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Introduction

The main goal of this thesis is to study a gravitational collapse of a scalar field,
with a focus put on a critical behaviour near to a black hole creation thresh-
old. We are following the approach and using mostly the equations from [1].
Apart from reproducing their results, we try to give a detailed explanation of the
numerical methods and algorithms used, the thing missing in the article. The
convergence tests of the numerical methods are also the part of this thesis, con-
firming the second order of our algorithm. The real error of the calculations is
tested with the remaining unused Einstein equations.

Another important thing we tried to focus on were the phase diagrams, the
way of describing a collapsing matter evolution using an analogy of a trajectory in
a phase space. With appropriate coordinates we tried to construct such diagram
and show that the critical solution attractor is not a point, rather a curve in a
phase space.

To better understand the coordinates we choose to display some of the figures
in the Carter-Penrose diagrams. We first describe the diagram and its structure
and then we use them for results plotting.

In the chapter about the results of our work we first try to introduce the reader
how a weak scalar field behaves in the spacetime. Then we study the creation of
a black hole with large mass and radius. Afterwards we find the solution closest
to the critical one, where the black hole is not created. We describe the solution
focusing on the critical phenomena. The slightly above-critical solution is also
presented. With this solution we observe the late black hole creation, and its
properties.
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1. Gravitational collapse of a
scalar field

1.1 Gravitational collapse

A gravitational collapse is a process in which a matter concentrates due to its
own gravity. In space it is a basic process responsible for formation of galax-
ies, star systems, planets and other structures present in the universe. General
relativity permits the creation of objects called black holes. A black hole is a
spacetime region not even the light can escape [2]. A black hole can have various
size and mass. We will try to show that theoretically very small black holes can
exist. Since a black hole does not emit any observable light it cannot be seen di-
rectly with a telescope. Other, more sophisticated methods have been developed,
mostly being dependent on how a matter near a black hole behaves, in order to
find and study these mysterious objects. Theoretical calculations and numerical
simulations should be able to help us understand a black hole creation and its
behaviour.

1.2 Critical collapse

In 1993 Choptuik [3] studied a gravitating massless scalar field in the Einstein’s
theory of gravity and found number of interesting phenomena. He focused on
black hole formations, choosing family of initial data characterized by a param-
eter p. He then varied the parameter and observed the evolution of the system.
He found a critical point p∗ where an infinitesimal change in p results either in
formation of a black hole or in the field being dispersed to infinity. He observed
a relation between p− p∗ and a final mass of a black hole, meaning a black hole
of arbitrary mass can be created. His work has been later adapted by others,
working not only with a scalar field, but with a model closer to reality including
the perfect fluid [4]. A charged scalar field was also studied by Gundlach and
Mart́ın-Garćıa [5] showing the scaling law for a charge of a black hole similar to
the one for mass.

As mentioned in the previus section a black hole of arbitrary mass can be
created if p approaches p∗. Black hole mass is then scaled as:

M ∝ (p− p∗)γ, (1.1)

where γ is the exponent that depends only on the type of matter used, not on
what we choose as our parameter p. For a massless scalar field the exponent
γ ≈ 0.373 [1]. A similar law can also be formulated for scaling of a black hole’s
charge in a charged field collapse:

Q ∝ (p− p∗)δ. (1.2)

3



The exponent δ has the same properties as γ mentioned above. It is only depen-
dent on the type of matter used, not the choice of the initial data family.

The critical solution displays a type of symmetry called self-similarity. A
spacetime in certain region look almost the same on different scales. We will be
observing this feature and with appropriate figures demonstrate that regions on
different scales are self-similar.

While in this thesis we focus on the simplest situation, that the spherical
symmetry definitely is, it cannot be used for calculations where an angular mo-
mentum is present. Therefore, a significant amount of research is now focused on
the axial symmetry. See for example work of Choptiuk [6]. The rotating model
where spherical symmetry could not be a factor to simplify the equations and
the calculations was also successfully modeled in 2016, with similar results, show-
ing black holes display the type of behaviour described above even with matter
initially rotating [7].

1.3 Carter-Penrose and phase diagrams

To better understand the causality in our spacetime, we are using compactified
figures called Carter-Penrose diagrams (see e.g. [2] for details). In the spherical
symmetry these represent t−r hyperplane of a spacetime with specific coordinates
in which

• radial null geodesics are 45-degree lines

• infinite radii are by an appropriate transformation put into a point with
finite space coordinate, all radiation thus ends at so-called null infinity I +.

• If the spacetime contains a horizon, it is plotted as a 45-degree line separat-
ing those outgoing null rays which hit I + and those which (however much
trying to be outgoing) end up in a singularity.

As we study a massless scalar field with its wave packets propagating with the
speed of light, these diagrams can make our results more understandable. In
our simulations we also use a null coordinate u and lines of u = const which
not only represent the radial outgoing null worldline, but also form the hyper-
surface where our initial data are given. Such diagrams are thus a natural tool
for plotting the results. Using these diagrams, we can better understand features
of both geometry and fields. An example of such diagram is shown in the Figure
1.1.

Another approach to explain the character of a critical collapse is using an
analogy of a trajectory in a phase space. Our phase space is composed of all
possible initial data. It has therefore an infinite number of dimensions. The
trajectories are then composed of the points that together form the time evolution
of a system. This means the lines should not cross, since we are solving the
evolution equations. In [8] the phase diagrams shown in figures 1 and 2, the
attractors are fixed points. We have found them to be curves in a phase space as
is mentioned in [12], for the situation when the discrete self-similarity is present
in the critical solution.
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Figure 1.1: A Penrose diagram of a collapse adapted from [1]. The green lines are
u = const slices of the constant retarded time u. We are using the retarded time
also for our simulations. The blue lines represent x = const hypersurfaces. H +

is the the event horizon. I + serves as a symbol for the future null infinity that all
null rays above the horizon reach, while I − is the past null infinity. Singularity
inside a black hole horizon is shown with the wavy line. The blue line u = 0 is
where we set the initial data and let them evolve.
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Figure 1.2: Phase diagram from [8]. The figure descibes expected trajectories
in a phase space from a number of initial states. The curve made by varying p
and keeping other parameter constant is marked. The point p∗ is the black hole
threshold, from which the system ends up in the critical point. The hyperplane
representing all points that lead the evolution to the critical point is∞−1 dimen-
sional and is also shown in the figure (as a 2D plane). The points representing
black hole formation and flatspace are two other possible ending states for our
system. A system having any initial data parameter non-critical necessarily ends
in either of those two points, not in a critical state.
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2. Geometry and coordinates

2.1 Basic equations

Geometry of our spacetime must satisfy Einstein equations:

Rab −
1

2
Rgab + Λgab ≡ Gab + Λgab = 8πTab. (2.1)

In this work we are using a sign convention proposed by [2]. These famous
equations were formulated by Einstein in 1915. The role of a variable we are
solving for, belongs the the metric gab, a second-order symmetrical tensor, while
Rab and R is Ricci tensor and Ricci scalar, build from the field and its first and
second derivatives. We should note, we put Λ = 0. Our stress-energy tensor is
for a massless scalar field φ:

Tab = ∇aφ∇bφ−
1

2
gab∇aφ∇bφ. (2.2)

We choose a massless scalar field because of one particular reason - It satisfies
the wave equation:

�gφ = 0. (2.3)

So while it is quite hard to imagine how such an entity looks like, it is the simplest
object which can play a role of a collapsing matter. Also, because the field is
massless, no scale at which a black hole creation can occur is present. These
are the reasons why Choptuik has chosen a massles scalar field for his pioneering
work with a critical collapse.

2.2 Coordinates

In our numerical models we will be assuming a spherical symmetry, since this
model has been extensively studied in the past. As we wish to reproduce the
results of [1] and study fields up to infinity we get Bondi’s coordinates as a
natural choice. Bondi Coordinate system contains u as a retarded time variable
and {r, φ, θ} to describe the u = const hypersurface. More about Bondi coordi-
nate system in [9]. In all our calculations we use a metric defined by a line element:

ds2 = −e2β(u,r)du
(V (u, r)

r
du+ 2dr

)
+ r2(dθ2 + sin2θdr2). (2.4)

where we require a regular center at r = 0. Next we require our metric to
be smooth, which results in the requirement at β and V/r to be the smooth
functions on the spacetime manifold. The metric functions behave as:

β(u0, r) = O(r2),

V (u0, r) = r +O(r3)
(2.5)
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in the center of symmetry. These conditions are necessary to be followed while
constructing our algorithm.

2.3 Wave equation

First we introduce a rescaled scalar field variable ψ = φr. This is a common
approach in the spherical symmetry. This means, that:

ψ = O(r), (2.6)

since the source-free field φ has to be finite at the center. In terms of a new
variable ψ as described in [10] we get:

�hψ −
(V
r

)
,r

e−2βψ

r
= 0. (2.7)

Figure 2.1: So-called marching algorithm for the wave equation. The value at
vertex N is computed using (2.16) from already known values at E, S and W.
This way the data at the new u = const slice are obtained.

∫
Σ

�hψ =

∫
Σ

(V
r

)
,r

ψ

r
. (2.8)

We follow [1] where it is shown, that the curved-space wave operator in (2.3) can
be rewriten using flat 1+1 d’Alembert operator since all two-dimensional mani-
folds are conformally related. In such situation a standard marching algorithm
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for solving flat 1+1 wave equation can be used (see Fig 2.1). Here it takes form of:

ψN = ψW + ψE − ψS −
∫

Σ

(V
r

)
,r

ψ

r
. (2.9)

Note this results were derived without actually using the Einstein equations
(2.1). When examining the Einstein equations we get from (r, r) and (u, r)
component of the equations the conditions for derivatives of β and V :

V,r = e2β,

β,r = 2πr(φ,r)
2.

(2.10)

We will be using a mass function m called Misner-Sharp mass-function defined as:

m(u, r) =
r

2

[
1− V

r
e2β
]
. (2.11)

In general relativity it is surprisingly non-trivial to define a function responsible
for total energy present in a closed space. Misner and Sharp [11] studied gravi-
tational collapse in spherical symetry and showed that in the sphere of radius r,
the total energy of the matter and field can be expressed by (2.11). Apart from
providing us with information about black hole mass, more advantages of this
function will be clear in the next section.

2.4 Compactification

In general relativity it is common to compactify the coordinate system so we can
cover r =∞. We will follow the work of [1] and use the coordinate x defined as:

x =
r

r + 1
. (2.12)

This means x = 0 at r = 0 and x = 1 at r =∞. First we transform the equations
for β,r and V,r to x:

V,x =
e2β

(1− x)2
,

β,x = 2πx(1− x)(φ,x)
2.

(2.13)

We can see the problem at x = 1 i.e. problem at infinity. We solve it by re-
placing V with m in our algorithm. We then get two completely regular equations:

dm

dx
= 2πx2

[
1− 2(1− x)

x
m
]
(φ,x)

2,

β,x = 2πx(1− x)(φ,x)
2.

(2.14)

The behaviour of these functions in the origin is:

β(u, x) = O(x2),

m(u, x) = O(x3).
(2.15)

9



We can now transform the wave equation in terms of x coordinate and the
mass-function m. The equation (2.9) changes to:

ψN = ψW + ψE − ψS −
∫

Σ

du dx e2βmψ
1− x
x3

. (2.16)

We want our gridpoints to fall along null radial geodesics, meaning they satisfy
the geodesics equation from [1]:

dx

du
= −1

2
(1− x)2e2β

(
1− 2m

1− x
x

)
. (2.17)

This gives us a complete set of equations needed to simulate a gravitational
collapse of a scalar field.
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3. Numerical Methods

3.1 Grid

For our calculations we follow [1] and use a grid composed of points on constant
retarded time u slices. A radial coordinate x of the points is calculated during
runtime so that the points freely fall along the null radial geodesics, obeying the
geodesics equation (2.17).

3.1.1 Geodesics calculation

The equation (2.17) is solved first for any point with u > 0. The equation is
non-linear in x. Another compliaction is that β and m are not yet calculated.
For the flat-space the geodesics curves are shown in the 3.1 Figure. For nonzero
β and m we have to first approximate their values and then try to get the most
accurate result possible for our new x. Our method consist of two steps. First, we
use Euler method to calculate approximate x coordinate for our new gridpoint.
Lets call our calculated coordinate xa. The Euler scheme is as follows:

xk+1
a = xk + ∆uf(βk,mk, xk). (3.1)

Note that the k is a space index. Function f is the right-hand side of the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

u

x

Figure 3.1: Flat-space null ingoing geodesics.

equation (2.17). Now we introduce the correction:

xk+1 = xk + ∆uf(βk+ 1
2 ,mk+ 1

2 , xk+ 1
2 ). (3.2)

The calculation of xk+ 1
2 is straight-forward from the formula:

xk+ 1
2 =

xk+1
a + xk

2
. (3.3)
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β and m are not yet calculated on k + 1 point of the grid. We therefore use a
simple first-order extrapolation of the values defined as follows:

f(xk+1) = f(xk) +
f(xk)− f(xk−1)

xk − xk−1
(xk+1 − xk). (3.4)

Now we have the value approximated in the k + 1th and kth point of the grid
and it is possible to use the arithmetic mean as the value in the middle of the
geodesics curve βk+ 1

2 and mk+ 1
2 . The use of points xk−1 gives us a problem at

the point one step from the center of the symmetry. There we cannot use the
extrapolation method and have to adjust the scheme. However since β = O(x2)
and m = O(x3) in the origin, we can approximate them by zero. We calculate
the x coordinates for all the gridpoints on our next u = const slice and then we
proceed with ψ evaluation.

3.2 Diamond integral scheme

Using the equation (2.9) we can march through the grid calculating ψN using
three gridpoints with already known values of ψ. When data on the hypersurface
u = const are known and we assume ψ = 0 at x = 0 we can calculate the timestep
∆u from the (2.17) so that the first point with non-zero x on the previous u = cost
slice has now x = 0 (described in the next section) and automatically ψ = 0. This
means we always have the value on the southern, the western and the eastern
gridpoint as shown in 2.1 from [1].

3.2.1 Solving the geodesics equation to get the required
timestep ∆u

Since the equation (2.17) contains β and m and we are close to x = 0 we
approximate them by zero. This simplifies the equation to:

dx

du
= −1

2
(1− x)2 du . (3.5)

We then continue with simplification, setting also x2 term from the bracket as
zero. This gives us the final form o the equation in the center as:

dx

du
= −1

2
+ x. (3.6)

So the next timestep u is calculated as:

u = u0 +
2x

x− 1
. (3.7)

Where u0 is previous timestep.
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3.2.2 Evaluating the integral

We are calculating the integral (2.16) on the area bounded by two parallel
u = const hypersurfaces and two generally non-straight lines defined by (2.17).
We use the values of β, m, ψ and x in the middle calculated as:

fm =
fE + fW

2
. (3.8)

Note we cannot use fN value of neither β, ψ nor m since these are not calculated
yet. The integral can then be rewritten as:∫

Σ

dudxe2βmψ
1− x
x3
≈ e2βmmmψm

1− xm
x3
m

∫
Σ

dudx ≈

≈ e2βmmmψm
1− xm
x3
m

S,

(3.9)

where we assume S is a trapezoid in x−u coordinates, whose area we calculate as:

S =
(xN − xW + xE − xS)∆u

2
. (3.10)

Now after we have ψN evaluated, we can proceed with the calculation of β and
m on the northern gridpoint.

3.3 Hypersurface equations calculation

Solving of the hypersurface equations is done after we have already found ψ in
the xk+1 gridpoint. To numerically get the radial derivative of φ used in (2.13)
we can then use the scheme:

φ
k+ 1

2
,x =

φk+1 − φk

xk+1 − xk
. (3.11)

Where the field φ is ψ/r. This can be written as:

φ =
ψ(1− x)

x
. (3.12)

since r = x/(1 − x). Using this scheme gives us a problem in the center, where
x = 0. However, by using the condition (2.6) we can see that by deriving the
Taylor series of ψ at x = 0 we directly get ψ,x(0) = φ,x(0) = 0. This serves well

as a first approximation of φ,x(x
1
2 ) = 0. The differentiation scheme defined above

is second order accurate, thus satisfying our target to get the globally second
order accurate algorithm. Equation for β is now complete and ready to use. In
our code we calculate β outside the center as:

β(xk+1) = β(xk) + ∆x 2πxk+ 1
2 (1− xk+ 1

2 )(φ
k+ 1

2
,x )2. (3.13)

Equation for m requires a little more work since m is also present in its derivative.
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However from writing the similar equation than the one above for m:

m(xk+1) = m(xk) + ∆x 2π(xk+ 1
2 )2
(

1− 2(1− x)

x

[mk+1 +mk

2

])
(φ

k+ 1
2

,x )2, (3.14)

we can see that since dm is linear in m we can write mk+1 explicitly as:

m(xk+1) =
m(xk) + 2πxk+ 1

2 (xk+ 1
2 − (1− xk+ 1

2 )m(xk))∆x(φ
k+ 1

2
,x )2

1 + 2π(1− xk+ 1
2 )xk+ 1

2 ∆x(φ
k+ 1

2
,x )2

. (3.15)

This will be our final formula for calculating m.

3.4 Initial data

We use the initial data defined at constant u = 0 slice. To compare the result
we use the identical data as [1]. They have a form of a standard gaussian wave
packet defined as:

φ(u0, x) = Ar(x)2exp
[
− (

r(x)− r0

σ
)2
]
, (3.16)

where by changing the amplitude A we can strengthen or weaken the field, thus
giving more or less energy to the system. The wave amplitude is the parameter p
mentioned in the chapter 1.2. It is then necessary to calculate the hypersurface
equations on this u = 0 slice. We will be using the second order accurate Runge-
Kutta midpoint method described in section 3.3. The initial data are visualised
in the Figure 3.2.
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Figure 3.2: Profile of initial gaussian wave packet. Various initial data differ only
by the amplitude A.
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Values of β and m on the u = 0 slice are on the Figure 3.3.
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Figure 3.3: Values of metric functions beta and m in u = 0 slice.

In terms of r coordinate the figures are shown in 3.4 and 3.5. Note that r
coordinate diverges in x = 1. Therefore we set the r range to [0, 6].

3.5 Bisection search

Critical parameter p∗ is found using a bisection search. This is a very simple
algorithm, halving the error at each step. In out case we choose the the initial
minimal pmin and the maximal pmax, so that we expect the result to be in the
interval I = (pmin, pmax). We then solve the problem for:

pmid =
pmax + pmin

2
. (3.17)

If a black hole was found we set pmin = pmid. We set pmax = pmid otherwise. We
then repeat this cycle until we get ε = pmax − pmin small enough. p∗ lies in this
interval. In our calculations we usually expected ε ≈ 10−10 to be satisfactory.
Question arises, how do we know if a black hole is present. It turns out once the
value of:

2m

r
> 0.65, (3.18)

a horizon will form inevitably in a few timesteps. This way of detecting a black
hole horizon is mentioned in [1] and we present a figure illustrating the 2m/r
behaviour in the Section 5.3.1.
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4. Convergence tests

Important part of our thesis is a convergence test of the numerical methods used.
In this chapter we will describe three methods. First one is a simple convergence
test on data at I +. Second test is made on data in small time u. Finally we can
check if the remaining Einsteins equations, we did not use in out simulation, are
satisfied.

4.1 Test for data at I +

We have previously stated that the numerical methods are globally second order
accurate. To support this claim, we observe our data at x = 1 slice, equivalent
to r =∞ or simply at I +. We run the standard test in which we first calculate
the task for full resolution grid (if calculating ψ lets call the result ψh) and then
halve the number of gridpoints (ψ2h). Then we repeat the same, but assuming
the full grid has the resolution of 2h. We obtain ψ2h and ψ4h. Lets now derive
how to get the order of a method directly from this kind of data. We assume the
numerically calculated ψh has the following relation to the exact result:

ψ = ψh + hne. (4.1)

Where e is an error constant for all h-s. Now for 2h:

ψ = ψ2h + (2h)ne. (4.2)

Subtracting (4.1) from (4.2) gives us:

ψ2h − ψh = ((2h)n − hn)e. (4.3)

For our second data pair:

ψ4h − ψ2h = ((4h)n − (2h)n)e. (4.4)

Dividing the last two equations finally yields:

ψ4h − ψ2h

ψ2h − ψh
=

((4h)n − (2h)n)e

((2h)n − hn)e
= 2n. (4.5)

We can optionally logarithm the equation and get n directly:

n = log2

(ψ4h − ψ2h

ψ2h − ψh

)
. (4.6)

We run the test for weak data, meaning we choose p = 0.01: less than tenth
of p∗. We do this, because we are testing the numerical methods in conditions
when the Einstein equations are well satisfied. We cannot guarantee the correct

17



-0.005

-0.0045

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Ψ

u
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Figure 4.2: Convergence diagrams at I +.

result for the near-critical data. The critical phenomena appear in small scales,
when too close to the criticality, possibly even on the scales smaller than our
grid resolution, thus creating large numerical errors. First, we plot the ψ at I +

in the Figure 4.1. The convergence diagrams for ψ, m, and β are in the Figure
4.2. We have chosen to compute n from (4.6) and therefore we plot the orders of
the numerical method used.
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Figure 4.3: Convergence diagrams before the wave reached the origin.

4.2 Convergence for small time u

We repeat the same convergence test for a wave that has not yet reached the
origin. We slice the grid at u = const. The convergence diagrams are shown
below. The points near x = 0 are inconsistent with the rest of our figures. This
can be easily explained. These points are in the area, where due to the gaussian
fall-off of the inital data (see the Figure 3.16) no matter is present. This means
no error in the calculations was made and both the denominator and the divisor
in (4.5) are too close to zero to produce any meaningful results. Plot is shown in
the Figure 4.3.

4.3 Testing with Einstein equations

As suggested in [1] we use the (u, u) and (u, r) component of the Einstein
equations, which have to be satisfied, if our calculations are correct. We use a
specific linear combination as suggested by [1], that is simple, while testing all
quantities calculated before. Lets call out linear combination Euur:

Euur = 2e2βṁ+ 8π
[
ψ̇2 − e2β

( 1

1− x
− 2m

x

)
(1− x)2ψ̇

(
ψ,x(1− x)

)
− ψ

x

)]
. (4.7)

If the equations are satifsied, Euur = 0. We can follow [1] and use the normaliza-
tion:

Euur =
|Euur|

1 +max(Euur)
. (4.8)
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Figure 4.4: Convergence and values of Euur. We can see another evidence that
the algorithm is second order accurate.

Where max(Euur) is the maximum of the absolute values of Euur through the
particular slice where the test is made. We can therefore say, that if the right-hand
side of the equation equals zero the problem is solved correctly. The convergence
diagram for Euur at u = 2.187 is also done and shown in the Figure 4.4. We should
note that if the methods are second order accurate, the Euur should decrease four
times when the grid is doubled.
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5. Near-critical data

5.1 Behaviour for small p

Although we cannot expect any interesting behaviour with the weak-data evolu-
tion, it was used for convergence testing. It also gives us an insight on how the
wave is drawn in our coordinate system. We are be using p = 0.001 < 0.01p∗. We
let the system evolve and then plot the result in the Figure 5.1. We can notice

Figure 5.1: A wave evolution for the weak-data.

how the wave behaves in our coordinate system. Since we are working with a
retarded time u, the wave is ’instantly’ radiated to infinity, as soon as it reaches
the origin x = 0. It is also deformed in x. This is because the further we are from
x = 0, the larger distance is covered by a constant value ∆x. Data at I + show
a nice gaussian-like shape without any distortion (see Figure 5.3). Practically we
are observing a wave send to a center and then reflected to infinity without any
observable deformations caused by the gravity of the the matter. The geodesics
are not disturbed and are indistinguishable from those in flatspace. See them in
the Figure 5.4. Finally, we can see how the Misner-Sharp function m behaves.
This can be seen on 5.5.
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Figure 5.2: Carter-Penrose diagram for the weak wave. We can see the wave
moves towards the center and then reflects to I + without any visible deforma-
tions caused by the gravity. There is no event horizon present in the Figure. The
simulation ends at the late time when the field disperses.
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Figure 5.3: Wave ψ(x = 1, u) at I + for weak-data.
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Figure 5.5: m in our spacetime for the weak data, showing the energy distribution
in areas bounded by a sphere with radius x. We plot the Figure as a Carter-
Penrose diagram, for we think it is more undestandable.
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5.2 Above-critical evolution

In this section we will be observing the creation of a black hole. Our choice
of coordinates does not allow us to cover the regions beyond the horizon. We
only detect its presence by condition (3.18). At that moment we stop the sim-
ulation. The plot is pictured in the Figure 5.6. The simulation is stopped at

Figure 5.6: A wave evolution for the strong-data.

approximately u ≈ 1.1 where a black hole is formed. The event is not visible
on the Figure 5.6. However if we draw the geodesics we can see the increase in
the density in one point - on the border of a newly formed black hole. 5.6. The
shape of the wave at infinity displayed in the Figure 5.8 shows only the results of
a nonlinearity of Einstein equations. A part of the wave is deflected on its own
field and radiated to infinity.
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Figure 5.7: Carter-Penrose diagram for large p. We can see the event horizon
H + created before the main wave packet is reflected to infinity.
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Figure 5.8: A wave at I + for the strong-data.
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Figure 5.10: m in our spacetime for the strong data, showing the energy distri-
bution in areas bounded by a sphere with radius x.
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5.3 Near-critical evolution

The most interesting behaviour appears when we get close to the critical p∗.
We have found an interval I where the critical p∗ lies, with the length of I
less than 10−10. We have found the p∗ to be between subrcitical p: psub =
0.144930566102266 and supercritical psuper = 0.144930566176772. In the next
sections we are going to discuss the solution for upper (psuper) and lower (psub)
bound of this interval.

5.3.1 Bisection search results

As described in the Chapter 3.5, the bisection search is run. We approach our
critical p∗ and get our subcritical and supercritical p-s during the process. As
mentioned before, we have decided to watch the ratio of 2m/r. Its dependence
on the value of the parameter p = A is in the Figure 5.11. To detect the collapse
threshold we could also use the value of β at I + as we can see in the Figure 5.12.
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Figure 5.11: Evolution of 2m/r for various parameters p.
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We can see the β shows oscilations, until it quickly falls to zero, or rises above
one.
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5.3.2 Below-critical solution

We can learn the most about the critical behaviour of a scalar field from the
slightly subcritical evolution. A wave eventually dispersing and not creating
a horizon means our simulation can continue as long as enough gridpoints are
available. In the Figure 5.13 we can see the evolution of a system with p being
the lower border of our interval I in other words previously mentioned psub. We
can see in the Figure 5.15 the wave pattern echoing after the main wave have
reached I +. This behaviour is better visible at wave profile at I + (see the
Figure 5.15).

Figure 5.13: Evolution for slightly subcritical p.

Geodesics show a concentration close to the origin. When we compare it with
the evolution in the Figure 5.13, we will see they are the most dense after the
last echo is radiated out from the center. This means we are the closest to a
black hole creation during the last echo we see. However as soon as the matter
disperses, the geodesics return to the flatspace-like shape. The evolution of m
can be seen in the Figure 5.17.
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Figure 5.14: Carter-Penrose diagram for slightly subcritical p. Typical echoes are
visible after the main wave is reflected to I +. There is no event horizon present
in this Figure. The simulaton ends at the fixed time.
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Figure 5.15: Wave at I + for slightly subcritical p.
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Figure 5.16: Radially infalling null geodesics for slightly subcritical p.

Figure 5.17: m in our spacetime for slightly subcritical p, showing the energy
distribution in areas bounded by a sphere with radius x.

31



5.3.3 Above-critical solution

After we have introduced how a formation of a black hole looks in our coordinates
(see the Chapter 5.2), we can proceed with the collapse for just slightly super-
critical p. We are setting p = psuper. The simulation is stopped at he moment of
black hole creation. The wave is plotted in the Figure 5.18

Figure 5.18: Evolution for slightly supercritical p.

The geodesics shown in the Figure 5.21 are concentrated much closer to the
origin than in the case of strong data. This is because the black hole horizon is
actually formed in the first point of our grid with non-zero x. The resulting black
hole is therefore much smaller than in the case of the strong data. If we look in
the Figure 5.13, we see that the black hole was created after the second echo. On
the I +, however, we can see even more oscillations have reached I +. This leads
us to a conclusion that black holes can be created after the main wave packet
and eventually more of its echoes have reached the origin, meaning that lowering
the parameter p lets more echos happen in the matter trapped at the center.
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Figure 5.19: Carter-Penrose diagram for slightly supercritical p. The event hori-
zon is created after the echoes are radiated to I +.
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Figure 5.20: A wave at I + for slightly supercritical p
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Figure 5.21: Radially infalling null geodesics for slightly supercritical p.

Figure 5.22: m in our spacetime for slightly supercritical p, showing the energy
distribution in areas bounded by a sphere with radius x. For supercritical p most
of the systems energy goes out through I +.
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5.4 Phase diagram

In this section we will present our version of the phase diagram described in the
Section 1.2. We have constructed our diagram using the retarded time u and the
maximal values on the constant u slice of the functions 2m/r and dψ

du
. Data for

these diagrams were gathered during the late stages of the bisection search, so
that the near-critical values of the parameter p were used in plotting the Figure.
A similar diagram was proposed by [12], but only a scheme is present in the
article. Compare the figures 5.23 from [12] and 5.24.

Figure 5.23: The proposed phase diagram from [12]. Black hole and flatspace
attractors are above and below the critical hyperplain. The plain shown on the
picture is composed of the points with the critical initial data. The critical point
is shown not as a point but rather a circle.
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Figure 5.24: Our phase diagram for near-critical data. We can see the spiral at
the beginning of the curve that eventually splits into more lines. We expect that
the region with very dense lines can be an attractor of a critical state. The under-
critical p-s end in the line with zero value of both 2m/r and β. The above-critical
p-s end with 2m/r = 1 and the derivative of ψ is more than one.
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5.5 Self-similarity

We have mentioned the self-similarity in the section 1.2. For illustration we
plot the value of 2m/r, an important quantity representing a gravitational field
strength in the spherical symmetry. The quantity is dimensionless, so we do not
have to exponentially scale it. The Figure 5.26 nicely illustrates the self-similarity.

Figure 5.25: An illustration of the self-similarity for the slightly below-critical
data in x, u system. The self-similarity is better visible on the Carter-Penrose
(see Figure 5.26) diagram since no deformation caused by rotation affects the
result and natural zooming feature is present.
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Figure 5.26: An illustration of the self-similarity for slightly below-critical data
in a Carter-Penrose diagram. We can see the repeating pattern of the increasing
2m/r. The maximum is closer to the center as the simulation continues. The
property of C-P diagrams that radial null geodesic should be 45-degree lines does
not at all determine a unique coordinate system we have to use. If U and V are
null coordinates in such a diagram, u′ = f(U) and v′ = g(V ) yield also a possible
Carter-Penrose diagram. One can prefer coordinates which are linearly related
to the central time or the time near I +. Here we use the coordinate v′(u =
0) = x(u = 0) at u = 0 as the compactified advanced time and the simulation
time as u′. As our simulation progresses more slowly near the cumulation point
it naturally provides a kind of zooming into the central spacetime region so we
can see the behaviour of the fields near x = 0 in more detail.

38



Conclusion

In this thesis we have studied the critical gravitational collapse of a scalar field in
the spherical symmetry. First we have written and tested the program for weak
amplitudes to understand the geometry, equations and wave behaviour. Then we
have continued with finding the black hole formation threshold and afterwards we
have extensively studied the subcritical and supercritical evolutions, the numer-
ical methods used, the errors made during the calculations and the convergence
in general.

We have analyzed the results and confirmed the findings of [1]. Next, we
have tried to focus on the areas not covered in the article, such as the phase
diagram described briefly in [8]. We have also studied the discrete self-similarity
and presented the pictures showing how it looks like for certain quantities.

In the chapter about numerical methods: 3, we have described in detail what
kind of methods did we use and their order of convergence. This can be helpful for
others trying to simulate a wave in the spherical symmetry, since the numerical
methods were mentioned only briefly in [1].

The chapter about the results themselves contains many figures to help the
reader understand the concept of the coordinates used, the geodesics and the
collapse in general.

Last but not least, the convergence test of our scheme is studied in 4. The
main principle of the test used is derived in the beginning and many figures
demonstrating how the results for our calculated data look like follow. The test
with the remaining Einstein equations unused during the calculation process is
an important part. It is a direct control of the results, possible to be used even
during runtime.

The entire code used for calculations was written in C++, a language that,
when used correctly, has good performance for numerical calculations. Figures
are plotted using mainly Gnuplot: an open source computer program or using
Wolfram Mathematica (for compactified figures).
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a possible Carter-Penrose diagram. One can prefer coordinates
which are linearly related to the central time or the time near I +.
Here we use the coordinate v′(u = 0) = x(u = 0) at u = 0 as
the compactified advanced time and the simulation time as u′. As
our simulation progresses more slowly near the cumulation point
it naturally provides a kind of zooming into the central spacetime
region so we can see the behaviour of the fields near x = 0 in more
detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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