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Introduction

Molecular solids are important materials that find applications in many fields of
science and technology such as solid-state chemistry, pharmaceutical engineering,
Earth sciences, etc. A molecular crystal can have several different crystal-packing
motifs or polymorphs. This has far-reaching consequences because polymorphs
can exhibit completely different physical characteristics.E] Furthermore, some-
times we also have to deal with multicomponent systems such as cocrystals, salts,
hydrates, and solvates. For example, methane clathrate hydrates are crystalline
solids with methane gas molecules trapped inside various polyhedral water cages.
They have attracted attention due to their abundance in the seafloor and else-
where and their potential to serve as an energy resource [2].

One motivation to study molecular solids theoretically is often a lack of exper-
imental methods for studying systems under real-world conditions. For example,
extremely high pressures (up to 1 TPa) can be found in the upper mantles of plan-
ets such as Neptune and Uranus, which are rich in methane, ammonia, and water.
Many observable properties of these planets, such as gravitational moments and
atmospheric composition, are determined by the physical and chemical properties
of matter within this layer. To study these intriguing molecular solids, molecular
simulations at high pressures (up to 300 GPa) and temperatures (up to 7000 K)
have been performed [3].

However, even an accurate description of everyday phenomena like freezing
water is still a daunting task. Water ice exhibits a rich and complex phase
diagram. Besides the hexagonal Th structure, familiar as the ice and snow found
in colder regions of the Earth’s surface, and the closely related cubic ice Ic, there
are 15 other experimentally known structures. Using widely used theoretical
methods, tiny energy differences in the order of 1 kJ/mol (or even below) between
various phases are very difficult to distinguish [4], [} [6].

In this thesis, we study molecular solids formed by molecules which are bound
together by non-covalent interactions. To understand the nature of these rather
weak intermolecular interactions and characterize the properties of molecular
solids theoretically, methods of quantum mechanics must be employed. In fact, a
range of quantum mechanical methods, which differ in compute cost and accuracy,
is available. Since molecular solids are large systems, the most accurate schemes
such as the coupled cluster method cannot be applied directly due to a high com-
putational cost. Another well-known method, MP2, being less demanding and
still very accurate, has been employed within periodic boundary conditions only
recently [7, [§]. As a next example, the RPA scheme offers good accuracy at a
modest computational cost [9]. Recent benchmark tests show that while RPA
underestimates lattice energies by cca 10 — 20 %, adding singles corrections can
improve the results significantly [10], [11].

The widely used DFT approximative methods are computationally cheaper
than MP2 or RPA, which makes them applicable to molecular solids, but they

L A famous example is ritonavir: a drug for treating patients infected with HIV. Several years
after it was introduced to the market, a more stable and less soluble polymorph appeared. This
compromised the oral bioavailability of the drug and caused the removal of the oral capsule
formulation from the market [I].



are less accurate. To obtain qualitatively good results, one needs to employ
dispersion?| corrected DFT schemes, such as “D3” of Grimme et al. [12], “XDM”
of Otero-de-la Roza and Johnson [13],“TS” of Tkatchenko and Scheffler [I4] and
“MBD” of Ambrosetti et al. [15]. These methods have been tested on a number of
molecular solids with good results, but their accuracy is not entirely satisfactory
[16], 13].

In principle, empirical force fields can also be applied to lattice energy calcula-
tions. Specifically, their low computational cost makes them suitable for crystal
structure prediction, where the energies of a large number of possible crystal
structures need to be evaluated. For crystal structure prediction, the force fields
are usually developed by calculating ab-initio interaction energies of molecular
dimers and trimers and subsequent fitting by analytic functions. Another ap-
proach is to use parameters derived from experimental data [17].

The coupled cluster (CC) method, widely used for benchmark calculations
because of its high accuracy, cannot be directly used for molecular solids within
periodic boundary conditions due to a steep computational scaling [18]. However,
coupled cluster calculations can be done using the fragment approach, decom-
posing the lattice energy into monomer, dimer, trimer, etc., contributions, and
summing up the results to obtain the total lattice energy of the solid. The prin-
cipal problem of fragment-based methods is the convergence with respect to the
cluster size. This is difficult to assess because the cost of the cluster calculations
increases quickly with the cluster size. Many schemes have been developed for
defining how to account for the interactions between the fragments and obtaining
a converged result [19]. Recently, a well-converged lattice energy of benzene was
obtained by Yang et al. [20]. Apart from this direct coupled cluster approach,
many hybrid models combining CC with less demanding methods have been pro-
posed. Some researchers used the CC method to correct data obtained at a lower
level of theory [21], 22]. Alternatively, a combination of CC and force field fitting
for the environment can be used to yield results for molecular solids |23 24].

In reality, it is often difficult to obtain accurate lattice energies and published
results often vary by more than 20%. In order to obtain a meaningful result, one
needs enough computer resources and a sufficiently accurate method. In this the-
sis, our goal is to calculate lattice energies of molecular solids using two different
approaches, the periodic boundary conditions (PBC) and the fragment approach,
and compare the results. Performing calculations using the Hartree-Fock (HF)
and MP2 method, we wish to understand the convergence behavior of specific im-
plementations of these quantum mechanical methods. We discuss how the PBC
and fragment approaches differ in terms of time required to set-up and perform
the calculations. Moreover, we assess their effectiveness for our selected set of
four molecular solids, which differ in terms of prevalent intermolecular interac-
tions. Besides the HF and MP2 methods, we also employ the CCSD(T) method
in the fragment approach and check differences between MP2 and CCSD(T) ener-
gies in order to achieve higher accuracy. In practice, both approaches have their
strengths and weaknesses and their use poses several challenges; for instance,
in the PBC approach we confront an unknown basis set convergence behavior,
whereas in the fragment approach we are facing the problem of estimating the

2Dispersion is a weak intermolecular interaction arising from quantum-induced instantaneous
polarization multipoles in molecules.



proper cutoff distance to achieve the desired accuracy. At the end of this the-
sis, we compare our results with experimental data and some earlier published
results.

To make our study as general as possible, we picked four systems with different
physico-chemical characteristics: methane, methanol, ammonia, and carbon diox-
ide. While methane, ammonia, and carbon dioxide (familiar as dry ice) are mostly
held together by dispersion forces, we consider methanol to be mostly bonded by
hydrogen bonds. However, since a molecule of carbon dioxide is known to have a
fairly strong quadrupole moment, small electrostatic contributions to the inter-
action energy such as from Coulomb quadrupole-quadrupole interaction can be
observed for dry ice. On the other hand, this is not the case for methane which
has a zero quadrupole moment. Furthermore, in ammonia we expect weaker hy-
drogen bonding between neighboring molecules than in methanol. We expect that
these differences might affect the suitability of the PBC and fragment schemes
for the calculations of lattice energies.



1. Ab initio methods

In this chapter we present several quantum mechanical methods used for describ-
ing many electron systems. These methods are developed from first principles,
i.e. from the Schrédinger (or Dirac) equation, hence the term “ab initio”. In
modern quantum chemistry, we recognize the following three main families of ab
initio methods:

1. Hartree-Fock (HF) model and post-HF methods including many-body per-
turbation theory, configuraton interaction (CI), coupled-cluster (CC) the-
ory, etc. The main advantage of this family of methods is a systematically
improvable accuracy limited essentially only by computational resources.

2. Density functional theory (DFT) comprising local-density approximation
(LDA), generalized gradient approximation (GGA), hybrid functionals, etc.
Whereas computational cost of these methods is similar to the HF method,
the approximate description of electron correlation makes them often more
accurate than HF, which leads to a wider applicability.

3. Quantum Monte Carlo methods including variational Monte Carlo (VMC),
diffusion Monte Carlo (DMC), etc. In essence, these methods sample the
electronic wave function with random positions of the electrons. This allows
an accurate description of large systems but at extremely high computa-
tional cost.

In this thesis we use HF and post-HF methods which are discussed in detail in
the rest of this chapter.

1.1 The Hartree-Fock model

1.1.1 Fundamental relationships

To characterize many-electron systems using the quantum theory, we are inter-
ested in finding wave functions that describe a particular state of the studied
system. In most cases we seek to find the stationary states of the Hamiltonian
operator H which involves information about interactions and the geometry of the
system. We face the task of solving the time-independent Schrodinger equation
of the form

H|U) = E|T). (1.1)

This is an eigenvalue equation with E representing the energy of the system.
For many-electron systems with tens of electrons the equation cannot be
solved exactly. In fact, |¥) is a wave function for both nuclei and electrons. In
many cases, the electrons move faster then nuclei by several orders. Therefore
we assume that they can be treated separately. In other words, we consider that
atomic nuclei are infinitely heavier than electrons and thus their kinetic energy
and mutual interaction can be omitted from the Hamiltonian. Eventually we are
left with the Hamiltonian describing the motion of N electrons in the field of M



point charges of the nuclei:

. 1 N M
=iy vy Yy

=1 i=1 A=1

S

Zzi (1.2)

’r‘. .
i=1 j>i Y

i

1A

Here, the first term is the operator of the kinetic energy of electrons, the second
term is the Coulomb interaction between nuclei and electrons and the third term
represents the repulsion of electrons. The electronic Hamiltonian appears in the
equation Hy |We) = FEo |We) with the electronic wave function not depending
explicitly on the coordinates of nuclei 74. The total energy of the system is then:

Etot - Eel + ECOI“67 (13>

where E.,. is the kinetic and potential energy of the nuclei. In the next para-
graphs we only consider the electronic part of the total energy.

Writing the wave function in the form |W(r,75,...)) is not feasible. To find
approximate solutions to the Schrédinger equation, we introduce single-electron
wave functions (orbitals) in order to approximate |W). Let us define a spin or-
bital x(Z) as a wave function of a single electron characterizing both its spatial
distribution and its spin, i.e., ¥ = (73, «). Having selected a set of spin orbitals
and a number of electrons, x;(Z;) denotes the i-th spin orbital occupied by an
electron labeled as j. In the next paragraphs we will often use a shorter notation
of xi(4)-

As a central postulate for fermions we have the antisymmetry principle which
states that a many-electron wave function must be antisymmetric with respect to
the interchange of the coordinate Z (involving space and spin) of any two electrons
[25]. In the HF model, which forms the basis for many other quantum-chemical
approximation methods, the antisymmetry is put into practice by approximating
the ground state wave function of a N-electron system in the form of a single
Slater determinant composed of N spin orbitals:

[
e Ui 1 N R
X1(fN) Xz(fN) XN(fN)

Using the permutation operator P and the antisymmetrizing operator A de-
fined as A = N ZN '(=1)?P, we may write:

[Wsp) = % :_0(—1)’”15 Ix1(Z1)x2(Z2)...x v (ZN)) (1.5)
1 T » > A
VN (f—;ﬂj+%;ajk—...) 6y = VNIA|p),  (1.6)

where 1527» and pijk generate permutations of two and three electron coordi-
nates, etc., and we introduced |¢) as the product of diagonal elements of the
Slater determinant.



Let us assume that the set of NV spin orbitals is orthonormal. The variational
principle states that the best wave function is the one that minimizes the energy

Esp = (Ugp|Ha|Vgp) . (1.7)

Since A = A and [/1, f]} =0 and AA = Al we may substitute from Eq.

and simplify this as follows:
Esp = NU(Ag|HalAg) = Y (1) (¢|HalPo). (1.8)
p

Let us now derive an expression for the energy of a single Slater determinant.
First, recalling the equation we introduce the following notation:

N N N
=D hit D> o (1.9)
i=1 i=1 j>i

where h; is the operator of both the kinetic energy of electrons and the Coulomb
interaction between nuclei and electrons and g;; represents the repulsion of elec-

trons. Then for the one-particle operator h; we can write:

(@il d) = (xa(1)xa(2)-xn (V)b (1)x2(2) . X (V) (1.10)
= QaMha () (2(2)x2(2)) - X)) [xi (@) - Oev (V) Ixw (V) (1.11)
= (xi()|hilx:(d)) = i, i =1,2,3...N. (1.12)

It follows from the above equation and the orthonormality of the spin orbitals
that all matrix elements of A, involving a permutation operator are zero. For the
two-electron operator g;;, only the identity and P” operators can give non-zero
contributions. A three-electron (and four-, five-, etc.) permutation will always
be zero. The term arising from the identity operator can be simplified:

(B19i316) = (xa(D)xa (1)) - (xa(d)x; (519 | i(0x5(7)) - Oev (N) e (V) (1.13)
= G(@Ox; (D195 1x: (x5 (9)) = (1.14)

Physically, J;; is a matrix element representing the coulomb interaction between
two electrons. Finally we have:

(ol

Gij

Pyo) = (6l ()l xl)xs (V) (115)
= (GO0 = K (1.16)

The K;; matrix element is called the exchange integral, and has no classical
analogy. Using these results we can express the energy of a Slater determinant

as follows:
ESD - Z h + ZZ g ZJ (1'17>

i=1 7>1

!The idempotency of A is clear since a repeated action of A creates N! terms out of a single
term and there are only N! unique permutations in a group of N elements.



1.1.2 The HF and Roothaan equations

By minimizing the functional Egp[y;] with respect to the spin orbitals we can
derive the Hartree-Fock equations which help us determine the optimal choice of
the spin orbitals (and, consequently, optimal energy value).
Let us define the Coulomb operator J and the exchange operator K in this
way:
JiIxi(2)) = (xa(Dlgrzlxi(1)) [x;(2) (1.18)
Kilx;(2)) = (xi(1)]ga2]x; (1)) [xi(2)) - (1.19)

Then, the Fock operator has the form
Fi=hi+) (J; - K)). (1.20)

Applying the method of Lagrange multipliers with the constraint (x;|x;) = d;;
we can write the variational problem as follows:

0Esp — 522 €ij XZ|XJ m)] 0, (1.21)

=1 j=1

where ¢;; is a set of Lagrange multipliers.
Making use of the Fock operator we may rewrite the equation as follows:

N N
> (@l Fib) + Oalfloxs) ) = D e (Gxal) + (aldxs)) = 0
i=1 ]
(1.22)
N N N . N
D OxlEiba) = e Oxabg) + > Ol Eiba)™ =D ey (0x;1x)" =0,
=1 i i=1 ij
(1.23)

where we used the fact that (x|F|ox)* = (x| F|x) and (x|6x)* = (6x|x). The
first two terms in eq. must cancel, and the last two terms must cancel.
Taking the complex Conjugate of the last two terms and subtracting them from
the first two gives ZZ (€5 — €;) (Oxilx;) = 0. This means that the Lagrange
multipliers are elements of a Hermltlan matrix. The final set of Hartree—Fock
equations may be written as follows:

N

FiXi = Z €ijXs- (1.24)

J
The equations may be simplified by choosing a unitary transformation that makes
the matrix of Lagrange multipliers diagonal. Then we simply have:

Fixi =€, i=1,2,....,N. (1.25)

The unique set of spin orbitals that constitute a solution to this eigenvalue equa-
tion is called the canonical set [25].



For practical use, the spin orbitals are transformed into spatial orbitals by
integrating out spin. Here we only consider closed-shell calculations, in which we
assume that N electrons are paired in such a way that N/2 spatial orbitals are
doubly occupie: |Wsp) = |¢11p_1...wN/2zZN/2>. The bar indicates that the orbital
is occupied with an electron with a spin down. Moreover, in the HF method the
exchange interaction K;; takes place only between electrons of parallel spin. This
leads to the Closed—shell HF energy:

N/2 N/2 N/2 N/2
SD—ZZh +ZJH+ZZ (1.26)
=1 5>t

Now, the summation runs over orbitals instead of electrons.

The HF equations are integro-differential equations which are very hard to
solve. In order to get results we use a basis set expansion to express the unknown
spatial orbitals in terms of some pre-defined functions. Let us introduce a set of
K known functions ¢, (7). Then we write

= Cutpy, i=12,.. K (1.27)
/":

In the limit of a complete basis set (infinite number of basis functions), the re-
sults reach the exact Hartree—Fock energy, which is denoted as the Hartree—Fock
limit. The issue of convergence will be discussed in a succeeding chapter. Sub-

stituting Eq. [I.27] into [I.25] with spatial orbitals we get:

Z Cuitpu (T) = € Z Cuitpu (T), S K (1.28)

Multiplying by ¢y, from the left leads to:

K
Zcm% F(Peu(F) =& Y cuigh(Feu(F), i=1,2,. K. (1.29)
v=1 v=1

Integrating both sides gives the Fock matrix F' and the overlap matrix S. We
thus obtain the Roothaan equations:

K K
> Fucsi=6Y Suc, i=12 . K (1.30)
v=1 v=1

Moreover, if we introduce the diagonal matrix € with ¢; on the diagonal and
the K x K matrix C with the i-th column of C' describing the spatial orbital
Y;, we can, finally, write the closed-shell HF equations in compact matrix form,
where all matrices are square and have as many rows and columns as there are
basis functions:

FC = SCe. (1.31)

If S # I, which is equivalent to the non-orthogonality of our basis functions, then
this is a generalized (or pseudo) eigenvalue problem and the usual approach is
to orthogonalize the basis functions, thereby reducing it to a regular eigenvalue
problem.

2This is commonly referred to as the restricted HF (RHF) method.

9



1.1.3 The Self-Consistent Field (SCF) Procedure

The Roothaan equations must be solved iteratively since the Fock matrix depends
on its own solutions. A very simplified HF-SCF procedure contains the following
steps:

e Specify the positions and charges of nuclei.
e Choose basis functions and calculate all required integrals.
e Diagonalize the overlap matrix.

e Obtain a guess for the orbital expansion coefficients forming the density
matrix.

e Calculate two-electron integrals and diagonalize the Fock matrix.

e Create a new density matrix and compare with the old density matrix. If
it does not agree within a specified convergence criterion, continue the SCF
cycle by returning to the previous step.

In practice, the SCF procedure with the RHF type wave functions as described
above does not always provide meaningful results. For example, the constraint
of doubly occupied spinorbitals in the RHF theory is inconsistent with breaking
bonds to produce radicals, therefore dissociation problems cannot be handled
within the RHF (closed-shell) theory.

One of the bottlenecks of a HF calculation is evaluating the two-electron
integrals. With K being the number of basis functions, there are, in fact, about
K* two-electron integrals to calculate. However, only relatively few two-electron
integrals differ from zero by a non-negligible amount. The trick is, thus, to
compute only those that are estimated to be larger than a given cutoff value
(which needs to be chosen according to desired accuracy).

Another bottleneck is the repeated diagonalization of the Fock matrix. How-
ever, since we are usually interested mainly in the occupied orbitals, there is no
need to calculate hundreds or thousands of virtual orbitals. Therefore, many
specific iterative matrix diagonalization procedures, which work only with the
subspace of interest and produce the lowest eigenvalues and vectors in the end,
have been developed for this purpose [26].

Unfortunately, the SCF procedure described above is not guaranteed to con-
verge. Whether it does or not might depend on the initial guess and if it con-
verges, the quality of the initial guess obviously determines how many iterations
are needed. Several iteration techniques designed for accelerating the convergence
of SCF methods have been developed; let us mention only the most widely used
DIIS (direct inversion of the iterative subspace) method developed by Pulay in
1980.

1.1.4 Periodic systems

For periodic systems, a specific theoretical description is needed due to their
unique properties. Molecular solids contain an infinite number of electrons and
nuclei and ultimately we must find an elegant way to characterize such systems

10



and find their properties after a finite amount of computer time. A crystal can
be described as a specific atomic (or molecular) arrangement repeated all over
space. This repetition is characterized by lattice vectors, which can be formed as
a linear combination of the so-called unit-cell vectors:

3
R= &, with¢; € Z, (1.32)
=1

Similarly we define three vectors called reciprocal lattice vectors 51 that satisfy:

Then we can construct the reciprocal lattice analogously to the direct lattice
in the Eq. as follows:

3
=1

The d; vectors are not unique and we usually use a specific primitive cell called
the Wigner-Seitz cell with its equivalent in reciprocal space known as the first
Brillouin zone. If we denote the volume of the unit cell as Vy = @) (@, x d@3) then
the volume of the first Brillouin zone is:

(2m)*

V g
BZ Vb

(1.35)

To describe quantum-mechanically infinite periodic lattices, we are faced with
the problem of normalization of a wave function, which could possibly extend over
the whole space. Therefore we introduce a normalization volume €2, which is finite
for all mathematical purposes, but large enough to appear infinite for all physical
considerations, i.e., a translation of the entire system by a lattice vector does not
change the expectation values of quantum-mechanical observables.

Let us choose Q = I3V, with [ > 1. All points that are outside ) are mapped
onto a point inside €2 through periodic boundary conditions. In particular, for
any single-particle spatial orbital, we require:

(T + ld;) = (7). (1.36)

Next, consider a single plane wave with a wave-vector k as a general case for a
wave function that is not lattice periodic. We have:

Y(7) = &5 = FeNE = (7 41T, (1.37)
which means that [ka; = 27y;, where ; is an integer. The vector ki is a reciprocal

vector and can be expressed in terms of reciprocal basis vectors as: k= 23:1 /@zbz,
where r; € Rg. Using these results together with the equation [I.33]leads to:

3 3
27’(’)/]‘ = lz Higi . 6j = ZZKiQWéij = 271'[/‘6]' = Kj = f)%, (138)

11



which means that imposing periodic boundary conditions places restrictions on
the discrete values that the components of k can assume. As a consequence, the
reciprocal lattice spanned by the vectors {é} is further subdivided into a k-mesh
with /2 points in the first Brillouin zone (See Fig. [1.1]).

The periodicity of a crystal can be formalized in terms of translational symme-
try. Quantum-mechanically, we require that all expectation values are invariant
with respect to a translation by any R. Let us now introduce a translation oper-
ator by defining its action on a single-particle spatial orbital as:

Trip(7) = O(F+ R). (1.39)

From the translational invariance it can be shown | that the eigenvalues of Tr
are:

Trip(7) = MRye(7), (1.41)

where we introduced the quantum number k. Importantly, we have all eigenvalues
and eigenfunctions by considering only k from the first BZ. [ The eigenfunctions
of T are given by the Bloch’s theorem:
Any single-particle wave function in a periodic system can be written as the
product of a plane wave and a lattice-periodic part ¢p(7) = ¢p (7 + R).
Mathematically:

1 ik (7
Vp(F) = N Or (7). (1.42)

It is straightforward to show that for the single particle Hamiltonian in a periodic
system we have [TR> H] = 0. Consequently, we can find the simultaneous eigen-
functions characterized by periodicity and energy. Besides the quantum number
lg, we add the energy band index 5 and we have:

H g ) = e 10, - (1.43)

If the lattice exhibits symmetries in addition to translation then the band
structure ej(E) will reflect these. In other words, the more symmetric lattice we
have, the smaller portion of the Brillouin zone contains all information about the
properties of the system. E|

For practical calculations we introduce plane waves as basis functions for the
expansion of our unknown Bloch waves. The expansion is of the form:

L L ko)
Vg (1) = Z Ce;(k)xg.a(r) = Z Céjﬁe *+Or, (1.44)
@ G

where the sums involve all G such that %(E + C_j)2 < Eecutoft, t-€. only plane waves

up to some defined energy are included in the basis. Substituting this expression

3To determine the eigenvalues of this operator, we consider the probability of finding a single
particle at point 7 which must satisfy:

(7| = [y(7+ R)*. (1.40)

—

Thus we can write (7 + R) = £(R)y(7) with [(R)|?> = 1 and also (R + R') = £(R)&(R').
40bserve that e!F TGV = ghRiGR — ikl gince ¢GR = 1,
5This part of the Brillouin zone is called the irreducible wedge.
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into the HF equations (Eq. [1.25)) and multiplying from the left by X7 @(F) leads

to an equation:

Z C@j(lg) / die—ik+G)7 n (fJ)ei(k-i-G)F =€, Z C@j(lz) / e (k+GF Gi(k+G)T
G ¢ G ¢
(1.45)
Integrating over €2, we can define the Fock matrix F' on the left hand side
whereas on the right hand side we can compute the integral for every given G’
and G and eventually we can write:

> Cai(k)Fg (k) =€, Y Cai(k)d(G - G). (1.46)
¢ G
In matrix notation we have the Roothaan equations for a periodic system with

orthogonal basis functions quite analogously to the Eq. [1.31}
F(k)C(k) = C(k)e(k). (1.47)

These matrices have a dimension equal to the number of basis functions and
depend on the vector k.

Figure 1.1: An example of the irreducible Brillouin zone (IBZ).

The evaluation of many key quantities, e.g. charge density, density-of-states,
and total energy requires integration over all vectors k in the first BZ. To obtain
an expression for the HF energy, it is convenient to define the density matrix as
follows:

Dyu(k) =23 Coy(k)Cy(R), (1.48)

where N is the number of electrons per unit cell. Then it can be shown that the
Hartree-Fock energy (without the core contribution) is given by:

Epp = %NZ é /B ) dkD,,, (k) F ., (k) = @VTO)?’ /B ) dE%Tr[D(E)F(E)]. (1.49)

Exploiting the fact that the wave functions at k-points that are close together
will be almost identical, one may approximate the integration over k by a weighted
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sum over a discrete set of points. Several schemes have been proposed for this k-
point sampling, i.e., for selecting special points in the first BZ and for determining
their relative weights in a subsequent summation.

Let us consider the Monkhorst-Pack method in which k-points in the Brillouin
zone are equally spaced. Consider, for example, a two-dimensional lattice with
16 k-points as in Fig. [I.I} There are only 3 inequivalent k-points which form the
irreducible Brillouin zone. Weighing each point according to the symmetry, we

have: . )
F(ky) + ZF(Eg) + 5F(;?;;,) (1.50)

1.2 Post-Hartree-Fock methods

The HF method is a simple mean field approach, where electron correlations
are included only approximately for electrons with the same spin, whereas for
electrons with opposite spin they are completely neglected. This also means
that dispersion interactions are not described at all within the HF approach.
To describe the important dispersion interactions, so-called post-Hartree-Fock
methods based on perturbation theory are usually used.

By replacing spin orbitals that are occupied in the HF determinant by spin
orbitals that are unoccupied, a whole series of determinants may be generated.
These can be denoted according to how many occupied HF spin orbitals have
been replaced by unoccupied spin orbitals,i.e., Slater determinants that are singly,
doubly, triply, quadruply, etc., excited relative to the HF determinant, up to a
maximum of N excited electrons. These determinants are often referred to as
Singles (S), Doubles (D), Triples (T), Quadruples (Q), etc. The total number of
determinants that can be generated depends on the size of the basis set: the larger
the basis, the more virtual spin orbitals, and the more determinants with a given
number of excited electrons can be constructed. As shown in the Fig. [1.2] the
electron correlation methods are thus two-dimensional: the larger the one-electron
expansion (basis set size) and the larger the many-electron expansion (number of
excitations), the better the results. In the limit of exciting all possible electrons
to all possible virtual orbitals we speak of a full configuration interaction (FCI)
method. The underlying concepts of the post-HF methods are briefly discussed
at the end of the next subchapter.

1.2.1 Many-body perturbation theory
Rayleigh—Schrodinger perturbation theory

In this section we provide the standard derivation of the Rayleigh—Schrodinger
perturbation theory. Suppose we have a Hamiltonian operator that consists of
two parts, a reference Hy and a perturbation (V) where the V operator is “small”
in some sense compared with HO

H |®;) = (ﬁo + )\V) |P;) = E; |®;), (1.51)

with A being a parameter which will later be set to one. We will only consider
cases where the perturbation is time-independent, and the reference wave function
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Figure 1.2: Convergence of the electron correlation methods

is non-degenerate. To keep the notation simple, we will furthermore only consider
the lowest energy state. Let us assume that the Schrodinger equation for the
reference Hamiltonian operator is solved:

Hy|0Y) = B)|09). (1.52)
We expand the exact eigenvalues and eigenfunctions in a Taylor series in A:

E; = E'+ AEY + X2E® 4 . (1.53)
@) = [0) + AWy + 22 @) (1.54)
Let us suppose that (¥9|®;) = 1 and multiply the equation by (UY|. This

has the consequence that all correction terms are orthogonal to the reference wave

function:
(O™ for n =1,2,3, ... (1.55)

Substituting Eqs. and into Eq. and equating coefficients of A" for
both sides we obtain a set of equations:

Ho |W0) = ED |09 (1.56)
Ho |0y + v |00y = B9 |y + B |00 (1.57)
Ho |W?) + v [0y = B2 [0y + BV wiY) + B |00 (1.58)

Multiplying each of these equations by (¥9| and using the orthogonality relation
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established earlier, we obtain the following expressions for the n-th order energies:

E} = (V9| Ho|WY) (1.59)
B = (00 v |w) (1.60)
E® = (wO[vwl)y (1.61)

Let us now solve the set of equations for |\I/§n)) and consequently determine
the (n 4 1)-th order correction of energy. Rearranging Eq. we have:

(EP — Ho) [0y = (V — B [99) . (1.62)

Using the orthonormality relation (U9|0Y) = §,; and multiplying this equation
by (¥] from the left, we can plug this into the expression for the second order
correction of energy (Eq. [1.61)) and obtain:

- N \IIOV\I’O
B = e = 3 eiivje) (el = 3 LT
n nF£i

The higher order terms can be obtained analogously.

Mpgller-Plesset perturbation theory

If we take the perturbed Hamiltonian as a sum over Fock operators, we enter the
Moller—Plesset (MP) perturbation theory. The sum of Fock operators counts the
average electron—electron repulsion twice, and the perturbation becomes:

ZZQW ZZ 3ij) (1.64)

i J>1

The zeroth-order wave function is the HF determinant, and the zeroth-order
energy is just a sum of orbital energies:

N
(Wo|Ho|Wo) = EQ =) e (1.65)

)

The Hartree-Fock energy is the sum of zeroth and first-order energies and the
first correction occurs in the second order of the perturbation theory. Inspecting
the general result for the second-order energy obtained in the last section (Eq.
1.63)), we see that we first need to determine the states |¥Y). Singly excited Slater
determinants do not contribute because of the Brillouin theorem E| and moreover,
triply excited states do not mix with |Wg) because of the two-particle nature of the
perturbation. Thus we only consider doubly excited Slater determinants of the
form |\I/?jb), with two electrons excited from occupied orbitals ¢ and j to virtual

%The theorem states that (1ho| H|¥L) = 0 which is simply an off-diagonal element of the Fock
matrix (xo|F|xr). But the SCF procedure’s goal was to diagonalize the Fock matrix and hence
for an optimized wavefunction this quantity must be zero.
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orbitals a and b. For this Slater determinant we have the eigenvalue equation of
the form: X
Ho |U%) = (E) — (6 + €5 — €0 — &))) [ U57) . (1.66)

Therefore we have for the second-order correction:

g = 3 WlZe VP 5~ ) = G

)
€ +e€ —€—€ € +e€ —€—€
§>i,b>a i€ @ b j>ib>a T a b
with the sums running over all occupied and virtual orbitals without double-

counting and we make use of this notation for two-electron integrals:

(ijlab) = / x:<1>x;<2>m—imxaa)xb@)dma (1.68)

The third-order correction is also calculated using the doubly excited determi-
nants. Triply excited Slater determinants only arise in the fourth-order correction
(MP4 model). In general, the more poorly the HF wave function describes the
system, the larger are the correction terms, and the more terms must be included
to achieve a given level of accuracy. If the reference state is a poor description of
the system, the convergence may be so slow that perturbation methods cannot be
used. Moreover, in the MP theory there is no guarantee that the energy will be
lower than the exact energy. This is in contrast to some other methods, such as
the configuration interaction (CI) methodﬂ, where the the energy is determined
variationally, and is thus an upper bound to the exact energy. However, the
absence of a variational bound can allow for error cancellations. Furthermore,
the MP theory, unlike CI, is a size-extensive method, which is a desirable feature
especially when studying large systems.

1.2.2 Coupled clusters

Whereas perturbation methods add all types of corrections (S, D, T, etc.) to
the reference wave function to a given order (2, 3, 4, etc.), the idea in Coupled
Cluster (CC) methods is to include all corrections of a given type to infinite order.
This method also has the features of size-extensivity and Size-consistencyﬁ Let
us start by defining an excitation operator T as follows:

T=T+Ty+ ..+ T, (1.69)

where the 7} operator acting on the reference (HF Slater) determinant |¥,) gen-
erates all i-th excited Slater determinants, for example:

Nocc Nv'irt

Tiwo) =30 > 619, (1.70)

"In CI, we approximate the exact wave function as a linear combination of Slater determi-
nants Weor = coWsp + Y gcsVs + > pcp¥Yp + .. where subscripts S, D, etc., indicate deter-
minants that are singly, doubly, etc., excited relative to the HF configuration. The expansion
coefficients are determined by requiring that the energy is a minimum.

8The size-extensivity refers to the linear scaling of a method with the number of electrons.
The size consistency is a property that guarantees the consistency of the energy behaviour when
interaction between the involved molecular system is nullified (for example, by distance). Size
consistency in the CC theory, unlike other theories, does not depend on the size consistency of
the reference wave function. For example, it can be shown that the restricted HF model is not
always size-consistent.
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where the expansion coefficients ¢} are called the amplitudes. The coupled cluster
wave function is defined as follows:

Woe) = el | W), (1.71)

with el =+ 7T + %T 2 + ... The truncation of the excitation operator T defines
the coupled cluster method: at the second simplest levelﬂ we obtain the coupled-
cluster singles-and-doubles (CCSD) model, omitting from the cluster operator
all terms that involve higher than single and double excitations: T =T, +Tb.
Inserting the expression in [1.71] into the Schrodinger equation, we obtain:

HeT [U) = EeT |0y) (1.72)
e THET |W,) = E|Tp) . (1.73)

Equations for the amplitudes can be obtained from Eq. by multiplying
by the reference (V| and excited state determinants:

(Wole THeT|Wo) = E, (1.74)
(Wrle T He )W) = 0, (1.75)
(sl THeT W) =0, (1.76)

where the left hand side is the expectation value of the so-called similarity trans-
formed Hamiltonian e~ He® which is non-Hermitian.

Using the Baker-Campbell-Hausdorff formula we can rewrite the equation|1.74
as follows:

. PN 1 PPN
E = (| H[Vo) + (Vol|[H, T][¥0o) + ol (Wol[[H, T, T[Wo) + ... (1.77)

This simplifies considerably, since (To| T = 0, (Uo|HT1|To) = 0 due to the
Brillouin theorem and (Wo|HT;|Vy) = 0 for ¢ > 2 due to the nature of the
electronic Hamiltonian. Then we get an expression:

E = Eur + (U,|[H, T5]| ) + % (Uo|[[H, T1], T1]| o) . (1.78)

Alternatively, we can find the energy by projecting the CC Schrodinger equa-
tion [L72 onto the reference wave function:

(Uo| HeT| W) = E<\y0‘e%0>, (1.79)
(Wo| el | W) = E<\I/0‘(f+T1 + ...)qfo>, (1.80)
(ol HeT |Wy) = F, (1.81)

which is in accordance with the equation since (Wo| e~ = (W,|. Then we can
simplify this expression using the fact that the electronic Hamiltonian contains

9The first being the CCD with 7" = T3 because CCS does not contribute due to the Brilloiun
theorem.
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only one- and two-electron operators and the Brillouin theorem:

P . 1.
Noce Nyirt

E= By +Y Y (15 + 15— £517) (W H ), (1.83)
i<j r<s
Nocc Nvirt

E=Enp+) ) (t5 +tit; — t3))((ijlrs) — (ij|sr)). (1.84)

1<j r<s

Including 73 in the 7" operator leads to the CCSDT method which, as can
be deduced from the table is too demanding computationally for all but the
smallest systems. Alternatively, the triples contribution may be evaluated by
perturbation theory and added to the CCSD results. This leads to the method
with the acronym CCSD(T). In this method, the triples contribution is calculated
from the formula given by MP4, but using the CCSD amplitudes instead of the
perturbation coefficients for the wave function corrections and adding a term aris-
ing from fifth-order perturbation theory, describing the coupling between singles
and triples. This is the standard scheme for getting very accurate energies.

Let us finish this chapter by noting that the steep formal scaling of the dis-
cussed methods as summarized in Tab arises from the use of spatially de-
localized canonical one-electron wave functions. These are convenient because
they are mutually orthogonal and diagonalize the Fock matrix. However, their
use does not allow to exploit the fact that electronic correlation (in nonmetallic
systems) is an intrinsically short-ranged phenomenon. The use of spatially local-
ized orbitals allows for the construction of MP2 and CC algorithms that scale
more favorably with system size, even down to a linear scaling, at the price of
a significant increase in complexity with respect to their canonical counterparts
[277, 28].

Table 1.1: Formal scaling behavior of the discussed quantum chemical methods
(N denotes the number of basis functions) [26].

Method Scaling
HF N*
MP2 N°®

MP3, CCSD N
MP4, CCSD(T) | N7
MP5, CCSDT | N#®
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2. Computational techniques

In this chapter, we describe the fragment and the PBC schemes along with the
settings used for the calculations. We also compare the cluster and PBC imple-
mentations for the calculation of dimer interaction energies.

2.1 Fragment approach

This approach is based on the idea of decomposing a calculation on a large (theo-
retically infinite) system into many smaller subsystem calculations. After picking
a central molecule labeled as “1”, the binding (or lattice) energy of a crystal is
then expressed in terms of 2-body, 3-body, 4-body, etc., contributions:

EbZ%ZEM+%ZEw+.... (2.1)
1#4 1£j#k

The sums involve dimers, trimers, tetramers, etc., within a specified distance
from the central molecule based on the speed of convergence and the requested
precision of a converged resulting value. It readily follows that this approach can
reduce computational costs substantially, if the convergence is fast with respect
to the number of molecules in the fragment and with the intermolecular distance.
For practical calculations, we used the Molpro program which uses gaussian-
type basis sets to represent orbitals. Specifically, we used the Dunning correlation
consistent basis sets which are designed for converging post-Hartree-Fock calcula-
tions such as MP2 and CCSD(T) systematically to the complete basis set (CBS)
limit [29]. Most calculations have been performed using the aug-cc-pVTZ EI (for
MP2 and CCSD(T)) basis set although aug-cc-pVQZ was also used for some HF
calculations, and aug-cc-pVDZ was used for very demanding CCSD(T) calcula-
tions of larger clusters. The “aug” basis sets contain diffuse functions which are

important for correlated calculations. We demonstrate the superiority of aug-cc-
pVXZ (AVXZ) basis sets over cc-pVXZ (VXZ) basis sets for MP2 calculations in
Fig. 2.1]

The gaussian-type basis functions efficiently represent molecular orbitals in
practice. However, the calculation of dimer interaction energies presents several
obstacles. First, the usage of non-orthogonal basis sets leads to the basis set su-
perposition error (BSSE). The BSSE is caused by the fact that when the energies
of monomers are evaluated, a smaller basis set is used compared to the basis set
used in the dimer energy calculation. The use of a smaller basis set increases
the energy of the monomers and leads to overestimated binding. To alleviate
this issue, the counterpoise correction can be used, in which the energies of the
monomers are evaluated in the complete basis set of the dimer. This means that
all calculations are performed using the same basis set and, for monomers, with
the help of “ghost orbitals”, i.e., basis set functions with zero charge.

The convergence of counterpoise corrected Hartree-Fock energies is shown in
Fig. 2.2 One can see that even with the CP correction, there is still a finite devi-
ation from the CBS limit for each employed basis set even though the deviations

IThe cc-pVXZ label stands for the Dunning correlation-consistent, polarized, valence-only,
X-zeta basis [29].

20



decrease with the basis set size. This is called the basis set incompleteness error
(BSIE), as it corresponds to the use of a finite basis set. The BSIE is especially
prominent for correlated calculations such as MP2 and CCSD(T). This is caused
by the necessity to model the two-electron cusp, a singularity in the derivative of
the electronic wave function, which causes the correlation energy to converge as
L3 with the largest angular momentum L contained in the basis set.

The convergence of MP2 and CCSD(T) with respect to the basis size can be
accelerated by using the explicitly correlated F12 method [30, [31]. This method
explicitly introduces a dependence on the interelectron distance into the wave
function and allows us to minimize the convergence problems associated with
the aforementioned “interelectron cusp” [32]. The comparison of MP2 and MP2-
F12 convergence is depicted in Fig. for a dimer of methanol. In this figure,
one can notice the apparently slower convergence of MP2 compared to MP2-
F12. Therefore, when one uses the canonical MP2 scheme, i.e., without F12, an
extrapolation of MP2 energies to the complete basis set (CBS) limit is needed
to obtain an accurate MP2 interaction energy. Since the total interaction energy
is constructed as a sum of the Hartree—Fock and correlation interaction energies,
the latter of which converges more slowly with the basis set size, the extrapolation
to the CBS limit can be done separately for both components. We employ the
frequently used scheme of Helgaker et al. [33]:

Ex" = Eggs + Ae™ "%, (2.2)
EX™ = Egpg + CX 77, (2.3)

with X denoting the cardinal number of a given basis set (D=2, T=3, etc.). The
Fig. shows that for MP2-F12, the deviation from the CBS limit obtained
by an extrapolation is only 0.04 kJ/mol (less than 0.2 %) using the AVTZ basis
set and 0.2 kJ/mol (cca 0.8 %) using the AVDZ basis set. Therefore, in this
thesis, we employ MP2-F12 and expect accurate results that are very close to
the usual MP2 CBS extrapolations. Moreover, concerning molecular solids, we
expect results with uncertainties emanating from the BSIE which are lower than
1 %.

Similarly, the superiority of CCSD(T)-F12 convergence over plain CCSD(T)
is manifested in Fig. for a dimer of methane. However, there is no direct F12
correction to the perturbative triples correction of CCSD(T)-F12 implemented
in Molpro, and therefore the basis set incompleteness error of the triples is not
improved by the F12 method. A simple improvement of the triples energy is
obtained by scaling the triples energy contribution [29]. This is also showed in
the aforementioned Figure [2.3] Taking the CBS limit as the result of CCSD(T)-
F12 with triples scaling at the AV5Z level, the deviation of AVTZ and AVDZ
results from the CBS limit is less than 0.02 kJ/mol (cca 0.7 %). This provides a
basis for our error estimates concerning calculations on molecular solids.

For both HF and MP2 calculations is Molpro, density fitting was used to
speed up calculations.ﬂ

2Using the two-electron integral notation in Eq. we can define electron densities p;;(7)

so that
(ablrs) = [ purl) 7707 (2.4)
|1 — 7%

The densities may be approximated using an auxiliary basis set as: por = Zg'f T dE ep(7),
where d are the fitting coefficients.
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Figure 2.1: Convergence behavior of the total MP2 corrected interaction energy
of the methanol dimer for standard Dunning correlation consistent (cc) basis sets,
basis sets with added diffuse functions (aug) and with the F12 corrections. See
text for the explanation of the CBS limit calculation.
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Figure 2.2: Convergence behavior of the Hartree-Fock interaction energy of MeOH
dimer with and without the counterpoise correction using the aug-cc-pVXZ basis
sets.
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Figure 2.3: Convergence behavior of the CP corrected CCSD(T) interaction en-
ergy of the Me dimer. CBS limit is taken as CCSD(T)-F12 with triples scaling
using the AV5Z basis set.

2.2 Periodic boundary conditions approach

Periodic boundary conditions (PBC) ought to be more natural for studying pe-
riodic systems compared to the finite cluster calculations, especially for systems
with low symmetry and large super-cells. To study this hypothesis, we used
the Vienna Ab-initio Simulation Package [34, 35, [36] to calculate the HF energy
and the MP2 correlation energy of our molecular solids. We employed the MP2
implementation by Marsman et al. [37].

In VASP, central quantities, such as the one-electron orbitals, are expressed
in plane wave basis sets. Thus, the formalism developed in the Chapter 1.1.4.
applies. To recapitulate, integrals in real space over a large system are replaced
by integrals over the first Brillouin zone in reciprocal space and these integrals are
then approximated by finite sums over the k-points grid in the first Brillouin zone.
The interactions between the electrons and ions are described using the projector-
augmented-wave method[38], [39]. To determine the electronic groundstate, VASP
makes use of efficient iterative matrix diagonalisation techniques, like the residual
minimisation method with direct inversion of the iterative subspace (RMM-DIIS)
or blocked Davidson algorithms. These are coupled to highly efficient Broyden
and Pulay density mixing schemes to speed up the self-consistency cycle [36].

In the PBC approach, the binding energy of a crystal is given by the expres-
sion:

Eb — Ecrys/Z - Emola (25)

where Eys is the energy of a crystal, Z is the number of molecules in the unit cell
and F, is the energy of an isolated molecule. In VASP, the calculated energy of
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a crystal depends on the number of k-points and the maximum (cutoff) energy of
the plane-wave basis set. Moreover, the energy of the isolated molecule depends
on the cell volume used for the calculation. Therefore, to obtain a converged
lattice energy it is necessary to extrapolate with respect to these parameters.
Our general strategy is to obtain volume or k-point converged energies for a set
of cutoffs and then extrapolate to infinite cutoff. For the HF energy we assumed
the convergence behavior in the form 1/V with the volume of the cell V' for an
isolated molecule and 1/Nj with the number of k-points [40]. This convergence
can be accelerated using the Coulomb cutoff technique (tag HFRCUT=-1 in
VASP [41]), which we decided to employ. The convergence of the HF energies
with respect to the basis set cutoff is rather fast and requires only a sufficiently
high cutoff to be used.

For the MP2 energy we also relied on extrapolations to infinite cell volume.
For solids, no clear convergence behavior was identified and we simply used a high
enough k-point set to assure converged data. The MP2 energies should converge
as ENCUT*%, but this behavior is not always visible when the energies of solids
and molecules are subtracted to form the lattice energy.

The memory requirements of the MP2 calculations grow significantly with the
basis size and the number of k-points or the cell volume. This means that the
converged energy of the solid E™®&° for a large cutoff cannot be obtained directly.
To resolve this issue, we first obtained a k-point grid converged energy ES™a!! for
a small basis-set size. This value was corrected for the finite basis-set size using
two calculations with a small number of k-points, one with the small basis set
Ez™all and one with a large basis set EY™2° as follows [10]:

Ecl;rge _ Ez?all + (E[I)arge . E(s)mall). (26)

For systems with higher numbers of electrons including MeOH and CO,, it
is impossible to calculate MP2 energies in VASP using the standard algorithm
which has a quintic (N?) scaling [42]. In fact, using more than 10 k-points the ran-
dom access memory (RAM) requirements reach tens of TB. Therefore, converged
MP2 data were obtained as a sum of two contributions exhibiting a different con-
vergence behavior: an exchange contribution (xMP2) and a Hartree contribution
(dMP2). The xMP2 values converge more rapidly with the energy cutoff and
the number of k-points compared to dMP2. To compute dMP2 contributions
we employed the random-phase approximation (RPA) algorithm in VASP [43],
which scales as only N? with the system size and has lower memory requirements
compared to the conventional MP2 algorithm which exhibits N® scaling.

2.3 Dimer benchmarks

To provide a foundation for our lattice energies comparison, we first seeked to
obtain matching values of interaction energies of selected benchmark dimers in
both Molpro and VASP. First, we checked that with our set-up we reproduce the
results for both MP2 and CCSD(T) published in Jurecka et al. [44] and Rezac
et al. [45] for methane and methanol dimers in the respective geometry. Using
the MP2-F12 method with the AV5Z basis set, we obtained MP2 energies within
0.06 kJ/mol (methane) and 0.02 kJ/mol (methanol) from the reference values
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(see Table [2.1)). Furthermore, we calculated CCSD(T) interaction energies and
compared them to MP2. The CCSD(T)-F12 method with triples scaling was
used with AV5Z (for methane) or AVQZ (for methanol) basis sets. Our results
agree very well with the reference values (see Table[2.2)). We found that CCSD(T)
increases the binding energies slightly with respect to MP2. Specifically, we found
an increase of 0.15 kJ/mol for methane and 0.06 kJ/mol for methanol. These
small corrections indicate that the two-body contribution to the lattice energy
should be described rather well by MP2.

Table 2.1: Dimer HF and MP2 interaction energies (in kJ/mol) using the finite
cluster and PBC approaches. The reference data are from [44].

HF MP2 corr. HF + MP2
clus. PBC clus. | PBC clus. PBC Ref.
Me 1.53 1.53 —-3.59 | =3.50 | —2.06 | —1.97 | —2.13
MOH | —14.79 | —14.79 | —9.66 | —9.51 | —24.45 | —24.3 | —24.43
NH; 2.05 2.08 —2.07 | —2.06 | —0.02 0.03 —
COy | —0.27 | —0.26 | —3.87 | =3.75 | —4.14 | —4.01 -

Table 2.2: Dimer CCSD(T) interaction energies (in kJ/mol) using the finite clus-
ter approach. The reference data are from [44].

CCSD(T)
clus. Ref.
Me —221 | —2.22
MeOH | —24.51 | —24.48
NH; —0.35 -
CO, —4.30 —

In VASP, we found that Hartree-Fock energies agree nicely with the results
from the cluster approach without any problems with convergence. Concerning
MP2, however, we encountered a slow convergence behavior of MP2 correlation
energies with respect to the cell volume, see Figures [2.4 and 2.5 For extrapo-
lations of 1/V to the infinite cell volume, we used cells with sides up to 14 A.
Larger cells are technically demanding and computationally expensive. Based on
the spread of the extrapolated data, as specified in Table [2.3] we estimated the
uncertainty of the converged result for both methane (0.03 kJ/mol) and methanol
(0.01 kJ/mol). The convergence behavior of the cell-size extrapolated MP2 bind-
ing energies with respect to ENCUT and extrapolations of the form ENCUT 2
are presented in Figures[2.6]and 2.7 for Me and MeOH, respectively. For methane,
we see from the resolution of the graph that the results are already well-converged
even for ENCUT = 1000 eV and our final estimate is —3.50 £+ 0.03 kJ/mol. For
methanol, however, a further extrapolation of the form EN CUT™? seems to be
reasonable and the result is —9.51 £+ 0.02kJ/mol. From Table [2.1| we conclude
that VASP underestimates correlation effects in both methane and methanol.
Compared to the cluster approach, MP2 corrections are lower by 0.1 — 0.2 kJ /mol.
This can be caused by inaccuracies of the PAW potentials used in VASP [39]. An-
other contribution are the uncertainties related to the extrapolation to the infinite
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volume. The relative error of 4.5% for the total HF and MP2 energy of methane
is rather high due to opposite HF and MP2 contributions to binding.

Table 2.3: The extrapolation of methane and methanol dimer interaction energies

(computed with the basis-set energy cutoff 1000 eV) to the infinite cell size as &

%
for four different ranges of data.

Cell sizes (VV) [A] B
Me MeOH
12 - 14 —3.470 | —9.606
125 - 14 —3.488 | —9.618
13- 14 —3.499 | —9.613
135 - 14 —3.514 | —9.617

—3.65 \
-~ ENCUT = 1000 eV
-3.7 — Linear fit
= =375}
g
=
24 =38
>
80
g —3.85|
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Figure 2.4: Convergence of MP2 binding energies of the Me dimer with respect
to the cell size for the basis-set cutoff energy (ENCUT) of 1000 eV. Only three
largest cell sizes of 13, 13.5, and 14 A are used for the regression.

Next, we selected one dimer from both NH3 and CO, solids, and compared
the values of interaction energies obtained by both approaches to see how fast
both methods converge and what level of precision can be expected in succeeding
calculations. From the ammonia solid, we selected a dimer without a hydrogen
bond (see Fig. . Performing the Hartree-Fock calculations, we found a slow
convergence with the cell size quite analogously to methane and methanol dimers.
The difference between the PBC approach and the cluster scheme is 0.03 kJ/mol
or 2 % which is acceptable for our purposes. We found no binding within the MP2
correlation scheme using both approaches; however, CCSD(T)-F12 calculations
showed a non-negligible binding contribution, which indicates the errors one can
expect from the less accurate MP2 method. The resulting data can be found in
Table 2.1} For the selected dimer of COy, we found that HF energies agreed well
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for both approaches, but MP2 in VASP understimated the correlation energy by
0.13 kJ/mol, which is about 3% of the MP2 contribution. The possible reasons
for this discrepancy are again less accurate PAW potentials or an inaccurate
extrapolation to the infinite cell volume.

981 e ENCUT = 1000 eV | |
— Linear fit

—9.85|
=
£ -99¢f
=
=3
s —9.95 |
&
=i
€2} —10|

~10.05 |

| | | | | |
14-313.57% 1373 1253 1273 11-3
V-1 [A78]

Figure 2.5: Convergence of MP2 binding energies of the MeOH dimer with respect
to the cell size using ENCUT = 1000 eV. Only three largest cell sizes of 13, 13.5,
and 14 A are used for the regression.
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Figure 2.6: Convergence behavior of the cell-size extrapolated MP2 binding en-
ergies of Me dimer.
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Figure 2.7: Convergence behavior of the cell-size extrapolated MP2 binding en-
ergies of MeOH dimer.

Figure 2.8: The geometries of dimers of ammonia (left), methanol (upper right)
and CO, (lower right) with indicated bond lengths (in A).
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3. Results for molecular solids

In this chapter we present the results obtained for lattice energies with the frag-
ment and PBC schemes. At the end, we compare our results with the experimen-
tal values and the results from literature.

The studied systems have the following propertiesﬂ Methane (phase I), an fcc
crystal with lattice constant a = 5.84 A [9], has 1 molecule in the unit cell, and
zero dipole moment. Methanol (a—phase), an orthorhombic crystal with lattice
constants a = 4.873 A, b = 4.461 A, ¢ = 8.867 A [47], has 4 molecules in the unit
cell, and dipole moment of 1.69 D. Carbon dioxide (phase I), an fcc crystal with
lattice constant a = 5.624 A [48], has 4 molecules in the unit cell, and zero dipole
moment. Ammonia (phase I), an fcc crystal with lattice constant a = 5.13 A [49],
has 4 molecules in the unit cell, and dipole moment of 1.46 D.

Figure 3.1: The structures of crystalline methane (left) and methanol (right) with
several indicated bond lengths in A.

Figure 3.2: The structures of crystalline ammonia (left) and carbon dioxide (right)
with several indicated bond lengths in A.

!The geometry data were obtained from the Crystallography Open Database www.
crystallography.net/cod/| [46].
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3.1 Methane

Fragment approach

Thanks to the non-polar nature of the methane molecule, the fragment expansion
as defined in Eq. converged rather quickly. We decided to truncate the
fragment expansion with tetramers, which we expected to contribute marginally.
We found that pairwise interactions constitute more than 95% of the total lattice
energy using any of our methods. Moreover, this contribution converges rather
quickly with distance in accordance with the theoretical prediction of a dispersion
force dying off as 7%6 This is demonstrated in Fig. .

Whereas trimers and tetramers contribute less than 1% to the total MP2
energy, CCSD(T) calculations involving perturbative triples increase this share
to roughly 5%. This can be simply understood from the fact that within the
MP2 scheme only two electrons can be simultaneously excited. The results of our
calculations can be found in Tables 3.1l and 3.2

Taking into account dimers up to 30 A from the central molecule, trimers up
to 10 A, and closes tetramers, we found the HF lattice energy of Me to be equal
to 5.06 £ 0.05kJ/mol. This energy is positive, i.e., the crystal is not bound in
the HF approximation and binding arises from electron correlations that cause
van der Waals dispersion. Adding MP2 and CCSD(T) corrections, we found the
total lattice energy of —9.8 + 0.2kJ/mol and —10.5 £ 0.2 kJ/mol, respectively.

E T U T T 117 E
107t 8 1
=l I ]
E 1072 | E
= = |
=3 5 1
% 10-3 ]
= 10 8 E
=) r ]
€2 i i
1074 E
’ « MP2-F12 AVTZ | |
" — Linear fit ]

10—5 | | | | Lol | |
20~ 1676 1276 10°¢ 86 66 46

Distance™® [A*G]

Figure 3.3: Dimer interaction energy decreases as distance to the sixth. Here,
MP2-F12 data using the AVTZ basis set are presented for dimers in solid Me.

The stated errors are based on our tests on dimers, which are described in
more detail in the previous chapter. For solids, we used explicitly correlated F12
implementations and the aug-cc-pVTZ (AVTZ) basis set, which gives a basis set

2Here, we picked 3 strongest trimers and to each trimer we added ca 20 closest molecules
up to 5 A away to form tetramers. Seeing that this contributed so little to the total energy,
compared with our error margin, we did not consider any further fragments.
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incompleteness error estimate of 2% (see Fig. for MP2 and 1% for CCSD(T).
For computionally demanding CCSD(T) calculations on trimers and tetramers,
we used the AVDZ basis set to obtain results converged with respect to the cutoff
distance. We repeated the calculations on 10 trimers using the AVTZ basis set
and we found a deviation of 2% from the AVDZ results. In fact, this changes the
A[CC-MP2] contribution from trimers by only 0.01 kJ/mol, which is negligible
compared to our total error margin.

PBC approach

The HF energies of the Me solid converged rather quickly with the number of k-
points and the cell volume. Concerning the convergence with respect to the basis
set size, we found that a precision of 0.1 kJ/mol is apparently reached with the
basis set cutoff (ENCUT) value of 1500 eV, as shown in Fig. |3.4 The resulting
HF lattice energy was found to be equal to 5.1 & 0.1kJ/mol in accordance with
the fragment approach.

Performing MP2 calculations, we confronted a rather slow and erratic con-
vergence behavior with respect to the basis set size (Fig. [3.5). However, note
the scale of the graph. The results are essentially well-converged already for the
smallest cutoff of 1000 eV. Thanks to the small number of electrons in the unit
cell, we were able to perform MP2 calculations using the standard MP2 algorithm
even for a large grid of 4 x 4 x 4 k-points (with ENCUT = 700 e¢V). Using the
extrapolation techniques discussed in Chapter 2, we obtained the value of the
MP2 correction to the lattice energy of Me —15.1 +0.1kJ/mol in a good agree-
ment with the fragment result. The uncertainty value is our estimate based on
the speed of convergence as shown in Fig. [3.5]

5.2

0.15 |

5.05 |

Energy [kJ/mol]
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49 600 900 1200 1500 1800 2100
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Figure 3.4: Convergence behavior of the cell-size and k-point extrapolated HF
binding energies of solid Me.
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Figure 3.5: Convergence behavior of the cell-size and k-point extrapolated MP2
binding energies of solid Me. The extrapolated value is —15.10 kJ/mol.

3.2 Methanol

Fragment approach

During the analysis of the MeOH crystal geometry using the VMD program,
we discovered hydrogen-bonded parallel zig-zag chains along the y-axis. Dimers,
trimers, and marginally tetramers along such a chain contribute considerably
(more than 60%) to the total HF lattice energy. Compared to methane, the
many-body expansion of the HF energy for MeOH does not converge so rapidly.
In contrast to methane, we found contributions from trimers to constitute more
than a third of the HF energy of the solid. Moreover, this contribution dimin-
ishes more slowly with distance. Since the number of trimers that one needs to
account for quickly increases with the cut-off distance and the cost of computing
trimer contributions is 6 times higher compared to dimers, this ultimately leads
to a higher uncertainty of the final value. For the total HF lattice energy we
obtained the value of —17.6 4+ 0.4kJ/mol, which includes dimers within 15 A,
trimers within 10 A from the central molecule and 5 tetramers constructed from
molecules exhibiting the strongest mutual interaction.

The MP2 correction using the AVTZ basis set mostly affects the contribution
from dimers. We also discovered a small (less than 1 kJ/mol) MP2 correction from
trimers. This comes mostly from short-range hydrogen bonds because we did not
include trimers further than 10 A from the central molecule. Two examples of
strong hydrogen-bonding with opposite effects are shown in Fig. [3.6] Summing up
the trimer contribution, we found that the anti-binding (positive energy) trimers
dominate. The role of tetramers proved to be negligible (a few hundredths of
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kilojoule per mole). For exact results, see Tab. These corrections originating
from hydrogen bonding go to zero with increasing distance of molecules very
quickly. Our final estimate of the MP2 contribution to the lattice energy is
—37.4 £ 0.8 kJ/mol with cca 97% coming from pairwise interactions. The error
estimate is based on our dimer tests, as we discussed in the methane section. At
the same time, we allow for a small error margin coming from considering a finite
number of trimers.

Figure 3.6: Two examples of methanol trimers with opposite binding effects to the
lattice energy. The trimer on the left contributes —0.47 kJ/mol, —0.45 kJ/mol,
and —0.37 kJ/mol at the HF, MP2, and CCSD(T) levels of theory, while the
trimer on the right supplies 0.55 kJ/mol, 0.50 kJ/mol, and 0.47 kJ/mol to the
total HF, MP2, and CCSD(T) lattice energy. The calculations were done using
the F12 method with the AVTZ basis set.

Adding the CCSD(T) correction to MP2 for dimers using the AVTZ basis set
we found the total lattice energy of —55.6 £+ 0.8kJ/mol. However, CCSD(T) cal-
culations on trimers were found to be rather expensive even with the AVDZ basis
set (1 trimer takes more than an hour on 6 CPUs at Metacentrum), therefore,
we only included cca 300 of them. Morevoer, we only performed a few CCSD(T)
calculations on tetramers due to a high computational cost even with the AVDZ
basis set. Still, we checked that these tetramers contribute less than a hundredth
of a kilojoule per mole.

PBC approach

The HF energy converged rather quickly compared to methane and we obtained
the value of —18.1 + 0.1kJ/mol, which is still on par with the fragment value
considering the error margin.

MP2 calculations using the standard MP2 algorithm in VASP could not be
performed for larger than 2 x 2 x 1 k-point grid due to high memory requirements.
Therefore, we employed the RPA algorithm to obtain converged direct (Hartree)
contributions to MP2 energies as discussed in Chapter 2. Using this approach, we
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obtained well-converged data plotted in Fig. and the final value of the MP2
correction of —37.5 4 0.2kJ/mol, which agrees with the result from the fragment
approach.
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Figure 3.7: Convergence behavior of the cell-size and k-point extrapolated MP2
binding energies of solid MeOH. The extrapolated value is —37.48 kJ/mol.

3.3 Ammonia

Fragment approach

Ammonia is characterized by both weak hydrogen bonds and dispersion inter-
actions. In our calculations, we included dimers within 15 A from the central
molecule since a rather fast convergence with intermolecular distance was ob-
served due to the short-range nature of the dispersion interactions and hydrogen
bonds. In contrast to methanol, where we observed a significant (more than
33%) contribution from trimers to the Hartre-Fock lattice energy, in solid am-
monia trimers contribute only cca 6% and tetramers less than 0.1% to the HF
lattice energy. With MP2 corrections, pairwise interactions dominate even more
notably: they constitute more than 99% of the total MP2 corrected lattice energy
which we estimate to be equal to —35.1 + 0.4kJ/mol. Our calculations include
dimers within 15 A, trimers within 10 A from the central molecule and a few tens
of tetramers constructed from 6 strongest trimers.

Whereas at the MP2 level trimers play only a minor role and their summed
contribution is lower than 1 kJ/mol, we observed stronger anti-binding tendencies
of trimers with the CCSD(T) correction contributing more than 4 kJ/mol to the
lattice energy (see Table [3.2). The effect of a given trimer is determined by its
geometry. This is demonstrated in Figures[3.10]and [3.11]for three selected trimers.
Adding the CCSD(T) correction to MP2 using the AVTZ basis set for dimers
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Figure 3.8: Contributions to the Hartree-Fock energy of molecular solids from
dimers, trimers and tetramers. Notice the inverted y-axis.
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Figure 3.9: Contributions to the MP2 correction (left) and the A [CC — MP2]
correction (right) to the lattice energies of molecular solids from dimers, trimers
and tetramers. Notice the inverted y-axis.

and AVDZ basis set for trimers we found the total lattice energy of —32.2 +
0.5kJ/mol. The errors represent our estimates of the basis set incompleteness
error and we also considered a small error margin emanating from considering a
finite number of trimers.

PBC approach

The Hartree-Fock energy converged more slowly with both the cell volume and the
k-point grid size for ammonia and we obtained the value of —11.1 £ 0.1kJ/mol
with the error margin estimated from the convergence behavior. This value agrees
with the result from the fragment approach (—11.2 £+ 0.2kJ/mol).
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Figure 3.10: An example of a triangle-shaped NH3 trimer with a strong binding
effect due to hydrogen bonds. The trimer contributes —0.78 kJ/mol at the HF
and MP2 level and —0.74 kJ/mol at the CCSD(T) level to the lattice energy.
The F12 methods and AVTZ basis sets were employed.

Figure 3.11: Two examples of NHj3 trimers with an anti-binding effect to the
lattice energy. The trimer on the left contributes 0.27 kJ/mol at the HF level
and 0.25 kJ/mol at both MP2 and CCSD(T) levels of theory, while the trimer
on the right supplies 0.11 kJ/mol, 0.15 kJ/mol, and 0.20 kJ/mol to the total HF,
MP2, and CCSD(T) lattice energies. The F12 methods and AVTZ basis sets were
employed.

MP2 calculations using the standard MP2 algorithm in VASP were performed
for grids up to 3 x 3 x 3 k-points (using the largest 3 x 3 x 3 grid the maximum
basis set cutoff value was 600 e¢V) and RPA calculations up to 4 x 4 x 4 with
ENCUT = 700 eV. The cell-size and k-point converged data are plotted in Fig.
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Table 3.1: HF and MP2-F12 calculations of dimer, trimer and tetramer contribu-
tions to total latice energies (in kJ/mol) with AVTZ (AVDZ for tetramers) basis
set. See text for error estimates.

HF MP2 corr. HF + MP2
Solid | dim. | trim. | tetr. | dim. | trim. | tetr. dim. | trim. | tetr.
Me 5.27 | —0.21 | 0.01 | —15.1 ] 0.24 | —0.02 | —9.84 | 0.03 | —0.01
MOH | —10.2 | —7.41 | 0.01 | —=37.7 | 0.44 | —0.02 | —47.9 | —6.97 | —0.01
NH; | —10.5 | —0.68 | 0.02 | —24.4 | 0.51 | —0.01 | =34.9 | —0.17 | 0.01
COy | —3.09 | —0.71 ] 0.01 | —27.2 | 0.97 | 0.00 | —30.3 | 0.26 0.01

Table 3.2: CCSD(T)-F12 fragment calculations (with triples scaling) of inter-
action energies (in kJ/mol). Dimers calculated with AVTZ basis, trimers and
tetramers with AVDZ or AVTZ (Me) basis.

Energy [kJ/mol]

Method A[CC-MP2] Total CCSD(T)-F12
Solid dim. | trim. | tetr. dim. trim. tetr.
Me —1.09 | 0.44 | 0.01 | —10.93 | 047 | —0.01
MeOH | —1.50 | 0.82 | 0.01 | —49.44 | —6.14 | —0.01
NH; —1.39 | 429 | 0.01 | —36.3 4.12 0.01
CO, —0.46 | 0.80 | 0.00 | —30.7 1.06 0.01
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Figure 3.12: Convergence behavior of the cell-size and k-point extrapolated MP2
binding energies of the NHj3 solid. The extrapolated value is —24.14 kJ/mol.

and the final value of the MP2 correction —24.1 £ 0.2kJ/mol agrees well
with the result from the fragment approach (—23.9 & 0.4kJ/mol).
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Table 3.3: Calculated values of lattice energies (in kJ/mol) of four molecular
solids.

Method HF MP2 corr. HF + MP2 | CCSD(T)
Solid frag. | PBC | frag. | PBC | frag. | PBC frag.
Me 5.06 5.05 | =149 | —15.1 | —9.82 | —10.0 —10.5

MeOH | —17.6 | —18.1 | =374 | —=37.5 | —54.9 | —55.6 —55.6
NH; —11.2 | —=11.1 | =239 | —=24.1 | —35.1 | —35.2 —32.2
COq —-3.80 | =3.79 | —26.2 | —26.3 | —30.0 | —30.1 —29.7

3.4 Carbon dioxide

Fragment approach

In the fragment expansion we observed a rather fast convergence with trimers
and tetramers contributing less than 5% to the total lattice energy. However, at
the HF level, trimers contribute more than 20% which is significantly more than
5% in ammonia. We obtained the total HF lattice energy of —3.8 + 0.1kJ/mol,
which includes dimers within 15 A, trimers within 10 A from the central molecule
and 5 closest tetramers.

The MP2 correction converged fairly quickly with the cutoff distance and we
found the MP2 contribution to the lattice energy to be equal to —26.24+0.4 kJ /mol
with more than 95% coming from pairwise interactions. We also included more
than 1000 trimers at the AVTZ level, which were found to contribute marginally,
i.e., by less than 1 kJ/mol. We also checked 5 closest tetramers with the AVTZ
basis set and discovered that their contribution is less than 0.01 kJ/mol and
therefore we did not perform further calculations on tetramers.

Figure 3.13: Two examples of COs trimers with opposite binding effects to the
lattice energy. The trimer on the left contributes —0.1 kJ/mol at both MP2 and
CCSD(T) levels of theory, while the trimer on the right supplies 0.04 kJ/mol
(MP2) and 0.08 kJ/mol (CCSD(T)) to the lattice energy. The calculations were
done using the F12 method with the AVTZ basis set.

Whereas at the MP2 level trimers contribute less than 1 kJ/mol, with the
CCSD(T) correction we found a more significant contribution in analogy with
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the previous case of ammonia. As we demonstrate in Fig. [3.13] a symmetric
(triangular) arrangement of molecules yields a negative (binding) interaction en-
ergy, whereas a non-symmetric configuration tends to yield a positive interaction
energy. Adding the CCSD(T) correction to MP2 using the AVTZ basis set for
dimers and the AVDZ basis set for trimers we found the total lattice energy of
—29.7 £ 0.5kJ/mol. Due to a high computational cost of CCSD(T) calculations,
we only included cca 50 trimers. Tetramers were too computationally expensive
(1 tetramer takes more than 6 hours using 6 CPUs) even using the AVDZ basis
set, therefore, we only included 5 tetramers which yielded less than 0.01 kJ/mol
as a correction to MP2.

PBC approach

The HF energy converged rather slowly and the use of the Coulomb cutoff
technique was appreciated. We estimate an error of cca 0.1 kJ/mol (roughly

3%). Still in agreement with the fragment approach, we obtained the value of
—3.84+0.1kJ/mol.
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Figure 3.14: Convergence behavior of the cell-size and k-point extrapolated MP2
contribution to the binding energy of CO; solid. The extrapolated value is equal
to —26.25 kJ/mol.

MP2 calculations using the standard MP2 algorithm in VASP were performed
up to 2 X 2 x 2 k-point grid with ENCUT = 800 eV and RPA calculations up to
4 x4 x4 with ENCUT = 600 eV. Here, we confronted a slow convergence of MP2
energies with respect to the basis set cutoff value. This is evident from Fig. [3.14]
Therefore, the estimated uncertainty is a little higher compared to other solids:
—26.3 + 0.3kJ/mol, which is close to the —26.2 + 0.4kJ/mol from the fragment
approach.
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3.5 Comparison with experimental data

A comparison of our results with previous experimental or theoretical results is
not straightforward. In fact, the errors in experimental lattice energies often ap-
proach the magnitude of the errors in theoretical calculations [19]. Experimental
data need a careful correction for thermal and zero-point effects in order to com-
pare to static HF and post-HF' results. Moreover, this correction introduces an
uncertainty which, combined with experimental errors, limits the insight that can
be gained from the comparison [13]. In Table [3.4] we compare our results with the
experiment-based lattice energies taken from the works of Reilly and Tkatchenko
[16] (ammonia, carbon dioxide) and Cervinka and Fulem [50] (methanol). These
were derived from experimental sublimation enthalpies by considering vibrational
and thermal contributions. An appropriate value for methane was not found in
literature, therefore we also include a comparison with recent fragment-based cal-
culations performed by Cervinka et al. [24] at the CCSD(T) level of theory. We
see that our CCSD(T) calculated results agree with the reference data derived
from experiment and other CCSD(T) results within 1 kJ/mol for MeOH and
CO,. For ammonia, our result underestimates the reference values, which could
be caused by different geometry data.

Table 3.4: Calculated values of lattice energies (in kJ/mol) and the reference val-
ues derived from experimental sublimation enthalpies by Reilly and Tkatchenko
[16] (Ref. A) and Cervinka and Fulem [50] (Ref. B). For comparison, recent
fragment-based CCSD(T) calculations by Cervinka et al. [24] (Ref. C) are also

included.

Method | HF + MP2-F12 | CCSD(T)-F12 | Exp. Exp. | CCSD(T)
Solid frag. PBC frag. Ref. A | Ref. B| Ref. C
Me —9.82 | —10.0 —10.5 - - —11.0

MeOH | =549 | —55.6 —55.6 - —54.9 —53.8
NH; —35.0 | —35.2 —32.2 =372 | —=38.5 —39.1
COq —30.0 | —=30.1 —29.7 —28.4 | —28.7 —21.2
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Conclusion

In this thesis, we used two different approaches to obtain accurate lattice energies
of four molecular solids with different physico-chemical characteristics. Namely,
we employed the periodic boundary conditions (PBC) and the fragment approach.
We found that the nature of intermolecular interactions plays a significant role
in the applicability and performance of both approaches. Specifically, highly
polarizable systems such as methanol and ammonia are described by the PBC
approach surprisingly well on the MP2 level. For dispersion bound systems such
as methane and, to a lower extent, carbon dioxide, we find the fragment approach
to be more applicable.

Both approaches have their strengths and weaknesses. The fragment approach
generally performs well on systems with dominating pairwise interactions, i.e.,
systems with negligible 3-body, etc., contributions because of a modest compu-
tational cost of pairwise interactions compared to larger clusters. However, this
approach suffers from the lack of generally applicable techniques for converging
fragment expansion within desired accuracy. In other words, whereas for one
system one might be well off considering dimers and trimers within 10 A, for an-
other system this could be a less plausible approximation. Moreover, the number
of trimers that one needs to consider increases significantly with distance which
in turn raises not only computer cost but also human time because one must
avoid double counting or omitting fragments. Thus, a quite substantial amount
of human time is needed to obtain accurate results using the fragment scheme.

On the other hand, the PBC approach is rather simple to set up and a general
strategy for converging the results exists, as we showed in our thesis. In principle,
lattice energies strongly depend on the k-point set used for the solid and on
the cell size used for the reference molecule. For systems consisting of small
molecules, such as our four systems, we showed that the lattice energies can be
converged to a fairly high precision (less than 1 kJ/mol), provided that enough
computer resources are available. In fact, for precise results at the MP2 level,
much computer resources are needed to converge the energy of the reference
molecule, especially in terms of CPU time and RAM requirements, due to a
steep (IN®) scaling of periodic MP2. For example, the MP2 calculations for CO,
required cca 2 - 105 CPU hours overall and a maximum of 1.5 TB of RAM. In
comparison the fragment approach required two orders of magnitude less CPU
hours and RAM. Fortunately, however, some progress has been made recently and
a quartic scaling periodic MP2 algorithm has been developed [51]. Nevertheless,
we showed that for our systems, the RPA algorithm with a better N3 scaling can
be used with advantage in this regard.

As far as we know, a direct comparison of both approaches at the MP2 level
has not yet been made. To see whether our set-ups can produce reasonable
results, we first performed test caculations on dimers before actual calculations
on solids. This was particularly relevant for the PBC approach, where we used
pseudopotentials. We sought to assess both precision and accuracy of our results.
We checked our cluster calculations on methane and methanol dimers against two
benchmark sets and found a very good agreement at both the MP2 and CCSD(T)
levels using the explicitly correlated F12 method. Comparing both approaches,
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we found that the PBC approach underestimates MP2 correction energies by
2 — 3 % which is a satisfying result given that the convergence of MP2 energies
with respect to the cell size was fairly slow, as we discussed in Chapter 2. When
performing calculations on solids, the periodic HF and MP2 calculations then
allowed us to check if the fragment expansion was sufficiently converged.

One of the biggest problems with the fragment expansion is to know when to
stop because there are many small contributions that need to be taken into ac-
count. For example, for ammonia cca 98% of the dimer contribution comes from
within 9 A and only 2% from the range of 9 — 18 A from the central molecule.
However, it is usually more difficult to converge the contribution from trimers
because of their rather complex behavior. As an illustration, triangle-shaped
trimers with symmetric intermolecular bonds usually have a negative interaction
energy, thereby contributing to the stronger binding of the solid, while triangle-
shaped trimers with asymmetric intermolecular bonds and linear trimers act to
the contrary. In fact, there are often quite as many trimers with a negative (bind-
ing) contribution as there are trimers with positive (anti-binding) contribution.
Consider, for example, the case of COs; summing up absolute values of MP2 cor-
rected trimer interaction energies within 10 A, we found the value of 7 kJ /mol,
whereas in reality, their total contribution is only 0.3 kJ/mol. For the Hartree-
Fock energies of these trimers, we similarly have 8.8 kJ/mol with absolute values,
and —0.7 without them. Therefore, we see that converging these results might be
a crucial step towards obtaining precise lattice energies.

It is well known that the mean-field Hartree-Fock method cannot describe
molecular solids accurately. Whereas for methanol and ammonia the Hartree-
Fock energy constitutes roughly a third of the total CCSD(T) lattice energy,
for methane we observed a non-binding (positive) contribution from HF and for
carbon dioxide HF gives only cca 12% of the CCSD(T) lattice energy. Thus,
we found that the Hartree-Fock method performs more poorly with dispersion-
dominated solids than with systems with hydrogen bonds.

Our results from both approaches agree to within 2% at the MP2 level, which
is a satisfying result. We considered the basis set incompleteness error, and we
usually added a rough estimate of the error emanating from the finite cutoff dis-
tance. For all our systems, the uncertainties of MP2 results are below 1 kJ/mol.
Thus, at the MP2 level, we produced rather precise lattice energies of our molec-
ular solids. Unfortunately, at the CCSD(T) level, we did not manage to obtain
well-converged data for trimers and tetramers of methanol, ammonia, and car-
bon dioxide, due to a high computational cost. Therefore, we estimate an error
of 10% for the A[CC-MP2] corrections based on the convergence of HF and MP2
results. We also note that reference data are not of sufficient precision to make a
comparison reliable for CCSD(T).

To sum up, we found that both approaches can yield essentially identical
results. The PBC approach has advantages for systems with low symmetry al-
though the compute cost is high. Moreover, it takes relatively little time to set up
the calculations and obtain converged results. On the other hand, the fragment
approach, especially at the CCSD(T) level, can be very time-consuming and it
can be very difficult to obtain converged results. Our fragment-based model re-
lying on the use of explicitly correlated F12 methods for calculations of lattice
energies could be improved by using force field methods for distant clusters.
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