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Introduction
This bachelor’s thesis is dealing with modelling claim counts, which is important
in the insurance industry for classifying risk of policyholders and for setting paid
premium correctly. The basic model for count data is the Poisson distribution,
but the practical use of Poisson distribution is limited by its restriction on the
mean variance equality and by the fact that there are often too many zeroes in
real-life data. To overcome this, we introduce mixed Poisson models which can
be used in a broader spectrum of applications. The broader use is compensated
by more parameters to estimate.

The estimation of parameters will be carried out by the method of maximum
likelihood, which achieves good asymptotic properties under regularity conditions.

To deal with the problem of overdispersion we present the concept of contin-
uous mixtures and most notably the negative binomial, which can be derived as
Poisson gamma mixture. Then we introduce regression based on this model.

In order to analyse data with the excess of zeroes, finite mixtures are discussed
with the main focus on zero inflated Poisson distribution and Poisson hurdle dis-
tribution. Both these models are two component mixtures, where in zero inflated
model we assume two processes generating zero counts and in hurdle models we
assume that the process generating zeroes is different from that generating higher
counts.

Then we deal with the problem of choosing the correct model for our data as
well as choosing right regressors to be included in the model.

In the last chapter we use the introduced methods on real-life data from
automobile insurance dataset from Australia and model claim numbers of poli-
cyholders.
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1. Poisson distribution

1.1 Definition
Poisson distribution is a discrete distribution, which is widely used in practical
applications. X is Poisson distributed (X ∼ Po(λ)) if

P [X = k] = eλ · λk

k! , k ∈ N, λ ∈ R+

and it has the following properties:
E [X] = λ, var [X] = λ.

Thus Poisson distribution is equidispersed, i.e. mean and variance are the same.
This property can be limiting in practical use, since real-life data often violate
this assumption .

1.2 Origin
There are two main ways from which Poisson distribution can be derived and
which have an intuitive idea behind them.

1.2.1 Limit of series of Bernoulli trials
First of the ways is getting Poisson distribution as a limit of series of Bernoulli
trials, which is the same as a limit of binomial distribution.

Bernoulli trial Y is a trial which has two possible outcomes, one with proba-
bility p, second with 1 − p. The outcomes are usually noted 1 and 0. So formally

P [Y = 0] = 1 − p,

P [Y = 1] = p,

P [Y = k] = 0, k > 1.

If we define X = ∑n
i=1 Yi, where Yi are Bernoulli trials with the same p, then

X has Binomial distribution with coefficients n and p, so

P [X = k] =
(

n

n − k

)
· pk · (1 − p)n−k .

When we take limiting form for n → ∞, but with the probability pn as function
of n getting smaller, so that npn = λ is fixed, we get

lim
n→∞

P [X = k] = lim
n→∞

(
n

n − k

)
pk

n (1 − pn)n−k =

= lim
n→∞

(
n

n − k

)(
λ

n

)k (
1 − λ

n

)n−k

=

= lim
n→∞

n (n − 1) (n − 2) · · · (n − k + 1)
nk

λk

(
1 − λ

n

)n

(
1 − λ

n

)k =

= e−λ λk

k! ,
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which is the probability of Poisson distribution with parameter λ.
Since binomial distribution is being interpreted as the number of successes

in n trials with a probability of success in one trial of p, the limiting form can
have an interpretation that there is a lot of trials (n → ∞), but with very small
probability p (so that pnn = λ).

This intuitive interpretation can be used to approximately fit our case of claim
counts. We can take the number of policyholders as n where each of them has
probability of an accident and thus filling a claim of p. It is intuitively seen that
p tends to be rather small (just a small percentage of people have an accident)
while the total number of policyholders tends to be large.

1.2.2 Poisson process
Second way of getting Poisson distribution is from the Poisson process.

Let {Xt, t ∈ T} be a stochastic count process. It is called Poisson process, if
all of the following requirements are fulfilled.

• For k ∈ Z, h > 0 and s ≥ t: P [Xt+h − Xt = k] = P [Xs+h − Xs = k], i.e. the
process has stationary increments.

• For any integer k and any numbers 0 ≤ t0 < t1 < t2 < ... < tk random
variables Xt1 −Xt2 , Xt2 −Xt3 , ..., Xtk−1−Xtk

are independent, i.e. the process
has independent increments.

• P [Xh = k] =

⎧⎪⎪⎨⎪⎪⎩
1 − λh + o (h) , k = 0
λh + o (h) , k = 1
o (h) , k ∈ N \ {1}

for h → 0.

Here we will consider only real Poisson process, that is T = R.
As proven in Denuit et al. [2007], when {Xt, t ∈ R} is Poisson process with pa-

rameter λ, then the number of events during time period s is Poisson distributed
with mean sλ, formally

(Xk+s − Xk) ∼ Po (sλ) .

Because of this, the Poisson distribution can be interpreted as number of occur-
rences of certain event during a period of time. That is once more useful when
thinking about claim counts, since we are interested in modelling claim counts
during different periods of time.

1.3 Maximum likelihood estimate for Poisson
distribution

In this thesis, we will be estimating only parameters of discrete distributions, so
the discussion here will be limited to these distributions. One of the most widely
used techniques for parameter estimation is the maximum likelihood estimate
(MLE), which can be used if the data come from a distribution with probability
mass function (PMF) p (x, θ) where p is a known function and θ is the parameter
to estimate.
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Let X = (X1, X2, . . . , Xn)⊤ be a vector of independent random variables
from distributions with probability mass functions pi (x, θ) where the vector
θ = (θ1, θ2, . . . , θm)⊤ is a vector of parameters to estimate. Then we define
the maximum likelihood function as the joint probability mass function of X as
follows:

L (X, θ) = p (x, θ) =
n∏

i=1
pi (xi, θ) .

So L
(
X, θ(0)

)
is the probability of x occurring if Xi was from distribution

with probability mass function f
(
x, θ(0)

)
. Now it makes sense to maximize the

probability and thus the maximum likelihood function. Since the product can be
hard to deal with, we usually work with logarithm of the maximum likelihood
function, which we denote l (X, θ), i.e.

l (X, θ) = ln (L (X, θ)) =
n∑

i=1
ln (pi (xi, θ)) .

Since logarithm is a strictly increasing function, l (X, θ) is maximized at the
same point θ̂ as L (X, θ). This point is called the maximum likelihood estimate
and we will denote it by hat above the parameter name. To find the maximum,
we usually solve the following system of maximum likelihood equations:

∂l (X, θ)
∂θ

(
X, θ̂

)
= 0. (1.1)

Estimate for Poisson distribution

Now we will look at Poisson distribution. But as discussed before, when dealing
with claim counts, it is typical to have the observations for different periods of
time. Let X = (X1, . . . , Xn)⊤ be a vector of random observations with Xi ∼
Po (ωiλ), where ωi is the exposure of the observed Xi. Then, we have the log-
likelihood function

l (X, θ) =
n∑

i=1
ln
(

e−ωiλ
(ωiλ)xi

xi!

)
=

n∑
i=1

(−ωiλ + xi ln (ωi) + xi ln (λ) − ln (xi!)) .

And after differentiating with regard to λ we get

∂l (X, λ)
∂λ

=
n∑

i=1

(
−ωi + xi

λ

)
.

Putting this equation equal to 0 gives

λ̂ =
∑n

i=1 xi∑n
i=1 ωi

as the maximum likelihood estimate of λ. Here we can note that if ωi = 1, for
i = 1, . . . , n, we get λ̂ = X̄, the sample mean.
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Asymptotic properties

Under regularity conditions, some asymptotic properties can be shown to hold.
The following regularity conditions were stated in Casella and Berger [2002]
[p. 516]:

1. X1, X2, . . . , Xn are iid.

2. The parameter θ is identifiable, that is, if θ ̸= θ′ then f (x | θ) ̸= f (x | θ′).

3. The densities f (x | θ) have common support and f (x | θ) is differentiable
in θ.

4. The parameter space Ω contains an open set ω of which the true parameter
value θ0 is an interior point.

5. For every x ∈ X, the density f (x | θ) is three times differentiable with
respect to θ, the third derivative is continuous in θ and

∫
f (x | θ) dx can

be differentiated three times under the integral sign.

6. For any θ0 ∈ Ω there exists a positive number c and a function M(x) (both
of which may depend on θ0) such that

⏐⏐⏐⏐⏐ ∂3

∂θ3 ln g (x | θ)
⏐⏐⏐⏐⏐ ≤ M (x) for all x ∈ X, θ0 − c < θ < θ0 + c

with Eθ0 [M (X)] < ∞.

And the following theorem from Casella and Berger [2002][Theorem 10.1.6] gives
us asymptotic properties of MLEs.

Theorem 1. Let Xi be iid with density f (x | θ). Let θ̂ denote the MLE of θ. Let
g (θ) be a continuous function, then, under the regularity conditions (1)-(6), θ̂ is
a consistent estimate of θ and

√
n
[
g(θ̂) − g (θ)

]
→ n [0, v (θ)] ,

where v (θ) is the Cramér-Rao Lower bound, so that θ̂ is fully efficient.

1.4 Poisson Regression
Now let us assume we have n observations (Xi, Yi) which are iid. The variable
Xi is our response variable and Yi = (Yi,1, ...Yi,m)⊤ is a vector of regressors. And
let us assume that

P [Xi = x | Yi = yi] = e−λ(yi,β) λ (yi, β)xi

xi!
,

where λ (yi, β) is a non-negative function of yi and a vector β = (β0, β1, . . . , βk)
of parameters to estimate.
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Most common choice of λ (yi, β) is the log-linear model: λ (yi, β) = eyi
⊤β. To

estimate β, we can use the same approach as before and use MLE. In this case,
when we have observations X, the maximum likelihood function is

L (X, β) =
n∏

i=1
eeyi

⊤β

(
eyi

⊤β
)xi

xi!

and
l (X, β) = −

n∑
i=1

eyi
⊤β +

n∑
i=1

xiyi
⊤β +

n∑
i=1

ln (xi!) .

After differentiating with respect to βk we get

∂l (X, β)
∂βk

=
n∑

i=1
xiyi,k − ey⊤

i βyi,k,

which can be written as vector in the following manner:

∂l (X, β)
∂β

=
n∑

i=1
xiyi − ey⊤

i βyi.

From this we get the MLE estimate β̂ as the solution of the following equation:
n∑

i=1
yi

(
xi − eβ̂yi

)
= 0.

But the solution has to be found numerically.

Regularity of Poisson regression

For Poisson regression we can introduce regularity conditions which are easier to
check. Here we will present the conditions on stochastic regressors as stated in
Fahrmeir and Kaufmann [1986].

1. The pairs (Xi, Yi) are iid as pairs of random variables.

2. The matrix of second moments of Yi exists and is positive definite:

0 < E
[
Y ⊤

i Yi

]
< ∞.

3. E
[
eY ⊤

i β
]

< ∞ for all β, i.e. the moment generating function exists.

Under these conditions the asymptotic results hold as was shown in Fahrmeir and
Kaufmann [1986]. The normality can be written as

√
n
(
β̂ − β0

)
d→ N

[
0, J (β0)−1

]
,

where β0 is the true value of parameter β and J (β0) is the Fisher information
matrix. In order to use this finding, we need consistent estimate of J (β0), which
can be achieved by taking J(β̂).

If the model is misspecified, but E [X] = ey⊤β holds and the variance is finite,
then the MLE estimate is still consistent, but the asymptotic normality does
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not work with the variance matrix stated above. To have asymptotic normality
preserved even when the model is misspecified, we have to use sandwich form of
variance matrix in the form of A−1BA−1, where, in the case of Poisson regression,

A = lim
n→∞

1
n

n∑
i=0

ey⊤
i β0y⊤

i yi

and
B = lim

n→∞

1
n

n∑
i=1

viy
⊤
i yi,

where vi is the real variance of Xi. When the model specification is correct,
A = B and so A−1BA−1 = A−1. In order to use this result, we have to get
consistent estimate of the variance matrix by taking consistent estimates of β0
and vi. The process of getting these results is described in Cameron and Trivedi
[2013][pp. 31–34].
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2. Mixed Poisson models
There are several reasons why we need better models than Poisson distribution.
The first source of this need may come from overdispersion, the property of vari-
ance exceeding the mean in our dataset. Since Poisson distribution is equidis-
persed, it cannot sufficiently cover overdispersed data. In this case Mixed Poisson
models can explain unobserved heterogenity. That is, in our data there may be
some groups, which have different parameters, but we cannot observe to which
group which observation belongs. In case of regression, it means that there are
still some unobserved parameters left that influence the output. In our case of
insurance this would mean that not all of the policyholders have the same prob-
ability of causing an accident and that they come from different groups with
different means, where this variability cannot be explained by regressors. We will
be dealing with this problem mainly in Section 2.1.

Another common problem with Poisson distribution is that in real datasets
there is often excess of zeroes compared to expected number of zeroes from Poisson
distribution with the same mean. In non-life insurance, this can be seen as
unwillingness to report claims with low damage, as not to increase the insurance
rate. This problem will be dealt with in Subsections 2.2.1 and 2.2.2.

2.1 Continuous mixtures
We say that X follows mixed Poisson distribution with mixing distribution Λ,
where Λ has values in Θ ∈ R+ and has a density g, if X has probability mass
function of the following form:

p(x) =
∫

Θ
e−θ θx

x! g(θ)dθ. (2.1)

We note this mixed Poisson distribution as MP(g).
It follows that the conditional probability

p(x | θ = λ) = e−λ λx

x!
is Poisson distributed.

2.1.1 Properties
Continuous mixtures have the following properties:

E [X | λ] = λ,

E [X] = E [E [X | λ]] = E [λ],
var[X] = var[E [X | λ]] + E [var[X | λ]] = var[λ] + E[λ].

From the last expression it is clear that MP(g) has higher variance than mean,
so it is overdispersed.

Another interesting property can be derived from Shaked two crossing theorem
as written in Denuit et al. [2007][p. 26] and proven in Shaked [1980].
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Theorem 2. Let X ∼ MP(g) with E [X] = λ, then there exist two integers
0 ≤ k0 < k1, such that

P[X = x] ≥ e−λ λx

x! , x = 0, 1, . . . , k0,

P[X = x] ≤ e−λ λx

x! , k = k0 + 1, . . . , k1,

P[X = x] ≥ e−λ λx

x! , x > k1.

This theorem allows us to compare mixed Poisson distributions with standard
Poisson distributions with the same mean. It tells us that MP(g) has higher
probability of zero and also thicker tail than Poisson distribution.

Another theorem, which gives us useful property under some conditions is
stated in Holgate [1970]:

Theorem 3. Let f(λ) be the probability density function of a positive, unimodal
absolutely continuous random variable. Then the nonnegative integer-valued ran-
dom variable with probability function

pn = (n!)−1
∫ ∞

0
e−λλnf(λ)dλ,

where n ≥ 0, is a unimodal lattice variable.

This theorem helps when estimating using MLE, since it tells us that under
the assumptions of the theorem the likelihood function of the model has just one
maximum and so that the maximum is global. So in the case of using numerical
methods to maximize the likelihood we can be sure we are approaching the global
maximum.

2.1.2 Negative binomial
We say that random variable X follows negative binomial distribution with pa-
rameters p and r, if the PMF is

P[X = k] =
(

x + r − 1
k

)
pk(1 − p)r.

Negative binomial as Poisson mixture

Negative binomial distribution can be obtained as Poisson mixture distribution,
if we take Gamma distribution as the mixing distribution. Random variable Y
follows Gamma distribution with parameters α and β (Y ∼ Gam(α, β)) if it has
the following density:

fg(y) = yα−1βαe−βy

Γ(α) ,

where Γ(α) =
∫∞

0 xα−1e−xdx, and if α ∈ N then Γ(α) = (α − 1)!.

10



When we use Gam(α, β) for the mixture distribution we get from 2.1 for
X ∼ MP (fg)

P[X = x] =
∫ ∞

0
e−λ λx

x!
λα−1βαe−βλ

Γ(α) dλ =

= βα

x!Γ(α)

∫ ∞

0
e−λ(1+β)λx+α−1dλ =

= βα

x!(α − 1)!(x + α − 1)! 1
(1 + β)x+α

=

=
(

x + α − 1
x

)(
1

1 + β

)x (
β

1 + β

)α

,

if α is an integer. The result is a Negative binomial distribution with parameters
α and 1

1+β
.

Since negative binomial distribution has two parameters, it gives us more
control over the shape of the distribution than Poisson distribution, while having
closed form. It has

E [X] = α

β
var[X] = (1 + β)α

β2 .

But this parametrization of negative binomial distribution does not allow us
to easily get back to Poisson distribution. For we can use better parametrization,
commonly referred to as NB2. In Cameron and Trivedi [2013][pp. 117–119] this
parametrization is derived from Poisson when defining E [X] = λω, where ω is
gamma distributed with E [ω] = 1. The resulting probability mass function is as
follows:

P[Y = y] = Γ(α−1 + y)
Γ(α−1)Γ(y + 1)

(
α−1

α−1 + λ

)α−1 (
λ

α−1 + λ

)y

,

This parametrization is also more general than the standard parametrization since
it allows α to be real. This parametrization has the mean and variance

E [Y ] = λ, var[Y ] = λ(1 + αλ).

As mentioned before, we have the property that Poisson distribution is the lim-
iting case, meaning

lim
α→0+

P[Y = y] = P[X = y],

where X is Poisson distributed with mean λ.

Negative binomial regression

From now on we will be working with the latter parametrization NB2. Now we
will introduce regressors. We will assume the same mean function as in Poisson
regression:

λ(yi) = ey⊤
i β,

where yi is the vector of regressors and the parameter α not depending on the
regressors. From theorem 3 we have that when we maximize the likelihood, we
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get the global maximum. As proven in Cameron and Trivedi [2013][p. 81] the
log-likelihood function is

l(α, λ) =
n∑

i=1

⎡⎣⎛⎝xi−1∑
j=0

ln(j + α−1)
⎞⎠− ln(xi!) − (xiα

−1) ln(1 + αey⊤
i β))+

+ xi ln(α) + xiy
⊤
i β

⎤⎦.

From which the following maximum likelihood equations can be derived
n∑

i=1

xi − λ(yi)
1 + αλ(yi)

yi = 0,

n∑
i=1

⎡⎣ 1
α2

⎛⎝ln(1 + αλ(yi)) −
xi−1∑
j=0

1
j + α−1

⎞⎠+ xi − λ(yi)
α(1 + αλ(yi))

⎤⎦ = 0.

Again, under mild conditions on the vector of regressors we have consistency
and asymptotic normality.

2.1.3 Other continuous mixtures
Among other Poisson continuous mixtures are the Poisson-Inverse Gaussian and
the Poisson-Lognormal, which do not have closed forms and will not be discussed
in this thesis. Further information about these models can be found in Denuit
et al. [2007].

2.2 Discrete mixtures
A special case of mixture distributions are the finite mixtures. Random variable
X has a discrete (finite) mixture distribution if its probability mass function can
be written as

P[X = x] = p(x | q, θ) =
n∑

i=1
qipi(x | θi)

where θi is a parameter of PMF pi and q is a vector of mixing weights as defined
in Denuit et al. [2007][pg. 23]. This allows us to have different pi come from
different distributions.

2.2.1 Zero-inflated models
First of these discrete models we will discuss are the zero-inflated distributions.
If we encounter excess of zeroes in our data, this mixed distribution is one of the
ways to deal with it. Random variable X has a zero-inflated distribution if

P[X = k] =

⎧⎨⎩p + (1 − p) P[Y = 0], k = 0
p P[Y = k], k ∈ N

where Y is a count random variable and p ∈ (0, 1). That is, X is zero with prob-
ability p and it is distributed according to the distribution of Y with probability
1 − p.
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Zero-inflated Poisson distribution (ZIP)

One of the possibilities for Y is Y ∼ Po(λ). That is

P[X = k] =

⎧⎨⎩p + (1 − p)eλ, k = 0
pe−λ λk

k! , k ∈ N.

Then X has the following properties:

E [X] = 0 +
∞∑

i=1
(1 − p)i P[Y = i] = (1 − p) E [Y ] = (1 − p)λ,

E [X2] = (1 − p)E[Y 2] = (1 − p)(λ + λ2),
var[X] = E [X2] − (E [X])2 = (1 − p)λ + (1 − p)λ2.

We used the property that expected value does not rely on P[X = 0]. From this
we can see that ZIP is overdispersed.

MLE for ZIP

Now to estimate the parameters (p, λ), we will be using the maximum likelihood
estimate. We will note Z = ∑n

i=1 I{Xi = 0} the number of zeroes among our
observations, where I is the indicator function, that is I{xi = 0} = 1, if xi = 0
and I{xi = 0} = 0 otherwise. The maximum likelihood function is

L(p, λ, x) = (p + (1 − p) P[Y = 0])Z
n∏

j=1
((1 − p) P[Y = xi])1−(I{xi=0}).

And as shown in Johnson et al. [2005][p. 353], the resulting maximum likelihood
equations are

p̂ + (1 − p̂)eλ̂ = Z

n
and 1

n

n∑
i=1

xi = λ̂(1 − p̂).

Other zero-inflated models

It is possible to take any discrete distribution and make a zero inflated ver-
sion. Another popular and widely used model is a Negative binomial zero-inflated
model.

2.2.2 Hurdle models
Hurdle models are another type of two component finite mixture. The idea behind
them is that there is a hurdle which has to be overcome. This seems plausible in
our task of modelling number of claim counts, since a policyholder may not want
to report a claim when the damage is low, but after the first claim this behaviour
may change. In the simple case of zero-truncated distributions, it means that
if the hurdle is not passed, we will observe zero, if it is passed, we observe a
variable distributed according to zero-truncated distribution. That is, if Y has
PMF P[Y = k], then zero-truncated distribution will look like

P[Y = k | X > 0] = P[Y = k ∧ Y > 0]
P[Y > 0] = P[Y = k]

1 − P[Y = 0] for k > 0.
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So hurdle model has distribution

P[X = k]

⎧⎨⎩p0, k = 0
1−p0

1−P[Y =0] P[Y = k], k ∈ N.

With the expected value and variance

E [X] =
∞∑

k=0
P[X = k]k =

∞∑
k=1

1 − p0

1 − P[Y = 0] P[Y = k]k = 1 − p0

1 − P[Y = 0] E [Y ],

E [X2] =
∞∑

k=0
k2 P[X = k] =

∞∑
k=1

1 − p0

1 − P[Y = 0] P[Y = k]k2 = 1 − p0

1 − P[Y = 0] E [Y 2],

var[X] = E [X2] − (E [X])2 = 1 − p0

1 − P[Y = 0] E [Y 2] −
(

1 − p0

1 − P[Y = 0]

)2

(E [Y ])2.

Then with the use of indicator function I{xi=0} we can express the probability
mass function of iid vector with hurdle distribution as

P[X = k] =
n∏

i=1
(p0)I{xi=0}

(
1 − p0

1 − P[Y = 0] P[Y = k]
)1−I{xi=0}

,

which is also the likelihood function. For Y we can use the Poisson, Negative
binomial or any other count distribution.

Poisson hurdle distribution

Now we will assume Y ∼ Po(λ).
The log-likelihood is

l(p0, λ, x) =
n∑

i=1

[
I{xi=0} ln(p0) +

+ (1 − I{xi=0})
(

(ln(1 − p0) − ln(1 − e−λ) + ln
(

e−λ λk

k!

))]
=

=
n∑

i=1
Ixi=0 ln(p0) + (1 − Ixi=0)(ln(1 − p0))+

+
n∑

i=1
(1 − IXi=0)(− ln(1 − e−λ) − λ + k ln(λ) − ln(k!),

(2.2)

where the first part is a function of p0 and does not depend on λ and the second
part is a function of λ and does not depend on p0. In this case, we can maximize
those two parts independently.

In the simple case without taking regressors into account, the hurdle model as
specified here and the zero inflated models are just reparametrizations of the same
distribution. The zero-inflated model is a hurdle model with p0 = p+(1−p)e−λ.
But when dealing with regression, the models differ.
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Hurdle Poisson regression

When dealing with hurdle model and regressors we have to specify two link func-
tions, since we are predicting two models. One of them is the model controlling
the phase of passing the hurdle, thus controlling the number of zeroes, and the
second one is the Poisson truncated distribution. For the Poisson part of the
model we will use the log-link as before in Section 1.4. For p0 it is common to
use the logit link function, i.e.

λ(yi, β) = ey⊤
i β,

p0(yi, γ) = ey⊤
i γ

1 + ey⊤
i

γ
.

After putting this into log-likelihood 2.2, we can numerically maximize the
log-likelihood and find the maximum likelihood estimates β̂ and γ̂.

2.2.3 Other discrete mixtures
In other discrete mixtures we usually reflect models of the following form:

P[X = x] =
k∑

i=1
qkYi,

where Yi ∼ Po(λi). In this case, when k is known, we can use the expectation-
maximization (EM) algorithm to estimate the coefficients as in Wang et al. [1996].

2.3 Choosing a model and tests
The next difficult task is choosing the right model for our data. One thing is that
the model should have an explanation for the data we are using, and the second
thing is that the model should fit the data well.

2.3.1 Choosing a model
Tests

For nested models (where one model is a special case of another) we can use like-
lihood ratio test. Let us assume we have two models f(x, θ1, θ2) and f(x, θ1, θ0)
where θ0 is fixed. If f follows the regularity conditions, then under the null
hypothesis

LR = 2(L(x, θ̂1, θ̂2) − L(x, θ̂1, θ0)) ∼as χ2(k − l),

where θ̂1 and θ̂2 are maximum likelihood estimates of θ1 and θ2. This can be
used for testing the models against each other.

In our case, we would like to test if the data come from negative binomial
distribution against the alternative that it comes from Poisson distribution. In
this case we encounter a problem - for the NB to become Po, the dispersion
parameter α has to be zero and thus it has to be on the boundary of the parameter
space. This means that it no longer complies with the regularity conditions. In
this case the test statistics is asymptotically 1/2 at zero and 1/2 at χ2(k − l), so
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to test at level η we will use χ2
1−2η(k − l). This approach was used in Cameron

and Trivedi [2013][p. 90] and proven in Chernoff [1954].

Information criteria

A different way of choosing a model is using information criteria. Since with
every introduced regressor the log-likelihood function is expected to be somewhat
higher, we cannot rely merely on log-likelihood when comparing models. For this
we can use Akaike information criterion (AIC) which penalizes the number of
parameters in the model. If we are estimating parameter θ we note k = dim(θ).
Then the AIC has the form

AIC = −2
(
l(θ̂n) − k

)
,

where lower values are preferred. Another option is to use the Bayesian informa-
tion criteria (BIC), which penalizes dimension of estimated parameter even more.
It is given by

BIC = −2
(
l(θ̂n) − ln(n)k

)
and again, lower values are preferred. These information criteria are defined for
example in Denuit et al. [2007][p. 43].

2.3.2 Choosing regressors
Here we will be mainly interested in a test concerning null hypothesis H0 : βk = 0
against H1 : βk ̸= 0. The test statistics we are going to present first is the so-
called t-statistics T = β̂j

σ̂β̂j

, where σ̂β̂j
is the standard deviation of β̂j. This test

statistics is under the regularity conditions and null hypothesis asymptotically
N(0, 1) distributed. This can be used to form confidence interval and to carry
out the test. This result follows from theorem 1.

Another way is using the likelihood ratio test, as formulated in Subsection
2.3.1. Then with the same hypothesis as above, we take the test statistics

LR = 2(L(x, β̂) − L(x, β̂0, . . . , β̂k−1, 0, β̂k+1, . . . , β̂n)),

which, under the regularity conditions and null hypothesis, is asymptotically χ2
1

distributed.
Another way is to use the information criteria defined in Subsection 2.3.1 and

compare the values of AIC and BIC of the model with the selected regressor and
without it.
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3. Use on real-life data
In this chapter we will show the use of the methods introduced in the preceding
chapters. For all our computations we will be using ? and the main parts of code
used are in Appendix A. The tables in this section were made with the help of
package stargazer.

3.1 Australia car insurance
First, we will look at data from Australian car insurance from the years 2004 and
2005. The dataset ausprivauto0405 containing 67, 856 observations is from the
CASdatasets R package and it was first used in de Jong and Heller [2008]. The
data structure is shown in the table 3.1. Most of the data columns are in the form
of factors. A factor variable is such that there is a fixed number k of categories
(levels) of the variable and each observation belongs to one of those categories.
In order to use these factors in our models, we choose one level as base level and
for the remaining levels we will introduce new variables, where each of them takes
value 0 or 1, 1 if the observation belongs to the corresponding level, 0 otherwise.
When all of the corresponding variables are 0, the observation belongs to the base
category. As the base level we will choose the most numerous level.

We will be modelling distribution of the number of claims (which we denote
Nb), which is in our data in the column ClaimNb. The mean of claim number in
our dataset is 0.073, the standard deviation 0.278, so sample mean is 0.077. It
may seem that the data is not too overdispersed. However, we need to consider
what are we trying to estimate. Since the number of claims is for different time
periods for different policyholders, we need to take this into account. Thus, if
we denote exposure as ω we will be dealing with models with mean µ = ωλ. So
to explore more our data, we will be looking at rates r = Nb

ω
, instead of claim

numbers.

mean of r: 0.21 sd: 2.88 sample variance: 8.30

Here we can see that the rate is highly overdispersed.

Column name Column data

Exposure Exposure of the policyholder in years
VehValue Value of vehicle in thousands of AUD
VehAge A factor of 4 levels indicating age of vehicle
VehBody A factor of 13 levels indicating the car type
DrivAge A factor of 6 levels indicating the age of the driver
ClaimNb Number of claims - our response variable
ClaimAmount Sum of claim amounts

Table 3.1: Data columns in Australian insurance dataset

17



3.1.1 Models without regressors
First we will fit the Poisson model to our data with the function glm(), even
though we can see the overdispersion is likely to be a problem. As MLE of λ we
get

λ̂n =
∑n

i=1 Nbi∑n
i=1 ωi

.= 0.16.

Fitted frequencies are in the table 3.2.
Now we will fit the data negative binomial distribution with no regressors

using the package MASS and function glm.nb(). As MLE we get

α̂n
.= 0.44, λ̂n

.= 0.64.

As was shown, the negative binomial distribution is equal to Poisson distribution
when α = 0. Thus, we can perform likelihood ratio test (2.3.1)

H0 : α = 0 against H1 : α ̸= 0

with the test statistics

LR = 2(l(α̂, λ̂) − l(0, λ̂)) .= 103.62.

Here we encounter the problem mentioned in 2.3.1, so we will take the value of
χ2

p−q in 1−α/2 instead of 1−α. The critical value of χ2
p−q in 1−α/2, for α = 5%

is 3.841, so we can strongly reject the hypothesis that the data come from Poisson
distribution.

Now we have to think about the meaning of the model - does it make sense
to use the negative binomial in this case? Since we are modelling claim numbers
of policyholders, it is obvious that the driving skills among people differ and
therefore introducing the random term in the Poisson model is logical.

The negative binomial was one way of improving the data. Another one
could be the hurdle model. As discussed in Chapter 2, we could expect that
some policyholders may not fill a claim when the value is not high enough, thus
the process generating zeroes could be different from the process behind claim
numbers. We used the function hurdle() from the package pscl.

We will not consider zero-inflated models here, since, as already mentioned in
2.2.2, the zero-inflated model is the same as hurdle model in the case of absence
of regressors. Another reason is that in our data the excess of zeroes is not
particularly high and there does not seem to be an intuitive explanation for zero
inflated model.

Number of accidents
1 2 3 4 5

Sample frequency 63232 4333 271 18 2
Poisson 63094 4591 167 4 0
Negative binomial 63235 4325 278 17 1
Poisson hurdle 63232 4313 294 15 1

Table 3.2: Frequencies of fitted models
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Now in the table 3.2 there are the expected frequencies of our models as well
as the actual sample frequency. It seems that both the negative binomial and
Poisson hurdle models fit our data well. To choose between them we can look at
the AIC or BIC as suggested in Subsection 2.3.2.

AIC(Po) .= 34943.67 AIC(NB) .= 34899.59 AIC(HPo) .= 34891.31

BIC(Po) .= 34952.80 BIC(NB) .= 34917.84 BIC(HPo) .= 34909.56

The lowest value for both the AIC and BIC is for the hurdle Poisson model
so it seems as the most reasonable choice.

3.1.2 Models with regressors
So far, we have been looking at the response variable and we have chosen the
Poisson hurdle model, but we have to consider the purpose of our model. Simple
model with no regressors allow us just to predict the numbers of claim frequencies,
but it does not allow us to differentiate between the policyholders according to
their risk of claims, which is the main reason of modelling in insurance, as to
set the premium correctly and fairly for everyone. For this, we will introduce
regressors to our models.

Poisson regression

First we will consider Poisson regression, since the regressors can explain some of
the overdispersion, which we observed in the last section. For the regression we
will use the robust standard error as in Section 1.4 by using the package sandwich.
The estimated coefficients are in table B.1. From this summary, it seems that
gender may not be significant with p-value of 0.52. We will perform the likelihood
ratio test for this parameter as introduced in Subsection 2.3.2. We denote βk the
parameter corresponding to gender.

H0 : βk = 0, against H1 : βk ̸= 0

LRGen = 2(L(β̂) − L(β̂0, . . . , β̂k−1, 0, β̂k+1, . . . , β̂n))

LR .= 0.58

The critical value at the level of 5% is c
.= 3.84, and since LR < c we cannot

decline the hypothesis that gender is not significant. Together with higher AIC
in model without gender, we will remove this parameter from our model. For
standard likelihood ratio test we are using function lrtest() from package lmtest.

Next parameter of interest will be the vehicle amount, since it has a high p-
value as well. We will perform the likelihood test again, with the resulting value
of test statistics LRV A

.= 1.74 so once more, we cannot decline the hypothesis
that vehicle amount is not significant. The AIC of model without vehicle amount
is also lower, so we will use the model without it.

Now, all other variables are at least partly significant, but since they are
factors, not all levels are necessarily also significant. We will continue as before
with the only difference that we will not test models with and without some
parameter, but with two levels of a factor merged. As before, first we look at the
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p-value of the first test given in Subsection 2.3.1 and afterwards we will try the LR
test. The highest p-value of 0.79 has the level minibus of factor vehicle body. If we
make model with the levels “Sedan” and “Minibus” merged and run the likelihood
test, we find that we cannot reject the hypothesis that the level is insignificant.
Also when comparing AIC we find that the new model with less levels has lower
AIC and this leads us to drop this level out of our model. We continue by
performing the same actions for the levels “Truck”, “Convertible”, “Hardtop”,
“Panel van”, “Roadster” and “Station wagon”.After that we also merge the levels
“working people” with “older work. people” from the variable “drivAge”, because
of insignificance of “working people”. After this procedure all the remaining
coefficients are significant and we reduced the number of parameters by 8, while
the log-likelihood was lowered just by 2.

The coefficients of the resulting model are in the table 3.3. We will look at
the interpretation of the coefficients together with the negative binomial model,
since the mean function remains the same and the coefficients are similar and
thus the effects are similar.

The resulting fitted frequencies from Poisson regression are in the table 3.4.
From this table, it does not seem like the regressors managed to resolve the
problems of Poisson equidispersion condition - we still see too few zeroes, too
many ones, and too few higher values. This could indicate the presence of mixed
distribution, since mixed Poisson distributions have the property from Shaked’s
two crossing theorem 2.

Poisson Negative binomial
coef Robust SE coef SE

(Intercept) −1.847 0.032 −1.845 0.032
VehAge Oldest cars −0.077 0.040 −0.075 0.039

Young cars 0.128 0.039 0.128 0.039
Youngest cars 0.086 0.039 0.084 0.044

VehBody Bus 0.912 0.304 0.906 0.335
Coupe 0.411 0.121 0.413 0.121
Hatchback −0.079 0.033 −0.077 0.034
Motorized caravan 0.560 0.256 0.561 0.268
Utility −0.208 0.064 −0.209 0.064

DrivAge Old people −0.236 0.045 −0.236 0.045
Oldest people −0.226 0.056 −0.228 0.056
Young people 0.077 0.039 0.076 0.039
Youngest people 0.244 0.049 0.247 0.050

θ — — 2.252 0.414
Observations 67, 856 67, 856

Log Likelihood −17, 392.43 −17, 372.72
Akaike Inf. Crit. 34, 810.85 34, 773.44

Table 3.3: Resulting coefficients of Poisson and negative binomial models
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Negative binomial regression

Next we will fit the negative binomial regression to our data. The coefficients
of the model with all regressors are in Table B.2. To choose the parameters
to include in our model we proceed in the same way as in the case of Poisson
distribution and we get the same results, so we end up with the same coefficients.
The coefficients of the resulting model are in Table 3.3. Now we will run a test
of Poisson regression model against negative binomial one. When we denote the
dispersion parameter of NB α, we formulate the test as follows:

H0 : α = 0 against H1 : α ̸= 0

LR = 2(L(α̂, β̂) − L(0, β̂))
LR .= 39.41

which is once more asymptotically a distribution with one half in zero and one half
chi-squared with one degree of freedom. Thus for testing at level η we will take
χ2

1−2η(1) instead of χ2
1−η. For η = 5% it means the critical value is χ2

0.9
.= 2.71,

which is highly exceeded by the value of our test statistics and so we can reject
the hypothesis that our data is distributed according to Poisson regression model.

Next we will look at the coefficients and their meaning. All the coefficients
in the negative binomial model are quite similar to those of Poisson model and
the link function for mean is the same so we will analyse them at the same
time. The first thing to notice is that all our remaining regressors are factors.
This means, that if we have factor F with k levels and corresponding parameters
βp, βp+1, . . . βp+k−2 (there is one less parameter than there are levels for the base
level, see 3.1), the factor having a value of i means that the predicted mean will
be eβi times higher or lower than that of the base level with other regressors
remaining the same. When the parameter is smaller than zero, the policyholder
with corresponding factor level has smaller predicted mean than that with base
level and when it is higher than zero they have higher predicted mean.

From the coefficients we can see that the expected mean of accidents of oldest
cars is 0.92 times that of old cars, while young cars have the expected mean
1.14 times that of old cars, so young cars are expected to have more claims than
the old ones, which may be surprising. Another trend can be seen in the age of
policyholder, where it seems that younger people (where youngest people have
1.3 times the mean of the base level) have much higher mean of claim numbers
than older people (old people have 0.8 times the mean of base level). With the
vehicle types, not many levels are left as significant and even with those one
has to be careful when making inference. For example in our dataset buses are

Table 3.4: Fitted frequencies

0 1 2 3 4
Sample frequency 63, 232 4, 333 271 18 2
Poisson regression 63, 164 4, 456 226 9 0

NB regression 63, 253 4, 284 297 21 2
Hurdle Poisson regression 63, 232 4, 316 292 16 1
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expected to have 2.5 times higher mean than base level, but before making any
broader inference we have to note that we have only 40 observations of buses in
our dataset.

Poisson hurdle regression

As in the models with no regressors another way of improving the Poisson re-
gression is by considering Poisson hurdle regression. In the case of regression, we
will use the log link for the Poisson part of the distribution and logit link for the
binomial part, which handles the zero counts as stated in 2.2.2. The coefficients
of the model with all regressors are shown in the tables B.3 and B.4. We perform
the same process of regressor selection as with Poisson distribution and negative
binomial, but in this case we have two parts of our model and we select the re-
gressors for each model separately. We present the resulting coefficients in the
table 3.5. It is interesting to note that in the Poisson truncated count part there
are just two regressors remaining, both of which are levels of vehicle body factor.
This is not very surprising, since when we look at our dataset sample frequencies
(3.4), we notice that the number of policyholders with two or more accidents is
very low compared to those with zero or one accident. This suggests that when
we may not have enough data to estimate the count probability according to
regressors.

coef SE P(>|z|)
Poisson truncated count model

(Intercept) −1.465 0.063 0
VehBody Hatchback −0.297 0.137 0.030

Roadster 1.568 0.945 0.097
Zero logit model

(Intercept) −1.859 0.035 0
VehAge Proboldest cars −0.095 0.042 0.024

Probyoung cars 0.123 0.041 0.003
Probyoungest cars 0.082 0.046 0.078
ProbBus 1.083 0.380 0.004
ProbCoupe 0.466 0.131 0.0004
ProbHardtop 0.177 0.095 0.063
ProbMotorized caravan 0.679 0.291 0.020
ProbStation wagon 0.080 0.037 0.029
ProbUtility −0.170 0.068 0.012

DrivAge old people −0.235 0.048 0.000
oldest people −0.234 0.059 0.0001
young people 0.076 0.041 0.064
youngest people 0.279 0.053 0.000

Table 3.5: Final Poisson hurdle model

Also in the case of Poisson hurdle model the interpretation of the coefficients
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is difficult, since the model consists of two parts. Because of this one regressor
has two roles - one in predicting the zero count and another one in predicting the
expected mean. Also because the mean has the form

E [Xi] =
1 − e

y⊤
i

γ

1+e
y⊤

i
γ

1 − e−eyiβ eyiβ

there is no simple way of telling what do the regressors do.
Finally we will compare our regression models according to log-likelihood,

AIC and BIC.

l(Po) .= −17392.43 l(NB) .= −17372.72 l(PoH) .= −17362.69
AIC(Po) .= 34810.85 AIC(NB) .= 34773.44 AIC(PoH) .= 34759.38
BIC(Po) .= 34929.48 BIC(NB) .= 34901.2 BIC(PoH) .= 34914.51

Now we have to choose the right model for our data. In this case it is not
clear which model is the best - according to AIC we should choose Poisson hurdle
model and according to BIC the negative binomial model. Another question is
the purpose of the model. If interpretability of effects of individual regressors is
important to us, negative binomial may be a better choice.
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Conclusion
Mixed Poisson distributions are widely used in many studies because of their
numerous useful features and intuitive interpretability. Because of its wide spread
the theory behind mixed Poisson models is well developed. We summarized the
theory of the simpler models in the first two chapters, but since the topic is quite
broad, we omitted many mixed Poisson models, which all have their use in many
situations, like truncated models and more general finite mixtures, as well as
continuous mixtures with other mixing distribution than gamma distribution.

In the third chapter we used the introduced theory on real-life data from Aus-
tralian motor insurance. We compared the performance of the mixed Poisson
models and tried to get the best fit possible. During this process we were deal-
ing with choosing the right regressors and omitting the non-significant ones by
using testing techniques introduced before as well as comparing the final Poisson
regression model with the negative binomial regression model and the Poisson
hurdle model. We did not get to one best model, since the negative binomial
one and the Poisson hurdle were quite close in the concerns of fitting the data
with the hurdle model slightly better, but with the negative binomial the simpler
model with easier interpretation.
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A. R code
Here we will present the important parts of code used to generate the models. If
we used the same code structure many times we have included just first one or
two steps. All the code is written in ?.

The packages used are

library(sandwich)
library(MASS)
library(pscl)
library(CASdatasets)
library(stargazer)

A.1 Models without regressors
#Poisson model with no regressors
AusPoNoReg <- glm(ClaimNb˜1+ offset(log(Exposure)),

family="poisson",data=aus)
AusPoNoRegPred <- predict(AusPoNoReg,type = "response")
AusPoNoRegFreq <- 1:6
for(number in AusPoNoRegFreq){

AusPoNoRegFreq[number]=
sum(dpois(x=number-1,AusPoNoRegPred))

}

#Negative binomial model with no regressors
AusNBNoReg<-glm.nb(ClaimNb˜1+ offset(log(Exposure)),data=aus)
AusNBNoRegPred <- predict(AusNBNoReg,type="response")
AusNBNoRegFreq<-1:6
for(number in AusNBNoRegFreq){

AusNBNoRegFreq[number]=sum(dnbinom(x=number-1,
size=AusNBNoReg$theta,mu= AusNBNoRegPred))

}
AusNBNoRegFreq

#Poisson hurdle model with no regressors
AusHPNoReg <- hurdle(ClaimNb˜1 +

offset(log(Exposure)),data=aus)
AusHPNoRegProb<-predict(AusHPNoReg, type="prob", at=0:5)
AusHPNoRegFreq<-colSums(AusHPNoRegProb)

#Likelihood ratio test of NB against Poisson on level 5%
testStat1=2*(logLik(AusNBNoReg)-logLik(AusNoReg))
critValue = qchisq(0.9,df=1)
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A.2 Models with regressors

A.2.1 Poisson regression model
#Model with all the regressors
summary(PoMod <- glm(ClaimNb˜VehAge+VehBody+VehValue+DrivAge + Gender

+offset(log(Exposure)),family="poisson",data=aus))
#Removing some regressors
summary(PoMod1 <- glm(ClaimNb˜VehAge+VehBody + VehValue+ DrivAge

+ offset(log(Exposure)),family="poisson",data=aus))
lrtest(PoMod,PoMod1)

summary(PoMod2 <- glm(ClaimNb˜VehAge+VehBody + DrivAge
+ offset(log(Exposure)),family="poisson",data=aus))

lrtest(PoMod1,PoMod2)

aus1<- aus

#Now follow two steps of removing levels from a factor
levels(aus1$VehBody)<-c("Sedan","Bus","Convertible","Coupe",

"Hardtop","Hatchback","Sedan","Motorized caravan","Panel van",
"Roadster","Station wagon","Truck","Utility")

summary(PoMod2.2 <-glm(ClaimNb˜VehAge+VehBody + DrivAge+
offset(log(Exposure)),family="poisson",data=aus1))

lrtest(PoMod2,PoMod2.2)
aus1<- aus

levels(aus1$VehBody)<-c("Sedan","Bus","Convertible","Coupe",
"Hardtop","Hatchback","Sedan","Motorized caravan","Panel van",
"Roadster","Station wagon","Sedan","Utility")

summary(PoMod2.3 <-glm(ClaimNb˜VehAge+VehBody + DrivAge
+ offset(log(Exposure)),family="poisson",data=aus1))

lrtest(PoMod2.3,PoMod2.2)

#Getting the robust SE for poisson model PoFinal
robustVarianceMatrix = vcovHC(PoFinal,type="HC0")
robustStdErr = sqrt(diag(robustVarianceMatrix))
summaryPoFinal = cbind(Estimate = coef(PoFinal),

‘Robust SE‘ = robustStdErr, ‘Pr(>|z|)‘ = 2 *
pnorm(abs(coef(PoFinal)/robustStdErr), lower.tail = FALSE),

LL = coef(PoFinal) - 1.96 *
robustStdErr, UL = coef(PoFinal) + 1.96 * robustStdErr)
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A.2.2 Negative binomial regression model
#Choosing regressors to include
summary(NBMod <- glm.nb(ClaimNb˜VehAge+VehValue+VehBody+Gender+DrivAge

+ offset(log(Exposure)),data=aus))
summary(NBMod1 <- glm.nb(ClaimNb˜VehAge+VehValue+VehBody+DrivAge

+ offset(log(Exposure)),data=aus))
summary(NBMod2 <- glm.nb(ClaimNb˜VehAge+VehBody+DrivAge

+ offset(log(Exposure)),data=aus))
lrtest(NBMod,NBMod1)
lrtest(NBMod1,NBMod2)

#Two steps of choosing level to include
aus1<- aus
levels(aus1$VehBody)<-c("Sedan","Bus","Convertible","Coupe",

"Hardtop","Hatchback","Sedan","Motorized caravan","Panel van",
"Roadster","Station wagon","Truck","Utility")

summary(NBMod2.1 <- glm.nb(ClaimNb˜VehAge+VehBody+DrivAge+
offset(log(Exposure)),data=aus1))

lrtest(NBMod2.1,NBMod2)

aus1<- aus
levels(aus1$VehBody)<-c("Sedan","Bus","Convertible","Coupe",

"Hardtop","Hatchback","Sedan","Motorized caravan","Panel van",
"Roadster","Station wagon","Sedan","Utility")

summary(NBMod2.2 <- glm.nb(ClaimNb˜VehAge+VehBody+DrivAge+
offset(log(Exposure)),data=aus1))

lrtest(NBMod2.2,NBMod2.1)

# Test for Poisson against Negative binomial final models
LRFinal = 2 * (logLik(NBFinal) - logLik(PoFinal))
critValue = qchisq(0.9,df=1)
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A.2.3 Hurdle Poisson regression model
# First removing regressors unsignificant for both parts of our model
hurdleModelPo <- hurdle(ClaimNb˜VehAge+VehValue+VehBody

+Gender+DrivAge + offset(log(Exposure)) ,data=aus,link =
"logit",dist = "poisson")

hurdleModelPo1 <- hurdle(ClaimNb˜VehAge+VehValue+VehBody
+DrivAge + offset(log(Exposure)) ,data=aus,link =
"logit",dist="poisson")

hurdleModelPo2 <- hurdle(ClaimNb˜VehAge+VehBody+DrivAge
+ offset(log(Exposure)) ,data=aus,link =
"logit",dist="poisson")

lrtest(hurdleModelPo,hurdleModelPo1)
lrtest(hurdleModelPo1,hurdleModelPo2)

# And first step of removing levels from factors
aus2<-aus2BK
levels(aus2$VehBody)<-c("Sedan","Bus","Sedan","Coupe",

"Hardtop","Hatchback","Minibus","Motorized caravan",
"Panel van","Roadster","Station wagon","Truck","Utility")

levels(aus2$VehBodyProb)<-c("Sedan","Bus","Convertible",
"Coupe","Hardtop","Hatchback","Minibus","Motorized caravan",
"Panel van","Sedan","Station wagon","Truck","Utility")

summary(hurdleModelPo2.1 <- hurdle(ClaimNb˜VehAge+VehBody+DrivAge
+ offset(log(Exposure))|VehAgeProb+VehBodyProb+DrivAgeProb +
offset(log(Exposure)) ,data=aus2,link = "logit",dist="poisson"))

lrtest(hurdleModelPo2.1,hurdleModelPo2)
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B. Tables

Coefficient Robust SE P(>|z|)
(Intercept) −1.903 0.048 0
VehAge oldest cars −0.059 0.042 0.161

young cars 0.111 0.040 0.006
youngest cars 0.056 0.049 0.254

VehBody Bus 0.924 0.305 0.002
Convertible −0.746 0.590 0.206
Coupe 0.413 0.124 0.001
Hardtop 0.090 0.090 0.316
Hatchback −0.051 0.039 0.187
Minibus −0.060 0.152 0.692
Motorized caravan 0.536 0.260 0.040
Panel van 0.071 0.130 0.584
Roadster 0.359 0.701 0.609
Station wagon 0.012 0.044 0.782
Truck −0.039 0.097 0.685
Utility −0.196 0.069 0.004

VehValue 0.024 0.016 0.134
DrivAge old people −0.219 0.050 0.000

oldest people −0.203 0.061 0.001
working people 0.028 0.042 0.500
young people 0.088 0.044 0.044
youngest people 0.259 0.053 0.000

Gender Male −0.023 0.031 0.457
Observations 67, 856

Log Likelihood −17, 388
Akaike Inf. Crit. 34, 824

Table B.1: Poisson regression with all regressors
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Coefficient SE P(>|z|)
(Intercept) −1.903 0.049 0
VehAge oldest cars −0.057 0.042 0.174

young cars 0.111 0.041 0.006
youngest cars 0.052 0.049 0.288

VehValue 0.025 0.018 0.154
VehBody Bus 0.918 0.336 0.006

Convertible −0.750 0.596 0.209
Coupe 0.414 0.123 0.001
Hardtop 0.088 0.093 0.343
Hatchback −0.050 0.039 0.201
Minibus −0.065 0.156 0.678
Motorized caravan 0.536 0.271 0.048
Panel van 0.067 0.128 0.602
Roadster 0.344 0.603 0.568
Station wagon 0.010 0.045 0.814
Truck −0.043 0.095 0.651
Utility −0.198 0.068 0.004

Gender Male −0.023 0.031 0.460
DrivAge old people −0.220 0.050 0.000

oldest people −0.205 0.060 0.001
working people 0.029 0.042 0.495
young people 0.088 0.044 0.047
youngest people 0.262 0.054 0.000

θ 2.252 0.414
Observations 67, 856

Log Likelihood −17, 369
Akaike Inf. Crit. 34, 786

Table B.2: Negative binomial with all regressors
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Coefficient SE P(>|z|)
(Intercept) −1.351 0.190 0
VehAge oldest cars 0.188 0.164 0.253

young cars 0.205 0.156 0.188
youngest cars 0.031 0.197 0.874

VehValue 0.009 0.074 0.905
VehBody Bus 0.159 0.988 0.872

Convertible −14.700 3,228.095 0.996
Coupe 0.286 0.386 0.459
Hardtop −0.645 0.419 0.124
Hatchback −0.449 0.156 0.004
Minibus −0.682 0.714 0.339
Motorized caravan −0.060 1.001 0.952
Panel van 0.020 0.415 0.962
Roadster 1.509 0.970 0.120
Station wagon −0.279 0.172 0.105
Truck −0.058 0.333 0.861
Utility −0.289 0.270 0.285

Gender Male −0.090 0.118 0.448
DrivAge old people −0.312 0.203 0.124

oldest people −0.127 0.227 0.576
working people −0.047 0.158 0.766
young people 0.010 0.164 0.950
youngest people −0.098 0.216 0.650

Table B.3: Poisson hurdle model with all regressors - count part
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Coefficient SE P(>|z|)
(Intercept) −1.893 0.052 0
VehAge oldest cars −0.074 0.044 0.098

young cars 0.107 0.043 0.013
youngest cars 0.052 0.052 0.316

VehValue 0.027 0.019 0.151
VehBody Bus 1.060 0.381 0.005

Convertible −0.733 0.610 0.230
Coupe 0.430 0.134 0.001
Hardtop 0.143 0.099 0.147
Hatchback −0.023 0.042 0.576
Minibus −0.030 0.163 0.852
Motorized caravan 0.618 0.294 0.036
Panel van 0.075 0.138 0.589
Roadster 0.030 0.749 0.968
Station wagon 0.032 0.047 0.498
Truck −0.044 0.102 0.667
Utility −0.196 0.072 0.007

Gender Male −0.018 0.033 0.581
DrivAge old people −0.218 0.053 0.000

oldest people −0.214 0.063 0.001
working people 0.036 0.045 0.422
young people 0.096 0.047 0.042
youngest people 0.300 0.058 0.000

Observations 67, 856
Log Likelihood −17, 353

Akaike Inf. Crit. 34, 797

Table B.4: Poisson hurdle model with all regressors - zero part
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