective or stratiform type). Return levels from a regional two-component 

generalized extreme value (TCGEV) distribution for observed data were compared 
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with those obtained using the common method of fitting a regional generalized 

extreme value (GEV) distribution to the overall annual maxima, thus ignoring their 

convective or stratiform origins. The differences are generally small, but they 

increase with return period and are larger at lowland stations where the proportion of 

convective precipitation extremes is greater. High return levels based on a GEV fit to 

the overall annual maxima for these stations tend to be smaller than are those for the 

convective component. This is due to the heavier upper tail of the distribution for 

convective extremes. 

The proposed methodology requires that the precipitation data can be subdivided 

into convective and stratiform origin. Particularly when high return levels are of 

interest such a subdivision should be considered in order to avoid biases. It will 

generally not be feasible to use the TCGEV distribution if an a priori subdivision of 

the precipitation data cannot be made because of the large number of parameters. 

This methodology may be suitable also for analysis of extreme precipitation in 

climate models. The majority of available precipitation data from RCMs, however, 

do not have appropriate spatial and temporal resolution to capture the behaviour of 

extreme convective (subgrid) precipitation. Mean annual maxima of daily 

precipitation amounts in the RCMs from the ENSEMBLES and EURO-CORDEX 

projects are mostly of stratiform (large-scale) origin (in contrast to observations in 

which extremes of convective and stratiform origin are comparable in Central 

Europe), and they are about two times larger for stratiform (large-scale) than 

convective (subgrid) precipitation in the RCMs on average. 

Preliminary results based on daily precipitation amounts in RCMs show that the 

20-year return levels of total precipitation obtained by the TCGEV distribution are 

similar (equal or slightly larger) to those for large-scale precipitation estimated by 

the GEV distribution and predominantly smaller than are those for total precipitation 

estimated by the GEV distribution. An explanation of the differences between 

estimated return levels of total precipitation from the TCGEV and GEV distributions 

in RCMs, and in particular to what extent the differences may be interpreted as a bias 

for the standard GEV distribution, is currently under investigation. With further 

improvements of climate models and development of convection-permitting RCMs, 

the proposed TCGEV distribution has potential to become a useful tool for analysing 

precipitation extremes in their outputs.  
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Attachments 

 

 
Attachment A.1 

 
Codes of weather state in the SYNOP reports characterizing 

convective and stratiform precipitation 
 

Table A.1: Codes of weather state characterizing convective precipitation. 

1. Non-precipitation events 2. Precipitation within past hour but not  

17 thunderstorm but no precipitation 

falling 

at observation time 

 at station 25 snow showers 

18 squalls within sight but no precipitation 26 snow showers 

 falling at station 27 hail showers 

19 funnel clouds within sight 29 thunderstorms 

 4. Thunderstorms 

3. Showers 91 thunderstorm in past hour, currently 

only 

80 light rain showers  light rain 

81 moderate to heavy rain showers 92 thunderstorm in past hour, currently 

only 

82 violent rain showers  moderate to heavy rain 

83 light rain and snow showers 93 thunderstorm in past hour, currently 

only 

84 moderate to heavy rain and snow 

showers 

 light snow or rain/snow mix 

85 light snow showers 94 thunderstorm in past hour, currently 

only 

86 moderate to heavy snow showers  moderate to heavy snow or rain/snow 

mix 

87 light snow/ice pellet showers 95 light to moderate thunderstorm 

88 moderate to heavy snow/ice pellet  96 light to moderate thunderstorm with hail 

 showers 97 heavy thunderstorm 

89 light hail showers 98 heavy thunderstorm with duststorm 

90 moderate to heavy hail showers 99 heavy thunderstorm with hail 
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Table A.2: Codes of weather state characterizing stratiform precipitation. 

1. Precipitation within past hour but not 2. Drizzle 

at observation time 50 intermittent  light snow 

20 drizzle 51 continuous light drizzle 

20 drizzle 52 intermittent moderate drizzle 

21 rain 53 continuous moderate drizzle 

22 snow 54 intermittent heavy drizzle 

23 rain and snow 55 continuous heavy drizzle 

24 freezing rain 56 light freezing drizzle 

  57 moderate to heavy freezing drizzle 

  58 light drizzle and rain 

  59 moderate to heavy drizzle and rain 

3. Rain (not in the form of showers) 4. Snow (not in the form of showers) 

60 intermittent light rain 70 intermittent light snow 

61 continuous light rain 71 continuous light snow 

62 intermittent moderate rain 72 intermittent moderate snow 

63 continuous moderate rain 73 continuous moderate snow 

64 intermittent heavy rain 74 intermittent heavy snow 

65 continuous heavy rain 75 continuous heavy snow 

66 light freezing rain 76 diamond dust 

67 moderate to heavy freezing rain 77 snow grains 

68 light rain and snow 78 snow crystals 

69 moderate to heavy rain and snow 79 ice pellets 
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Attachment A.2 

 
Annual cycle of 6-hour convective and stratiform precipitation 

amount and their maxima 
 

 

Figure A.1: Boxplots of all non-zero 6-hour convective and stratiform precipitation 

amount for each month. 
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Fugire A.2: Boxplots of maximum monthly 6-hour convective and stratiform 

precipitation amount for each month. 
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Attachment A.3 

 
Testing for homogeneity using the statistic R 

In the bootstrap procedure the data are transformed to standard Gumbel residuals to 

remove spatial heterogeneities. These residuals are resampled with replacement and 

then transformed to GEV variables with parameters satisfying the homogeneity 

assumption. The statistic R is calculated for these simulated data and compared with 

the observed value of R. 

For testing homogeneity of the shape parameter at n sites, i.e., 1 = 2 = … = n, 

the bootstrap procedure consists of the following steps: 

1.  Calculate standard Gumbel residuals: 
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 where xit is the annual maximum at site i for year t, N is the number of years, 

and ̂� , �̂� and ̂� are the L-moment estimates of the GEV parameters at site i. 

2. Take the average ̅ of the estimated shape parameters as the estimate of the 

common shape parameter under the null hypothesis, and re-estimate αi and i 

by the method of L-moments, given ଵ = ଶ = ⋯ = � = ̅. Denote these 

estimates as �̂�଴ and ̂�଴.     

3. Draw a sample from the standard Gumbel residuals by resampling from the 

years 1,…,N with replacement. For each selected year u the Gumbel residuals �̃��′ � = ͳ, … , � are entered in the bootstrap sample. This preserves spatial 

dependence. 

4. Transform the resampled Gumbel residuals to GEV variables with a common 

shape parameter: 

 

 
 




1~expˆˆ

00


 iu

iiiu

x
x ,  i = 1,…,n;  u=1,…,N.                         (A.2) 

5. Re-estimate  for each site in the region, and recalculate the statistic R. The 

recalculated test statistic is denoted as R*. 
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6.  Repeat steps 3 to 5 until the desired number of bootstrap samples is obtained. 

The p-value is the fraction of R* values larger than R. 

In the test on homogeneity of the dispersion coefficient , common estimates 

̂଴ and ̂଴ of the shape parameter and dispersion coefficient were used in the 

transformation (A.2). These estimates were derived in step 2 from the average L-

moment ratios over the study area (Hosking and Wallis, 1997). In step 2 the location 

parameter was re-estimated assuming a constant shape parameter and dispersion 

coefficient. 

For the test on the homogeneity of the location parameter , a common location 

parameter was estimated in step 2 as the average of the at-site estimates. In addition 

to the calculation of the statistic R in step 5, least squares regressions of the at-site 

locations parameters on altitude and mean annual precipitation amount were 

performed and the statistic R was calculated for the residuals of the regression. Note 

that for testing the adequacy of the regression, it is not necessary to include the fitted 

regression line in the transformation (A.2), because this does not affect the values of 

the least-squares residuals.   


