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Abstract: Procedural content generation (PCG) is mostly examined in the con-
text of map/environment creation, rather than generating the actual game char-
acters. The goal of this thesis is to design a turn-based RPG-like game with
perfect information for which we can generate balanced encounters. The game
consists of a hex-based arena in which two teams fight. Each team consists of a
few player controller characters with unique abilities. We generate the attributes
of these abilities in order to make the encounter balanced. We will also build an
AI that can be used to automatically play-test the PCG algorithm. The goal is
to generate an equally strong, but different opponent.
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Introduction
An increasing number of computer games is using procedural content genera-
tion (PCG) as one of their core mechanics. This is in different contexts, most
commonly for generating new levels (e.g. Diablo [8]). Occasionally games even
generate player collectible items (e.g. Borderlands [10]). However, there has not
been much research on the use of procedural generation for balancing encounters
in RPG games. By this we mean procedurally generating enemies that can be
defeated by the player, but pose a challenge. A crucial criteria here is that the
balance is not simply achieved by creating the enemy as an exact clone of the
player, but rather explore the search-space to find an enemy that is not only
balanced, but also different from the player.

One particular application for this kind of PCG is automatic difficulty ad-
justments based on the player’s skill. Another possible use could be automatic
generation of new and unique enemies based on given constraints, which is the
approach we chose in this thesis.

We have created a custom game with mechanics that are simple enough to
simulate quickly, yet flexible enough to represent a large search space. There
are two teams that fight in a hexagonal arena, each consists of a small number
of player controlled characters (mages), and each mage has a small number of
abilities. In each turn the player has control over one of his characters, and both
move around the map and cast spells, in any order he wishes. The only limit
is the number of action points the character has available, which are consumed
both by movement and ability usage. The side that first eliminates the opposing
team wins.

All information is visible to all players, and all actions are completely deter-
ministic. There is no time limit for the player action, which means the player
could theoretically calculate a perfect move given enough time.

The goal of this thesis is to explore PCG options for balancing encounters in
turn-based RPG-like games. We design a simple game with flexible mechanics,
and build an AI that can be used to approximate the player. We then use
evolution strategies to generate opponents of just the right difficulty for the given
player team, using AI vs AI combat as a fitness function.

Organization
In Chapter 1 we begin by defining the scope of the work and our general approach.
Chapter 2 follows by exploring our game mechanics in detail and explaining the
choices behind them. Next in Chapter 3 we will go over our different choices for
implementing the AI.

Chapter 4 describes our approach to generating the encounters. The exper-
iments are described in Chapter 5 with a conclusion in Chapter 6. Lastly, the
Appendix contains user and programmer documentation, as well as description
of the used file formats and an analysis of the implementation.
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1. Problem Definition
Tactical turn-based games like Duelyst [5] and Faeria [1] have become very pop-
ular in the recent years. It is easy to create more content for such games (new
spells, monsters, etc.) by simply changing the attributes of existing content.
However, it is difficult to make sure the game stays balanced as the new content
is added over time. This is generally done by human play-testing in-house before
the game updates are released, and takes large amounts of time.

This thesis aims to solve the problem with procedural content generation
(PCG). We define PCG as ‘the algorithmic creation of game content with little
or no user input’ [28] We introduce a custom game similar to Duelyst, and show
that search based PCG can create new content that is balanced.

1.1 Types of PCG currently being used
Many games utilize different kinds of PCG these days. Large commercial games
such as Diablo 2 [8] use PCG to generate unique map layout of certain areas.
Some games like the popular Minecraft [20] go to an extreme and procedurally
generate the whole world. But PCG is not only limited to large games, even
small indie games like Spelunky [22] or Terraria [25] utilize PCG for generating
playable levels.

Games also use PCG for item creation, where the specific attributes of an
item are generated online (e.g. Borderlands [10]).

1.2 Thesis Goals
Our main goal for this thesis is to generate balanced encounters. For this, we
decided to implement a custom game with flexible game mechanics so that there
are many different ways to create a balanced encounter. The game is turn-based,
zero-sum, with perfect information (see chapter 2).

We implement the game both in the form of a simulator that can be used as
a library, and a GUI that a human player can use to play the game and test it.
We also implement an AI for the game so that we can automatically evaluate and
test games in our PCG algorithm.

In summary, the goals are:

• Design and implement a custom game, both GUI and a simulator of the
game mechanics.

• Build an AI that can be used to represent the player in terms of skill.

• Create an algorithm for generating balanced encounters for our game.

• Verify that the AI and encounter balancing works by conducting an exper-
iment.
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1.3 Scope
We narrow our scope to turn-based games, since simultaneous move games pro-
vide an additional challenge when building an AI, which for us is just a means to
help with PCG. Our game zero-sum for two players. We also chose to make the
game with perfect information to simplify the creation of AIs.

1.4 Used technology
We chose C# and the .NET platform since it provides a good balance of program-
mer productivity and performance. C#, while being a high level language, still
has the ability to control memory layout of objects to some extent. Most impor-
tantly, it has the struct keyword which allows for objects which are allocated
in-place and have copy semantics, contrast to Java, where all objects are dynam-
ically allocated on the heap. This feature allows for compact representation of
data and thus improves locality.

On the other hand, C# also provides high level primitives in the form of
LINQ and the Task Parallel Library [19] (see subsection A.1.1). An example
of where this is used is projectiles, where one can create a projectile and await
the task that represents the projectile hitting the target, and chain an animation
afterwards. While developing, we also made heavy use of the advanced profiling
tools provided for the .NET ecosystem, most notably dotTrace [12].
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2. Game Rules and Mechanics
Two teams fight on a hexagonal map (arena) of small size (radius of 5–10 hexes,
see Figure 2.1). The map contains empty hexes and walls. Each team consists of
a small number of player controller characters (mages for short), and each mage
has a small number of abilities, health, and action points. Players take turns,
during which each player has control over one of his mages. The player can issue
commands to move around the arena and use abilities. Mages can only walk on
empty hexes and cannot cast through walls.

There is also an important distinction between a turn and a round. A turn
means playing all the actions a single mage can do with his action points, and
ends when the player decides he is finished playing with that one single character.
A round ends when all of the characters have played their turn, and it is at that
point when debuffs, AOEs, cooldowns and action points are re-calculated (see
below).

Both movement and ability usage costs action points, which are restored at
the end of the round. Moving one hex costs one action point. The cost of using an
ability varies, and is one of the parameters that we optimize for when looking for
a balanaced game. An ability can also have a cooldown, which prevents repeated
usage for a given number of rounds. Note that the cooldown can be zero, which
means the ability can be used multiple times per turn. Abilities also have limited
range, which supports positional gameplay.

Abilities can do direct damage to an enemy mage, apply a debuff (causing
damage and decreasing action points over time), and create an area of effect
(AOE) debuff that spans multiple hexes in the arena. Both the debuffs and
AOEs are applied at the end of each round. Both debuffs and AOEs also have a
lifetime, which specifies how many rounds the effect lasts.

The motivation for having cooldowns is that it allows us to generate powerful
abilities that don’t necessarily take up the whole turn of the player by costing
a lot of action points. If the ability is cheap, but has a large cooldown, it can
serve a strategic purpose, as the player might want to prepare his position in
order to use the ability when the cooldown wears off. AOE abilities also improve
positional gameplay, as they can be used to force the enemy player to move out
of position.

In summary, the game mechanics are:

• Two players fight in a hexagonal arena.

• Each player has a group of mages.

• Each mage has health, action points, and a number of abilities he can use.

• Movement and ability use costs action points.

• Abilities can cause direct damage, apply a damage over time (debuff), or
cause a similar effect in a portion of the arena (AOE).

• When a player finishes playing his mage, he ends his turn.
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• When all mages play their turn, the round ends and debuffs and AOEs are
calculated.

• When the mages of one player are eliminated, that player loses. If all of the
mages are eliminated in a single turn, the game ends in a draw.

• Both players see everything (perfect information).

Figure 2.1: User interface of the HexMage game, featuring a 2v2 game. The
red player currently has a spell selected and is targeting one of the blue player’s
mages.

2.1 Map
The map consists of two types of hexes. Empty hexes which can be walked on, and
walls, which can not be stepped and obstruct visibility. The map also contains
starting points for all of the mages. These are part of the map design and must
be created before the encounter generation can start. While a map can have an
arbitrary amount of starting points, the teams’ sizes must be at most the same
as the number of starting point per team.

All maps have a hexagonal shape and are defined by their radius. Figure 2.1
shows an example of a map with a radius of 5. In order to make testing easy,
the game also includes a map editor (see Editor user documentation), as shown
in Figure 2.2.
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Maps can be saved to a file and loaded back again at any time (see the Map
File Format section for more details).

Figure 2.2: User interface of the map editor, showing a map of a radius of 5 hexes.
Light green are hexes represent walkable surface, dark hexes represent walls. Red
and blue hexes represent starting points.

2.2 Simulator
Part of our game is a simulator that can be used as a library and encapsulates
all of the game rules and mechanics. This is then used by both the AI and
the PCG algorithm and can thus be run separately from the main game. The
game is internally represented by a state object, and all of the possible player
actions are encapsulated by an action object. Playing the game through the
library then simply becomes a matter of applying a state transition function
f : (state, action) → state.

Here’s a list of all possible actions at an arbitrary state:
AbilityUse Use an ability targeting an enemy that is already in range.

Move Move the current mage to a different hex on the map.

EndTurn Finish the current turn.

DefensiveMove Serves the same purpose as Move, but carries an additional
information in the sense that DefensiveMove can only be the last action of
the turn.
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AttackMove Combines the Move and AbilityUse actions into one.

NullAction Doesn’t do anything and is mostly used as a placeholder in cases
no action is possible.

The simulator also verifies that no invalid actions are applied through a thor-
ough list of invariant checks. These are automatically turned off in a release build
to make the simulator run as fast as possible.

The simulator is also built to be high performance and can easily run hundreds
of thousands to millions of actions per second on a consumer-grade PC. The state
object is split into two parts, one that handles the general immutable information
that doesn’t change as the game progresses (i.e. max hitpoints, ability definitions,
etc.), and one that handles all of the mutable data, such as current hitpoints,
current positions on the map, etc. This allowed us to make state copies very fast
as well, running only at a few microseconds per copy.

2.2.1 Replay recording
The simulator also has a builtin capability for recording replays from a given
game. The replay is a recording of all of the actions that occured in a given game,
plus a starting state. When replay recording is turned on (see the Command Line
Arguments section), the simulator records all actions as they are applied to the
game state in a list, and when the game finishes it stores the list into a file along
with the initial game state.
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3. Game AI
In order to test our encounter balancing approach, we needed to develop an AI
that can be used to evaluate match setups. Since our game is very positional and
with complicated effects that can span multiple turns, we conclude that manual
evaluation of the game state would be difficult. There is also a large amount of
actions possible at each turn, and a game is expected to last anywhere from 2 to
5 rounds. Given a 2v2 setup, this would yield 504∗5∗4 ≈ 10135 possible states (50
actions per turn, 4 turns per round, 5 rounds, 4 mages).

A naive approach using minimax [26] would not be possible as it could not
search the whole game tree. Other approaches such as Alpha-Beta pruning [26]
are also not possible because of the difficulty of evaluating the current game
state. Debuffs, AOEs and cooldowns are difficult to evaluate just by looking at
the game state. For example, standing inside of an AOE might cause the mage to
lose enough action point that he’s not able to use his ability, effectively losing his
turn. However, this will only happen in some cases when the AOE has enough of
an effect and the mage stands far enough that he has to move and use an ability.
Taking visibility into account also increases complexity, as there can be lots of
obstacles on the map.

As a result, we chose to use Monte-Carlo Tree Search (MCTS), which has
both the benefit of not needing a state evaluation function, and searching the
tree asymetrically with focus only on the interesting parts.

We present three different approaches and compare them in their strength,
specifically a MCTS based AI, a Rule based AI, and a Random AI. The Random
AI will serve as a baseline for benchmarking the other AI implementations. The
Rule based AI serves to show that the game can not be simply won by playing
greedily, but rather requires positional gameplay. Our goal is to show that MCTS
can beat both the Rule based AI and the Random AI.

3.1 Monte-Carlo Tree Search
Monte-Carlo Tree Search [2] is a heuristic search algorithm that focuses its search
on the most promising nodes in the game tree. States are evaluated based on
the result of a playout, which means picking actions based on a policy until a
terminal state is reached, at which point it can be easily evaluated. The policy
can be for example uniform sampling of the possible actions. The result of the
playout is then used to re-calculate rewards for all the parent nodes up the game
tree.

The MCTS tree consists of nodes which represent game states. Each node
keeps two values: the number N of times it has been visited by MCTS, and the
total cumulated reward Q based on simulations. Overall, the algorithm consists
of four steps:

Selection Start from the root R and chose the most promising child node until
a leaf node N is reached.

Expansion If N is not a terminal node, add a new child state to N .
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Simulation/Playout Play the game to finish according to a default policy.

Backpropagation Calculate the reward terminal state of the default policy,
then update reward/visited counts on the path from N to R.

There are many variants of MCTS, and the one we chose is UCT (Upper Con-
fidence Bound for Trees). It uses the Upper-Confidence Bound (UCB) formula
to balance exploration and exploitation of the game tree. Exploration is the ten-
dency to choose nodes with the highest reward, and explitation is choosing nodes
that have been visited in only a few simulations.

UCB = Q

N
+ C ·

√
ln ParentN

N
(3.1)

C is a constant that can be adjusted based on the game mechanics and controls
the amount of exploration. The theoretical optimum is

√
2 [2], which is what we

picked for HexMage.
One of the advantages of MCTS is that unlike minimax, it grows the search

tree asymmetrically towards the most promising actions.

3.1.1 Implementation of MCTS and high level actions
After some experimentation, we’ve settled down for three high level actions that
represent most of what a player might want to do.

AbilityUse Use an ability targeting an enemy that is already in range.

AttackMove Move into the range of an enemy and use an ability.

DefensiveMove Look for a place on the map that is not visible to the enemy
and move there (to avoid damage).

Combined actions help significantly reduce the depth of the game tree (see
Figure 3.1 for an example of a game tree). Most prominent is the fact that we
don’t allow arbitrary Move actions, but only DefensiveMove.

In an average setup we can expect each mage to have tens of possible Move
actions. Specifically, given our 2v2 setup on a 10-hex map there could up nearly
up to a 100 move actions possible. Given the game mechanics, it is also completely
valid to move from A to B and then from B to C, instead of moving directly from
A to C. While this is something the player might want to utilize, it makes no
sense to separate the Move actions from the point of the AI.

It also doesn’t make any sense to execute a DefensiveMove actions (with the
goal to hide), and then try to do anything else. If we wanted to attack after
moving, the action would be AttackMove, and if we just wanted to move to a
different position, we could always move there directly.

The reason we chose to split AbilityUse and AttackMove is because one mage
can use an ability multiple times per his turn. This creates a need for a raw
AbilityUse action. The AttackMove action is also necessary since the enemy might
be out of range.

One thing we explicitly do not consider is moving towards an enemy without
the intent of using an ability or hiding. A player could theoretically move into
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Figure 3.1: An exmple of a MCTS game tree after 100 iterations. Each node
contains (from top to bottom) a node identifier, currently active team, cumulated
reward / total number of visits, and the action type. The nodes are also colored
based on the team color. The actions are shown in shortcuts to reduce tree width
(AM - AttackMove, D - DefensiveMove, End - End Turn, NullAction - empty
action representing the root node).

a position that is vulnerable, but at the same time not allowing him to use an
ability afterwards. We made this decision based on the layout of our map which
should almost always allow the player to move forward while also hiding behind
cover.

3.1.2 Playout
Given the number of possible actions at each turn, and the number of turns
needed to finish the game, we decided that a random playout as is generally
suggested with MCTS is not feasible [2]. The games are usually short (between
2–5 rounds), which means a single bad action can decide the whole game. A
uniform action selection would not yield a representative playout.

We thus chose to make our MCTS playout deterministic. The strategy is sim-
ilar to that of our Rule based AI, but is made simpler in order to avoid generating
a heatmap on each turn. The strategy is as follows:

• If there is an enemy in sight, use the best possible ability against him.

• If there is no enemy in sight, pick an enemy and move towards him.

Having an aggressive set of rules both makes the games shorter, and allows
for faster generaiton of actions than that of our Rule based AI, since we don’t
have to account for positional information.

The main benefit of the playout strategy is measuring the effect of debuffs,
AOEs and cooldowns, which unlike damage/health would be difficult to calculate
in closed form given a state of the game.

Our hypothesis is that MCTS can play reasonably well even against a human
player, which is later tested in an experiment (see Chapter 5). Next we built a
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Rule based AI which picks its actions based on a fixed set of predefined rules.
These are mostly designed for an aggressive-style gameplay in order to make
simulated games shorter. Lastly, we present a Random AI which makes uniform
random choice of actions from a pool of generated actions.

3.2 Rule based AI
To get a reasonable comparison between both MCTS and the Random AI we
built an aggresive Rule based AI, which does not simulate the playout in any way,
and only does simple analysis of the board state before choosing what to do. The
rule order is as follows:

• If there is an enemy in sight, use the best possible ability against him.

• If there is no enemy in sight, but we have an ability that can be used, pick
a target towards which we can move and use our ability.

• Otherwise, hide from enemy sight.

The structure of these rules is similar to the actions generated by MCTS,
but there is no additional search or game-state evaluation. The rules are simply
picked from top to bottom.

We found that even with such a simple set of rules the AI can play reasonably
well against a human opponent.

3.3 Random AI
In order to establish a baseline when evaluating our Rule based AI and MCTS.
The Random AI uses the same mechanics as MCTS for generating possible ac-
tions, but choses among them randomly. This can be seen as taking a random
walk down the MCTS search tree, and as such, the Random AI doesn’t play
completely random.

The benefit of re-using the MCTS tree is that we get a reasonable benchmark
against both the rule-based AI and MCTS. If we generated actions completely
at random, the Random AI would walk around the map without doing much
of anything, as the number of Move actions greatly outnumbers the AbilityUse
actions. To give a rough estimate, in a 2v2 game where each mage has 10 action
points, there would be at most 2 AbilityUse actions at each point in the game,
but up to 100 Move actions (considering a small map of radius 5).

There are also certain limitations imposed on the choice of MCTS actions to
allow for faster search, from which the Random AI can benefit. For example, it is
not allowed to use a Move action twice in a row, as these could always be collapsed
into a single Move actions to the final target destination. This limitation alone
reduces the search tree greatly.

By making the Random AI smarter, we can get a better estimate of just
how better both the Rule based AI. This should serve as a benchmark against a
player who would pick actions mostly at random, while also putting at least some
thought into not doing things that are completely pointless, such as moving from
A to B and back from B to A in a single turn.
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4. Generating Encounters
There are many possible attributes that can be generated. We could change the
size of each team, the number of abilities of each mage, starting positions of the
map, or even change the positions of the walls.

4.1 Reducing the Scope of the Problem
We chose to reduce the scope by creating a small fixed map on which all encounters
will be played and balanced. We also fix the team size of both teams to 2 mages,
and each mage to 2 abilities. While this significantly reduces the possibilities
to achieve balance, there are still a lot of parameters that can be tweaked, as
described in the next section.

We also put lower and upper bounds on most of the numeric values of at-
tributes of mages and their abilities. See attached programmer documentation in
the Appendix D for more details about how attributes are represented.

4.2 Approach
We approach generating encounters as a search based problems with two different
approaches, Simulated Annealing [26] and Evolution Strategies [27].

To make the search algorithms as general as possible, we serialize our internal
game representation into a single vector of normalized floating point values (called
DNA, see section B.1). The algorithm then does not need to understand our game
mechanics and restrictions and simply treats the DNA as a vector of floating point
values.

In the case of our experiments, we chose to stick with 2v2 games on a fixed
map, where each mage has only two abilities. This was chosen both with respect
to our questionnaire, and running time of the algorithms. Choosing a larger
team setup or a bigger map (or many different maps) would be difficult for the
participants, and would also take much longer to compute our experimental data.

Taking these restrictions into mind, the DNA would then take up 96 floating
point values, specifically:

2 Teams × 2 Mages × (HP + AP + 2 × AbilitySize) = 96

since Ability Size = 11 as we need to serialize damage, cost, range, cooldown,
debuff (HP damage, AP damage, lifetime), and AOE (debuff + lifetime).

4.3 Simulated Annealing
Our initial implementation of generating the encounters was using Simulated
Annealing [26]. Simulated annealing works similar to a hill climbing algorithm,
except that instead of always picking the best neighbor, we use a probability
distribution. Neighbors with better fitness have a higher probability, but we
might still take a path downhill. The amount of randomness is controlled by an
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external variable called temperature (or energy). As the algorithm progresses,
the temperature is slowly reduced and thus allows it to converge. The main
advantage over hill climbing is that simulated annealing does not immediately
get stuck in a local optima, as there is always a chance it will move to a state
with lower fitness value. In contrast, a hill climbing algorithm [26] would always
pick a neighbor with a better fitness value.

However, we had difficulty getting good results and the algorithm almost
never converged. As a result, we ran an experiment to sample the search space
at roughly 20 million different points, and measured the change in fitness in
the neighborhood of each point. We found that in each point’s neighborhood,
there are roughly 5 times more points that have worse fitness than the ones that
are an improvement over the current point. We also found that most of these
downward changes were much steeper between 4–7x than the improving points.
Our suspicion is that this is the main cause of failure of Simulated Annealing,
which simply fails to find the upward slope.

4.4 Evolution Strategies
For this reason we chose to try another approach, specificially Evolution Strategies
(ES) [27]. ES works by taking a random sample of the neighbourhood of the
current value, evaluating the fitness of each of the neighbours, and moving to a
state that is the weighted average of the neighbours with respect to their fitness.
This process is iterated until a state with suitable fitness value is found. In our
experiments we have found this approach to consistently converge much faster
than simulated annealing.

ES also yields itself to easy parallelization, especially if the evaluation of
the fitness function is complicated. Since all of the neighbouring samples are
completely independent, they can be evaluated completely in parallel.

Specifically, we sample by choosing from a uniform distribution from the range
[0.75; 1.25] (determined by the MutationDelta constant, see section D.3) and
take that as a percentage update to one value in the DNA vector at a random
index. We repeat this process with a probability of p = 0.35 (determined by
the SecondMutationProb constant). Overall, we sample 40 neighbours this way
during each iteration of ES (determined by TeamsPerGeneration constant).

4.5 Choice of the Fitness Function
In order to evaluate the balance of a matchup, we evaluated the following three
criteria:

Balance Unsurprisingly, part of the fitness function is comparing the strength
of both teams against each other. We consider games that end in a draw
balanced. If the game doesn’t end in a draw, we measure the remaining HP
percentage of the winner, and the lower it is, the more balanced the game
was.

Game length We also put an interval restriction on game length. Ideally we’d
want the game to last at least 2 rounds.
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Figure 4.1: Fitness values for games of a given length, determined by two com-
bined cumulative normal distribution functions.

Team difference Lastly, since we don’t to create balance by making both teams
identical, we added a third criteria that measures the difference of both
teams.

The combined fitness function is calculated as the average of the three. See
Figure 4.1 for an example plot of how the fitness function converges using Evolu-
tion Strategies. It is worth noting here that evaluating the fitness function (the
Balance part specifically) is computationally intensive, as it requires the whole
game to be played out till the end. We also do this evaluation using an ensemble
average of multiple different AIs. Specifically, we use both the Rule based AI
and MCTS in the Balance playout and take their average. This helps assure that
the game is balanced despite multiple playstyles, as both the Rule based AI and
MCTS play differently (see Table 5.1 for their comparison). You can see how the
fitness function converges in Figure 4.3.

The combined formula is (1−H)+L+D
3 where H is the percentage of total health

left at the end of the game, and

L =

⎧⎨⎩f(length|10, 3) if length < 20
f(40 − length|10, 2) otherwise

where f is the cumulative distribution function for the normal distribution
(see Figure 4.1). Lastly, D = 1

1+exp(−60R+1.5) where R is the euclidean distance
between the two teams (normalized to [0; 1], see Figure 4.2). Note that the
constants the above mentioned formulas were chosen by hand as to fit the game
design goals (minimum game length, etc.).

4.6 Remarks
During the experiment we encountered multiple ways ES tried to exploit the game
mechanics to maximize the balance fitness function in ways that were undesirable.
One example being when the resulting games end up being short as the algorithm
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Figure 4.2: Fitness values for normalized euclidean distance between the two
teams. Showing only the section where distance is less than 30%.

Figure 4.3: An exmple of a how the combined fitness function converges over
rougly 1200 iterations. Green dots represent the Balance fitness measuring HP
percentage left at the end of the game, blue dots represent game length, and
purple is the combined fitness. We’re not showing team difference data points as
in this plot.
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generates mages with lots of AOE abilities that cover the whole map in the first
turn, resulting in immediate death of all characters.

We balance this by introducing an additional fitness function for game length
in the form of a cumulative normal distribution with mean around 10 turns.

Lastly, the team difference is measured as an euclidean distance between the
DNA vectors of each team. Again, we use a cumulative normal distribution to
put a lower bound on the team difference.
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5. Experiments
First we show a small experiment of comparing our different AI implementations
against each other to measure their relative strength. This should uncover if there
are any underlying flaws in the implementation. Next we present our user survey,
of which the first goal is to verify the strength of our MCTS implementation.
A second goal is to measure the balance of the generated encounters. Since the
problem of game balance is largely defined by the players’ perception, we can
only measure it by asking the users in a survey.

5.1 Comparing AIs against each other
To compare the strength of our AIs against each other, we simulated 1000 ran-
domly generated games and had the AIs play against each other. Both teams
were generated at random and there was no step taken to make them balanced.
Instead, each AI played both sides of the match. See Table 5.1 for results.

MCTS Rule Random
MCTS N/A 63% 88%
Rule 37% N/A 82%

Random 12% 18% N/A

Table 5.1: Table showing win percentages over 1000 games between our different
AI implementations. MCTS beats Random 88% of the time, MCTS beats Rule
63% of the time, and Rule beats Random 82% of the time.

As we can see, both MCTS and the Rule Based AI can beat our Random AI
with a significant margin, and MCTS can also consistently beat the Rule Based
AI, despite playing for both generated teams. From this we conclude that:

1. A greedy aggressive strategy doesn’t always win, which means the game
mechanics are rich enough to reward strategic thinking.

2. Thinking ahead (as MCTS does) provides enough value to be significant in
terms of win rate.

5.2 Survey
We’ve conducted a small survey to verify the results of our encounter balancing
algorithm. The participants played 126 games in total and filled in a questionnaire
after each game. We only had 7 participants, most of which have played the 20
games in the survey. The survey was done online within a group of students, as
we couldn’t get a larger group due to limited resources. However, given the total
number of games played, we still believe that it has enough value to present in
this thesis.

The goal of the survey is to show that games are balanced both by asking how
players felt about the balance of the game, and by measuring the games won/lost.
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Encounters with either 0% or 100% winrate will likely not be balanced. The goal
is to also measure how the players percieve our MCTS AI implementation.

5.2.1 Participants
The participants were all computer science students. All of them had at least some
experience with computer games, and were presented the mechanics of HexMage
before conducting the experiment.

5.2.2 Experiment Design
The goal of the survey is to measure two things. One, if the generated encounters
are actually balanced. And two, if the AI is strong enough to pose a challenge to
the player. We will measure the overall winrate of the players, and also compare
how the AI did in games the player considered balanced.

The experiment consists of 20 different games of HexMage. All of the games
are played on the same map that was hand-designed beforehand. This was to
allow the participants to better get familiar with the game and think ahead. The
games are structured so that each player has 2 mages, each with 2 abilities. This
was to reduce the cognitive overhead for the participants and allow them to more
easily adjust to the 20 completely different scenarios.

The first 10 of the 20 games had the player team hand designed, and the
opponent (played by the AI) generated with our PCG algorithm. The remaining
10 games had both teams generated with no manual tweaks or changes. Having
some of the games hand designed allows us to show that the PCG algorithm
can balance against constraints that aren’t completely random. A hand designed
team might have features that are rare in the search space. All of the games are
played against the MCTS based AI with a fixed number of iterations.

5.2.3 Questions
The questions were the following, answered on scale (1 - definitely no, to 7 -
definitely yes), showing short codes for Table 5.2 and Table 5.3. We intend to
measure three things: the strength of the AI, the overall difficulty, and the balance
of the encounter.

Balanced: The game was balanced.

Challenge: The game was challenging.

Unsure: I wasn’t sure who was going to win.

Smart: The AI played smart.

Difficult: The game was difficult.

Strategy: The AI showed strategic thinking.

The intended pairing of the questions is Balanced and Unsure, Smart and
Strategy, and Challenge and Difficult.
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5.2.4 Discussion of the Results
As we can see in Table 5.2, the questions for balance strongly correlate. We
also see many correlations between questions regarding strength of the AI and
difficulty.

balanced unsure
balanced 1.00 0.73
unsure 0.73 1.00

Table 5.2: Correlation table between people who said the game was balanced and
who were unsure about the result.

challenge smart difficult strategy
challenge 1.00 0.61 0.46 0.63
smart 0.61 1.00 0.39 0.82
difficult 0.46 0.39 1.00 0.39
strategy 0.63 0.82 0.39 1.00

Table 5.3: Correlation table between people who said the game was challenging,
the AI was smart, the game was difficult to play and the AI showed strategic
behavior.

We can also take a look at the responses normalized to 0 and 1 where 1 means
the response was at least 4. Looking at Table 5.4, we can see that players tend
to consider the game difficult if they lost and vice versa.

balanced challenge unsure smart difficult strategy won
balanced 1.00 0.35 0.53 0.21 0.07 0.22 0.15
challenge 0.35 1.00 0.30 0.42 0.48 0.36 -0.20
unsure 0.53 0.30 1.00 0.17 0.16 0.14 0.07
smart 0.21 0.42 0.17 1.00 0.49 0.79 -0.32
difficult 0.07 0.48 0.16 0.49 1.00 0.42 -0.62
strategy 0.22 0.36 0.14 0.79 0.42 1.00 -0.22
won 0.15 -0.20 0.07 -0.32 -0.62 -0.22 1.00

Table 5.4: Table of correlations after normalizing reponse values from 1–7 to 0–1
where 1 means the original response was at least 0.

The total win rate of the players was only 38%, which shows that our MCTS AI
is a formidable opponent. Table 5.5 show the mean of the other responses.

Looking further at the results, in 4 out of the 20 games the players lost 100%
of the time, and in 1 out of the 20 games the players won 100% of the time.
In the resulting 15 games there were both cases when a player won and when a
player lost. We re-evaluated those games manually and found that in one case the
game trully could not have been won, as one of the player mages always got killed
too early on and did not get to do any damage. On the other hand, the second
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mean
balanced 0.60%
challenge 0.71%
unsure 0.57%
smart 0.78%
difficult 0.76%
strategy 0.78%

Table 5.5: Table of mean responses to all the questions in the questionnaire.

game we tried we won rather decisively, even though all of the participants in
the experiment lost. The strategy to winning strategy was however to play very
defensively and calculate the opponents AP, which is something the participants
probably did not have a chance to do.

As for the third game, we also confirm it as impossible to win, as the opponent
had a cheap ability and powerful ability and could easily stay out of range while
doing damage. The last of the always-lost games was also similar in the sense
that the opponent had a cheap ability he could use over and over again, and once
he got a small advantage he could push through to win the game without any
resistance. While the games were close in terms of HP at the end, there was no
clear way to win.

In light of these results, there is a possibility for future work by incorporating
an additional fitness metric that makes sure the player can win the game, and not
just that the games end up being close. However, considering the players voted
on 60% of the games as balanced, we have definitely met our goal of generating
balanced encounters.

Note that all of the 20 games were generated without any human intervention,
and the only input from the user was to set the constants for attributes’ range.
The whole process of generating a balanced encounter is completely automatic
and replicable.
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6. Conclusion
We have designed and developed a working game with a simulator, developed
multiple AI bots, built an algorithm for generating balanced encounters and tested
everything in a number of experiments.

Our experimental findings confirm that search based procedural generation
is a viable solution for balancing encounters. While we didn’t achieve perfect
accuracy in generating balanced results, our participants considered around 60%
of the games to be balanced. This is confirmed by our win rate results, where
75% of the games were not completely won/lost by the players. After manually
checking the remaining 25% we found that one of the games was actually possible
to win, which would raise the accuracy to 80%. We think of this as a success, as
the games were generated with no human input or modifications to the data.

Our MCTS AI also showed to be working very well, as it decisively defeated
both the Random, and the Rule based AI. It also did well against the human
players in the experiment, reaching 62% win rate, and having around 75% of the
games be voted as smart and challenging by the participants.

6.1 Future work
There are many opportunities for future work. One would be to develop a more
sophisticated fitness function that takes into account problems mentioned in chap-
ter 5. Team sizes could also be adjusted and allow changing the number of mages
in a team and the number of their abilities as part of the evolution. Lastly, one
could consider balancing regardless of the map the game is going to be played
on, and generate the team such that it can adjust to different scenarios.

We also restricted a few mechanics in order to help things converge faster. For
example, healing spells are not allowed in our simulator. Enabling them however
runs the risk of games taking much longer, and they might not even finish if the
amount of healing is greater than the amount of damage. One could also consider
allowing AOE abilities to be targeted on the ground, and not just on the enemy
mages. While this is possible in many of the popular games, it greatly increases
the number of possible actions in each state where an AOE ability is available.
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Abbreviations and Terminology
MCTS Monte-Carlo Tree Search

UCT Upper Confidence Bound for Trees

UCB Upper Confidence Bound for the multi-armed bandit problem.

Winrate The percentage of games a player has won in a set number of games.
For example winning 3 out of 10 games gives a 33% winrate

Turn Playing a single mage until the EndTurn action is considered a turn. Each
mage gets to play one turn within a single round.

Round When all mages play their turn it is considered one round. Debuffs
and AOEs are calculated at the end of each round, and their lifetime is
decreased.

Mage A player or AI controller character.

Damage The effect of reducing health of a character. Ability with 5 damage
reduces the health of the target by 5.

Action point A resource which can be spent both on movement and ability
usage. Moving one hex costs one action point, and using an ability costs as
many as is defined in the ability’s description.

Cooldown If an ability has an associated cooldown, using it disables the ability
for the number of rounds as specified by the cooldown attribute.

Debuff A temporary effect of an ability which causes the target to low health and
action points for a given amount of time. Debuffs have a defined lifetime,
which is the number of rounds they last.

AOE Area of Effect debuffs are similar to Debuffs, but they’re placed on the
ground instead of the targeted mage. AOEs have a defined radius which
they affect, and they also have an associated debuff which is applied to a
mage standing within the radius at the end of a round.
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A. Implementation Analysis
Since the whole project is implemented in C# on the .NET platform. As such,
it is structured into multiple Visual Studio projects under a single solution. A
solution is a collection of projects that are built together on the .NET platform.
The projects are the following:
HexMage.Simulator Contains all of the game’s core logic, as well as implemen-

tation of the AIs and encounter balancing. This project is also compatible
with Mono on Linux.

HexMage.Benchmarks Small project that wraps all of the experiments in a
command line interface. This project is also compatible with Mono on
Linux.

HexMage.GUI Contains the GUI of the game, which includes the arena, map
editor, team generation and the questionnaire interface. It also has the
ability to re-play games stored in replay files.

HexMage.Tests Small project containing just a few unit tests for the most
critical features.

There is also a directory structure under the data directory that is used by
the projects
data/graphs Contains GraphViz DOT [7] files for the MCTS tree. These are

used mostly for debugging purposes and their generation can be turned
on and off by defining a DOTGRAPH compile time constant (see UctAl-
gorithm.cs for details). Each iteration of MCTS is stored in a separate
file.

data/images Output directory for the generated image graphs from the graphs
folder.

data/manual-teams Contains manually designed teams for the questionnaire.
Each team is stored in its own JSON [6] file.

data/questionnaire Contains the generated encounters for our questionnaire.
Each encounter is stored in a separate file. The file format is rather simple
and described in the DNA file format section.

data/replays Contains replays recorded from games in JSON format. Replay
recording can be turned on with the RecordReplays command line argument.
See the command line section for more details on how to provide command
line arguments.

data/save-files Contains saved DNA results in both the short DNA format and
in JSON format (see section B.1 for details). This folder is used by the
search algorithm, which stores DNA with high enough fitness value.

There are also a few misc files in the data folder that serve mostly for data
processing. Most notably the generate.sh file contains a Bash [9] script for
generating MCTS tree images from the data/graphs folder. We will now over
go the internal structure of the project.
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A.1 HexMage.GUI
The GUI is written using the MonoGame [21] library (version 3.5), which provides
capabilities such as sprite rendering and user input handling. It also asset loading
(textures, sprites, fonts) and compiles them together with the application. All of
the assets can be found under HexMage.GUI/Content. Most of the graphics was
done using the Aseprite [3] pixel art editor. Now onto the project structure.

We chose MonoGame because we wanted to use a higher level language,
and given the performance constraints, the only choice was between C#with
MonoGame and Java with libGDX [34]. We chose C#as it has the tools for
more compact data structures and better development tools. We didn’t consider
larger game engines such as Unity3D [31] since our game is rather simple, and
we wanted to avoid spending most of the time trying to figure out how to do
particular things in a big framework, but rather focus on the important parts.

The game is organized into Scenes, where each Scene represents a single screen
for the user. The scenes are the following (located under HexMage.GUI/Scenes):

MapEditorScene.cs Shows the map editor.

TeamSelectionScene.cs Allows the user to generate teams and assign AIs to
play the game.

ArenaScene.cs Shows the current game, this is where the game is played.

QuestionnaireScene.cs Serves as a UI for our survey. It shows the participants
their progress.

Each scene contains an arbitrary amount of root Entities. Each entity can
have any amount of child Entities, and also any amount of Components attached.
Entities can also optionally have a Renderer (subclass of IRenderer) if they
wish to be displayed to the user. Other than that, entities contain positional
information, such as a relative position with respect to their parent, the order in
which they are rendered, and a flags (i.e. Active flag which determines if the
entity is shown/updated on each frame). The Components are what give Entities
most of their functionality, and can be an arbitrary class that extend from the
Component parent. The most important part of a Component is their Update
function, which gets called on every frame.

All of the user interface is implemented in terms of Entities and Components.
We also provide some basic layout primitives, such as a VerticalLayout, which
lays out its children vertically as a list (with an optional spacing in between).
We also implemented a small UI library in the form of clickable Buttons which
can have an arbitrary callback attached. The important part of the UI are the
GameBoardController and GameBoardRenderer classes, which implement most
of the logic for the game arena.

On top of the scene mechanism, we also provide basic user input handling in
the form of the InputManager class, and 2d camera in the Camera2D class. This
allows the user to zoom in/out and move around the map easily. The GUI also
contains its own logging mechanism with different log levels.
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A.1.1 Threading and TPL
While the GUI is single threaded, we make use of the TPL for asynchronous
task processing. This is implemented using a custom SynchronizationContext
subclass, which makes sure asynchronous callbacks are executed within the main
event loop of the GUI. Implementation-wise it would have been simpler to use a
worker thread and communicate with queues, but our approach provides much
easier and flexible API for the developer. By implementing a global subclass of
SynchronizationContext we can make use of the .NET 4.x async [18] feature.

Callbacks of async methods are then automatically scheduled onto our custom
event loop and are executed right before the Layout and Update lifecycle methods
are called on the root entities (see Appendix D). This also allows actions to be
interleaved with the regular game loop without having to worry about locks and
shared mutable state. We still have the ability to execute tasks on a thread pool
using the Task.Run method from the TPL [19], but at the same time we can
specify the callback to run on the game event loop using the await await thanks
to our custom SynchronizationContext.

A.2 HexMage.Simulator
The main core of our program is the simulator. It contains all of the game
rules and mechanics and can be used as a standalone library. The main class
is GameInstance which encapsulates the game state. It delegates most of its
functionality to the following classes:

Map Contains all of the logic related to the map itself, such as whether each hex
is empty or a wall, and also starting point information

Pathfinder Calculates and caches pathfinding and visibility information for the
given map.

MobManager Stores immutable information about the mages and their abil-
ities. For example maximum amounts of HP and action points, ability
definitions, etc.

GameState Contains state information which changes as the game is played.
This contains the current values, such as current HP, action points and
position on the map for each mage.

TurnManager Encapsulates all of the logic regarding turns and rounds.

GameEventHub Handles the main game loop and handles switching turns be-
tween players, and detects whether the game has finished.

A.3 Performance
We have spent a considerable amount of time optimizing the simulator to run as
fast as possible. Most of the game state related data is stored in tightly packed
arrays of structures. This was done to reduce the number of heap allocations and
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reduce overall pressure on the garbage collector [32]. It also improves copy time
of the game state, which happens during each iteration of the MCTS algorithm.

With DefensiveMove generation enabled, MCTS can run around 30000 iter-
ations per second, and the simulator running around 150000 actions per second
(on the Intel i7-5820k Processor [11]). Note that most of the time is spent on
generating high level actions. When DefensiveMove actions are disabled, MCTS
can run nearly twice as fast since it can avoid re-calculating which positions on
the map are safe. Improving the high level action generation is a possibility for
future work. More elaborate heuristics could allow MCTS to handle larger map
sizes and perform even better as the search depth is limited by the number of
iterations it can run within a given amount of time.

A.3.1 Map implementation
Since the map is composed of hexagons, some special care was taken to implement
things properly. Most of the algorithms such as calculating visibility and drawing
layout were inspired by Amit Patel’s Hexagonal Grids article [24].

We use a 2-dimensional array to store the hexagonal map (class HexMap<T>)
and restrict the valid coordinates to only those with a distance of N from the
center, which makes the resulting map have a hexagonal shape as well (with a
radius of N).

A.3.2 Game Events and AI Controllers
Our main game loop is encapsulated by the GameEventHub class. It does not how-
ever pick which action each player is doing, that is the job of a IMobController.
Each AI we implemented has its own implementation of the IMobController
interface, and there is also one for the human player called PlayerController.
This allows us to write the game loop without knowing who is going to play
the game. The responsibility of the controller is only to dispatch proper actions
during its turn.

Also worth noting that since we’re not using threading in the UI, but rather
asynchronously queued tasks in the event loop, we can’t simply block and wait
for the PlayerController to respond with a given action, as that would freeze
the game UI. Instead, we provide an asynchronous game loop in the form of
GameEventHub.SlowMainLoop. It handles turn management automatically and
all the programmer has to provide is an implementation of the IMobController
(see Appendix D).
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B. File formats

B.1 DNA file format
The DNA vectors are scored in simple text files. The format is as follows:

• Each team is stored on a separate line.

• The line first contains two numbers, one for the number of mages in a team,
and one for the number of abilities of each mage.

• Then follows the serialized vector for each mage in the order the mages were
defined.

• Each mage is stored as his health, action points, and a list of abilities.

• Each ability is stored as damage, cost, range, cooldown, debuff, AOE.

• Debuff is stored as damage, action point damage and lifetime.

• AOE is stored as radius and the effect as if it was a debuff.

A reference implementation is in the GenomeLoader.cs file which contains
both serialization and deserialization. Note that the starting positions of the
mages are not stored in their DNA, as that information an attribute of the map
on which the game is played. See the Map file format section for more details.

We also have an alternative file format for the DNA which can be seen in

B.2 Map File Format
The map is stored in a plain JSON file [6]. An example can be found in the data/
map.json file. The file defines the size of the map, whether each hex contains
a wall or is empty, and the starting positions of each team. It is important to
note that although there can be any number of starting positions on a given map,
the team size must not exceed the number of starting positions. If the user tries
to start a game with larger teams than the number of starting positions, the
program will detect the error and not start the game.
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C. User Documentation

C.1 System Requirements
All of the code is written for C#6.0. The HexMage.GUI project runs on Win-
dows under .NET framework 4.5 (or newer). It also requires up to date graphics
drivers, and optionally audio drivers when running with --EnableAudio=true.
The experiments in HexMage.Benchmarks can be run on Linux under a recent
version of Mono (tested on 4.x). See section D.2 for more detailed instructions
on how to compile and run the project.

C.2 Generating Experiment Data
The data for our survey are under the data/manual-teams directory. Each file
represents a single team for which a suitable opponent will be generated by our
algorithm. Any number of files can be added.

In order to generate the data for the experiment, simply run the HexMage.
Benchmarks.exe program with no command line arguments (preferably in Re-
lease mode) and everything will be generated automatically. The results are
stored under data/questionnaire in separate files in the DNA file format sec-
tion B.1. Generating the data takes around 1 hour on Intel i7-5820k Processor
[11]. We’ve disabled parallelization in order to make the data generation deter-
ministic and the whole experiment reproducible. An initial seed is defined under
Constants.RandomSeed and is used by all of the internal random number gener-
ators. Parallel execution can be re-enabled by defining a compile time PARALLEL
constant.

C.3 Running the Experiment
Running the HexMage.GUI.exe program will run the experiment by default. It
loads the data from data/questionnaire and presents a list of the required
games on the main screen (see section C.3). The state of the questionnaire is
maintained in the files themselves. Specifically, finished games will be renamed
to have a .done extension. This allows the user to resume at any point in time,
and also makes it easy to revert back to an initial state if something goes wrong.
Pressing Ctrl-Q will reset all of the games to unplayed state. This is meant
mostly for debugging.

The next game can be started by pressing Spacebar, which immediately picks
the next game on the list and loads it. After the game is finished, the question-
naire is opened in the default browser and the game identifier is pre-filled (we
used Google Forms). The form itself is configured in QuestionnaireScene.cs.
After the user finishes playing the game, they should quit the program and re-
launch it to proceed to the next game. We did this for stability purposes since
the questionnaire was run remotely and we had no way to assist the user in case
of errors.
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We also provide the exact ZIP file we used to run the experiment with all of
the generated games to make it easy to reproduce the results without having to
run the encounter generation script.

Figure C.1: The main screen of the questionnaire. It shows a list of games which
must be played, along with their status. Finished games are displayed in gray
and have a .done extension, unfinished games are displayed in white. A keyboard
shortcut information is also showed.

C.4 Playing Custom Games
The user can also press E on the initial screen to go into Practice mode. This
opens up a map editor (see Figure 2.2) where the user can create a custom map,
save it to a JSON file (see section B.2), load saved files, set startup positions, and
continue to the AI selection by pressing Space. This allows the user to select AIs
for both of the teams and set the team sizes (see section C.4). At any point the
user can press Ctrl-R to go back to the initial scene. This can be done in game
as well.

Once the user is happy with the team selection, they can press Space to start
the game, which brings them to the arena scene (see Figure 2.1). It shows the
current game state in the middle of the screen, abilities of the current mage on
the left, abilities of the mage under the mouse cursor on the right, the current
team at the top, the game history in bottom left, and the detail of a hex under
the mouse cursor on the bottom right. Since there is no hidden information, the
player can easily see what abilities his opponents have. Figure C.4 shows the
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Figure C.2: Team selection scene which allows the user to pick AIs and team
sizes before starting the game. The controls are described on the game screen.

36



Figure C.3: (Left) An image shown when the mage does not have enough action
points for the given ability. (Middle) An image of the currently selected and
active ability. (Right) An image shown when the given ability is on cooldown.

images representing different ability states. The currently active mage has their
underlying hex colored in yellow.

When no ability is selected, the player moves his current mage by clicking the
left mouse button on an empty hex. The game displays the distance to the hex
in the bottom right corner, as well as drawing the path the mage will walk on.
If the target hex is a wall or an enemy is standing on it, the path is not shown,
indicating that the mage can not move to the target hex.

Abilities can be selected either by clicking on them with the left mouse button,
or with the number keys on the keyboard (1 for the first, 2 for the second, etc.).
When an ability is active, it is shown glowing as shown in Figure C.4. With an
active ability, the player can left-click on an enemy mage to use the ability on
him. A visiblity indicator is drawn when hovering over an enemy to show whether
the enemy is in range and the ability can be used on him.

After the player is finished with his turn, they can press Space to finish the
turn and move on to the next character.
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D. Programmer Documentation

D.1 Used Libraries
While developing desktop GUI applications on Windows provides us with many
options, the choices narrow down significantly when the application is a game.
As we already established earlier, our choice of language is C# as it provides the
ability to write high level code while maintaining key performance characteristics
such as in-place allocated value objects [32]. Firstly there is Windows Forms
[15] and Windows Presentation Foundation [16] (WPF), which are both excellent
desktop GUI libraries, but are not fit for building games as generally require a
completely custom user interface. While both Windows Forms and WPF have the
ability to embed an OpenGL or DirectX context as a component in their native
window components, such approach forfeits all of the benefits of the library and
forces the user to implement everything by hand.

Then there is the Unity3D game engine [31] which has a large number of
features game developers could need. Unfortunately Unity3D brings its own
build system and enforces the developer to structure his game the way Unity3D
developers intended. The engine is mostly built for 3D games (with some support
for 2D) and as such provides lots of advanced features mainly useful to game
developers building larger games. More importantly, Unity3D does not provide
any support for tile based movement, hexagonal grids, pathfinding on custom
tile-based map, and has a very complicated user interface library tailored mostly
for cross platform development. In result, we conclude that using Unity3D would
result in us building a lot of things from scratch anyway.

This leaves us with the last contender, which is MonoGame [21], a successor of
the previously famous but no longer maintained XNA [14]. MonoGame is Open
Source and available under the Microsoft Public License [13]. It abstract away
the rendering backend and provides a simple API for rendering sprites. It also
handles asset packaging (images, sounds, fonts), user input, and provides some
basic data structures and algorithms for computer graphics.

We also make use of the Math.NET Numerics [4] library for some numerical
computation and probability distribution functions, and Newtonsoft Json.NET
[23] for serialization and deserialization of the JSON files. Both of these can be
installed easily via NuGet [17] package manager. MonoGame itself needs to be
installed with the installer as defined by the instructions on the website [21]. Note
we only tested with the version 3.5, but newer releases should be compatible as
well.

GNU Plot [33] is also required to generate plots of encounter balancing if the
GnuPlot constant is set to true. It needs to be available in the system PATH via
gnuplot.exe in order to generate the plots (see GnuPlot.cs for more details).
When the constant is set to false, no plots will be generated an the program
does not need to be present.
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D.2 Compilation Instructions
There are two ways to compile our project. First is when one wants to run
the HexMage.GUI project, which requires the libraries specified in section D.1.
These can be installed via NuGet [17], but one also needs to install MonoGame
separately in order to use the MonoGame Pipeline Tool [29], which compiles the
binary assets under HexMage.GUI/Content to a binary format which MonoGame
can load efficiently. This is not required for compiling and running the HexMage.
Benchmarks project.

After the MonoGame Pipeline Tool is installed, use it to open HexMage.GUI/
Content/Content.mcgb and compile the assets (optionally this could be done
through the Visual Studio build system). Next, use NuGet from within Vi-
sual Studio 2015 to install the packages. This is done by right-clicking on the
HexMage solution in the Solution Explorer and clicking on Restore NuGet Pack-
ages. Lastly, select the HexMage.GUI project as a startup project and click the
Run button. The compilation can also be done from within the Developer Com-
mand Prompt for VS 2015 by going into the root HexMage directory and running
msbuild HexMage.sln.

Compiling under Mono is similar, but only works for the HexMage.Benchmarks
and HexMage.Simualtor projects. First go to the HexMage.Benchmarks directory
and run nuget restore. Then, build the project either using the Mono command
xbuild (or xbuild /p:Configuration=Release for a Release build), or if the
make command is available, you can simply run make within the project’s directory
and it will use its Makefile to run xbuild automatically.

D.3 Constants and Command Line Arguments
All of the important constants are configurable through command line arguments,
both for the HexMage.Benchmarks and HexMage.GUI projects. The constant de-
faults are configured in Constants.cs. When the programs are run, the command
line arguments are inspected and set respective values in the Constants.cs class
via reflection. Adding a new command line argument is thus as simple as adding
a new property to the Constants.cs file.

The program is then run as following:

HexMage.Benchmarks.exe --EnableSounds=true \
--TeamsPerGeneration=40

will set the EnableSounds constant to true and TeamsPerGeneration to 40.
Constant types are automatically inferred by the reflection mechanism in .NET
and can thus be specified without any additional boilerplate. The meaning of
each constant is documented in the Constants.cs file.

D.4 Running the Experiments
There are multiple experiments that can be easily run through the command line
via the HexMage.Benchmarks.exe file (or by running the HexMage.Benchmarks
project in Visual Studio).
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The following command line arguments are possible (in addition to the con-
stants defined in section D.3):

mcts-measure-speed Runs a MCTS speed benchmark which simply generates
a random game and keeps playing it over and over again. The main purpose
is for running MCTS itself under a profiler.

compare-ai Runs an AI comparison benchmark. The types of AI that are se-
lected are controlled via the MctsBenchType constant (see section D.3). The
selected AIs are run against each other on random games and the resulting
win rate is measured.

space-stats Samples the search space at random points, looks around at neigh-
bours and measures the ratio of upward/downward slopes with their respec-
tive fitness change.

When none of these arguments are specified, the encounter balancing algo-
rithm is run on the questionnaire seed data (see section 5.2).

D.5 The Game Loop and GameEventHub
The main game loop in the GUI is represented by a GameEventHub class. During
each turn, it queries the game state for the current IMobController (see sec-
tion D.6) and calls its SlowPlayTurn method to have the controller execute the
turn. After the call returns, the GameEventHub automatically ends the turn and
moves on to the next character in the turn order.

If the player wishes to pause the game, the GameEventHub will delay the game
loop until the game is unpaused, which means the game can only be paused at
the end of each turn. This however isn’t visible to the user, as they can press
pause at any time, and if the AI is currently playing, the game will pause once it
finishes its turn.

D.6 Writing Custom AI
The simulator is written in a way which makes it easy to extend it with new
AI implementations. One only has to implement the IMobController interface.
Two methods have to be subclassed:

void FastPlayTurn(GameEventHub eventHub)
A synchronous implementation of playing a single turn. The eventHub
object is how the AI author can perform actions in the currently played
game. It exposes a method void FastPlayAction(UctAction action)
which will take an arbitrary action and execute it on the currently played
game. Note that instead of passing an EndTurnAction the controller should
instead return from the FastPlayTurn method. It is the responsibility of
the caller to end the turn.
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Task SlowPlayTurn(GameEventHub eventHub)
An asychronous variant of the above function works exactly the same way,
except that the caller awaits on the returned task. It is used in the GUI
game loop which executes asynchronously with the main GUI event loop.

Another useful class is ActionGenerator which can provide some of the logic
behind MCTS and the Rule based AI. Namely the PossibleActions generates a
list of high level actions which MCTS uses in its decision tree. For more detailed
information see the API reference in the attachments. Also see subsection D.7.2
for additional information on how to generate and check the validity of actions.

D.7 Creating Encounters with GameInstance
As described in section A.2 the GameInstance class is the main type in the
simulator. It represents the complete encounter together with current game state.
Since there are a lot of things that need to be configured, we also provide helpers
in the form of GameSetup class that can generate a new game with a given map,
number of mages, and abilities.

An important concept we need to describe first is the use of identifiers (or
handles) throughout the simulator. These are integer types that serve as an iden-
tifier of an structure stored and managed internally by the simulator. An example
might be using a int abilityId parameter instead of a whole AbilityInfo class.
This allows us to keep the data stored compactly in internal data structures while
avoiding unnecessary copying. Since the encounter setup is done only once at the
beginning of the game and no abilities/mages are added/removed in the process,
we simplified the identifiers to work as indexes directly into the internal array
data structures.

While this breaks encapsulation to some extent, it allows us to remove a
layer of indirection in the form of lookup tables. An example of this might be
accessing a MobInstance as game.State.MobInstances[id]. A reason for direct
array access is that C# doesn’t allow the use of arbitrary references and would
introduce unnecessary copying in some cases when the client wants to extract
an object, modify it, and store it back. This feature could be handled with a
new feature of C# 7 called ref return values [30] , which allows code to return
a reference to a value type from arbitrary functions. However, at the time of
writing most of the code C# 7 was not yet available, which made us stick with
the more verbose, yet still functional approach.

It is also worth noting that GameInstance and all of its members support
shallow and deep copying. A shallow copy can be done by the CopyStateOnly
method which only makes a copy of the state attributes and thus does not al-
low the modification of abilities and the map. On the other hand, a deep copy
done using DeepCopy will copy everything to a new instance and can be used in
cases when one wishes to modify the definitions of abilities. This is used when
generating the encounters.
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D.7.1 Encounter Setup
There are multiple ways one can create an encounter. First we describe all of the
necessary structures and how to create them:

Map
Represents the whole map, can be either created programatically, or loaded
from a file using the Map.Load(string filename). Apart from configuring
which hexes are walls and which are empty, it is also important to configure
the number and positions of starting points for both teams. The game can
not be started with a team larger than the number of starting points for
that color.

MobManager
Keeps all of the immutable information related to the encounter. This
consists of AbilityInfo and MobInfo instances. There is no need to create
the MobManager manually as the GameInstance will take care of it. One
can also provide the GameInstance with an existing MobManager in case
it was created beforehand. Such case might be when de-serializing content
from a file for example.

AbilityInfo
Represents a single ability of a mage. It must be added to the GameInstance
exclusively through the use of AddAbilityWithInfo, since there is an ad-
ditional internal setup that must be carried out by the MobManager.

MobInfo and MobInstance
Together these two structures represent a single mage (called Mob, short for
mobile object, internally). MobInfo describes the immutable characteristics,
such as maximum amount of health and action points, which abilities are
available, and the team the mage was assigned to. Note that there is an
extra attribute called initiative which detemrines a turn order, but was not
used in our experiment or encounter generation to simplify the number of
variables that needed to be optimized. MobInfo objects can be accessed
under game.MobManager.MobInfos. The MobInstance on the other hand
contains all of the current information, such as current health and action
points, position, and debuffs. As such it is stored in the GameState object
under game.state.MobInstances.

Apart from the above mentioned, the GameState also holds information about
cooldowns and AOEs, and keeps track of the state of the game (whether the game
has finished or not).

We also provide a simpler abstractions that are not used directly by the
simulator, but store the whole encounter directly and are used in serialization.
This is handled mostly by the GenomeLoader class together with the Team and
DNA objects. Both Team and DNA represent the same data but in different for-
mat, and can be converted between themselves. If one has already serialized
a setup and loaded it with the JsonLoader object, it can be then converted
directly into a GameInstance using GameSetup.UnpackTeamsIntoGame method
(see API documentation for details). Another good reference can be both the
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AiRandomController and AiRuleBasedController which are both rather sim-
ple and contain only the necessary boilerplate to get things working.

D.7.2 Invariants and Action Validation
Since our game mechanics are rather complicated, we provide a set of runtime
checks that verify most of the game mechanics. These can be found under
GameInvariants and are mostly turned on only when the DEBUG compile con-
stant is defined. This is done automatically when doing a Debug build in Visual
Studio, and is automatically turned off in Release mode. We made these checks
conditional since they can be rather expensive and slow down the simulation a
lot.

The class also provides some predicates which are not debug-only and are used
by the simulator to check if a given action is valid. For example, one can check
if an ability can be used on a target with the IsAbilityUsable method. This
will check if the target is an enemy, alivem, visible from our current position, if
we have enough action points, if the ability is not on cooldown and if the target
is within range. These helpers can also serve the programmer developing an AI
for our game, as all of the game logic has been encapsulated and the programmer
can simply check if some action is valid, without having to implement all of the
game rules themself.

D.8 Extending the Game UI
The UI is structured as a tree of Entity objects, each with a number of at-
tached Component instances. Each Entity has an information about its posi-
tion and a parent relationship. It can also optionally have a Renderer attached
(subclass of the IRenderer interface), which takes care of the actual rendering.
The IRenderer has a simple interface that only requires implementing a Render
method, which can do any arbitrary rendering using the MonoGame [21] API.

D.8.1 Entities and Components
A new Component can be either created by sub-classing, or by using a shorthand
with the LambdaComponent class, which allows components to be defined simply
by their Update method provided as a lambda function. There are no restrictions
on the Update function, except for deleting entities. This must be done by the
use of the scene’s DestroyEntity method which will queue up the delete until a
next frame update. The reason is that we can’t know if the deleted entity still
needs its components to be updated within the current frame, or if they were
already updated, or if we are actually deleting the parent of the current entity.

We also provide two additional helpers for delaying actions. Firstly, there is
AfterUpdate which takes an arbitrary action and runs it after all of the Update
functions have been called. And then there is also DelayFor, which works sim-
ilarly but also takes a time for which the action should be delayed. The time
keeping is managed automatically by the GameScene.

Similarly, newly added entities need to be initialized, and as such one should
always use the AddAndInitializeRootEntity when adding a root entity. Child
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entities are initialized automatically by their parents. This leads us to the com-
ponent and entity lifecycle. First each entity is initialized with their respective
Initialize method, then each root entity has its Layout method called (and
recursively calls down to children automatically), then all root entities have their
Update method called, and lastly, all entities which have a IRenderer attached
have their Render methods called. During the Update call, the GameScene will
also automatically call Update on the entitie’s components.

D.8.2 Scenes
Each screen in the game is represented by a GameScene object. These objects
are automatically managed by the SceneManager which keeps a stack of scenes
and executes the lifecycle loop on the currently top scene. Scenes can terminate
themselves using the Terminate call which will destroy the scene at the end of
its event loop, and new scenes can be added using LoadNewScene.
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