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ABSTRACT 

This thesis aims to introduce the use of computerized adaptive testing (CAT) – a 

novel and ever increasingly used method of a test administration – applied to the field 

of Kinanthropology. By adapting a test to an individual respondent’s latent trait level, 

computerized adaptive testing offers numerous theoretical and methodological 

improvements that can significantly advance testing procedures. 

In the first part of the thesis, the theoretical and conceptual basis of CAT, as 

well as a brief overview of its historical origins and basic general principles are 

presented. The discussion necessarily includes the description of Item Response Theory 

(IRT) to some extent, since IRT is almost exclusively used as the mathematical model 

in today’s CAT applications. Practical application of CAT is then evaluated using 

Monte-Carlo simulations involving adaptive administration of the Physical Self-

Description Questionnaire (PSDQ) (Marsh, Richards, Johnson, Roche, & Tremayne, 

1994) – an instrument widely used to assess physical self-concept in the field of sport 

and exercise psychology. The Monte Carlo simulation of the PSDQ adaptive 

administration utilized a real item pool (N = 70) calibrated with a Graded Response 

Model (GRM, see Samejima, 1969, 1997). The responses to test items were generated 

based on item parameters and pre-specified true latent values of physical self-concept. 

The Monte Carlo simulation was designed to compare the number of administered 

items from PSDQ (test length) and accuracy of estimated latent levels of physical self-

concept. The simulations also allowed for a comparison of different latent trait 

estimation methods, item selection procedures and other frequently used settings within 

current CAT research. 

Results have shown that CAT can successfully be applied as a method of 

reducing test length when measuring physical self-concept using the PSDQ items. In 

particular, adaptive administration saved on average between 50% and 90% of the 

PSDQ items (depending on required measurement precision), while the obtained latent 

trait estimates were relatively unbiased and very similar to those based on the full 

version of the PSDQ. The maximum likelihood latent trait estimation, expected a 

posteriori estimation with uniform prior, and expected a posteriori estimation with 

standard normal prior distribution were similarly efficient with regard to the average 

number of administered items in PSDQ CAT. Similarly, comparison of Kullback-

Leibler divergence-based and Fisher information-based item selection methods 



12 
 

respectively, revealed almost identical results with regard to both the test length and 

bias of the latent trait estimates. 

A possible limitation of this study is that the present findings are based 

exclusively on Monte-Carlo simulations. Real world applications of PSDQ CAT may 

however produce slight model and parameter deviations that do not completely 

conform to simulation findings. Notwithstanding, the promising findings from the 

simulation suggest a next step would entail evaluating the utility and precision of the 

PSDQ CAT administration in real testing conditions.  

 

 

Key words: computerized adaptive testing, item response theory, self-concept, test 

administration 
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1 BRIEF INTRODUCTION TO MEASUREMENT (IN KINANTHROPOLOGY) 

Mankind has always ventured to count and assign numbers to things. As part of 

organizing the world, we want to know “how much is out there and in what quantities 

do things exist?” Even counting how much fruit a tree bears, or ripened berries that fall 

to the ground involves developing an assignment scheme that utilizes collecting, 

counting, sorting, assigning and categorizing. It seems to be an integral part of our 

existence to assign numbers to observations according to some established set of rules; 

rules and procedures that are in today’s world termed ‘measurement’ (Wood, 2006). 

The intent of measurement is to obtain information about particular characteristics, 

qualities or attributes of an object, and this process very much lies at the heart of every 

scientific inquiry. The processes and procedures that underlie measurement, and more 

formally testing generally involves assessing well-known attributes of objects – directly 

observable physical quantities such as time, weight, length as well as other non-

physical attributes (e.g., how many numbers a person can memorize).  

While our preoccupation with counting and measurement fulfills some aspect of 

our need to know about the observable world we inhabit, it is very often the case in the 

social and behavioral sciences that the attributes of interest we wish to measure are not 

directly observable. Many attributes, like a person’s intelligence, test anxiety, well-

being, motor abilities, are not observable but must be inferred. In essence, we can’t 

touch or see these attributes, but rather infer them from observed patterns or sequences 

in behavior. These attributes are referred to as theoretical concepts (Bentler, 1978; 

Blahuš, 1985), given their abstract and ephemeral nature outside of the immediate and 

observable world. Given the unobservable nature of theoretical concepts researchers use 

specific, concrete and partial counterparts, so called empirical (observed) indicators, 

that are presumed to represent the abstract and generic theoretical concept of interest. 

Unfortunately, by their very nature, empirical indicators are flawed and error 

prone. This is partly because they reflect the real world, which is “interpreted through 

our senses” and thus can never be known precisely (Popper, 2002). Observed indicators 

are also flawed given the uncertainty of measurement, which can never be perfectly 

precise. To provide a shared or consensual understanding of theoretical concepts they 

are linked to observable indicators by an operational definition (Bridgman, 1959); one 

that specifies variables defining the latent construct of interest. For example, 

researchers studying Kinanthropology might be interested in measuring “attitudes 
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towards school physical education” with the goal of using knowledge of these attitudes 

to promote greater involvement by students in sports. As a result, a researcher might 

develop several true/false questionnaire items, that are presumed to reflect attitudes 

towards school physical education (e.g., “If for any reason a few subject areas have to 

be dropped from the school program, physical education should be one of the subjects 

dropped”). The skillfully chosen function of empirical indicators, questionnaire items in 

this case (e.g., sum of the total true responses), is then referred to as a ‘test score’ in the 

psychometric literature and is supposed to represent a quantifiable measure of the 

individual’s “attitudes towards school physical education”. 

The process of concept formation, which according to Blahuš (1996) utilizes a 

form of so-called “weak associative measurement,” raises several interesting questions. 

A researcher or a practitioner might wonder, for example, whether based on the 

administration of a set of questionnaire items it is reasonable to create a single general 

score that accurately assesses a person’s “attitudes towards the school physical 

education”. Additional questions that arise from this line of reasoning include: Are all 

the items equally good measures of the attitudes in question or are some items better 

than others? In the case of a single general score, how accurate is the resulting 

composite as a measure of attitudes? The last concern can also be expressed in terms of 

sufficiency, for instance, whether 20 items provide sufficient information to determine 

an individual’s attitudes toward physical education. Furthermore, if 20 items are 

deemed insufficient, how many more items should be used? If large numbers of items 

must be used, we can pose the question whether two tests can be constructed as 

‘parallel forms’, each form containing different items (McDonald, 1999)?  

Interpreting the test scores (numbers produced by each of the research 

participants, students, or patients when they took a test) without answering the 

questions posed above may, according to Wood (2006), lead to incorrect conclusions 

regarding research hypothesis and/or practical recommendations (to clients/patients). 

These and similar questions are closely related to the two major problems of 

measurement and testing in behavioral and social sciences: reliability and validity of a 

test score. Validity “refers to the appropriateness, meaningfulness and usefulness of the 

specific inferences made from test scores” (Wainer, 2000, p. 16). Reliability, on the 

other hand, refers to the degree to which a test score, as a representation of the attribute 

or characteristic being assessed, is free from error (i.e. the accuracy of the measure). 
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The collection of techniques and statistical methods for evaluating the 

development and uses of a test is referred to as test theory in the literature (Embretson 

& Reise, 2000; McDonald, 1999; Zhu, 2006). The next section briefly mentions several 

of the key developments in the history of test theory, many of which still have practical 

implications in the behavioral and social sciences including the field of 

Kinanthropology. 

 

2 HISTORICAL PATHS TO MODERN TEST THEORY 

The history of measurement and testing in the behavioral and social sciences 

reflects several conceptual frameworks (classical test theory – CTT, item response 

theory – IRT) and empirical approaches (e.g., split-half reliability, internal consistency, 

factor analysis, …) used to formalize and rigorously test validity and reliability, two 

important psychometric benchmarks. Impetus for these approaches was mainly 

motivated by psychological research. Historically, psychologists tried to incorporate 

statistical methods that would assist them in solving their specific research questions 

(i.e., are two constructs related?). In the long run, these efforts combined with improved 

research designs provided impetus for the mathematical treatment of these problems on 

a more sophisticated basis (McDonald, 1999). Without the demand for statistical 

treatment of these important scientific questions, the development of statistical methods 

including correlation, linear regression analysis, and even factor analysis might 

certainly have been delayed (Blahuš, 2010). 

In 1904 Charles Spearman, a student of William Wundt, published two seminal 

articles in the American Journal of Psychology, both of which provided a fundamental 

basis for the creation of psychometric theory. In the first of these articles titled 

“’General Intelligence’ Objectively Determined and Measured,” Spearman (1904a) 

demonstrated that cognitive performance is generated by a single, unitary quality – or 

what was then termed ‘general intelligence’. Spearman proposed that a general factor of 

intelligence, which he labeled ‘g’, could be obtained from using a new statistical 

technique – factor analysis. Using factor analysis, a data summarization technique, 

Spearman showed that scores on all mental tests are positively correlated, and this 

positive association provided empirical evidence of a credible underlying “trait” of 

intelligence.  
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In a second article (The Proof and Measurement of Association between Two 

Things) Spearman (1904b) introduced the psychometric concept of reliability, 

providing a mathematical formula for estimating a test’s precision or otherwise its 

accuracy in assessing a theoretical attribute (McDonald, 1999). Spearman argued that 

the observed test score is a composite of two independent components; the “true value” 

of the theoretical attribute/concept and a second component reflecting measurement 

error. By introducing both factor analysis and the concept of reliability, Spearman is 

generally considered as a father of CTT, a conceptual cornerstone of psychological 

testing and a theory that has stood the test of time through the 21
st
 century. 

The primary entity within CTT is a fixed test or some type of assessment 

protocol (e.g., questionnaire, test battery, etc.), usually consisting of several empirical 

indicators (e.g., survey or questionnaire items), which collectively provide a test score 

(e.g., total number of true responses that are correctly answered as “true” or false 

responses that are correctly answered as “false”). One of the most important features of 

empirical indicators in a test, what is called item difficulty is conceptualized within 

CTT as the probability, that a randomly selected examinee from the population of 

interest provides the keyed response (McDonald, 1999). For true/false (pass/fail) scored 

indicators/items, the relative frequency of true responses (passes) in a sufficiently large 

random sample from the population, is used as the estimate for an item difficulty. 

Although CTT has been popular in test construction, particularly in the social 

and behavioral sciences, the theory contains several shortcomings (Gulliksen, 1950; 

Lord & Novick, 1968). One drawback of CTT is that test score reliability and item 

difficulties are population dependent. For example the relative frequency of true 

responses (passes) for a questionnaire item assessing frequency of hallucination (e.g., “I 

often experience hallucinations”) would be much lower in the general population 

compared to a clinical sample of diagnosed schizophrenics (McDonald, 1999). 

Reliability of a test score, as another example, is higher in a heterogeneous population 

compared to homogenous population when using the same test (Thissen, 2000). This 

population/sample dependence that exist in CTT requires that new validity and 

reliability information is collected with each new population intended for a specific 

test’s use (Wood, 2006). Emphasis of CTT on a test as a whole has shown to also be a 

drawback, since characteristics of the empirical indicators in a test (e.g., questionnaire 

items) are valid and interpretable only within the specified context for the particular 

test. Item difficulty, for example, cannot be considered outside of the particular test in 
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which the items were administered – that is items are inseparable from the test 

(Verschoor, 2007). Moreover by using different scales for the item’s and examinee’s 

characteristics (e.g., probabilities for item difficulties vs. sum of the passes for 

examinees) respectively, CTT does not provide a means to make rigorous and 

methodologically sound conclusions about an individual’s performance on the 

particular item. CTT also assumes that measurement error is distributed uniformly 

across the whole range of a test score, which is often unrealistic in practical 

applications of measurement in social and behavioral sciences (Embretson & Reise, 

2000; Zhu, 2006). 

 

3 GROUNDWORK FOR ITEM RESPONSE THEORY 

The concerns outlined above with CTT sparked development of modern test 

theory, which according to Hambelton, van der Linden, and Wells (2010) consisted of a 

series of refinements in the underlying statistical proofs introduced by Lord’s (1952, 

1953) seminal publications. In these works, Lord introduced a theory to account for a 

test score which linked item responses to the underlying latent trait measured by the 

test. Work by the Danish mathematician George Rasch (1960) was also considered 

instrumental in the development of the modern test theory, and led to many advances in 

measurement theory and practice. It was, however, Lord and Novick’s “Statistical 

theories of mental test scores” (1968), which is regarded by many as the real turning 

point in the transition from classic to modern test theory, the latter which is most 

commonly referred to as item response theory (IRT) today (Embretson & Reise, 2000; 

van der Linden & Glas, 2010; Wainer et al., 2000). Lord and Novick’s (1968) book 

introduced, among other things, the work of Allan Birnbaum, who provided the 

statistical foundations for IRT based on his seminal work with the likelihood principle 

(Birnbaum, 1968).  

Development of IRT was perhaps slowed by its computational complexity, 

which has been greatly facilitated by the increased computational capacity and speed of 

modern computers. The advent of powerful and relatively inexpensive computers 

introduced in the 1980s paved the way for IRT to be “the most dominant theory for test 

construction in all major testing organizations or agencies such as the Educational 

Testing Service (ETS) and American College Testing (ACT)” (Zhu, 2006, p. 53). The 

first systematic treatment of IRT in Kinanthropology is generally credited to Spray 
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(1987), who introduced its advantages and described its practical applications in the 

measurement of psychomotor behavior. Since this introduction, many successful 

applications in Kinanthropology have followed (see Wood & Zhu, 2006 for review). In 

the past few years, researchers in the Czech Republic have used IRT successfully to 

address several kinanthropological research questions (e.g., Čepička, 2004; Štochl, 

2008, 2012); questions that would be difficult – if not impossible – to answer within the 

CTT framework. 

Application of IRT offers several advantages over CTT. One advantage is that 

IRT employs a common logit scale for both test items characteristics (such as 

difficulty) and individual’s level of the theoretical attribute being measured (often 

called ability or latent trait level in IRT). Therefore, researchers are able to conclude 

that when the latent trait level of an individual is higher than the difficulty of the 

particular item, the “person is more likely than not to provide a trait-indicating 

(positive, or true) response” (Nering & Ostini, 2010, p. 1). Another unique feature of 

IRT is that measurement error (the lack of precision in identifying a person’s latent trait 

using the particular item) is conditionally dependent on a latent trait level of the 

examinee (Lord, 1952). This can be useful, for example, in mastery testing when a test 

developer wants to improve measurement precision for test takers at a certain latent 

trait level. Moreover, item characteristics in IRT are not affected by a particular sample 

used to obtain these characteristics (De Champlain, 2010), and likewise, individual 

latent trait estimates are not affected by particular items used to estimate them (Zhu, 

2006). This item/latent trait invariance property in combination with the IRT’s focus on 

the items rather than a test as a whole (Lord, 1953), enables a researcher to rank 

individuals on the same theoretical continuum (i.e., assessing some underlying trait or 

ability) even if they have been presented different set of items/indicators from a larger 

pool designed to measure the theoretical construct (latent trait) of interest. As Wainer 

(2000, p. 9) suggests, in all practical terms, this means the test developer does not have 

to “present all items to all individuals, only enough items to allow us to accurately 

situate an examinee on the latent continuum.” Using this IRT approach, a tester can 

create a reliable test customized to each examinee. Customizing a test to examinee’s 

trait level – or what is termed “adaptive testing” cannot be easily accomplished within 

the CTT framework but is a natural extension of using IRT. 
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4 ITEM RESPONSE THEORY (IRT) 

 

4.1 Introduction 

Item response theory (IRT), also known as latent trait theory or item 

characteristic curve theory (Hambelton et al., 2010), posits that the probability of a 

particular response to an item (or generally to any type of empirical indicator – such as 

questions in a survey questionnaire, tests of motor ability or measures of aptitude) is a 

mathematical function of the item properties (e.g., item difficulty) and an individual’s 

level of the latent trait to be measured. IRT models can be categorized based on several 

different features (Thissen & Steinberg, 1986). One of the most common distinctions is 

whether they are uni- or multidimensional. In unidimensional models, responses to 

items are assumed to be accounted for by a single latent variable; that is, all items 

measure the same underlying theoretical construct – latent trait (Sijtsma & Molenaar, 

2002). Items within a test may, however, capture several different, but possibly related 

latent traits. It is possible in such a case that different latent traits are measured by 

independent (non-overlapping) sets of items – a situation referred to as between-item 

multidimensionality. A common practice then is to apply unidimensional IRT models 

for each independent cluster of items separately. Within-item multidimensionality, on 

the other hand, occurs when more than one latent trait or ability underlie a response to a 

particular item within a test. Multidimensional IRT models (Mulder & van der Linden, 

2010) are well suited to deal effectively with within-item multidimensionality. Given 

the focus of the empirical portion of this thesis only unidimensional models will be 

considered in subsequent passages. 

Another frequently discussed classification distinguishes dichotomous and 

polytomous IRT models, respectively. Dichotomous IRT models were developed for 

test items with only two possible response outcomes – (binary-scored) items coded for 

example: correct/incorrect, true/false, yes/no, apply/not apply, etc. Increased use of 

polytomously scored items – items with more than two response alternatives (i.e., 

Likert-type items, multiple choice items when each category is scored separately) – led 

to the development of polytomous IRT models (see Nerning & Ostini, 2010; Ostini & 

Nerning, 2006). According to Ostini and Nerning (2006), advantages of modeling 

polytomous items is that “they are able to provide more information over wider range 

of the trait continuum than are dichotomous items.” Nevertheless, dichotomous IRT 
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models are still widely used and are considered a foundation for models used even to fit 

polytomously scored data. Although polytomous IRT models will be used later in this 

study, basic dichotomous IRT models are introduced briefly in the following section. 

 

4.2 Unidimensional dichotomous IRT models 

As already noted above IRT models yield the probability of a particular 

response to an item as a function of examinee’s latent trait level and item properties, 

respectively. In the case of dichotomous items the simplest IRT model defines this 

probability as a logistic function: 

 

 (  )  
    (      )

      (      )
        

 

Here  (  ) indicates the probability of examinee j with latent trait   responding to a 

keyed (correct, or trait indicating) category of item i with difficulty b. This model was 

first introduced by Danish mathematician George Rasch (1960) and is commonly 

referred to as dichotomous Rasch model or one-parameter logistic (1-PL) model in the 

literature (Embretson & Reise, 2000). The   parameter of examinee j is theoretically 

unrestricted, and is quite similar to the well-known z-score, scaled to mean of 0 and 

standard deviation of 1 (it usually ranges from -3 to 3 in typical population)
1
. Larger 

values of   indicate higher latent trait levels. Individuals with higher values of the latent 

trait are more likely to get the item correct, or generally to give a positive (keyed, trait 

indicating) response to a test item. The reference to one-parameter in the 1-PL model 

refers to the probability of a keyed response depending on one item parameter only – 

namely the item difficulty b. The difficulty parameter is expressed in the same metric as 

the examinee’s latent trait parameter  , and it is defined as the   value at which there is 

a 50% probability to answer the item positively (correct or trait indicating answer). 

Values for b parameter also typically range from -3 to 3 where higher values indicate 

more difficult items. If an examinee’s   parameter is higher than the item difficulty, the 

examinee has more than 50% probability that he or she will respond to a keyed, latent 

                                                           
1
 It should be recalled, however, that the logit distribution is not identical to the standard normal 

distribution. There are 99.7% of observations within the 3 standard deviations around the mean in the 

standard normal distribution, whereas 90.5% of observations fall into the same interval around the mean 

in the logit distribution. 
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trait indicating response category for that item. The opposite is true when trait level of 

examinee is below the item difficulty.  

Using Equation 1 it is possible to plot the relation between an item’s difficulty 

level and the examinee’s response, producing a typical S-shaped logistic function. In 

IRT this is termed the item characteristic curve (ICC), also known as trace line or item 

response function (Ostini & Nering, 2006; Zhu, 2006). In Figure 1 three ICC’s for three 

items with different difficulty parameters ( 1 = -1;  2 = 0;  3 = 1) are graphically 

depicted.  

 

 

Figure 1 – Illustration of ICCs for 1-PL model 

 

An important feature of the Rasch model is that all ICC’s are parallel to each other. 

Practically speaking, this means that the model assumes the same relation between the 

item score and latent trait for all items (Štochl, 2008). A unique property of the Rasch 

model is so-called specific objectivity (Masters, 2010; McDonald, 1999). When a set of 

items corresponds to the model than “specific objectivity” means that comparison of 

examinees’ latent trait levels is objective because it is independent of the items used for 

the comparison (Rasch 1960). Similarly, in the Rasch model it is possible to obtain a 

comparison of the item difficulty parameters, which is independent of the particular 

group of examinees used in the comparison (Masters, 2010). Another very appealing 
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attribute of the Rasch model is that the examinee’s observed sum score is a sufficient 

statistic for the latent trait estimation (McDonald, 1999). Since the observed sum score 

does not involve any item characteristics, the actual response pattern (e.g., which 

particular items were answered correctly) may be ignored in the latent trait estimation 

(de Ayala, 2009). 

Even though the Rasch model has been demonstrated to have many attractive 

features, the parallel ICC’s assumption may contribute to model misfit (lack of 

congruence between the model and the actually observed data) (Wainer & Mislevy, 

2000). If this is the case it is possible to generalize the model by adding another 

parameter to the 1-PL model and thus allowing the items ICC’s to have different 

steepness: 

 

 (  )  
    [  (      )]

      [  (      )]
         

 

In this model   denotes so-called discrimination parameter of item i, which defines the 

slope of the item’s ICC. The inclusion of the   parameter converts the 1-PL IRT model 

into a two-parameter logistic (2-PL) model. By allowing items to have different 

discrimination 2-PL model broadens the applicability of IRT (Wainer & Mislevy, 

2000). This is mainly caused by the fact that the parallel ICC assumption is unrealistic 

in many testing situations. According to Hambelton et al. (2010) the   parameter for 

psychometrically sound items typically ranges from 0.5 to 2.5.  

Figure 2 portrays three items with the same   (  = 0) difficulty but different   

discrimination parameters ( 1 = 0.5;  2 = 1;  3 = 2.5). The steeper the ICC, the better 

the item discriminates between examinees along the latent trait continuum. In other 

words, higher   parameter leads to a faster increase in the probability of the latent trait 

indicating item category response with increasing   value (McDonald, 1985). 
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Figure 2 – Illustration of ICCs for 2-PL model 

 

It is conceivable in various testing situations, for example in cognitive testing, 

that an examinee can get a difficult item correct even if his or her ability level is very 

low (i.e., their ability dictates they should not be able to answer the question correctly). 

This very feature can account for ‘guessing’ the correct answer. This case is especially 

relevant in educational testing where a list of item responses (of which only one is 

correct) is presented to a test-taker (so-called multiple choice items). Guessing behavior 

can also be modeled by adding another item parameter to the model in (2) – namely the 

guessing parameter c: 

 

 (  )          
    [  (      )]

      [  (      )]
        

 

The addition of a third parameter c results in a three-parameter logistic (3-PL) model 

(Birnbaum, 1968), where c dictates the lower asymptote of the item’s ICC. As a result 

the difficulty parameter of an item is now defined as the   value where      

       . The higher the c value, the higher the probability of a correct answer even 

for examinees with infinitely low ability level. Figure 3 presents ICC’s of three items 

based on the 3-PL model. 
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Figure 3 – Illustration of ICCs for 3-PL model 

 

The three dichotomous IRT models so far discussed are still very popular in 

practical testing, however, they may not be applicable or appropriate in situations where 

polytomously-scored items are used to measure the latent trait of interest. For instance, 

if a researcher uses Likert-type items (i.e., a five-point scale ranging from strongly 

agree to strongly disagree), frequently used in survey questionnaires and attitudinal 

inventories, a model that can handle more than two response categories is required. 

This requirement led to the extensions of dichotomous IRT models and development of 

a broad class of IRT models capable of dealing with various polytomous item types.  

 

4.3 Unidimensional polytomous IRT models 

Polytomous IRT models can be used to model the interaction between examinee 

qualities and test items (how would a given examinee perform on a given item), where 

test items have several different response categories available. Thus, the main goal of 

the polytomous IRT model is to “describe the probability that an individual responds to 

a particular response category (e.g., strongly agree; agree; disagree; strongly disagree) 

given her or his level of ability and the item parameters” (Hambelton et al., 2010, p. 

27). Statisticians have developed several variants of the polytomous IRT models, each 



25 
 

suitable to use in a specific testing situation. For example a class of models was 

developed for items, which were presumed to have a priori ordered response categories 

(Thissen, Cai, & Bock, 2010). On the other hand, the nominal IRT model (Bock, 1972, 

1997) was designed to analyze item responses with no predetermined ordering. The 

detailed description of all existing polytomous IRT models is beyond the scope of the 

present discussion. In keeping with the empirical focus of this thesis, only a restricted 

selection of models for polytomous items with ordered response categories will be 

introduced next (for example graded response model, rating scale model, partial credit 

model). Additional information that addresses other IRT models (e.g., nominal model, 

unfolding model, nonparametric models) can be found in several published works 

(Andrich & Luo, 1993; Nering & Ostini, 2010; Ostini & Nering, 2006; Ramsay, 1991; 

Roberts, Donoghue, & Laughlin, 2000; Sijtsma & Molenaar, 2002; Thissen et al., 2010; 

van der Linden & Glas, 2010; van der Linden & Hambelton, 1997). 

One of the first polytomous IRT models developed, the graded response model 

(GRM), is an extension of the 2-PL model applied to polytomous items (Samejima, 

1969, 1997, 2010). In order to derive the probability of responding to a given category 

of an item, the GRM uses a two-step procedure and is therefore considered an indirect 

model (Nering & Ostini, 2010; Ostini & Nering, 2006).  

Consider a test item with K = 5 response categories ranging from 0 to 4 (k = 

0,…, 4). In the first step the GRM models the probability    
 (  ) of an examinee’s 

response in the k
th

 or higher category of a test item i (i = 1, …, n): 

 

   
 (  )  

    [  (       )]

      [  (       )]
         

 

where    
 (  ) is often referred to as operating characteristic curve (OCC), or boundary 

characteristic function. The probability that an examinee’s response falls in or above 

the lowest category is by definition    
 (  )    , thus for an item with k response 

categories only K – 1 OCC’s provide information about item functioning (Štochl, 

2008). Consistent with the formulation of the dichotomous IRT model, ai in Equation 4 

represents the discrimination of item i and dictates the steepness of the OCC’s. It 

should be obvious from Equation 4 that the discrimination parameter is the same for all 

item categories, which practically means that the OCC’s are parallel within an item. 
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Samejima (2010) considered the model in Equation 4 as a homogenous case as opposed 

to the heterogeneous case of the GRM in which the discrimination parameters (and thus 

OCC’s) are free to vary within an item. Parameter bik in the Equation 4 is associated 

with   value at which there is 50% probability to respond in the k
th

 or higher category 

of item i. This parameter is often referred to as a threshold (or boundary), and it is 

analogous to the difficulty parameter in the dichotomous IRT models presented earlier. 

Again, since the probability of responding to the lowest or higher category is    
 (  )  

  , there are only K – 1 meaningful thresholds per item and they dictate the positions of 

an item’s OCC’s along the trait continuum. An important feature of the GRM is that, by 

definition of the model, the threshold parameters are ordered from smallest to largest 

(b1 < b2 < b3 < …). Figure 4 illustrates OCC’s for an ordered polytomous test item 

based on the GRM with the following parameters: a = 1.2, b1 = -2.5, b2 = -1, b3 = 1, b4 

= 2.5. 

 

 

Figure 4 – Item operating characteristic curves for five-category item with a = 1.2, b1 = 

-2.5, b2 = -1, b3 = 1, b4 = 2.5, based on GRM 

 

The OCC’s, obtained through the Equation 4 in the first step are subsequently 

used within GRM to define the probability of responding to a particular category k of 

an item i: 
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Thus the probability of responding to a particular category for a five category item is 

computed as follows: 

 
          

        
          

     

          
        

     

          
        

                                               

          
        

     

          
          

     

 

If we plot Pik along the whole range of the latent trait values we get what is called item 

category response functions (ICRFs), which are depicted for our example item in 

Figure 5.  

 

 

Figure 5 – Item category response function for five-category item with a = 1.2, b1 = -

2.5, b2 = -1, b3 = 1, b4 = 2.5, based on GRM 
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Hambelton et al. (2010, p. 29) present some important characteristics of the GRM: 

- for any given value of the latent trait the sum of the category response 

probabilities equals 1 

- the first ICRF will always be monotonically decreasing while the last ICRF is 

always monotonically increasing 

- the middle categories will always be unimodal with the peak located at the 

midpoint of the adjacent threshold categories. 

 

In contrast to Samejima’s GRM, which uses a two-step process to provide the 

probability of a particular response to an item, a class of models termed “direct” defines 

the item category response function for a test item i with K = 5 categories ranging from 

0 to 4 (k = 0, 1…, m) as follows: 

 

   (  )  
   ∑ (      

 )   
   

∑    ∑ (      
 )   

   
 
   

         

 

where    (  ) is the probability of an individual with a given latent trait level   

responding in the k
th

 category of item i; and   
  represents threshold parameter, that 

dichotomizes each pair of the adjacent item categories, so there are m-1 meaningful 

item thresholds. When computing the probability of a response, direct models in (7) 

compare only two adjacent item categories (1
st
 vs 2

nd
), while indirect models (GRM) 

consider all item categories (GRM successively dichotomize the item categories into: 

1
st
 vs. all higher categories; 1

st
 and 2

nd
 vs. all higher categories; …). The manner in 

which the term   
  dichotomizes item categories within direct models involves local 

comparisons in contrast to so-called global comparisons used in GRM (Nering & 

Ostini, 2010; Ostini & Nering, 2006). One of the results of the successive 

dichotomization of adjacent item categories is that   
 ’s within an item are not 

necessarily ordered from smallest to largest in indirect models. The fact that item 

category thresholds are not restricted to be ordered in the IRT models defined in 

Equation 7 permits empirical testing whether ordered categories within an item function 

as intended (Andrich, 2010). 

There are two possible representations of the category threshold parameters in 

Equation 7, which in turn define two distinct polytomous IRT models. By setting 
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       the partial credit model (PCM – Masters, 1982, 2010; Masters & Wright, 

1984) states that every single item i has a separate location parameter b for each of the 

response categories k. A slightly different way of expressing the item category 

thresholds in Equation 7, namely   
         defines the rating scale model (RSM – 

Andersen, 1973; Andrich, 1978, 2010), in which every item i has its own location 

parameter b, and    is the common category threshold for all the items in a test. This 

means that the category thresholds in the RSM are equally spaced across all items 

within a test and they may be shifted on the latent continuum because of different item 

difficulties (Hambelton et al., 2010, p. 32). 

The exponential in the numerator of the Equation 7 for both the PCM and RSM 

involves a sum of the differences between a given   value and each of the category 

threshold parameters   
  up to the desired category k. The denominator is the sum of all 

possible numerators for a particular item and this is the reason why the PCM and RSM 

are also often referred to as divided-by-total models as opposed to the GRM, which is 

considered as a difference model (Ostini & Nering, 2006). 

Since the successive dichotomization of adjacent item categories is meaningless 

in case of modeling the probability of a response in the lowest category    (  ), it is 

convenient to set  

∑(      
 )   

 

   

         

 

and therefore the probability of responding to the third response category of a five-

category item would be computed according to the Equation 7 as follows: 
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Figure 6 illustrates ICRF’s of a 5-category item based on the PCM, where category 

thresholds are not ordered from smallest to largest (b1 = -2, b2 = 0.1, b3 = -1.5, b4 = 2.2). 

It could be seen from the Figure that the threshold parameter within the PCM (and it 
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also holds for the RSM) represents a value on the latent continuum, where two 

successive ICRF’s intersect (Hambelton et al., 2010). It is also possible to incorporate a 

discrimination parameter ai for every item in Equation 7, which defines the generalized 

PCM (Muraki, 1992, 1993, 1997) and generalized RSM (Ostini & Nering, 2006). 

 

 

Figure 6 – Item category response function for five-category item with b1 = -2, b2 = 0.1, 

b3 = -1.5, b4 = 2.2, based on PCM (or RSM) 

 

4.4 Assumptions required for unidimensional IRT models 

There are two assumptions required to understand how the unidimensional IRT 

model works. These are important to gain insight how to interpret a given test score, 

estimating the model parameters, and deciding whether the model represents a 

reasonable approximation of the observed data. 

The unidimensional IRT model assumes that there is a single underlying latent 

trait on which all the items within a test battery rely to some extent (Wainer & Mislevy, 

2000). This supposition stems from Loevinger’s (1947) concept of test homogeneity, 

which proposed that a collection of items should measure the same latent trait of 

interest. From a mathematical point of view the assumption of unidimensionality means 

that responses of examinees to a given set of items can be described by a single latent 

variable (Sijtsma & Molenaar, 2002). This assumption is never fulfilled perfectly in 
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practical testing situations, however IRT models are robust to moderate violations of 

unidimensionality (Hambelton & Cook, 1983). The usual approach therefore is to 

consider a set of items as unidimensional as long as a dominant latent theoretical 

construct underlies responses to the items (Hambelton, Swaminathan, & Rogers, 1991; 

Zhu, 2006). Assessing dimensionality of a set of items is closely related to construct 

validity, that is, assessing “the extent to which a test designated to measure a specific 

theoretical trait or proficiency actually does so” (Steinberg, Thissen, & Wainer, 2000, 

p. 188). The dimensionality of a test instrument is traditionally evaluated using factor 

analysis (McDonald, 1985), a data summarization technique that provides a means to 

empirically confirm the number of dimensions needed to satisfactory describe the 

associations in the observed responses to the test items. Where there is evidence of 

strong multidimensionality it is advised to either delete small content areas from the test 

instrument, split a scale into two or create more subtests, or use one of the 

multidimensional IRT models (Wainer & Mislevy, 2000). 

Until quite recently, a classical factor analysis (that is for example Thurstone’s 

1947 approach assuming that the indicators are continuously distributed and 

standardized to mean of 0 and variance 1) has been used to establish the dimensional 

structure of a test, even in cases when observed data were categorical in nature (e.g., 

binary/dichotomous and polytomous indicators of the theoretical construct). In the case 

of tests containing binary items this approach led to extraction of spurious factors 

related to difficulty of the items (Maydeu-Olivares, 2005; McDonald, 1967, 1999). This 

problem can be avoided by using categorical item factor analysis (see for example Bock 

& Gibbons, 2010) which utilizes tetrachoric or polychoric correlations, respectively. 

The most recent and comprehensive factor analytic approach assessing dimensionality, 

however, does not depend on the bivariate associations and uses all the information 

involved in the categorical responses (by using Full Information Maximum Likelihood 

estimator). This is the reason why it is referred to as full-information or IRT-based item 

factor analysis (Bock & Gibbons, 2010). 

The fact that the full information item factor analysis is also referred to as an 

IRT-based approach is related to the second important assumption of the IRT models – 

the assumption of local independence. This assumption states that “for a given position 

on the latent dimension, responses to the items are statistically independent” 

(McDonald, 1967, p. 16). The assumption of local independence can be expressed as 

follows: 
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where   is a vector of observed responses to items i (i = 1,…n) and    |   is the 

conditional density function of the item responses at a given trait level  . In case of 

dichotomous items this formula simplifies to:  
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that is, the conditional probability of observing a vector of responses   at a given trait 

level  , is a simple product of the model generated probabilities (     if    = 1 and 1 – 

     if    = 0) for each item i at that trait level (Segall, 2010). Statistical conditional 

independence stated in Equations 10 and 11 and that underlies the IRT models is a 

stronger requirement than the requirement of zero partial correlations in classical and 

item factor analysis. In this manner, the IRT model theoretically places more stringent 

demands by requiring an explanation of all the test item associations (bivariate and 

otherwise) which were not fully addressed statistically by classical or item factor 

analysis (McDonald, 1985). The assumption of local independence can be violated for 

example when items are administered naturally in clusters – e.g., a set of reading 

comprehension items about the same reading passage (Wainer & Mislevy, 2000). Other 

possible scenarios that may contribute to violations of the local independence 

requirement include learning through practice or functional dependence of items 

(Štochl, 2008). 

 

4.5 Parameter estimation in IRT models 

From the perspective of test theory, an important aim of psychological 

assessment is to obtain a quantifiable representation of an examinee’s latent trait. For 

instance, in the case of clinical psychology assessments, we want to know the 

examinee’s level of neuroticism or extroversion, both latent traits that we cannot 

observe directly but must infer from fallible empirical indicators. In order to be able to 

obtain such a representation in the context of IRT, one needs to know the characteristics 
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of items used to measure the latent trait of interest, since items are considered the 

building block within the IRT model. One of the integral parts of IRT application is 

therefore estimation of item parameters (difficulty, discrimination) and the examinee’s 

level of the latent trait being measured. 

There are currently two broad classes of parameter estimation methods used 

within the context of IRT – maximum likelihood estimation methods and Bayesian 

estimation methods. In this section only a brief introduction to the logic behind some of 

the approaches to the latent trait ( ) and item parameters (difficulty, discrimination) 

estimation is outlined. An interested reader is referred to Baker (1965); Baker and Kim 

(2004); Bock (1972); Bock and Aitkin (1981); Bock and Lieberman (1970). 

 

4.5.1 Latent trait (θ) estimation 

It was already noted that the principle of local independence stated in (10) 

serves as a basis to estimate the model parameters in IRT. Let’s assume that several 

dichotomous items i (i = 1, 2, …, n) based on the 2-PL model with parameters βi (a1, b1, 

…, an, bn ) were administered to a sample of examinees and the task is to estimate the   

(latent trait) for each of them. If the item parameters βi are known, it is possible to 

express the Equation 11 as a likelihood function: 
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yielding a likelihood of observing a response vector   if   were the true values (Wainer 

& Mislevy, 2000). Since   contains the observed (known) responses of an examinee, 

   |   is a function of   parameters only (Segall, 2010) and thus Equation 11 may be 

used to estimate  . Figure 7 illustrates how the model generated probabilities (ICC’s) 

are multiplied in order to get the likelihood function for two different patterns of 

responses to three dichotomous test items with parameters estimated according to 2-PL 

(i.e. difficulty and discrimination) listed in Table 1.  
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Table 1 – Fictional IRT item parameters and response patterns used in illustration of 

latent trait estimation on Figure 7 

  
  

Pattern 1 Pattern 2 
Item Discrimination Difficulty yi yi 

1 0.6 -1 0 1 
2 1.5 0 1 1 
3 2.5 1 1 0 

 

 

Figure 7 – Likelihood estimation of latent trait (θ) for two different response patterns 
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The maximum likelihood (ML) point estimate of   for both response patterns 

would be simply the mode of the likelihood (Segall, 2010) – that is the highest point on 

the likelihood function portrayed in Figure 7. Thus one way to estimate   is to calculate 

the value of the likelihood “at each of many points across the range of   and simply 

note where it is the highest” (Wainer & Mislevy, 2000, p. 72). Usually however the   is 

estimated iteratively using the Newton-Raphson successive approximations while 

maximizing the natural logarithm of the likelihood expressed in Equation 12 (details 

can be found in Baker, 1985 or Baker and Kim, 2004). A latent trait estimate using the 

Newton-Raphson method for the 2-PL model could be obtained as follows: 

 

 ̂     ̂  
∑   

 
   [     ( ̂ )]

∑   
  

   [  ( ̂ )     ( ̂ )]
          

 

where  ̂  is the latent trait estimate for a given response pattern within iteration s; 

  ( ̂ ) is the probability of responding to a keyed (correct, or trait indicating) category 

of item i (i = 1, 2, …, n) at the given  ̂ ;    is the response to the item i (1 for 

keyed/correct/trait indicating response, 0 otherwise) and    is the discrimination 

parameter of a particular item i.  

A disadvantage of ML estimation (MLE) is that it does not have a maximum for 

so-called perfect (maximum possible simple sum) or zero scores (minimum possible 

simple sum). In that case, MLE returns  ’s equal to + infinity for perfect scores and – 

infinity for zero scores. Warm (1989) proposed a weighted version of the ML 

estimation in which the mean instead of the mode of the likelihood function is used as 

the   estimate. Weighted likelihood estimation (WLE) is asymptotically equivalent to 

MLE, however it overcomes the unbounded nature of the MLE in case of zero or 

perfect score (S. Wang & Wang, 2001; T. Wang & Vispoel, 1998). Also Bayesian 

estimation, another popular approach for latent trait estimation, is able to correct for 

this MLE shortcoming.  

In a Bayesian estimation approach, prior information about the   distribution 

      is incorporated into the likelihood function    |  , yielding a posterior 

distribution: 

 

   |          |            
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which subsequently serves as a basis to provide estimates of a latent trait (Segall, 2010). 

Using the mean or the mode of the posterior distribution    |   as a   point estimate, 

defines two different Bayesian approaches, that is: expected a posteriori (EAP) and 

Bayes modal estimation (BME – also known as the maximum a posterior estimation 

(MAP)) respectively (Hambelton et al., 2010). 

There are two classes of prior distribution commonly used in Bayesian 

estimation – a noninformative prior and an informative prior distribution       

respectively. Since the       is simply treated as an “item” whose “ICC” is multiplied 

with another item ICC’s, a noninformative prior yields a posterior distribution, which is 

proportional to the likelihood function and this is the reason why the BME with 

uniform prior is equivalent to the MLE (Wainer & Mislevy, 2000). The process of 

incorporating the prior information about the latent trait distribution by multiplying it 

along with another item ICC’s is illustrated in Figure 8 – here two types of the prior 

distributions (noninformative – uniform distribution vs. informative – standard normal 

distribution) labeled as       were used to obtain the posterior distribution    |  , 

while an examinee has responded to keyed/correct/trait-indicating category in both test 

items.  

Figure 8 shows that the selection of a particular prior distribution influences the 

posterior distribution and consequently also affects the   estimate. Another important 

point to make, not easily observed from the picture, is that the upper asymptote of the 

likelihood function for the noninformative prior goes to infinity when an examinee has 

answered all the test items in the same direction (in case of polytomous items when all 

the responses are either in the first or in the last category of the test items). Therefore, 

similarly to MLE, the Bayesian estimation with noninformative (uniform) prior is not 

appropriate in situations of perfect or zero scores.  
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Figure 8 – Bayesian estimation of latent trait (θ) using two different prior distributions 

 

4.5.2 Item parameters estimation 

When latent trait parameters are known, it is possible to apply the MLE 

principles outlined above also for item parameter estimation – the task now becomes 

one of finding the maximum of the likelihood function of unknown item parameters 

given the observed responses and latent trait values (Hambelton et al., 2010). 
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Unfortunately, it is never the case in practical testing situations (at least during 

the initial phases of test administration), that either item parameters or latent trait 

parameters are known and thus the challenge becomes the simultaneous estimation of 

both sets of parameters. There are three commonly used methods for item parameter 

estimation that address this challenge: joint maximum likelihood (JML), conditional 

maximum likelihood (CML), and marginal maximum likelihood (MML) estimation 

(Baker & Kim, 2004; Wainer & Mislevy, 2000). The first type, JML estimation, uses an 

iterative two-step process while maximizing the joint likelihood function for both the 

examinees (latent trait) and the items. The joint function can be obtained simply by 

multiplying the likelihood function in Equation 12 across N examinees (de Ayala, 

2009): 
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In the first step of JML, the provisional   estimates (various functions of the raw score 

may be used) are used in order to estimate the item parameters. In the second step the 

provisional   estimates are updated treating the item parameters from the first step as 

known. These two steps are repeated until a convergence criterion is satisfied, that is 

until the successive change in updated parameter values for both the examinees and 

items are trivially small. 

Simultaneous estimation of examinees and items parameters in JML is known to 

have several problems (e.g., de Ayala, 2009; Wainer & Mislevy, 2000), mainly with the 

inconsistency of the parameter estimates (Andersen, 1973). The inconsistency is caused 

by the fact that the main interest of JML rests with the estimation of a limited number 

of item parameters in the presence of many   parameters, which are considered as 

nuisance parameters in this context (Eggen, 2000; Mair & Hatzinger, 2007; Mair, 

Hatzinger, & Maier, 2010). Addressing this concern led to the development of 

estimation methods that eliminate the nuisance unknown   parameters, taking them out 

of the likelihood function by using either the simple raw score in CML, or relying on 

distributional assumptions about   (e.g., standard normal distribution) in MML 

(Hambelton et al., 2010). Whereas the CML fulfills the Rasch’s requirement of specific 

objectivity (McDonald, 1999; Rasch, 1960), this approach is suitable for the Rasch 
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model and its extensions only, where the raw score provides a sufficient statistic for   

estimation. On the other hand, the precision of item parameter estimates in MML is 

influenced by the chosen   distribution and it is obvious that an incorrect distributional 

assumption will produce biased estimates. Both the CML an MML yield consistent 

item parameters and if the   distribution is correctly specified in MML, both methods 

provide asymptotically equivalent estimates (Pfanzagl, 1994). Once the item parameter 

estimates have been obtained using CML or MML respectively, they can be used to 

obtain latent trait parameters by treating item parameters as known, just as in the 

second step of JML outlined above (Hambelton et al., 2010). When considering the 

estimation of model parameters (examinee’s latent trait parameters and item 

parameters) based on CML or MML, it should be noted that with CML, unlike MML, 

examinees whose raw scores are either zero or perfect are eliminated from the entire 

estimation process (Molenaar, 1995). Therefore, the MML estimation procedure is 

recommended if one wants to obtain finite latent trait estimates for such examinees 

(Mair & Hatzinger, 2007; Mair et al., 2010).  

Besides the various MLE methods discussed above, Bayesian procedures can 

also be used for the purpose of item parameter estimation. Similarly as in the case of 

the latent trait estimation, Bayesian estimation of item parameters rests on using the 

prior distribution for both the item and   parameters and incorporates priors into the 

likelihood function in order to obtain the posterior distribution for item parameters. A 

detailed description and corresponding mathematical formulas for Bayesian item 

parameter estimation can be found in (Baker & Kim, 2004). 

 

4.6 Information and standard error of the θ estimates 

Another important concept in IRT, which is also crucial for IRT-based 

computerized adaptive testing (see section 6, ‘Testing algorithms in unidimensional 

IRT-based computerized adaptive testing’), is the item and test information function 

respectively. Generally, the amount of information in the field of statistics was defined 

by Sir R. A. Fisher as the reciprocal of the sampling variance of the estimated 

parameter (Baker, 1965). In the context of IRT we are mainly interested in the sampling 

variance of   estimates and “the larger this variance the less precise the estimate of   

and the less information one has as to an examinee’s unknown ability level” (Baker & 

Kim, 2004, p. 70) 
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For example the sampling variance   
   ̂   of   estimates in case of 

dichotomous items could be obtained as: 
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where   (  ) is the probability of a latent trait indicating response to an item i (i = 1,..., 

n) given the particular model (1PL or 2PL model, respectively) and   
 (  ) is the first 

derivative of   (  ) with respect to  . Since the first derivative for dichotomous 1PL 

and 2PL model is   
 (  ) =   [  (  )][    (  )], the Equation 16 can be simplified 

to: 
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where   denotes the discrimination parameter of an item i. By taking the square root of 

the Equation 16 or 17 we can get an IRT-based precision index called the standard error 

of the latent trait estimate –   ( ̂ ). Similar to the standard error of measurement 

(SEM) in CTT,    ( ̂ ) around the point    estimate constitutes the 68% confidence 

interval (de Ayala, 2009). However unlike SEM in CTT, which is considered a global 

measure of error for an estimate,   ( ̂ ) in IRT varies as a function of  .  

According to Fisher’s definition mentioned above, the amount of information, 

which is provided by a set of items for a given    estimate, can then be obtained by 

taking the reciprocal of the Equation 17: 
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where      is the test information function. The sum in the Equation 18 reflects that, 

individual items contribute independently to the test information function, and therefore 

for any given    estimate it is possible to calculate the contribution of information for 

any particular item in an item pool: 
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where       is the item information function and it follows that      ∑      . Since 

the discrimination parameter ai for 1-PL (Rasch) model is assumed to be 1 for all items 

within a test battery, the maximum of the provided information will always be equal 

among all the items for Rasch models. Figure 9 illustrates an item and a test 

information function for a fictional test battery consisting of three items with 

difficulties: b1 = -2; b2 = -1.5; b3 = 2, which were estimated using a Rasch model (e.g.: 

ai = 1).  

 

 

Figure 9 – Test and item information functions for three dichotomous items with a = 1, 

b1 = -2, b2 = -1.5, b3 = 2 

 

As Figure 9 depicts, the maximum of information for all three items is indeed the same, 

peaked at the particular item difficulty and in Rasch models it will always be of value 

0.25 when   (  )      (  ). Moreover the test information function in Figure 9 

indicates that the fictional three-item test would provide considerably more information 

for estimating low levels of the latent trait (the maximum is at       ) – caused by 
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the higher number of items with low difficulty in the fictional example test. The 

situation may be slightly different in a 2-PL model where item discrimination 

parameters ai are also estimated, thus producing results not quite identical to the 1-PL 

model. To illustrate the difference between these respective models, Figure 10 portrays 

item and total information functions for items with the same difficulty parameters as in 

the previous example (b1 = -2; b2 = -1.5; b3 = 2), but with different discrimination 

parameters (a1 = 0.6; a2 = 1.1; a3 = 1.5). Even though the maximum of the provided 

information by the particular item is centered at the item’s difficulty just as in the case 

of the 1-PL model, the maximum now is different and its value is dictated by the item’s 

discrimination parameter. 

 

 

Figure 10 – Test and item information functions for three dichotomous items with a1 = 

0.6, a2 = 1.1, a3 = 1.5, and b1 = -2, b2 = -1.5, b3 = 2 

 

Thus it is also possible in 2-PL model that such a fictional three-item test would 

provide the maximum information for estimating high levels of the latent trait (the 

maximum is at       ), regardless of the test items difficulty parameters 

distribution. 

It is also worth noting that with polytomous items and IRT models it is also 

possible to evaluate the amount of information provided by each item’s response 
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category. For instance, when the items follow a graded response format, Samejima 

(1969) defines the item’s category information function as: 
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and it follows that 

 

      ∑       

 

   

          

 

In case of Samejima’s GRM (which will be used later in the empirical part) and given 

the Equation 5, it is possible to rewrite the Equation 20 as: 
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where    
      is the first derivative of    

    . Since the GRM is an extension of the 2-

PL model, the formula for the first derivative presented above is applicable also here, 

that is    
        [   

    ][      
    ].  

Even though it is not a common practice, the logic behind the item’s category 

information function can be presented on a dichotomous item. A dichotomous item 

could be considered as a special case of a polytomous item with number of possible 

response categories k = 2 and so both the categories theoretically contribute to the item 

information function. This is illustrated in Figure 11 for a fictional dichotomous item 

assessing cognitive functioning (response categories: wrong answer vs. right answer) 

with  1 = 1 and  1 = -1. 
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Figure 11 – Item’s category information functions (Ii2 – right answer, Ii1 – wrong 

answer) for a dichotomous item with a = 1, b = -1 

 

Information functions are especially useful in designing measurement 

instruments (test batteries, inventories, and questionnaires) which by necessity contain 

specific characteristics. For example, it is possible to create an instrument that will be 

suitable to measure a latent trait along a wide range of the continuum (e.g., norm-

referenced or non-mastery testing, see Baumgartner, 2007; Zhu, 2007), or possibly an 

instrument that will be very precise in estimating the latent trait around some 

predetermined level (e.g. criterion-referenced or mastery testing, see Baumgartner, 

2007; de Ayala, 2009; Zhu, 2007). 
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5 COMPUTERIZED ADAPTIVE TESTING (CAT): HISTORICAL AND 

CONCEPTUAL ORIGINS 

Measurement instruments including questionnaires, inventories, test batteries, 

achievement tests, and surveys commonly used in the social and behavioral sciences, 

have traditionally been designed for administration in a linear (fixed-length) format 

(Becker & Bergstorm, 2013). This conventional measurement approach presents the 

same set and sequence of test items to each test taker, usually in a defined time frame, 

for instance during final exams after completion of a semester of sport physiology. This 

methodology has obvious advantages and disadvantages. One of the advantages is the 

possibility of administering the test to a large group of examinees at the same time 

(mass-administered testing – see DuBois, 1970), which also maximizes uniformity of 

the testing situation (all test takers experience the same context and events surrounding 

the test administration) and also reduces cost when compared to individual testing 

(Wainer, 2000). Moreover comparison of examinees taking the same test is simple and 

straightforward (Štochl, Bӧhnke, Pickett, & Croudace, 2016a; Wainer & Mislevy, 

2000) and is for the most part what makes fixed-length linear assessments so attractive 

and popular for practical research activities.  

Historically speaking, the advent of both World War I and II was instrumental 

in the transition from individual oral testing to mass-administered paper-and-pencil 

testing. Test instruments used in the area of intelligence research before the wars were 

administered on a case-by-case basis and to only one person at a time. Many of the 

items in these test instruments required oral responses from examinees, individual 

timing or manipulation of materials (i.e., building blocks). One of the most popular 

individual tests was the Binet-Simon Scale (Binet & Simon, 1905) developed to 

measure a person’s mental level (or mental age – see Anastasi, 1976). The original 

scale consisted of 30 sub-tests or problems ordered according to their difficulty. In 

contrast to a linear fixed-length test, an administration of a particular sub-test in the 

Binet-Simon Scale was based on the examinee’s actual ability. That is if an examinee 

passed a sub-test with a particular known difficulty level, then a sub-test with a higher 

difficulty could be administered subsequently. Conversely, in the event that an 

examinee failed a particular sub-test, also with a known difficulty level, the testing 

procedure could be terminated. Each individual would therefore be tested only over a 

specific range of ability suited to his or her intellectual level. Fairly complicated 
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administration and scoring of sub-tests in the Binet-Simon Scale, however, requires a 

highly trained and experienced examiner. Moreover the scoring procedure for an 

individual intelligence test must be done immediately following administration of a 

particular sub-test, since the process of how the testing procedure unfolds is entirely 

driven by the examinee’s responses to previously administered sub-tests. 

The United States entry into World War I in 1917 necessitated testing a large 

number of recruits for military service and meeting the demands of both cost- and time-

efficient test administration (DuBois, 1970; Wainer, 2000). The military’s role in the 

transition from individual to group testing is heralded by development of the Army 

Alpha and Army Beta tests – two instruments that inaugurated large-scale mental 

testing (Wainer, 2000). The Alpha and Beta tests were developed by a group of 

psychologists led by then president of the American Psychological Association, R. M. 

Yerkes and used by the U.S. military for personnel selection and classification 

(Anastasi, 1976). The Army Alpha was designed for general routine testing of 

intelligence, while the Army Beta was a non-language alternative employed with 

illiterates and with non-English-speaking recruits. Subsequent to the wartime uses of 

mental testing, mass-administered testing using a linear fixed-length format also 

became popular by American Universities who could use screening tests to supplement 

the collegiate admission process (van der Linden, 2008). This was the context for 

developing the Scholastic Aptitude Test (SAT), which played a screening and selection 

role similar to the Army Alpha and Army Beta tests, but for entrance to college rather 

than the military. Since both the Alpha and Beta (as well as other group tests like SAT) 

were designed as mass testing instruments using multiple-choice formats based on the 

work of Otis (see Wainer, 2000), they not only enabled the simultaneous measurement 

of large groups of recruits but also simplified the instruction and administration 

procedures. The role of examiner was therefore greatly facilitated in the group testing 

when compared to the more laborious and time consuming individual testing situations.  

Although easy and efficient to administer, a linear testing format is often time-

consuming (from an examinee perspective) and thus may place considerable burden on 

the test taker (Štochl et al., 2016a). In order to effectively measure the full breadth of a 

particular latent trait, a measurement instrument has to contain items (i.e., empirical 

indicators) whose level of difficulty covers the entire spectrum of the specified latent 

trait continuum. For example an instrument assessing scholastic achievement must 

contain some relatively easy items earmarked for less proficient examinees, items of 
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moderate difficulty targeting average examinees, and items of extreme difficulties for 

examinees that possess high proficiency (Wainer, 2000). The biggest limitation of the 

traditional group testing using a linear fixed-length format is its lack of flexibility, since 

every examinee is routinely tested on all of the items included in a test. Canvassing all 

of the latent trait levels with such a wide range and large number of items, linear testing 

can weaken a test’s reliability by introducing undesirable incidental variables (e.g., 

boredom, lack of concentration or frustration), and increase the possibility of ‘guessing’ 

by individuals with lower levels of the latent trait (Wainer, 2000). These and related 

factors undermine the effectiveness of the testing process itself (de Ayala, 2009). 

As the field of testing and assessment continued to unfold, researchers tried to 

combine several of the advantages associated with both individual and group testing. 

This fostered several innovative approaches and techniques that were proposed in the 

1960’s and 1970’s. Major interest has focused on possibilities of mass-administered test 

that would be tailored to individuals based on their actual performance. In other words, 

psychometricians and test developers tried to provide a basis for mass-administered 

adaptive testing, in which the role of the test administrator would be greatly simplified 

despite the fact that the testing process is individualized according to the examinee’s 

actual performance in the test in question. 

The development of IRT in the middle to later portion of the 20
th

 century has 

provided a sound theoretical background for mass-administered adaptive testing. 

Relatively slow computers at that time, unable to handle matrix algebra and complex 

computations involved in IRT models within a reasonable time, however, hindered 

researchers from taking advantage of the full potential of modern test theory. Early 

practical applications of group-administered adaptive testing were therefore mainly 

implemented in a traditional paper-and-pencil environment without using a specific 

mathematical model (e.g. IRT model) for the purpose of item selection and latent trait 

estimation. Examples of such an approach include two-stage testing (Cronbach & 

Gleser, 1965), the flexilevel test (Lord, 1971) or the pyramidal adaptive testing (Larkin 

& Weiss, 1975) among others. Figure 12 illustrates a simple hypothetical example of 

the two-stage test format.  
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Figure 12 – Example of two-stage adaptive testing format 

 

It should be noted that every test administration is driven by a specific testing 

algorithm, which defines the testing process in terms of how to begin, how to continue, 

and how to terminate the testing (Thissen & Mislevy, 2000). For instance, in standard 

linear testing formats, all examinees begin by responding to a particular test item and 

then continue until they have responded to all of the items in the test. In the example 

given in Figure 12, a two-stage testing format, all test takers start by responding to 10 

designated ‘routing’ items, whose difficulties span a wide range of the latent trait being 

assessed. Based on the test taker’s responses to the routing items (whether they perform 

poorly or do well), each examinee is then channeled respectively to receive one of two 

20-item sets, each of which contains items with different proficiency or difficulty levels 

(easy vs. difficult). By adapting the item difficulties in the second stage according to an 

examinee’s performance in the first stage, the two-stage format shortens the testing 

procedure from the test taker perspective. Using the format presented in Figure 12, each 

examinee has to respond to only 30 items, although the entire test contains 50 items. 
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Figure 13 shows a slightly different adaptive testing approach, called a ‘pyramidal’ test. 

In this case, test items are adapted to comport with each examinee’s actual 

performance, albeit again without using any particular mathematical model in the 

decision tree, nor in the latent trait estimation. 

 

 

Figure 13 – Example of pyramidal adaptive testing format 

 

As Figure 13 depicts an item with intermediate difficulty is administered to each 

test taker first. In the case of providing a “correct” response, the examinee is channeled 

to a more difficult item in sequence item by item. In the case where the examinee 

provides an incorrect answer, they are channeled to an easier item. This process is 

repeated until the examinee has responded to 8 items. Lord (1971) developed the 

flexilevel test, which is basically a variation to both of the abovementioned formats 

(two-stage, pyramidal). A detailed description of the proposed flexilevel testing 

algorithm is not essential for the present discussion. The important thing is that in the 

flexilevel format, like the other two formats, each examinee responds to only a specific 
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subset of items from the complete test, and as they progress through the testing format 

the actual responses to the selected items are taken into account.  

Generally, all adaptive testing formats discussed above, as well as other formats 

that do not rely on an explicit mathematical model, also referred to as fixed-branching 

adaptive testing formats (de Ayala, 2009; Patience, 1977), use pre-specified fixed 

patterns of item selection procedure to match the test to the examinee’s level of the 

latent trait (Reckase, 1989). Fixed-branching testing formats, however, are suboptimal 

with regard to both the item selection and trait estimation. Variable-branching adaptive 

testing formats, on the other hand, typically use an IRT model as a theoretical and 

mathematical base to address the issues of item selection and trait estimation in a more 

methodologically rigorous way. Unique features of IRT-based variable-branching 

adaptive testing eliminate some of the problems inherent in fixed-branching adaptive 

techniques. For example, difficulties of the test items are expressed in the same metric 

as the latent trait estimates in IRT-based adaptive testing, allowing for a more precise 

and flexible definition of item selection than fixed-branching algorithms. Moreover, in 

addition to the difficulties, the item selection process in IRT-based variable-branching 

testing can take into account other very useful item characteristics (discrimination, 

guessing parameter). Unlike the fixed-branching adaptive procedures, the IRT-based 

variable-branching techniques provide a means for the researcher/examiner to control 

the precision of the trait estimates. Thus, instead of specifying a number of items to be 

administered just as in fixed-branching procedures, one can specify a required level of 

measurement precision as a test termination criterion within IRT-based variable-

branching testing. In other words, an IRT-based testing process using variable-

branching approach can be terminated as soon as a particular degree of reliability is 

obtained (de Ayala, 2009; Urry, 1977). This approach provides a means to achieve 

genuine equiprecise measurement where error of measurement is distributed uniformly 

along the latent continuum. 

Because of the extensive computations involved in the process of item selection 

and trait estimation, variable-branching adaptive testing has been (almost) exclusively 

implemented on computers. The first practical applications of variable-branching 

adaptive formats based on the modern test theory were therefore delayed until 

inexpensive but powerful computers became available to the research community. The 

fast processing speed (and ability to handle complex matrix algebra algorithms) 

provided a means for immediate, real-time item selection and trait estimation leading 
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the way to full implementation of IRT-based computerized adaptive testing with real-

world applications (Gershon & Bergstorm, 2006). One of the first computerized 

adaptive tests to be developed by the Naval Personnel Research and Development 

Center in the mid 1980’s, was the Armed Services Vocational Aptitude Battery 

(Wainer, 2000). This pioneering effort was shortly afterwards followed by the 

implementation of a CAT version of 1) the National Council of State Boards of Nursing 

licensing exam and 2) the Graduate Record Examination (van der Linden & Glas, 

2010). Use of the CAT has increased substantially since that time, not only in education 

(Weiss & Kingsbury, 1984) and psychology (Waller & Reise, 1989), but more recently 

in the field of health-related outcomes (Fayers, 2007). In contrast to other behavioral 

and social sciences, application of CAT in Kinanthropology has been minimal with 

only a few published exceptions (Zhu, 1992; Zhu, Safrit, & Cohen, 1999). 

Use of the CAT approach has been popular methodology particularly to 

establish equiprecise measurement, especially given that it reduces examinees burden 

by shortening a testing procedure. Moreover, Wainer (2000), Gershon and Bergstorm 

(2006) and van der Linden and Glas (2010) summarize some other benefits of a CAT 

that were well received especially during its early applications: 

1. The possibility for examinees to schedule tests at their convenience since the 

tests could be offered continuously in real time.  

2. Tests are taken in a more comfortable setting and with fewer people around 

than in large-scale paper-and-pencil administrations. Individuals can work at 

their own pace, and the speed of response (from point of item presentation on a 

screen) can be used as additional information in assessing proficiency. 

3. Electronic processing of test data and reporting of scores are considerably 

faster. Computer-based tests allow for easy updating of test content and fast 

centralization of data. 

4. Test security is usually improved. There are no paper documents to be copied, 

and computerization allows for greater randomization in test items presented to 

any single examinee. 

5. Wider range of questions and test content can be put to use. Graphical images 

and multimedia presentations enable the measurement of concepts not possible 

with text-only formats. 
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6 TESTING ALGORITHMS IN UNIDIMENSIONAL IRT-BASED CAT 

As already mentioned, every administration of a test follows a specific testing 

algorithm, which determines the precise order of test items administered to the 

examinee and when to terminate the testing process. Thissen and Mislevy (2000) 

identify three general steps in development of a testing algorithm: 1) how to START, 2) 

how to CONTINUE and 3) how to STOP. Table 2 summarizes the specific issues that 

need to be addressed within each of the three steps in the context of the IRT-based 

CAT. 

 

Table 2 – CAT algorithm 

Algorithm step Procedure 

1. STARTING Initial latent trait estimation 

 

Selecting/administering the first (or first few) 

item/s 

 

2. CONTINUING Selecting/administering "the best" item for 

provisional latent trait estimate  

 

Processing the response to obtain interim latent 

trait estimate 

 

3. STOPPING Checking whether a specified termination criterion 

is satisfied 

 

Reporting final latent trait estimate 

 

The development of a CAT thus requires a series of integrated decisions that 

address “how initial and interim ability estimates will be calculated, how items will be 

selected based on those estimates, and how the final ability estimate will be derived” 

(van der Linden & Pashley, 2010, p. 5). Figure 14 portrays the schematic structure for a 

CAT algorithm, modified according to several sources (de Ayala, 2009; Štochl, 

Bӧhnke, Pickett, & Croudace, 2016b; Thissen & Mislevy, 2000). A more detailed 

description of some methods and procedures (item selection, trait estimation, possible 

stopping rules) that are used in each of the three major steps (starting, continuing, and 

stopping) will be discussed next. For the purpose of illustration, this material only 

discusses methods and procedures suitable for unidimensional unconstrained CAT (that 

is CAT without using exposure control and content balancing methods – see sections 
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6.4.2 ‘Content balancing’ and 6.4.3 ‘Exposure control’ for more information). Readers 

interested in multidimensional, constrained, testlet or mastery CAT are referred to 

several published works: Eggen (2010); Glas & Vos (2010); Mulder & van der Linden 

(2010); Segall (2010); van der Linden (2010); Vos & Glas (2010).  

 

 

Figure 14 – Schematic structure for CAT algorithm 

 

6.1 Starting 

In IRT-based adaptive testing formats, items are generally selected and 

administered to an examinee based on that individual’s previous responses, which 

serves to maximize the information for the most current   estimate. However such an 

approach is not applicable at the beginning of a testing process, since the examinee has 

provided no responses, thus making it impossible to estimate the latent trait  . In 

practice, the initial   level for a particular examinee is therefore arbitrarily chosen by 



54 
 

the CAT administrator. Frequently, the mean in the population of the tested persons is 

used as the initial   value for each examinee. Indeed, if there is no other information 

about the particular examinee available, the population mean is therefore the most 

reasonable choice (Thissen & Mislevy, 2000). However additional background 

information about an examinee including demographic factors (e.g., age, race, gender) 

as well as prior test results also may be used to generate the initial   guesstimate (van 

der Linden & Pashley, 2010). For example, the mean of some more narrowly specified 

population may be used as the initial   value for a particular test taker. Needless to say, 

the more accurate the initial   guesstimate for a given examinee (and the greater 

precision used to generate this estimate), the faster the CAT converges to his or her 

‘true’   estimate (de Ayala, 2009). 

Once the decision on the initial   values has been made, it is possible to select 

and administer the first psychometrically optimal item. The most widely used item 

selection approach is based on the Fisher information function (defined by the example 

provided in Equation 19 or 21) and selects the item with the highest Fisher information 

at a provisional level of  . However, in situations where the initial provisional   value 

is the same for each examinee, then the same optimal item would be administered to all 

examinees first. Several approaches are used commonly to avoid overexposure of the 

first item and the related problems of CAT security and validity. For example, a random 

initial   value within a reasonable range (e.g., from -1 to 1) is assigned to each 

examinee and then the most informative item is selected first. Alternatively, an adaptive 

algorithm may randomly select an item from, for example, 10 most informative items 

or possibly from an entire item pool. Fortunately, the choice of initial   value and the 

selection of the first item have only negligible, if any, impact on the final CAT 

estimates even in tests containing as few as 20 - 30 items (Lord, 1977; van der Linden 

& Pashley, 2010). 

Once an examinee’s response to the first item is obtained this information is 

then used to generate the revised   estimate. Generally both the likelihood and the 

Bayesian methods described in previous sections (see section 4.5.1 Latent trait 

estimation) can be used for the   estimation. Recall, that there are two alternatives of 

both the likelihood and the Bayesian estimation methods currently in use: Maximum 

Likelihood Estimation (MLE – uses the maximum of the likelihood function as the   

estimate) vs. Weighted Likelihood Estimation (WLE – uses a mean of the weighted 
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likelihood function as the   estimate) and Expected a Posteriori (EAP – uses a mean of 

the posterior distribution as the   estimate) vs. Bayesian Modal Estimation (BME – 

uses the mode of the posterior distribution as the   estimate).  

As discussed earlier, however, the MLE does not provide finite   estimates for 

so-called perfect (maximum possible simple sum) or zero scores (minimum possible 

simple sum). Since such a score is likely to occur after the first administered item, MLE 

often cannot be used at the beginning stages of the testing process. Several approaches 

have been proposed in cases of the perfect or zero scores when using MLE within a 

CAT paradigm. One of them is a step-size procedure, in which the initial   value is 

decreased (in case of incorrect responses), or increased (in case of correct responses) by 

a given fixed value (e.g.: 1 logit) until the finite estimates are available (until the 

mixture of correct and incorrect responses is observed).  

In a Bayesian approach (EAP and BME), the   point estimate is based on the 

posterior distribution defined in (14), which is simply the product of the likelihood 

function and the prior distribution. One advantage of Bayesian estimation methods is 

that they can be used even in situations when the response to the first administered item 

falls into the first or the last item category. However both the EAP and BME require 

specification of the prior distribution and using an inappropriate prior can bias the 

provisional   estimates and thus lead to selection of suboptimal items, especially with 

short tests (van der Linden & Pashley, 2010). Moreover, recall that for a uniform prior, 

the BME is equivalent to the MLE and therefore cannot be used at the beginning of the 

testing process.  

 

6.2 Continuing 

After the initial phase of the adaptive testing, the algorithm requires instruction 

how to continue, in other words, which item in the test sequence will be administered 

next. As noted above, the most popular approach is to select the item with the highest 

Fisher information function (see section 4.6 ‘Information and standard error of the θ 

estimates’) at the provisional   point estimate. It should not be surprising, however, that 

the   point estimates at the beginning of the testing procedure have relatively large 

errors and therefore item selection based on maximizing the Fisher information may 

favor “the best” item at the wrong   location. Lord and Novick (1968; see also van der 
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Linden, Pashley, 2010) refer to this situation as ‘attenuation paradox’, which is 

illustrated in Figure 15.  

 

 

Figure 15 – Attenuation paradox in CAT item selection (adopted from van der Linden 

& Pashley, 2010) 

 

It should be obvious that if the error of the   point estimate is large, the true   value 

may be considerably different from the current estimate. This also means that the best 

item for the current   estimate (Item 2 in Figure 15) may be less informative at the true 

  value. To deal with uncertainty in obtaining   estimates (especially in the beginning 

stages of testing), Veerkamp and Berger (1997) introduced another item selection 

method based on weighted Fisher information. These authors proposed to weight each 

item’s Fisher information        defined in (19) or (21): 

 

  
                      

 

The weight w in (23) is simply the likelihood function for observed responses defined 

in (12), which “expresses the plausibility of various values of   given the data” (van der 
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Linden & Pashley, 2010, p. 15). The item with the highest integral (    ) of the 

weighted Fisher information: 

 

     ∫   
                 

 

  

  

 

is then administered to the particular examinee. Figure 16 illustrates the difference 

between the traditional item selection based on maximizing item’s information at the 

ML point estimate and the item selection method using the weighted Fisher 

information.  

 

 

Figure 16 – Incorporating likelihood of θ within the weighted Fischer information item 

selection approach 

 

For the provisional ML   point estimate in Figure 16 (which is the highest point of the 

likelihood function for   and is situated at   = -0.37), item 1 provides more information 

(I1 = 0.237 as compared to item 2 with I2 = 0.159) and therefore would be selected for 

administration within the traditional item selection approach. However if the likelihood 

of all possible   values is used to weight the item’s information in Figure 16, the 

integral of the weighted Fisher information would be larger for item 2 (Inti2 = 0.160 vs. 
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Inti1 = 0.156 for item 1) and consequently, item 2 would be administered if using the 

weighted information approach. Especially in the beginning of the testing process, 

when the likelihood function tends to be flat, a substantial weight is placed on item’s 

information values away from the current   point estimate (van der Linden & Pashley, 

2010). 

Chang and Ying (1996) proposed another class of item selection methods based on 

Kullback-Leibler (KL) information. Generally, KL information measures a difference 

between two distributions and the larger the KL information, the more different the two 

distributions are making it easier to discriminate between them (van der Linden & Glas, 

2010). The rationale of the Kullback-Leibler selection methods within CAT is to 

compare distributions associated with the true   value of the test taker (  ) and the 

current   estimate ( ̂). For a dichotomous item i (i = 1,..., n) with parameters based on 

the IRT model defined in (3), the KL divergence measure (KLi) would be computed as 

follows: 

 

   ( ̂  
 )      

     [
    

  

  ( ̂)
]  [      

  ]   [
      

  

    ( ̂)
]           

 

where Pi is the probability of a trait indicating response for a given   (see section 4.2 

Unidimensional dichotomous IRT models). In case of the polytomous items and the 

GRM (see section 4.3 ‘Unidimensional polytomous IRT models’), which will be used 

in the empirical part of the thesis, KL divergence information simplifies to: 
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where Pik is the probability of responding to a particular category k (k = 0, 1,…, K) of 

an item i. Because the true values    are unknown in practical testing situations, 

computation of the KL divergence information uses a reasonable interval around the 

most current trait estimate [ ̂     ̂   ], while   may vary or may be fixed during 

CAT. The term  ̂    is used subsequently in lieu of the true    and the current 

estimate is set to  ̂   ̂    in Equations 25 and 26. Several KL divergence-based 



59 
 

criteria then can be specified, which can be used to guide the item selection process 

within CAT (Nydick, 2014): 

- The Pointwise KL divergence criteria based on the comparison of KL 

information at two points: 

 

         ( ̂     ̂   )         

 

If   is kept constant over the CAT procedure, the item selection method is 

referred to as Fixed Pointwise KL (FP-KL) selection. Often   is set to vary as a 

decreasing function of the number of items administered to an examinee so far 

and such an approach defines Variable Pointwise KL (VP-KL) item selection 

method. 

- The integral KL divergence criteria based on the integration of the KL 

information across a small area: 

 

      ∫      ̂     ̂        
 ̂  

 ̂  

          

 

Again, keeping   constant defines Fixed Integral KL (FI-KL) selection method 

while setting   as a decreasing function of the number of items administered to 

an examinee is typical in Variable Integral KL (VI-KL) item selection. 

In all of the KL item selection methods (FP-KL, VP-KL, FI-KL, VI-KL) the item with 

the highest criti is administered to an examinee at any particular step in the CAT 

process.  

Alternatively, Bayesian approaches may be used in the item selection process 

during CAT. The Bayesian item selection methods involve various characteristics of a 

posterior   distribution, which is a combination of a   likelihood function and a prior   

distribution. The Bayesian methods include: Minimum Expected Posterior Variance 

(MEPV, see also approximate Bayes procedure introduced by Owen, 1969); Maximum 

Posterior Weighted Information (MPWI, van der Linden, 1998); Maximum Expected 

Information (MEI, van der Linden & Pashley, 2000) and Maximum Expected Posterior 

Weighted Information (MEPWI, van der Linden & Pashley, 2010). The detailed 

description of these methods is beyond the scope of the current review, however the 
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interested reader is referred to van der Linden and Pashley (2010); Mulder and van der 

Linden (2010); van der Linden (1998) for more information.  

 

6.3 Stopping 

The process of selecting an optimal item and updating the interim latent trait 

estimate based on the response to a selected item is repeated until a prespecified 

criterion is met. There are two general classes of termination criteria in CAT, which in 

turn define two different types of CAT: fixed-length CAT and variable-length CAT. In 

fixed-length CAT, the testing is terminated when a pre-specified number of items has 

been administered to the examinee. As a result the same number of items is presented to 

all examinees, which facilitates the interpretation and explanation of the results to the 

test takers (Boyd, Dodd, & Choi, 2010; Thissen & Mislevy, 2000). The disadvantage of 

the fixed-length CAT stopping rule is that examinees are measured with varying degree 

of precision – a strategy that is a typical characteristic of standard linear testing formats. 

The standard (unconstrained, non-mastery) variable-length CAT termination 

criteria involve a standard error stopping rule or a minimum information stopping rule 

(Boyd et al., 2010). Using the standard error stopping rule, the CAT process for a 

particular examinee is terminated once standard error of his or her trait estimate’s drops 

below some pre-specified value. The standard error stopping rule leads to different 

number of administered items to each examinee, however it provides the opportunity 

for equiprecise measurement (Weiss, 1982) – the main assumption of CTT. The 

minimum information stopping rule terminates testing when there are no more items in 

the pool with sufficient (predetermined) information for the most current trait estimate. 

Although this method avoids the administration of low discriminatory (uninformative) 

items (Boyd et al., 2010), it has been shown to result in many nonconvergent cases due 

to the low number of administered items (de Ayala, 1989; Dodd, Koch, & de Ayala, 

1989). 

In practice, termination of a CAT is almost always based on the combination of 

fixed-length and variable-length stopping rules, because the testing algorithm may 

select and administer all items from the item pool before the variable-length criterion 

has been satisfied (Thissen & Mislevy, 2000). 
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6.4 Practical issues related to item selection in CAT 

Although, in theory, adaptive testing is a relatively simple concept, there are 

several critical issues associated with constructing, implementing, and practically 

maintaining CAT procedures. Three critical areas that can affect the item selection 

procedure and consequently influence the entire CAT process are discussed next: item 

pool, content balancing, and exposure control. 

 

6.4.1 Item pool 

In adaptive testing, each examinee is (at least theoretically) presented with a 

unique test composed of different sub-set of items drawn from a larger item pool 

(Flaugher, 2000; Thissen, Reeve, Bjorner, & Chang, 2007; Veldkamp & van der 

Linden, 2010; Zhou & Rackase, 2014). The practical utility of a CAT largely depends 

on the relative size of an item pool and the psychometric quality of the items contained 

in the pool. 

The size of an item pool is usually driven by the stakes involved in a test (Wise 

& Kingsbury, 2000). Stakes refers to how important the test is and whether the results 

are used to make critical if not irreversible decisions, for instance, admissions to a 

highly selective university, the military, or some professional organization, where a 

decision supporting rejection is irreversible. It is not uncommon for high-stakes CAT, 

based on dichotomous IRT models, that the item pool contains more than 1000 items 

(Nogami & Hayashi, 2010). On the other hand, it has been shown, that in case of 

polytomously scored items, effective CAT can be performed with as few as 30 items in 

a pool (Dodd & de Ayala, 1994; Dodd et al., 1989; Dodd, Koch, & de Ayala, 1993). 

Such small item pools may however be appropriate only for specific purposes – for 

example in the measurement of attitudes or health outcomes, where item content and 

exposure specifications are not necessarily needed (Boyd et al., 2010). If the testing 

process requires content balancing and/or item exposure control to maintain content 

validity and/or test security, even an item pool containing 200 polytomous items may 

not be sufficient (Davis, Pastor, Dodd, Chiang, & Fitzpatrick, 2003; Pastor, Dodd, & 

Chang, 2002). Recently, some authors have reported acceptable properties of CAT 

while using item pools containing 34 dichotomous items (Lu, Lien, & Hsieh, 2015), 16 

polytomous items (Petersen et al., 2016), and 50 polytomous items (Devine et al., 2016) 

when measuring balance, pain, and anxiety, respectively. It is obvious that the item 
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pool size may vary greatly in different fields (e.g., education vs. psychology) and under 

specific circumstances (high-stakes vs. screening tests). 

Psychometric characteristics of the items contained within the item pool also 

influence the quality of a CAT. One of the advantages of CAT – an equiprecise 

measurement (precision of the measurement is kept constant along the whole latent 

scale) – can only be realized with a pool containing high-quality items for all possible 

levels of the latent trait. In other words, the ideal item pool information distribution for 

a CAT is the uniform distribution (Nogami & Hayashi, 2010). Moreover there needs to 

be a good match between the item pool information distribution and the distribution of 

the trait in the population being tested. Such a requirement would be certainly fulfilled 

if the item pool information function was uniformly distributed over a sufficiently 

broad range of the latent continuum (theoretically from minus infinity to plus infinity).  

Psychometric characteristics of the items used in current CAT are usually 

determined by particular IRT model parameters and thus an appropriate IRT model 

should be selected for calibration of the individual items contained in the item pool. 

Even when a proper IRT model is used to describe the examinees responses, obtained 

item parameters are subject to some estimation error. Fortunately, errors in the item 

parameter estimates do not have serious consequences for CAT as long as the 

calibration sample is sufficiently large enough (van der Linden & Pashley, 2010). 

 

6.4.2 Content balancing 

The IRT model frequently employed in designing CAT assumes 

unidimensionality, in other words a collection of items should measure only one 

theoretical latent construct. In practice however, the theoretical construct of interest 

may be “composed” of subdomains that the test designer believes should represent a 

single general latent construct. For example, even when assessing a general construct of 

mathematical ability, a test designer may consider that mathematical ability is 

composed of two sub-components consisting of algebra and geometry knowledge. 

Consequently a test (or item pool) supposed to capture mathematical ability should 

contain items assessing both algebra and geometry. Content balancing methods within a 

unidimensional CAT ensure that the item selection algorithm adheres to the desired 

content of a test (Gershon & Bergstorm, 2006). 
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Introduction of content balancing in CAT was mainly motivated by the fact that 

item selection procedures based purely on statistical criteria (discussed above) may lead 

to undesirable item usage. Statistically motivated item selection procedures favor the 

items with high discrimination parameters and thus the assembled test may not cover all 

desired content areas equally well (Leung, Chang, & Hau, 2003; Zheng, Chang, & 

Chang, 2013). Many strategies of content balancing for application with CAT have 

been proposed to solve this problem. For example the simplest one – a rotation method 

– is based on systematic rotation of test content areas from which an item is then 

selected according to some item selection criteria (e.g.: item with maximum 

information function is selected within a given content area). Another popular method 

proposed by (Kingsbury & Zara, 1989) compares desired proportions of test content 

areas with actual proportions of content areas during the CAT (e.g.: 70% of items 

should represent algebra knowledge and 30% of items should represent geometry 

knowledge in order to guarantee the content validity of a test measuring general 

mathematical ability). The next “best” item is then selected from a content area with the 

highest discrepancy between the current and the desired content areas proportions. 

Leung, Chang, and Hau (2000) proposed a modification of Kingsbury and Zara’s 

approach, in which all the content areas not satisfying the desired administration 

percentage are considered in the item selection mechanism. 

Other, perhaps more sophisticated and/or complex content balancing methods 

(weighted deviations model, modified multinomial model, CAT with shadow tests) 

were developed to meet specific practical testing goals. The description of these 

methods is beyond the scope of this review – an interested reader is therefore referred 

to Leung et al. (2003); Stocking and Swanson (1993); van der Linden (2010); van der 

Linden and Chang (2003) or van der Linden and Reese (1998), among others. 

 

6.4.3 Exposure control 

One of the limitations of unconstrained item selection methods is that it may 

create an undesirable use of the item pool, including overuse of items with high 

discriminatory power (Thissen & Mislevy, 2000). Exposure control techniques prevent 

certain items from being administered to a large number of examinees in order to 

maintain the test security and reliability (Leung et al., 2003). Exposure control also 

ensures better item pool utilization, however, at least theoretically, it decreases the 
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efficiency of the adaptive testing process (van der Linden & Glas, 2010). Exposure 

control is especially important in high-stakes CATs that are being utilized for 

admission, licensure, selection, and so on. On the other hand, the exposure control is 

generally not an issue in low-stake CATs such as personality and attitudes assessment, 

health measures or quality of life surveys (Boyd et al., 2010; Gershon & Bergstorm, 

2006). 

Exposure control methods used in early applications of CAT were based mainly 

on randomization. For example the randomesque exposure control method (Kingsbury 

& Zara, 1989) selects a specified number of optimal items and then one of the items is 

randomly administered to a particular examinee. Another randomization method, 

“modified within 0.1 logits” (Davis & Dodd, 2003, 2008) selects a specified number of 

optimal items (e.g., most informative) at three points on the latent scale: a) one-third of 

items at the interim trait estimate, b) one-third of items at interim trait estimate plus 0.1 

logits and c) one-third of items at interim trait estimate minus 0.1 logits. Again, one of 

the items selected using this method is then administered to the examinee. Conditional 

exposure methods, including the Sympson-Hetter (Sympson & Hetter, 1985) procedure, 

control the exposure rate of the items by using an exposure parameter for each item in 

the pool. The value of the exposure control parameter is determined empirically 

(through CAT simulations) to limit the usage of an item to a priori desired/defined 

maximum allowed exposure rate (Thissen & Mislevy, 2000). Chang and Ying (1999) 

proposed an exposure control method based on dividing the item pool into several strata 

according to item discrimination parameters. A major rationale of this a-stratified 

method is that items with low discriminatory power are likely to be more efficient over 

a broader range of the latent scale (van der Linden & Pashley, 2010). This is especially 

useful at the beginning of the testing, when the error of the latent trait estimate tends to 

be large. Therefore within the a-stratified method, items are selected from strata with 

low discriminatory items in early stages of the testing, while highly discriminating 

items are saved for later stages where the trait estimate becomes more accurate (Boyd et 

al., 2010; Leung et al., 2003). 

For more comprehensive and detailed description of exposure control methods 

used in contemporary CAT see for example Boyd et al. (2010) or van der Linden and 

Glas (2010). 
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6.5 Evaluation of item selection and trait estimation methods used in 

computerized adaptive testing algorithms 

Practical guidelines related to item selection and trait estimation methods used 

in CAT algorithm are not yet well established. Van der Linden and Pashley (2010) 

noted that both posterior-based (Bayesian) and likelihood-based item selection and 

latent trait estimation methods lead to identical asymptotic results, converging to the 

true value of   (see also Chang & Ying, 2009). However the identical asymptotic 

properties of the methods may not hold in practical implementation of CAT, when 

much shorter tests are usually administered. This is perhaps the motivation behind 

using simulation studies that compare latent trait estimators and item selection criteria.  

For example, Veerkamp and Berger (1997) showed that for dichotomous items 

the weighted Fisher information item selection was superior to the traditional item 

selection approach based on maximizing the information at a given point estimate. 

Comparison of the weighted and the traditional Fisher information item selection 

approach showed there was only a trivial difference in measurement efficiency while 

using polytomous generalized PCM (van Rijn, Eggen, Hemker, & Sanders, 2002). The 

difference between the two approaches was observed particularly at the beginning of 

the CAT process, when the number of administered items was relatively small (e.g., < 

10) (Boyd et al., 2010).  

The Kullback-Leibler item selection methods were compared to the traditional 

and the weighted Fisher information approach while using generalized PCM 

(Veldkamp, 2003) and nominal response model (Passos, Berger, & Tan, 2007) 

respectively. The simulation studies indicated that even when administering a relatively 

short test (e.g. 15 to 20 items) the three item selection methods produce very similar 

results. For instance, there was 85% to 100% overlap in selected items and the mean 

square error difference of the   estimate was negligible across all three item selection 

methods (Boyd et al., 2010). 

Van der Linden (1998) reported bias and mean square error functions when 

comparing traditional Fisher information approach and four Bayesian item selection 

procedures (MEPV, MPWI, MEI and MEPWI) for dichotomous test items. Bias 

functions for all of the methods were almost identical as soon as at least 20 items were 

administered. Similarly, differences in mean square errors when administering 20 items 

did not exceed 0.15 across the whole latent continuum for all item selection criteria. 
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Thus even though some authors (van der Linden & Glas, 2010) recommend using the 

Bayesian item selection methods in any case, their practical benefits over the traditional 

Fisher information methods may not be realized unless the test is very short (e.g. 5 

items). 

Choi and Swartz (2009) examined the properties of both Fisher information 

based (maximum Fisher information, likelihood weighted Fisher information) and 

Bayesian (MEPV, MPWI, MEI and MEPWI) item selection procedures under 

polytomous GRM. They concluded that for polytomous items, the advantages of 

Bayesian selection methods demonstrated with dichotomous items may be masked in 

many practical settings given the usual polytomous item pool size. This finding led the 

authors to suggest that for item banks with a relatively small number of polytomous 

items (e.g. 30 to 70 items), any of the different estimation methods considered in their 

study are appropriate. 

Several other studies also focused on the comparison of latent trait estimation 

methods used in CAT. For example, using RSM, Chen, Hou, Fitzpatrick, and Dodd 

(1997) reported highly congruent latent trait estimates when using MLE, EAP with 

normal prior and EAP with uniform prior distributions, respectively. Moreover the 

CAT latent trait estimates based on these methods highly correlated with MLE 

estimates obtained from using all of the items in the pool. Chen, Hou, and Dodd (1998) 

reached very similar conclusions. 

S. Wang and Wang (2001, 2002) conducted an extensive comparison of MLE, 

WLE, BME and EAP estimation methods for unconstrained CAT using GRM and 

generalized PCM, respectively. The authors specified a number of various conditions 

with respect to test length, item pool size and stopping rules. It has been shown that 

WLE performed systematically better than MLE across all conditions and for both 

polytomous ITR models. Using fixed-length stopping rules the WLE method 

outperformed the BME and the EAP estimation procedures. On the other hand, in 

variable-length CAT (e.g., test is terminated when a prespecified precision is reached) 

EAP and BME led to lower number of administered items when compared to WLE and 

MLE. 

Štochl et al. (2016b) evaluated how several different combinations of CAT 

settings may affect the efficacy of adaptive testing when measuring general 

psychological distress using a bi-factor model. The authors concluded that using MLE, 

EAP and BME latent trait estimators as well as using Fischer and Kullback-Leibler 
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item selection methods led to very similar results. The conclusion was replicated in 

another study, where Štochl et al. (2016b) used CAT for assessing longitudinal change 

in psychological distress. 

Obviously, there are many different approaches that can be used in CAT item 

selection and latent trait estimation. The results of simulation studies to date certainly 

provide important insight into the optimal functioning of these methods; however, since 

in practice CAT applications can differ greatly in many ways (required length of a test, 

size and quality of the item pool, the size and composition of a calibration sample, 

content balancing and/or exposure control requirements, to name a few), simulation 

results may not be applicable to all possible practical situations. Thus, when a test 

developer wants to implement a new CAT, it is recommended “to study a few feasible 

arrangements in order to identify a suitable, though not necessarily optimal, solution for 

a planned adaptive testing program” (van der Linden & Pashley, 2010, p. 28). 
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7 EMPIRICAL PART – PROBLEM STATEMENT 

Computerized adaptive testing (CAT) represents a novel, efficient, and cost-

effective approach to test administration. Previous chapters have outlined the potential 

advantages and applications of this methodology, highlighting in particular the 

psychometric advantages and improvements in testing efficiency. Although CAT was 

initially developed with an emphasis on ability and achievement testing (Wainer, 2000), 

its application and popularity has garnered considerable attention in medicine as well as 

the social and behavioral sciences. Medical applications include measurement of 

patient-reported outcomes (Štochl et al., 2016a, 2016b; Zheng et al., 2013), and both 

education and psychology are replete with examples of CAT used to advance 

assessment of aptitude (Verschoor & Straetmans, 2010), attitudes (Hol, Vorst, & 

Mellenbergh, 2005; Koch, Dodd, & Fitzpatrick, 1990), personality (Reise & Henson, 

2000; Simms et al., 2012) and even in settings involving clinical diagnostic assessments 

(Fliege et al., 2005; Fliege et al., 2009). Despite its growing popularity in various 

disciplines, the same widespread use of CAT has not witnessed similar growth in 

Kinanthropology (Gershon & Bergstorm, 2006). This noted gap in the literature is a 

driving force in the current exploration of CAT with the Physical Self-Description 

Questionnaire (PSDQ – Marsh, Richards, Johnson, Roche, & Tremayne, 1994), a well-

validated assessment frequently used to measure physical self-concept in the field of 

Kinanthropology. 

In general, the application of CAT offers the unique possibility of improving 

both the efficiency and psychometric qualities of a test. For instance, CAT can lead to 

reduced test length, reductions in administration cost, improved reliability, and reduced 

response burden, all of which contribute to the commercial uptake and utilization of a 

test. Notwithstanding these potential gains, several critical issues need to be considered 

prior to the practical implementation and continued use of CAT. For instance, still 

unresolved is whether a CAT approach is advantageous over traditional fixed-length 

paper-and-pencil testing when assessing physical self-concept. Related to this, little is 

known whether transforming a test to a CAT format reduces test length without loss to 

measurement precision (Embretson & Reise, 2000). Moreover, it is not known whether 

item reduction would be significant for practical testing purposes. And if so, it remains 

to be seen whether the measurement process is precise enough allowing to make valid 

conclusions about examinees’ performance. Switching to CAT administration without 
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addressing these and relevant ‘psychometric’ questions “runs the danger of being 

inefficient at least and legally indefensible at the worst” (Thompson & Weiss, 2011, p. 

2). Fortunately, many such problems can promptly be addressed applying well known 

psychometric techniques with simulation studies (Thompson & Weiss, 2011; van der 

Linden & Glas, 2010). The present thesis addresses several of the issues raised above 

using an empirical example with Monte Carlo simulation; thus advancing the use of 

CAT with applications in testing and psychosocial assessments. 

 

8 AIMS AND HYPOTHESES 

The current thesis introduces the use of CAT applied to the field of 

Kinanthropology. The overall utility of CAT is demonstrated empirically via a 

controlled simulation study demonstrating how CAT shortens administration of a self-

report fixed-length questionnaire routinely used to assess physical self-concept. Related 

to this first aim, the present study also evaluates the efficiency of different parameter 

estimation and item selection methods commonly encountered with CAT. This latter 

refinement offers the potential to assess the influence of varying distributional 

properties and test administration features on measurement efficiency and precision 

using CAT methodology. 

Specifically, in the empirical part of the thesis, I present findings from CAT 

simulation of the PSDQ. The simulation study, which is described in the subsequent 

chapters, aimed to compare a) the number of administered items from PSDQ (test 

length) and b) accuracy of estimated latent levels of physical self-concept, while using a 

variety of latent trait estimation methods, items selection algorithms, stopping rules, 

and distributional properties. The specific study hypotheses include: 

 

a) Kullback-Leibler divergence-based and Fisher information-based item 

selection methods will both produce similar number of administered items 

from the PSDQ, 

b) the expected a posteriori trait estimation method will lead to a smaller 

number of administered items than the maximum likelihood latent trait 

estimation method, 
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c) using the uniform true latent trait distribution will lead to higher number of 

administered items from the PSDQ than using the standard normal true 

latent trait distribution, and 

d) bias of the estimated latent levels of physical self-concept will be similar 

across the latent trait estimation methods (expected a posteriori vs. 

maximum likelihood estimation method) as well as across the item selection 

methods (Kullback-Leibler vs. Fisher information selection method) used in 

the simulation study. 
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9 METHODS 

Many important issues related to the practice of CAT such as estimation of the 

test length or score precision can be addressed with simulation studies. In this chapter I 

describe a simulation study that was designed to evaluate the usefulness of CAT when 

applied to the PSDQ. 

Recall from previous chapters that for any application of CAT there are two 

broad components: (1) calibrated item bank and, (2) testing algorithms in the CAT 

system (including starting point of the CAT, item selection and latent trait estimation 

procedures, and termination of a test – see Table 2 and Figure 14). Therefore, the 

process of implementation of CAT on the one hand includes creating an item bank (or 

possibly utilizing the existing item bank – e. g., a validated paper-and-pencil 

instrument) and on the other hand rendering a decision on the corresponding model 

(usually an IRT model) according to which the item parameters (difficulty or threshold 

parameters and discrimination parameters) are obtained. An important step toward 

achieving the first CAT component (calibrated item bank) requires conducting analyses 

to determine the underlying dimensionality of the assessment, since IRT-based CAT 

assumes unidimensionality of the items in a test or generally in the item pool (unless 

multidimensional IRT models are employed). Once the item bank has been developed 

and calibrated, testing algorithms that will guide the adaptive testing process itself (how 

to select the first and next item/s, how to estimate the interim and the final trait level, 

when to stop testing) need to be specified in order to make a CAT administration 

practically usable. Especially at this point, simulation studies are essential to determine 

the most appropriate settings (starting point, termination criterion, …) and methods 

(item selection method, latent trait estimation method). As Thompson and Weiss (2011) 

noted, a CAT utilizing arbitrary chosen specifications and methods “without adequate 

research in form of these simulation studies is substantially less defensible” (pp. 5) and 

may, for example, “result in examinee scores that are simply not as accurate as claimed, 

providing some subtraction from the validity” (p. 2).  

Typically, CAT simulation studies operate on the basis of simulating the process 

of adaptive administration using a calibrated item bank under varying conditions (e.g. 

different item selection method, termination criterion). Since the adaptive 

administration is guided by the answers/responses to previous items contained in an 

item bank (see Figure 14), the means of obtaining the answers/responses defines two 
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general types of simulation studies that are predominantly used in CAT research: (1) 

Monte Carlo simulation studies, and (2) post-hoc simulation studies (Nydick & Weiss, 

2009; Thompson & Weiss, 2011). These approaches differ because Monte Carlo 

simulations utilize stochastically generated responses to the items based on the item 

parameters, latent trait estimates (θ) and assumed IRT model, whereas in post-hoc 

simulations examinee’s real responses are used. In post-hoc CAT simulations, an 

adaptive algorithm simulates the item selection procedure, but the responses to the 

items in the item pool are already known. Monte Carlo simulations are based on the fact 

that IRT models provide an estimate of the exact probability of responding to a specific 

item category for a given value of θ. Thus having a calibrated item bank and a vector of 

θ’s allows researchers to easily generate an entire response data matrix, which can be 

used for the purpose of the simulated adaptive test administration. Moreover, values of 

the θ parameters in Monte Carlo simulations can be randomly generated to satisfy a 

specific distribution (e.g. standard normal distribution), which facilitates the evaluation 

of how well CAT performs under certain distributional assumptions that may 

correspond to the test behavior of a specific population. 

The current thesis uses a Monte Carlo simulation to evaluate the efficiency and 

accuracy of a CAT administration using the PSDQ. A real item bank calibrated with an 

IRT model was used and responses to test items during the adaptive administration 

were generated based on known item parameters and latent trait values (θ). The latent 

trait values (θ) were in this case simulated from a desired distribution and served as true 

values of physical-self description latent construct for ‘hypothetical’ examinees 

(simulees). Then the process of adaptive testing – that is in simplified form: selecting 

“the best” item for the most current θ estimate, revising the θ estimate based on the 

response to the selected item, and checking whether a criterion for the test termination 

is satisfied – was simulated using several different CAT algorithm specifications. The 

next section outlines the integral CAT components (calibrated item bank and testing 

algorithms) as well as the CAT simulation procedures. 

 

9.1 Item pool, IRT model used for item calibration, dimensionality analysis 

9.1.1 General description of the item pool 

The 70-item PSDQ provided the item pool for the current simulation study. The 

PSDQ (see Appendix A) was designed to measure adolescents’ (12 years and older) 
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physical self-concept (see Shavelson, Hubner, & Stanton, 1976, for theoretical 

background, scale construction, and preliminary psychometric evidence). Each PSDQ 

item employs a six-point Likert-type scale (i.e., false, mostly false, more false than true, 

more true than false, mostly true, and true); with items scaled in the direction of higher 

physical self-concept. The PSDQ is comprised of 11 subscales (i.e., health, 

coordination, physical activity, body fat, sport competence, physical self, appearance, 

strength, flexibility, endurance/fitness, and self-esteem), all of which have been shown 

to have acceptable reliabilities (Cronbach’s  ranged from 0.81 to 0.94, see Flatcher & 

Hattie, 2004; Marsh et al., 1994). Construct validation studies using the PSDQ provide 

evidence of a higher-order factor structure, with 11 first-order dimensions and one 

second-order dimension reflecting physical self-concept (Marsh, 1996a, 1996b; Marsh 

& Redmayne, 1994; Marsh et al., 1994). 

 

9.1.2 Item calibration 

Flatcher and Hattie (2004) provided empirical estimates for item parameters 

needed for an IRT-based CAT simulation. Their study involved an Australian sample of 

high school students (N = 868, ages 13 to 17 years) engaged in sports activities. A 

GRM defined in Equation 4 and 5 was used to estimate each item’s discrimination and 

threshold parameters, which are provided in Appendix A.  

 

9.1.3 Dimensionality analysis 

A reasonable prerequisite of estimating the IRT parameters by a GRM requires 

that only one general latent factor (dimension) accounts for the association between all 

70 test items. In order to test this unidimensional assumption, Flatcher and Hattie 

(2004) factor analyzed composite subscale scores for each of the 11 PSDQ sub-domains 

using exploratory factor analysis (EFA). The results of the EFA supported the existence 

of one general latent factor of physical self-concept that accounted for 47% of the total 

item variance. A confirmatory factor analysis (CFA) applied to the same 11 PSDQ 

subscale scores also showed that a single factor solution produced an adequate model 

fit (RMSEA = 0.032, see Flatcher & Hattie, 2004); lending further support to a 

unidimensional factor structure for the PSDQ. 
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9.2 CAT simulation design and specifications 

A Monte Carlo simulation was conducted to evaluate the performance of a CAT 

administration of the PDSQ described above. This type of CAT simulation requires 

both the latent trait values in addition to the item parameter estimates from the 

calibration study at hand. Moreover, specific details of the CAT algorithmic component 

need to be defined. The whole process can be outlined as follows (see also Štochl et al., 

2016b): 

 

9.2.1 Step 1. Simulate latent trait values (true  ) 

Two samples of 1000 latent trait values (θ) randomly drawn from a) the 

standard normal distribution N(0,1) and b) the uniform distribution U(-3,3) were 

obtained. The simulated latent trait values represent the true values of the latent 

physical self-concept (θ
*
) in a sample of ‘hypothetical’ examinees.  

 

9.2.2 Step 2. Supply item parameters for the intended item pool 

Discrimination and threshold parameter estimates from the calibration study 

need to be provided for the 70 items in the PDSQ – these estimates are listed in 

Appendix A. The item parameters together with θ
*
’s simulated in previous step are used 

to obtain stochastic responses to the selected items during the simulated CAT 

administration of the PSDQ (see 9.2.4 Step 4). 

 

9.2.3 Step 3. Set CAT algorithm options 

In this step, the algorithmic component of CAT needs to be specified – that is 

the decision rule indicating how to start (selection of the first item, initial θ estimation 

method, number of items for a starting phase of the testing), continue (item selection 

method, θ estimation method), and how/when to stop (termination criterion) the testing 

process need to be specified. Even though Monte Carlo studies offer a great opportunity 

to compare different CAT methods and specifications, the manipulated options should 

be carefully selected to prevent a rapid increase of the simulated conditions (Štochl et 

al., 2016a). In the current simulation, the following settings and methods were used: 
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9.2.3.1 Latent trait (θ) estimation methods 

The latent trait was estimated using one of the following methods: a) MLE, b) 

EAP with uniform prior distribution, and c) EAP with standard normal prior 

distribution. The MLE and EAP were chosen because the aim was to compare the 

traditional likelihood-based latent trait estimation method with a Bayesian method, the 

latter which combines the likelihood with prior distribution. To evaluate the effect of 

the prior distribution on the efficacy of CAT (i.e. number of administered items and 

accuracy of the latent trait estimates) an informative (standard normal) and an non-

informative (uniform) prior within the EAP estimation were selected. 

 

9.2.3.2 Item selection methods 

Two item selection methods were adopted in the current simulation: a) 

unweighted Fischer information (UW-FI) method, and b) fixed-point Kullback-Leibler 

(FP-KL) divergence-based method (see section 6.2 for details). The   value within the 

FP-KL selection procedure was set to 0.1. Both methods select items at a particular 

(most current) point estimate of the latent trait. At each step of the CAT only the single 

best item according to a given criterion was considered for the administration. With 

regard to item selection, UW-FI and FP-KL were selected in order to compare 

traditional item selection approach (based on Fisher information) with the more 

recently proposed procedure (based on Kullback-Leibler divergence). 

 

9.2.3.3 Stopping rules 

The termination criterion based on the measurement precision cutoff was used 

in the current CAT simulation since this approach offers the opportunity of creating 

equiprecise measurement (Weiss, 1982). Equiprecise measurement refers to a situation 

where the test information is uniformly distributed and thus the reliability of the latent 

trait estimates is the same for all test takers. In such a case a global measure of 

reliability which is used within CTT (reliability is a constant within CTT) becomes 

justified. Number of administered items can vary for each examinee to reach 

equiprecise measurement within a CAT approach. 

In CTT (in the case of standardized values with mean of 0 and SD = 1), the 

relation between standard error (SE) and reliability can be formalized as    

 √             . The selected cutoff values of SEs which represent latent trait 
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estimate reliabilities of a) ≈ 0.95, b) ≈ 0.90, c) ≈ 0.85 and d) ≈ 0.80, are therefore equal 

to a) 0.23, b) 0.32, c) 0.39 and d) 0.45 respectively. Thus the simulated CAT 

administration continued until the standard error of the   estimate dropped below the 

selected cutoff value or until all 70 items from the PSDQ were administered. 

 

9.2.3.4 Overall conditions in CAT simulations 

The specifications described above produced a 2 (simulated θ
*
 distribution: 

standard normal distribution, uniform distribution) × 3 (latent trait estimation methods: 

MLE, EAP with standard normal prior, EAP with uniform prior) × 2 (item selection 

methods: UW-FI, FP-KL) × 4 (stopping rules: SE = 0.23, SE = 0.32, SE = 0.39, SE = 

0.45) matrix with 48 overall simulation conditions. Within all of the conditions the 

initial   value was kept constant for all hypothetical examinees, the step-size estimation 

procedure was used for the first two items, and at least 3 items had to be administered 

before the test was terminated. 

 

9.2.4 Step 4. Simulate CAT administration 

Within all of the 48 CAT simulation design conditions, an adaptive 

administration of the PDSQ was simulated for every single randomly generated true 

latent trait (θ
*
) value (from 9.2.1 ‘Step 1’). Within the starting phase of each CAT 

simulated administration, the initial   level was set to 0 logits (the mean of the 

distributions) and thus the same item was always administered first. Using the 

parameters of the selected item and the particular true θ
*
 value, the stochastic response 

is obtained and the initial θ value is updated based on the response. To obtain a 

stochastic response, a uniform random number uij from U(0,1) is generated for each 

item/simulated θ
*
 combination and compared to the model-generated probabilities of 

responding to a given item category to create a scored response. For instance, in a GRM 

with a three-category response format for a single item, if Pi1(θj) = 0.7 and Pi2(θj) = 0.2 

then Pi3(θj) = 0.1. If the generated random number uij < Pi1(θj) then the scored response 

for the particular simulated true θ
*

j is the first response category; if Pi1(θj) < uij < [1 – 

Pi3(θj)] then the scored response fits the second response category and if uij > [1 – 

Pi3(θj)] then the response fits the third response category for a particular item. 

A step-size procedure (see section 6.1) was used to “estimate” the latent trait for 

the first two administered items. Specifically, if a simulated response was in the 
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selected item’s first or in the selected item’s last response category, the   value was 

decreased by 1 logit or increased by 1 logit respectively, otherwise it was held constant.  

For the updated θ estimate after two administered items, the next item is selected from 

the item pool (see 9.2.3.2 ‘Item selection methods’) and a stochastic response is 

obtained again. Given the response, the new θ estimate is calculated, now using one of 

the latent trait estimation methods listed in step 3 (see 9.2.3.1 ‘Latent trait estimation 

methods’), and another item is selected for the updated latent trait estimate. This 

process is repeated until a specified stopping rule was satisfied (see 9.2.3.3 ‘Stopping 

rules’).  

 

9.3 Analysis of simulation results 

All simulations were performed in the R (R Core Team, 2013) statistical 

software using the catIrt package (Nydick, 2014). The corresponding syntax used in the 

current study can be found in Appendix B. 

The performance of the CATs was evaluated with respect to: a) the number of 

administered items and b) proximity of CAT-estimated latent trait values ( ̂) to the true 

simulated latent trait values (  ) as well as to latent trait estimates based on the full 

PSDQ ( ̂    ). To assess such measurement accuracy, the following indices were used: 

 

- Individual latent trait bias 

 

    ( ̂ )   ̂    
            

 

- Mean absolute bias 

 

    ( ̂)  
 

 
∑ | ̂    

 | 
            . 

 

In addition, Pearson’s correlation coefficient was computed to evaluate the relationship 

between  ̂ and    and between  ̂ and  ̂     for each of the CAT simulation conditions. 

A 2 (simulated    distribution) × 3 (latent trait estimation methods) × 2 (item 

selection methods) × 4 (stopping rules) way ANOVA was used to assess the effect of 

various simulation conditions on both the test length and absolute bias of the CAT 

latent trait estimates. Consistent with other related IRT-based CAT studies (Guyer & 
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Weiss, 2009; Nydick, 2013; Nydick & Weiss, 2009; S. Wang & Wang, 2001, 2002), 

and given the design of the current study (resulting in N = 48000 observations and thus 

providing extremely high statistical power), ANOVA was used descriptively to indicate 

the amount of variance accounted for by each factor in the Monte Carlo simulation. 

Each ANOVA model specified both main and two-way interaction effects with the eta-

squared η
2
 statistic used to express effect sizes. The effect size η

2
 was interpreted 

according to Cohen’s (1988) recommendations: no effect if η
2
 < 0.01, small effect if 

0.01 < η
2
 < 0.06, medium effect if 0.06 < η

2
 < 0.14, and large effect if η

2
 > 0.14. 
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10 RESULTS 

This section presents results of the CAT Monte Carlo simulations. These 

simulations aim to evaluate the usefulness of an adaptive administration of the Physical 

Self-Description Questionnaire. I begin with presenting an assessment of 

dimensionality as this is prerequisite to unidimensional CAT simulation studies. 

Subsequently, I present findings related to the overall test length (number of 

administered items) for the different simulation conditions mentioned previously. The 

results of these simulations are presented in tabular form, as plots, and statistical 

information (variance decomposition) from the ANOVA procedures. I then describe the 

accuracy of CAT for different simulation conditions while presenting bias of the  ̂ 

estimates and also the correlations of the CAT  ̂ estimates with the true    values and 

 ̂     estimates (based on all items in the PSDQ) respectively. 

 

10.1 Dimensionality 

As mentioned earlier, in CAT Monte Carlo simulations item responses are 

stochastically generated, using item parameters and latent trait values (θ). To support 

the use of the generated response data in the current CAT simulation, the 

dimensionality analysis was conducted using the PSDQ item parameters from 

Appendix A, and two sets of θ’s following different distribution. A set of 1000 latent 

trait values (θ) was simulated following the standard normal distribution N(0,1) and a 

set of 1000 latent trait values (θ) from a uniform distribution U(-3,3) was drawn (note 

that the values were different from those defined in section 9.2.1). For both θ 

distributions, 1000 datasets were generated using the same procedure as described in 

section 9.2.4. 

The generated datasets were subject to Exploratory Factor Analysis (EFA) using 

the Mplus statistical software (Muthén & Muthén, 1998-2016). Models with 1 and 2 

factors respectively, were fitted to the simulated responses in each EFA. Model 

parameters were estimated using weighted least squares means and variance adjusted 

(WLSMV) estimation method and geomin (oblique) rotation was employed in the EFA 

with two factors (Muthén & Muthén, 1998-2016). 

The results of 1000 EFA replications (means and SEMs) are summarized in 

Table 3. By all accounts, the fit of the unidimensional model was adequate for both θ 

distributions with mean RMSEA values close to 0 and CFI and TLI approaching 1. The 
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two-factor EFA only slightly improved the model fit (the one- and two-factor models 

are parameter-nested models). More importantly, all factor loadings on the first factor 

within the two-factor solution were higher than the loadings on the second factor (mean 

values of the factor loadings on the second factor did not exceed the value of 0.1). 

Interestingly, the distribution of the estimated factor loadings for the first factor was 

almost identical within both the one-factor and the two-factor solution. These results 

clearly indicate that the second factor captures residual pieces of variance net of the 

first component (i.e., couplets that lack substantive meaning), lending further support to 

a unidimensional model. This finding clearly satisfies the assumption of the simulated 

response data required for the intended simulation of unidimensional IRT-based CAT. 

 

Table 3 – Results of 1000 exploratory factor analysis replications of simulated 

responses (mean of point estimates with corresponding mean standard errors in the 

brackets) 

  
Normal θ distribution 

 
Uniform θ distribution 

    1 factor 
 

2 factors 
 

1 factor 
 

2 factors 
ChiSquare 

 
2428.5 (39.3) 

 
2326.5 (37.4) 

 
2441.4 (37.9) 

 
2340.3 (35.9) 

df 
 

2345 (0) 
 

2276 (0) 
 

2345 (0) 
 

2276 (0) 
p 

 
0.145 (0.119) 

 
0.256 (0.158) 

 
0.110 (0.097) 

 
0.199 (0.136) 

RMSEA 
 

0.006 (0.002) 
 

0.004 (0.002) 
 

0.006 (0.001) 
 

0.005 (0.002) 
CFI 

 
0.998 (0.001) 

 
0.999 (0.001) 

 
0.999 (0.000) 

 
0.999 (0.000) 

TLI 
 

0.998 (0.001) 
 

0.999 (0.001) 
 

0.999 (0.000) 
 

0.999 (0.000) 
SRMR 

 
0.027 (0.001) 

 
0.025 (0.001) 

 
0.017 (0.001) 

 
0.016 (0.000) 

             Loadings 
 

f1 
 

f1 
 

f2 
 

f1 
 

f1 
 

f2 
Item 1 

 
0.11 (0.03) 

 
0.11 (0.03) 

 
0.09 (0.07) 

 
0.20 (0.03) 

 
0.20 (0.03) 

 
0.09 (0.07) 

Item 2 
 

0.10 (0.03) 
 

0.10 (0.03) 
 

0.08 (0.07) 
 

0.18 (0.04) 
 

0.18 (0.04) 
 

0.09 (0.07) 
Item 3 

 
0.21 (0.04) 

 
0.21 (0.04) 

 
0.10 (0.08) 

 
0.36 (0.03) 

 
0.36 (0.04) 

 
0.10 (0.08) 

Item 4 
 

0.23 (0.03) 
 

0.23 (0.03) 
 

0.09 (0.07) 
 

0.40 (0.03) 
 

0.40 (0.03) 
 

0.09 (0.07) 
Item 5 

 
0.27 (0.04) 

 
0.27 (0.04) 

 
0.09 (0.07) 

 
0.46 (0.03) 

 
0.46 (0.03) 

 
0.09 (0.07) 

Item 6 
 

0.22 (0.04) 
 

0.22 (0.04) 
 

0.09 (0.07) 
 

0.38 (0.03) 
 

0.38 (0.03) 
 

0.09 (0.07) 
Item 7 

 
0.23 (0.04) 

 
0.23 (0.04) 

 
0.10 (0.07) 

 
0.39 (0.03) 

 
0.39 (0.03) 

 
0.10 (0.07) 

Item 8 
 

0.36 (0.03) 
 

0.36 (0.03) 
 

0.08 (0.06) 
 

0.58 (0.02) 
 

0.58 (0.02) 
 

0.07 (0.06) 
Item 9 

 
0.47 (0.03) 

 
0.47 (0.03) 

 
0.07 (0.06) 

 
0.70 (0.02) 

 
0.70 (0.02) 

 
0.06 (0.05) 

Item 10 
 

0.52 (0.03) 
 

0.52 (0.03) 
 

0.07 (0.06) 
 

0.75 (0.02) 
 

0.75 (0.02) 
 

0.06 (0.04) 
Item 11 

 
0.64 (0.02) 

 
0.64 (0.02) 

 
0.05 (0.04) 

 
0.85 (0.01) 

 
0.85 (0.01) 

 
0.04 (0.03) 

Item 12 
 

0.69 (0.02) 
 

0.69 (0.02) 
 

0.05 (0.04) 
 

0.88 (0.01) 
 

0.88 (0.01) 
 

0.04 (0.03) 
Item 13 

 
0.61 (0.02) 

 
0.61 (0.02) 

 
0.06 (0.05) 

 
0.82 (0.01) 

 
0.82 (0.01) 

 
0.04 (0.03) 

Item 14 
 

0.72 (0.02) 
 

0.72 (0.02) 
 

0.05 (0.04) 
 

0.89 (0.01) 
 

0.89 (0.01) 
 

0.03 (0.03) 
Item 15 

 
0.49 (0.03) 

 
0.49 (0.03) 

 
0.07 (0.06) 

 
0.72 (0.02) 

 
0.72 (0.02) 

 
0.06 (0.05) 

Item 16 
 

0.50 (0.03) 
 

0.50 (0.03) 
 

0.07 (0.05) 
 

0.74 (0.02) 
 

0.74 (0.02) 
 

0.06 (0.04) 
Item 17 

 
0.42 (0.03) 

 
0.42 (0.03) 

 
0.08 (0.06) 

 
0.66 (0.02) 

 
0.66 (0.02) 

 
0.06 (0.05) 

Item 18 
 

0.57 (0.03) 
 

0.57 (0.03) 
 

0.07 (0.05) 
 

0.79 (0.01) 
 

0.79 (0.02) 
 

0.05 (0.04) 
Item 19 

 
0.69 (0.02) 

 
0.69 (0.02) 

 
0.06 (0.05) 

 
0.88 (0.01) 

 
0.88 (0.01) 

 
0.04 (0.03) 

Item 20 
 

0.65 (0.02) 
 

0.65 (0.02) 
 

0.06 (0.05) 
 

0.87 (0.01) 
 

0.87 (0.01) 
 

0.04 (0.03) 
Item 21 

 
0.52 (0.03) 

 
0.52 (0.03) 

 
0.08 (0.06) 

 
0.74 (0.02) 

 
0.74 (0.02) 

 
0.06 (0.04) 

Item 22 
 

0.49 (0.03) 
 

0.49 (0.03) 
 

0.08 (0.06) 
 

0.72 (0.02) 
 

0.72 (0.02) 
 

0.06 (0.05) 
Item 23 

 
0.52 (0.03) 

 
0.52 (0.03) 

 
0.07 (0.06) 

 
0.76 (0.02) 

 
0.76 (0.02) 

 
0.06 (0.04) 

Item 24 
 

0.55 (0.03) 
 

0.55 (0.03) 
 

0.07 (0.06) 
 

0.77 (0.02) 
 

0.77 (0.02) 
 

0.06 (0.05) 
Item 25 

 
0.54 (0.03) 

 
0.54 (0.03) 

 
0.07 (0.05) 

 
0.77 (0.02) 

 
0.77 (0.02) 

 
0.06 (0.04) 

Item 26 
 

0.47 (0.03) 
 

0.47 (0.03) 
 

0.08 (0.06) 
 

0.69 (0.02) 
 

0.69 (0.02) 
 

0.07 (0.05) 
Item 27 

 
0.68 (0.02) 

 
0.68 (0.02) 

 
0.05 (0.04) 

 
0.88 (0.01) 

 
0.88 (0.01) 

 
0.04 (0.03) 

Item 28 
 

0.75 (0.02) 
 

0.75 (0.02) 
 

0.05 (0.04) 
 

0.91 (0.01) 
 

0.91 (0.01) 
 

0.03 (0.03) 
Item 29 

 
0.68 (0.02) 

 
0.68 (0.02) 

 
0.05 (0.04) 

 
0.87 (0.01) 

 
0.87 (0.01) 

 
0.04 (0.03) 

Item 30 
 

0.81 (0.01) 
 

0.81 (0.01) 
 

0.04 (0.03) 
 

0.94 (0.01) 
 

0.94 (0.01) 
 

0.03 (0.02) 
Item 31 

 
0.70 (0.02) 

 
0.70 (0.02) 

 
0.05 (0.04) 

 
0.90 (0.01) 

 
0.90 (0.01) 

 
0.03 (0.03) 

Item 32 
 

0.83 (0.01) 
 

0.83 (0.01) 
 

0.04 (0.03) 
 

0.95 (0.00) 
 

0.94 (0.01) 
 

0.03 (0.02) 
Item 33 

 
0.59 (0.02) 

 
0.59 (0.02) 

 
0.06 (0.05) 

 
0.81 (0.01) 

 
0.81 (0.01) 

 
0.05 (0.04) 

Item 34 
 

0.65 (0.02) 
 

0.65 (0.02) 
 

0.06 (0.05) 
 

0.85 (0.01) 
 

0.85 (0.01) 
 

0.04 (0.03) 
Item 35 

 
0.76 (0.01) 

 
0.76 (0.02) 

 
0.05 (0.04) 

 
0.92 (0.01) 

 
0.92 (0.01) 

 
0.03 (0.02) 

Item 36 
 

0.75 (0.02) 
 

0.75 (0.02) 
 

0.05 (0.04) 
 

0.91 (0.01) 
 

0.91 (0.01) 
 

0.03 (0.03) 
Item 37 

 
0.74 (0.02) 

 
0.74 (0.02) 

 
0.05 (0.04) 

 
0.90 (0.01) 

 
0.90 (0.01) 

 
0.04 (0.03) 

Item 38 
 

0.57 (0.02) 
 

0.57 (0.02) 
 

0.07 (0.05) 
 

0.80 (0.01) 
 

0.80 (0.01) 
 

0.05 (0.04) 
Item 39 

 
0.60 (0.02) 

 
0.60 (0.02) 

 
0.06 (0.05) 

 
0.83 (0.01) 

 
0.83 (0.01) 

 
0.05 (0.04) 

Item 40 
 

0.58 (0.02) 
 

0.58 (0.02) 
 

0.06 (0.05) 
 

0.81 (0.01) 
 

0.81 (0.01) 
 

0.05 (0.04) 



81 
 

Table 3 (continued) 
  Normal θ distribution  Uniform θ distribution 
  1 factor  2 factors  1 factor  2 factors 
Loadings  f1  f1  f2  f1  f1  f2 
Item 41  0.56 (0.02)  0.56 (0.02)  0.07 (0.05)  0.80 (0.01)  0.80 (0.01)  0.05 (0.04) 
Item 42  0.52 (0.03)  0.52 (0.03)  0.07 (0.06)  0.75 (0.02)  0.75 (0.02)  0.06 (0.04) 
Item 43 

 
0.61 (0.02) 

 
0.61 (0.02) 

 
0.06 (0.04) 

 
0.84 (0.01) 

 
0.84 (0.01) 

 
0.04 (0.03) 

Item 44 
 

0.48 (0.03) 
 

0.48 (0.03) 
 

0.07 (0.05) 
 

0.72 (0.02) 
 

0.72 (0.02) 
 

0.06 (0.05) 
Item 45 

 
0.55 (0.02) 

 
0.55 (0.02) 

 
0.06 (0.05) 

 
0.78 (0.01) 

 
0.78 (0.01) 

 
0.05 (0.04) 

Item 46 
 

0.63 (0.02) 
 

0.63 (0.02) 
 

0.06 (0.04) 
 

0.84 (0.01) 
 

0.84 (0.01) 
 

0.04 (0.03) 
Item 47 

 
0.50 (0.03) 

 
0.50 (0.03) 

 
0.07 (0.05) 

 
0.74 (0.02) 

 
0.74 (0.02) 

 
0.06 (0.04) 

Item 48 
 

0.47 (0.03) 
 

0.47 (0.03) 
 

0.08 (0.06) 
 

0.69 (0.02) 
 

0.69 (0.02) 
 

0.07 (0.05) 
Item 49 

 
0.64 (0.02) 

 
0.64 (0.02) 

 
0.06 (0.04) 

 
0.85 (0.01) 

 
0.85 (0.01) 

 
0.04 (0.03) 

Item 50 
 

0.44 (0.03) 
 

0.44 (0.03) 
 

0.07 (0.06) 
 

0.68 (0.02) 
 

0.68 (0.02) 
 

0.06 (0.05) 
Item 51 

 
0.50 (0.02) 

 
0.50 (0.03) 

 
0.07 (0.05) 

 
0.74 (0.02) 

 
0.74 (0.02) 

 
0.06 (0.04) 

Item 52 
 

0.56 (0.02) 
 

0.56 (0.02) 
 

0.06 (0.05) 
 

0.79 (0.01) 
 

0.79 (0.01) 
 

0.05 (0.04) 
Item 53 

 
0.31 (0.03) 

 
0.31 (0.03) 

 
0.08 (0.06) 

 
0.51 (0.03) 

 
0.51 (0.03) 

 
0.08 (0.06) 

Item 54 
 

0.51 (0.03) 
 

0.51 (0.03) 
 

0.07 (0.06) 
 

0.74 (0.02) 
 

0.74 (0.02) 
 

0.06 (0.04) 
Item 55 

 
0.72 (0.02) 

 
0.72 (0.02) 

 
0.05 (0.04) 

 
0.89 (0.01) 

 
0.89 (0.01) 

 
0.03 (0.03) 

Item 56 
 

0.60 (0.02) 
 

0.60 (0.02) 
 

0.06 (0.05) 
 

0.82 (0.01) 
 

0.82 (0.01) 
 

0.04 (0.03) 
Item 57 

 
0.65 (0.02) 

 
0.65 (0.02) 

 
0.05 (0.04) 

 
0.87 (0.01) 

 
0.87 (0.01) 

 
0.04 (0.03) 

Item 58 
 

0.68 (0.02) 
 

0.68 (0.02) 
 

0.05 (0.04) 
 

0.88 (0.01) 
 

0.88 (0.01) 
 

0.04 (0.03) 
Item 59 

 
0.58 (0.02) 

 
0.58 (0.02) 

 
0.07 (0.05) 

 
0.83 (0.01) 

 
0.83 (0.01) 

 
0.05 (0.04) 

Item 60 
 

0.63 (0.02) 
 

0.63 (0.02) 
 

0.06 (0.04) 
 

0.86 (0.01) 
 

0.86 (0.01) 
 

0.04 (0.03) 
Item 61 

 
0.71 (0.02) 

 
0.71 (0.02) 

 
0.05 (0.04) 

 
0.90 (0.01) 

 
0.90 (0.01) 

 
0.03 (0.02) 

Item 62 
 

0.62 (0.02) 
 

0.62 (0.02) 
 

0.06 (0.04) 
 

0.84 (0.01) 
 

0.84 (0.01) 
 

0.04 (0.03) 
Item 63 

 
0.49 (0.03) 

 
0.48 (0.03) 

 
0.07 (0.05) 

 
0.72 (0.02) 

 
0.72 (0.02) 

 
0.06 (0.05) 

Item 64 
 

0.51 (0.03) 
 

0.51 (0.03) 
 

0.07 (0.05) 
 

0.74 (0.02) 
 

0.74 (0.02) 
 

0.06 (0.04) 
Item 65 

 
0.49 (0.03) 

 
0.49 (0.03) 

 
0.08 (0.06) 

 
0.71 (0.02) 

 
0.71 (0.02) 

 
0.07 (0.05) 

Item 66 
 

0.65 (0.03) 
 

0.65 (0.03) 
 

0.07 (0.06) 
 

0.83 (0.01) 
 

0.83 (0.01) 
 

0.05 (0.04) 
Item 67 

 
0.69 (0.02) 

 
0.69 (0.02) 

 
0.05 (0.04) 

 
0.87 (0.01) 

 
0.87 (0.01) 

 
0.04 (0.03) 

Item 68 
 

0.74 (0.02) 
 

0.74 (0.02) 
 

0.05 (0.04) 
 

0.90 (0.01) 
 

0.90 (0.01) 
 

0.04 (0.03) 
Item 69 

 
0.60 (0.03) 

 
0.60 (0.03) 

 
0.08 (0.06) 

 
0.79 (0.01) 

 
0.79 (0.01) 

 
0.06 (0.05) 

Item 70 
 

0.54 (0.02) 
 

0.54 (0.02) 
 

0.07 (0.05) 
 

0.77 (0.01) 
 

0.77 (0.01) 
 

0.06 (0.04) 

Note: RMSEA = Root Mean Square Error of Approximation (Steiger & Lind, 1980); CFI = 

Comparative Fit Index (Bentler, 1990); TLI = Tucker Lewis Index (Tucker & Lewis, 1973); 

SRMR = Square Root Mean Residual (Hu & Bentler, 1998, 1999). 

 

10.2 Number of administered items in CAT simulation 

Figure 17 shows the average number of administered PSDQ items for different 

CAT estimation methods, items selection procedures, termination criteria, and 

generated true latent trait (  ) distributions. On average between 22 and 34 items were 

administered regardless of    distribution, item selection and latent trait estimation 

methods, when high measurement precision was required (termination criterion SE = 

0.23, which corresponds to reliability of 0.95). The average number of administered 

items decreased rapidly (between 14 and 18 items) when the CAT stopping rule was set 

to SE = 0.32 (reliability of 0.90). A further reduction in desired level of measurement 

precision conforming to a SE of 0.39 and 0.45 (reliability of 0.85 and 0.80, 

respectively), showed that the number of items administered to meet this benchmark 

was far less; however, the change was not as steep as with a smaller SE and higher 

precision level (see Figure 17). Interestingly, when a relatively low, but widely 

accepted level of measurement precision was specified (stopping rule of SE = 0.45), 

only 4 to 10 items from the 70-item PSDQ were administered on average. 
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Figure 17 – Mean number of administered items from PSDQ in CAT simulations by 

level of measurement precision. Note: error bars represent standard error of the mean; 

shifts on x-axis within a particular SE are artificial to make all means visible. 

 

Results displayed on Figure 17 indicate that the latent trait estimation methods 

were similarly effective while the two item selection methods were virtually identical 

across simulation conditions. For each combination of the latent trait estimator and the 

stopping rule, standard normal distribution of the generated    led to lower number of 

administrated items.  

Table 4 shows the analysis of variance (ANOVA) results to examine the effect 

of different simulation conditions on test length. As depicted, most of the variability in 

the number of administered items across the simulation conditions was accounted for 

by desired level of measurement precision and the    distribution. Specifically, 30.2% 

of the test length total variability in the current simulation is due to stopping rule (η
2
 = 

0.302, p < 0.001). Therefore, specifying different values of the standard error (SE) 

stopping rule will have a large effect on the efficacy of the PSDQ CAT administration. 

In case of the    distribution, which accounted for most of the remaining variance 

(5.1%), the effect size was relatively small (η
2
 = 0.051, p < 0.001). 
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Table 4 – ANOVA results for number of administered items in CAT simulation (n = 

48000) 

Source df F p η
2
 

Main Effects 

      Latent trait estimation method 2 246.0 0.000 0.010 

  θ
*
 distribution 1 2552.5 0.000 0.051 

  Stopping rule SE 3 6923.8 0.000 0.302 

  Item selection method 1 0.4 0.554 0.000 

2-way Interaction Effects 

      Latent trait estimation method * Item selection method 2 0.0 0.981 0.000 

  Latent trait estimation method * Stopping rule SE 6 1.9 0.078 0.000 

  Latent trait estimation method * θ
*
 distribution 2 40.7 0.000 0.002 

  Stopping rule SE * Item selection method 3 0.2 0.915 0.000 

  θ
*
 distribution * Item selection method 1 0.1 0.710 0.000 

  θ
*
 distribution * Stopping rule SE 3 148.8 0.000 0.009 

Error 47975 

   Note: df – degrees of freedom, F – F-statistics, p – p-value, η
2
 – effect size 

 

Turning to the remaining ANOVA main effects, the different estimation 

methods accounted for a significant portion of model variance (p < 0.001); however the 

overall effect this had on the number of administered items was almost negligible (η
2
 = 

0.010). The only nonsignificant main effect was associated with item selection methods 

(p = 0.554). The effect size of the item selection methods on the test length (η
2
 < 0.001) 

is trivially small based on Cohen’s (1988) guidelines. Although two out of six ANOVA 

interaction effects were statistically significant at the conventional α = 0.05 level, both 

produced relatively small effect sizes (η
2
 < 0.01), indicating no effect of these model 

terms on the test length.  

It is worth noting that the efficacy of the PSDQ CAT administration, in terms of 

test length, varied greatly as a function of the CAT estimated latent trait ( ̂) values. 

This is further demonstrated in Figure 18 and Figure 19 for the standard normal true 

latent trait (θ
* 

~ N(0,1)) and the uniform true latent trait (θ
*
 ~ U(-3,3)) distributions, 

respectively. Given the nonsignificant finding and likewise the negligible effect size 

observed in the ANOVA model for the item selection methods on test length, only 

different latent trait estimators and standard error stopping rules are compared in 

Figures 18 and 19. 

As both Figures 18 and 19 reveal, generally more items were administered when 

estimating higher latent levels of physical self-concept (e.g.,  ̂ > 1.5 logits) for each 

stopping rule criterion. For instance, when high measurement precision was desired (SE 
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stopping rule was set to SE = 0.23) approximately 15 to 35 items (saving at least half of 

the item pool) on average were administered where the range for  ̂ was between -3 to 1 

logits. In contrast, 63 to 70 items were needed when latent trait levels were much higher 

( ̂ ≥ 2 logits), regardless of the θ
*
 distribution and latent trait estimator (see the upper 

left portion of the Figures). 

 

 

Figure 18 – Mean number of administered items from PSDQ (Y axis) as a function of 

CAT latent trait estimates ( ̂; X axis) for standard normal true latent trait (  ~ N(0,1)) 

distribution. Note: EAPn = EAP estimation with standard normal prior; EAPu = EAP 

estimation with uniform prior; error bars represent standard deviation 

 

The observation is a result of the distribution of the PSDQ items threshold and 

discrimination parameters (see Appendix A) and is therefore related to the item pool 

information function (see Appendix C). The PSDQ items threshold parameters are 

mostly located on the negative side of the physical self-concept latent continuum, 

providing less information for high latent trait values, which produces the demand for 

more items in the test administration. 
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Even for situations requiring much lower measurement precision (stopping rule 

SE = 0.45), a relatively high number of items was administered on average for the 

latent trait estimates about  ̂ = 3 logits. This was especially true for MLE and EAP with 

uniform prior estimators, where 40 to 55 items were needed regardless the θ
*
 

distribution (see the lower right parts of the Figure 18 and 19). 

 

 

Figure 19 – Mean number of administered items from PSDQ (Y axis) as a function of 

CAT latent trait estimates ( ̂; X axis) for uniform true latent trait (  ~ U(-3,3)) 

distribution. Note: EAPn = EAP estimation with standard normal prior distribution; 

EAPu = EAP estimation with uniform prior distribution; error bars represent standard 

deviation 

 

Interestingly, at the same precision level (SE = 0.45), the EAP latent trait 

estimator with standard normal prior distribution required only about 15 items even for 

 ̂ = 3 logits. Generally, the performance of the MLE and EAP with uniform prior was 

very similar at each latent trait value across all termination criteria as well as across 

both θ
*
 distributions. The different efficacy of the EAP with standard normal prior at 

the higher extremes of the physical self-concept latent continuum starts to be apparent 
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as soon as the stopping rule SE equals to 0.32 (equivalent to reliability of 0.90) and 

increases with decreasing level of the required measurement precision. These results 

indicate that the PSDQ CAT administration may not necessarily bring the expected 

benefits (reducing testing time and respondent burden) when measuring students with 

high trait values of physical self-concept. The efficacy of the PSDQ CAT 

administration for the higher latent trait values (e.g.,  ̂ ≥ 1.5 logits) in terms of test 

length may be improved however, by employing EAP estimation with informative 

prior, especially if the standard error of the latent trait estimate SE ≥ 0.39 is acceptable.  

 

10.3 Bias of the CAT latent trait estimates 

This section explores fundamental issues of concern that revolve around the 

performance of the PSDQ CAT administration with respect to test accuracy. Accuracy 

is evaluated using bias of the CAT latent trait estimates ( ̂) from generated true latent 

trait values (  ); where smaller absolute values of bias indicate better performance. 

Figure 20 graphically presents the average absolute values of individual bias for each 

simulation condition.  

 

 

Figure 20 – Mean of absolute individual bias of CAT latent trait estimates by level of 

measurement precision. Note: error bars represent standard error of the mean; shifts on 

x-axis within a particular SE are artificial to make all means visible. 

 

Not surprisingly, the absolute bias of the CAT latent trait estimates increased as 

the predefined measurement precision decreased, with mean values from 0.18 to 0.21 
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and from 0.32 to 0.40 logits for stopping rule SE = 0.23 and SE = 0.45 respectively. It 

should be noted however, that the bias dispersion was higher for the higher SE stopping 

rule values as well. 

Likewise, when the same analysis was conducted with test length, the Fisher 

information-based and Kullback-Leibler divergence-based item selection methods led 

to almost identical results (see Figure 20). Interestingly, when the MLE or EAP 

estimator with uniform prior distribution was contrasted for the different measurement 

precision, the findings underscored very negligible differences in latent trait bias (refer 

to the left and right hand part of Figure 20). This was not true, however, when the EAP 

estimator with standard normal prior distribution was employed, these results 

underscoring that the uniformly generated true latent trait distribution led to higher 

values of absolute bias, especially when stopping rule was set to SE = 0.39 and 0.45. 

This finding indicates that specifying an incorrect informative prior with EAP 

estimation seems to be less plausible for obtaining CAT accuracy than specifying an 

uninformative prior or not specifying a prior at all (e.g., using MLE). 

Table 5 summarizes the ANOVA results, evaluating the effect of various 

simulation conditions on absolute values of individual latent trait bias. The ANOVA 

was run with the main and the two-way interaction effects and eta-squared η
2
 was used 

to determine the effect sizes.  

 

Table 5 – ANOVA results for absolute individual bias of CAT latent trait estimates in 

CAT simulation (n = 48000)  

Source df F p η
2
 

Main Effects 
    

  Latent trait estimation method 2 19.91 0.000 0.001 

  θ
*
 distribution 1 121.11 0.000 0.003 

  Stopping rule SE 3 1145.43 0.000 0.067 

  Item selection method 1 0.11 0.742 0.000 

2-way Interaction Effects 
    

  Latent trait estimation method * Item selection method 2 0.37 0.691 0.000 

  Latent trait estimation method * Stopping rule SE 6 7.94 0.000 0.001 

  Latent trait estimation method * θ
*
 distribution 2 22.08 0.000 0.001 

  Stopping rule SE * Item selection method 3 1.01 0.385 0.000 

  θ
*
 distribution * Item selection method 1 0.06 0.813 0.000 

  θ
*
 distribution * Stopping rule SE 3 3.28 0.020 0.000 

Error 47975 
   

Note: df – degrees of freedom, F – F-statistics, p – p-value, η
2
 – effect size 
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Using α = 0.05 as the acceptable limit for statistical hypotheses testing, three main 

effect terms and three interactions significantly influenced the absolute individual bias 

of CAT theta estimates. All of the nonsignificant ANOVA terms were associated with 

item selection methods, with trivially small effect sizes (all η
2
 < 0.001). Consistent with 

the findings from test length, the Fisher information-based and Kullback-Leibler 

divergence-based item selection methods are indistinguishable in their effectiveness 

with regard to systematic bias of the CAT latent trait estimates. 

Among the statistically significant main effects, stopping rule explained most of 

the variance in absolute bias, however this effect was quite modest (η
2
 = 0.067). Of the 

remaining significant main effects, the generated θ
*
 distribution, also produced a 

relatively small effect size (η
2
 = 0.003) as did the estimation methods (η

2
 = 0.001). The 

three significant interactions also explained a trivially small amount of model variance 

(each less than 0.1 %).  

Figures 21 and 22 graphically display the magnitude of individual bias as a 

function of CAT estimated theta for the uniform and standard normal true theta 

distributions, respectively. Given the ANOVA results, the item selection methods are 

not factored into the comparison in Figures 20 and 21. 

The values of individual latent trait bias varied between approximately -0.7 and 

0.7 logits on average along the latent trait continuum, regardless of    distribution, 

stopping rules, and latent trait estimation methods. However for latent trait estimates -2 

<  ̂< 2, the bias estimate ranged only from about -0.35 to 0.35 logits. This again 

highlights the questionable effectiveness of PSDQ CAT administration for assessing the 

extreme levels of physical self-concept. 
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Figure 21 – Individual bias of CAT latent trait estimates (Y axis) as a function of CAT 

latent trait estimates ( ̂; X axis) for standard normal true latent trait (  ~ N(0,1)) 

distribution. Note: EAPn = EAP estimation with standard normal prior; EAPu = EAP 

estimation with uniform prior; error bars represent standard deviation 

 

MLE and EAP estimation with uniform prior distribution produced very similar 

findings underscoring relatively small amounts of bias for the latent trait estimates 

along the latent trait continuum; and this was regardless of the specified test precision 

and    distribution. Some small differences between the two estimation methods were 

observed at both positive and negative extremes of the  ̂ scale, especially in case of the 

standard normal true theta distribution. This could be caused, however, by the fact that 

in standard normal distribution there are far less observations at both tails than around 

the mean, and thus the computed mean values of bias at both extremes of the latent trait 

might not converge to the true (population) parameters. EAP estimation with standard 

normal prior led to a considerably different pattern of the bias estimates than the other 

two latent trait estimation methods. At each SE stopping rule, EAP estimation with 

standard normal prior produced obvious inward bias, indicating the tendency of  ̂ 

estimates to regress towards the prior mean.  
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Figure 22 – Individual bias of CAT latent trait estimates (Y axis) as a function of CAT 

latent trait estimates ( ̂; X axis) for uniform true latent trait (  ~ U(-3,3)) distribution. 

Note: EAPn = EAP estimation with standard normal prior; EAPu = EAP estimation 

with uniform prior; error bars represent standard deviation 

 

10.4 Correlations 

Table 6 shows the Pearson correlation coefficients between CAT estimated 

latent trait values ( ̂) and generated true latent trait values (  ) for various simulation 

conditions.  

When high measurement precision was desired (SE = 0.23) the correlations 

were indeed high, ranging from 0.973 to 0.990, regardless the estimation procedure, 

item selection method as well as true latent trait distribution. As expected, the 

correlations decrease with decreasing level of measurement precision, however even for 

stopping rule of SE = 0.45 the correlations were still relatively high (from 0.907 to 

0.972). This results point to the potential usefulness of the PSDQ CAT administration, 

because it produces latent trait estimates very close to the true (hypothetical) latent 

values of the physical self-concept, while saving a considerable portion of the item pool 

(from about 50% at SE = 0.32 to more than 90% at SE = 0.45 on average). 
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Table 6 – Correlations between CAT latent trait estimates ( ̂) and true latent trait values 

(θ
*
) 

θ Item SE stopping rule for θ
*
 ~ N(0,1)   SE stopping rule for θ

*
 ~ U(-3,3) 

estimator selection 0.23 0.32 0.39 0.45   0.23 0.32 0.39 0.45 

MLE UW-FI 0.975 0.954 0.939 0.923 

 
0.990 0.983 0.975 0.967 

MLE FP-KL 0.974 0.957 0.936 0.920 

 
0.989 0.983 0.975 0.968 

EAPn UW-FI 0.974 0.950 0.927 0.907 

 
0.990 0.982 0.972 0.963 

EAPn FP-KL 0.974 0.953 0.927 0.912 

 
0.990 0.984 0.970 0.965 

EAPu UW-FI 0.976 0.956 0.939 0.926 

 

0.988 0.983 0.978 0.972 

EAPu FP-KL 0.973 0.955 0.939 0.920   0.988 0.982 0.977 0.970 

Note: EAPn = EAP estimation with standard normal prior distribution; EAPu = EAP estimation 

with uniform prior distribution 

 

The correlations between CAT estimated latent trait values ( ̂) and generated 

true latent trait values (  ) were higher for uniformly distributed    at each level of 

measurement precision. This is most likely the consequence of higher average number 

of administered items in CAT simulations for uniformly distributed   . On the other 

hand, the two item selection methods employed in the simulations led to almost 

identical results also in terms of correspondence between  ̂ and   . Likewise, using the 

different estimation procedures (MLE, EAP with normal prior distribution, and EAP 

with uniform prior distribution) did not produce any substantial differences in 

correlations between  ̂ and   . 

To provide a clearer picture of the relation between  ̂ and   , scatterplots 

showing    on x-axis and  ̂ on y-axis were produced for normally distributed (Figure 

23) as well as for uniformly distributed (Figure 24) true latent trait values. Since the 

three latent trait estimation methods as well as the two item selection methods produced 

very similar correlations, the scatterplots are only presented for MLE in a combination 

with UW-FI item selection method. 
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Figure 23 – Correlations between CAT latent trait estimates ( ̂; Y axis) and true latent 

trait values (  ; X axis) with standard normal (  ~ N(0,1)) distribution 

 

Both Figure 23 and 24 indicate no systematic bias of the CAT estimated latent 

trait values for all SE stopping rules (dots are symmetrically distributed along the red 

line, which indicates a perfect correlation).  

Table 7 lists correlation between CAT latent trait estimates ( ̂) and estimates 

based on the full PSDQ ( ̂    ). These correlations assess the usefulness of PSDQ 

CAT administration as compared to the CTT approach of linear fixed-length testing. 

Also in this case the correlations decreased with increasing value of the standard 

error stopping rule. Uniformly distributed    produced higher correlations than the 

normally distributed   , while only negligible differences were observed with regard to 

different estimation and item selection methods. Generally high values of the 

correlations in the Table 7 (0.922 to 0.997) indicate, that even when administration of a 

considerable number of PSDQ items is curtailed using CAT, it is possible to obtain 

almost the same estimates of physical self-concept as when the whole questionnaire is 

used. 
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Figure 24 – Correlations between CAT latent trait estimates ( ̂; Y axis) and true latent 

trait values (  ; X axis) with uniform (  ~ U(-3,3)) distribution 

 

 

Table 7 – Correlations between CAT latent trait estimates ( ̂) and full PSDQ latent trait 

estimates ( ̂    ). 

θ Item SE stopping rule for θ
*
 ~ N(0,1)   SE stopping rule for θ

*
 ~ U(-3,3) 

estimator selection 0.23 0.32 0.39 0.45   0.23 0.32 0.39 0.45 

MLE UW-FI 0.990 0.966 0.953 0.935 

 

0.997 0.991 0.984 0.975 

MLE FP-KL 0.990 0.970 0.951 0.936 

 

0.997 0.992 0.984 0.976 

EAPn UW-FI 0.987 0.964 0.941 0.922 

 

0.997 0.989 0.979 0.971 

EAPn FP-KL 0.988 0.967 0.942 0.929 

 

0.997 0.989 0.977 0.972 

EAPu UW-FI 0.991 0.973 0.953 0.939 

 

0.997 0.991 0.986 0.980 

EAPu FP-KL 0.990 0.970 0.955 0.935   0.997 0.991 0.985 0.978 

Note: EAPn = EAP estimation with standard normal prior distribution; EAPu = EAP estimation 

with uniform prior distribution 
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11 DISCUSSION 

Computerized adaptive testing (CAT) represents a novel approach to test 

administration, and offers the unique possibility of vastly improving testing efficiency 

(Anastasi, 1976; van der Linden & Glas, 2010; Weiss, 1982). The use of CAT 

methodology is now a firm part of the landscape in both psychology and education, 

however, this approach is much less utilized in the field of Kinanthropology. Since 

many self-report assessments developed in psychology are now used in studies of 

physical education and athletic performance, it makes sense to determine the suitability 

of CAT methods in this area of inquiry (Gershon & Bergstorm, 2006). In this thesis, I 

first presented the theoretical and conceptual basis of CAT, and followed this with a 

brief overview of its historical origins. I then present the basic general principles of 

CAT, including a description of Item Response Theory (IRT), since IRT is almost 

exclusively used as a mathematical model in today’s CAT applications (Wainer, 2000). 

The practical applicability of CAT was then evaluated using Monte-Carlo simulations 

of adaptive administration of the Physical Self-Description Questionnaire (PSDQ) – an 

instrument widely used to assess physical self-concept in the field of Kinanthropology.  

For the Monte Carlo simulation of the PSDQ adaptive administration I used a 

real item pool (N = 70) calibrated with a Graded Response Model (GRM, see 

Samejima, 1969, 1997) and generated the responses to test items based on the item 

parameters and pre-specified true latent values (  ) of physical self-concept. The Monte 

Carlo simulation study was designed to compare the number of administered items 

from PSDQ (test length) and accuracy of estimated latent levels of physical self-

concept, while using a variety of latent trait estimation methods (MLE, EAP with 

standard normal prior, and EAP with uniform prior distribution), items selection 

algorithms (UW-FI, and FP-KL), distributional properties (standard normal and 

uniform distribution of the true latent trait values) and stopping rules (standard error of 

latent trait estimate SE = 0.23, SE = 0.32, SE = 0.39, and SE = 0.45). Each of these 

frequently discussed CAT settings represents important elements that should be 

considered in the application of CAT, both in general (Thompson & Weiss, 2011) and 

specifically within the measurement of physical self-concept as it can be used in 

Kinanthropology. 

The Monte Carlo simulation results showed that CAT can successfully be 

applied as a method of reducing test length when using the PSDQ to assess physical 
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self-concept. For instance, CAT requiring widely acceptable measurement precision 

(SE = 0.45 which represents test reliability of 0.80) saved on average about 85% to 

93% of administered items. Naturally, when increasing the required measurement 

precision, the average number of administered items increases. Notwithstanding, the 

CAT approach may be very useful in reducing response burden even for a relatively 

high benchmark of precision (SE = 0.23 which represents test reliability of 0.95), where 

on average implementation of this procedure can still result in a reduction of more than 

50% of the items from the original questionnaire per respondent.  

Moreover this rather substantial reduction in examinee response burden was 

achieved without any serious loss of information about the trait in question for 

simulated respondents. For example, with the PSDQ in hand, and using a CAT stopping 

rule SE = 0.45 (requiring test reliability of 0.80 along the latent continuum), where only 

4 to 10 items were administered on average, the correlations between CAT estimated 

latent trait values ( ̂) and generated true latent trait values (  ) exceeded 0.90. This 

clearly shows that individually tailored selection of items from the PSDQ provides an 

unbiased estimate of the underlying latent trait using a much shorter test. The 

correlations between CAT latent trait estimates ( ̂) and the physical self-concept 

estimates based on all of the items in the PSDQ ( ̂    ) were even higher. This latter 

finding reflects more about the usefulness of a CAT application compared to the fixed-

length linear testing. Others have noted that there are no clear cut-offs for expected 

correlation levels between CAT estimates and the full-length measure (Makransky, 

Dale, Havmose, & Bleses, 2016). However previous simulation studies using similar 

SE stopping rules as those employed in the current thesis reported correlations between 

0.85 and 0.98 (e.g., Hula, Kellough, & Fergadiotis, 2015; Makransky, Mortensen, & 

Glas, 2013; Štochl et al., 2016b). The lowest correlations yielded by the current CAT 

simulation of the PSDQ were 0.922 and 0.987 for standard error stopping rules SE = 

0.45 and SE = 0.23 respectively. This relatively high magnitude of association indicates 

considerable time and perhaps costs savings when CAT is used to administer the 

PSDQ. In essence, a test developer is able to obtain a very good “read” on the 

underlying latent trait of physical self-concept using a reduced set of items, rather than 

resorting to the full 70 items. Thus, in line with results of many other CAT studies 

(Devine et al., 2016; Makransky et al., 2016; Petersen et al., 2016; Štochl et al., 2016a, 
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2016b; Tseng, 2016), we can conclude that a CAT methodology leads to improved test 

efficiency, economy, and precision. 

The same may not be true, however, when we discuss the expected benefits of 

CAT (i.e., reducing the respondent’s burden) when measuring high levels of the 

physical self-concept. The lack of desired efficiency with high trait levels may be 

attributable to the original measurement properties of the PSDQ items, which provide 

more information for individuals with low physical self-concept (Flatcher & Hattie, 

2004). Like the original fixed-length instrument, a CAT PSDQ administration would 

therefore be far less precise in detecting high levels of physical self-concept. Therefore, 

if the primary purpose is to detect and discriminate between examinees with low to 

average levels of physical self-concept, a CAT version of the PSDQ seems sufficient. 

Some authors (Nogami & Hayashi, 2010; Smits, Cuijpers, & van Straten, 2011) have 

argued, however, that for common CAT applications, the item pool information 

function should ideally follow a uniform distribution. Thus, to take the advantage of the 

CAT approach when assessing high levels of physical self-concept requires extending 

the PSDQ item pool with new items that have very high threshold parameters and 

provide greater coverage of the latent trait (see Appendix C). It should be noted, 

however, that this might not be an easy task in practice, since some authors reported 

problems in assessing high levels of physical self-concept and the problems appear to 

be inherent in the nature of the construct (Flatcher & Hattie, 2004).  

Several authors have noted that simulation studies are essential in order to 

compare and evaluate different CAT algorithm specifications (e.g. latent trait 

estimation methods, item selection methods, stopping rules) and to identify a suitable 

combination of the settings for a given CAT (e.g., Thompson & Weiss, 2011; van der 

Linden & Pashley, 2010). Not surprisingly, the results of the current simulation 

revealed that the efficacy of the PSDQ CAT administration in terms of test length is 

greatly influenced by the desired value of the SE stopping rule. There are many 

situations where screening instruments are needed, whether they involve clinical 

settings or where time limitations come into play, and where parsimony in the number 

of items administered is a concern. In these situations, imposition of the SE = 0.45 

stopping rule seems attractive. While CAT using this termination decision rule ensures 

the acceptable reliability (0.80) of the physical self-concept estimates along the whole 

latent continuum, on average only about 15% of items from the original PSDQ 

questionnaire is administered and imposition of this rule also yields very similar trait 
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estimates as the traditional linear administration of the full PSDQ. However, when 

considering the question of which SE stopping rule would be optimal in a real PSDQ 

CAT administration, the appropriate value may vary as a result of the prioritization of 

parsimony versus accuracy in a given physical self-concept measurement (Makransky 

et al., 2016; Tseng, 2016).  

With respect to item selection, both Kullback-Leibler divergence-based and 

Fisher information-based methods led to almost identical test length and produced 

similar levels of bias for latent trait estimates. Veldkamp (2003) reported very similar 

performance of these two item selection methods in polytomous IRT-based CAT using 

the generalized partial credit model (GPCM). In his study, Veldkamp (2003) found a 

relatively large amount of overlap in administered items (85% to 100%) between 

Fisher-based and Kullback-Leibler-based item selection methods, while the difference 

in measurement precision was negligible. Similarly, a simulation study by Passos et al. 

(2007) identified comparable performance of the two item selection methods using a 

nominal IRT model. More recently, Štochl et al. (2016a, 2016b) investigated the 

Kullback-Leibler divergence-based and Fisher information-based item selection 

methods in simulated CATs with real item pools designed to measure mental health in a 

community setting. These studies showed that the CAT item selection methods 

discussed here are practically indistinguishable in terms of CAT efficacy and accuracy. 

Thus in line with previous research it can be concluded that when assessing physical 

self-concept by the PSDQ adaptively, the more recently developed Kullback-Leibler 

divergence procedure may not deliver real benefits compared to the traditional item 

selection approach based on maximizing Fisher information [hypothesis a) was 

accepted].  

Since selecting an appropriate estimation method is crucial to CAT procedure, 

the current simulation compared three latent trait estimation methods: the maximum 

likelihood estimation (MLE), expected a posteriori trait estimation with uniform prior 

(EAP-u), and expected a posteriori trait estimation with standard normal prior 

distribution (EAP-n). Generally, all of these estimation methods produced a similar 

number of PSDQ administered items. Moreover, regardless of latent trait estimation 

method, the CAT estimates of physical self-concept ( ̂) correlated similarly with true 

latent trait values (  ) as well as with estimated latent trait values based on the full 

PSDQ ( ̂    ). Some differences were nevertheless observed at the higher extremes of 
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the physical self-concept latent continuum (e.g.  ̂ ≥ 2), where using EAP-n resulted in a 

reduced test length compared to the other latent trait estimation methods, especially 

when lower measurement precision was desired (e.g. stopping rule SE = 0.45). This 

reduction in a test length when estimating extreme levels of the latent trait however 

came at the cost of a slightly larger bias at both ends of the latent continuum as 

compared to the MLE and EAP-u. The ‘inward’ bias (reflecting regression to the prior 

mean) of the EAP-n method observed in the current simulation comports with many 

other studies evaluating the accuracy of latent trait estimation methods (Chang & Ying, 

1999; van der Linden & Pashley, 2010; S. Wang & Wang, 2001, 2002; Weiss, 1982). 

Notably, and in contrast to findings reported by Chen et al. (1997) or Chen et al. (1998), 

the bias functions for EAP-u, which were comparable to those produced by MLE, did 

not indicate substantial inward bias. This indicates that employing an informative prior 

distribution with Bayesian latent trait estimation methods (e.g. EAP) in PSDQ CAT can 

lead to a shorter test, but also it may reduce test accuracy at both extremes of the latent 

trait. Although such an observation may be of a theoretical interest, it would seem to 

have only negligible effect in a practical CAT administration of the PSQD [hypothesis 

b) was rejected; hypothesis d) was accepted]. Moreover it should also to be 

emphasized, that choosing an inappropriate informative prior may seriously distort the 

precision of the latent trait estimates (Boyd et al., 2010; Mislevy & Stocking, 1989; 

Seong, 1990) and may adversely affect the test length (Štochl et al., 2016b; van der 

Linden & Pashley, 2010). This fact was highlighted also in the current study, where 

EAP-n in combination with uniformly generated true latent trait values resulted in a 

slightly higher bias of the physical self-concept than any other combination of 

estimation method and true latent trait distribution (EAP-n with normal true latent trait 

distribution; EAP-u with normal true latent trait distribution; EAP-u with uniform true 

latent trait distribution). In conclusion, the present simulation underscores that MLE 

remains the recommended estimation method for practical applications of CAT with the 

PSDQ. 

When using CAT with Monte Carlo simulation a vector of true latent trait 

values needs to be specified by a researcher in order to obtain simulated responses to 

the test items. In the current study, two types of the hypothetical true latent physical 

self-concept distributions (standard normal vs. uniform) were compared with respect to 

the performance of the PSDQ CAT administration. Standard normal and uniform true 
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latent trait distribution produced very similar bias of the physical self-concept CAT 

estimates. Employing generated true latent values of the physical self-concept with 

uniform distribution led to a higher number of administrated items [hypothesis c) was 

accepted], particularly for higher levels of measurement precision (e.g. stopping rules 

SE = 0.23 and SE = 0.32). Fortunately, a uniform distribution of physical self-concept 

is a very unlikely outcome when applied to an adolescent population, for which the 

PSDQ was developed (Marsh, 1996b; Marsh & Redmayne, 1994; Marsh et al., 1994). 

Therefore the average number of administered items in practical CAT applications for 

the PSDQ will likely be lower than indicated by the current results for uniformly 

distributed true latent trait values. In fact, the performance of CAT administration in a 

sample of youth drawn from the general population should resemble the results 

obtained using the standard normal true latent trait distribution – a more realistic 

distribution for physical self-concept in real-world conditions (Marsh, 1996a). 

Even with the tremendous opportunity provided through CAT administration of 

the PSDQ, the present study also has several limitations. First, the findings relied 

exclusively on Monte-Carlo simulation resulting in the potential for real versus 

simulated CAT administration to produce different findings (Smits et al., 2011). This is 

mainly because the generated responses during CAT Monte-Carlo simulations follow 

precisely the IRT model used for item calibration (Štochl et al., 2016b). However 

examinee’s real responses can vary considerably because of systematic or random error 

(Makransky et al., 2016). Fortunately, empirical examinations of these potential 

differences have shown little divergence in outcomes between real and simulated 

findings (Kocalevent et al., 2009). 

Related to the previous limitation, the present study did not take into account the 

model misfit within the item calibration. The PSDQ item parameters used for the 

simulation were obtained from a published paper (Flatcher & Hattie, 2004) and the 

parameters were considered as true parameters. Flatcher and Hattie (2004) however 

reported relatively high standard errors of some item parameter estimates leading to the 

supposition that the departure of estimates from true item parameters could undermine 

validity of the CAT procedure (Wainer & Mislevy, 2000). According to van der Linden 

and Pashley (2010), ignoring errors of the item parameters estimates in CAT is a 

“strategy without serious consequences as long as the calibration sample is large” (p. 

13). The sample used by Flatcher and Hattie (2004) for the PSDQ item calibration was 

relatively modest in size (N = 868) suggesting that re-calibration of the PSDQ items 
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using larger samples may be required for future application of CAT when assessing 

physical self-concept. 

In addition to the concerns raised above, conceptual differences may exist 

between the PSDQ CAT administration and the traditional fixed-length linear PSDQ 

assessment. The PSDQ was initially developed using principles comporting with a CTT 

framework and intended to measure 11 different specific sub-domains of general 

physical self-concept (Marsh et al., 1994). The present CAT simulation however used 

item parameters, which were calibrated using a unidimensional GRM
2
 (Samejima, 

1969). As a result, the model testing procedure assumed that adaptive administration of 

the PSDQ will adequately assess a single dimension of general physical self-concept. 

Although assessing a single dimension of general physical self-concept using the PSDQ 

may be legitimate for practical or research purposes (Flatcher & Hattie, 2004; Marsh, 

1996a, 1996b; Marsh et al., 1994), some might argue that the general construct should 

tap all 11 proposed subdomains in order to represent the full nature of physical self-

concept (Marsh & Redmayne, 1994; Shavelson et al., 1976). This might not be fulfilled 

when items within a CAT procedure are selected purely on the basis of statistical 

criteria – that is without applying content balancing methods. For example, it is very 

likely that using statistically motivated item selection procedures in PSDQ CAT 

administration (used in the current study), may lead to under-representation of the 

health subdomain items because these items provide relatively low amount of 

information along the latent continuum (Flatcher & Hattie, 2004). Future research 

should therefore explore whether application of content balancing methods using CAT 

with the PSDQ would be practically feasible and useful.  

Despite these limitations, the current study has shown that CAT represents “a 

sophisticated method of delivering examinations” (Thompson & Weiss, 2011, p. 1) and 

improves the efficiency of a testing procedure. Using an assessment instrument 

commonly used in the field of Kinanthropology, the present study shows that CAT has 

a great potential for the assessment of physical self-concept and that the PSDQ is very 

well suited for this approach. Given the favorable results of the present simulation 

study, an interesting next step would be to evaluate the usefulness of the PSDQ CAT 

                                                           
2
 Unfortunately the item-level data from the original calibration (Flatcher & Hattie, 2004) were not 

available while conducting the present simulation study. It was therefore impossible to verify whether the 

unidimensional model is indeed the most suitable underlying description of the examinees’ responses to 

the PSDQ items.  
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administration in real testing conditions. Nevertheless the present findings provide very 

encouraging support for the use of CAT in Kinanthropology.  

 

 

12 CONCLUSIONS 

This thesis aimed to investigate the feasibility and usefulness of the adaptive 

administration of the Physical Self-Description Questionnaire while using a variety of 

item selection and latent trait estimation methods, distributional properties and test 

termination criteria. A Monte Carlo simulation study was designed to address the 

proposed aims. The main findings of the study can be briefly summarized as follows: 

- CAT can successfully be applied as a method of reducing test length when 

measuring physical self-concept using the PSDQ items. Using a much shorter 

test, CAT provides latent trait estimates which are unbiased and correspond 

highly with the estimates based on administration of the whole questionnaire. 

- More items with high positive threshold values should be incorporated into the 

PSDQ in order to improve the CAT efficiency when assessing the high levels of 

the physical self-concept. 

- CAT using Kullback-Leibler divergence-based (FP-KL) and Fisher information-

based (UW-FI) item selection methods respectively, led to almost identical 

average number of administered items from the PSDQ and produced very 

similar bias of the latent trait estimates. Either item selection method can 

therefore be recommended in further PSDQ CAT administrations. 

- The maximum likelihood latent trait estimation (MLE), expected a posteriori 

estimation with uniform prior (EAP-u), and expected a posteriori estimation 

with standard normal prior distribution (EAP-n) were similarly effective with 

regard to the average number of administered items in PSDQ CAT. Some minor 

differences between these estimation methods were observed only at the higher 

end of the latent trait continuum, where EAP-n led to smaller average number of 

administered items but at the cost of higher bias of the latent trait estimates. 

Given the results of the present study the MLE may be recommended for future 

practical applications of CAT to assess physical self-concept.  
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APPENDICES 

Appendix A – IRT parameters (a – discrimination and b’s – thresholds) for the 

Physical Self-Description Questionnaire items (source: Flatcher & Hattie, 2004) 

 

Subscale Item a b1 b2 b3 b4 b5 

Health 1. When I get sick I feel so bad that I 

cannot even get out of bed.  

0.19 -16.60 -8.92 -5.21 0.11 4.80 

 12. I usually catch whatever illness (flu, 

cold, ect.) is going around.  

0.17 -15.70 -10.80 -6.69 -1.20 4.36 

 23. I am sick so often that I cannot do all 

the things I want to do.  

0.38 -9.06 -7.41 -5.85 -4.48 -2.24 

 34. I hardly ever get sick or ill.  0.40 -5.49 -3.20 -1.26 0.20 2.21 

 45. I get sick a lot.  0.49 -7.38 -6.11 -4.70 -2.86 -0.91 

 56. When I get sick it takes me a long time 

to get better.  

0.39 -8.65 -6.72 -5.17 -3.06 -0.02 

 67. I have to go to the doctor because of 

illness more than most people my age.  

0.41 -8.70 -6.93 -5.23 -3.52 -1.80 

 69. I usually stay healthy even when my 

friends get sick.  

0.67 -4.30 -3.07 -1.89 -0.91 0.84 

Coordination 2. I feel confident when doing coordinated 

movements.  

0.93 -4.15 -2.95 -1.70 -0.59 1.14 

 13. Controlling movements of my body 

comes easily to me.  

1.07 -4.01 -3.04 -2.09 -0.86 0.60 

 24. I am good at coordinated movements. 1.49 -2.80 -2.08 -1.33 -0.31 1.03 

 35. I can perform movements smoothly in 

most physical activities.  

1.72 -2.99 -2.06 -1.27 -0.27 0.85 

 46. I find my body handles coordinated 

movements with ease.  

1.35 -3.00 -2.17 -1.37 -0.28 1.03 

 57. I am graceful and coordinated when I 

do sports and activities.  

1.85 -2.63 -1.92 -1.10 -0.19 0.91 

Physical 

activity 

3. Several times a week I exercise or play 

hard enough to breathe hard (huff and 

puff).  

0.97 -3.40 -2.62 -1.59 -0.70 0.38 



118 
 

 14. I often do exercise or activities that 

make me breathe hard.  

1.01 -3.19 -2.06 -1.52 -0.57 0.49 

 25. I get exercise or activity three or four 

times per week that makes me huff and 

puff and last at least 30 minutes.  

0.79 -2.31 -1.55 -0.67 0.11 1.07 

 36. I do physically active things (jogging, 

dancing, aerobics, swimming) at least three 

times a week.  

1.18 -2.54 -1.81 -1.16 -0.57 0.09 

 47. I do a lot of sports, dance, gym, or 

other physical activities. 

1.65 -2.27 -1.82 -1.17 -0.62 0.10 

 58. I do sports, exercise, dance or other 

physical activities almost every day.  

1.50 -1.84 -1.34 -0.66 -0.16 0.61 

Body fat 4. I am too fat.  1.05 -3.34 -2.58 -1.51 -0.80 -0.19 

 15. My waist is too large.  0.97 -3.08 -2.34 -1.45 -0.57 -0.01 

 26. I have too much fat on my body.  1.06 -2.92 -2.12 -1.28 -0.60 0.14 

 37. I am overweight.  1.14 -2.82 -2.29 -1.67 -1.09 -0.52 

 48. My stomach is too big.  1.12 -2.93 -2.20 -1.32 -0.66 -0.05 

 59. Other people think that I am fat.  0.91 -3.42 -2.71 -1.96 -1.19 -0.57 

Sport 

competence 

5. Other people think I am good at sports. 1.63 -1.92 -1.43 -0.74 0.04 1.15 

 16. I am good at most sports.  2.01 -2.47 -1.87 -1.16 -0.43 0.43 

 27. Most sports are easy for me.  1.64 -2.78 -2.08 -1.22 -0.34 0.66 

 38. I have good sports skills.  2.47 -2.15 -1.66 -1.18 -0.45 0.36 

 49. I am better at sports than most of my 

friends.  

1.74 -1.91 -1.33 -0.58 0.35 1.33 

 60. I play sports well.  2.60 -2.27 -1.82 -1.33 -0.57 0.27 

Global 

physical 

6. I am satisfied with the kind of person I 

am physically.  

1.28 -3.15 -2.41 -1.45 -0.60 0.59 
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 17. Physically, I am happy with myself. 1.48 -2.77 -2.31 -1.53 -0.67 0.30 

 28. I feel good about the way I look and 

what I can do physically.  

2.06 -2.38 -1.80 -0.96 -0.10 0.83 

 39. Physically, I feel good about myself.  1.99 -2.43 -1.83 -1.09 -0.34 0.46 

 50. I feel good about who I am and what I 

can do physically.  

1.92 -2.69 -2.12 -1.39 -0.53 0.32 

 61. I feel good about who I am physically.  1.20 -2.54 -2.05 -1.36 -0.48 0.39 

Appearance 7. I am attractive for my age.  1.33 -1.76 -1.19 -0.12 1.09 2.11 

 18. I have a nice looking face.  1.28 -2.20 -1.47 -0.35 0.95 2.34 

 29. I’m better looking than most of my 

friends. 

1.20 -1.69 -0.93 0.25 1.33 2.14 

 40. I am ugly.  1.04 -2.92 -2.37 -1.48 -0.26 0.59 

 51. I am good looking. 1.39 -1.97 -1.45 -0.45 0.75 1.88 

 62. Nobody thinks that I’m good looking.  0.96 -3.16 -2.30 -1.22 0.06 1.01 

Strength 8. I am a physically strong person.  1.17 -3.16 -2.47 -1.29 -0.03 1.43 

 19. I have a lot of power in my body.  1.46 -3.16 -2.19 -1.15 -0.20 1.05 

 30. I am stronger than most people my age. 1.02 -2.49 -1.59 -0.42 0.88 2.13 

 41. I am weak and have no muscles.  0.92 -4.51 -3.65 -2.49 -1.31 -0.43 

 52. I would do well in a test of strength.  1.48 -2.61 -1.76 -0.77 0.19 1.34 

 63. I am good at lifting heavy objects.  0.86 -3.46 -2.47 -1.33 0.19 1.70 

Flexibility 9. I am quite good at bending, twisting, and 

turning my body.  

1.01 -3.00 -2.14 -1.08 -0.10 1.14 
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 20. My body is flexible.  1.18 -2.24 -1.48 -0.40 0.62 1.72 

 31. My body is stiff and inflexible.  0.56 -6.03 -4.54 -2.91 -1.31 0.21 

 42. My body parts bend and move in most 

directions well 

1.03 -3.58 -2.71 -1.66 -0.68 0.72 

 53. I think I am flexible enough for most 

sports.  

1.84 -2.70 -1.96 -1.26 -0.36 0.57 

 64. I think I would perform well on a test 

measuring flexibility.  

1.32 -2.39 -1.55 -0.57 0.48 1.59 

Endurance 10. I can run a long way without stopping.  1.51 -1.93 -1.41 -0.56 0.09 1.02 

 21. I would do well in a test of physical 

endurance and stamina.  

1.67 -2.17 -1.52 -0.61 0.29 1.28 

 32. I could jog 5 kilometers without 

stopping.  

1.24 -0.85 -0.35 0.27 0.75 1.38 

 43. I think I could run a long way without 

getting tired.  

1.44 -1.55 -1.03 -0.28 0.42 1.29 

 54. I can be physically active for a long 

period of time without getting tired.  

1.81 -2.10 -1.57 -0.82 -0.01 0.96 

 65. I am good at endurance activities like 

distance running, aerobics, bicycling, 

swimming, or crosscountry skiing.  

1.38 -2.07 -1.55 -0.74 0.10 0.97 

Esteem 11. Overall, most things I do turn out well.  0.99 -4.36 -3.22 -2.11 -0.31 1.74 

 22. I don’t have much to be proud of.  1.03 -3.25 -2.57 -1.72 -0.81 0.32 

 33. I feel that my life is not very useful.  0.96 -3.59 -2.76 -1.99 -1.34 -0.50 

 44. Overall, I am no good.  1.48 -2.91 -2.53 -2.09 -1.44 -0.72 

 55. Most things I do, I do well. 1.71 -3.51 -2.39 -1.76 -0.55 0.71 

 66. Overall, I have a lot to be proud of. 1.91 -2.68 -2.00 -1.37 -0.59 0.30 

 68. Overall, I’m a failure.  1.32 -3.32 -2.83 -2.31 -1.48 -0.86 

 70. Nothing I do ever seems to turn out 

right. 

1.12 -3.31 -2.67 -1.90 -1.04 0.05 
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Appendix B – R code used for the simulation of the PSDQ CAT 

 

# Loading IRT parameters for PSDQ items 

load("J:/SelfDescriptionParameters.Rdata") 

 

# Simulated true latent trait values 

SimTrueTHETAn <- rnorm(1000)     #standard normal 

SimTrueTHETAu <- runif(1000, -3, 3)     #uniform 

SimTrueTHETA <- cbind(SimTrueTHETAn, SimTrueTHETAu) 

 

# Values for standard error stopping rules 

SEM <- c(0.23, 0.32, 0.39, 0.45) 

 

# Choosing the item selection methods 

Isel <- c("UW-FI", "FP-KL") 

 

# Preparing table for simulation results 

Results <- array(data = NA, dim=c(1000,5, 2,4,2,2,2), 

dimnames = list(NULL,  

c("CatTheta","CatLength", "TotalTheta", "TrueTheta", "catSEM"), 

c("NormalTheta", "UniformTheta"), 

c("SE_0.23","SE_0.32","SE_0.39","SE_0.45), 

c("MLE", "EAP"), 

c("UW-FI", "FP-KL"), 

c("NormalPrior","UnifrormPrior"))) 

 

 

# CAT simulation 

require(catIrt) 

 

for (s in c(1:2)) { 

  for (t in c(1:length(SEM))) { 

    for (i in c(1:length(Isel))) { 
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CATresultsMLE <-  

catIrt(SelfDescription, mod = "grm", resp=NULL, theta = SimTrueTHETA[,s], 

catStart = list(init.theta = 0, n.start = 2, select = Isel[i], delta=0.1,  

at = "theta", n.select = 1, score= "step", step.size = 1, leave.after.MLE = F), 

catMiddle = list(select =  Isel[i], at = "theta", n.select = 1, delta=0.1, 

score = "MLE", range = c(-6, 6), expos = "none"), 

catTerm = list(term = c("fixed", "precision"), n.min = 3, n.max = 70,  

score = "MLE", 

p.term = list(method = "threshold",crit=SEM[t])), 

ddist = dnorm, progress=TRUE) 

 

CATresultsEAPn <-  

catIrt(SelfDescription, mod = "grm", resp=NULL, theta = SimTrueTHETA[,s], 

catStart = list(init.theta = 0, n.start = 2, select = Isel[i], delta=0.1,  

at = "theta", n.select = 1, 

score= "step", step.size = 1, leave.after.MLE = F), 

catMiddle = list(select =  Isel[i], at = "theta", n.select = 1, delta=0.1, 

score = "EAP", range = c(-6, 6), expos = "none"), 

catTerm = list(term = c("fixed", "precision"), n.min = 3, n.max = 70,  

score = "EAP", 

p.term = list(method = "threshold",crit=SEM[t])), 

ddist = dnorm, progress=TRUE) 

 

CATresultsEAPu <-  

catIrt(SelfDescription, mod = "grm", resp=NULL, theta = SimTrueTHETA[,s], 

catStart = list(init.theta = 0, n.start = 2, select = Isel[i], delta=0.1,  

at = "theta", n.select = 1, 

score= "step", step.size = 1, leave.after.MLE = F), 

catMiddle = list(select =  Isel[i], at = "theta", n.select = 1, delta=0.1, 

score = "EAP", range = c(-6, 6), expos = "none"), 

catTerm = list(term = c("fixed", "precision"), n.min = 3, n.max = 70,  

score = "EAP", 

p.term = list(method = "threshold",crit=SEM[t])), 

ddist = dunif2, progress=TRUE) 
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# Saving results of the CAT simulation 

Results[, 1, s,t,1,i,1] <- CATresultsMLE$cat_theta 

Results[, 2, s,t,1,i,1] <- CATresultsMLE$cat_length 

Results[, 3, s,t,1,i,1] <- CATresultsMLE$tot_theta 

Results[, 4, s,t,1,i,1] <- CATresultsMLE$true_theta 

Results[, 5, s,t,1,i,1] <- CATresultsMLE$cat_sem 

 

Results[, 1, s,t,2,i,1] <- CATresultsEAPn$cat_theta 

Results[, 2, s,t,2,i,1] <- CATresultsEAPn$cat_length 

Results[, 3, s,t,2,i,1] <- CATresultsEAPn$tot_theta 

Results[, 4, s,t,2,i,1] <- CATresultsEAPn$true_theta 

Results[, 5, s,t,2,i,1] <- CATresultsEAPn$cat_sem 

 

Results[, 1, s,t,2,i,2] <- CATresultsEAPu$cat_theta 

Results[, 2, s,t,2,i,2] <- CATresultsEAPu$cat_length 

Results[, 3, s,t,2,i,2] <- CATresultsEAPu$tot_theta 

Results[, 4, s,t,2,i,2] <- CATresultsEAPu$true_theta 

Results[, 5, s,t,2,i,2] <- CATresultsEAPu$cat_sem 
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Appendix C – Test information and corresponding standard error for the Physical 

Self-Description Questionnaire item pool 
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Appendix D – Example of R code used to create Figure 1 

 

op <- par(mai= c(1.3,1.3,0.5,0.5)) 

a <- c(1,1,1) 

b <- c(-1,0,1) 

LineType <- c(1,2,6) 

LineColour <- c(1,2,3) 

 

for (i in c(1:3)) { 

  curve(exp(x - b[i])/(1+exp(x - b[i])), -6, 6,  

        xlab="θ", ylab="P(θ)",  

        lwd = 2, lty=LineType[i],col=LineColour[i], cex.lab=1.5, cex.axis=1.5, 

add=FALSE) 

                  } 

for (i in c(1:3)) { 

  curve(exp(x - b[i])/(1+exp(x - b[i])), -6, 6,  

        xlab="θ", ylab="P(θ)",  

        lwd = 2, lty=LineType[i],col=LineColour[i], cex.lab=1.5, cex.axis=1.5, 

add=TRUE) 

                  } 

 

legend(-6, 1, c("b1 = -1", "b2 =  0", "b3 =  1"),  

       col = c(1, 2, 3), 

       text.col = c(1, 2, 3),  

       lwd = c(2, 2, 2), 

       lty = c(1, 2, 6), pch = c(NA, NA, NA), 

       merge = TRUE, bg = "white",  

       cex=1.15, text.width=0.7, text.font=c(6,6,6), 

       adj = c(0, 0.5)) 


