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Introduction

The theory of homogenization was developed for the study of mathematical models
for physical systems that feature several different length scales. In the case of two length
scales we distinguish between the so-called macroscale and microscale. Plainly speaking
the macroscale is the length scale on which the system interacts with its environment.
The microscale is determined by a recurring property with the distance of recurrence
much smaller than the size on the macroscale level. The example of a material with
such an arrangement on the microscale level-the microstructure, are composites made
of components with significantly different physical properties. The components of the
composite remain separate and distinct in the resulting microstructure. The compos-
ite exhibits characteristics that differ from the individual components. The porous
medium, which is a material with the microstructure formed by a solid matrix with
interconnected void-the pores, also represents the example of a material possessing the
two-scale nature.

The benefit of the theory of homogenization is that it provides methods that allow
to establish models involving macroscopic quantities of the physical system that can
be easily measured experimentally. Many strategies have been developed over the
last decades for the passage from a model incorporating different length scales to a
model incorporating the coarse scale only. In essence, all of these strategies follow the
same idea. It consists in the identification of a parameter 0 < ε ≪ 1 that represents
the distance of recurrence on the microscopic level of the physical system with two
distinguished length scales. Then the asymptotics of the corresponding mathematical
model is studied for ε tending to zero that involves finding an appropriate topology
in which the two–scale model converges to a limit model. Moreover, apriori it is not
guaranteed that any information about the microscale transfers into the limit model.
In this context, it is appropriate to call the procedure of the transition from the model
involving the parameter ε to a limit model as homogenization. Indeed, passing to the
limit ε → 0 causes shrinking of the microstructure and the limit model describes a
physical system that is homogeneous from this point of view.

To illustrate the general description one can consider the derivation of celebrated
Darcy’s law which states that the velocity of the flow of a Newtonian fluid through
a porous medium is proportional to the difference of an external force and pressure
gradient. The idea of using the homogenization approach for deriving Darcy’s law goes
back to Tartar, see [6]. In this situation the physical model that incorporates two scales
consists of a Newtonian fluid that occupies a porous medium. The flow of the fluid is
modeled by the Stokes system with the homogeneous Dirichlet boundary condition in
a domain whose microstructure is formed by periodically repeated cells consisting of a
fluid and solid part with the size being described by a parameter ε ≪ 1 and the fluid
parts of all cells form a connected and open set. The homogenization process consists
in two steps. In the first step one finds a suitable extension of the velocity and the
pressure to the whole domain (to the part which is assumed to be solid). In the second
step the parameter ε is let to tend to zero using the weak topology of spaces L2 and
W 1,2.
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Introduction

Dissertation summary
This thesis consists of three chapters that are based on original articles completed dur-
ing my doctoral studies. In each of the chapter the homogenization process for a specific
mathematical model is investigated. In the background of all three papers one finds the
following scheme. A system of partial differential equations that describes the behavior
of physical model incorporating both macro and micro scale, which is represented by a
parameter 0 < ε ≪ 1, is considered at the beginning. After establishing the existence
of a weak solution of the system for an arbitrary but fixed ε, the uniform estimate of
the weak solution with respect to ε are obtained. In all three papers it is assumed
that the arrangement on the micro scale level of the physical system is periodic. It is
then natural to apply two-scale convergence method for the passage to the limit ε→ 0
to obtain the homogenized system. Especially, the weak compactness with respect to
the topology of two-scale convergence ensures the existence of a weakly two-scale con-
vergent sequence of weak solutions. In order to identify the limit of nonlinear terms
involving the stress tensor a variant of Minty’s trick is employed. The details of the
application of Minty’s trick depend on the fact whether one can test the weak formula-
tion of the system with two scales as well as the homogenized system by a solution or
not.

The results from the following articles are included in the thesis:

1. Martin Kalousek: Homogenization of incompressible generalized Stokes flows
through a porous medium, Nonlinear Anal., 136:1-39, 2016

This article is devoted to the derivation of the Darcy-type law for both stationary
and nonstationary flow of a non–Newtonian fluid via the homogenization of the
Stokes system in the domain with a microstructure. It is assumed that the depen-
dence of the viscosity of a fluid on the shear rate is determined by an N–function
with certain restrictions on growth.
In order to be able to adopt the approach that was successfully used in order
to derive Darcy’s law, several facts that are known in the context of standard
Lebesgue spaces are justified also in the context of Orlicz spaces. As particular
results, the existence of restriction operator and its estimates in an Orlicz space as
well as the characterization of annihilators of subspaces of Sobolev–Orlicz space
of solenoidal functions are established.
The assumption that the N–function satisfies the ∆′−condition appearing in the
published paper was removed from the first chapter since it turned out to be
redundant.

2. Miroslav Bulíček, Martin Kalousek, Petr Kaplický: Homogenization of an incom-
pressible stationary flow of an electrorheological fluid, Ann. Mat. Pura Appl.,
online first, 2016

In this paper a mathematical model describing a flow of an electrorheological fluid
through an electric field is considered. The dependence of the tensor on the shear
rate is assumed to be given by a power function with a constant exponent and to
capture significant changes in viscosity depending on the electric field. The stress
tensor is also assumed to depend on a spatial variable.
The assumed lower bound on the exponent causes that a weak solution of the
two-scale system possesses the regularity which does not allow testing the weak
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Introduction

formulation of the system by its solution. This excludes the possibility of the
direct application of Minty’s trick. In order to overcome this inconvenience the
pressure is decomposed into parts one of which is bounded in the same Lebesgue
space as the stress tensor and the second part is precompact in the bigger Lebesgue
space. This decomposition is combined with the method of Lipschitz truncation
of Sobolev functions and the Div-Curl lemma to determine the limit of nonlinear
term that is required for the application of Minty’s trick. Let us point out that
due to the structure of the stress tensor velocity gradients corresponding to dif-
ferent values of the parameter ε belong to the same Lebesgue space on which the
maximal operator is bounded.

3. Miroslav Bulíček, Piotr Gwiazda, Martin Kalousek, Agnieszka Świerczewska-
Gwiazda: Homogenization of nonlinear elliptic systems in nonreflexive Musielak-
Orlicz spaces
In the paper is studied the homogenization process for families of strongly non-
linear elliptic systems with the homogeneous Dirichlet boundary condition. The
growth and the coercivity of the elliptic operator is assumed to be indicated by a
general inhomogeneous anisotropic N–function M , which which may be possibly
also dependent on the spatial variable and in this case it is supposed to satisfy a
condition of log–Hölder type.
The general form of the N–function and the generality of corresponding function
spaces bring two challenges one has to face. First, the density of smooth functions
in the strong topology is not available in considered function spaces. However,
this issue is overcome by using the density of smooth functions in the so–called
modular topology, which was recently exploited in obtaining results concerning
the existence of solutions of nonlinear elliptic equations in Musielak-Orlicz spaces.
The second issue is the lack of reflexivity of function spaces involved. Accordingly,
the crucial property of the two–scale convergence, the compactness of bounded
sets in the weak sense, is not available and the two–scale convergence method
cannot be directly adopted. Nevertheless, the function spaces involved possess
separable preduals. Consequently, they provide the compactness of bounded sets
in the weak∗ sense. Therefore it is reasonable to establish the weak∗ two–scale
convergence. Moreover, except for the weak∗ two–scale compactness of bounded
sets also other properties of this notion of convergence analogous to the standard
weak two–scale convergence are derived and used for the identification of the limit
of the nonlinear term.
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Conclusions
In Chapter 1 the two–scale convergence method was applied in modeling a non–Newto-
nian fluid flow through a porous medium. Starting from the stationary and also non-
stationary generalized Stokes system governing the flow of a fluid with shear dependent
viscosity the homogenized systems were derived. These systems do not involve the com-
plicated structure of the porous medium. However, they possess an intrinsic two–scale
coupling. Let us point out that the coupling has a nonlinear character, which comes
from the assumed nonlinear dependence of the viscosity on the shear rate. In contrast
with the case of constant viscosity, for which the homogenized system was derived in
[2], when the linearity of the stress tensor allows to separate the scales, there is no sim-
ple way how to separate scales in the homogenized problems. One should not regard
the structural complexity of the homogenized problems as a drawback. It cannot be
expected that the homogenized systems describing complex phenomena have a simple
form. Although the structure of the homogenized systems does not pose any complica-
tion in proving the existence of weak solutions of these systems, for which the theory
of monotone operators is successfully applied, it poses challenges if the homogenized
systems would be treated numerically.

In Chapter 2 the method of Lipschitz approximation of Sobolev functions was com-
bined with the two–scale convergence in order to verify the following hypothesis. The
homogenization of a system of partial differential equations governing a stationary flow
of an electrorheological fluid can be performed under the same assumption on the expo-
nent p, which ensures the existence of a weak solution of this system, i.e., p > p0 :=

2d
d+2 .

Outcomes of this chapter have to be regarded as the first step on the way of the com-
plete verification of this hypothesis. In fact, in the model considered in this chapter
it was assumed that the growth of the viscous stress tensor is indicated by the power
function with a constant exponent, which simplifies the model of the flow of an elec-
trorheological fluid originated by Rajagopal and Růžička involving a power function
with a variable exponent for the estimate of the growth of the stress tensor. Let us
note that throughout the homogenization process the existence of the weak solution
of the homogenized system, which is of the generalized Navier-Stokes type, was also
shown.

In Chapter 3 the modified two–scale convergence method was applied to perform the
homogenization process for families of elliptic systems, where the coercivity and growth
of the nonlinear term is indicated by a general inhomogeneous anisotropic N–function,
which may depend also on the spatial variable, i.e., the homogenization process will
change the characteristic function spaces at each step. Known results concerning ho-
mogenization of elliptic equations were obtained assuming the case of Lp–setting with
restrictions on constant exponent, see e.g. [1] and [4], or variable exponent that is
additionally log-Hölder continuous, e.g. [7], which correspond to the case of a very
particular N–function satisfying along with its conjugate N–function the ∆2 condition.
Accordingly, all known results are restricted to reflexive spaces only. The result in this
chapter was obtained without any assumptions on ∆2 condition for an N–function and
its conjugate, which implies that a Musielak–Orlicz space corresponding to it is not
reflexive. However, the key ingredient, density of smooth function in modular topol-
ogy, requires a condition of log-Hölder type on the N–function and a certain estimate
of the quotient of the N–function and the convex biconjugate of the infimum of the
N–function over the closed cube covering the spatial domain.

Finally, let us mention possible extensions of obtained results. It seems that the
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result on homogenization of generalized Stokes flows in a porous medium can be ex-
tended to the case of a stationary generalized Navier-Stokes flow assuming a suitable
smallness of the external body force by adopting the approach from [3]. Nevertheless,
the nonstationary case is completely open. The result of Chapter 2 could be extended
also to the case of nonstationary system because the method of parabolic Lipschitz
truncations has been developed already. Concerning the results of Chapter 3, again
the extension to the parabolic case is possible since all necessary ingredients are avail-
able also for function spaces on the time–space domains. More challenging task would
be to consider oscillations in time.
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Homogenization of incompressible generalized
Stokes flows through a porous medium

Martin Kalousek
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Chapter 1 Homogenization of incompressible generalized Stokes flows

Abstract
We study the homogenization for families of steady and also unsteady incompressible
generalized Stokes systems in a periodic porous medium. We assume that the stress
tensor possesses an Orlicz growth and the size of solid parts of the porous medium is
comparable to the size of the period. Homogenized systems are established using the
two-scale convergence method adopted to Orlicz space setting. We prove the existence
and uniqueness of weak solutions of the homogenized systems.

Keywords
Porous media flow, non-Newtonian fluid, shear-dependent viscosity, Orlicz space, peri-
odic homogenization, two-scale convergence method

1.1 Description of the model and statement of the results
1.1.1 Introduction
In many areas, including oil recovery, biomechanical processes and civil engineering,
it is important to study the low speed flow in porous media. Difficulties arise if such
problems are treated numerically since rapid variations appear on the microscale level.
One way to avoid these difficulties is using the homogenization theory to obtain a sys-
tem of equations describing the macroscopic behavior of the fluid flow whose solution
is in a certain sense an approximation of a solution of an initial system.
When modeling these processes, it is sometimes sufficient to consider a flow of a Newto-
nian fluid whose viscosity does not depend on the shear rate Du, where u is a velocity of
the flow. The simplest example of a system, which describes the macroscopic behavior
of the incompressible flow of the Newtonian fluid in a porous medium, is Darcy’s law.
The rigorous derivation of this law based on the homogenization of the Stokes system
with homogeneous Dirichlet data in a domain with a periodic microstructure was given
in [34] by Tartar who introduced an abstract pressure extension. The explicit formula
for pressure extension was derived by Lipton and Avellaneda in [22]. The influence of
the asymptotic size of an element of the microstructure on a form of the homogenized
system was studied by Allaire in [1],[2]. The homogenization of the nonstationary Sto-
kes system was studied by Allaire in [4].
If the dependence of the viscosity of the fluid on the shear rate cannot be neglected, one
can consider a generalized Newtonian fluid. The study of properties of weak solutions
of systems governing the flow of such fluids started in Ladyzhenskaya’s work [21] and
was later developed in e.g. [24], [25] and [15]. The dependence of the viscosity on the
shear rate can be given by a superlinear convex function, see e.g. [7], not only by a
variant of a power function as is assumed in previous papers.
The homogenization process for a flow of a polymeric fluid, which has the shear depen-
dent viscosity, was studied in [6].
In this paper we assume that the dependence of the viscosity on the shear rate is given
by the formula η(Du) = φ′(|Du|)

|Du| for a function φ specified later. Using methods from
some of the above mentioned works, the systems approximating the law governing a
steady as well as unsteady generalized Newtonian fluid flow through a porous medium
are derived. Let us denote by u the velocity, p the pressure, f the external force, ∇u
the velocity gradient, Du = 1

2(∇u +∇uT ) the symmetric part of ∇u.
The nondimensional incompressible stationary Stokes system can be written in the form

8



Chapter 1 Homogenization of incompressible generalized Stokes flows

ut −
1

Re
div (η(Du)Du) + Eu∇p = 1

Fr
f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

The viscosity function η characterizes the considered fluid. Fluids, for which η is non-
constant, are called non-Newtonian fluids. Examples of fluids with such a behavior of
η are very dilute polymeric liquids or low molecular weight biological liquids. In order
to introduce characteristic numbers Re, Eu and Fr we first mention the macroscopic
characteristics of the porous media Ω: Lref the reference length, Vref the reference
velocity, Pref the reference pressure, Fref the reference volume force and the character-
istics of fluid: ρ the density, ηref the reference viscosity. Then characteristic numbers
are defined as follows:
Reynolds number Re =

VrefLref

ηref
, Euler number Eu =

Pref

V 2
refρ

and Froude number

Fr =
V 2
ref

FrefLref
.

Let us consider that a microscopic scale l is small compared to the reference length
Lref . We denote ε = l

Lref
and suppose that Re behaves as ε−1, Eu and Fr behave

as ε0.
First, we assume the case of a steady flow. Assumptions on Re,Fr, Eu lead us to

the stationary generalized Stokes system for the rescaled velocity uε = ε−1u and the
pressure pε using the notation S(Duε) = η(Duε)Duε

−εdiv S(εDuε) +∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Ωε,ˆ
Ωε

pε = 0,

(SGSε)

for which we establish the homogenized problem: Find a triplet (u0, p, π) ∈ X1,φ
y,0 (Ω×

Y )d ×W 1,φ∗
(Ω)× Lφ∗

(Ω× Y ) satisfying

−divy S(Dyu0(x, y)) +∇yπ(x, y) = f(x)−∇p(x) in Ω× YF ,

divy u0(x, y) = 0 in Ω× Y,

divx

(ˆ
Y

u0(x, y)dy
)

= 0 in Ω,

u0(x, y) = 0 in Ω× YS ,(ˆ
Y

u0(x, y)dy
)
· n = 0 on ∂Ω,

ˆ
YF

π(x, y)dy = 0 for a.a. x ∈ Ω,

ˆ
Ω
p(x)dx = 0.

(HSS)

Even though authors in [6] assumed as an initial problem the Navier-Stokes system for
a generalized Newtonian fluid, the scaling, which they used, caused that the form of
their homogenized system coincides with the form of (HSS) in the case of the viscosity

9



Chapter 1 Homogenization of incompressible generalized Stokes flows

with a power dependence on the shear rate.
We state the results concerning (HSS):

Theorem 1.1.1 Let Ω, Y, YS , YF fulfill Assumption 1.1.5, φ fulfill Assumption 1.2.2
and f ∈ Lφ∗

(Ω)d. Then the problem (HSS) admits a unique weak solution.

Theorem 1.1.2 Let Ω, Y, YS , YF fulfill Assumption 1.1.5, φ fulfill Assumption 1.2.2,
f ∈ Lφ∗

(Ω)d and (u0, p, π) be the unique weak solution of (HSS). Let for ε > 0 (uε, pε)
be the unique weak solution of (SGSε). We extend uε by zero in Ω \ Ωε and let P ε be
the extension of pε to Ω from Lemma 1.5.4. Then as ε→ 0

uε 2−s−−⇀ u0 in Lφ(Ω× Y )d,

εDuε 2−s−−⇀ Dyu0 in Lφ(Ω× Y )d×d,

P ε −−⇀ p in Lφ∗
(Ω).

If the flow is unsteady, we deal with the nonstationary generalized Stokes system

uε
t − εdiv S(εDuε) +∇pε = f in (0, T )× Ωε,

div uε = 0 in (0, T )× Ωε,

uε = 0 in (0, T )× ∂Ωε,

uε(0) = aε in Ωε,ˆ
Ω
pε = 0 a.e. in (0, T ),

(NGSε)

for which we establish a homogenized problem: Find a triplet (u0, p, π) ∈
(
X1,φ

y,0 (QT ×

Y )∩L∞(0, T ;L2(Ω×Y )d)
)
×W 1,φ∗

x (QT )×Lφ∗
(QT×Y ), here QT = (0, T )×Ω, satisfying

u0
t (t, x, y)− divy S(Dyu0(t, x, y)) +∇yπ(t, x, y) = f(t, x)−∇p(t, x) in QT × YF ,

divy u0(t, x, y) = 0 in QT × Y,

divx

(ˆ
Y

u0(t, x, y)dy
)

= 0 in QT ,

u0(t, x, y) = 0 in QT × YS ,(ˆ
Y

u0(t, x, y)dy
)
· n = 0 in (0, T )× ∂Ω,

u0(0, x, y) = a0(x, y) in Ω× Y,ˆ
YF

π(t, x, y)dy = 0 for a.a.(t, x)∈QT ,

ˆ
Ω
p(t, x)dx = 0 for a.a. t ∈ (0, T ).

(HNS)
We state the results concerning (HNS):

Theorem 1.1.3 Let Ω, Y, YS , YF fulfill Assumption 1.1.5, φ fulfill Assumption 1.2.2,
f ∈ Lφ∗

(QT )
d, a0 ∈ L2

y,0(Ω × Y )d, divy a0 = 0 in Ω × Y . Then the problem (HNS)
admits a unique weak solution (u0, p, π).

10
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Theorem 1.1.4 Let Ω, Y, YS , YF fulfill Assumption 1.1.5, φ fulfill Assumption 1.2.2
and

f ∈ L∞
(
0, T ;Lφ∗

(Ω)d
)
, ft ∈ L2(QT )

d. (1.1)

Let the embedding
Lφ(Ω) ↪→ L2(Ω), (1.2)

as well as
Wm,2

0 (Ω) ↪→ C1(Ω) (1.3)

for m > 1 + d
2 hold. Let an extension of an initial condition aε ∈ Wm,2

0,div (Ω
ε)d by zero

to Ω \ Ωε satisfy the uniform bound
ˆ
Ω
|aε|2 +

ˆ
Ω
|εm− d

2∇maε|2 ≤ c (1.4)

and there exist a function a0 ∈ X1,φ
y,0 (Ω× Y ) such that

aε 2−s−−⇀ a0 in L2(Ω× Y )d and ∥aε∥L2(Ω) → ∥a0∥L2(Ω×Y ). (1.5)

Let (u0, p, π) be the weak solution of (HNS) and for any ε > 0 (uε, pε) be the weak
solution of (NGSε). We extend uε by zero in Ω \ Ωε and let P ε be the extension of pε
to Ω from Lemma 1.6.4. Then as ε→ 0

uε 2−s−−⇀ u0 in Lφ(QT × Y )d,

uε
t

2−s−−⇀ u0
t in L2(QT × Y )d,

εDuε 2−s−−⇀ Dyu0 in Lφ(QT × Y )d×d,

P ε −−⇀ p in Lφ∗
(QT ).

For clarity, we recall the meaning of differential operators appearing in the paper.
Let u : (0, T )× Ω× Y → Rd then

ut =
∂u
∂t
,∇xu =

(
∂ui
∂xj

)d

i,j=1

,divx u =

d∑
i=1

∂ui
∂xi

,∇yu =

(
∂ui
∂yj

)d

i,j=1

,divy u =

d∑
i=1

∂ui
∂yi

.

We omit the subscript x for u : (0, T )× Ω → Rd, i.e.,

∇u =

(
∂ui
∂xj

)d

i,j=1

, div u =
d∑

i=1

∂ui
∂xi

.

More detailed description of the pressure extension P ε as well as assumptions on
a sequence of initial values are given in Sections 1.5 and 1.6. Function spaces are
introduced in Section 1.2.

1.1.2 Geometry of a porous medium
Let d = 2 or 3, we summarize assumptions on the unit cell Y = (0, 1)d, its solid part
YS , fluid part YF and the domain Ω.

11



Chapter 1 Homogenization of incompressible generalized Stokes flows

Assumption 1.1.5

YS ⊂ Br0(cY ), r0 ∈
(
0,

2

5

)
is closed , |YS | > 0, ∂YS ∈ Ck k > 1 +

d

2
,

YF = Y \ YS is open and connected,
Ω ⊂ Rd is bounded, ∂Ω ∈ C1,

where Br0(cY ) denotes the ball with the radius r0 and the center cY , which stands for
the center of Y .

A periodic porous medium consists of a set Ω and an associated microstructure.
The domain Ω is covered by a regular grid created by the periodic repetition of the
cell arising from Y by rescaling its edge to the ε−length, ε ∈ (0, 1). An element of this
grid is denoted Y ε

i . Solid and fluid parts of Y ε
i are rescaled in the same way and are

denoted Y ε
Si

and Y ε
Fi

respectively.

Let us denote

Iε = {i : Y ε
Si

⊂ Ω}, Hε = {i : Y ε
Si
∩(Rd\Ω) ̸= ∅}.

Finally, we define the fluid part Ωε of a
porous medium as

Ωε = Ω \
∪
i∈Iε

Y ε
Si
. (1.6)

the porous medium Ωε

ε

the unit cell Y

YF

YS

1.2 Function spaces and preliminaries
This section contains the definition and properties of the N–function. Proofs of state-
ments are postponed to the appendix.

Definition 1.2.1 A function φ : [0,∞) → [0,∞) is said to be an N–function if φ is
continuous, convex and satisfies

lim
t→0+

φ(t)

t
= 0, lim

t→∞

φ(t)

t
= ∞, φ(t) > 0 if t > 0.

An N–function φ∗ defined as

φ∗(t) = sup
s≥0

{st− φ(s)},

is called the complementary N–function to φ.
We say that φ satisfies ∆2−condition if there is K > 0 such that for all t > 0 φ(2t) ≤
Kφ(t). We denote ∆2(φ) the smallest constant K having this property.

12



Chapter 1 Homogenization of incompressible generalized Stokes flows

The generic constants are denoted by c. When circumstances require it, we may
also include quantities on which the constant depends, e.g. c(d) for the dependence on
the dimension d. If we want to distinguish between different constants in one formula,
we utilize subscripts, e.g. c1, c2 etc.

We write f ∼ g if there are positive constants c1, c2 such that c1f ≤ g ≤ c2f . As a
consequence of ∆2(φ) <∞ we have uniformly in t ≥ 0:

φ′(t)t ∼ φ(t), (1.7)
φ∗(φ′(t)) ∼ φ(t). (1.8)

Moreover, if ∆2(φ
∗) <∞ then there are positive constants c1, c2 and 1 < q1 ≤ q2 <∞

such that for s, t ≥ 0

c1 min{sq1 , sq2}φ(t) ≤ φ(s, t) ≤ c2 max{sq1 , sq2}φ(t), (1.9)

Young’s inequality holds: For all δ > 0 there is cδ depending on ∆2(φ,φ
∗) such that

for all s, t ≥ 0
st ≤ δφ(t) + cδφ

∗(s). (1.10)
As a consequence of ∆2(φ) <∞ and monotonicity of φ on [0,∞), we have the existence
of c > 0 such that for any s, t > 0

φ(s+ t) ≤ c (φ(s) + φ(t)) . (1.11)

We summarize assumptions on the N–functions φ and φ∗.

Assumption 1.2.2 The N–functions φ,φ∗ satisfy

∆2(φ) <∞,

∆2(φ
∗) <∞,

φ ∈ C2((0,∞)), (1.12)
φ′(t) ∼ tφ′′(t) uniformly in t ≥ 0. (1.13)

As a prototype of an N–function with such a behavior, we can consider

φ(t) =
2

p

(
(1 + t2)

p
2 − 1

)
, (1.14)

φ(t) =

ˆ t

0
s1−q (arcsinh(s))q ds (1.15)

with p ∈ (1,∞), q ∈ (0, 1). For more details see [19, Theorem 4.3., Theorem 5.2.]. The
experimental study of the dependence of the viscosity of generalized Newtonian fluids
on the shear rate yielded several models, see [5]. The N–function (1.14) induces the
well known power-law model

S(D) = (1 + |D|2)
q−2
2 D.

Another example is the Sutterby model

S(D) =

(
arcsinh(|D|)

|D|

)q

D

induced by the N–function (1.15).
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Lemma 1.2.3 Let N–function φ satisfies (1.12) and (1.13) then there is c > 0 such
that for any P,Q ∈ Rd×d

sym

(S(P)− S(Q))(P − Q) ≥ cφ′′(|P|+ |Q|)|P − Q|2,
|S(P)− S(Q)| ≤ cφ′′(|P|+ |Q|)|P − Q|.

Proof. See [9, Lemma 21].

For an open set Ω ⊂ Rd we define the Orlicz space Lφ(Ω) as

Lφ(Ω) =

{
v ∈ L1

loc(Ω) :

ˆ
Ω
φ (|v(x)|) dx <∞

}
.

The mapping v 7→
´
Ω φ (|v(x)|) dx : Lφ(Ω)d → [0,∞) is called a modular. Lφ(Ω)

equipped with the Luxemburg norm

∥v∥Lφ(Ω) = inf
{
λ > 0 :

ˆ
Ω
φ

(
|v(x)|
λ

)
dx ≤ 1

}
is Banach space. Some of its properties are summarized here.

Lemma 1.2.4 Let ∆2(φ) <∞ then

1. D(Ω) is dense in Lφ(Ω),

2. Lφ(Ω) is separable,

3. Lφ(Ω) is reflexive whenever ∆2(φ
∗) <∞,

4. for given f ∈ Lφ(Ω), g ∈ Lφ∗
(Ω), fg ∈ L1(Ω) and the generalized Hölder’s

inequality holds ˆ
Ω
fg ≤ 2∥f∥Lφ(Ω)∥g∥Lφ∗ (Ω).

5. For {fn} ⊂ Lφ(Ω), f ∈ Lφ(Ω) we have limn→∞
´
Ω φ(|f

n − f |) = 0 if and only if
limn→∞ ∥fn − f∥Lφ(Ω).

Proof. See [28].

We define Sobolev-Orlicz space W 1,φ(Ω) as

W 1,φ(Ω) =
{
v ∈ Lφ(Ω) : ∇v ∈ Lφ(Ω)d

}
.

equipped with the norm ∥v∥W 1,φ(Ω) = ∥v∥Lφ(Ω) + ∥∇v∥Lφ(Ω)d .
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We introduce the following function spaces

D(Ω) smooth functions compactly supported in Ω,

Lφ(Ω)/R the set of classes of functions from Lφ(Ω), functions from a class differ
from each other for an additive constant,

W 1,φ
0 (Ω) = D(Ω)

∥·∥W1,φ
,

W 1,φ
0,div (Ω) = {v ∈ D(Ω);div v = 0 in Ω}∥·∥W1,φ

,

W 1,φ
x (QT ) = {v ∈ Lφ(QT ) : ∇xv ∈ Lφ(QT )

d} with the norm ∥ · ∥
W 1,φ

x (QT )
= ∥ · ∥Lφ(QT )

+ ∥∇ · ∥Lφ(QT ),

W 1,φ
x,0 (QT ) = C∞

0 (QT )
∥·∥

W
1,φ
x ,

W 1,φ
x,0,div (QT ) = {v ∈ C∞

0 (QT );div v = 0 in QT }
∥·∥

W
1,φ
x ,

C∞(Y ) smooth, Y − periodic functions on Y,

W 1,φ(Y ) =
{
v ∈W 1,φ

loc

(
Rd
)
: v,∇v Y -periodic

}
,

D(Ω;C∞(Y )) smooth functions compactly supported in Ω with values in C∞(Y ),

L2
y,0(Ω× Y ) = {v ∈ L2(Ω× Y ) : v = 0 in Ω× YS},

Wm,2
0,divy

(Ω× Y ) = {v ∈ D(Ω;C∞(Y )) : v = 0 in Ω× YS ,divy v = 0 in Ω× Y }∥·∥Wm,2
,

Lφ(Ω× Y ) =
{
v ∈ Lφ

loc(Ω× Rd) : y 7→ v(x, y) is Y -periodic for a.a. x ∈ Ω
}
,

Lφ(QT × Y ) =
{
v ∈ Lφ

loc(QT × Rd) : y 7→ v(t, x, y) is Y -periodic for a.a. (t, x) ∈ QT

}
,

W 1,φ
y,0 (Ω× Y ) = {v ∈ Lφ(Ω× Y )d : ∇yv ∈ Lφ(Ω× Y )d×d,v = 0 in Ω× YS}

equipped with the norm ∥ · ∥
W 1,φ

y,0 (Ω×Y )
= ∥ · ∥Lφ(Ω×Y ) + ∥∇y · ∥Lφ(Ω×Y ),

W 1,φ
y,0 (QT × Y ) = {v ∈ Lφ(QT × Y )d : ∇yv ∈ Lφ(QT × Rd)d×d,v = 0 in QT × YS},

X1,φ
y,0 (Ω× Y ) =

{
v ∈W 1,φ

y,0 (Ω× Y ) : divy v = 0 in Ω× Y,

divx

(ˆ
Y

v
)

= 0 in Ω,

(ˆ
Y

v
)
· n = 0 on ∂Ω

}
,

X1,φ
y,0 (QT × Y ) =

{
v ∈W 1,φ

y,0 (QT × Y ) : divy v = 0 in QT × Y, divx

(ˆ
Y

v
)

= 0 in QT ,(ˆ
Y

v
)
· n = 0 on (0, T )× ∂Ω

}
,

Xm,2
y,0 (Ω× Y ) =

{
v ∈Wm,2(Ω× Y )d : v = 0 in Ω× YS ,divy v = 0 in Ω× Y,

divx

(ˆ
Y

v
)

= 0 in Ω,

(ˆ
Y

v
)
· n = 0 on ∂Ω

}
.

Remark 1.2.5

(i) Further, whenever a space of functions on Y , Ω×Y or QT×Y appears, it is always
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assumed that functions are Y−periodic. Whenever the subscript C appears in the
description of a function space, it stands for functions with a compact support in
a considered set.

(ii) The divergence of function from X1,φ averaged over Y with respect to x is un-
derstood as a functional on W 1,φ∗

(Ω). The normal component of a function from
X1,φ on ∂Ω is understood as an extension of a functional defined for smooth
functions on Ω× Y , for details see [17, Chapter III, sect. 2].

(iii) The properties of N-function φ listed at the beginning of the section are not suffi-
cient for the identification Lφ(A;Lφ(B)) = Lφ(A×B), where A,B are measurable
subsets of Rd. The exact condition on φ that ensures this identification is stated
in [14, Proposition 1.3]. It implies that N–function satisfying this condition has
to be a power function and therefore one looses the generality. That is the reason
why Bochner–Orlicz spaces do not appear throughout the paper. The embedding
Lφ(A×B) ⊂ L1(A;Lφ(B)) always holds, see [14, Corollary 1.1.0].

Lemma 1.2.6 Let ∆2(φ,φ
∗) <∞ and Ωε be defined by (1.6). There exist c1, c2, c3, c4 >

0 such that for any v ∈W 1,φ
0 (Ωε) and for any ε > 0

∥v∥Lφ(Ωε) ≤ c1ε∥∇v∥Lφ(Ωε) ≤ c2ε∥Dv∥Lφ(Ωε) (1.16)ˆ
Ωε

φ(|v|) ≤ c3

ˆ
Ωε

φ(ε|∇v|) ≤ c4

ˆ
Ωε

φ(ε|Dv|). (1.17)

Remark 1.2.7 One shows ∥v∥Lφ(Ω×Y ) ≤ c∥∇yv∥Lφ(Ω×Y ) for any v ∈ W 1,φ
y,0 (Ω × Y )

using similar consideration as in the proof of Lemma 1.2.6. Thus ∥∇y · ∥Lφ(Ω×Y ) is the
equivalent norm on W 1,φ

y,0 (Ω× Y ). Similarly ∥∇y · ∥Lφ(QT×Y ) is the equivalent norm on
W 1,φ

y,0 (QT × Y ).

Lemma 1.2.8 Let Ω, Y, YS , YF fulfill Assumption 1.1.5 and φ fulfill Assumption 1.2.2.
Then there is a family of linear continuous operators {T δ},

T δ :W 1,φ
y,0 (Ω× Y ) →

{
v ∈ D

(
Ω;C∞(Y )d

)
: v = 0 in Ω× YS

}
such that as δ → 0

∥∇y(T
δu − u)∥Lφ(Ω×Y ) → 0.

Furthermore, divx

(´
Y T

δu
)
= 0 in Ω if divx

(´
Y u
)
= 0 in Ω and divy T

δu = 0 in Ω×Y
if divy u = 0 in Ω × Y . We get the existence of {T δ} having corresponding properties
also for the time-dependent case. Consequently, we obtain

(1) C=
{

v ∈ D
(
Ω;C∞(Y )d

)
: v = 0 in Ω× YS

}
is dense in W 1,φ

y,0 (Ω× Y ).

(2) CD =
{

v ∈ D
(
Ω;C∞(Y )d

)
: v = 0 in Ω× YS ,divy v = 0 in Ω× Y,

divx

(´
Y v
)
= 0
}

is dense in X1,φ
y,0 (Ω× Y ).

(3) CT =
{

v∈C∞([0, T ]; D(Ω;C∞(Y )d
))

:v = 0 in Ω×YS
}

is dense in W 1,φ
y,0 (QT×Y ).

(4) CT
D =

{
v∈C∞([0, T ]; D(Ω;C∞(Y )d

))
:v = 0 in Ω×YS ,divy v = 0 in Ω× Y,

divx

(´
Y v
)
= 0
}

is dense in X1,φ
y,0 (QT × Y ).
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Lemma 1.2.9 Let ∆2(φ,φ
∗) < ∞ and Σ ⊂ Rd be a bounded Lipschitz domain. Let p

be a distribution on Σ such that ∇p ∈ (W 1,φ
0 (Σ))∗. Then p ∈ Lφ∗

(Σ)/R and there is
c = c(∆(φ,φ∗),Σ) > 0 such that

∥p∥Lφ∗ (Σ)/R ≤ c∥∇p∥
(W 1,φ

0 (Σ))∗ .

Lemma 1.2.10 Let ∆2(φ,φ
∗) < ∞, Σ ⊂ Rd be a bounded domain, ∂Σ ∈ C2 and

G ∈ Lφ(Σ)d×d. There is a unique u ∈W 1,φ
0 (Σ)d satisfying

−∆u +∇r = −divG in Σ,

div u = 0 in Σ.
(1.18)

Moreover, there exists c > 0 such that
ˆ
Σ
φ(|∇u|) ≤

ˆ
Σ
φ(c|G|). (1.19)

Let us recall definitions of annihilators:
Let X be a Banach space and M be a subspace of X. The annihilator M⊥ of M is
defined as

M⊥ = {f ∈ X∗ : ∀m ∈M f(m) = 0}.

Let X∗ be a dual space to X and U be a subspace of X∗. The annihilator U⊥ of U is
defined as

U⊥ = {x ∈ X : ∀u ∈ U u(x) = 0}.

The following characterization is needed to recover pressure in Theorems 1.1.1 and 1.1.3,
compare [4].

Lemma 1.2.11 Let Ω, Y, YS , YF fulfill Assumption 1.1.5 and N–function φ fulfill As-
sumption 1.2.2 then(

X1,φ
y,0 (Ω× Y )

)⊥
= {∇xq +∇y q̃ : q ∈W 1,φ∗

(Ω); q̃ ∈ Lφ∗
(Ω× Y ), for a.a. x ∈ Ωˆ

Y
q̃ = 0}, (1.20)(

X1,φ
y,0 (QT × Y )

)⊥
= {∇xq +∇y q̃ : q ∈W 1,φ∗

x (QT ); q̃ ∈ Lφ∗
(QT × Y ),

for a.a. (t, x) ∈ QT

ˆ
Y
q̃ = 0}. (1.21)

1.3 Two-scale convergence and its basic properties
The concept of the two-scale convergence first appeared in [26] and was later developed
in [3]. Statements presented below are adopted from [33], where the two-scale conver-
gence for Orlicz setting was introduced. Some of the statements were modified for our
purposes.

Throughout this section we assume ∆2(φ,φ
∗) <∞. We use the expression wε(x) =

w
(
x, xε

)
for a function w ∈ Lφ(Ω× Y ).

Definition 1.3.1 We say that a sequence {vε} ⊂ Lφ(Ω) converges in Lφ(Ω)
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(1) weakly two-scale to some v0 ∈ Lφ(Ω× Y ) if for any w ∈ Lφ∗
(Ω;C(Y ))

lim
ε→0

ˆ
Ω
vε(x)wε(x)dx =

ˆ
Ω

ˆ
Y
v0(x, y)w(x, y)dydx,

which we express vε 2−s−−⇀ v0.

(2) strongly two-scale to some v0 ∈ Lφ(Ω×Y ) if for any κ > 0 and w ∈ Lφ(Ω;C(Y ))
with ∥v0 − w∥Lφ(Ω×Y ) ≤ κ

2 there exists α > 0 such that for any ε ∈ (0, α)

∥vε − wε∥Lφ(Ω) ≤ κ, which we express vε 2−s−−→ v0.

Remark 1.3.2 Every weakly two-scale convergent sequence {vε} in Lφ(Ω) converges
weakly in Lφ(Ω). Indeed, the choice of the test function w independent of y yields vε ⇀´
Y v

0 in Lφ(Ω). Thus {vε} has properties of weakly convergent sequences, especially
{vε} is bounded in Lφ(Ω).

Lemma 1.3.3

(1) Let v ∈ Lφ(Ω, C(Y )) then as ε→ 0

vε
2−s−−→ v in Lφ(Ω), lim

ε→0
∥vε∥Lφ(Ω) = ∥v∥Lφ(Ω×Y ).

(2) Let ψ ∈ D
(
Ω, C∞(Y )d

)
. Then

εDψε
2−s−−→ Dyψ in Lφ(Ω),

S(εDψε)
2−s−−→ S(Dyψ) in Lφ∗

(Ω).

Proof. For the proof of the first assertion see [33, Proposition 4.3 and 4.4].
Let us show 2. The definition of ψε implies

εDψε = εDxψ
(
x,
x

ε

)
+ Dyψ

(
x,
x

ε

)
.

The first term on the right hand side converges to zero in Lφ(Ω)d×d, whereas the second
term converges strongly two-scale to Dyψ in Lφ(Ω)d×d by 1.
We denote R = 2max{∥Dxψ∥L∞(Ω×Y ), ∥Dyψ∥L∞(Ω×Y )}. Clearly, the restriction of S
on BR = {D ∈ Rd×d

sym : |D| ≤ R} is Lipschitz continuous with the constant denoted by
c(S) thanks to Lemma 1.2.3 and S(0) = 0. We note that {S(εDψε)} ⊂ Lφ∗

(Ω). We
pick κ > 0 and W ∈ Lφ∗ (

Ω;C(Y )d×d
sym

)
such that

∥S(Dyψ)−W∥Lφ∗ (Ω×Y ) ≤
κ

2
. (1.22)

Since εDψε
2−s−−→ Dyψ in Lφ(Ω)d×d

sym, we find for κ and W̃ ∈ Lφ
(
Ω;C(Y )d×d

sym

)
such that

∥Dyψ − W̃∥Lφ(Ω×Y ) ≤
κ

8c(S)
(1.23)

α1 > 0 such that for any ε ∈ (0, α1)

∥εDψε − W̃ε∥Lφ(Ω) ≤
κ

4c(S)
. (1.24)
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In fact we take ∥W̃∥L∞(Ω×Y ) ≤ R, which is possible since ∥Dyψ∥L∞(Ω×Y ) ≤ R. Next,
we estimate

∥S(εDψε)−Wε∥Lφ∗ (Ω) ≤ ∥S(εDψε)− S(W̃ε)∥Lφ∗ (Ω) + ∥S(W̃ε)−Wε∥Lφ∗ (Ω)

≤ c(S)∥εDψε − W̃ε∥Lφ(Ω) + ∥S(W̃ε)−Wε∥Lφ∗ (Ω).
(1.25)

It remains to treat the second term on the right hand side of the latter inequality. To
this end, we apply (1.22) and (1.23) to obtain

∥S(W̃ )−W∥Lφ∗ (Ω×Y ) ≤ ∥S(W̃ )− S(Dyψ)∥Lφ∗ (Ω×Y ) + ∥S(Dyψ)−W∥Lφ∗ (Ω×Y )

≤ c(S)∥W̃ − Dyψ∥Lφ(Ω×Y ) +
κ

2
≤ 5κ

8
.

(1.26)

Since S(W̃ ) ∈ Lφ∗
(Ω;C(Y )), we see that S(W̃ε) − Wε

2−s−−→ S(W̃ ) − W in Lφ∗
(Ω)

by 1. Furthermore, it follows from (1.26) that we can find α2 > 0 such that for
ε ∈ (0, α2) ∥S(W̃ε) − Wε∥Lφ∗ (Ω) ≤ 3κ

4 . Finally, using the previous observation and
(1.24) in (1.25), we infer that for ε ∈ (0, α) with α = min{α1, α2}

∥S(εDψε)−Wε∥Lφ∗ (Ω×Y ) ≤ κ.

Lemma 1.3.4 Let vε 2−s−−→ v0 in Lφ(Ω) and zε 2−s−−⇀ z0 in Lφ∗
(Ω) then

lim
ε→0

ˆ
Ω
vεzε =

ˆ
Ω

ˆ
Y
v0z0.

Proof. Let us fix κ > 0 and w ∈ Lφ(Ω;C(Y )) with ∥v0 − w∥Lφ(Ω×Y ) ≤ κ
2 . Then there

exists α1 > 0 such that ∥vε−wε∥Lφ(Ω×Y ) ≤ κ for each ε ∈ (0, α1) due to the strong two-
scale convergence of {vε}. Moreover, there is α2 > 0 such that

∣∣´
Ωwεz

ε −
´
Ω

´
Y wz

0
∣∣ ≤

κ for any ε ∈ (0, α2) due to the weak two-scale convergence of {zε}. We decompose
and estimate

D =

∣∣∣∣∣
ˆ
Ω
vεzε −

ˆ
Ω

ˆ
Y
v0z0

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
Ω
(vε − wε)z

ε

∣∣∣∣∣+∣∣∣∣∣
ˆ
Ω
zεwε −

ˆ
Ω

ˆ
Y
z0w

∣∣∣∣∣−
∣∣∣∣∣
ˆ
Ω

ˆ
Y
(v0 − w)z0

∣∣∣∣∣ = I + II + III.

Let us take α = min(α1, α2). Then for any ε ∈ (0, α) obviously II ≤ κ. According
to Remark 1.3.2 the weakly two-scale convergent sequence {zε} is bounded. Hence we
have

I ≤ 2∥vε − wε∥Lφ(Ω)∥zε∥Lφ∗ (Ω) ≤ cκ,

III ≤ 2∥v0 − w∥Lφ(Ω×Y )∥z0∥Lφ∗ (Ω×Y ) ≤ cκ.

Hence D ≤ cκ and the proof is finished.

Theorem 1.3.5 From any bounded sequence in Lφ(Ω) one can extract a subsequence,
which converges weakly two-scale in Lφ(Ω).
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Proof. See [33, Theorem 4.1].

Lemma 1.3.6 Let {vε} and {ε∇xvε} be bounded sequences in Lφ(Ω)d and Lφ(Ω)d×d

respectively. Then there exists v ∈W 1,φ
y (Ω× Y )d and a subsequence {vε′} such that as

ε′ → 0
vε′ 2−s−−⇀ v, ε′∇vε′ 2−s−−⇀ ∇yv.

Proof. As an immediate consequence of Theorem 1.3.5, we obtain the existence of the
subsequence {vε′} and functions v, ζ such that

lim
ε′→0

ˆ
Ω

vε′(x) · σ
(
x,
x

ε′

)
dx =

ˆ
Ω×Y

v(x, y) · σ(x, y)dydx, (1.27)

lim
ε′→0

ˆ
Ω
ε′∇vε′(x) : ψ

(
x,
x

ε′

)
dx =

ˆ
Ω×Y

ζ(x, y) : ψ(x, y)dydx

for any σ ∈ D
(
Ω;C∞(Y )d

)
and ψ ∈ D(Ω;C∞(Y )d×d) respectively. Integration by

parts, boundedness of {vε}, (1.27) and disintegration by parts yield

lim
ε′→0

ˆ
Ω
ε′∇vε′ : ψε′ = − lim

ε′→0

ˆ
Ω
ε′vε′ ·

[
(divx ψ)ε′ +

1

ε′
(divy ψ)ε′

]
=

− lim
ε′→0

ˆ
Ω

vε′ · (divy ψ)ε′ = −
ˆ
Ω×Y

v · divy ψ =

ˆ
Ω×Y

∇yv : ψ.

Hence one concludes ζ = ∇yv.

The following lemma states that L2−norm is lower semicontinuous with respect to
the weak two-scale convergence in L2.

Lemma 1.3.7 Let vε 2−s−−⇀ v0 in L2(Ω) then

lim inf
ε→0

∥vε∥L2(Ω) ≥ ∥v0∥L2(Ω×Y ).

Proof. See [3, Proposition 1.6.].

In the case of time dependent functions, we formulate the definition of two scale
convergence in the following way. The expression wε(t, x) = w

(
t, x, xε

)
is used for a

function w ∈ Lφ(QT × Y ).

Definition 1.3.8 We say that a sequence {vε} ⊂ Lφ(QT ) converges in Lφ(QT )

(1) weakly two-scale to some v0 ∈ Lφ(QT × Y ) if for any w ∈ Lφ∗
(QT ;C(Y ))

lim
ε→0

ˆ
QT

vε(t, x)wε(t, x)dxdt =
ˆ
QT

ˆ
Y
v0(t, x, y)w(t, x, y)dydxdt.

(2) strongly two-scale to some v0 ∈ Lφ(QT×Y ) if for any κ > 0 and w ∈ Lφ(QT ;C(Y ))
with ∥v0 − w∥Lφ(QT×Y ) ≤ κ

2 there exists α > 0 such that for any ε ∈ (0, α)
∥vε − wε∥Lφ(QT ) ≤ κ.

With this definition of the weak and strong two-scale convergence, we can formulate
analogues of Lemma 1.3.3, Lemma 1.3.4, Theorem 1.3.5 and Lemma 1.3.6 with QT

instead of Ω.

20



Chapter 1 Homogenization of incompressible generalized Stokes flows

1.4 Restriction operator
The idea of the construction and using of the restriction operator comes from [34]. We
adopt it for the Orlicz setting.

Lemma 1.4.1 Let ∆2(φ,φ
∗) < ∞. Consider the period Y ε. Put rε = ε

2

(
r0 +

1
2

)
and

denote Aε = Brε \Y ε
S (Brε denotes the ball having the radius rε and the same center as

Y ε, see the figure below). For any u ∈W 1,φ(Y ε) there exists v ∈W 1,φ(Aε), q ∈ Lφ∗
(Aε)

satisfying

−∆v = −∆u +∇q in Aε,

div v = div u +
1

|Aε|

ˆ
Y ε
S

div u dx in Aε,

v = u on ∂Brε v = 0 on Y ε
S .

the cell Y
ε

Aε

Brε

Y ε
S

Baε

2

Furthermore, there is c > 0 independent of u and ε such that
ˆ
Aε

φ (|∇v|) ≤
ˆ
Y ε

φ

(
c(|∇u|+ 1

ε
|u|)

)
. (1.28)

Proof. The function v is constructed as the sum v = w +α+ β.
Let us describe the construction of the function α ∈ W 1,φ(Aε). We choose a cut-off
function θ ∈ C∞ (Y ε) with properties:

θ ∈ [0, 1] , θ ≡ 0 in Bεr0 , θ ≡ 1 in Y ε \Brε , |∇θ| ≤
c

ε
.

For α = θu we then have

α = u on ∂Brε , α = 0 on ∂Y ε
S ,

|α| ≤ |u| in Aε,

|∇α| ≤ |∇u|+ c

ε
|u| in Aε.

The last inequality implies
ˆ
Aε

φ(|∇α|) ≤
ˆ
Aε

φ(c(|∇u|+ 1

ε
|u|)). (1.29)

The function β ∈W 1,φ
0 (Aε) is a solution of

divβ = −divα+ div u +
1

|Aε|

ˆ
Y ε
S

div u dy = F in Aε.

[13, Theorem 6.6] ensures the existence of such β together with the estimate
ˆ
Aε

φ(|∇β|) ≤
ˆ
Aε

φ(c|F |)

because the compatibility condition
´
Aε F = 0 is satisfied. We continue with the

estimate of F . We estimate with the help of Jensen’s inequality, the fact |Y ε
S | ∼ |Aε|
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and ∆2(φ) <∞

ˆ
Aε

φ

(∣∣∣∣∣−divα+ div u +
1

|Aε|

ˆ
Y ε
S

div u
∣∣∣∣∣
)

≤ c

(ˆ
Aε

φ

(
|∇u|+ 1

ε
|u|)

)
+

ˆ
Aε

φ

(
1

|Y ε
S |

ˆ
Y ε
S

|Y ε
S |

|Aε|
|div u|

))

≤ c

(ˆ
Aε

φ

(
|∇u|+ 1

ε
|u|)

)
+

ˆ
Y ε
S

φ (|∇u|)
)

≤
ˆ
Y ε

φ

(
c

(
|∇u|+ 1

ε
|u|
))

.

(1.30)

Finally, the function w ∈W 1,φ
0 (Aε) is a solution of the problem

−∆w −∇q = −∆(u −α− β) in Aε,

div w = 0 in Aε.

We employ Lemma 1.2.10 to show the existence and uniqueness of w and the estimate
ˆ
Aε

φ(|∇w|) ≤
ˆ
Aε

φ(c|∇(u −α− β)|). (1.31)

Clearly, (1.31), (1.30) and (1.29) yield (1.28).

Lemma 1.4.2 Let ∆2(φ,φ
∗) <∞. There exists a restriction operator Rε :W

1,φ
0 (Ω)d →

W 1,φ
0 (Ωε)d with properties:

Rε is linear, (1.32a)
Rε(w) = w for w ∈W 1,φ

0 (Ωε)d extended by 0 on Ω \ Ωε, (1.32b)
div w = 0 in Ω ⇒ divRε(w) = 0 in Ωε, (1.32c)
∥Rε(w)∥Lφ(Ω) ≤ c

(
∥w∥Lφ(Ω) + ε∥∇w∥Lφ(Ω)

)
, (1.32d)

∥∇Rε(w)∥Lφ(Ω) ≤ c

(
1

ε
∥w∥Lφ(Ω) + ∥∇w∥Lφ(Ω)

)
. (1.32e)

Proof. We define Rε on the cell Y ε
i ∈ Iε as

Rεu(x) =


u(x) x ∈ Y ε

i \ (Aε
i ∪ Y ε

Si)

v(x) x ∈ Aε
i

0 x ∈ Y ε
Si

where u,v are from Lemma 1.4.1 and Rεu = u on the cell Y ε
i ∈ Hε. It is easy to see

that Rε satisfies (1.32a),(1.32b) and (1.32c). We have the estimate
ˆ
Y ε
Fi

φ(|∇Rεu|) ≤
ˆ
Y ε
i \(Aε

i∪Y ε
Si)

φ(|∇u|) +
ˆ
Aε

i

φ(|∇v|) ≤
ˆ
Y ε
i

φ

(
c

(
|∇u|+ 1

ε
|u|
))

(1.33)
Summing up over i ∈ Iε ∪Hε in (1.33) yields

ˆ
Ωε

φ(|∇Rεu|) ≤
ˆ
Ω
φ

(
c

(
|∇u|+ 1

ε
|u|
))

.
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Since Rε is linear, we obtain from the latter inequality for λ > 0

ˆ
Ωε

φ

(
|∇Rεu|

λ

)
≤
ˆ
Ω
φ

(
c
(
|∇u|+ 1

ε |u|
)

λ

)
,

which implies{
λ > 0 :

ˆ
Ω
φ

(
c

λ

(
|∇ũ|+ 1

ε
|ũ|
))

≤ 1

}
⊂
{
λ > 0 :

ˆ
Ωε

φ

(
|∇Rεũ|

λ

)
≤ 1

}
.

We apply infimum over λ on both sides to obtain

∥∇Rεũ∥Lφ(Ωε) ≤
∥∥∥∥c(|∇ũ|+ 1

ε
|∇ũ|

)∥∥∥∥
Lφ(Ω)

≤ c

(
∥∇ũ∥Lφ(Ω)d×d +

1

ε
∥ũ∥Lφ(Ω)d

)
.

Hence we get (1.32e), which together with (1.16) implies (1.32d).

1.5 Homogenization of the stationary generalized Stokes
system

Definition 1.5.1 A triplet (u0, p, π) ∈ X1,φ
y,0 (Ω× Y )×W 1,φ∗

(Ω)× Lφ∗
(Ω× Y ) is said

to be a weak solution of the problem (HSS) if for any w ∈W 1,φ
y,0 (Ω× Y )

ˆ
Ω

ˆ
Y

S(Dyu0) : Dyw +

ˆ
Ω

ˆ
Y
∇xp · w −

ˆ
Ω

ˆ
Y
π divy w =

ˆ
Ω

ˆ
Y

f · w. (1.34)

Proof of Theorem 1.1.1. We use the theory of pseudomonotone mappings from [29].
First, we observe that X1,φ

y,0 (Ω×Y ) is a separable, reflexive Banach space. A mapping

A : X1,φ
y,0 (Ω× Y ) →

(
X1,φ

y,0 (Ω× Y )
)∗

defined by A(w)(v) =
ˆ
Ω

ˆ
Y

S(Dyw) : Dyv

is strictly monotone by Lemma 1.2.3. Next, we show that A is hemicontinuous, i.e.,
the function t 7→ A(w+ tv)(z) is continuous. Let us pick w,v, z ∈ X1,φ

y,0 (Ω×Y ). Using
Lemma 1.2.8, we find a sequence {zn} ∈ D

(
Ω;C∞(Y )d

)
, zn = 0 in Ω × YS such that

∥∇y(z − zn)∥Lφ(Ω×Y ) → 0. Let us fix n ∈ N. As a consequence of Vitali’s convergence
theorem, we obtain as tk → t

A(w + tkv)(zn) → A(w + tv)(zn).

Realizing that the limit in n is uniform for all k, which allows to change the order of
limits, one concludes the hemicontinuity of A. Strict monotonicity and hemicontinuity
of A imply pseudomonotonicity of A, see [29, Lemma 2.9]. For v ∈ X1,φ

y,0 (Ω × Y ) we
have v(x, ·) ∈ Lφ(Y )d,∇yv(x, ·) ∈ Lφ(Y )d×d for x ∈ Ω \N for some N ⊂ Ω, |N | = 0 by
Remark 1.2.5 (iii). Then Lemma 1.2.6 imply

ˆ
Ω

ˆ
Y
φ(|v|) ≤

ˆ
Ω

ˆ
Y
φ(c|∇yv|),

from which ∥v∥Lφ(Ω×Y ) ≤ c∥∇yv∥Lφ(Ω×Y ) follows by repeating the procedure from the
proof of (1.32e) in Lemma 1.4.2. Then the proof of coercivity of A is the same as in
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[11, Lemma 3.1.]. Thus for A pseudomonotone and coercive, we obtain according to
[29, Theorem 2.6] the existence of a u0 ∈ X1,φ

y,0 (Ω×Y ), which is unique due to the strict
monotonicity of A.
It remains to obtain a pressure in the form ∇xp+∇yπ. Let us define functional F on
W 1,φ

y,0 (Ω× Y ) by

⟨F,w⟩ =
ˆ
Ω

ˆ
Y

f · w −
ˆ
Ω

ˆ
Y

S(Dyu0) : Dyw.

Obviously, F ∈(X1,φ
y,0 (Ω×Y ))⊥. Thus F has the required form according to Lemma 1.2.11.

Definition 1.5.2 A pair (uε, pε) ∈W 1,φ
0,div (Ω

ε)d×Lφ∗
(Ωε) is said to be a weak solution

of the problem (SGSε) if for any w ∈W 1,φ
0 (Ωε)d

ε

ˆ
Ωε

S(εDuε) : Dw −
ˆ
Ωε

pε div w =

ˆ
Ωε

f · w. (1.35)

Lemma 1.5.3 Let Ωε be defined by (1.6), f ∈ Lφ∗
(Ω)d, ∆2(φ,φ

∗) < ∞ and ε > 0 be
fixed. Then there exits a unique uε ∈W 1,φ

0,div (Ω
ε)d satisfying (1.35) for all solenoidal w.

Moreover, there are c1, c2 > 0 independent of ε such thatˆ
Ωε

φ(|εDuε|) ≤ c1

ˆ
Ωε

φ∗(|f|), (1.36)
ˆ
Ωε

φ∗(|S(εDuε)|) ≤ c2

ˆ
Ωε

φ∗(|f|). (1.37)

Proof. When proving the existence of a weak solution, we show that a mapping

A :W 1,φ(Ωε)d →
(
W 1,φ(Ωε)d

)∗
defined as A(w)(v) =

ˆ
Ωε

S(εDw) : Dv.

is pseudomotone and coercive. Since one proceed in an analogous manner to the proof
of Theorem 1.1.1, details are omitted here.
Testing (SGSε) by uε, applying Young’s inequality (1.10) with α small and Korn’s
inequality (1.17) leads toˆ

Ωε

φ′ (|εDuε|) |εDuε| =
ˆ
Ωε

f · uε ≤ cα

ˆ
Ωε

φ∗ (|f|) + α

ˆ
Ωε

φ (|uε|)

≤ cα

ˆ
Ωε

φ∗ (|f|) + cα

ˆ
Ωε

φ (|εDuε|) .

Applying the property (1.7) and absorbing the last term on the right hand side to the
left yield (1.36). (1.37) follows from the property (1.8) and (1.36).

The function uε can be extended by zero in Ω \Ωε because of its zero trace on ∂Ωε.
Then all estimates from Lemma 1.5.3 are valid for Ω replacing Ωε. To find a uniformly
bounded extension of a pressure, we follow ideas of Tartar from [34].

Lemma 1.5.4 Let the assumptions of Lemma 1.5.3 be fulfilled. There is a pressure
function pε ∈ Lφ∗

(Ωε) corresponding to uε from Lemma 1.5.3. Moreover, there is an
extension P ε of pε, which satisfies for any w ∈ D(Ω)dˆ

Ω
εS(εDuε) : DRεw −

ˆ
Ω
P ε div w =

ˆ
Ω

f ·Rεw. (1.38)
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Finally, there is c > 0 independent of ε such that

∥P ε∥Lφ∗ (Ω)/R ≤ c. (1.39)

Proof. We reconstruct the pressure in a standard way, i.e., according to de Rham’s
theorem there is a distribution pε such that for any w ∈ D(Ωε)ˆ

Ωε

pε div w = ε

ˆ
Ωε

S(εDuε) : Dw +

ˆ
Ωε

f · w.

We use the apriori estimates (1.36), (1.37) and the inequality (1.17) to estimate the
right hand side of the latter inequalityˆ

Ωε

pε div w ≤ ε∥S(εDuε)∥Lφ∗ (Ω)∥Dw∥Lφ(Ωε) + ∥f∥Lφ∗ (Ω)∥w∥Lφ(Ωε)

≤ c(∥w∥Lφ(Ωε) + ε∥Dw∥Lφ(Ωε)) ≤ cε∥Dw∥Lφ(Ωε) ≤ cε∥w∥
W 1,φ

0 (Ωε)
.

(1.40)

It follows that ∇pε ∈ (W 1,φ
0 (Ωε))∗. The constant c appearing in Lemma 1.2.9 depends

on the domain, which is Ωε in this case, but the exact dependence of c on ε is not
known. So we obtain pε ∈ Lφ(Ωε/R) but not a uniform estimate of pε with respect to
ε. That is the reason why it is necessary to deal with the extension P ε. Let us define
a functional Fε by setting

⟨Fε,w⟩ = −
ˆ
Ωε

pε divRεw, w ∈W 1,φ
0 (Ω).

Then the estimates (1.40), (1.32d) and (1.32e) imply ⟨Fε,w⟩ ≤ c∥w∥
W 1,φ

0 (Ω)
because

ε < 1 is considered, thus Fε ∈
(
W 1,φ

0 (Ω)
)∗

. Due to the property (1.32c) we obtain
⟨Fε,w⟩ = 0 for w with div w = 0 in Ω. In accordance with de Rham’s theorem there
is a distribution, which we denote P ε, such that Fε = ∇P ε. The estimate (1.39) is a
consequence of (1.40) and Lemma 1.2.9. (1.38) obviously follows and integrals in this
equality can be considered over Ω instead of Ωε since Rεw = 0 in Ω \ Ωε.

Remark 1.5.5 In the same way as in [22] we can find the explicit formula for the
extension P ε, i.e.,

P ε = pε in Ωε, P ε =
1

|Y ε
Fi
|

ˆ
Y ε
Fi

pε in each Y ε
Si
.

Lemma 1.5.6 Let the assumptions of Lemma 1.5.3 be fulfilled. Let for any ε > 0 uε

be from Lemma 1.5.3 extended by zero in Ω \Ωε and P ε be the corresponding extended
pressure from Lemma 1.5.4. Then from arbitrary sequences {uε}, {P ε} one can extract
subsequences {uε′}, {P ε′} and find functions u0 ∈ W 1,φ

y,0 (Ω × Y ),S0 ∈ Lφ∗
(Ω × Y )d×d

and p ∈ Lφ∗
(Ω) such that as ε′ → 0

uε′ 2−s−−⇀ u0 in Lφ(Ω)d, (1.41)

ε′∇uε′ 2−s−−⇀ ∇yu0 in Lφ(Ω)d×d, (1.42)

ε′Duε′ 2−s−−⇀ Dyu0 in Lφ(Ω)d×d, (1.43)

S(ε′Duε′)
2−s−−⇀ S0 in Lφ∗

(Ω)d×d, (1.44)
P ε′ −−⇀ p in Lφ∗

(Ω). (1.45)
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Proof. Let us consider a sequence {uε}. According to Lemma 1.5.3 {εDuε} and thus
{uε}, due to the inequality (1.16), are bounded sequences in Lφ(Ω)d×d and Lφ(Ω)d

respectively. Then Lemma 1.3.6 ensures the existence of subsequence {uεj} and a
function u0 ∈W 1,φ

y,0 (Ω×Y ) such that (1.41), (1.42) hold with ε′ = εj . (1.43) is a direct
consequence of (1.42).
By Lemma 1.5.3 together with Theorem 1.3.5, we may assume the existence of S0 ∈
Lφ∗

(Ω× Y )d×d satisfying (1.44) with ε′ = εjk and also the existence of the existence of
P 0 ∈ Lφ∗

(Ω× Y ) such that
P ε′ 2−s−−⇀ P 0. (1.46)

Now, we set ε′ = εjkl . It remains to show that P 0 is independent of y. Let us choose
w ∈ D

(
Ω, C∞(Y )d

)
then wε(x) = w

(
x, xε

)
∈ W 1,φ

0 (Ω)d and after using εwε as a test
function in (1.38) with ε = ε′, we obtain

ˆ
Ω

S(ε′Duε′) : (ε′)2DRε′wε′ +

ˆ
Ω
P ε′ε′ div wε′ = ε′

ˆ
Ω

f ·Rε′wε′ . (1.47)

Using the estimates (1.32e) and (1.37) we infer∣∣∣∣∣
ˆ
Ω

S(ε′Duε′)(ε′)2 : DRε′wε′

∣∣∣∣∣
≤ c(ε′)2∥S(ε′Duε′)∥Lφ∗ (Ω)

(
1

ε′
∥wε′∥Lφ(Ω) + ∥∇wε′∥Lφ(Ω)

)
≤ cε′

(∥∥∥w(·, ·
ε′
)
∥∥∥
Lφ(Ω)

+ ε′
∥∥∥∇xw(·, ·

ε′
)
∥∥∥
Lφ(Ω)

+
∥∥∥∇yw(·, ·

ε′
)
∥∥∥
Lφ(Ω)

)
.

We estimate the right hand side of (1.47) using (1.32d)∣∣∣∣ε′ ˆ
Ω

f ·Rε′wε′

∣∣∣∣ ≤ cε′
(∥∥∥w(·, ·

ε′
)
∥∥∥
Lφ(Ω)

+ ε′
∥∥∥∇xw(·, ·

ε′
)
∥∥∥
Lφ(Ω)

+
∥∥∥∇yw(·, ·

ε′
)
∥∥∥
Lφ(Ω)

)
.

Finally, we have
ˆ
Ω
P ε′ε′ div wε′ =

ˆ
Ω
P ε′(x)ε′ divx w

(
x,
x

ε′

)
dx+

ˆ
Ω
P ε′(x)divy w

(
x,
x

ε′

)
dx

and using (1.39)∣∣∣∣ˆ
Ω
P ε′(x)ε′ divx w

(
x,
x

ε′

)
dx
∣∣∣∣ ≤ cε′

∥∥∥divx w
(
·, ·
ε′

)∥∥∥
Lφ(Ω)

.

Since
{

w
(
x, x

ε′

)}
,
{
∇xw

(
x, x

ε′

)}
,
{
∇yw

(
x, x

ε′

)}
,
{

divx w
(
x, x

ε′

)}
are bounded with re-

spect to ε′ in Lφ−norm, we obtain after limit passage ε′ → 0 in (1.47) using (1.46)

∀w ∈ D
(
Ω, C∞(Y )d

) ˆ
Ω

ˆ
Y
P 0 divy w(x, y) = 0.

Hence we deduce that P 0(x, y) = p(x).
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Lemma 1.5.7 The limit function u0 from Lemma 1.5.6 satisfies

divy u0 = 0 in Ω× Y, (1.48)

divx

(ˆ
Y

u0

)
= 0 in Ω, (1.49)(ˆ

Y
u0

)
· n = 0 on ∂Ω, (1.50)

u0 = 0 in Ω× YS . (1.51)

Proof. Let us show (1.48). We choose arbitrary w ∈ D(Ω;C∞(Y )). We denote
wε′(x) = w

(
x, x

ε′

)
, apply in (1.41) a test function ε′∇wε′ , integrate by parts and use

the periodicity of u0 and w

lim
ε′→0

ˆ
Ω

uε′ · ε′∇wε′ =

ˆ
Ω

ˆ
Y

u0 · ∇yw = −
ˆ
Ω

ˆ
Y

divy u0w.

The first term of the latter chain of equalities is obviously zero due to the solenoidality
of uε′ . Hence we conclude (1.48).
To show (1.49), we use the solenoidality of uε′ and apply in (1.41) a test function ∇w
for w ∈ D(Ω) similarly as in the previous case.
To show (1.50), we use the zero trace of uε′ , the solenoidality of uε′ and apply in (1.41)
a test function ∇w for w ∈ C∞(Ω̄) and integrate by parts to obtain

0 = lim
ε′→0

ˆ
Ω

uε′ · ∇xw =

ˆ
Ω

ˆ
Y

u0 · ∇xw = −
⟨

divx

(ˆ
Y

u0

)
, w

⟩
+

ˆ
∂Ω

(ˆ
Y

u0

)
· nw.

To conclude (1.50), it remains to employ (1.49). Moreover, (1.49) ensures that (1.50)
has a good meaning in the sense of traces.
To show (1.51), we choose arbitrary w ∈ C∞(Y )d such that w = 0 in YF and z ∈ D(Ω).
Then using zwε′ as a test function in (1.41), we have

lim
ε′→0

ˆ
Ω

uε′ · zwε′ =

ˆ
Ω

ˆ
YS

u0 · zw.

We decompose the integral under the limit as
ˆ
Ωε

uε′ · zwε′ +

ˆ
Ω\Ωε

uε′ · zwε′ ,

remind that uε′ is extended by zero in Ω \ Ωε and realize that wε′ = 0 in Ωε to get
ˆ
Ω

ˆ
YS

u0 · zw = 0.

Hence (1.51) immediately follows.

Proof of Theorem 1.1.2. Let us choose w ∈ D
(
Ω, C∞(Y )d

)
with w = 0 in Ω× YS and

divy w = 0 in Ω × Y . Then we have wε′(x) = w
(
x, x

ε′

)
∈ W 1,φ

0 (Ω)d and wε′ = 0 in
Ω \ Ωε. Taking wε′ as a test function in (1.38) with ε = ε′ yields

ˆ
Ω

S(ε′Duε′) : ε′Dwε′ −
ˆ
Ω
P ε′ div wε′ =

ˆ
Ω

f · wε′
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due to (1.32b). When passing to the limit ε′ → 0, we apply the convergences (1.43)
and (1.45). We get the limit system for any w ∈ D

(
Ω, C∞(Y )d

)
with w = 0 in Ω×YS

and divy w = 0 in Ω× Y
ˆ
Ω

ˆ
Y

S0 : Dyw −
ˆ
Ω

ˆ
Y
pdivx w =

ˆ
Ω

ˆ
Y

f · w.

Using de-Rham’s theorem yields the existence of a distribution π(x, y) such that for
any w ∈ D

(
Ω, C∞(Y )d

)
with w = 0 in Ω× YSˆ

Ω

ˆ
Y

S0 : Dyw −
ˆ
Ω

ˆ
Y
pdivx w −

ˆ
Ω

ˆ
Y
π divy w =

ˆ
Ω

ˆ
Y

f · w, (1.52)

which is equivalent to the weak formulation of (HSS) due to Lemma 1.2.8. This turns
out if we identify the two-scale limit S0. To this end, we use the monotonicity of S and
Minty’s trick. We test the system (SGSε) by uε′ and obtain

ˆ
Ω

S(ε′Duε′) : ε′Duε′ =

ˆ
Ω

f · uε′ .

We pass to the limit as ε′ → 0 in the latter equality using the convergence (1.41)

lim
ε′→0

ˆ
Ω

S(ε′Duε′) : ε′Duε′ =

ˆ
Ω

ˆ
Y

f · u0. (1.53)

Putting w = u0 in (1.52), which is allowed due to Lemma 1.2.8, yields
ˆ
Ω

ˆ
Y

S0 : Dyu0 =

ˆ
Ω

ˆ
Y

f · u0. (1.54)

Let us choose ψ ∈ D
(
Ω, C∞(Y )d

)
. The monotonicity of S allows us to write

0 ≤
ˆ
Ω
(S(ε′Duε′)− S(ε′Dψε′)) : ε

′D(uε′ −ψε′)

=

ˆ
Ω

S(ε′Duε′) : ε′Duε′ − S(ε′Dψε′) : ε
′Duε′ − S(ε′Duε′) : ε′Dψε′

+ S(ε′Dψε′) : ε
′Dψε′ = Iε′ + IIε′ + IIIε′ + IVε′

(1.55)

We want to pass to the limit ε′ → 0. Using (1.53) and (1.54), we obtain

lim
ε→0

Iε′ =

ˆ
Ω

ˆ
Y

S0 : Dyu0.

Lemma 1.3.3 1. and the weak two-scale convergence of ε′Duε′ to Dyu0 yields

lim
ε′→0

IIε′ =

ˆ
Ω

ˆ
Y

S(Dyψ) : Dyu0.

The weak two-scale convergence of S(ε′Duε′) to S0 together with Lemma 1.3.3 1. yields

lim
ε′→0

IIIε′ =

ˆ
Ω

ˆ
Y

S0 : Dyψ.

Finally, the Lemma 1.3.3 1. and 2. yield

lim
ε′→0

IVε′ =

ˆ
Ω

ˆ
Y

S(Dyψ) : Dyψ.
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This together with the estimate (1.53) allows us to pass to the limit in (1.55) and
we arrive at

0 ≤
ˆ
Ω

ˆ
Y
(S0 − S(Dyψ)) : Dy(u0 −ψ).

Since ψ was arbitrary, we can set ψ = u0 + λz, where λ > 0, z ∈ D
(
Ω;C∞(Y )d

)
and

Minty’s trick ensures that S0(x, y) = φ′(|Dyu0(x, y)|) Dyu0(x,y)
|Dyu0(x,y)| almost everywhere in

Ω× Y .
Since we know that the weak solution (u0, p, π) of (HSS) is unique and we can extract
from every subsequence of {(uε, P ε)} a convergent subsequence with the limit (u0, p),
we have {(uε, P ε)} → (u0, p) as ε→ 0+.

1.6 Homogenization of the nonstationary generalized Sto-
kes system

Definition 1.6.1 A triplet (u0, p, π) ∈
(
L∞ (0, T ;L2(Ω× Y )d

)
∩X1,φ

y,0 (QT × Y )
)
×

W 1,φ∗
x (QT ) × Lφ∗

(QT × Y ) with u0
t ∈ (W 1,φ

y,0 (QT × Y ))∗ is said to be a weak solution
of the problem (HNS) if for any w ∈W 1,φ

y,0 (QT × Y )

⟨
u0
t ,w

⟩
+

ˆ
QT

ˆ
Y

S(Dyu0) : Dyw +

ˆ
QT

ˆ
Y
∇xp · w −

ˆ
QT

ˆ
Y
π div w =

ˆ
QT

ˆ
Y

f · w

and
lim
t→0

∥u0(t)− a0∥L2(Ω×Y ) = 0. (1.56)

Proof of Theorem 1.1.3. Let {wi} ⊂ Xm,2
y,0 (Ω× Y ) be such that for

Vn = span{w1, . . .wn}∪∞
n=1 Vn is dense in Xm,2

y,0 (Ω × Y ). Here m > 1 + d
2 , which ensures the validity of

the embedding Wm,2(Ω × Y )d ↪→ C1(Ω× Y )d. Furthermore, we suppose that {wi} is
orthonormal in L2(Ω× Y )d. Proceeding similarly as in [23, Theorem 4.11], one shows
that {wi} is formed by solutions of the spectral problem

(wi,v)Wm,2(Ω×Y ) = λi(wi,v)L2(Ω×Y ) for any v ∈ Xm,2
y,0 (Ω× Y ),

where (·, ·)Wm,2(Ω×Y ), (·, ·)L2(Ω×Y ) stands for the scalar product on Wm,2(Ω × Y ) and
L2(Ω × Y ) respectively. We note that Xm,2

y,0 (Ω × Y ) is dense in X1,φ
y,0 (Ω × Y ) since

Xm,2
y,0 (Ω × Y ) ⊃ CD, see Lemma 1.2.8. As W 1,φ

y,0 (Ω × Y ) ∩ L2(Ω × Y )d ⊃ C, one
shows the density of W 1,φ

y,0 (Ω× Y ) ∩ L2(Ω× Y )d in L2
y,0(Ω× Y )d by repeating some of

considerations from the proof of Lemma 1.2.8. Let us denote Vn = C1([0, T ], Vn) and
X=

∪∞
n=1 Vn

∥·∥C1(QT×Y ) . Then X is dense in X1,φ
y,0 (QT × Y ). We consider a sequence

{fn} ⊂ C∞ ([0, T ]; D(Ω)d
)

such that fn → f in Lφ∗
(QT )d. For fixed n ∈ N we define an

approximation u0,n by

u0,n(t, x, y) =

n∑
i=1

dni (t)wi(x, y).
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Coefficients dni : [0, T ] → Rd are chosen in such a way that for all i = 1, . . . , n

dni (0) =

ˆ
Ω×Y

a0 · wi,

ˆ
Ω×Y

u0,n
t · wi +

ˆ
Ω×Y

S(Dyu0,n) : Dywi =

ˆ
Ω×Y

fn · wi, t ∈ [0, T ].

(1.57)

Remark that (1.57)1 means that u0,n(0) = an is the projection of a0 on Vn in L2(Ω×Y )d

and thus an → a0 in L2(Ω× Y )d. We denote for i = 1, . . . , n

(gn(dn(t)))i =

ˆ
Ω×Y

fn · wi − S
(

n∑
k=1

dnk(t)Dywk

)
: Dywi

and rewrite (1.57)2 using the orthogonality of {wi} in L2(Ω× Y )d as

ḋn = gn(dn).

Since the right hand side of the latter system is continuous in t and dn, there exists
t∗ ∈ (0, T ) and a solution dn ∈ C1[0, t∗) of the above system with the initial condition
(1.57)1 according to the theory for ordinary differential equations.
Let us derive first apriori estimates. We multiply the system (1.57) by dni (t), sum over
i and obtain for any t ∈ (0, T )

ˆ t

0

d
dt∥u0,n(s)∥2L2(Ω×Y ) +

ˆ t

0

ˆ
Ω×Y

S(Dyu0,n) : Dyu0,n =

ˆ t

0

ˆ
Ω×Y

fn · u0,n. (1.58)

We apply (1.7), Young’s inequality (1.10) with small δ and Korn’s inequality (1.17) to
get

∥u0,n(t)∥2L2(Ω×Y ) + c

ˆ t

0

ˆ
Ω×Y

φ(|Dyu0,n|)

≤ ∥an∥2L2(Ω×Y ) + cδ

ˆ t

0

ˆ
Ω×Y

φ∗(|fn|) + δ

ˆ t

0

ˆ
Ω×Y

φ(|u0,n|)

≤ ∥an∥2L2(Ω×Y ) + cδ

ˆ t

0

ˆ
Ω×Y

φ∗(|fn|) + cδ

ˆ t

0

ˆ
Ω×Y

φ(|Dyu0,n|).

Hence we have the apriori estimate

sup
t∈[0,t∗]

∥u0,n(t)∥2L2(Ω×Y ) +

ˆ T

0

ˆ
Ω×Y

φ(|Dyu0,n|) ≤ c. (1.59)

Since the constant on the right hand side of (1.59) is independent of t∗, we obtain from
the estimate of the first term on the left hand side that the coefficients dni exist on the
interval (0, T ) and (1.59) holds with t∗ = T . From the estimate (1.59), we also deduce

ˆ
QT×Y

φ∗ (S(Dyu0,n)
)
≤ c

thanks to (1.8). We deduce from (1.57)2 that for any w ∈ X, in fact for any w ∈
X1,φ

y,0 (QT × Y ) because of the density of X in X1,φ
y,0 (QT × Y )

ˆ
QT×Y

u0,n
t · w +

ˆ
QT×Y

S(Dyu0,n) : Dyw =

ˆ
QT×Y

fn · w. (1.60)
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Hence the apriori estimates imply the uniform estimate

∥u0,n
t ∥(X1,φ

y,0 (QT×Y ))
∗ ≤ c.

In fact we have the uniform estimate of u0,n
t in W 1,φ

y,0 (QT ×Y ). Since X1,φ
y,0 (QT ×Y ) is a

subspace of W 1,φ
y,0 (QT ×Y ), we find an extension of u0,n

t , for which we keep the notation,
on W 1,φ

y,0 (QT × Y ) with the same norm as u0,n
t employing Hahn-Banach theorem. As a

consequence of the uniform estimate of u0,n
t and (1.59), we obtain that as n → ∞, up

to subsequences,

u0,n ⇀∗ u0 in L∞
(
0, T ;L2(Ω× Y )d

)
,

Dyu0,n ⇀ Dyu0 in Lφ(QT × Y ),

S(Dyu0,n)⇀ S in Lφ∗
(QT × Y ),

u0,n
t ⇀ u0

t in
(
W 1,φ

y,0 (QT × Y )
)∗
.

(1.61)

Having these convergences, we can perform the limit passage n→ ∞ in (1.60)⟨
u0
t ,w

⟩
+

ˆ
QT×Y

S : Dyw =

ˆ
QT×Y

f · w (1.62)

for any w ∈ X1,φ
y,0 (QT × Y ).

Next, we identify S. We observe that u0,n(T ) ⇀ u0(T ) in L2(Ω × Y )d, which
immediately follows recalling that u0,n(T ) = an +

´ T
0 u0,n

t , the weak convergence of
{u0,n

t } in
(
X1,φ

y,0 (QT × Y )
)∗

and {an} in L2(Ω × Y )d. Hence using the weak lower
semicontinuity of L2−norm, we obtain from (1.58)

lim sup
n→∞

ˆ
QT

ˆ
Y

S(Dyu0,n) : Dyu0,n

≤ lim
n→∞

ˆ
QT

ˆ
Y

fn · u0,n + lim
n→∞

∥an∥2L2(QT×Y ) + lim sup
n→∞

{−∥u0,n(T )∥2L2(QT×Y )}

≤
ˆ
QT

ˆ
Y

f · u0 + ∥a0∥2L2(QT×Y ) − ∥u0(T )∥2L2(QT×Y ).

Comparing this with (1.62) tested by u0 yields

lim sup
n→∞

ˆ
QT

ˆ
Y

S(Dyu0,n) : Dyu0,n ≤
ˆ
QT

ˆ
Y

S : Dyu0,

from which S = S(Dyu0) follows by Minty’s trick.
The last task is to show the attainment of an initial value. Integrating (1.57) over

(0, t), we get for almost all t ∈ (0, T )

ˆ
Ω×Y

(u0,n(t)− u0,n(0)) · wi +

ˆ t

0

ˆ
Ω×Y

S(Dyu0,n) : Dywi =

ˆ t

0

ˆ
Ω×Y

fn · wi.

Applying convergences (1.61), we perform the limit passage n → ∞ and then use
density of

∪∞
n=1 Vn in Xm,2

y,0 (Ω× Y ) to obtain for any w ∈ Xm,2
y,0 (Ω× Y )

ˆ
Ω×Y

(u0(t)− a0) · w +

ˆ t

0

ˆ
Ω×Y

S : Dyw =

ˆ t

0

ˆ
Ω×Y

f · w,

31



Chapter 1 Homogenization of incompressible generalized Stokes flows

which implies for any w ∈ Xm,2
y,0 (Ω× Y )

ˆ
Ω×Y

(u0(t)− a0) · w → 0 as t→ 0+. (1.63)

Using the density of Xm,2
y,0 (Ω × Y ) in L2(Ω × Y )d ∩ X1,φ

y,0 (Ω × Y ), we see that the
latter convergence holds for any w ∈ L2(Ω × Y )d ∩X1,φ

y,0 (Ω × Y ). Since for t ∈ (0, T )

u0(t) − a0 ∈ L2(Ω × Y )d ∩ X1,φ
y,0 (Ω × Y ), which is a closed subspace of Hilbert space

L2(Ω× Y )d ∩W 1,φ
y,0 (Ω× Y ), we have

ˆ
Ω×Y

(u0(t)− a0) · w⊥ = 0

for w⊥ ∈
(
L2(Ω× Y )d ∩X1,φ

y,0 (Ω× Y )
)⊥

. Thus (1.63) holds for any w ∈ L2(Ω×Y )d ∩
W 1,φ

y,0 (Ω × Y ), which is dense in L2
y,0(Ω × Y )d. Since u0(t) − a0 = 0 in Ω × YS , (1.63)

holds for any w ∈ L2(Ω×Y )d, i.e., u0(t)⇀ a0 in L2(Ω×Y )d as t→ 0+, which implies
due to the weak lower semicontinuity of the norm

lim inf
t→0

∥u0(t)∥L2(Ω×Y ) ≥ ∥a0∥L2(Ω×Y ). (1.64)

Employing convergences (1.61) and the weak lower semicontinuity of the L2−norm
in (1.58), where the second term is neglected since it is nonnegative, yields

∥u0(t)∥2L2(Ω×Y ) − ∥a0∥2L2(Ω×Y ) ≤ 2

ˆ
Ω×Y

f · u0,

which implies
lim sup

t→0
∥u0(t)∥L2(Ω×Y ) ≤ ∥a0∥L2(Ω×Y ). (1.65)

Clearly, (1.64) and (1.65) imply limt→0+ ∥u0(t)∥2L2(Ω×Y ) = ∥a0∥2L2(Ω×Y ), from which
(1.56) follows.
It remains to find a pressure in the form ∇xp(t, x)+∇yπ(t, x, y). Let us define functional
F on W 1,φ

y,0 (QT × Y ) by

⟨F,w⟩ =
ˆ T

0

ˆ
Ω

ˆ
Y

f · w −
ˆ
Ω

ˆ
Y

S(Dyu0) : Dyw −
ˆ T

0

ˆ
Ω

ˆ
Y

u0
t · w.

Obviously, F ∈
(
X1,φ

y,0 (QT × Y )
)⊥

. Thus F has the required form according to
Lemma 1.2.11.

Definition 1.6.2 Let us denoteQε
T = (0, T )×Ωε. A pair (uε, pε) ∈

(
L∞ (0, T ;L2(Ωε)d

)
∩W 1,φ

x,0,div (Q
ε
T )

d
)
× Lφ∗

(Qε
T ) with uε

t ∈
(
W 1,φ

x,0 (Q
ε
T )

d
)∗

is said to be a weak solution of
the problem (NGSε) if for any w ∈W 1,φ

x,0 (Q
ε
T )

⟨uε
t ,w⟩+ ε

ˆ T

0

ˆ
Ωε

S(εDuε) : Dw −
ˆ T

0

ˆ
Ωε

pε div w =

ˆ T

0

ˆ
Ωε

f · w (1.66)

and limt→0 ∥uε(t)− aε∥L2(Ωε) = 0.
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Lemma 1.6.3 Let ∆2(φ,φ
′) < ∞, Ωε be defined by (1.6), f ∈ Lφ∗

((0, T ) × Ω)d, aε

be the same as in Theorem 1.1.3 and ε > 0 be fixed. Then there exists a unique uε ∈
L∞ (0, T ;L2(Ωε)d

)
∩ W 1,φ

x,0,div (Q
ε
T ) satisfying (1.66) for any w solenoidal. Moreover,

there are constants c1, c2, c3, c4 > 0 independent of ε such that

sup
t∈(0,T )

∥uε(t)∥2L2(Ωε) +

ˆ T

0

ˆ
Ωε

φ(|εDuε|) ≤ c1, (1.67)
ˆ T

0

ˆ
Ωε

φ∗(φ′(|εDuε|)) ≤ c2, (1.68)

∥uε
t∥2L2((0,T )×Ωε) + sup

t∈(0,T )

ˆ
Ωε

φ(|εDuε(t)|) ≤ c3, (1.69)

∥uε
t∥L∞(0,T ;L2(Ωε)) ≤ c4. (1.70)

Proof. To show the existence of a weak solution uε, we can follow the lines of the proof
of Theorem 1.1.3 with minor changes. Let {wi} ⊂Wm,2

0,div (Ω
ε)d be such that for

Vn = span{w1, . . .wn}∪∞
n=1 Vn is dense in Wm,2

0,div (Ω
ε)d, again m > 1 + d

2 . Moreover, we suppose that {wi} is
orthonormal in L2(Ωε)d and the projection Pn :Wm,2

0,div (Ω
ε)d → Vn is bounded uniformly

in n ∈ N and ε > 0, see [23, Theorem 4.11]. Let us denote Vn = C1([0, T ], Vn) and
X =

∪∞
n=1 Vn

∥·∥C1(QT×Y ) . Then X is dense in W 1,φ
x,0,div (Q

ε
T ). We consider sequences

{fn}, {fnt } ⊂ C∞ ([0, T ]; D(Ωε)d
)

such that fn → f in Lφ∗
(QT

ε )
d, fnt → ft in L2(QT

ε )
d

and ∥fn(0)∥L2(Ωε) ≤ c.
For fixed n ∈ N we define an approximation uε,n by

uε,n(t, x) =

n∑
i=1

dε,ni (t)wi(x).

Coefficients dε,ni : [0, T ] → Rd are chosen in such a way that for all i = 1, . . . , n

dε,ni (0) =

ˆ
Ωε

aε · wi,

ˆ
Ωε

∂tuε,n · wi +

ˆ
Ωε

S(εDuε,n) : εDwi =

ˆ
Ωε

fn · wi t ∈ [0, T ].

(1.71)

Note that (1.71)1 means uε,n(0) = Pnaε. Similarly as in the proof of Theorem 1.1.3,
one deduces

uε,n ⇀∗ uε in L∞
(
0, T ;L2(Ωε)d

)
,

uε,n ⇀ uε in Lφ(Qε
T )

d,

Duε,n ⇀ Duε in Lφ(Qε
T )

d×d,

uε,n
t ⇀ uε

t in
(
W 1,φ

x,0 (QT )
)∗
.

Due to the weak∗ lower semicontinuity of the norm in L∞ (0, T ;L2(Ωε)d
)

and the weak
lower semicontinuity of the modular, see [10, Theorem 2.2.8], we can conclude (1.67).
The fact that uε fulfills the weak formulation as well as attaining the initial value is
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shown similarly as in the proof of Theorem 1.1.3.
The estimate (1.68) is an immediate consequence of (1.67) due to the property (1.8).
To derive (1.69), we multiply (1.71) by ḋε,ni (t), sum over i and obtain for any t ∈ (0, T )

ˆ t

0

ˆ
Ωε

|∂tuε,n|2 +
ˆ t

0

ˆ
Ωε

∂tφ(|εDuε,n|) =
ˆ t

0

ˆ
Ωε

fn∂tuε,n.

Young’s inequality yields
ˆ t

0

ˆ
Ωε

|∂tuε,n|2 +
ˆ
Ωε

φ(|εDuε,n(t)|) ≤
ˆ
Ωε

φ(|εDPnaε|) +
ˆ t

0

ˆ
Ωε

cδ|fn|2 + δ|∂tuε,n|2,

from which (1.69) follows with the help of (1.4) after the limit passage n → ∞. To
show (1.70), we first differentiate the system (1.71) with respect to t to obtainˆ

Ωε

∂ttuε,n · wi +

ˆ
Ωε

φ′′(εDuε,n)ε2D∂tuε,n : Dwi =

ˆ
Ωε

∂tfn · wi

then we multiply the latter system by ḋε,ni (t), sum over i and apply Hölder’s inequality
to get

d
dt∥∂tu

ε,n∥2L2(Ωε) +

ˆ
Ωε

φ′′(|εDuε,n|)ε2|D∂tuε,n|2 ≤ 1

2
∥∂tfn∥2L2(Ωε) +

1

2
∥∂tuε,n∥2L2(Ωε).

The second term on the left hand side is nonnegative since φ ∈ C2((0,∞)) is convex
thus Gronwall’s inequality implies

∥∂tuε,n(t)∥2L2(Ωε) ≤ c(∥∂tfn∥2L2(Ωε) + ∥∂tuε,n(0)∥2L2(Ωε)).

Finally, we need to estimate the last term on the right hand side. To this end, we take
(1.71) for t = 0, multiply it by ˙dε,ni (0), sum over i and getˆ

Ωε

|∂tuε,n(0)|2 =
ˆ
Ωε

fn(0) · ∂tuε,n(0)− ε

ˆ
Ωε

S(εDuε,n(0)) : D∂tuε,n(0).

We employ the integration by parts, Young’s and Korn’s inequality to obtainˆ
Ωε

|∂tuε,n(0)|2 ≤ c

ˆ
Ωε

|fn(0)|2 + δ

ˆ
Ωε

|∂tuε,n(0)|2

+ cε2
ˆ
Ωε

|div S(εDuε,n(0))|2 + δ

ˆ
Ωε

|∂tuε,n(0)|2.

The final step is to estimate the third term on the right hand side. Since we have
(1.9), (1.13), the embedding (1.3), precisely ∥ · ∥L∞(Ωε) ≤ cεm−1− d

2 ∥∇m−1 · ∥L2(Ωε), the
inequality ∥ · ∥L2(Ωε) ≤ cεm−1∥∇m−1 · ∥L2(Ωε), which are derived in the same way as
Lemma 1.2.6, and the uniform boundedness of the projection on Wm,2(Ωε) with respect
to n and ε, we inferˆ

Ωε

|εdiv S(εDuε,n(0))|2

≤ cε2
ˆ
Ωε

(φ′′(|εDPnaε|))2|ε∇DPnaε|2 ≤ cε2(φ′′(∥εDPnaε∥L∞(Ωε)))
2∥ε∇DPnaε∥2L2(Ωε)

≤ cε2m max{∥εDPnaε∥2(q1−2)
L∞(Ωε), ∥εDPnaε∥2(q2−2)

L∞(Ωε)}∥∇
m−1DPnaε∥2L2(Ωε)

≤ cε2m max{ε(2m−d)(q1−2)∥∇m−1DPnaε∥2(q1−1)
L2(Ωε)

, ε(2m−d)(q2−2)∥∇m−1DPnaε∥2(q2−1)
L2(Ωε)

}

≤ cmax{∥εm− d
2∇maε∥2(q1−1)

L2(Ωε)
, ∥εm− d

2∇maε∥2(q2−1)
L2(Ωε)

} ≤ c.

34



Chapter 1 Homogenization of incompressible generalized Stokes flows

We also used ε < 1 and (1.4). We apply the assumption (1.1), the estimate (1.69) and
pass to the limit n→ ∞ to conclude (1.70).

As in the stationary case, the zero boundary condition for uε in (0, T )×∂Ωε allows us
to extend functions uε by zero to (0, T )× (Ω \Ωε) and all estimates from Lemma 1.6.3
hold with Ω replacing Ωε. When extending pressure, we follow again the approach,
which comes from [34] and was modified for unsteady situation in [4].

Lemma 1.6.4 Let the assumptions of Lemma 1.6.3 be fulfilled and the embedding (1.2)
hold. There is a pressure function pε ∈ L∞(I;Lφ∗

(Ωε)/R) corresponding to uε from
Lemma 1.6.3. Moreover, there is an extension P ε of pε in (NGSε), which satisfies for
a.a. t ∈ (0, T ) and any w ∈ D(Ω)d

ˆ
Ω

uε
t ·Rεw +

ˆ
Ω
εS(εDuε) : DRεw −

ˆ
Ω
P ε div w =

ˆ
Ω

f ·Rεw (1.72)

Finally, there is c > 0 independent of ε such that

∥P ε∥L∞(I;Lφ∗ (Ω)/R) ≤ c. (1.73)

Proof. Since we know uε
t ∈ L∞ (0, T ;L2(Ω)d

)
, we can reconstruct the pressure at almost

every time level t ∈ (0, T ) as in the steady case. We obtain for any w ∈W 1,φ
0 (Ωε) and

almost all t ∈ (0, T )

ˆ
Ωε

pε(t)div w =

ˆ
Ωε

uε
t (t) · w − ε

ˆ
Ωε

S(εDuε(t)) : Dw +

ˆ
Ωε

f(t) · w.

We estimate the right hand side of the previous inequality using the apriori estimates
(1.67)-(1.70)
ˆ
Ωε

pε(t)div w ≤ ∥uε
t∥L∞(I,L2(Ω))∥w∥L2(Ωε) + ε∥S(εDuε)∥L∞(I,Lφ∗ (Ω))∥Dw∥Lφ(Ωε)

+ ∥f∥L∞(I,Lφ∗
(Ω))∥w∥Lφ(Ωε).

We have due to the assumption (1.2)
ˆ
Ωε

pε(t)div w ≤ c(∥w∥Lφ(Ωε) + ε∥Dw∥Lφ(Ωε)) (1.74)

and similarly as in the stationary case, we get the regularity of pε.
Using the restriction operator as in the stationary case, we define an extension P ε for
almost all t ∈ (0, T ) and w ∈W 1,φ

0 (Ω) by
ˆ
Ω
P ε(t)div w =

ˆ
Ωε

pε(t)divRεw. (1.75)

Then we use (1.74) to conclude the uniform estimate (1.73).
(1.72) easily follows from (1.75).

Lemma 1.6.5 Let the assumptions of Lemma 1.6.3 be fulfilled. Let for any ε > 0 uε

be from Lemma 1.6.3 extended by zero in (0, T )× (Ω \ Ωε) and P ε be the corresponding
extended pressure from Lemma 1.6.4. Then from arbitrary sequences {uε}, {P ε} one
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can extract subsequences {uε′}, {P ε′} and find functions u0 ∈ W 1,φ
y,0 (QT × Y ),S0 ∈

Lφ∗
(QT × Y )d×d and p ∈ Lφ∗

(QT ) such that as ε→ 0

uε′ 2−s−−⇀ u0 in Lφ(QT )
d, (1.76)

ε′Duε′ 2−s−−⇀ Dyu0 in Lφ(QT )
d×d, (1.77)

uε′
t

2−s−−⇀ u0
t in L2(QT )

d, (1.78)

uε′(T )
2−s−−⇀ u0(T ) in L2(Ω)d, (1.79)

S(ε′Duε′)
2−s−−⇀ S0 in Lφ∗

(QT )
d×d, (1.80)

P ε′ −−⇀ p in Lφ∗
(QT ). (1.81)

Proof. The proof of (1.76),(1.77) and (1.80) is a complete analogue to the stationary
case using the estimate (1.67), the version of Theorem 1.3.5 and Lemma 1.3.6 respec-
tively, for time-dependent functions. One can show (1.78) in the similar manner as in
Lemma 1.3.6. When showing (1.79), we recall the identity

uε′(T ) = uε′(0) +

ˆ T

0
uε′
t = aε′ +

ˆ T

0
uε′
t , (1.82)

which implies for any w ∈ L2(Ω× Y )d

ˆ
Ω

uε′(T ) · w
(
x,
x

ε′

)
=

ˆ
Ω

[
aε′ +

ˆ T

0
uε′
t

]
· w
(
x,
x

ε′

)
.

Using the assumption (1.5) and the convergence (1.78) the right hand side of the
latter inequality converges as ε′ → 0 to

ˆ
Ω×Y

[
a0 +

ˆ T

0
u0
t

]
· w (x, y) =

ˆ
Ω×Y

u0(T ) · w(x, y),

where we applied (1.82) for u0. Hence one conclude (1.79). We obtain (1.81) as an
immediate consequence of Theorem 1.3.5 and the estimate (1.73), which implies the
uniform estimate of P ε in Lφ∗

(QT ). To show that the weak two-scale limit P 0 is
independent of y we proceed analogously as in the proof of Lemma 1.5.6.

Lemma 1.6.6 The limit function u0 from Lemma 1.6.5 satisfies

divy u0 = 0 in QT × Y,

divx

(ˆ
Y

u0

)
= 0 in QT ,(ˆ

Y
u0

)
· n = 0 on (0, T )× ∂Ω,

u0 = 0 in QT × YS .

Proof. The proof is analogous to the proof of (1.48)-(1.51).

Proof of Theorem 1.1.4. In (1.72) with ε = ε′, we choose the same test function wε′ as
in the proof of Theorem 1.1.2, multiply by z ∈ C∞([0, T ]) and integrate by parts to
obtainˆ T

0

ˆ
Ω

uε′
t · zwε′ +

ˆ T

0

ˆ
Ω
ε′S(ε′Duε′) : zDwε′ −

ˆ T

0

ˆ
Ω
P ε′z div wε′ =

ˆ T

0

ˆ
Ω

f · zwε′ .
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We employ the convergences (1.76)-(1.81) when passing to the limit ε′ → 0 to infer that
for w ∈ D

(
Ω;C∞(Y )d

)
with divy w = 0 in Ω×Y and w = 0 in Ω×YS , z ∈ C∞([0, T ])

ˆ T

0

ˆ
Ω

ˆ
Y

u0
t · zw +

ˆ T

0

ˆ
Ω

ˆ
Y

S0 : zDyw −
ˆ T

0

ˆ
Ω

ˆ
Y
pz divx w =

ˆ T

0

ˆ
Ω

ˆ
Y

f · zw,
(1.83)

which is equivalent to the validity of
ˆ
Ω

ˆ
Y

u0
t · w +

ˆ
Ω

ˆ
Y

S0 : Dyw −
ˆ T

0

ˆ
Ω

ˆ
Y
pdivx w =

ˆ
Ω

ˆ
Y

f · w

for a.a. t ∈ (0, T ) and w ∈ D
(
Ω;C∞(Y )d

)
with divy w = 0 in Ω × Y and w = 0 in

Ω× YS . Hence we deduce limt→0+ ∥u0(t)− a0∥L2(Ω×Y ) = 0 in a standard way.
As in the stationary case, we need to identify the limit function S0. The crucial

information for this identification is

lim sup
ε′→0

ˆ T

0

ˆ
Ω

S(ε′Duε′) : ε′Duε′ ≤
ˆ T

0

ˆ
Ω

ˆ
Y

S0 : Dyu0, (1.84)

which we prove now. We test the system (NGSε) by uε to obtain

∥uε′(T )∥2L2(Ω) − ∥aε′∥2L2(Ω) +

ˆ T

0

ˆ
Ω

S(ε′Duε′) : ε′Duε′dxdt =
ˆ T

0

ˆ
Ω

fuε′dxdt

then pass to the limit as ε′ → 0, apply (1.5) and Lemma 1.3.7 on
{

uε′(T )
}

. We arrive
at

∥u0(T )∥2L2(Ω×Y ) − ∥a0∥2L2(Ω×Y ) + lim sup
ε′→0

ˆ T

0

ˆ
Ω

S(ε′Duε′) : ε′Duε′ ≤
ˆ T

0

ˆ
Ω

ˆ
Y

fu0.

(1.85)
Conversely, Lemma 1.2.8 allows to test the limit system (1.83) by u0. Thus we infer

∥u0(T )∥2L2(Ω×Y ) − ∥a0∥2L2(Ω×Y ) +

ˆ T

0

ˆ
Ω

ˆ
Y

S0 : Dyu0 =

ˆ T

0

ˆ
Ω

ˆ
Y

f · u0.

Comparing this with (1.85) yields (1.84). Then we proceed in the similar way as in the
stationary case.

Using de Rham’s theorem we get the existence of a distribution π(t, x, y) such that
for w ∈ D

(
Ω;C∞(Y )d

)
with w = 0 in Ω× YS , z ∈ D((0, T ))

ˆ T

0

ˆ
Ω

ˆ
Y

u0
t · zw +

ˆ T

0

ˆ
Ω

ˆ
Y

S(Dyu0) : zDyw −
ˆ T

0

ˆ
Ω

ˆ
Y
pz divx w

−
ˆ T

0

ˆ
Ω

ˆ
Y
πz divy w =

ˆ T

0

ˆ
Ω

ˆ
Y

f · zw,

which is equivalent to the weak formulation of the problem (HNS) due to Lemma 1.2.8.
Again, the uniqueness of the solution of the homogenized problem implies (uε, P ε) →
(u0, p) as ε→ 0+.
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1.7 Appendix
Before we present the proof of Lemma 1.2.8, we state modified versions of [31, Chapter 7,
Proposition 2.2], [3, Lemma 2.10] and some auxiliary lemmas.

Lemma 1.7.1 Let D be a closed subset of Y with a positive measure having no
intersection with ∂Y , ∂D ∈ Ck, k > 1 + d

2 . Then there exists a unique solution
(wi, ri) ∈W 1,2

per(Y )d × L2
per(Y )/R of

−∆wi +∇ri = ei in Y \D,
div wi = 0 in Y,

wi = 0 on D.

Moreover, wi ∈ W 1,φ(Y )d and a permeability matrix K = (kij)
d
i,j=1 defined via kij =´

Y ∇ywi∇ywjdy is symmetric and positive definite.

Proof. One shows existence of the solution (wi, ri) ∈W 1,2
per(Y )d×L2

per(Y ) in a standard
way. Applying [17, Theorem IV.5.1] yields wi ∈ W k,2(Y \ D)d. Hence the embed-
ding implies wi ∈ W 1,∞(Y \ D)d. We see ∇wi ∈ L∞(D)d×d. Therefore we have
∇wi ∈ L∞(Y )d×d, which implies wi ∈W 1,φ(Y )d.
The symmetry and positive definitness of K was showed in [31, Chapter 7, Proposi-
tion 2.2].

Lemma 1.7.2 Let D,K and {wi} be as in Lemma 1.7.1. We define an operator
P : Lφ(Ω)d → {u ∈W 1,φ

y (Ω× Y ) : u = 0 in Ω×D} as

P (θ) =
d∑

i=1

((
K−1θ(x)

)
· ei
)

wi.

Then P is linear and ˆ
Y
P (θ)dy = θ,

divy P (θ) = 0 in Ω× Y,

P (θ) = 0 in Ω×D,

∥∇yP (θ) ∥Lφ(Ω×Y ) ≤ c∥θ∥Lφ(Ω).

(1.86)

Proof. The properties (1.86)1-(1.86)3 immediately follow from the definition of P . To
show (1.86)4, we use the regularity of wi.

Lemma 1.7.3 Let ∆(φ,φ∗) < ∞ and D be as in Lemma 1.7.1. There is a linear
continuous operator Q : Lφ(Ω × Y ) → W 1,φ

y (Ω × Y ) such that for any g ∈ Lφ(Ω ×
Y ),
´
Y g(x, y) = 0 for almost all x ∈ Ω Q(g) satisfies

divy Q(g) = g in Ω× (Y \D) ,

Q(g) = 0 in Ω×D,

∥∇yQ(g)∥Lφ(Ω×Y ) ≤ c∥g∥Lφ(Ω×Y ).

(1.87)
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Proof. To solve the latter problem, we first consider that for a.a. x ∈ Ω g(x, ·) ∈ Lφ(Y )
and the compatibility condition

´
Y g(x, y)dy = 0 is satisfied. Then the existence of

Q(g) with ˆ
Y
φ (|∇yQ(g)(x, y)|)dy ≤

ˆ
Y
φ (c|g(x, y)|)dy

follows from [13, Theorem 6.6]. The latter inequality impliesˆ
Ω

ˆ
Y
φ (|∇yQ(g)(x, y)|)dydx ≤

ˆ
Ω

ˆ
Y
φ (c|g(x, y)|)dydx,

from which one derives (1.87)3 similarly as (1.32e) was derived.

Lemma 1.7.4 Let ∆(φ,φ∗) <∞, Ω be a bounded set with a Lipschitz boundary and λ >
1. Then there is a linear continuous operator Sλ : Lφ(Ω)d → Lφ

C(Ω)
d, more precisely

there is c(Ω) > 0 such that for any h ∈ Lφ(Ω)d dist(supp(Sλh), ∂Ω) ≥ c(Ω)(λ − 1).
Moreover, divSλ (h) = 0 in Ω for h such that div h = 0 in Ω and as λ→ 1+

∥Sλh − h∥Lφ(Ω) → 0. (1.88)

Proof. Let us assume for a moment that Ω is star-shaped with respect to a point xS .
We consider a mapping Jλ : Rd × Rd → Rd defined by Jλ(x, xS) = λ(x − xS) + xS .
Then we define Sλ

xS
(h)(x) = h

(
Jλ(x, xS)

)
for a function h ∈ Lφ(Ω)d extended by zero

outside of Ω. We immediately see that Sλ
xS

is linear and bounded since for λ > 1
Ω ⊂ Jλ(Ω, xS) and Sλ

xS
(h) has a compact support in Ω. We haveˆ

Ω
φ(|Sλ

xS
(h) (x)|) =

ˆ
Jλ(Ω,xS)

φ(|Sλ (h) (x)|) = λ−d

ˆ
Ω
φ(|h(x)|).

To prove (1.88), we first realize that there is a positive constant c(Ω) depending on
the domain Ω such that for any h ∈ Lφ(Ω)d supp(Sλ

xS
h) ⊂ {x ∈ Ω : dist(x, ∂Ω ≥

c(Ω)(λ− 1))}. Then as λ→ 1+ˆ
Ω
φ(|Sλ

xS
h(x)− h(x)|) =

ˆ
Ω
φ(|h(λ(x− xS) + xS)− h(x)|) → 0

follows for h ∈ C(Ω)d because h is uniformly continuous on Ω. Using the density
of C(Ω)d in Lφ(Ω)d we conclude (1.88). Since divSλ

xS
h = λSλ

xS
(div h) in a sense of

functionals, see Remark 1.2.5 (ii), we obtain that div h = 0 in Ω implies divSλ
xS

h = 0
in Ω.
For Ω having a Lipschitz boundary we find sets {Oj}Mj=1 such that

∪M
j=1Oj ⊃ ∂Ω and

O′
j = Ω ∩ Oj are star-shaped with respect to points xSj and a set O′

M+1 such that
O′

M+1 ⊂ OM+1′ ⊂ Ω. Let {ψj}M+1
j=1 be a partition of unity subordinated to {O′

j}
M+1
j=1 .

We put c(Ω) = minj{c(O′
j)}, denote Ωλ = {x ∈ Ω : dist(x, ∂Ω) > c(Ω)(λ − 1)} and

define Sλ as Sλ (h) (x) =
∑M

j=1 ψj(x)S
λ
xSj

(h)(x)+ψM+1(x)h(x)−gλ(x), where gλ is a
solution of the problem

div gλ =
M∑
j=1

∇ψj(x)Hλ,j(x)−
1

|Ω|

ˆ
Ω

M∑
j=1

∇ψj(x)Hλ,j(x) in Ωλ,

gλ = 0 on ∂Ωλ,

∥gλ∥W 1,φ(Ω) ≤ c

M∑
j=1

∥∇ψj∥L∞(Ω)∥Hλ,j∥Lφ(Ω),
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where Hλ,j(x) = h(Jλ(x, xSj )) − h(x). Such gλ exists according to [13, Theorem 6.6].
Then Sλ : Lφ(Ω)d → Lφ

C(Ω)
d is linear, bounded, div

(
Sλh

)
= 0 in Ω for any h satisfying

div h = 0 in Ω and (1.88) holds.

Lemma 1.7.5 Let Σ ⊂ Rn, n ≥ 1 be open, ∆2(φ) <∞, f δ ∈ Lφ(Σ), f ∈ φ(Σ) be such
that as δ → 0

f δ → f in Lφ(Σ). (1.89)

We extend f δ, f by zero in Rn\Σ and define (f δ)δ as a convolution of f δ with a mollifier
ωδ having a support in the ball with the diameter proportional to δ. Then (f δ)δ ∈ D(Rn)
and as δ → 0

(f δ)δ → f in Lφ(Rn). (1.90)

Proof. We modify the approach from [20, Theorem 3.18.1.1]. We pick a function g ∈
Lφ∗

(Rn) with ∥g∥Lφ∗ (Rn) ≤ 1. Then using Fubini’s theorem and properties of the
mollifier, we have∣∣∣∣∣

ˆ
Rn

((f δ)δ(x)− f(x))g(x)dx
∣∣∣∣∣

=

∣∣∣∣ˆ
Rn

(ˆ
Rn

f δ(x− y)− f(x)

)
ωδ(y)g(x)dydx

∣∣∣∣
≤
ˆ
Rn

∣∣∣∣ˆ
Rn

(f δ(x− y)− f(x))g(x)dx
∣∣∣∣ωδ(y)dy

≤
ˆ
Rn

∥f δ(· − δy)− f∥Lφ(Rn)ω(y)dy ≤ sup
|z|≤δ

∥f δ(· − δz)− f∥Lφ(Rn).

(1.91)

Since

∥f δ(· − δz)− f∥Lφ(Rn) ≤ ∥f δ(· − z)− f(· − z)∥Lφ(Rn) + ∥f(· − z)− f∥Lφ(Σ),

where the first term on the right hand side tends to zero uniformly in z due to (1.89),
whereas the second term tends to zero by the Lφ− mean continuity property of f , see
[20, 3.15.3]. Going back to (1.91), we obtain (1.90) using the dual definition of the
norm on Lφ.

Proof of Lemma 1.2.8. We want to use the mollification technique to obtain a smooth
approximation of u ∈ W 1,φ

y,0 (Ω × Y ). But before it is necessary to modify u in such
a way that ensures that the mollified function is zero in YS . Since ∂YS is Lipschitz,
in fact better quality of ∂YS is assumed, we find sets {Ej}Nj=1, Ej ⊂ Ej ⊂ Y with
minj dist(Ej , ∂Y ) ≥ c > 0 such that

∪N
j=1Ej ⊃ ∂YS , E′

j = Ej ∩ YF are star-shaped
with respect to points ySj and a set E′

N+1 ⊂ YF such that dist(E′
N+1, ∂YS) ≥ c > 0

and
∪N+1

j=1 E′
j ⊃ YF . Let {ϕj} be a partition of unity subordinated to {E′

j} consisting
of Y−periodic functions. We define for x ∈ Ω, y ∈ Y considering δ ∈ (0, 1)

vδ(x, y) =
N∑
j=1

ϕj(y)u(x, J1−δ(y, ySj )) + ϕN+1(y)u(x, y),

where the mapping J was introduced in the proof of Lemma 1.7.4. We extend vδ

Y−periodically. We also obtain the existence of c(YS) such that vδ = 0 in Ω × Y δ
F ,
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where Y δ
F = {y ∈ YF : dist(∂YS , y) ≤ c(YS)δ}. Similar considerations as in Lemma 1.7.4

yield
∥∇yvδ∥Lφ(Ω×Y ) ≤ c(1− δ)∥∇yu∥Lφ(Ω×Y ). (1.92)

We define a function zδ as a solution of the problem

divy zδ =
N∑
j=1

∇yϕj(y)Uδ,j(x, y)−
ˆ
Y

N∑
j=1

∇yϕj(y)Uδ,j in Ω× (Y \ Y δ
F ),

zδ = 0 on Ω× Y δ
F ,

∥∇yzδ∥Lφ(Ω×Y ) ≤ c

N∑
j=1

∥∇yϕj∥L∞(Y )∥Uδ,j∥Lφ(Ω×Y ),

zδ is Y − periodic,
(1.93)

where Uδ,j(x, y) = u(x, J1−δ(y, ySj ))−u(x, y). Such zδ exists according to Lemma 1.7.3
and we see that

divy(vδ − zδ) =
ˆ
Y

N∑
j=1

∇yϕj(y)
(

u(x, J1−δ(y, ySj ))− u(x, y)
)

dy in Ω× (Y \ Y δ
F ),

which vanishes if divy u = 0 in Ω × Y after integration by parts. We define an ap-
proximation uδ of u using operator P from Lemma 1.7.2 and S from Lemma 1.7.4
as

uδ =

(
vδ − zδ − P

(ˆ
Y
(vδ − zδ)− S1+δ

(ˆ
Y

u
)))

χΩδ
,

where Ωδ = {x ∈ Ω : dist(x,Ω) > c(Ω)δ}, c(Ω) coming from Lemma 1.7.4. Then we see
that supp uδ ⊂ Ω× Y and we also have

∥∇yuδ∥Lφ(Ω×Y ) ≤ c∥∇yu∥Lφ(Ω×Y ). (1.94)

We obtain using (1.86)1 and (1.86)4

∥∇y(u − uδ)∥Lφ(Ω×Y )

≤∥∇yu(1− χΩδ)∥Lφ(Ω×Y ) + ∥∇y(u − vδ)χΩδ∥Lφ(Ω×Y ) + ∥∇yzδ∥Lφ(Ω×Y )

+ c

∥∥∥∥ˆ
Y

zδ
∥∥∥∥
Lφ(Ω)

+ c

∥∥∥∥ˆ
Y
(vδ − u)

∥∥∥∥
Lφ(Ω)

+

∥∥∥∥ˆ
Y

u − S1+δ

(ˆ
Y

u
)∥∥∥∥

Lφ(Ω)

≤∥∇yuχΩ\Ωδ)∥Lφ(Ω×Y ) + c∥∇y(u − vδ)∥Lφ(Ω×Y ) + c∥∇yzδ∥Lφ(Ω×Y )

+ c

∥∥∥∥ˆ
Y

vδ − S1+δ

(ˆ
Y

u
)∥∥∥∥

Lφ(Ω)

=Iδ + IIδ + IIIδ + IV δ.

We proceed in the same way as in the proof of (1.88) when showing that IIδ, IV δ → 0
as δ → 0 and similarly using (1.93) also IIIδ → 0. Next, we observe that by the
Lebesgue monotone convergence theorem

ˆ
Ω×Y

φ(|∇yuχΩ\Ωδ |) → 0
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as δ → 0, which is equivalent to Iδ → 0 since ∆2(φ) <∞. divx

(´
Y u
)
= 0 in Ω implies

divx

(´
Y uδ

)
= 0 in Ω since S1+δ

(´
Y u
)

is zero in Ωδ and divy u = 0 in Ω× Y implies
divy uδ = 0 in Ω× Y . Finally, we define T δu = (uδ) 1

3
min(c(Ω),c(YS))δ

as a convolution of
uδ with a standard mollifier, which has a support contained in a ball with the diameter
1
3 min(c(Ω), c(YS))δ in R2d. This ensures that suppT δu ⊂ Ω × Y . T δ is obviously
linear and performing similar computations as in the proof of Lemma 1.7.5, we obtain
continuity of T δ thanks to (1.94). Lemma 1.7.5 implies that ∥∇y(T

δu−u)∥Lφ(Ω×Y ) → 0.
The proof for the time-dependent case is analogous.

Proof of Lemma 1.2.9. Using the dual norm in the space Lφ(Σ), we have

∥p∥Lφ∗ (Σ)/R = inf
k∈R

∥p+ k∥Lφ∗ (Σ) ≤
∥∥∥∥p− ˆ

Σ
p

∥∥∥∥
Lφ∗ (Σ)

= sup
∥g∥Lφ(Σ)≤1

∣∣∣∣ˆ
Σ

(
p−
ˆ
Σ
p

)
g

∣∣∣∣ .
For g ∈ Lφ(Σ) consider v ∈W 1,φ

0 (Σ), which is solution of the problem

div v = g −
ˆ
Σ
g in Σ,

∥v∥
W 1,φ

0 (Σ)
≤ c∥g∥Lφ(Σ).

Such v exists according to [13, Theorem 6.6.] and c = c(∆(φ,φ∗),Σ). Having this v,
we proceed further

sup
∥g∥Lφ(Σ)≤1

∣∣∣∣ˆ
Σ

(
p−
ˆ
Σ
p

)(
g −
ˆ
Σ
g

)∣∣∣∣ ≤ c sup
∥v∥

W
1,φ
0 (Σ)

≤1

∣∣∣∣ˆ
Σ

(
p−
ˆ
Σ
p

)
div v

∣∣∣∣
= c∥∇p∥

(W 1,φ
0 (Σ))∗ .

Before we present the proof of Lemma 1.2.10, we mention the real interpolation
theorem of Peetre [27, Theorem 5.1], which helps us in several cases to obtain estimates
in the setting of Orlicz spaces.

Theorem 1.7.6 Let ∆2(φ,φ
∗) < ∞ and q1, q2 be as in (1.9). Let S : Lqj (Ω) →

Lqj (Ω), j = 1, 2 be a linear and bounded operator. Then there exists K > 0 depending
on ∆2(φ,φ

∗) <∞ and operator norms of S such that for any f ∈ Lφ(Ω)

∥Sf∥Lφ(Ω) ≤ K∥f∥Lφ(Ω),ˆ
Ω
φ

(
|Sf |
K

)
≤
ˆ
Ω
φ(|f |).

Proof of Lemma 1.2.10. To show the existence, uniqueness of u and estimate of ∇u,
we apply the interpolation technique from [12, Theorem 18]. According to [17, Theo-
rem IV.6.1 b)], there exists for any q ∈ (1,∞) a unique weak solution u of (1.18) in
W 1,q

0 (Σ)d, for which the estimate ∥∇u∥Lq(Σ) ≤ c∥G∥Lq(Σ) holds. In fact in the formu-
lation of [17, Theorem IV.6.1 b)], the right hand side is considered to be an element g
of W−1,q. But clearly

⟨g,v⟩
W−1,q

0 (Σ),W 1,q
0 (Σ)

=

ˆ
Σ
G : ∇v
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satisfies g ∈W−1,q(Σ) and ∥g∥W−1,q(Σ) ≤ c∥G∥Lq(Σ). Let us consider a solution operator
S : Lq(Σ)d×d → Lq(Σ)d×d to (1.18) defined by S(G) = ∇u. Due to the uniqueness of
u, S does not depend on q. Hence S is uniquely defined from

∪
1<q<∞ Lq(Σ)d×d →∪

1<q<∞ Lq(Σ)d. Then the estimate (1.19) is a consequence of the Therorem 1.7.6. The
uniqueness of u in W 1,q1

0 (Σ)d and the embedding Lφ(Σ) ↪→ Lq1(Σ) yields the uniqueness
of u in W 1,φ

0 (Σ)d.

Lemma 1.7.7 Let Y = (0, 1)d. There is c > 0 such that for any v ∈ W 1,1(Y )d,v =
0 on ∂D in the sense of traces, where D ⊂ Y is a Lipschitz domain with positive
d−dimensional measure, such that the following inequality holds

∥v∥L1(Y ) ≤ c∥∇v∥L1(Y ). (1.95)

Proof. In fact (1.95) is equivalent to

∥v∥W 1,1(Y ) ≤ c∥∇v∥L1(Y ). (1.96)

Let us assume for a contradiction that (1.96) does not hold. Then we can find for each
n ∈ N a function vn such that

∥vn∥W 1,1(Y ) ≥ n∥∇vn∥L1(Y ).

Without loss of generality we can take ∥vn∥W 1,1(Y ) = 1 for each n ∈ N. Then as n→ ∞
∇vn → 0 in L1(Y )d. Since the sequence {vn} is bounded in W 1,1(Y )d, the embedding
to L

d
d−1 (Y )d and the reflexivity of L

d
d−1 (Y )d yield the existence of a weakly convergent

subsequence {vn} in L
d

d−1 (Y )d with a limit v. We preserve the notation for simplicity
because we can assume that {vn} itself has this property. Obviously vn ⇀ v in L1(Y )d

and ∇vn ⇀ 0 in L1(Y )d×d. Hence vn ⇀ v in W 1,1(Y )d. The compact imbedding of
W 1,1(Y )d in L1(Y )d yields ∥v∥L1(Y ) = 1. Since ∇v = 0 almost everywhere in Y , v has
to be equal to a constant in Y and this constant is zero because v = 0 on ∂D and we
have the contradiction.

Proof of Lemma 1.2.6. First, we show the modular inequality
ˆ
Ωε

φ(|v|) ≤
ˆ
Ωε

φ(cε|∇v|), (1.97)

from which the norm version follows. Let us extend v by zero outside of Ωε. Let us
consider a cell Y ε

i with i ∈ Iε ∪Hε. The first task is to show the inequality
ˆ
Y ε
i ∩Ωε

φ(|v|) ≤
ˆ
Y ε
i ∩Ωε

φ(cε|∇v|). (1.98)

We present it only for the case Y ε
i , i ∈ Iε. The other case is treated similarly. Using

the inequality (1.11) and Poincaré’s inequality [13, Theorem 6.5.], we obtain
ˆ
Y ε
i

φ(|v|) ≤ c

(ˆ
Y ε
i

φ(|v − ⟨v⟩Y ε
i
|) +
ˆ
Y ε
i

φ(| ⟨v⟩Y ε
i
|)

)

≤
ˆ
Y ε
i

φ(cε|∇v|) + c

ˆ
Y ε
i

φ(| ⟨v⟩Y ε
i
|),

43



Chapter 1 Homogenization of incompressible generalized Stokes flows

where c = c(∆(φ,φ∗)). To conclude (1.98), we need to show
ˆ
Y ε
i

φ(| ⟨v⟩Y ε
i
|) ≤
ˆ
Y ε
i

φ(cε|∇v|).

By rescaling to ε−length and taking Dε = Y ε
Si

for i ∈ Iε or Dε = Y ε ∩ (Rd \ Ωε) for
i ∈ Hε in the inequality (1.96) we obtain

ˆ
Y ε
i

|v| ≤ cε

ˆ
Y ε
i

|∇v|.

We use the latter inequality and Jensen’s inequality to get
ˆ
Y ε
i

φ(| ⟨v⟩Y ε
i
|) ≤

ˆ
Y ε
i

φ

(
1

|Y ε
i |

ˆ
Y ε
i

|v|
)

≤
ˆ
Y ε
i

φ

(
cε

|Y ε
i |

ˆ
Y ε
i

|∇v|
)

≤
ˆ
Y ε
i

φ (cε|∇v|) .

Thus we have shown (1.98). To conclude (1.97), we just sum over all i ∈ Iε ∪ Hε in
(1.98). Now, we are prepared to show the norm estimate

∥v∥Lφ(Ωε) ≤ cε∥∇v∥Lφ(Ωε). (1.99)

With the help of (1.97) one obtains

{λ > 0 :

ˆ
Ωε

φ

(
cε|∇v|
λ

)
≤ 1} ⊂ {λ > 0 :

ˆ
Ωε

φ

(
|v|
λ

)
≤ 1},

from which (1.99) follows using properties of infimum and the definition of Lφ−norm.
To show (1.16) and (1.17) it remains to apply a variant of Korn’s inequality [13, Theo-
rem 6.10] in (1.99) and (1.97) because v = 0 on ∂Ωε.

The rest of the appendix is devoted to the proof Lemma 1.2.11 but several auxiliary
statements precedes the proof itself.

Lemma 1.7.8 Let X be a Banach space and M be a subspace of X and U, V be
subspaces of X∗. Then

(M⊥)⊥ =M, (1.100)
(U⊥)

⊥ = U if X is reflexive, (1.101)
(U + V )⊥ = U⊥ ∩ V⊥. (1.102)

Poof of Lemma 1.7.8. See [30, Theorem 4.7] for the proof of (1.100).
According to [30, Theorem 4.7 (a)], (U⊥)

⊥ is the closure of U in the weak∗ topology of
X∗. The reflexivity of X implies that (U⊥)

⊥ is the closure of U in the weak topology
of X∗. Since (U⊥)

⊥ is a subspace of X∗, it is also a convex subset of X∗. Hence its
closures in the norm and weak topology coincide, see [30, Theorem 3.12].
To show (1.102), we suppose x ∈ (U + V )⊥ then we have u(x) = 0 ∀u ∈ U because
U ⊂ U + V hence x ∈ U⊥. We obtain in the same way that x ∈ V⊥ thus x ∈ U⊥ ∩ V⊥.
On the other hand, if we suppose x ∈ U⊥ ∩ V⊥ then ∀u ∈ U,∀v ∈ V u(x) = v(x) = 0.
Hence ∀u ∈ U,∀v ∈ V (u+ v)(x) = 0 thus x ∈ (U + V )⊥ and (1.102) holds.

The following theorem generalizes [8, Theorem 9.5], which was formulated for a
Hilbert space setting.
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Theorem 1.7.9 Let X be a reflexive Banach space. Let M and N be closed subspaces
of X such that M +N is closed. Then

(M ∩N)⊥ =M⊥ +N⊥. (1.103)

Proof of Theorem 1.7.9. At first, we show that

(M ∩N)⊥ =M⊥ +N⊥. (1.104)

The closedness of M,N together with (1.100) and (1.102) yields

M ∩N = (M⊥)⊥ ∩ (N⊥)⊥ = (M⊥ +N⊥)⊥.

Using (1.101), we conclude (1.104). Let us show (1.103). Obviously, (M ∩ N)⊥ ⊃
M⊥ +N⊥. Thus it suffices to show

(M ∩N)⊥ ⊂M⊥ +N⊥. (1.105)

Fix g ∈ (M ∩N)⊥. We define Z =M +N , which is a closed subspace of X. Therefore
Z is a Banach space. Whenever z ∈ Z has two representations z = m1+n1 = m2+n2,
where m1,m2 ∈M and n1, n2 ∈ N , then m1 −m2 = n2 − n1 ∈M ∩N . Hence we have

g(m1 −m2) = 0, i.e., g(m1) = g(m2). (1.106)

Then it follows that the functional f , defined on Z by

f(m+ n) = g(m) ∀m ∈M,n ∈ N (1.107)

is linear, well-defined due to (1.106) and satisfies

f(n) = 0 ∀n ∈ N. (1.108)

Next, we show that f is bounded on Z. Let us observe that the mapping A :M ×N →
M +N defined by A(u, v) = u + v is clearly linear and surjective. Moreover, for each
(m,n) ∈M ×N \ {(0, 0)} we get

∥A(m,n)∥Z
∥(m,n)∥M×N

=
∥m+ n∥X

∥m∥X + ∥n∥X
≤ 1

and A is bounded. Now, since M +N is closed thus complete in X, the open mapping
theorem implies the existence of positive δ such that (B(W ) stands for the unit ball in
W ) A(B(M×N)) ⊃ δB(M+N). Especially for any m ∈M,n ∈ N with ∥m+n∥Z ≤ 1
there exist (m̃, ñ) ∈ B(M ×N) such that m̃+ ñ = A(m̃, ñ) = δ(m+ n) , which implies
according to (1.107)

f(m+ n) =
f(m̃+ ñ)

δ
=
g(m̃)

δ
≤ ∥g∥X∗∥m̃∥X

δ
≤ ∥g∥X∗

δ
.

Hence we obtain boundedness of f on Z. Hahn-Banach theorem yields the existence of
the extension f̄ ∈ X∗ of f such that f̄ = f on Z. (1.108) immediately implies f̄ ∈ N⊥.
We decompose g = g − f̄ + f̄ and it remains to show that g − f̄ ∈M⊥. Since M ↪→ Z
and f̄ = f on Z, we obtain for each m ∈M that (g− f̄)(m) = f(m)−f(m) = 0, which
implies g ∈M⊥ +N⊥, i.e., we proved (1.105).
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For the proof of Lemma 1.2.11 we need also the characterization of annihilators of
the sets:

X1 = {v ∈W 1,φ
y,0 (Ω× Y ) : divy v = 0 in Ω× Y },

X2 = {v ∈W 1,φ
y,0 (Ω× Y ) : divx

(ˆ
Y

v
)

= 0 in Ω,

(ˆ
Y

v
)
· n = 0 on ∂Ω},

XT
1 = {v ∈W 1,φ

y,0 (QT × Y ) : divy v = 0 in QT × Y },

XT
2 = {v ∈W 1,φ

y,0 (QT × Y ) : divx

(ˆ
Y

v
)

= 0 in QT ,

(ˆ
Y

v
)
· n = 0 on (0, T )× ∂Ω}.

To obtain this characterization, we proceed in two steps. First, we show that annihila-
tors of above spaces are in fact annihilators of certain Sobolev-Bochner spaces. Thus
it is necessary to characterize these annihilators. Let us denote

M1 = {v ∈ D(Ω;C∞(Y ))d : v = 0 in Ω× YS ,divy v = 0 in Ω× Y },

M2 = {v ∈ D(Ω;C∞(Y ))d : v = 0 in Ω× YS ,divx

(ˆ
Y

vdy
)

= 0 in Ω},

MT
1 = {v ∈ C∞

(
[0, T ]; D(Ω;C∞(Y ))d

)
: v = 0 in QT × YS ,divy v = 0 in QT × Y },

MT
2 = {v ∈ C∞

(
D(Ω;C∞(Y ))d

)
: v = 0 in QT × YS ,divx

ˆ
Y

v = 0 in QT },

Ni =Mi
∥·∥

Ls(Ω;W1,s(Y ))d , NT
i =MT

i

∥·∥Ls(QT ;W1,s(Y )) i = 1, 2.

Since ∆2(φ) <∞, we have Xi =Mi
∥∇y ·∥Lφ(Ω×Y ) , XT

i =MT
i

∥∇y ·∥Lφ(QT×Y ) .

Lemma 1.7.10 Let Ω, Y, YS , YF fulfill the Assumption 1.1.5, ∆2(φ,φ
∗) < ∞. We

denote X̃ =W 1,φ
y,0 (Ω× Y ), X̃T =W 1,φ

y,0 (QT × Y ). If Lφ ↪→ Ls then

X⊥
i = N⊥

i

∥·∥X̃∗
,

(XT
i )

⊥ =(NT
i )

⊥∥·∥ ˜
XT

∗
i = 1, 2.

Proof. To avoid misunderstaning, we recall that X⊥
i ⊂ X̃∗, N⊥

i ⊂ Ñ∗, where Ñ =(
Ls(Ω;W 1,s(Y )d

)
.

We take F ∈ Ni
∥·∥X̃∗ . Then there is a sequence {Fn} ⊂ N⊥

i such that Fn → F in X̃∗

as n→ ∞. For arbitrarily chosen u ∈ Xi, we obtain ⟨F,u⟩ = limn→∞ ⟨Fn,u⟩ = 0, i.e.,
F ∈ X⊥

i .
To show the opposite inclusion, we observe that N⊥

i is a subspace of Ñ∗ ⊂ X̃∗ thus
it is a convex subset of X̃∗ and its closures in the strong and weak topology on X̃∗

coincide. Therefore it suffices to show that for F ∈ X⊥
i there is a sequence {Fn} ⊂

N⊥
i such that Fn(u) → F (u) for any u ∈ X̃ since X̃ is a reflexive Banach space

and we can identify X̃∗∗ with X̃. Let us describe the construction of {Fn}. We
define Fn(u) = F (T

1
n (u)) for u ∈ Ñ ,u = 0 in Ω × YS , where the linear continuous

operator T 1
n :

{
u ∈ Ñ ,u = 0 in Ω× YS

}
→
{

u ∈ D(Ω;C∞(Y ))d : u = 0 in Ω× YS
}

comes from Lemma 1.2.8. Then Fn ∈ X̃∗ and moreover, Fn ∈ X⊥
i . Finally, we pick

u ∈ X̃ and obtain as n→ ∞

|Fn(u)− F (u)| = |F (Tnu − u)| ≤ ∥F∥X̃∗∥Tnu − u∥X̃ → 0.

The second assertion is shown in a similar way.
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As mentioned, we need to characterize annihilators of Ni, N
T
i i = 1, 2 to proceed

with the characterization of annihilators of Xi, X
T
i i = 1, 2. Before doing so, we state

two auxiliary lemmas, which we use in the proof of variant of [17, Theorem III.5.3.].

Lemma 1.7.11 Let X,Z be reflexive Banach spaces, A : X → Z be a continuous
linear operator with a domain D(A) = X and R(A) be closed in Z. Then range of A∗

is characterized as
R(A∗) = (kerA)⊥.

Proof. Since [30, Theorem 4.12] asserts that kerA = R(A∗)⊥, it suffices to show that
R(A∗) is closed in X∗ if we take into account (1.101). But this closedness is equivalent
to the assumption R(A) is closed in Z, see [30, Theorem 4.14].

Lemma 1.7.12 Let s ∈ (1,∞) and Ω, Y, YS , YF fulfill Assumption 1.1.5. We denote
X = { v ∈ Ls

(
Ω;W 1,s(Y )d

)
: v = 0 in Ω× YS }. Let F ∈ N⊥

1 . Then there is a unique
q ∈ Ls′(Ω;Ls′(Y )),

´
Y q = 0 such that for all v ∈ X

⟨F,v⟩ =
ˆ
Ω

ˆ
Y
q divy v.

Proof. We denote Z =
{
r ∈ Ls(Ω;Ls(Y )),

´
Y r = 0

}
. Spaces X,Z are reflexive Ba-

nach spaces. We define an operator A : X → Z as A(v) = divy v. According to
Lemma 1.7.3 considered for Ls

(
Ω;W 1,s(Y )d

)
setting, R(A) = Z, which is obviously

closed. Lemma 1.7.11 yields (ker A)⊥ = R(A∗). Hence we infer that for F ∈ (kerA)⊥

there is q ∈ Z∗ =
{
q ∈ Ls′(Ω;Ls′(Y )),

´
Y q = 0

}
such that F = A∗(q). Then we obtain

⟨F,v⟩X∗,X =

ˆ
Ω

ˆ
Y
A∗(q)v =

ˆ
Ω

ˆ
Y
qA(v) =

ˆ
Ω

ˆ
Y
q divy v.

Lemma 1.7.13 Let Ω, Y, YS , YF fulfill Assumption 1.1.5. Then

N⊥
1 =

{
∇yq; q ∈ Ls′(Ω;Ls′(Y )),

ˆ
Y
q = 0

}
, (1.109)

N⊥
2 = {∇xq̃; q̃ ∈W 1,s′(Ω)}, (1.110)

(NT
1 )

⊥ =

{
∇yq; q ∈ Ls′(QT ;L

s′(Y )),

ˆ
Y
q = 0

}
, (1.111)

(NT
2 )

⊥ = {∇xq̃; q̃ ∈ Ls′(0, T ;W 1,s′(Ω))}. (1.112)

Proof. Let us pick q ∈ Ls′(Ω;Ls′(Y )),
´
Y q = 0. Then we have for any v ∈ N1 ⟨∇yq,v⟩ =

0. To show the opposite inclusion we pick F ∈ N⊥
1 . According to the Lemma 1.7.12,

the functional F can be uniquely represented as

⟨F,v⟩ =
ˆ
Ω

ˆ
Y
q̃ divy v

for some q̃ ∈ Ls′(Ω;Ls′(Y )),
´
Y q̃ = 0, which means in fact F = ∇yq for q = −q̃.

Clearly,
N⊥

2 ⊃ {∇xq̃, q̃ ∈W 1,s′(Ω)}
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Moreover, from [16, Lemma 7], we have for

M = {v ∈ Ls (Ω) : div v = 0 in Ω,v · n = 0 on ∂Ω}

that M⊥ = {∇xq̃, q̃ ∈ W 1,s′(Ω)}. Since M ⊂ N2 if we identify M with functions from
N2, which are constant with respect to y−variable, it follows that M⊥ ⊃ N⊥

2 .
The equalities (1.111) and (1.112) follow from the obvious observation Ls(0, T ;X)⊥ =
Ls′(0, T ;X⊥), (1.109) and (1.110).

Lemma 1.7.14 Let Ω, Y, YS , YF fulfill the Assumption 1.1.5, ∆2(φ,φ
∗) <∞. Then

X⊥
1 = {∇yq : q ∈ Lφ∗

(Ω× Y ),

ˆ
Y
q = 0},

X⊥
2 = {∇xr : r ∈W 1,φ∗

(Ω)},

(XT
1 )

⊥ = {∇yq : q ∈ Lφ∗
(QT × Y ),

ˆ
Y
q = 0},

(XT
2 )

⊥ = {∇xr : r ∈W 1,φ∗
x (QT )}.

Proof. To apply Lemma 1.7.10, it suffices to consider s ∈ (1,∞) such that Lφ ↪→ Ls

and realize that

N⊥
1

∥·∥
(W

1,φ
y,0 (Ω×Y ))∗ =

{
∇yq : q ∈ Lφ∗

(Ω× Y ),

ˆ
Y
q = 0

}
,

N⊥
2

∥·∥
(W

1,φ
y,0 (Ω×Y ))∗ = {∇xr : r ∈W 1,φ∗

(Ω)},

(NT
1 )

⊥
∥·∥

(W
1,φ
y,0 (QT×Y ))∗ =

{
∇yq : q ∈ Lφ∗

(QT × Y ),

ˆ
Y
q = 0

}
,

(NT
2 )

⊥
∥·∥

(W
1,φ
y,0 (QT×Y ))∗ = {∇xr : r ∈W 1,φ∗

x (QT )}.

Before we prove Lemma 1.2.11, we state one more auxiliary lemma.

Lemma 1.7.15 Let A be a symmetric and positive definite matrix. Let Σ ∈ C1 and f ∈
Lφ(Σ)d and ∆2(φ,φ

∗) <∞. Then there exists a unique weak solution v ∈W 1,φ(Σ)/R
to the problem

−div(A∇v − f) = 0 in Σ,

(A∇v − f) · n = 0 on ∂Σ.
(1.113)

Moreover, there exists c > 0 such thatˆ
Σ
φ(|∇v|) ≤

ˆ
Σ
φ(c|f|). (1.114)

Proof. Let us pick r ∈ (1,∞), consider f ∈ Lr(Σ)d. We use the transformation described
in [18, Lemma 6.1]. There is an orthogonal matrix P such that the matrix P TAP has
on the diagonal eigenvalues of the matrix A, which we denote λ1, . . . , λd. We denote
D = (λ

− 1
2

i δij) and set Q = PD. Under the transformation x̃ = Qx the equation (1.113)
is changed to

−div(∇ṽ − f̃) = 0 in Σ̃,

(∇ṽ − f̃) · n = 0 on ∂Σ̃.
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Chapter 1 Homogenization of incompressible generalized Stokes flows

for the functions ṽ(x̃) = v(Q−1x̃) and f̃(x̃) = f(Q−1x̃). The existence of a unique
ṽ ∈W 1,r(Σ)/R satisfying the system above in the weak sense together with

∥∇ṽ∥Lr(Σ̃) ≤ c∥f̃∥Lr(Σ̃) (1.115)

is ensured by [32, Theorem 5.4. and Theorem 1.3.], where c = c(d, r, Ω̃). Now, we come
back to x−variable via the transformation x = Q−1x̃. We have, denoting λmax, λmin

the maximal and minimal eigenvalues of A, for any z ∈ Rd

λ
1
2
min|z| ≤ |Q−1z| ≤ λ

1
2
max|z| (1.116)

since P−1 is orthogonal. Change of variables x̃ → x in (1.115) together with (1.116)
yield ∥∇v∥Lr(Σ) ≤ c∥f∥Lr(Σ) with c = c(d, r, A,Ω) thus we have also v ∈W 1,r(Σ)/R. Fi-
nally, we apply the interpolation technique in the same way as in the proof Lemma 1.2.10
to finish the proof.

Proof of Lemma 1.2.11. Using the previous notation, we write X1,φ
y,0 (Ω×Y ) = X1∩X2.

According to Theorem 1.7.9, it suffices to show that X1 + X2 is closed to conclude
(1.20). We prove that X1 +X2 =W 1,φ

y,0 (Ω× Y ), which is clearly closed.
Let us fix v ∈W 1,φ

y,0 (Ω×Y ) and take the matrix K defined in Lemma 1.7.1 with D = YS .
Then according to Lemma 1.7.15 there is a unique (up to an additive constant) weak
solution p ∈W 1,φ(Ω) of

−divx(K∇xp(x)−
ˆ
Y

v(x, y)dy) = 0 in Ω,

(K∇xp(x)−
ˆ
Y

v(x, y)dy) · n = 0 on ∂Ω.

(1.117)

Having the function p, we decompose

v(x, y) =
d∑

i=1

wi(y)∂xip(x) +

(
v(x, y)−

d∑
i=1

wi(y)∂xip(x)

)
=: v1 + v2

and employing the inequality (1.11), and the regularity of wi, we obtain v1 ∈ X1,
v2 ∈ X2, which finishes the proof of (1.20).
To show (1.21), we prove in an analogous way that XT

1 +XT
2 is closed (X1,φ

y,0 (QT ×Y ) =

XT
1 ∩ XT

2 ). We fix v ∈ W 1,φ
y,0 (QT × Y ) and consider for almost all t ∈ (0, T ) the

equation (1.117) with p(x) = p̃(t, x). Thus thanks to (1.114) p̃ ∈ W 1,φ
x (QT ). Then the

decomposition analogous to the previous case is

v(t, x, y) =
d∑

i=1

wi(y)∂xi p̃(t, x) +

(
v(t, x, y)−

d∑
i=1

wi(y)∂xi p̃(t, x)

)
=: v1 + v2

with v1 ∈ XT
1 and v2 ∈ XT

2 .
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Chapter 2 Homogenization of an electrorheological fluid flow

Abstract
We combine two scale convergence, theory of monotone operators and results on approx-
imation of Sobolev functions by Lipschitz functions to prove a homogenization process
for an incompressible flow of a generalized Newtonian fluid. We avoid the necessity of
testing the weak formulation of the initial and homogenized systems by corresponding
weak solutions, which allows optimal assumptions on lower bound for a growth of the
elliptic term. We show that the stress tensor for homogenized problem depends on the
symmetric part of the velocity gradient involving the limit of a sequence selected from
a family of solutions of initial problems.

Keywords
Non-Newtonian incompressible fluids, two-scale convergence, homogenization, Lipschitz
approximation

2.1 Introduction
Electrorheological fluids are special liquids characterized by their ability to change sig-
nificantly the mechanical properties when an electric field is applied. This behavior
has been extensively investigated for the development of smart fluids, which are cur-
rently exploited in technological applications, e.g. brakes, clutches or shock absorbers.
Results of the ongoing research indicate their possible applications also in electronics.
One approach for modeling of the flow of electrorheological fluids is the utilization of a
system of partial differential equations derived by Rajagopal and Růžička, for details
see [14]. This system in the case of an isothermal, homogeneous (with density equal to
one), incompressible electrorheological fluid reads

∂tu − div S + div(u ⊗ u) +∇π = f, div u = 0, (2.1)

in a domain Ω ⊂ Rd, d = 2, 3, . . . . The symbol u denotes the velocity, S the extra
stress tensor, div(u⊗u) is the convective term with u⊗u denoting the tensor product
of the vector u with itself defined as (uiuj)i,j=1,...,d, π is the pressure and f the external
body force. The stress tensor S is assumed to depend on the symmetric part Du of
the velocity gradient ∇u. The presence of an electric field is captured by the supposed
dependence of S on the spatial variable in such a way that the growth of S corresponds
to |Du|p(·)−1 for some variable exponent p.

For this setting assuming additionally a periodic variable exponent with a small
period ε, it was shown by Zhikov in [18] that as ε → 0 a subsequence of solutions of
initial problems converges to a solution of the homogenized problem having the extra
stress tensor independent of the spatial variable. Zhikov’s approach is based on the fact
that the regularity of solutions of the initial as well as homogenized problem allows to
use these solutions as a test function. In fact, this sufficient regularity is ensured by the
value of the lower bound for the variable exponent p ≥ p0 := max((d+

√
3d2 + 4d)/(d+

2), 3d/(d+ 2)).
In the seminal article [11] a method of Lipschitz approximation of Sobolev functions

is developed that allows to decrease the lower bound for p. In the article [11] the method
is applied to the problem of existence of a weak solution to the stationary generalized
Navier-Stokes model. The proof of this result is simplified in [7]. Moreover, it is
extended in this article to a flow of an electrorheological fluid, i.e., to the stationary
variant of the model (2.1) with a variable exponent p. It took lot of work till the
approach was modified in such a way that it is applicable to evolutionary problems. See
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[8], where the existence of a weak solution to the evolutionary generalized Navier Stokes
problem is studied. The method is used to an evolutionary problem in Orlicz setting
in the article [5], compare also with [4], where the approximation is constructed to be
divergence free. The optimal lower bound for the exponent p assuring the existence of
weak solutions is given by the requirement that p ≥ p1 such that W 1,p1(Ω) compactly
embeds to L2(Ω) that allows to treat well the convective term. This lower bound is
p1 > 2d/(d+2), see [8] for the problem (2.1) with constant p and [7] for the stationary
variant of (2.1) with variable p. It is natural to ask: “Can one proceed with the
homogenization process also if the lower bound for p is between p0 and 2d/(d + 2)?”
This paper should be regarded as the first step on the way for the answer to this
question. To concentrate on the interplay between method of Lipschitz approximations
and two scale convergence we start with the stationary problem first.

We consider the model (2.1) derived in [14] to describe the electrorheological fluids,
i.e., fluids that change their properties due to application of an electric field. For more
details on modelling of the fluids and physical motivation see [14]. The general form of
the stress tensor S is

S =α1E ⊗ E + α2Du + α3(Du)2 + α4((Du)E ⊗ E + E ⊗ (Du)E) + α5((Du)2E ⊗ E
+ E ⊗ (Du)2E)

where E is the applied electric field and αi , i = 1, ..., 5 are functions of

|E|2, tr(Du), tr(Du)2, tr(Du)3, tr((Du)E ⊗ E), tr((Du)2E ⊗ E).

We assume that the electric field is given and oscillates rapidly. Moreover we set αi = 0
for i ∈ {1, 3, 4, 5}. We start with a model problem given by

α2(E,Du) = α(δ + |Du|2)
p−2
2 + β(δ + |Du|2)

γ−2
2 ,

with constants p > 1, δ ≥ 0. The functions α, β, γ depend on the given electric field
E. This model agrees with [14, Lemma 4.46]. Since we assume that the electric field
is periodic and we are interested in what happens when the period of E tends to zero,
we further suppress this dependence and will assume that α, β, γ : Rd → R are periodic
with respect to Y = (0, 1)d and continuous. Moreover we assume that there exist
α0, α1, β0, β1, γ0, γ1 ∈ R such that for all y ∈ Rd, 0 < α0 ≤ α(y) ≤ α1, 0 ≤ β(y) ≤ β0,
1 ≤ γ0 ≤ γ(y) ≤ γ1 < p. Altogether we consider for ε ∈ (0, 1) scale of models

Sε(x, ξ) =
(
α(
x

ε
)(δ + |ξ|2)

p−2
2 + β(

x

ε
)(δ + |ξ|2)

γ(xε )−2

2
)
ξ, x ∈ Rd, ξ ∈ Rd×d

sym, (2.2)

and study behavior of solutions to

−div (Sε(x,Duε)− uε ⊗ uε) +∇πε = −div F, div uε = 0 in Ω,

uε = 0 on ∂Ω,

ˆ
Ω
πε = 0.

(2.3)

as ε tends to 0. It appears that the solutions converge as ε→ 0+ up to a subsequence
to a solution of a homogenized problem.

Although the mathematically precise formulation of our main result requires some
preparatory work, we believe that the main result can be presented already here with
some simplifications and imprecisions. The main theorem in full detail is formulated in
Section 2.3, see Theorem 2.3.3.
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Theorem 2.1.1 Let Ω ⊂ Rd be a bounded Lipschitz domain, p > 2d/(d + 2), Sε be
given by (2.2) and F ∈ Lp′(Ω;Rd×d

sym). Let {(uε, πε)}ε∈(0,1) be a family of weak solutions
of the system (2.3) satisfying energy inequality. Then there exists a sequence {εk}+∞

k=1,
s > 0 such that as k → +∞

εk → 0, uεk ⇀ u in W 1,p
0 (Ω;Rd), πεk ⇀ π in Ls(Ω),

and (u, π) is a weak solution of a homogenized system. This limit system is of the
generalized Navier Stokes type.

The homogenized stress tensor is independent of the space variable and is presented
in subsection 2.2.3.

We want to emphasize that in our setting we allow that p < 3d/(d+ 2) and so the
term

´
Ω u ⊗ u : Dudx is not defined. In this situation we are not allowed to test weak

formulations of the problems (2.3) by their weak solutions. We are not aware of any
other result on homogenization that would treat this situation.

The main obstacle to verification of the homogenization process is the fact that we
allow the optimal lower bound for growth of Sε. The situation is similar to the limit
passage in the stress tensor in the proof of the existence of weak solutions of generalized
Navier-Stokes equations. However, one cannot straightforwardly adopt the methods,
which are successfully applied for existence proofs, because of oscillations which occur
in the spatial variable of the stress tensor.

The method is nevertheless based on the two scale convergence combined with the
theory of monotone operators and the approximation of Sobolev functions by Lipschitz
functions (so called Lipschitz truncation method). This leads us to the assumption
that the part of the tensor Sε that contains the variable exponent is of a lower order,
i.e., γ1 < p. This assumption allows us to use the Lipschitz truncation method in
the space W 1,p where it is well known. Without this assumption, for example if the
term with power p− 2 is not present in (2.2), we would need to know that the method
works uniformly in spaces W 1,γε(·), γε(·) = γ(·/ε). This requires that the maximal
operator is continuous on Lγε(·) uniformly with respect to ε ∈ (0, 1). For a particular
ε the continuity of Maximal operator is known if γε is log-Hölder continuous, see [6].
However since the family γε is not uniformly log-Hölder continuous for ε ∈ (0, 1), we
cannot use this result.

Let us outline the structure of the paper. In Section 2.2 we introduce function spaces
appearing in the paper, collect several fundamental lemmas and show some facts about
two-scale convergence. In the last subsection we define the homogenized tensor Ŝ and
show its needed properties. Section 2.3 is devoted to the formulation of the general
main result and its proof.

2.2 Preliminaries
We recall that a domain Ω ⊂ Rd, Y = (0, 1)d. The following function spaces appear
further: C∞

0,div(Ω) =
{

u ∈ C∞
0 (Ω;Rd) : div u = 0 in Ω

}
, C∞

per(Y ) = {u ∈ C∞(Rd) :

u Y -periodic}, C∞
per,div(Y ) = {u ∈ C∞

per(R
d) : div u = 0 in Y }, W 1,p

per(Y,Rd) is a closure
of {u ∈ C∞

per(Y ),
´
Y u = 0} in the classical Sobolev norm, D

(
Ω;C∞

per(Y )
)

is the space
of smooth functions u : Ω × Rd → R such that u(x, ·) ∈ C∞

per(Y ) for any x ∈ Ω and
there is K b Ω such that for any x ∈ Ω \K: u(x, ·) = 0 in Rd.
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We introduce a closed subspace of Lp(Y ;Rd×d
sym) and its annihilator in Lp′(Y ;Rd×d

sym)
by

G(Y ) =
{

Dw : w ∈W 1,p
per(Y ;Rd),div w = 0 in Y

}
,

G⊥(Y ) =

{
V∗ ∈ Lp′(Y ;Rd×d

sym) : ∀V ∈ G(Y )

ˆ
Y

V∗(y) · V(y)dy = 0

}
.

Note that C∞
per,div(Y ) is dense in G(Y ). If we consider the set Rd×d

sym as a subset of
constant functions of Lp(Y ;Rd×d

sym) then Rd×d
sym ∩G(Y ) = ∅.

For the sake of clarity, we recall the meaning of differential operators appearing in
the paper. Let us consider u : Ω× Y → Rd then

∇xu =

(
∂ui
∂xj

)d

i,j=1

, divx u =
d∑

i=1

∂ui
∂xi

, ∇yu =

(
∂ui
∂yj

)d

i,j=1

, divy u =
d∑

i=1

∂ui
∂yi

.

We omit the subscript if the function depends on the variable from one domain only.
Throughout the paper the identity matrix is denoted by I, the zero matrix by O.
The generic constants are denoted by c. When circumstances require it, we may also
include quantities, on which the constant depend, e.g. c(d) for the dependence on the
dimension d. If we want to distinguish between different constants in one formula, we
utilize subscripts, e.g. c1, c2 etc.

Let M,N be open subsets of Rd. M b N means that M ⊂ M ⊂ N , M being
compact.

2.2.1 Auxiliary tools
Lemma 2.2.1 (Biting lemma, [3]) Let E ⊂ Rd be a bounded domain and {vn} be a
sequence of functions bounded in L1(E). Then there exists a subsequence {vnk} ⊂ {vn},
a function v ∈ L1(E) and a sequence of measurable sets {Ej}, E ⊇ E1 ⊇ E2 ⊇ · · · with
|Ej | → 0 as j → ∞ such that for each j: vnk ⇀ v in L1(E \ Ej) as k → ∞.

Lemma 2.2.2 (Dunford, [9, Section III.2 Theorem 15]) Let Σ ∈ Rd be a measurable
set. A subset M of L1(Σ) is relatively weakly compact if and only if it is bounded and
uniformly integrable, i.e., for any θ > 0 there is δ > 0 such that for any f ∈ M and a
measurable K ⊂ Σ with |K| < δ we have

´
K |f | < θ.

Lemma 2.2.3 [10, Theorem 10.11] Let Σ ⊂ Rd be a bounded Lipschitz domain, q ∈
(1,∞) and denote Lq

0(Σ) = {h ∈ Lq :
´
Σ h = 0}. There exists a continuous linear

operator B : Lq
0(Σ) →W 1,q

0 (Σ;Rd) such that div Bh = h for any h ∈ Lq
0(Σ).

Lemma 2.2.4 [10, Theorem 10.21] Let Σ ⊂ Rd be an open set, p, q, r > 1. Assume

un ⇀ u in Lp(Σ;Rd),vn ⇀ v in Lq(Σ;Rd) as n→ ∞ and 1
p + 1

q <
1
r ≤ 1.

In addition, let for a certain s > 1

{div un} be precompact in
(
W 1,s

0 (Σ;Rd)
)∗
,

{curl vn} = {∇(vn)− (∇(vn))T } be precompact in
(
W 1,s

0 (Σ;Rd)d
)∗
.

Then
un · vn ⇀ u · v in Lr(Σ).
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The history of this lemma goes back to the works [12] and [16].
For f ∈ L1(Rd), we define the Hardy-Littlewood maximal function as

(Mf)(x) = sup
r>0

1

|Br(x)|

ˆ
Br(x)

|f(y)|dy,

where Br(x) stands for a ball having a center at x and radius r.

Lemma 2.2.5 Let Ω ⊂ Rd be open and bounded with a Lipschitz boundary and α ≥ 1.
Then there is c > 0 such that for any v ∈ W 1,α

0 (Ω;Rd) and every λ > 0 there is
vλ ∈W 1,∞

0 (Ω;Rd) satisfying

∥vλ∥W 1,∞(Ω) ≤ λ,

|{x ∈ Ω : v(x) ̸= vλ(x)}| ≤ c
∥v∥αW 1,α(Ω)

λα
.

(2.4)

Proof. The similar assertion, formulated for functions that do not vanish on ∂Ω, ap-
peared in [1]. For our purposes we refer to [7, Theorem 2.3], which for any v ∈
W 1,α

0 (Ω;Rd) and any numbers θ, λ > 0 ensures the existence of vθ,σ ∈ W 1,∞
0 (Ω;Rd)

such that
∥vθ,σ∥L∞(Ω) ≤ θ, ∥∇vθ,σ∥L∞(Ω) ≤ c(d,Ω)σ

and up to a set of Lebesgue measure zero

|{vθ,σ ̸= v}| ⊂ Ω ∩ ({M(v) > θ} ∪ {M(∇v) > σ}) .

We pick v ∈ W 1,α
0 (Ω;Rd) and λ > 0. We apply [7, Theorem 2.3] with λ, λ

c(d,Ω) and
denote vλ = vλ, λ

c(d,Ω)
to conclude (2.4)1. Moreover, since we have for any f ∈ Lα(Rd)

and σ > 0

|{|f | > σ}| ≤
ˆ
Rd

(
|f |
σ

)α

=
∥f∥α

Lα(Rd)

σα
,

we obtain for α > 1 using the strong type estimate for the maximal function, see [15,
Theorem 1]

|{vθ,σ ̸= v}| ≤
∥M(v)∥α

Lα(Rd)

λα
+ c

∥M(∇v)∥α
Lα(Rd)

λα
≤ c

∥v∥αW 1,α(Ω)

λ
.

For α = 1 the estimate (2.4)2 is a direct consequence of the weak type estimate of the
maximal function, see again [15, Theorem 1].

2.2.2 Two-scale convergence
The following concept of convergence was introduced by Nguetseng in his seminal paper
[13]: a sequence {uε} bounded in L2(Ω) is said weakly two-scale convergent to u0 ∈
L2(Ω × Y ) if for any smooth function ψ : Rd × Rd → R, which is Y−periodic in the
second argument,

lim
ε→0

ˆ
Ω
uε(x)ψ

(
x,
x

ε

)
dx =

ˆ
Ω×Y

u0(x, y)ψ(x, y)dxdy. (2.5)

Properties of this notion of convergence were investigated and applied to a number of
problems, see [2], and the concept was also extended to Lp, p ≥ 1. It was shown later
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that there is an alternative approach, so called periodic unfolding, for the introduction
of the weak two-scale convergence, which allows to represent the two-scale convergence
by means of the standard weak convergence in a Lebesgue space on the product Ω×Y .
In the same manner the strong two-scale convergence is introduced. Since it is known
that both presented notions of the weak two-scale convergence are equivalent, see [17],
all properties known for the weak two-scale convergence introduced via (2.5) hold also
for the second approach. We introduce the weak two-scale convergence via periodic
unfolding.

Definition 2.2.6 We define functions n : R → Z, N : Rd → Zd as

n(x) = max{n ∈ Z : n ≤ x},
N(x) = (n(x1), . . . , n(xd)),

Then we have for any x ∈ Rd, ε > 0, a two-scale decomposition x = ε
(
N
(
x
ε

)
+R

(
x
ε

))
.

We also define for any ε > 0 a two-scale composition function Tε : Rd × Y → Rd as
Tε(x, y) = ε

(
N
(
x
ε

)
+ y
)
.

Remark 2.2.7 It follows that Tε(x, y) → x uniformly in Rd × Y as ε → 0 since
Tε(x, y) = x+ ε

(
y −R

(
x
ε

))
.

Definition 2.2.8 We say that a sequence of functions {vε} ⊂ Lr(Rd)

1. converges to v0 weakly two-scale in Lr(Rd × Y ), vε 2−s−−⇀ v0, if vε ◦ Tε converges
to v0 weakly in Lr(Rd × Y ),

2. converges to v0 strongly two-scale in Lr(Rd × Y ), vε 2−s−−→ v0, if vε ◦ Tε converges
to v0 strongly in Lr(Rd × Y ).

Remark 2.2.9 We define two-scale convergence in Lr(Ω×Y ) as two-scale convergence
in Lr(Rd × Y ) for functions extended by zero to Rd \ Ω.

Lemma 2.2.10 Let g ∈ L1(Rd;Cper(Y )). Then, for any ε > 0, the function (x, y) 7→
g(Tε(x, y), y) is integrable and

ˆ
Rd

g
(
x,
x

ε

)
dx =

ˆ
Rd

ˆ
Y
g(Tε(x, y), y)dydx.

Proof. See [17, Lemma 1.1]

Lemma 2.2.11

i) Let v ∈ Lr(Ω;Cper(Y )), r ∈ [1,∞), v be Y−periodic, define vε(x) = v(xε , x) for
x ∈ Ω. Then vε

2−s−−→ v in Lr(Ω× Y ) as ε→ 0.

ii) Let vε 2−s−−⇀ v0 in Lr(Ω× Y ) then vε ⇀
´
Y v

0(·, y)dy in Lr(Ω).

iii) Let {vε} be a bounded sequence in Lr(Ω), r ∈ (1,∞). Then there is v0 ∈ Lr(Ω×Y )

and a sequence εk → 0 as k → +∞ such that vεk 2−s−−⇀ v0 in Lr(Ω×Y ) as k → +∞.
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iv) Let {vε} converge weakly to v in W 1,r(Ω), r ∈ (1,∞) as ε → 0. Then there is
v0 ∈ Lr(Ω;W 1,r

per(Y )) and a sequence εk → 0 as k → +∞ such that vεk converges
strongly to v in Lr(Ω) and ∇vεk converges weakly two-scale to ∇xv + ∇yv0 in
Lr(Ω× Y )d as k → +∞.

v) Let vε 2−s−−⇀ v0 in Lr(Ω × Y ) and wε 2−s−−→ w0 in Lr′(Ω × Y ) then
´
Ω v

εwε →´
Ω

´
Y v

0w0.

Proof. The equalities

vε ◦ Tε(x, y) = v

(
Tε(x, y),

Tε(x, y)

ε

)
= v(Tε(x, y), y)

hold by definition of Tε and Y−periodicity of v. If v ∈ C(Ω× Y ), Remark 2.2.7
immediately impliesˆ

Ω×Y
|v(Tε(x, y), y)− v(x, y)|r dxdy → 0 as ε→ 0.

For general v ∈ Lr(Ω;Cper(Y )) we need to approximate v by a continuous function and
then proceed as in the proof of mean continuity of Lebesgue integrable functions.

We obtain (ii) if functions independent of y-variable are considered in the definition
(2.5) of the weak convergence in Lr(Ω× Y ).

The assertion (iii) is a direct consequence of Lemma 2.2.10, the weak compactness
of bounded sets in Lr(Ω× Y ) and Definition 2.2.81.

For the proof of (iv) with r = 2 see [2, Proposition 1.14. (i)], the proof for general
r ̸= 2 is analogous.

Statement (v) follows immediately from definition of the weak and strong two-scale
convergence and Lemma 2.2.11 applied to function g = vεwε independent of y, see [17,
Proposition 1.4].

2.2.3 Definition and properties of the homogenized stress tensor
Inspired by [18] we introduce a tensor Ŝ : Rd×d

sym → Rd×d
sym as

Ŝ(ξ) =
ˆ
Y

S(y, ξ + V(y))dy, (2.6)

where the function V is a solution of the cell problem: Let ξ ∈ Rd×d
sym be fixed. We seek

V ∈ G(Y ) such that for any W ∈ G(Y )ˆ
Y

S(y, ξ + V(y)) : W(y)dy = 0. (2.7)

Since G(Y ) is reflexive and the tensor S is strictly monotone, the existence and unique-
ness of V follows using the theory of monotone operators. In the next section we show
that the tensor Ŝ arises when the homogenization process ε→ 0+ is performed in (2.14).
Properties of Ŝ are listed in the following lemma.

Lemma 2.2.12 There are constants ĉ1, ĉ2 > 0 such that for any ξ ∈ Rd×d
sym

Ŝ(ξ) : ξ ≥ c1|ξ|p − ĉ1,

|Ŝ(ξ)|p′ ≤ ĉ2(|ξ|p + 1).
(2.8)

Moreover, Ŝ is strictly monotone and continuous on Rd×d
sym.
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Proof. Let V be a weak solution of the cell problem corresponding to ξ. Then using
(S4), Jensen’s inequality and the fact that V is a symmetric gradient of Y−periodic
function we obtain

Ŝ(ξ) : ξ =

ˆ
Y

S(y, ξ + V(y))dy : ξ =

ˆ
Y

S(y, ξ + V(y)) : (ξ + V(y))dy

≥
ˆ
Y
c1|ξ + V(y)|pdy − c̃1 ≥ c1

∣∣∣∣ξ + ˆ
Y

V(y)dy
∣∣∣∣p − c̃1 = c1|ξ|p − c̃1,

which is (2.8)1. Using (S4), the Hölder and Young inequalities yields

|Ŝ(ξ)|p′ =
∣∣∣∣ˆ

Y
S(y, ξ + V(y))dy

∣∣∣∣p′ ≤ ˆ
Y
|S(y, ξ + V(y))|p′dy ≤

ˆ
Y
c2
(
|ξ + V(y)|pdy + 1

)
≤
ˆ
Y

c2
c1

S(y, ξ + V(y)) · (ξ + V(y))dy + c2(1 +
c̃1
c1
)

=
c2
c1

Ŝ(ξ) · ξ + c2(1 +
c̃1
c1
) ≤ 1

2
|Ŝ(ξ)|p′ + ĉ2(|ξ|p + 1),

for suitable (large) ĉ2 > 0. Hence we obtain (2.8)2. Let ξ1, ξ2 ∈ Rd×d
sym,ξ1 ̸= ξ2 and

V1,V2 be corresponding weak solutions of the cell problem. Then we infer

(Ŝ(ξ1)−Ŝ(ξ2)) : (ξ1−ξ2) =
ˆ
Y
(S(y, ξ1+V1(y))−S(y, ξ2+V2)) : (ξ1+V1−ξ2−V2)dy.

The strict monotonicity of Ŝ then follows since the integrand on the right hand side of
the latter identity is positive due to (S3).

In order to obtain the continuity of Ŝ we first show that the mapping ξ 7→ S(·, ξ+V),
where V is the solution to the corresponding cell problem, is weakly continuous with
values in Lp′(Y ;Rd×d

sym). Let us choose {ξn}∞n=1 such that ξn → ξ in Rd×d
sym as n → ∞.

Let {Vn}∞n=1 ⊂ G(Y ) be a sequence of solutions of corresponding cell problems and
denote Sn := S(·, ξn+Vn). Since {Sn}∞n=1 and {Vn}∞n=1} are bounded in Lp′(Y ;Rd×d

sym)

and Lp(Y ;Rd×d
sym) by (S4), they contain weakly convergent subsequences in Lp′(Y ;Rd×d

sym)

and Lp(Y ;Rd×d
sym). Let us assume without loss of generality that

Vn ⇀ V∗ in Lp(Y ;Rd×d
sym), Sn ⇀ S∗ in Lp′(Y ;Rd×d

sym) as n→ ∞. (2.9)

We show that V = V∗ and S∗ = S(·, ξ + V). As we have by the definition of the weak
solution of the cell problem

∀W ∈ G(Y ) :

ˆ
Y

Sn : W = 0, (2.10)

it follows from (2.9) that

lim
n→∞

ˆ
Y

Sn : Vn = 0 =

ˆ
Y

S∗ : V∗. (2.11)

Clearly, (S3) implies that

∀W ∈ Lp′(Y ;Rd×d
sym) : 0 ≤

ˆ
Y
(Sn(y)− S(y, ξn + W(y))) : (Vn(y)− W(y))dy. (2.12)

60



Chapter 2 Homogenization of an electrorheological fluid flow

We want to perform the limit passage n → ∞. Let us observe that for all fixed
W ∈ Lp(Y ;Rd×d

sym)

S(·, ξn + W) → S(·, ξ + W) in Lp′(Y ;Rd×d
sym) as n→ ∞. (2.13)

Indeed, S(·, ξn + W) → S(·, ξ + W) a.e. in Y. Moreover, we have for K ⊂ Y by (S4)
thatˆ

K
|S(y, ξn + W(y))− S(y, ξ + W(y))|p′dy ≤

ˆ
K
c2 (|ξn + W|p + |ξ + W|p + 2)

≤ c|K|(|ξn|p + |ξ|p + 2) + c

ˆ
K
|W|p,

which implies that |S(y, ξn + W) − S(y, ξ + W)|p′ is equiintegrable and the Vitali
convergence theorem yields (2.13). Hence we obtain from (2.12) using (2.11) and (2.13)
that

∀W ∈ Lp′(Y ;Rd×d
sym) : 0 ≤

ˆ
Y
(S∗(y)− S(y, ξ + W(y))) : (V∗(y)− W(y))dy.

Minty’s trick gives that S∗(y) = S(y, ξ+V∗(y)) a.e. in Y . Passing to the limit n→ +∞
in (2.10) we get that V∗ is a solution to the cell problem corresponding to ξ. Since
this solution is unique we get V = V∗. Up to now we showed that from {Sn} we can
extract a subsequence weakly convergent towards S(·, ξ + V) in Lp′(Y ;Rd×d

sym). Since
this limit is unique, the whole sequence must converge to it.

One easily obtains due to the weak continuity of ξ 7→ S(·, ξ + V) for any η ∈ Rd×d
sym(

Ŝ(ξn)− Ŝ(ξ)
)
: η =

ˆ
Y
(S(y, ξn + Vn(y))− S(y, ξ + V(y))) : ηdy → 0

as n → +∞. Since the space Rd×d
sym is finite dimensional, we have the continuity of

Ŝ.

2.3 Statement and proof of the main theorem
Let us recall the problem, which we deal with. The domain Ω ⊂ Rd, d = 2, 3, . . . is
supposed to be bounded and Lipschitz, Y = (0, 1)d. For ε ∈ (0, 1) we consider the
following stationary version of the problem (2.1)

−div (Sε(x,Duε)− uε ⊗ uε) +∇πε = −div F, div uε = 0 in Ω,

uε = 0 on ∂Ω,

ˆ
Ω
πε = 0.

(2.14)

The function Sε is for any x ∈ Rd and D ∈ Rd×d
sym given by Sε(x,D) = S(x/ε,D), where

the tensor S : Rd × Rd×d
sym → Rd×d

sym satisfies in general the assumption

Assumption 2.3.1

(S1) S is Y−periodic in the first variable, i.e., periodic in each argument yi, i = 1, . . . , d
with the period 1, and continuous in the first variable,

(S2) S is a Carathéodory function, i.e., S(·, ξ) is measurable for all ξ ∈ Rd×d
sym, S(y, ·)

is continuous for almost all y ∈ Rd,
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(S3) for ξ1, ξ2 ∈ Rd×d
sym, ξ1 ̸= ξ2 and a.a. y ∈ Rd, (S(y, ξ1)− S(y, ξ2)) : (ξ1 − ξ2) > 0,

(S4) there are p > 1, p′ = p/(p− 1), c1, c̃1, c2 > 0 that for all y ∈ Rd, ξ ∈ Rd×s
sym

S(y, ξ) : ξ ≥ c1|ξ|p − c̃1, |S(y, ξ)|p′ ≤ c2(|ξ|p + 1).

A typical example of a stress tensor S satisfying Assumption 2.3.1 is given in (2.2).
Let us begin with the existence of a weak solution of (2.14).

Lemma 2.3.2 Let Ω ⊂ Rd be a bounded Lipschitz domain, ε > 0 be fixed, F ∈
Lp′(Ω;Rd×d

sym), p > 2d/(d+ 2), Assumption 2.3.1 be fulfilled and s be determined by

s =

{
min

{
dp

2(d−p) , p
′
}

p < d,

p′ p ≥ d.
(2.15)

Then there exists a weak solution (uε, πε) of (2.14), which is a pair (uε, πε)∈W 1,p
0,div(Ω;R

d)

×Ls(Ω) such that for any w ∈ C∞
0 (Ω;Rd)

ˆ
Ω
(Sε − uε ⊗ uε − πεI) : Dw =

ˆ
Ω

F : Dw. (2.16)

Moreover, there is c > 0 independent of ε such that

∥Duε∥Lp(Ω) ≤ c, ∥πε∥Ls(Ω) ≤ c. (2.17)

Proof. Due to Assumptions 2.3.1 we can adopt the technique used for the proof in [7,
Theorem 3.1].

Now we can formulate the general version of the main theorem.

Theorem 2.3.3 Let Ω ⊂ Rd be a bounded Lipschitz domain, p > 2d/(d + 2), S
satisfy Assumption 2.3.1 and F ∈ Lp′(Ω;Rd×d

sym). Let {(uε, πε)}ε∈(0,1) be a family of
weak solutions of the system (2.14) constructed in Lemma 2.3.2. Then there exists a
sequence {εk}+∞

k=1 such that as k → +∞

εk → 0, uεk ⇀ u in W 1,p
0 (Ω;Rd), πεk ⇀ π in Ls(Ω),

where s is determined in (2.15) and (u, π) is a weak solution of the system

−div
(

Ŝ(Du)− u ⊗ u
)
+∇π = −div F in Ω, div u = 0 in Ω,

u = 0 on ∂Ω,

ˆ
Ω
π = 0.

(2.18)

with Ŝ given by (2.6).

Let us outline main steps of the proof. First, we note that from Lemma 2.3.2
there is for a fixed ε ∈ (0, 1) a weak solution of the problem (2.14), which is bounded
uniformly with respect to ε. This uniform boundedness implies the existence of a
sequence {uεk}+∞

k=1 that converges weakly in W 1,p(Ω;Rd) to a limit u. We can also
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assume that the sequence {Sεk}+∞
k=1 converges weakly in Lp′(Ω) to a limit S̄. To be able

to use the Minty trick to identify the limit function S̄ we would require

lim
k→∞

ˆ
Ω

Sεk : Duεk =

ˆ
Ω

S̄ : Du. (2.19)

The assumption p > 2d
d+2 ensures the precompactness of the term uε⊗uε in Lq(Ω;Rd×d

sym)
for some q that might be less than p′. Then one cannot test the weak formulation
involving the limit S̄ with the limit u to obtain (2.19). Actually in this situation we
are not allowed to test (2.14) with uε as well. To overcome this inconvenience we
decompose the pressure πε into three parts. The first one corresponds to Sε and is
bounded in Lp′ , the second one corresponds to F + uε ⊗ uε and is precompact in Lq

for any q ∈ (1, s), where s might be less than p′ and is determined by (2.15) and the
last part is harmonic. Then we employ the div-curl lemma to obtain the identity of
the type (2.19). In fact, we show (2.19) for certain subsets of Ω determined by Biting
lemma 2.2.1.

At this moment we decompose the pressure into a part that is bounded in Lp′ , a
part that is precompact but in a bigger space and a harmonic part.

Lemma 2.3.4 Let s be given by (2.15) and the functions uε, πε,Sε,F be extended by
zero on Rd \Ω for ε > 0. Let functions πε,1 ∈ Lp′(Rd), πε,2 ∈ L

p∗
2 (Rd), πε,3 ∈ Lp′(Ω) be

defined as

πε,1 = div divN(Sε) ,

πε,2 = −div divN(F + uε ⊗ uε) ,

πε,3 = πε − πε,1 − πε,2.

Here N denotes the componentwise Newton potential and p∗ = dp/(d− p) if d > 2 and
p∗ > 1 if d = 2. Then

{πε,1} is bounded in Lp′(Rd),

{πε,2} is precompact in Lq(Rd) for any q ∈ [1, s),

{πε,3} is precompact in Lp′(O) for any O b Ω.

(2.20)

Proof. Applying the theory of Calderon-Zygmund operators, see [6, Section 6.3], yields
the estimates

∥πε,1∥Lp′ (Rd) ≤ c∥Sε∥Lp′ (Rd), ∥πε,2∥Ls(Rd) ≤ c, (2.21)

and the precompactness of {πε,2} in Lq(Rd), q ∈ [1, s) since {F+uε⊗uε} is precompact
in Lq(Rd;Rd×d

sym) by (2.26)2. It follows from (2.16) and (2.17) that {πε,3}ε∈(0,1) are
harmonic functions in Ω and bounded in Ls(Ω). Hence we can extract from {πε,3}ε∈(0,1)
a subsequence that converges uniformly in any O b Ω. Thus {πε,3}ε∈(0,1) is precompact
in Lp′(O).

We want to find a sequence {εk}+∞
k=1 ⊂ (0, 1) such that εk → 0 as k → +∞ so that

sequences of functions {Sεk}+∞
k=1, {uεk}+∞

k=1 and {πεk}+∞
k=1 has some additional properties.

To abbreviate the notation we will write F k for F εk .
We start with extracting convergent subsequences.
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Lemma 2.3.5 Let s be given by (2.15). For any N ⊂ (0, 1), 0 ∈ ∂N there is a
sequence {εk}+∞

k=1 ⊂ N such that εk → 0 as k → +∞ and functions u ∈ W 1,p
0,div(Ω;R

d),
u0 ∈ Lp

(
Ω;W 1,p

per(Y )d
)

, S0 ∈ Lp′(Ω × Y ;Rd×d
sym), π ∈ Ls(Ω × Y ) and π1 ∈ Lp′(Ω × Y )

such that as k → +∞

Duk 2−s−−⇀ Du + Dyu0 in Lp(Ω× Y ;Rd×d
sym), (2.22)

Sk 2−s−−⇀ S0 in Lp′(Ω× Y ;Rd×d
sym), (2.23)

πk
2−s−−⇀ π in Ls(Ω× Y ), (2.24)

πk,1
2−s−−⇀ π1 in Lp′(Ω× Y ), (2.25)

and
uk ⇀ u in W 1,p

0 (Ω;Rd),

uk → u in Lp∗(Ω;Rd),

πk ⇀ π :=

ˆ
Y
π(·, y)dy in Ls(Ω),

πk,1 ⇀ π1 :=

ˆ
Y
π1(·, y)dy in Lp′(Ω),

Sk ⇀ S :=

ˆ
Y

S0(·, y)dy in Lp′(Ω;Rd×d
sym).

(2.26)

Moreover, the limit functions satisfy

for almost all x ∈ Ω : Dyu0(x, ·) ∈ G(Y ), (2.27)
for almost all x ∈ Ω : S0(x, ·) ∈ G⊥(Y ), (2.28)
for almost all x ∈ Ω : π1(x, ·)I ∈ G⊥(Y ), (2.29)

and for any w ∈ C∞
0 (Ω)

ˆ
Ω
(S − u ⊗ u − πI) : Dw =

ˆ
Ω

F : Dw. (2.30)

Proof. In the proof we subsequently extract a subsequences. We will not explicitly refer
to this fact.

The convergences in (2.26) follow in a standard way from (2.17), (2.20), Sobolev
embedding theorem. Validity of (2.30) follows from (2.26) and (2.16).

Convergence (2.26)1 and Lemma 2.2.11 (iv) imply (2.22). Statements (2.23), (2.24),
(2.25) and identification of weak limits in (2.26) follow from (2.17), (2.20)1, the assump-
tion on growth of S and Lemma 2.2.11 (ii) and (iii).

Let us show (2.27). The convergence (2.22) means that for anyψ∈D
(
Ω;C∞

per(Y )d×d
)

lim
k→+∞

ˆ
Ω

Duk(x) : ψ

(
x,

x

εk

)
dx =

ˆ
Ω

ˆ
Y

(
Du(x) + Dyu0(x, y)

)
: ψ(x, y)dxdy.

(2.31)
We pick a ∈ D(Ω), b ∈ C∞

per(Y ) and put ψ(x, y) = a(x)b(y)I in (2.31). Obviously, we
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get using the weak convergence of {uk} in W 1,p
0 (Ω;Rd)

0 = lim
k→+∞

ˆ
Ω

div uk(x)a(x)b

(
x

εk

)
dx = lim

k→+∞

ˆ
Ω

Duk(x)a(x)b

(
x

εk

)
: Idx

=

ˆ
Ω

ˆ
Y

(
Du(x) + Dyu0(x, y)

)
a(x)b(y) : Idydx

=

ˆ
Ω

div u(x)a(x)
ˆ
Y
b(y)dydx+

ˆ
Ω

ˆ
Y

divy u0(x, y)b(y)dy a(x)dx

=

ˆ
Ω

ˆ
Y

divy u0(x, y)b(y)dy a(x)dx.

Hence for a.a. x ∈ Ω divy u0(x, ·) = 0 a.e. in Y , i.e. we conclude (2.27).
We show that for any σ ∈ C∞

0 (Ω) and h ∈ C∞
per,div(Y ;Rd)

ˆ
Ω

ˆ
Y

S0(x, y) : Dh(y)dyσ(x)dx = 0. (2.32)

Since εkσ(x)h
(

x
εk

)
is not solenoidal, the correction Bk(x) = B

(
εkh

(
x
εk

)
∇σ(x)

)
that

satisfies

div Bk(x) = εkh( x
εk

)∇σ(x) in x ∈ Ω, Bk = 0 on ∂Ω,

∥∇Bk∥Lγ(Ω) ≤ c(γ, ∥h∥L∞(Y ), ∥∇σ∥L∞(Ω))εk

with an arbitrary γ ∈ (1,∞), is introduced to allow using εkσ(x)h
(

x
εk

)
− Bk as a test

function in (2.16). We note that the existence of Bk is ensured by Lemma 2.2.3. Then
we employ convergences as k → +∞

Bk → 0 in Lγ(Ω;Rd),

DBk → 0 in Lγ(Ω;Rd×d
sym),

σuk ⊗ uk → σu ⊗ u in L1(Ω;Rd×d
sym),

Sk 2−s−−⇀ S0 in Lp′(Ω;Rd×d
sym),

to obtain from (2.16) by (2.5) and Lemma 2.2.111 that
ˆ
Ω

ˆ
Y
(S0(x, y)− u(x)⊗ u(x)− F(x)) : Dyh(y)dyσ(x)dx = 0.

Hence (2.32) and thus (2.28) follow due to an obvious fact
´
Y Dyh(y) = 0.

Finally, we infer that for any W = Dw ∈ G(Y ) and almost all x ∈ Ω

ˆ
Y
π1(x, y)I : W(y)dy =

ˆ
Y
π1(x, y)divy w(y)dy = 0,

which concludes (2.29).

Further we also utilize the following lemma concerning the equiintegrability property
of sequences {Sk}∞k=1, {πk,1}∞k=1.

65



Chapter 2 Homogenization of an electrorheological fluid flow

Lemma 2.3.6 For any N ⊂ (0, 1), 0 ∈ ∂N there is a sequence {εk}+∞
k=1 ⊂ N such that

εk → 0 as k → +∞ and a sequence of measurable sets Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn ⊂ · · · ⊂ Ω
with |Ω \ Ωn| → 0 as n → +∞ such that for any n ∈ N and θ > 0 there is δ > 0 such
that for any k ∈ N and K ⊂ Ωn with |K| < δ

∥Sk∥Lp′ (K) + ∥πk,1∥Lp′ (K) < 2θ
1
p′ . (2.33)

Proof. Let us consider an arbitrary sequence {εk}+∞
k=1 ⊂ N , εk → 0 as k → +∞ and

denote Gk = |Sk|p′ + |πk,1|p′ . The apriori estimate (2.17)1, the growth condition on S
and (2.20)1 imply the boundedness of {Gk}∞k=1 in L1(Ω). The application of Chacon’s
biting lemma 2.2.1 on {Gk}∞k=1 yields the existence of sets Ωn ⊂ Ω with |Ω \ Ωn| → 0
as n→ ∞ and the existence of a subsequence {Gk}∞k=1 (that will not be relabeled) and
a function G ∈ L1(Ω) such that Gk ⇀ G in L1(Ωn) as k → ∞. According to Dunford
theorem 2.2.2 we obtain the equiintegrability of {Gk}∞k=1 on Ωn, i.e., for any θ > 0
there is δ > 0 such that for any k ∈ N and K ⊂ Ωn with |K| < δ we haveˆ

K
|Sk|p + |πk,1|p < θ,

which implies (2.33).

From now on we assume that a sequence {εk}+∞
k=1 ⊂ N , εk → 0 as k → +∞ is chosen

in such a way that all conclusion of Lemmas 2.3.4, 2.3.5 and 2.3.6 hold. In particular
we fix the corresponding sequence {Ωn}+∞

n=1 of sets from Lemma 2.3.6. The rest of the
paper is devoted to finding for this particular sequence the relation between S and Du.

In the following lemma we construct for any element of a subsequence of {uk}+∞
k=1

a sequence {uk,λ}+∞
λ=1, whose elements have the symmetric gradient bounded in L∞(Ω)

independently of k. Hence a subsequence that converges weakly-star in L∞(Ω) can be
selected. Moreover, limit functions form a sequence that contains a weakly convergent
subsequence in Lp(Ω).

Lemma 2.3.7 There is c > 0 and a subsequence of {εk}+∞
k=1 (that will not be relabeled)

such that

∀k, λ ∈ N : ∥Duk,λ∥Lp(Ω) ≤ c, (2.34)
∀λ ∈ N : Duk,λ −⇀∗ Duλ as k → +∞ in L∞(Ω;Rd), (2.35)

where we denoted by uk,λ functions constructed to uk by Lemma 2.2.5. Moreover, a
subsequence {uλl}+∞

l=1 can be selected such that

Duλk ⇀ Du as k → +∞ in Lp(Ω;Rd×d
sym), . (2.36)

Proof. The application of Lemma 2.2.5 to the sequence {uk} yields the existence of
functions uk,λ ∈W 1,∞(Ω;Rd), k, λ ∈ N satisfying

∥uk,λ∥W 1,∞(Ω) ≤ λ, |{x ∈ Ω : uk(x) ̸= uk,λ(x)}| ≤ c
∥uk∥p

W 1,p(Ω)

λp
. (2.37)

Utilizing (2.37), Friedrichs and Korn’s inequalities, we obtainˆ
Ω
|Duk,λ|p =

ˆ
{uk=uk,λ}

|Duk,λ|p +
ˆ
{uk ̸=uk,λ}

|Duk,λ|p ≤
ˆ
Ω
|Duk|p

+ λp|{x ∈ Ω : uk(x) ̸= uk,λ(x)}| ≤ c∥Duk∥pLp(Ω),
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which implies (2.34) due to (2.17).
The convergence (2.35) follows from (2.37)1 by a diagonal procedure. Moreover, the

estimate (2.34), (2.35) and the weak lower semicontinuity of the Lp−norm imply the
existence of a positive constant c such that

∀λ ∈ N : ∥Duλ∥Lp(Ω) ≤ c.

Hence we can pick a function ũ ∈W 1,p
0 (Ω;Rd) and a subsequence {λl}+∞

l=1 such that

uλl ⇀ ũ as l → +∞ in W 1,p(Ω;Rd).

It remains to show ũ = u. Using the boundedness of the sequences {uk}, {uk,λ} in
W 1,p(Ω;Rd) and the estimate (2.37)2, we obtain
ˆ
Ω
|uk,λ − uk| =

ˆ
{uk,λ ̸=uε}

|uk,λ − uk| ≤ ∥uk,λ − uk∥Lp(Ω)|{uk,λ ̸= uk}|
1
p′ ≤ c

λp−1
.

Moreover, the compact embedding W 1,p(Ω;Rd)↪→L1(Ω;Rd) implies

∥uλ − u∥L1(Ω) = lim
k→+∞

∥uk,λ − uk∥L1(Ω).

Therefore uλ → u in L1(Ω) and we conclude ũ = u a.e. in Ω.

In the rest of the paper we denote for any k, l ∈ N the function uk,l := uεk,λl , where
{λl} and {εk} are sequences constructed in Lemma 2.3.7. Now, we are prepared to
show that for certain subsets Ω̃n of Ω we can identify limk→∞

´
Ω̃n

Sk : Dukdx.

Lemma 2.3.8 Let O b Ω be arbitrary open and denote Ω̃n = Ωn ∩ O. Then for each
n ∈ N

lim
k→+∞

ˆ
Ω̃n

Sk : Duk =

ˆ
Ω̃n

S : Du. (2.38)

Proof. For fixed n ∈ N and any k, l ∈ N we decompose using the solenoidality of uk

ˆ
Ω̃n

Sk : Duk =

ˆ
Ω̃n

(Sk − πk,1I) : Duk =

ˆ
Ω̃n

(Sk − πk,1I) : D
(

uk − uk,l
)

+

ˆ
Ω̃n

(Sk − πk,1I) : Duk,l = Ik,l + IIk,l.

We want to perform the limit passage k → +∞ and then l → +∞ in both terms
on the right hand side of the latter equality. We denote Ω̃k,l

n = Ω̃n ∩ {uk ̸= uk,l} and
estimate using Hölder’s inequality, (2.21), (2.17)1 and (2.34)

|Ik,l| ≤ c∥Sk − πk,1I∥
Lp′ (Ω̃k,l

n )
∥D(uk − uk,l)∥

Lp(Ω̃k,l
n )

≤ c
(
∥Sk∥

Lp′ (Ω̃k,l
n )

+ ∥πk,1∥
Lp′ (Ω̃k,l

n )

)
.

As |Ω̃k,l
n | ≤ cλ−p

l by (2.37)2, we get by Lemma 2.3.6 that for any θ > 0 there exists
l0 ∈ N such that for any l > l0 and k ∈ N we have |Ik,l| < θ and therefore

lim
l→+∞

lim
k→+∞

Ik,l = lim
k→+∞

lim
l→+∞

Ik,l = 0.

Note that for this estimate it is essential that {πk,1} is bounded in Lp′(Ω). The terms
πk,2 and πk,3 cannot be included to Ik,l.
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For the limit passage k → +∞ in IIk,l we employ Lemma 2.2.4. Let us pick
q ∈ (1, s), where s is determined by (2.15). We have for any w ∈ W 1,q′

0 (O;Rd) in the
sense of distributions⟨

div(Sk − πk,1I),w
⟩
= −
ˆ
O

(
F + uk ⊗ uk + (πk,2 + πk,3)I

)
: Dw. (2.39)

It follows from Lemma 2.3.4 that {F + uk ⊗ uk + (πk,2 + πk,3)I} is precompact in
Lq(O;Rd×d

sym). Therefore we obtain that {div(Sk+πk,1I)} is precompact in W−1,q(O;Rd).
Here it is necessary that part of the pressure corresponding to Sk, i.e. πk,1, that is not
precompact in any Lebesgue space, does not appear on the right hand side of (2.39).
We observe that curl(∇uk,l) = 0. Then Lemma 2.2.4 and the convergences (2.26)4,5
and (2.35) imply

(Sk − πk,1I) : Duk,l = (Sk − πk,1I) : ∇uk,l ⇀ (S − π1I) : ∇ul = (S − π1I) : Dul

in L1(O). Hence we deduce using (2.36) and the solenoidality of u

lim
l→+∞

lim
k→+∞

IIk,l = lim
l→+∞

lim
k→+∞

ˆ
O
(Sk − πk,1I) : Duk,lχΩ̃n

= lim
l→+∞

ˆ
O
(S − π1I) : DulχΩ̃n

=

ˆ
Ω̃n

S : Du.

Having all preliminary claims shown we justify the limit passage ε→ 0 in the weak
formulation of (2.14).

Proof of Theorem 2.3.3. It remains to show the relation

S0(x, y) = S(x,Du(x) + Dyu0(x, y)) for almost all x ∈ Ω, y ∈ Y. (2.40)

This equality namely immediately implies that Dyu0(x, ·) is the solution of the cell
problem (2.7) with ξ = Du(x) for a.a. x ∈ Ω by (2.27) and (2.28). Consequently,
integrating (2.40) over Y we obtain S(x) =

´
Y S(x,Du+Dyu0)dy = Ŝ(Du) and (2.18)

holds.
Finally, we prove (2.40). We fix n ∈ N, a corresponding Ωn from Lemma 2.3.6 and

O b Ω. Keeping the notation of Lemma 2.3.8, using (2.26), (2.27) and (2.28), it follows
from (2.38) that

lim
k→+∞

ˆ
Ω̃n

Sk : Duk =

ˆ
Ω̃n

ˆ
Y

S0 : (Du + Dyu0). (2.41)

We choose U ∈ Lp(Ω̃n;Cper(Y ;Rd×d
sym)). The monotonicity of S implies

0 ≤
ˆ
Ω̃n

(
Sk(x)− S

(
xε−1

k ,U
(
x, xε−1

k

)))
:
(

Duk(x)− U
(
x, xε−1

k

))
dx

=

ˆ
Ω̃n

Sk(x) : Duk(x)dx−
ˆ
Ω̃n

S
(
xε−1

k ,U
(
x, xε−1

k

))
: Duk(x)dx

−
ˆ
Ω̃n

Sk(x) : U
(
x, xε−1

k

)
dx+

ˆ
Ω̃n

S
(
xε−1

k ,U
(
x, xε−1

k

))
: U

(
x, xε−1

k

)
dx

= Ik − IIk − IIIk + IV k.
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We want to pass to the limit as k → +∞ in Ik, IIk, IIIk, IV k. We use (2.41) for the
passage in Ik. Applying Lemma 2.2.11 (i) to S(y,U(x, y)) and U yields

S
(
xε−1

k ,U
(
x, xε−1

k

)) 2−s−−→ S(y,U(x, y)) in Lp′(Ω× Y ;Rd×d
sym),

U
(
x, xε−1

k

) 2−s−−→ U(x, y) in Lp(Ω× Y ;Rd×d
sym)

as k → +∞. Employing these convergences and (2.22) we infer

lim
k→+∞

IIk =

ˆ
Ω̃n

ˆ
Y

S(y,U(x, y)) : (Du(x) + Dyu0(x, y)dydx,

lim
k→+∞

IIIk =

ˆ
Ω̃n

ˆ
Y

S0(x, y) : U(x, y)dydx,

lim
k→+∞

IV k =

ˆ
Ω̃n

ˆ
Y

S(y,U(x, y)) : U(x, y)dydx.

Thus one obtains for any n ∈ N and U ∈ Lp(Ω̃n;Cper(Y ;Rd×d
sym))

ˆ
Ω̃n

ˆ
Y

(
S0(x, y)− S(y,U(x, y))

)
:
(
Du(x) + Dyu0(x, y)− U(x, y)

)
dydx ≥ 0. (2.42)

To be able to apply Minty’s trick, we need (2.42) to be satisfied for any U ∈ Lp(Ω̃n ×
Y ;Rd×d

sym). In order to obtain that we consider U ∈ Lp(Ω̃n × Y ;Rd×d
sym) and {Uk} ⊂

Lp(Ω̃n;Cper(Y ;Rd×d
sym)) such that Uk → U in Lp(Ω̃n × Y ;Rd×d

sym). Then we have due
to the growth of S and theory of Nemytskii operators that S(y,Uk) → S(y,U) in
Lp′(Ω̃n × Y ;Rd×d

sym). Therefore one deduces the accomplishment of (2.42) for any U ∈
Lp(Ω̃n × Y ;Rd×d

sym). Minty’s trick yields that S0(x, y) = S(y,Du(x) + Dyu0(x, y)) for
almost all (x, y) ∈ Ω̃n × Y . Since |Ω \ Ωn| → 0, {Ω \ Ωn}+∞

n=1 is a decreasing sequence
of measurable sets and O b Ω was arbitrary, we have for almost all (x, y) ∈ Ω × Y
S0(x, y) = S(y,Du(x) + Dyu0(x, y)).

Let us note that we have simultaneously proven the following lemma concerning the
existence of a weak solution of the problem (2.18).

Lemma 2.3.9 Let Ω ⊂ Rd be a bounded Lipschitz domain, F ∈ Lp′(Ω;Rd×d
sym) and

p > 2d
d+2 , Assumption 2.3.1 be fulfilled and s be determined by (2.15). Then there exists a

weak solution (u, π) of the problem (2.18), which is a pair (u, π) ∈W 1,p
0,div(Ω;R

d)×Ls(Ω)

such that for any w ∈ C∞
0 (Ω;Rd)

ˆ
Ω
(Ŝ(Du)− u ⊗ u − πI) : Dw =

ˆ
Ω

F : Dw.
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Abstract
We study the homogenization process for families of strongly nonlinear elliptic systems
with the homogeneous Dirichlet boundary conditions. The growth and the coercivity of
the elliptic operator is assumed to be indicated by a general inhomogeneous anisotropic
N–function M , which may be possibly also dependent on the spatial variable, i.e.,
the homogenization process will change the characteristic function spaces at each step.
Such a problem is well known and there exist many positive results for the Lp−setting
with restrictions on constant exponent or variable exponent that is assumed to be ad-
ditionally log-Hölder continuous. These situations correspond to a very particular case
of N–functions satisfying ∆2 and ∇2–conditions. We shall show that for M satisfying a
condition of log-Hölder type one can avoid all difficulties and provide a rather general
theory without any assumption on the validity of ∆2 or ∇2 conditions.

Keywords
nonlinear elliptic problems, Musielak–Orlicz spaces, periodic homogenization, two-scale
convergence method

3.1 Introduction
Our primary interest is to study the behaviour of the following system as ε→ 0+:

div A
(x
ε
,∇uε

)
= div F in Ω,

uε = 0 on ∂Ω,
(3.1)

where Ω ⊂ Rd, d ≥ 2 is a bounded Lipschitz domain and uε : Ω → RN with N ∈ N
is an unknown. The data of problem (3.1) are F : Ω → Rd×N and A : Rd × Rd×N →
Rd×N . The operator A is strongly nonlinear with the growth prescribed by a spatially
inhomogeneous anisotropic N–function

The studies on homogenization of elliptic equations go back to the works of Oleinik
and Zhikov [11] and Allaire [1]. The second one is in particular worth of recalling here
as it uses the notion of two-scale convergence. The setting of non-standard growth
conditions of the opeartor A appeared in [16]. The authors considered the growth
prescribed by means of variable exponent p(x). To identify an elliptic operator in the
homogenized problem, i.e., after letting ε → 0+ in (3.1), the authors applied a variant
of the compensated compactness argument. For this approach to work one needs that
a decomposition of Helmholtz type holds for function spaces involved. It has to be
pointed out that a decomposition of a similar type is unknown for our structure of
function spaces. The current formulation, however, transfers the problem to different
functional setting, where such a decomposition is not valid anymore.

Known results from the theory of homogenization of elliptic equations, c.f. [16],
suggest that the limit u of a sequence of solutions of (3.1) satisfies a problem, in which
the nonlinear operator is independent of a spatial variable, i.e., the problem possesses
the form

div Â(∇u) = div F in Ω,

u = 0 on ∂Ω,
(3.2)

where, denoting Y := (0, 1)d, the operator Â is defined as

Â(ξ) :=

ˆ
Y

A(y, ξ +∇w(y))dy,
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and w : Rd → RN is the solution of the cell problem, i.e., w is Y -periodic and solves

div A(y, ξ +∇w(y)) = 0 in Y.

Our effort will be spent on establishing the convergence of solutions uε as ε → 0+,
finding the connection between the operators Â and A and establishing solvability
of (3.2). These results are summarized in Theorem 3.1.2.

It is worth noticing that the above mentioned results are known in “subcritical”
cases, i.e., cases where the underlying N–function satisfies ∆2 and ∇2–condition. In
our result we do not require validity of any of these two conditions. However, we have
to compensate it (and one can naturally expect it) by the assumption on log-Hölder
continuity with respect to the spatial variable of the N–function M . It also seems that
the “borderline” cases are mostly untouched and the main purpose of the paper is to
develop sufficiently robust theory, that would allow us to talk about the limit ε → 0+
in (3.1) also for these borderline cases.

We first formulate certain minimal assumptions on the operator A, that will be
used in what follows:

(A1) A is a Carathéodory mapping, i.e., A(·, ξ) is measurable for any ξ ∈ Rd×N and
A(y, ·) is continuous for a.a. y ∈ Rd,

(A2) A is Y−periodic, i.e., periodic in each argument yi, i = 1, . . . , d with the period
1,

(A3) There exists an N–function M : Rd × Rd×N → [0,∞) and a constant c > 0 such
that for a.a. y ∈ Y and all ξ ∈ Rd×N there holds1

A(y, ξ) · ξ ≥ c(M(y, ξ) +M∗(y,A(y, ξ))),

(A4) For all ξ,η ∈ Rd×N such that ξ ̸= η and a.a. y ∈ Y , we have

(A(y, ξ)− A(y,η)) · (ξ − η) > 0.

Concerning the N–function M and the corresponding function spaces, we shall impose
the following conditions on M :

(M1) M is Y−periodic in the first variable,

(M2) there exist N–functions m1,m2 : [0,∞) → [0,∞) such that

m1(|ξ|) ≤M(y, ξ) ≤ m2(|ξ|) on Y,

(M3) there exist constants A > 0 and B ≥ 1 such that for all y1, y2 ∈ Y with |y1−y2| ≤
1
2 and all ξ ∈ Rd×N we have

M(y1, ξ)

M(y2, ξ)
≤ max{|ξ|−

A
log |y1−y2| , B

− A
log |y1−y2| }. (3.3)

Let us consider a family of d–dimensional cubes covering the set Y . Namely, a
family {Qδ

j}N
δ

j=1 consists of closed cubes of edge 2δ such that intQδ
j ∩ intQδ

i = ∅
1Note that the condition could be formulated more generally, i.e., A(y, ξ) · ξ ≥ c(M(y, ξ) +

M∗(y,A(y, ξ))) − k(y) for some integrable function k. For readability we omit this generality here,
however such case could easily be treated, see e.g. [6].
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for i ̸= j and Y ⊂
∪Nδ

j=1Q
δ
j . Moreover, for each cube Qδ

j we define the cube Q̃δ
j

centered at the same point and with parallel corresponding edges of length 4δ.
Assume that there are constants C,D,E > 0 and G ≥ 1 such that for all y ∈ Qδ

j

and all ξ ∈ Rd×N we have

M(y, ξ)

(M δ
j )

∗∗(ξ)
≤ C max{|ξ|−

D
log(Eδ) , G

− D
log(Eδ) } (3.4)

where δ < δ0 (δ0 is chosen in such a way that Dδ0 ≤ 1
2),

M δ
j (ξ) := inf

y∈Q̃δ
j

M(y, ξ). (3.5)

and (M δ
j )

∗∗ is the biconjugate of M δ
j .

Remark 3.1.1 In the case of a certain special form of M we relax condition (M3) via
Lemma 3.4.5. Consider an N–function M possessing the form

M(y, ξ) =
K∑
i=1

ki(y)Mi(ξ) + M̃(y, |ξ|) for some K ∈ N

where Mi, i = 1, . . . ,K, are spatially independent N–functions and ki are nonnegative
functions. In this case it is sufficient to assume that M̃ is continuous on Rd× [0,∞) and
satisfies (3.3). Concerning the functions ki we assume that there exist constants Ci > 1

such that ki(y1)
ki(y2)

≤ C
− 1

log |y1−y2|
i for i = 1, . . . ,K and any y1, y2 ∈ Y with |y1 − y2| ≤ 1

2 .
Then, keeping the notation from (M3) and considering an arbitrary δ < δ0 ≤ 1

6
√
d
, we

have

M j
δ (ξ) = inf

Q̃δ
j

(
K∑
i=1

ki(y)Mi(ξ) + M̃(y, |ξ|)

)
≥

K∑
i=1

inf
Q̃j

δ

ki(y)Mi(ξ) + inf
Q̃j

δ

M̃(y, |ξ|)

≥
K∑
i=1

inf
Q̃j

δ

ki(y)Mi(ξ) + (M̃ δ
j )

∗∗(|ξ|) =: M̄ j
δ (ξ).

Obviously, due to the continuity of functions ki and M̃ there are points ȳi ∈ Q̃δ
j such

that M̄ j
δ (ξ) =

∑K
i=1 ki(ȳi)Mi(ξ) + (M̃ δ

j )
∗∗(|ξ|). Moreover, the function M̄ j

δ is convex
with respect to ξ. Hence we obtain M̄ j

δ (ξ) ≤ (M j
δ )

∗∗(ξ) and since for any y ∈ Qj
δ it

follows that |y − ȳi| ≤ 3δ
√
d for all i = 1, . . . ,K, we get

M(y, ξ)

(M j
δ )

∗∗(ξ)
≤

K∑
i=1

ki(y)

ki(ȳi)
+

M̃(y, |ξ|)
(M̃ δ

j )
∗∗(|ξ|)

≤ K max
i=1,...,K

{C
− 1

log |y−ȳi|
i }

+ C max{|ξ|−
D

log(Eδ) , G
− D

log(Eδ) }

≤C̃ max{|ξ|−
D

log(Eδ) ,max{ max
i=1,...,K

{Ci}, G}
− max{D,1}

log(max{3
√
d,E}δ) }

for some constants C̃,D,E > 0 and G ≥ 1 if δ < δ0 ≤ min{ 1
6
√
d
, 1
2E } is considered.

To finish the introduction, we formulate the main result of the paper.
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Theorem 3.1.2 Let A satisfy (A1)–(A4), the N–functions M satisfy (M1)–(M3),

F ∈ L∞(Ω;Rd×N ) (3.6)

and for any ε > 0 let uε be a unique solution of the problem (3.1). Then for an arbitrary
sequence {εj}∞j=1 such that εj → 0 as j → ∞, we have the following convergence result

uεj ⇀ u in W 1,1
0 (Ω;RN ),

where uεj is the sequence of solutions solving (3.1) with ε = εj and u is a unique
solution to (3.2), provided that one of the following conditions holds:

(C1) The set Ω is star–shaped.

(C2) The set Ω is Lipschitz and we have the single equation, i.e., N = 1.

3.2 Preliminaries
Since we deal with rather general function spaces and growth conditions imposed on
the nonlinearity A, we recall in the appendix several facts about the corresponding
function spaces and their properties and we refer the interested reader to [12, 13] for
more details. In the forthcoming section we concentrate already on the specific spaces
related to the considered problem.

3.2.1 Function spaces related to the problem
Once the general Musielak–Orlicz spaces are introduced in the appendix, we now focus
on the specific spaces related to the problem. Here, Ω will be the Lipschitz domain and
Y the set (0, 1)d. For M : Y × Rd×N → R+ the N-function, we use the subscript y to
underline the role of y for the spaces LMy(Ω × Y ;Rd×N ) and similarly EMy endowed
with the norm

∥v∥LMy = ∥v∥EMy := inf
{
λ > 0 :

ˆ
Ω

ˆ
Y
M

(
y,

v(x, y)
λ

)
dydx ≤ 1

}
.

We note that whenever a function dependent on a variable from Y appears, it is always
Y−periodic although the Y−periodicity might not be stressed. We further denote the
spaces of smooth periodic or compactly supported functions as

C∞
per(Y ;RN ) := {v ∈ C∞(Rd;RN ) : v is Y -periodic},
C∞
c (Ω;RN ) := {v ∈ C∞(Rd;RN ) : supp v is compact in Ω}

and naturally also the corresponding Bochner spaces C∞
c

(
Ω;C∞

per(Y )
)
. Then the stan-

dard Sobolev spaces are defined as

W 1,1
0 (Ω;RN ) := {v ∈ C∞

c (Ω;RN )}
∥·∥1,1

,

W 1,1
per(Y ;RN ) := {v ∈ C∞

per(Y ;RN );

ˆ
Y

v = 0}
∥·∥1,1

.

Moreover, due to the Poincaré inequality, we always choose an equivalent norm on W 1,1
0

and W 1,1
per as ∥v∥1,1 := ∥∇v∥1. We shall define the Sobolev–Musielak–Orlicz space

W 1
perE

M (Y ;RN ) := {v ∈ C∞
per(Y ;RN );

ˆ
Y

v = 0}
∥·∥

W1
per(Y ;RN )

.
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where ∥v∥W 1
perL

M (Y ) := ∥∇v∥LM (Y ) and the following spaces

VM
0 :=

{
v ∈W 1,1

0 (Ω;RN ) : ∇v ∈ LM (Ω;Rd×N )
}
,

VM
per :=

{
v ∈W 1,1

per(Y ;RN ) : ∇v ∈ LM (Y ;Rd×N )
}
.

In addition, we utilize the following closed subspace of EM (Y ;Rd×N ) and its annihilator

G(Y ) := {∇w : w ∈W 1
perE

M (Y ;RN )},

G⊥(Y ) := {W∗ ∈ LM∗
per (Y ;Rd×N ) :

ˆ
Y

W∗(y) · W(y)dy = 0 for all W ∈ G(Y )}.

In our situation, the N–function possesses the property of log-Hölder continuity and
the following theorem ensures the approximation of every function from VM

per and VM
0 in

the sense of modular topology by functions that are smooth and periodic, with compact
support respectively.

Theorem 3.2.1 Let Σ ⊂ Rd be a bounded domain and an N–function M satisfy (M2)
and (M3) with Σ replacing Y . Then we have the following modular convergence results:

1) Let Σ be Lipschitz then for any scalar function v ∈ VM
0 ∩ L∞(Σ) there exists a

sequence {vk}∞k=1 ⊂ C∞
c (Σ) such that ∇vk M−−→ ∇v.

2) Let Σ be star–shaped then for any function v ∈ VM
0 there exists a sequence

{vk}∞k=1 ⊂ C∞
c

(
Σ;RN

)
such that ∇vk M−−→ ∇v.

3) Let Σ = Y then for any function v ∈ VM
per there exists a sequence {vk}∞k=1 ⊂

C∞
per

(
Σ;RN

)
such that ∇vk M−−→ ∇v.

Proof. The assertion 1) is [5, Theorem 2.2]. To prove the assertions 2) and 3) one
follows the common scheme:

1. Construction of the mollification ∇vδk of ∇v.

2. Showing that the family {∇vδk}∞k=1 is uniformly bounded on LM (Σ;Rd×N ).

3. Showing that ∇vδk M−−→ ∇v.

The detailed proof can be performed by repeating Steps 1-3 from the proof of [5, The-
orem 2.2].

We state several technical lemmas.

Lemma 3.2.2 [6, Lemma 2.1.] Let N ≥ 1, M be an N–function and {vk}∞k=1 be a
sequence of measurable RN−valued functions on Σ. Then vk M−−→ v in LM (Σ;RN ) if
and only if vk → v in measure and there exists some λ > 0 such that {M(·, λvk)}∞k=1

is uniformly integrable, i.e.,

lim
R→∞

(
sup
k∈N

ˆ
{x:|M(x,λvk(x))|>R}

M(x, λvk(x))dx
)

= 0.
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Lemma 3.2.3 [6, Lemma 2.2.] Let M be an N–function and assume that there is
c > 0 such that

´
ΣM(x,vk)dx ≤ c for all k ∈ N. Then {vk}∞k=1 is uniformly integrable.

Lemma 3.2.4 Let M be an N–function and Σ be a bounded domain. Then for any
v ∈ VM

0 (Σ) we have ∇Tk(v)
M−−→ ∇v as k → ∞, where

Tk(v) =

{
v if |v| ≤ k

k v
|v| if |v| > k.

Proof. Clearly, ∇Tk(u) → ∇u a.e. in Σ, which has finite measure. Hence the sequence
{∇Tk(u)}∞k=1 converges to ∇u in measure. Moreover, as M(·,∇Tk(u)) ≤ M(·,∇u)
a.e. in Σ by the definition of Tk, Lemma 3.2.3 implies that {∇Tk(u)}∞k=1 is uni-
formly integrable. These two facts are equivalent to ∇Tk(u)

M−−→ ∇u according to
Lemma 3.2.2.

3.2.2 Standard tools used for homogenization
Lemma 3.2.5 Let X be a Banach space, V be a subspace of X, g be a closed, convex
functional on X that is continuous at some x ∈ V . Then

inf
x∈V

{g(x)− ⟨η, x⟩}+ inf
ξ∈V ⊥

g∗(η + ξ) = 0 (3.7)

for all η ∈ X∗.

Proof. One deduces by definition of a convex conjugate that

∀ξ ∈ X∗ : (g − η)∗(ξ) = sup
x∈X

{⟨η + ξ, x⟩ − g(x)} = g∗(η + ξ). (3.8)

According to [7, Theorem 14.2]

inf
x∈V

A(x) + inf
x∗∈V ⊥

A∗(x∗) = 0

for a closed, convex functional A that is continuous at some x ∈ V . We set A(x) :=
(g − η)(x) and the expression for A∗ determined by (3.8) in the latter equality to
conclude (3.7).

The rest of this section is devoted to the introduction of the two–scale convergence
via periodic unfolding. This approach allows to represent the weak two–scale conver-
gence by means of the standard weak convergence in a Lebesgue space on the product
Ω × Y , details for the case of Lp spaces can be found in [15]. In the same manner
the strong two–scale convergence is introduced. Since function spaces, which we are
working with, provide only the weak∗ compactness of bounded sets, we introduce the
weak two–scale compactness in the weak∗ sense. However, it turns out that this notion
of convergence and some of its properties are sufficient for our purposes. We define
functions n : R → Z and N : Rd → Zd as

n(t) = max{n ∈ Z : n ≤ t} ∀t ∈ R, N(x) = (n(x1), . . . , n(xd)) ∀x ∈ Rd.

Then we have for any x ∈ Rd, ε > 0, a two–scale decomposition x = ε
(
N
(
x
ε

)
+R

(
x
ε

))
.

We also define for any ε > 0 a two–scale composition function Sε : Rd × Y → Rd as
Sε(x, y) := ε

(
N
(
x
ε

)
+ y
)
. It follows immediately that

Sε(x, y) → x uniformly in Rd × Y as ε→ 0 (3.9)
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since Sε(x, y) = x + ε
(
y −R

(
x
ε

))
. In the rest of the section we assume that m is an

N–function.
We say that a sequence of functions {vε} ⊂ Lm(Rd)

1. converges to v0 weakly∗ two–scale in Lm(Rd×Y ), vε 2−s−−⇀∗ v0, if vε ◦Sε converges
to v0 weakly∗ in Lm(Rd × Y ),

2. converges to v0 strongly two–scale in Em(Rd×Y ), vε 2−s−−→ v0, if vε ◦Sε converges
to v0 strongly in Em(Rd × Y ).

We define two–scale convergence in Lm(Ω×Y ) as two–scale convergence in Lm(Rd×Y )
for functions extended by zero to Rd\Ω. The following lemma will be utilized to express
properties of two–scale convergence in terms of single-scale convergence.

Lemma 3.2.6 [15, Lemma 1.1] Let g be measurable with respect to a σ−algebra
generated by the product of the σ−algebra of all Lebesgue–measurable subsets of Rd

and the σ−algebra of all Borel–measurable subsets of Y . Assume in addition that
g ∈ L1(Rd;L∞

per(Y )) and extended it by Y−periodicity to Rd for a.a. x ∈ Rd. Then,
for any ε > 0, the function (x, y) 7→ g(Sε(x, y), y) is integrable andˆ

Rd

g
(
x,
x

ε

)
dx =

ˆ
Rd

ˆ
Y
g(Sε(x, y), y)dydx.

Several useful properties of the two–scale convergence are summarized in the follow-
ing lemma.

Lemma 3.2.7 Assume that m : [0,∞) → [0,∞) is an N–function.
(i) Let v : Ω × Y → R be Carathéodory, v ∈ Em(Ω × Y ), v be Y−periodic, define

vε(x) = v(x, xε ) for x ∈ Ω. Then vε
2−s−−→ v in Em(Ω× Y ) as ε→ 0.

(ii) Let vε 2−s−−⇀∗ v0 in Lm(Ω× Y ) then vε ⇀∗ ´
Y v

0(·, y)dy in Lm(Ω).

(iii) Let vε 2−s−−⇀∗ v0 in Lm(Ω × Y ) and wε 2−s−−→ w0 in Em∗
(Ω × Y ) then

´
Ω v

εwε →´
Ω

´
Y v

0w0.

(iv) Let vε 2−s−−⇀∗ v0 in Lm(Ω× Y ) then for any ψ ∈ C∞
c

(
Ω;C∞

per(Y )
)

lim
ε→0

ˆ
Ω
vε(x)ψ

(
x,
x

ε

)
dx =

ˆ
Ω

ˆ
Y
v0(x, y)ψ(x, y)dydx.

(v) Let {vε} be a bounded sequence in Lm(Ω). Then there is v0 ∈ Lm(Ω× Y ) and a
sequence εk → 0 as k → ∞ such that vεk 2−s−−⇀∗ v0 in Lm(Ω× Y ) as k → ∞.

(vi) Let {vε} ⊂ V m
0 be such that

vε −−⇀∗ v in Lm(Ω),

∇vε −−⇀∗ ∇v in Lm(Ω;Rd).
(3.10)

Then vε
2−s−−⇀∗ v in Lm(Ω × Y ) and there is a sequence εk → 0 as k → ∞ and

v ∈ Lm(Ω × Y ;Rd) such that ∇vεk 2−s−−⇀∗ ∇v + v in Lm(Ω × Y ;Rd) as k → ∞
and ˆ

Y
v(x, y) ·ψ(y)dy = 0

for a.a. x ∈ Ω and any ψ ∈ C∞
per(Y ;Rd),divψ = 0 in Y .
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(vii) Let Φ : Rd × Rd×N → R satisfy:

(a) Φ is Carathéodory,
(b) Φ(·, ξ) is Y−periodic for any ξ ∈ Rd×N , Φ(y, ·) is convex for almost all

y ∈ Y ,
(c) Φ ≥ 0, Φ(·, 0) = 0.

Then for any sequence Uε 2−s−−⇀∗ U in Lm(Ω× Y ;Rd×N ) it follows that

lim inf
ε→∞

ˆ
Ω
Φ
(x
ε
,Uε(x)

)
dx ≥

ˆ
Ω×Y

Φ(y,U(x, y))dydx.

Proof. By Lemma 3.2.6 we have for v extended by zero on (Rd \ Ω)× Y that

vε(x) = v
(
x,
x

ε

)
= v

(
Sε(x, y),

Sε(x, y)

ε

)
= v

(
ε
(
N
(x
ε

)
+ y
)
, y
)

is an integrable function of (x, y). According to [8, Theorem 3.15.5] v ∈ Em(Ω× Y ) is
m−mean continuous, i.e., for given η > 0 there exists κ > 0 such that ∥vh − v∥Lm ≤ η
for h = (h1, h2) ∈ R2d with |h| < κ, where

vh(x, y) :=

{
v(x+ h1, y + h2) if (x+ h1, y + h2) ∈ Ω× Y,

0 otherwise.

Hence for fixed η > 0 we find κ > 0 such that ∥vh− v∥Lm(Ω×Y ) < η for all |h| < κ. Due
to (3.9) we find ε0 > 0 such that for all ε ≤ ε0

∥∥ε(N(xε ) + y)− x
∥∥
L∞(Rd×Y )

< κ. For
fixed η we found ε0 > 0 such that for all ε ≤ ε0 we have ∥vε − v∥Lm(Ω×Y ) < κ, which
concludes (i).

We obtain (ii) once we use in the definition of the weak∗ two–scale convergence in
Lm(Ω× Y ) test functions, which are independent of y-variable.

Assertion (iii) follows immediately from the definition of the weak∗ two–scale con-
vergence in Lm(Ω), strong two–scale convergence in Em∗

(Ω) and Lemma 3.2.6 applied
to the function g = vεwε independent of y.

To show assertion (iv) we fix a weakly∗ two–scale convergent sequence {vεk}∞k=1 ⊂
Lm(Ω) with a limit v0 ∈ Lm(Ω × Y ) and ψ ∈ C∞

c (Ω;C∞
per(Y )). Then we have

vεk(x)ψ(x, y) ∈ L1(Rd;L∞
per(Y )) provided that we set vεk = 0 in Rd \ Ω, ψ = 0 in

(Rd \ Ω)× Y . Therefore by Lemma 3.2.6 we get
ˆ
Ω
vεk(x)ψ

(
x,

x

εk

)
dx =

ˆ
Ω

ˆ
Y
vεk(Sεk(x, y))ψ(Sεk(x, y), y)dydx.

Combining this with the convergence results vεk 2−s−−⇀∗ v0 in Lm(Ω× Y ) and ψ
(
x, x

εk

)
2−s−−→ ψ(x, y) in Em∗

(Ω× Y ) as k → ∞, which follows by assertion (i), we infer

lim
k→∞

ˆ
Ω
vεk(x)ψ

(
x,

x

εk

)
dx = lim

k→

ˆ
Ω

ˆ
Y
vεk(Sεk(x, y))ψ (Sεk(x, y), y)dydx

=

ˆ
Ω

ˆ
Y
v0(x, y)ψ(x, y)dydx
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by assertion (iii).
In order to show (v), we first realize that for any {vε} bounded in Lm(Ω) Lemma 3.2.6
applied to a function g = m

(
|vε|
λ

)
independent of y implies

c ≥
ˆ
Ω
m

(
|vε(x)|
λ

)
dx =

ˆ
Ω

ˆ
Y
m

(
|vε(Sε(x, y))|

λ

)
dydx

for some λ > 0. We deduce the existence of a selected subsequence {vεk◦Sεk} ⊂ {vε◦Sε}
and the limit function v0 ∈ Lm(Ω × Y ) such that vεk ◦ Sεk −−⇀∗ v0 in Lm(Ω × Y ) as
k → 0 by the Banach-Alaoglu theorem for spaces with a separable predual. We recall
that Lm(Ω×Y ) =

(
Em∗

(Ω× Y )
)∗. Assertion (v) obviously follows by the definition of

weak∗ two–scale convergence.
In order to show (vi) we observe first that {vε}ε∈(0,1) is bounded in Lm(Ω). Thus

by (v) there is a sequence εk → 0 as k → ∞ and v0 ∈ Lm(Ω×Y ) such that vεk 2−s−−⇀∗ v0

in Lm(Ω× Y ). Then (iii) implies for all φ ∈ C∞
c (Ω, C∞

per(Y )d) that

0 = − lim
k→∞

εk

ˆ
Ω
∇vεk(x) ·

[
φ

(
x,

x

εk

)]
dx = lim

k→∞
εk

ˆ
Ω
vεk(x)div

[
φ

(
x,

x

εk

)]
dx

= lim
k→∞

ˆ
Ω
εkv

εk(x)divx φ

(
x,

x

εk

)
+ vεk(x)divy φ

(
x,

x

εk

)
dx

=

ˆ
Ω

ˆ
Y
v0(x, y)divy φ(x, y)dydx,

which implies that v0 is independent of y. As v =
´
Y v

0 by (ii), we see that for any
weakly∗ two–scale convergent subsequence of {vε} the limit is v. Hence v is the weak∗

two–scale limit of the entire sequence {vε}. Applying (iv) on the sequence {∇vεk} we
get the subsequence {vεk} (that will not be relabeled) and w ∈ Lm(Ω × Y ;Rd) such
that ∇vεk 2−s−−⇀∗ w in Lm(Ω × Y ;Rd) as k → ∞. Let us choose z ∈ C∞

c (Ω) and
ψ ∈ C∞

per(Y ;Rd) with divy ψ = 0 in Y . Then

lim
k→∞

ˆ
Ω
∇vεk(x) · z(x)ψ

(
x

εk

)
dx =

ˆ
Ω

ˆ
Y

w(x, y) · z(x)ψ(y)dydx

whereas the integration by parts yields

lim
k→∞

ˆ
Ω
∇vεk(x) · z(x)ψ

(
x

εk

)
dx = − lim

k→∞

ˆ
Ω
vεk(x)∇z(x) ·ψ

(
x

εk

)
dx

= −
ˆ
Ω

ˆ
Y
v(x)∇z(x) ·ψ(y)dydx =

ˆ
Ω

ˆ
Y
∇v(x) · z(x)ψ(y)dydx.

Hence the function v = w −∇v has all required properties.
Let us show (vii). It follows from Lemma 3.2.6 and Lemma 3.4.3 that for Uε,U
extended by zero in Rd \ Ω

lim inf
ε→0

ˆ
Ω
Φ
(x
ε
,Uε(x)

)
dx = lim inf

ε→0

ˆ
Ω×Y

Φ(y,Uε(Sε(x, y))dxdy

≥
ˆ
Ω×Y

Φ(y,U(x, y))dxdy

since Uε 2−s−−⇀∗ U in Lm(Ω× Y ;Rd×N ) implies Uε −−⇀ U in L1(Ω× Y ;Rd×N ). Hence
we conclude (vii).
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3.2.3 Properties of the mapping Â
Let us define an operator Â : Rd×N → Rd×N as

Â(ξ) =

ˆ
Y

A(y, ξ +∇w)dy (3.11)

where the Y−periodic function w is a solution of the following cell problem

div A(y, ξ +∇w) = 0 in Y. (3.12)

In what follows, we show that this definition is meaningful and derive the essential
properties of the operator Â needed later for the homogenization problem.

Lemma 3.2.8 Let Y = (0, 1)d, the operator A satisfy (A1)–(A4) and the N–function
M satisfy (M1)–(M3). Then the problem (3.12) admits a unique weak solution wξ ∈
VM
per satisfying for all φ ∈ VM

perˆ
Y

A (y, ξ +∇wξ(y)) · ∇φ(y)dy = 0. (3.13)

Moreover,

ξk → ξ in Rd×N implies A(·, ξk+∇wk) −−⇀∗ A(·, ξ+∇w) in LM∗
(Y ;Rd×N ), (3.14)

where wk is a solution of the cell problem corresponding to ξk and w to ξ.

Proof. We omit existence and uniqueness proofs since it suffices to modify straightfor-
wardly the methods used in the proofs of Theorem 3.4.7 in the appendix. Notice here
that we do not have any restriction on the geometry since we deal only with spatially
periodic setting.

Let us assume that {ξk}∞k=1 is such that ξk → ξ̃ in Rd×N as k → ∞. We denote
by wk the solution of the cell problem corresponding to ξk and by w̃ the solution
corresponding to ξ̃. We also denote Zk(y) := A(y, ξk +∇wk(y)). First, we show that

ˆ
Y
M(y, ξk +∇wk(y)) +M∗(y,Zk(y))dy ≤ c. (3.15)

Since wk is always an admissible test function in (3.13) for ξ := ξk, we directly obtain
ˆ
Y

Zk(y) · ∇wk(y)dy = 0. (3.16)

Hence, using (A3), (3.16) and the Young inequality yields (assuming without loss of
generality that c ≤ 1)

c

ˆ
Y
M∗(y,Zk(y)) +M(y, ξk +∇wk)dy ≤

ˆ
Y

Zk · (ξk +∇wk)dy =

ˆ
Y

Zk · ξkdy

≤ c

2

ˆ
Y
M∗(y,Zk)dy +

ˆ
Y
M

(
y,

2

c
ξk
)

dy.

The second integral on the right hand side is finite due to (M2) as {ξk}∞k=1 is bounded.
Without loss of generality, we can assume that

∇wk −−⇀∗ ∇w̄ in LM (Y ;RN ),

Zk −−⇀∗ Z in LM∗
per (Y ;Rd×N )

(3.17)
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as k → ∞. We show that w̄ = w̃ and Z = A(·, ξ̃ +∇w̃). We immediately obtain that

lim
k→∞

ˆ
Y

Zk(y) · ξkdy =

ˆ
Y

Z(y) · ξ̃dy. (3.18)

Further, we also use the following identity
ˆ
Y

Z(y) · ∇φ(y)dy = 0 for all φ ∈ VM
per. (3.19)

In order to show it, we observe that from (3.17) and the definition of Zk the iden-
tity (3.19) follows for all φ ∈ W 1

perE
M (Y ;Rd). Since M satisfies (3.3), we can use the

density of smooth functions in the modular topology, see Step 5 of Theorem 3.4.7, to
deduce (3.19) for all φ ∈ VM

per. From (3.16), (3.18) and (3.19) we infer

lim
k→∞

ˆ
Y

Zk(y) · (ξk +∇wk(y))dy =

ˆ
Y

Z(y) · (ξ̃ +∇w̄(y))dy. (3.20)

Since A(x, 0) = 0 and A is monotone, the negative part of Zk · (ξk +∇wk) is trivially
weakly compact in L1(Y ). Due to Lemma 3.4.6 and (3.20) we get

ˆ
Y

ˆ
Rd×N

A(y, ζ) · ζdνy(ζ)dy ≤ lim inf
k→∞

ˆ
Y

Zk(y) · (ξk +∇wk(y))dy

=

ˆ
Ω

Z(y) · (ξ̃ +∇w̄(y))dy,
(3.21)

where νy is the Young measure generated by {ξk +∇wk}∞k=1. The monotonicity of A
yields ˆ

Y

ˆ
Rd×N

h(y, ζ)dνy(ζ)dy ≥ 0 (3.22)

for h(y, ζ) := (A(y, ζ)−A(y, ξ̃+∇w̄))·(ζ−ξ̃−∇w̄). Since {ξk+∇wk}∞k=1 and {A(·, ξk+
∇wk)}∞k=1 are weakly relatively compact due to (3.15) and A is a Carathéodory func-
tion, Lemma 3.4.6 implies

ξ̃ +∇w̄ =

ˆ
Rd×N

ζdνy(ζ) a.e. in Y,

Z =

ˆ
Rd×N

A(·, ζ)dνy(ζ) a.e. in Y.

(3.23)

Then we get
ˆ
Y

ˆ
Rd×N

h(y, ζ)dνy(ζ)dy =

ˆ
Y

ˆ
Rd×N

A(y, ζ) · ζdνy(ζ)dy −
ˆ
Y

Z · (ξ̃ +∇w̄) ≤ 0

by (3.21). Combining this with (3.22) we obtain
´
Rd×N h(y, ζ)dνy(ζ) = 0 for a.a. y ∈ Y .

As νy is a probability measure and A is strictly monotone, we infer that supp{νy} =
{ξ̃+∇w̄} a.e. in Y . Thus we have νy = δξ̃+∇w̄(y) a.e. in Y . Inserting this into (3.23)2
yields Z(y) = A(y, ξ̃+∇w̄(y)). Hence we infer due to (3.19) that w̄ is a weak solution
to (3.12) corresponding to ξ̃. Since this solution is unique, we obtain w̄ = w̃. Up
to now we have shown that from {Zk}∞k=1 there can be extracted a subsequence that
converges weakly∗ to A(·, ξ̃ + ∇w̃) in LM∗

(Y ;Rd×N ). The uniqueness of this limit
implies that the whole sequence {Zk}∞k=1 must converge to A(·, ξ̃+∇w̃), which finishes
the proof.
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Now, we investigate the properties of a functional f : Rd×N → [0,∞) defined as

f(ξ) = inf
W∈G(Y )

ˆ
Y
M(y, ξ + W(y))dy. (3.24)

Lemma 3.2.9 Let N–function M satisfy (M1)–(M2). Then the functional f defined
in (3.24) is an N–function, i.e., it satisfies:

1) f(ξ) = 0 if and only if ξ = 0,

2) f(ξ) = f(−ξ),

3) f is convex,

4) lim|ξ|→0
f(ξ)
|ξ| = 0, lim|ξ|→∞

f(ξ)
|ξ| = ∞.

Proof. First, we show that

m1(|ξ|) ≤ f(ξ) ≤ m2(|ξ|). (3.25)

Let us show the first inequality in the latter estimate. Using (M2), Jensen’s inequality
and the fact that the average over Y of the gradient of an Y−periodic function vanishes
we have

f(ξ) = inf
W∈G(Y )

ˆ
Y
M(y, ξ + W(y))dy ≥ inf

W∈G(Y )

ˆ
Y
m1(|ξ + W(y)|)dy

≥ inf
W∈G(Y )

m1

(∣∣∣∣ξ + ˆ
Y

W(y)dy
∣∣∣∣) ≥ m1(|ξ|).

On the other hand we get by (M2) that f(ξ) ≤ m2(|ξ|) since 0 ∈ G(Y ), which follows
from the fact that G is a subspace of EM (Y ;Rd×N ).
Assertions 1) and 4) then follow immediately from (3.25).
Obviously, since M is even in the second argument and G(Y ) is a subspace of EM

per(Y ;

Rd×N ) we have 2).
In order to show the convexity of f we take λ ∈ (0, 1), ξ1, ξ2 ∈ Rd×N and W1,W2 ∈
G(Y ). Again the fact that G(Y ) is a subspace of EM

per(Y ;Rd×N ) and the convexity of
M yields

f(λξ1 + (1− λ)ξ2) ≤ λ

ˆ
Y
M(y, ξ1 + W1(y))dy + (1− λ)

ˆ
Y
M(y, ξ2 + W2(y))dy.

One obtains the desired conclusion by taking the infimum over W1 and W2 on the
right hand side of the latter inequality.

Lemma 3.2.10 Let N–function M satisfy (M1)–(M2) and f be defined by (3.24). Then
the conjugate N–function f∗ to f is given by

f∗(ξ) = inf
W∗∈G⊥(Y ),´
Y W∗(y)dy=ξ

ˆ
Y
M∗(y,W∗(y))dy. (3.26)

Proof. Using the fact that the average over Y of a gradient of Y−periodic function
vanishes we obtain defining a functional F : LM (Y ;Rd×N ) → R as

F(w) =

ˆ
Y
M(y,w(y))dy.
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that

f∗(ξ) = sup
η∈Rd×N

{
ξ · η − inf

W∈G(Y )
F(η + W)

}
= sup

η∈Rd×N

{
− inf

W∈G(Y )

{
F(η + W)−

ˆ
Y
ξ · (η + W(y))dy

}}
= − inf

η∈Rd×N

{
inf

W∈G(Y )

{
F(η + W)−

ˆ
Y
ξ · (η + W(y))dy

}}
= − inf

V∈Rd×N⊕G(Y )

{
F(V)−

ˆ
Y
ξ · V(y)dy

}
.

(3.27)

Expression (3.26) is a consequence of Lemma 3.2.5 applied on a functional F. First,
we observe that F is closed or equivalently, whenever Wk → W in LM (Y ;Rd×N ) then

lim inf
k→∞

F(Wk) ≥ F(W). (3.28)

Obviously Wk → W in LM
per(Y ;Rd×N ) implies Wk → W in L1

per(Y ;Rd×N ). In order
to show (3.28) it suffices to apply the lower semicontinuity of integral functionals with
a Carathéodory integrand, see [2, Theorem 4.2]. Moreover, F is continuous at 0 ∈ G,
which is a consequence of (3.67). The conjugate functional F∗ to F is given by

F∗(W∗) =

ˆ
Y
M∗(y,W∗(y))dy

according to (3.68). Therefore by Lemma 3.2.5 we get from (3.27)

f∗(ξ) = inf
W∗∈(Rd×N⊕G(Y ))⊥

ˆ
Y
M∗(y,W∗(y) + ξ)dy for all ξ ∈ Rd×N .

Finally, to conclude (3.26) we need to show that(
Rd×N ⊕G(Y )

)⊥
=

{
W∗ ∈ G⊥(Y ) :

ˆ
Y

W∗(y)dy = 0

}
=: (G⊥(Y ))0.

Obviously (G⊥(Y ))0 ⊂
(
Rd×N ⊕G(Y )

)⊥. In order to get the opposite inclusion, we
choose W∗ ∈ (Rd×N ⊕G(Y ))⊥. Hence by the definition of the annihilator

´
Y W∗ · (η+

W)dy = 0 for any η ∈ Rd×N and W ∈ G(Y ). We infer
´
Y W∗ = 0 by setting W = 0,

η =
´
Y W∗ whereas W∗ ∈ G⊥(Y ) follows by setting η = 0.

The N–functions f and f∗ indicate the growth and coercivity properties of the
operator Â as it is stated among other properties of Â in the following lemma.

Lemma 3.2.11 Let the operator A satisfy (A1)–(A4) and the N–function M satisfy
(M1)–(M3). Then we have:

(Â1) There is a constant c > 0 such that for all ξ ∈ Rd×N

Â(ξ) · ξ ≥ c(f(ξ) + f∗(Â(ξ))).

(Â2) For all ξ,η ∈ Rd×N , ξ ̸= η

(Â(ξ)− Â(η)) · (ξ − η) > 0.
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(Â3) Â is continuous on Rd×N .

Proof. Let w be a weak solution of cell problem (3.12) corresponding to ξ ∈ Rd×N ,
which exists due to Lemma 3.2.8. Then it follows that

Â(ξ) · ξ =

ˆ
Y

A(y, ξ +∇w(y))dy · ξ =

ˆ
Y

A(y, ξ +∇w(y)) · (ξ +∇w(y))dy

≥ c

ˆ
Y
M(y, ξ +∇w(y)) +M∗(y,A(y, ξ +∇w(y))dy.

(3.29)

Since w is the weak solution to (3.12), we get from (3.13) in a standard way us-
ing (A3) and the Young inequality that A(·, ξ + ∇w) ∈ LM∗

per (Y ;Rd×N ). Moreover,
as identity (3.13) is satisfied for all φ ∈ VM

per(Y ;RN ), it is obviously fulfilled for all
φ ∈ W 1

perE
M (Y ;RN ). Therefore we have A(·, ξ + ∇w) ∈ G⊥(Y ). Consequently, re-

garding (3.11) we obtain by Lemma 3.2.10 thatˆ
Y
M∗(y,A(y, ξ +∇w(y)))dy ≥ f∗(Â(ξ)). (3.30)

This combined with (3.29) leads to the first part of the estimate in (Â1). It remains to
justify thatˆ

Y
M(y, ξ +∇w(y))dy ≥ inf

φ∈W 1
perE

M (Y ;R)

ˆ
Y
M(y, ξ +∇φ(y))dy, (3.31)

as the rest then follows from the definition of f and (3.29). However, here we have to
face the density problem, which we overcome by using the constructive approach when
dealing with the solution. Thus the remaining part of this paragraph will be devoted
to the proof of (3.31).

We use the fact that w is in fact a modular limit of properly chosen sequence.
Indeed, it follows from the construction of the solution in Theorem 3.4.7 that there
exists a sequence {wk}∞k=1 ⊂W 1

perE
M (Y ;RN ) such that

∇wk −−⇀∗ ∇w in LM (Y ;Rd×N ),

(3.32)
∇wk −−−→ ∇w a.e. in Y, (3.33)

A(·, ξ +∇wk) −−⇀∗ A(·, ξ +∇w) in LM∗
(Y ;Rd×N ),

(3.34)

lim
k→∞

ˆ
Y

A(y, ξ +∇wk) · ∇wkdy ≤
ˆ
Y

A(y, ξ +∇w) · ∇wdy. (3.35)

Therefore, denoting Wλ := ∇wχ{|∇w|≤λ}, we obtain that (thanks to monotonicity of
A, the fact that Wλ is bounded and (3.32)–(3.35))

lim
λ→∞

lim
k→∞

ˆ
Y

∣∣∣(A(y, ξ +∇wk)− A(y, ξ + Wλ)) · (∇wk − Wλ)
∣∣∣dy

= lim
λ→∞

lim
k→∞

ˆ
Y
(A(y, ξ +∇wk)− A(y, ξ + Wλ)) · (∇wk − Wλ)dy

≤ lim
λ→∞

ˆ
Y
(A(y, ξ +∇w)− A(y, ξ + Wλ)) · (∇w − Wλ)dy

= lim
λ→∞

ˆ
Y

A(y, ξ +∇w) · ∇wχ{|∇w|>λ}dy = 0,
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where the last equality follows from the fact that A(·, ξ +∇w) · ∇w ∈ L1(Y ). Hence,
evidently for any φ ∈ L∞(Y ) we deduce that∣∣∣∣ lim

λ→∞
lim
k→∞

ˆ
Y
(A(y, ξ +∇wk)− A(y, ξ + Wλ)) · (∇wk − Wλ)φdy

∣∣∣∣ = 0.

Hence, it follows from (3.32)–(3.34) that

0 =

∣∣∣∣ lim
k→∞

ˆ
Y

A(y, ξ +∇wk) · ∇wkφdy

− lim
λ→∞

ˆ
Y

A(y, ξ +∇w) · Wλφ+ A(y, ξ + Wλ)) · (∇w − Wλ)φdy
∣∣∣∣

=

∣∣∣∣ lim
k→∞

ˆ
Y

A(y, ξ +∇wk) · ∇wkφdy −
ˆ
Y

A(y, ξ +∇w) · ∇wφdy
∣∣∣∣ .

Thus, we see that

A(y, ξ +∇wk) · (ξ +∇wk)⇀ A(y, ξ +∇w) · (ξ +∇w) weakly in L1(Y ). (3.36)

Due to the equivalent characterization of the weak convergence in L1, we see that the
sequence {A(y, ξ+∇wk) · (ξ+∇wk)}∞k=1 is uniformly equi-integrable. Using also (A3),
we see that also {M(y, ξ+∇wk)}∞k=1 is uniformly equi-integrable. Therefore, it follows
from the Vitali theorem and (3.33) that

lim
k→∞

ˆ
Y
M(y, ξ +∇wk)dy =

ˆ
Y
M(y, ξ +∇w)dy.

Consequently, since wk ∈W 1
perE

M (Y ;RN ) we see that (3.31) holds, which finishes the
proof of (Â1).

In order to show (Â2) we fix ξ1, ξ2 ∈ Rd×N , ξ1 ̸= ξ2 and find corresponding weak
solutions of the cell problem w1 and w2. One obtains (see also appendix)

ˆ
Y

A(y, ξi +∇wi(y)) · ∇wj(y)dy = 0 for i, j = 1, 2

in the same way as (3.16) was shown. Then it follows that

(Â(ξ1)− Â(ξ2)) · (ξ1 − ξ2) =
ˆ
Y
(A(y, ξ1 +∇w1)− A(y, ξ2 +∇w2)) · (ξ1 − ξ2)dy

=

ˆ
Y
(A(y, ξ1 +∇w1)− A(y, ξ2 +∇w2)) · (ξ1 +∇w1 − ξ2 −∇w2)dy > 0

by (A3).
To show (Â3) we consider {ξk}∞k=1 such that ξk → ξ in Rd×N as k → ∞, a corresponding
sequence of weak solutions of the cell problems {wk}∞k=1 and w corresponding to ξ.
Then we have for an arbitrary but fixed η ∈ Rd×N that

(Â(ξk)− Â(ξ)) · η =

ˆ
Y
(A(y, ξk +∇wk)− A(y, ξ +∇w)) · ηdy → 0

as k → ∞ by (3.14). Since Rd×N is finite dimensional, we conclude (Â3) from the latter
convergence.
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3.3 Proof of the main theorem
We start this section by formulating and proving some lemmas that will be used in
the proof of Theorem 3.1.2 which appears in subsection 3.3.1. Let us outline next
steps. First, we derive estimates of a weak solution uε of (3.1) and correspond-
ing Aε(x) := A

(
x
ε ,∇uε

)
that are uniform with respect to ε ∈ (0, 1). Then we

extract a sequence {uεk}∞k=1 such that {∇uεk}∞k=1 converges weakly∗ to some ∇u
in Lm1(Ω;Rd×N ) and a weakly∗ convergent sequence {Aεk}∞k=1 with a limit Ā ∈
Lm∗

2(Ω;Rd×N ). Then we show that the sequence {∇uεk}∞k=1 converges weakly∗ two–
scale to ∇u + U in Lm1(Ω × Y ;Rd×N ) and {Aεk}∞k=1 converges weakly∗ two–scale to
A0 in Lm∗

2(Ω × Y ;Rd×N ). Consequently, we apply the weak∗ two–scale semicontinu-
ity of convex functionals to improve the regularity of limit functions, i.e., we obtain
∇u ∈ Lf (Ω;Rd×N ) and Ā =

´
Y A0 ∈ Lf∗

(Ω;Rd×N ). This ensures that
´
Ω Ā · ∇udx

is meaningful. Then we employ a variant of the Minty trick for nonreflexive function
spaces to identify the limit Ā.

First, we formulate the lemma concerning the existence and uniqueness of a solution
to problem (3.1) for an arbitrary but fixed ε. The detailed proof in case (C1) is stated
in the appendix, see Theorem 3.4.7. For the existence proof under condition (C2) we
refer to [4]. We denote M ε(x, ξ) =M

(
x
ε , ξ
)
.

Lemma 3.3.1 Let Ω ⊂ Rd be a bounded domain, the operator A satisfy (A1)–(A3)
and the N−function M satisfy (M1)–(M3) and either (C1) or (C2) hold. Then for
fixed ε ∈ (0, 1) there exists a unique weak solution of problem (3.1), which is a function
uε ∈ VMε

0 such that
ˆ
Ω

A
(x
ε
,∇uε(x)

)
· ∇φ(x)dx =

ˆ
Ω

F(x) · ∇φ(x)dx for all φ ∈ VMε

0 . (3.37)

Lemma 3.3.2 Let the assumptions of Lemma 3.3.1 be satisfied and uε be a weak
solution of problem (3.1). Then {Aε}0<ε<1 is bounded in Lm∗

2(Ω;Rd×N ) and {uε}0<ε<1

is bounded in V m1
0 and we have the estimate

ˆ
Ω

1

2
m1(|∇uε|) +m∗

2(|Aε|) ≤ c

ˆ
Ω
Mε (x,∇uε) +M∗

ε (x,Aε) ≤ C(∥F∥∞,m∗
1). (3.38)

Proof. We set φ := uε in (3.37) to obtain
ˆ
Ω

Aε · ∇uε =

ˆ
Ω

F · ∇uε. (3.39)

Using (3.39), (A3), the Young inequality, the convexity of M and the fact that the
constant c ≤ 1, which is an obvious consequence of the Young inequality, it follows that

c

ˆ
Ω
Mε(x,∇uε) +M∗

ε (x,Aε) ≤
ˆ
Ω
M∗

ε

(
x,

2

c
F
)
+
c

2
Mε(x,∇uε).

Consequently, employing (M2) we obtain

c

ˆ
Ω

1

2
m1(|∇uε|) +m∗

2(|Aε|) ≤ c

ˆ
Ω

1

2
Mε (x,∇uε) +M∗

ε (x,Aε) ≤
ˆ
Ω
m∗

1

(
2

c
|F|
)
.

Due to (3.6) the integral on the right hand side is finite and the desired conclusion (3.38)
follows.
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Lemma 3.3.3 Let the assumptions of Lemma 3.3.1 be satisfied. In addition and
uε be a weak solution of problem (3.1) and {εj}∞j=1 be an arbitrary sequence such
that εj → 0 as j → ∞. Then there is a subsequence {εjk}∞k=1, functions u ∈ V m1

0 ,
U ∈ Lm1(Ω× Y ;Rd×N ), Ā ∈ Lm∗

2(Ω;Rd×N ) and A0 ∈ Lm∗
2(Ω× Y ;Rd×N ) such that as

k → ∞ we have the following weak convergence results (the sequences are denoted by k
and not by εjk for simplicity)

uk −−⇀∗ u in Lm1(Ω;RN ),

∇uk −−⇀∗ ∇u in Lm1(Ω;Rd×N ),

Ak −−⇀∗ Ā in Lm∗
2(Ω;Rd×N )

(3.40)

and the weak∗ two–scale convergence results

∇uk 2−s−−⇀∗ ∇u + U in Lm1(Ω× Y ;Rd×N ),

Ak 2−s−−⇀∗ A0 in Lm∗
2(Ω× Y ;Rd×N ).

(3.41)

Moreover, for a.a. x ∈ Ω

U(x, ·) ∈ {∇w : w ∈ VM
per}, (3.42)

A0(x, ·) ∈ G(Y )⊥, (3.43)ˆ
Y

A0(x, y) · U(x, y)dy = 0. (3.44)

Furthermore,

u ∈ V f
0 (Ω;RN ), (3.45)

Ā =

ˆ
Y

A0dy, (3.46)

Ā ∈ Lf∗
(Ω;Rd×N ) (3.47)

where f is given by (3.24) and f∗ by (3.26). The function Ā satisfiesˆ
Ω

Ā · ∇φ =

ˆ
Ω

F · ∇φ (3.48)

for all φ ∈ C∞
c

(
Ω;RN

)
.

Proof. The convergences in (3.40) are a direct consequence of the uniform estimates
from Lemma 3.3.2 and the Poincaré type inequality, c.f. [3, Section 2.4]. The conver-
gence (3.41)1 is a consequence of (3.40)1 and Lemma 3.2.7 (vi), which also yields for
almost all x ∈ Ωˆ

Y
U(x, y) ·ψ(y)dy = 0 for all ψ ∈ C∞

per(Y ;Rd×N ),divψ = 0, (3.49)

whereas (3.41)2 follows by Lemma 3.2.7 (v) due to Lemma 3.3.2. Moreover, (3.44)
follows from Lemma 3.2.7 (ii), (3.40)2 and (3.41)2.

The convergence result (3.41)1 and the uniqueness of weak∗ limit, the weak lower
semicontinuity stated in Lemma 3.2.7 (vi) and the uniform estimate (3.38) implyˆ

Ω

ˆ
Y
M(y,∇u + U) +M∗(y,A0)dydx

= lim inf
k→∞

ˆ
Ω
M εk(x,∇uk(x)) + (M∗)εk(x,Ak(x))dx <∞.

(3.50)
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We obtain from (3.50) the existence of a measurable set S̄ ⊂ Ω such that |Ω \ S̄| =
0 and for all x ∈ S̄

´
Y M(y,∇u(x) + U(x, y))dy < ∞, which implies U(x, ·) ∈

LM (Y ;Rd×N ). In addition, it follows from (3.49) that there exists w(x, ·) ∈W 1,1
per(Y ;RN )

such that ∇yw(x, y) = U(x, y). Therefore the estimate (3.50) gives ∇yw(x, ·) ∈
LM (Y ;Rd×N ). Accordingly, we have that w(x, ·) ∈ VM

per. Thus by Lemma 3.4.8 and
the definition of function f , see (3.24), we conclude

ˆ
Y
M(y,∇u(x) +∇yw(x, y))dy ≥ inf

v∈W 1
perE

M (Y ;RN )

ˆ
Y
M(y,∇u(x) + v(y))dy

= f(∇u(x)).

Hence, integrating the result with respect to x over Ω and using the estimate (3.50),
we obtain (3.45).

In order to show (3.43) we choose z ∈ C∞
c (Ω) and ψ ∈ C∞

per

(
Y ;RN

)
and set

φ(x) := εz(x)ψ
(
x
ε

)
in (3.37). Utilizing (3.41)2 and Y−periodicity of ψ we arrive at

ˆ
Ω

ˆ
Y

A0(x, y) · z(x)∇ψ(y)dydx = lim
k→∞

ˆ
Ω

Ak(x) · z(x)∇yψ

(
x

εjk

)
dx

= lim
k→∞

ˆ
Ω

Ak(x) · ∇
(
εjkz(x)ψ

(
x

εjk

))
dx

− lim
k→∞

ˆ
Ω

Ak(x) ·
(
εjk∇z(x)⊗ψ

(
x

εjk

))
dx

=

ˆ
Ω

F(x) · z(x)
ˆ
Y
∇yψ(y)dydx = 0,

which implies that there is a measurable set S̃ ⊂ Ω, |Ω \ S̃| = 0 such that for all x ∈ S̃

ˆ
Y

A0(x, y) · ∇yψ(y)dy = 0. (3.51)

Using Theorem 3.2.1 we can find for any ψ ∈W 1
perE

M
(
Y ;RN

)
a sequence {ψk}∞k=1 ⊂

C∞
per

(
Y ;RN

)
such that ∇ψk M−−→ ∇ψ. Next, we observe that A0(x, ·) ∈ LM∗

per

(
Y ;RN

)
for almost all x ∈ Ω due to (3.50). Then we set ψ = ψk in (3.51) and employ-
ing Lemma 3.4.2 we perform the limit passage k → ∞ to get (3.51) for any ψ ∈
W 1

perE
M
(
Y ;RN

)
, which implies (3.43). In a very similar manner, we use the approxima-

tion of U(x, ·) = ∇yw(x, ·) in the modular topology of LM
per(Y ;Rd×N ) to conclude (3.44)

from (3.51).
Using the expression (3.26) for f∗, the estimate (3.50), (3.43) and (3.46), we get

ˆ
Ω
f∗(Ā(x))dx ≤

ˆ
Ω

ˆ
Y
M∗(y,A0(x, y))dydx <∞,

which is (3.47).
The identity (3.48) is obtained by performing the limit passage k → ∞ in (3.37)

with ε = εjk using convergence (3.40)2.

The rest of the paper is devoted to the identification of Ā in (3.48). Before doing
so we state the last auxiliary result.

Lemma 3.3.4 Let the assumption (A3) hold. Then
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1. for any V ∈ L∞(Ω× Y ;Rd×N ) we have A(·,V) ∈ L∞(Ω× Y ;Rd×N ),

2. for any V ∈ EMy(Ω × Y ;Rd×N ) we have A(·,V) ∈ EM∗
y (Ω × Y ;Rd×N ) pro-

vided (M2) holds.

Proof. Let us observe that (A3) implies

|V| ≥ c
M∗(·,A(·,V))

|A(·,V)|
.

Assume that V ∈ L∞ (Ω× Y ;Rd×N
)

and ∥A(·,V)∥L∞ = ∞, i.e., for any K > 0 there
is a set SK ⊂ Ω × Y , |SK | > 0 such that |A(·,V(·, ·))| > K on SK . Since M∗ is an
N−function, for any L > 0 there is KL > 0 such that we have |V| ≥ cM

∗(y,A(y,V)
|A(y,V)| > L

on SKL
with |SKL

| > 0, which contradicts v ∈ L∞(Ω× Y ;Rd×N ).
By (A3) and the Young inequality we obtain for any t ≥ 0 and V ∈ EMy

(
Ω× Y ;Rd×N

)
that

c

ˆ
Ω

ˆ
Y
M(y,V) +M∗(y, tA(y,V))dydx ≤

ˆ
Ω

ˆ
Y
tA(y,V)) · Vdydx

≤ c

ˆ
Ω

ˆ
Y
M

(
y,

2

c
V
)
+
c

2
M∗(y, tA(y,V))dydx.

Hence we infer
´
Ω

´
Y M

∗(y, tA(y,V))dydx ≤ 2
´
Ω

´
Y M

(
y, 2cV

)
dydx and the latter

integral is finite by Lemma 3.4.4. We note that (3.69) holds since we assume (M2). We
also utilize Lemma 3.4.4 to conclude that A(y,V) ∈ EM∗

y
(
Ω× Y ;Rd×N

)
.

3.3.1 Proof of the theorem
In this final part we identify Ā. Through this section we always assume that all
assumptions of Lemma 3.3.3 are satisfied and we consider the sequence of solutions uk

according to Lemma 3.3.3.
Step 1: We show the following identity

lim
k→∞

ˆ
Ω

Ak · ∇ukdx =

ˆ
Ω

Ā · ∇udx. (3.52)

To show it, we first deduce the validity of the following identityˆ
Ω

Ā · ∇udx =

ˆ
Ω

F · ∇udx. (3.53)

If (C1) is fulfilled, we find a sequence {un}∞n=1 ⊂ C∞
c

(
Ω;RN

)
such that un f−−→ u as

n → ∞. Then we set φ = un in (3.48) and using Lemma 3.4.2 we conclude (3.53).
Finally, if (C2) holds, we find for each k ∈ N a sequence {uk,n}∞n=1 ⊂ C∞

c (Ω) such
that uk,n f−−→ Tk(u) as n → ∞, where the truncation operator Tk was introduced in
the proof of Lemma 3.2.2. Then we set φ = uk,n in (3.48) and using Lemma 3.4.2 we
deduce ˆ

Ω
Ā · ∇Tk(u)dx =

ˆ
Ω

F · ∇Tk(u)dx.

Applying Lemma 3.2.4 we deduce (3.53). Then it follows from (3.39) using (3.40)1
and (3.53) that

lim
k→∞

ˆ
Ω

Ak · ∇ukdx = lim
k→∞

ˆ
Ω

F · ∇ukdx =

ˆ
Ω

F · ∇udx =

ˆ
Ω

Ā · ∇udx,
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which concludes (3.52).
Step 2: We show that the following inequality holds for all V ∈ C∞

c (Ω;C∞
per(Y ;Rd×N )).

0 ≤
ˆ
Ω

ˆ
Y
(A0(x, y)− A(y,V(x, y))) · (∇u(x) + U(x, y)− V(x, y))dydx (3.54)

Let us choose V ∈ C∞
c (Ω;C∞

per(Y ;Rd×N )). Then according to Lemma 3.3.4 we obtain
A(·,V) ∈ L∞(Ω × Y ;Rd×N ) ⊂ Em∗

1(Ω × Y ;Rd×N ) ⊂ Em∗
2(Ω × Y ;Rd×N ). More-

over, A(·,V) is obviously Carathéodory. Then for Vk(x) = V(x, xε−1
k ) and Ãk(x) :=

A(xε−1
k ,Vk(x)) we obtain

Vk 2−s−−→ V in Emi(Ω× Y ;Rd×N ),

Ãk 2−s−−→ A(·,V(·, ·)) in Em∗
i (Ω× Y ;Rd×N ), i = 1, 2,

(3.55)

as k → ∞ by Lemma 3.2.7 (i). From (A4) we get

0 ≤
ˆ
Ω
(Ak(x)− Ãk(x)) · (∇uk(x)− Vk(x))dx

=

ˆ
Ω

Ak(x) · ∇uk(x)dx−
ˆ
Ω

Ak(x) · Vk(x)dx−
ˆ
Ω

Ãk(x) · ∇uk(x)dx

+

ˆ
Ω

Ãk(x) · Vk(x)dx

=Ik − IIk − IIIk + IVk.

Now, want to perform the passage k → ∞. Using (3.52) we obtain that

lim
k→∞

Ik =

ˆ
Ω

Ā · ∇udx.

Employing properties (3.46) and (3.44) yields

lim
k→∞

Ik =

ˆ
Ω

ˆ
Y

A0 · ∇udydx =

ˆ
Ω

ˆ
Y

A0 · (∇u + U)dydx.

It follows from (3.41)2, (3.55)1 and Lemma 3.2.7 (iii) that

lim
k→∞

IIk =

ˆ
Ω

ˆ
Y

A0 · Vdydx,

whereas (3.41)1,(3.55)2 and Lemma 3.2.7 (iii) imply

lim
k→∞

IIIk =

ˆ
Ω

ˆ
Y

A(y,V(x, y)) · (∇u(x) + U(x, y))dydx.

Finally, from (3.55) we deduce

lim
k→∞

IVk =

ˆ
Ω

ˆ
Y

A(y,V(x, y)) · V(x, y)dydx.

Hence one obtains (3.54).
Step 3: The goal is to show that V ∈ C∞

c (Ω;C∞
per(Y ;Rd×N )) in (3.54) can be substi-

tuted by V ∈ L∞(Ω × Y ;Rd×N ). Let us fix an arbitrary function V ∈ C∞
c (Ω;C∞

per(Y ;

Rd×N )). We first consider a sequence {Km}∞m=1 of compact subsets of Ω such that
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K1 ⊂ K2 ⊂ . . .Ω and
∪∞

m=1K
m = Ω. Obviously, defining Vm := VχKm for every

m ∈ N we have that all Vm’s are compactly supported in Ω and

∥Vm∥L∞(Ω×Y ) ≤ ∥V∥L∞(Ω×Y ) for all m ∈ N. (3.56)

Next, we observe that (3.56) implies the existence of a positive constant c such that

∥A(·,Vm)∥L∞(Ω×Y ) ≤ c for all m ∈ N. (3.57)

Assuming on the contrary that {A(·,Vm)}∞m=1 is unbounded, we have for arbitraryK >
0 the existence of mK > 0 and SK ⊂ Ω×Y with |SK | > 0 such that |A(·,VmK )| > K on
SK . As M is an N−function, for a chosen C > 0 there is R > 0 such that M∗(y,ξ)

|ξ| > C

for any |ξ| ≥ R. Thus for the choice C = ∥V∥L∞(Ω×Y ) we find mR and SR ⊂ Ω × Y
with |SR| > 0 such that for (x, y) ∈ SR we obtain using (A3)

C <
M∗(y,A(y,VmR))

|A(y,VmR)|
≤ |VmR | ≤ sup

m∈N
∥Vm∥L∞(Ω×Y ) ≤ C,

which is a contradiction and (3.57) is shown. Combining (M2) with (3.56) and (3.57)
we get
ˆ
Ω

ˆ
Y
M(y,Vm) +M∗(y,A(y,Vm)dydx ≤

ˆ
Ω

ˆ
Y
m2(|Vm|) +m∗

1(|A(y,Vm)|)dydx

≤
ˆ
Ω

ˆ
Y
m2(∥Vm∥L∞(Ω×Y )) +m∗

1(∥A(·,Vm)∥L∞(Ω×Y )) ≤ c.

Hence {Vm}∞m=1 and {A(·,Vm)}∞m=1 are uniformly integrable by Lemma 3.2.3. Fur-
thermore, it follows from the definition of Vm and the properties of A that Vm → V
and A(·,Vm) → A(·,V) in measure as m→ ∞. Consequently, we get by Lemma 3.2.2
that

Vm M−−→ V in LMy(Ω× Y ;Rd×N ),

A(·,Vm)
M∗
−−→ A(·,V) in LM∗

y (Ω× Y ;Rd×N ) as m→ ∞.
(3.58)

Let us consider a standard mollifier ω ∈ C∞(Rd×Rd). Since Vm is supported in Km ⊂
Ω for all m, we can find for every m a sequence δn → 0 as n → ∞ such that, defining
Vm,n := Vm ∗ ωn, where ωn(z) = (δn)−2dω

(
z
δn

)
, we have Vm,n ∈ C∞

c (Ω;C∞
per(Y ))d×N .

We immediately observe that ∥Vm,n∥L∞(Ω×Y ) ≤ ∥Vm∥L∞(Ω×Y ). In the same way
as (3.57) was shown we get that ∥A(·,Vm,n)∥L∞(Ω×Y ) ≤ c(m). We also obtain that
Vm,n → Vm and A(·,Vm,n) → A(·,Vm) in measure as n→ ∞ for every m. Moreover,
for every m the sequences {Vm,n}∞n=1 and {A(·,Vm,n)}∞n=1 are uniformly integrable,
which can be shown analogously as above. Consequently, we have for every m that

Vm,n M−−→ Vm in LMy(Ω× Y ;Rd×N ),

A(·,Vm,n)
M∗
−−→ A(·,Vm) in LM∗

y (Ω× Y ;Rd×N ) as n→ ∞.
(3.59)

Finally, employing (3.59), (3.58) and Lemma 3.4.2 we infer from (3.54) that

0 ≤ lim
m→∞

lim
n→∞

ˆ
Ω

ˆ
Y
(A0 − A(y,Vm,n)) · (∇u + U − Vm,n)

=

ˆ
Ω

ˆ
Y
(A0 − A(y,V)) · (∇u + U − V).
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Step 4: Let us denote for a positive k

Sk = {(x, y) ∈ Ω× Y : |∇u(x) + U(x, y)| ≤ k}

and χk be the characteristic function of Sk. We replace V ∈ L∞(Ω×Y ;Rd×N ) in (3.54)
by (∇u + U)χj + hVχi where 0 < i < j and h ∈ (0, 1) to obtain

0 ≤
ˆ
Ω

ˆ
Y

A0 · (∇u + U − (∇u + U)χj)dydx

−
ˆ
Ω

ˆ
Y

A(y, (∇u + U)χj + hVχi)) · (∇u + U − (∇u + U)χj)

− h

ˆ
Ω

ˆ
Y
(A0 − A(y, (∇u + U)χj + hVχi)) · Vχidydx = I − II + III.

The term I disappears when performing the limit passage j → ∞ by the Lebesgue
dominated convergence theorem and the fact |Ω × Y \ Sj | → 0 as j → ∞. As (∇u +
U)χj + hVχi is zero in Ω× Y \ Sj , we see that II = 0 thanks to (A3). After dividing
the resulting inequality by h and letting j → ∞ we arrive with the help of Lebesgue
dominated convergence theorem at

ˆ
Si

(A0 − A(y,∇u + U + hV)) · Vdydx ≤ 0. (3.60)

By (M2) we obtain
ˆ
Si

M∗(y,A(y,∇u + U + hV))dydx ≤
ˆ
Si

m∗
1(|A(y,∇u + U + hV)|)dydx

≤ |Si|m∗
1(∥A(·,∇u + U + hV)∥L∞(Si)) ≤ c.

(3.61)

The fact that ∥A(·,∇u + U + hV)∥L∞(Si) is bounded independently of h ∈ (0, 1) is
shown in the same way as (3.57) because

∥∇u + U + hV∥L∞(Si) ≤ ∥∇u + U∥L∞(Si) + ∥V∥L∞(Ω×Y ) ≤ i+ ∥V∥L∞(Ω×Y ).

Since A(y,∇u+U+ hV) → A(y,∇u+U) a.e. in Si and {A(y,∇u+U+ hV)}h∈(0,1)
is uniformly integrable on Si due to (3.61) and Lemma 3.2.3, the Vitali theorem implies

A(y,∇u + U + hV) → A(y,∇u + U) in L1(Si).

Therefore passing to the limit h→ 0+ in (3.60) we arrive at
ˆ
Si

(A0 − A(y,∇u + U)) · Vdydx ≤ 0.

Finally, setting

V =
A0 − A(y,∇u + U)

|A0 − A(y,∇u + U)|+ 1

yields
A0(x, y) = A(y,∇u(x) + U(x, y)) (3.62)

for a.a. (x, y) ∈ Si. Since i was arbitrary and |Ω × Y \ Si| → 0 as i → ∞, the
equality (3.62) holds a.e. in Ω×Y . Moreover, due to the properties (3.42) and (3.43) we
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obtain that U(x, ·) is equal to the gradient of a weak solution of the cell problem (3.12)
corresponding to ξ = ∇u(x). Finally, we get by (3.46) and (3.11) that

Ā(x) =

ˆ
Y

A0(x, y)dy =

ˆ
Y

A(y,∇u(x) + U(x, y))dy = Â(∇u(x)). (3.63)

Step 5: The existence of a unique weak solution of the problem (3.2), which is a
function u ∈ V f

0 that satisfies
ˆ
Ω

Â(∇u) · ∇φ =

ˆ
Ω

F · ∇φ ∀φ ∈ V f
0 . (3.64)

We notice that the existence part has been proven in the previous steps. Indeed, in (3.63)
we identified the function Ā, which arises in (3.48). Then using the density of smooth
compactly supported functions in V f

0 we conclude (3.64). In order to show the unique-
ness of a weak solution of (3.2) we can follow the proof of the uniqueness of a weak
solution in Theorem 3.4.7.
Step 6: Since we know that (3.2) possesses a unique solution u and we can extract from
any subsequence of {uj}∞j=1 a subsequence that converges to u weakly in W 1,1

0 (Ω;RN )),
the whole sequence {uj}∞j=1 converges to u weakly in W 1,1

0 (Ω;RN ).

3.4 Appendix
3.4.1 Musielak–Orlicz spaces
Assume here that Σ ⊂ Rn is a bounded domain and n ∈ N is arbitrary. A function
M : Σ × Rn → [0,∞) is said to be an N−function if it satisfies the following four
requirements:

1. M is a Carathéodory function such that M(x, ξ) = 0 if and only if ξ = 0. In
addition we assume that for almost all x ∈ Σ, we have M(x, ξ) =M(x,−ξ).

2. For almost all x ∈ Σ the mapping ξ 7→M(x, ξ) is convex.

3. For almost all x ∈ Σ there holds lim|ξ|→∞
M(x,ξ)

|ξ| = ∞.

4. For almost all x ∈ Σ there holds lim|ξ|→0
M(x,ξ)

|ξ| = 0.

The corresponding complementary N–function M∗ to M is defined for η ∈ Rn and
almost all x ∈ Σ by

M∗(x,η) := sup
ξ∈Rn

{ξ · η −M(x, ξ)}

and directly from this definition, one obtains the generalized Young inequality

ξ · η ≤M(x, ξ) +M∗(x,η), (3.65)

valid for all ξ,η ∈ Rn and almost everywhere in Σ. In addition, for ξ := ∇ηM
∗(x,η),

we obtain the equality sign in (3.65), see [13, Section 5]. Finally, an N-function M
is said to satisfy the ∆2–condition if there exists c > 0 and a nonnegative function
h ∈ L1(Σ) such that for a.a. x ∈ Σ and all ξ ∈ Rn

M(x, 2ξ) ≤ cM(x, ξ) + h(x).
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Having introduced the notion ofN–function, we can define the generalized Musielak–
Orlicz class LM (Σ) as a set of all measurable functions v : Σ → Rn in the following
way

LM (Σ) :=

{
v ∈ L1(Σ;Rn);

ˆ
Σ
M(x,v(x))dx <∞

}
.

In general the class LM (Σ) does not form a linear vector space and therefore, we
define the generalized Musielak–Orlicz space LM (Σ) as the the smallest linear space
containing LM (Σ). More precisely, we define

LM (Σ) :=

{
v ∈ L1(Σ;Rn); there exists λ > 0 such that

ˆ
Σ
M

(
x,

v(x)
λ

)
dx <∞

}
.

It can be shown that LM (Σ) is a Banach space with respect to the Orlicz norm

∥v∥LM := sup
{∣∣∣∣ˆ

Σ
v(x)w(x)dx

∣∣∣∣ : w ∈ LM∗
(Σ),

ˆ
Σ
M(x,w(x))dx ≤ 1

}
or the equivalent Luxemburg norm

∥v∥LM := inf
{
λ > 0 :

ˆ
Σ
M

(
x,

v(x)
λ

)
dx ≤ 1

}
.

Moreover, we have the following generalized Hölder inequality, see [14, Theorem 4.1.],∣∣∣∣ˆ
Σ

u · v
∣∣∣∣ ≤ 2∥u∥LM ∥v∥LM∗

valid for all u ∈ LM (Σ) and all v ∈ LM∗
(Σ). It is not difficult to observe directly from

the definition (or by Young inequality (3.65)), that

∥v∥LM ≤ c

(ˆ
Σ
M(x,v(x))dx+ 1

)
, (3.66)

with some c > 0, that can be set c = 1 if we work with the Orlicz norm. Similarly, for
the functional F : LM (Σ) → R defined as

F(v) :=
ˆ
Σ
M(x,v(x))dx,

we can directly obtain from the definition and due to the convexity ofM that if ∥v∥LM ≤
1 and the Luxemburg norm is considered then

F(v) ≤ ∥v∥LM . (3.67)

Finally, we also recall the definition of the conjugate functional F∗ : LM∗
(Σ) → R

F∗(v∗) := sup
v∈LM (Σ)

(ˆ
Σ

v · v∗dx− F(v)
)

and it is not difficult to observe by using the Young inequality that2

F∗(v∗) =

ˆ
Σ
M∗(x,v∗(x))dx. (3.68)

2Young inequality (3.65) implies F∗(v∗) ≤
´
Σ
M∗(x,v∗(x))dx. On the other hand, we have

M∗(·,v∗) = v∗ · w − M(·,w) for w(x) := ∇ξM
∗(x,M∗(x,v∗)), which after integration leads to

F∗(v∗) ≥
´
Σ
M∗(x,v∗(x))dx and (3.68) follows

95



Chapter 3 Homogenization of nonlinear elliptic systems

We complete this subsection by recalling the basic functional-analytic facts about
the generalized Musielak–Orlicz spaces. For this purpose we define an additional space

EM (Σ) := {L∞(Σ;Rn)}∥·∥LM (Σ) .

The following key lemma summarizes the fundamental properties of the involved func-
tion spaces (see e.g. [12] for details).

Lemma 3.4.1 (separability, reflexivity) Let M be an N–function. Then

1. EM (Σ) = LM (Σ) if and only if M satisfies the ∆2–condition,

2. (EM (Σ))∗ = LM∗
(Σ), i.e., LM∗

(Σ) is a dual space to EM (Σ),

3. EM (Σ) is separable,

4. LM (Σ) is separable if and only if M satisfies the ∆2–condition,

5. LM (Σ) is reflexive if and only if M,M∗ satisfy the ∆2–condition.

We see from the above lemma that in some cases we need to face the problem with
the density of bounded functions and also the lack of reflexivity and separability prop-
erties, that somehow excludes many analytical framework to be used. Thus, in addition
to the strong/weak/weak∗ topology, we will also work with the modular topology. We
say that a sequence {vk}∞k=1 ⊂ LM (Σ) converges modularly to v in LM (Σ) if there is
λ > 0 such that as k → ∞

ˆ
Σ
M

(
x,

vk(x)− v(x)
λ

)
dx→ 0.

We use the notation vk M−−→ v for the modular convergence in LM (Σ). The key
property of the modular convergence is stated in the following lemma.

Lemma 3.4.2 [6, Proposition 2.2.] Let M be an N–function and M∗ be the conjugate
N–function to M . Suppose that sequences {vk}∞k=1 and {wk}∞k=1 are uniformly bounded
in LM (Σ), LM∗

(Σ) respectively. Moreover, let vk M−−→ v and wk M∗
−−→ w. Then

vk · wk → v · w in L1(Σ) as k → ∞.

Finally, we also recall the weak∗ lower semicontinuity property of convex functionals.
Since in our case, the N–function M may not satisfy the ∆2−−condition in general, the
spaces do not have to be reflexive. However, due to Lemma 3.4.1, we see that any LM

always has a separable predual space and consequently any bounded sequence possesses
a weakly∗ convergent subsequence. This motivates us to introduce the last convergence
theorem, that can be obtained by standard weak lower semicontinuity properties of
convex functionals, see e.g. [2, Theorem 4.5], namely:

Lemma 3.4.3 Let Ω ⊂ Rd be open, n ∈ N and Φ : Y × Rn → R satisfy:

(a) Φ is Carathéodory,

(b) Φ(y, ·) is convex for almost all y ∈ Y ,
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(c) Φ ≥ 0.

Then we have the following semicontinuity property: vk −−⇀ v in L1(Ω × Y ;Rn) as
k → ∞ implies

lim inf
k→∞

ˆ
Ω

ˆ
Y
Φ(y,vk(x, y))dydx ≥

ˆ
Ω

ˆ
Y
Φ(y,v(x, y))dydx.

We continue with the characterization of the space EM .

Lemma 3.4.4 Let Σ ⊂ Rd be bounded, M be an N–function such that

∀R > 0

ˆ
Σ

sup
|ξ|≤R

M(x, ξ)dx <∞. (3.69)

Then
EM (Σ) = {v ∈ LM (Σ) : ∀t ≥ 0 tv ∈ LM (Σ)}.

Proof. First, we observe that by (3.69) we obtain

∀t ≥ 0,∀v ∈ L∞(Σ) tv ∈ LM (Σ). (3.70)

For fixed t ≥ 0,v ∈ L∞(Σ) we have
ˆ
Σ
M (x, tv)dx <∞

due to (3.70). Let v ∈ EM (Σ) and a sequence {vk}∞k=1 ⊂ L∞(Σ) be such that ∥vk −
v∥LM → 0 as k → ∞ then the convexity of M in the second variable implies

ˆ
Σ
M(x, tv)dx ≤ 1

2

(ˆ
Σ
M(x, 2tvk)dx+

ˆ
Σ
M(x, 2t(v − vk))dx

)
.

The first integral on the right hand side is finite by (3.69) and the second one vanishes
in the limit k → ∞ by (3.67). Thus we showed ∀t ≥ 0 tv ∈ LM (Σ).
Let v ∈ LM (Σ) and assume that

∀t ≥ 0 tv ∈ LM (Σ). (3.71)

Defining vk := vχ{|v|≤k} we have {vk}∞k=1 ⊂ L∞(Σ) and due to (3.71) we get for all
t ≥ 0 ˆ

Σ
M(x, t(vk − v))dx =

ˆ
{|v|>k}

M(x, tv)dx→ 0

as k → ∞. Hence for given δ > 0 we find n0(δ) such that for any k ≥ k0
´
ΣM(x, δ−1(vk−

v))dx < 1. Then we obtain ∥vk − v∥LM ≤ δ by the definition of the Luxemburg norm
and we conclude that v ∈ EM (Σ).

The last statement of this subsection concerns possible relaxing of assumption (M3).
Namely, we show that for an N–function M that is radially symmetric in the second
variable the accomplishment of (3.3) implies the validity of (3.4).
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Lemma 3.4.5 Let M : Rd × [0,∞) → [0,∞) be an N–function satisfying conditions
(M2) and (M3). Assume that Qδ

j with δ < δ0 := 1
8
√
d

is an arbitrary cube defined in
(M3) and that there are constants A > 0 and B ≥ 1 such that for all y1, y2 ∈ Σ (where
either Σ is a bounded Lipschitz domain or Σ = Y ) with |y1 − y2| ≤ 1

2 and all ξ ∈ [0,∞)
inequality (3.3) holds. Then for M δ

j given by (3.5) and its biconjugate (M δ
j )

∗∗ it follows
that inequality (3.4) is satisfied.

Proof. First, we fix an arbitrary y ∈ Qδ
j . Then we observe that

M(y, ξ)

(M δ
j )

∗∗(ξ)
=
M(y, ξ)

M δ
j (ξ)

M δ
j (ξ)

(M δ
j )

∗∗(ξ)
. (3.72)

We estimate separately both quotients on the right hand side of the latter equality. By
continuity of M we find ȳ ∈ Q̃δ

j such that M δ
j (ξ) =M(ȳ, ξ). Then using condition (3.3)

and the fact that |y − ȳ| ≤ 3δ
√
d < 1

2 we get

M(y, ξ)

M(ȳ, ξ)
≤ max{ξ−

A
log |y−ȳ| , B

− A
log |y−ȳ| } ≤ max{ξ−

A

log(3δ
√
d) , B

− A

log(3δ
√
d) }. (3.73)

In order to estimate the second quotient in (3.72) we observe first that if ξ ∈ [0,∞)
is such that M δ

j (ξ) = (M δ
j )

∗∗(ξ) then the statement is obvious. Therefore we assume
that M δ

j (ξ0) > (M δ
j )

∗∗(ξ0) at some ξ0. Due to continuity of M δ
j and (M δ

j )
∗∗ there is a

neighborhood U of ξ0 such thatM δ
j > (M δ

j )
∗∗ on U . Consequently, (M δ

j )
∗∗ is affine on U .

Moreover, (M2) implies that m1 ≤M δ
j ≤ m2, where m1 and m2 are convex. Therefore

there are ξ1, ξ2 such that U ⊂ (ξ1, ξ2), M δ
j > (M δ

j )
∗∗ on (ξ1, ξ2), (M δ

j )
∗∗(ξi) = M δ

j (ξi),
i = 1, 2 and (M δ

j )
∗∗ is an affine function on [ξ1, ξ2], i.e., for t ∈ [0, 1]

(M δ
j )

∗∗(tξ1 + (1− t)ξ2) = tM δ
j (ξ1) + (1− t)M δ

j (ξ2). (3.74)

We note that ξ1 > 0 is always assumed because it follows that 0 =M δ
j (0) = (M δ

j )
∗∗(0).

Now, thanks to the continuity of M we find yi ∈ Q̃δ
j such that M δ

j (ξi) = M(yi, ξi),
i = 1, 2. Consequently, it follows from (3.74) that

(M δ
j )

∗∗(tξ1 + (1− t)ξ2) = tM(y1, ξ1) + (1− t)M(y2, ξ2). (3.75)

Denoting ξ̃ = tξ1 + (1− t)ξ2 we get

M δ
j

(
ξ̃
)

(M δ
j )

∗∗
(
ξ̃
) ≤

M
(
y2, ξ̃

)
tM(y1, ξ1) + (1− t)M(y2, ξ2)

≤ tM(y2, ξ1) + (1− t)M(y2, ξ2)

tM(y1, ξ1) + (1− t)M(y2, ξ2)
. (3.76)

Next, we observe that the definition of M δ
j implies M(y1, ξ1) = M δ

j (ξ1) ≤ M(y2, ξ1).
We can assume without loss of generality that

M(y1, ξ1) < M(y2, ξ1) (3.77)

because for M(y1, ξ1) = M(y2, ξ1) inequality (3.76) implies M δ
j ≤ (M δ

j )
∗∗ on [ξ1, ξ2].

Since we have always M δ
j ≥ (M δ

j )
∗∗ we arrive at M δ

j = (M δ
j )

∗∗ on [ξ1, ξ2].
Let us consider a function h : [0, 1] → R defined by

h(t) =
tM(y2, ξ1) + (1− t)M(y2, ξ2)

tM(y1, ξ1) + (1− t)M(y2, ξ2)
.
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Then we compute

h′(t) =
(M(y2, ξ1)−M(y1, ξ1))M(y2, ξ2)

(t(M(y1, ξ1)−M(y2, ξ2)) +M(y2, ξ2))2
.

Obviously, we have h′ > 0 on (0, 1) due to (3.77). Therefore the maximum of h is
attained at t = 1, which implies

M δ
j

(
ξ̃
)

(M δ
j )

∗∗
(
ξ̃
) ≤ M(y2, ξ1)

M(y1, ξ1)
. (3.78)

Next, we apply condition (3.3) and ξ1 ≤ ξ̃ to infer

M δ
j

(
ξ̃
)

(M δ
j )

∗∗
(
ξ̃
) ≤ max{ξ

−A
log |y2−y1|
1 , B

−A
log |y2−y1| } ≤ max{ξ

−A
log |y2−y1| , B

−A
log |y2−y1| }

≤ max{ξ
−A

log(4δ
√
d) , B

−A

log(4δ
√
d) }

(3.79)

since y1, y2 ∈ Q̃δ
j implies |y1−y2| ≤ 4δ

√
d < 1

2 . Combining (3.72) with (3.73) and (3.79)
yields

M(y, ξ)

(M δ
j )

∗∗(ξ)
≤ max{ξ

−A

log(3δ
√
d) , B

−A

log(3δ
√
d) } · max{ξ

−A

log(4δ
√
d) , B

−A

log(4δ
√
d) }

≤ max{ξ
−2A

log(4δ
√
d) , B

−2A

log(4δ
√
d) }

which is the desired conclusion.

3.4.2 Young measures
We assume that basic facts on existence and properties of Young measures are known
to the reader. The fundamental theorem on Young measures may be found in [9]. We
only recall the lemma with properties of Young measures that will be used further. In
the following M(Rd) stands for the space of bounded Radon measures.

Lemma 3.4.6 [9, Corollary 3.2] Let a Young measure ν : Ω → M(Rd) be generated by
a sequence of measurable functions zk : Ω → Rd. Let F : Ω×Rd → R be a Carathéodory
function. Let also assume that the negative part F−(·, zk) is weakly relatively compact
in L1(Ω). Then

lim inf
k→∞

ˆ
Ω
F (x, zk(x))dx ≥

ˆ
Ω

ˆ
Rd

F (x, ζ)dνx(ζ)dx.

If, in addition, the sequence of functions x 7→ |F |(x, zk(x)) is weakly relatively compact
in L1(Ω) then

F (·, zk(·))⇀
ˆ
Rd

F (x, ζ)dνx(ζ)dx.
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3.4.3 Existence of solutions to elliptic problems
To the best of authors’ knowledge only the result from [4] concerns the existence of weak
solutions of elliptic problems in which the growth condition is given by an anisotropic
inhomogeneous N–function. In [4] the only scalar problem and an N–function satisfying
the condition (C2) are considered. In this part we show that the result in [4] can be
extended also to the vector value problems provided we assume that the domain is
star–shaped, i.e., the assumption (C1) holds.

Theorem 3.4.7 Let N ≥ 1, Ω ⊂ Rd, d ≥ 2 be a star–shaped domain, an operator A
satisfy (A1),(A3) and (A4). Let an N–function M : Ω × Rd×N → [0,∞) fulfill (M2)
and (M3) with Ω replacing Y . Then the problem

div A(x,∇u(x)) = div F(x) in Ω,

u = 0 on ∂Ω

possesses a unique weak solution, which is a function u ∈ VM
0 such that for all φ ∈ VM

0ˆ
Ω

A(x,∇u) · ∇φdx =

ˆ
Ω

F · ∇φdx. (3.80)

Proof. The construction of a weak solution u will be performed in several steps following
the approach from [4]. First, we consider for δ ∈ (0, 1) an auxiliary problem: to find
uδ ∈ V m

0 such that
ˆ
Ω

B(x,∇uδ(x)) · ∇φ(x)dx =

ˆ
Ω

F(x) · ∇φ(x)dx for all φ ∈ C∞
c (Ω;RN ), (3.81)

where we denoted B(x, ζ) := A(x, ζ) + δ∇m(ζ) and ∇m(ζ) := m̃′(|ζ|) ζ
|ζ| . The N–

function m̃ : [0,∞) → [0,∞) is such that m̃∗ satisfies ∆2–condition and m̃(|ζ|) ≥
supx∈ΩM(x, ζ). Moreover, the identity

∇m(ζ) · ζ = m(ζ) +m∗(∇m(ζ)) (3.82)

holds. We show the existence of uδ and derive estimates of ∇uδ and A(·,∇uδ) in
LM (Ω;Rd×N ), LM∗

(Ω;Rd×N ) respectively that are uniform with respect to δ ∈ (0, 1).
Having the uniform estimates we pass to the limit δ → 0+ to obtain a weak solution of
the initial problem. The reason for such a modification is that from now the leading N–
function is independent of the spatial variable and its conjugate satisfies ∆2–condition,
which may not be the case in the original setting.
Step 1: In order to obtain the existence of uδ for fixed δ ∈ (0, 1) we employ the results
on the so–called (Sm) class operators from [10]. It is necessary to verify assumption of
[10, Theorem 4.3]. We omit the verification since it is performed in the same manner
as in the proof of [4, Theorem 2.1]. The existence of a weak solution uδ of (3.81) then
follows by [10, Theorem 5.1].
Step 2: Now, we derive estimates uniform with respect to δ. Since uδ ∈ V m

0 , by
Theorem 3.2.1 (claim 2) there is a sequence {uδ,k}∞k=1 ⊂ C∞

c (Ω;RN ) such that uδ,k m−−→
uδ as k → ∞. As uδ,k for each k can be used as a test function in (3.81), Lemma 3.4.2
then implies

ˆ
Ω
(A(x,∇uδ(x)) + δ∇m(∇uδ(x))) · ∇uδ(x)dx =

ˆ
Ω

F(x) · ∇uδ(x)dx. (3.83)
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We get by (A3), (3.82), the Young inequality using also the fact that c ∈ (0, 1] in (A3)
together with the convexity of M with respect to the second variable that
ˆ
Ω

c

2
M(x,∇uδ(x)) + cM∗(x,A(x,∇uδ(x)) + δm(∇uδ(x)) + δm∗(∇m(uδ(x))dx

≤
ˆ
Ω
M∗

(
x,

2

c
F(x)

)
dx.

Hence we have ˆ
Ω
M(x,∇uδ(x))dx ≤ c,

ˆ
Ω
M∗(x,A(x,∇uδ(x))dx ≤ c,

ˆ
Ω
δm∗(∇m(uδ(x))dx ≤ c.

(3.84)

Consequently, we obtain the existence of a sequence {δk}∞k=1 such that δk → 0 as k → 0
and denoting Ak = A(·,∇uδk), uk = uδk and Bk = B(·,∇uδ(x)) we have

∇uk −−⇀∗ ∇u in LM (Ω;Rd×N ),

Ak −−⇀∗ Ā in LM∗
(Ω;Rd×N ),

Bk −−⇀ Ā in L1(Ω;Rd×N )

(3.85)

as k → ∞.
Step 3: We shall show that

lim sup
k→∞

ˆ
Ω

Ak · ∇uk ≤
ˆ
Ω

Ā · ∇u. (3.86)

Performing the limit k → ∞ in (3.83) with δ := δk and φ := uk we get by using (3.85)1
that

lim sup
k→∞

ˆ
Ω

A(x,∇uk) · ∇uk ≤ lim
k→∞

ˆ
Ω

B(x,∇uk) · ∇uk = lim
k→∞

ˆ
Ω

F · ∇uk =

ˆ
Ω

F · ∇u.

(3.87)
Employing (3.85)3 we can pass to the limit k → ∞ in (3.81) to obtain

ˆ
Ω

Ā · ∇φ =

ˆ
Ω

F · ∇φdx for all φ ∈ C∞
c (Ω;RN ). (3.88)

Next, for any φ ∈ VM
0 we can use the assumptions on the domain Ω and M , and by

Theorem 3.2.1 (claim 2) find a sequence {φk}∞k=1 ⊂ C∞
c (Ω;RN ) such that φk M−−→ φ

as k → ∞. Thus, we can use φk in (3.88) and by using Lemma 3.4.2, we deduce the
identity ˆ

Ω
Ā · ∇φ =

ˆ
Ω

F · ∇φ. (3.89)

Inserting φ := u into (3.89) yields
ˆ
Ω

Ā · ∇u =

ˆ
Ω

F · ∇u. (3.90)
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We conclude (3.86) by comparing (3.87) and (3.90).
Step 4: To finish the existence proof it remains to show that

Ā(x) = A(x,∇u(x)) a.e. in Ω. (3.91)

Indeed, once we have (3.91), we can combine it with (3.89) to obtain (3.80). Thus, we
focus on (3.91). Since A(·, 0) = 0 and A is strictly monotone, one sees immediately
that the negative part of A(x,∇uk)·∇uk vanishes. Thus it is relatively weakly compact
in L1(Ω). By the second part of Lemma 3.4.6 we infer

lim inf
k→∞

ˆ
Ω

A(x,∇uk) · ∇ukdx ≥
ˆ
Ω

ˆ
Rd×N

A(x, ζ) · ζdνx(ζ)dx,

where νx is the Young measure generated by {∇uk}∞k=1. Comparing the latter inequality
with (3.86) we have

ˆ
Ω

ˆ
Rd×N

A(x, ζ) · ζdνx(ζ)dx ≤
ˆ
Ω

Ā · ∇udx. (3.92)

Let us define h(x, ζ) := (A(x, ζ)− A(x,∇u)) · (ζ −∇u). Then it follows from (A4)
that ˆ

Ω

ˆ
Rd×N

h(x, ζ)dνx(ζ)dx ≥ 0. (3.93)

As A is a Carathéodory function and the sequences {∇uk}∞k=1 and {Ak}∞k=1 are weakly
relatively compact in L1(Ω) due to (3.84)1,2, the second part of Lemma 3.4.6 implies

∇u =

ˆ
Rd×N

ζdνx(ζ) a.e. in Ω,

Ā =

ˆ
Rd×N

A(x, ζ)dνx(ζ) a.e. in Ω.

(3.94)

Using these identities we deduce that
ˆ
Ω

ˆ
Rd×N

h(x, ζ)dνx(ζ)dx =

ˆ
Ω

ˆ
Rd×N

A(x, ζ) · ζdνx(ζ)dx−
ˆ
Ω

Ā · ∇udx ≤ 0

by (3.92). It follows from (3.93) that
´
Rd×N h(x, ζ)dνx(ζ) = 0 a.e. in Ω. Since νx is a

probability measure and A(x, ·) is strictly monotone, we conclude for a.a. x ∈ Ω that
supp{νx} = {∇u(x)}. Thus νx = δ∇u(x) a.e. in Ω and inserting this into (3.94)2 we
conclude (3.91).
Step 5: In order to show uniqueness of a weak solution, we suppose that functions
u1,u2 ∈ VM

0 fulfill (3.80). Taking the difference of weak formulation with φ := u1−u2

yields ˆ
Ω
(A(x,∇u1)− A(x,∇u2)) · ∇(u1 − u2)dx = 0.

Hence we obtain by (A4) that ∇(u1 − u2) = 0 a.e. in Ω and since the trace of u1 − u2

is zero on ∂Ω we conclude u1 = u2 a.e. in Ω.

Similarly, as in the case of the monotone operator A, we shall show certain prop-
erties of the minimizers to convex functional generated by the N–function M . For
simplicity, we state the following results only for spatially periodic setting, but they
can be easily generalized also to the Dirichlet case. The main goal of the section is the
following Lemma.
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Lemma 3.4.8 Let M : Y × Rd×N → [0,∞) be an N–function. Then for arbitrary
ξ ∈ Rd×N there exists ũ ∈ VM

per such that for all w ∈ VM
per there holds

ˆ
Y
M(y, ξ +∇ũ(y))dy ≤

ˆ
Y
M(y, ξ +∇w(y))dy. (3.95)

In addition, if M is strictly convex then the minimizer is unique. Furthermore, if M
satisfies (M3) then

ˆ
Y
M(y, ξ +∇ũ(y))dy = inf

w∈W 1
perE

M (Y ;RN )

ˆ
Y
M(y, ξ +∇w(y))dy. (3.96)

Proof. The existence of a function ũ solving (3.95) easily follows from the convexity of
M and the fact that

´
Y M(y, ξ)dy <∞. The uniqueness in case of the strict convexity

is also a standard task. Thus, we focus only on (3.96). We denote A(y, ξ) := ∇ξM(y, ξ).
Notice that due to the convexity A exists for almost all ξ and we extend it to the whole
Rd×N as a pseudodifferential. In addition, the operator A is a monotone mapping and
there holds

M(y, ξ) +M∗(y,A(ξ)) = A(ξ) · ξ.

Next, we use Theorem 3.4.7 to get an existence of u ∈ VM
per, which solves for all

w ∈ C∞
per(Y ;RN ) ˆ

Y
A(y,∇u + ξ) · ∇wdy = 0. (3.97)

Finally, due to the assumption on M (namely the log-Hölder continuity (3.3)), we see
from Theorem 3.2.1 that for any v ∈ VM

per we can find a sequence {vn}∞n=1 ∈ C∞
per(Y ;RN )

that converges modularly to v. Using the modular covergence we can set w := vn

in (3.97), which after letting n→ ∞ leads to
ˆ
Y

A(y,∇u + ξ) · ∇vdy = 0 for all v ∈ VM
per (3.98)

and in particular to ˆ
Y

A(y,∇u + ξ) · (∇u −∇ũ)dy = 0.

Hence, due to the convexity of M , we see that
ˆ
Y
M(y, ξ +∇ũ)−M(y, ξ +∇u)dy ≥ A(y,∇u + ξ) · (∇ũ −∇u)dy = 0.

Therefore, u is also a minimizer to (3.95). In addition, following step by step the proof
of Lemma 3.2.11, we deduce that u can be constructed such that there is a sequence
{un}∞n=1 ⊂W 1

perE
M (Y ;RN ) such that
ˆ
Y
M(y, ξ +∇u)dy = lim

n→∞

ˆ
Y
M(y, ξ +∇un)dy.

From this (3.96) directly follows.
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