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Supervisor: doc. RNDr. Aleš Nekvinda, CSc., Department of Mathematics,
Faculty of Civil Engineereng, Czech Technical University
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d

∈ Lp(Ω) and ∇u ∈ Lp(Ω). This fact has been several
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d
∈ Lp(Ω) was
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u
d
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d

∈ L1(Ω) was
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u
d

∈ L1,p(I) and u′ ∈ Lp(I).
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Introduction
The theory of Sobolev spaces is widely used in the theory of partial differential
equations. For a solution to the Dirichlet problem, especially important spaces
are W 1,p and W 1,p

0 . The classical definition describes the space W 1,p
0 as the closure

of smooth functions with a compact support in W 1,p.
It is proved in [1, Theorem V.3.4] that for certain regular domains Ω ⊂ Rn

the following equivalence holds: u ∈ W 1,p
0 (Ω) if and only if u

d
∈ Lp(Ω) and

∇u ∈ Lp(Ω), where the function d(t) is defined as the distance of t from the
boundary of Ω. This result was later improved. In [2] the same conclusion was
shown under a weaker condition, namely: u ∈ W 1,p

0 (Ω) if and only if u
d

∈ Lp,∞(Ω)
and ∇u ∈ Lp(Ω). In [3], the assumption was further relaxed. It was shown that
u ∈ W 1,p

0 (Ω) if and only if u
d

∈ L1(Ω) and ∇u ∈ Lp(Ω). This result was extended
in [4] to Sobolev spaces of higher order. More precisely, it is proved there that
u ∈ W k,p

0 (Ω) if and only if u
dk ∈ Lp(Ω) and |Dku| ∈ Lp(Ω), where Dku denotes

the vector of all weak derivatives of the order k.
The main aim of this thesis is to prove that in the case when n = 1 and Ω

is an interval I ⊂ R, a function u belongs to W 1,p
0 (I) if and only if u

d
∈ L1,p(I)

and u′ ∈ Lp(I). We believe the method of the proof developed in this thesis will
enable us to obtain an analogous result for Ω ∈ Rn. This will be done in our
future research.
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1. Preliminaries
In this chapter we give a survey of concepts and results from functional analysis
and notation that will be used in this thesis. All this background material can
be found in various books and articles that will be cited when appropriate.

Let µ be the one-dimensional Lebesgue measure. For Ω ⊂ R let us denote by
M (Ω) the set of all µ-measurable real functions on Ω and by M+(Ω) the set of
all µ-measurable functions on Ω whose values are nonnegative and finite µ-a.e.
in Ω. We denote by χE the characteristic function of a set E.

If m, n : M (Ω) → [0, ∞], we write m(u) . n(u) if there exists a positive
constant c independent of u such that m(u) ≤ c · n(u).

1.1 Definition and background results on func-
tion spaces

Our goal is to prove some relations between function spaces. However, first we
need to define several fundamental function spaces that will be used in thesis and
specify certain relations between them.

Lemma 1.1. ([5, Section 23.4]) Let I be an interval, g ∈ L1(I) and let f be an
indefinite Lebesgue integral of g on I. Then f is absolutely continuous (a fact
which we denote by f ∈ AC(I)) and f ′ = g almost everywhere.

In what follows we shall denote by u′ the weak derivative of a given function u.

Theorem 1.2. Let I be an interval and let u′ be the weak derivative of u. Let
u′ ∈ L1(I). Then there exists a function u0 such that u = u0 µ-a.e. and u0 is
absolutely continuous on I.

Proof. Let I = (a, b), a, b ∈ R. Following the definition of the weak derivative,
we obtain ∫ b

a
u(t)ϕ′(t) dt = −

∫ b

a
u′(t)ϕ(t) dt

for each test function ϕ from C∞
0 (I). Using the Fubini theorem, we have∫ b

a

∫ t

a
u′(s) dsϕ′(t) dt =

∫ b

a
u′(s)

∫ b

s
ϕ′(t) dt ds

=
∫ b

a
u′(s)(−ϕ(s)) ds =

∫ b

a
u(s)ϕ′(s) ds

for each test function ϕ with support in I. Therefore by Theorem 5.49 from [6]
there exists c ∈ R such that

∫ t
a u′(s) ds+c = u(t) µ-a.e. Denote u0 =

∫ t
a u′(s) ds+c.

As a consequence of Lemma 1.1, u0 is absolutely continuous on I.

Remark 1.3. As a consequence of Theorem 1.2, every function u satisfying
u′ ∈ L1(I) has a continuous representant on I.

Definition 1.4. ([7, Definition 1.1]) Let (Ω, µ) be a subspace of (R, µ). We say
that a function ρ : M+(Ω) → [0, ∞] is a Banach function norm if, for all f , g
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and {fn}∞
n=1 in M+(Ω), for every λ ≥ 0 and for all µ-measurable subsets E of Ω,

the following five properties are satisfied:
(P1) ρ(f) = 0 ⇔ f = 0 µ-a.e.; ρ(λf) = λρ(f); ρ(f + g) ≤ ρ(f) + ρ(g);
(P2) 0 ≤ g ≤ f µ-a.e. in Ω ⇒ ρ(g) ≤ ρ(f);
(P3) 0 ≤ fn ↗ f µ-a.e. in Ω ⇒ ρ(fn) ↗ ρ(f);
(P4) µ(E) < ∞ ⇒ ρ(χE) < ∞
(P5) µ(E) < ∞ ⇒

∫
E fdµ ≤ CEρ(f) for some constant CE ∈ (0, ∞) possibly

depending on E and ρ but independent of f .

Definition 1.5 (BFS). ([7, Definition 1.3]) Let ρ be a Banach function norm. We
then say that the set X = X(ρ) of those functions in M (Ω) for which ρ(|f |) < ∞
is a Banach function space. For each f ∈ X we then define ∥f∥X := ρ(|f |).

We will work even with more general spaces, where conditions (P4) and (P5)
for Banach function norm are omitted.

Definition 1.6 (GBFS). Let (Ω, µ) is a subspace of (R, µ). Let ρ be a function
on M+(Ω) satisfying conditions (P1), (P2) and (P3) in Definition 1.4. We then
say that the set X = X(ρ) of those functions in M (Ω) for which ρ(|f |) < ∞, is a
generalized Banach function space. For each f ∈ X we then define ∥f∥X := ρ(|f |).

Theorem 1.7. ([8, Lemma 2.5]) Let (X; ∥·∥X) be a generalized Banach function
space. Assume that fn ∈ X and ∑∞

k=1 ∥fk∥X < ∞. Then ∑∞
k=1 fk converges to a

function f in X and ∥f∥X ≤ ∑∞
k=1 ∥fk∥X . Consequently, X is complete and, as

such, a Banach space.

Definition 1.8 (A continuous embedding). ([9, Definition 1.15.5]) Let X, Y be
two quasinormed linear spaces and let X ⊂ Y . We define the identity operator
Id from X into Y as the operator which maps every element u ∈ X onto itself:
Id(u) = u, regarded as an element of Y . We say that the space X is continuously
embedded into the space Y if the identity operator is continuous, that is, if there
exists a constant c > 0 such that

∥u∥Y ≤ c ∥u∥X for every u ∈ X.

We shall call the operator Id the embedding operator from X to Y.

Definition 1.9 (Lebesgue space). ([9, Notation 3.2.2 and Definition 3.10.2]) Let
p ∈ [1, ∞). Let Ω be a Lebesgue measurable subset of R. We denote by Lp(Ω)
the set of all real-valued measurable functions f defined almost everywhere on Ω
and such that

∥f∥Lp(Ω) :=
(∫

Ω
|f(x)|p dx

) 1
p

is finite.
We denote by L∞(Ω) the set of all real-valued measurable functions f defined

almost everywhere on Ω and such that

∥f∥L∞(Ω) := inf
µ(E)=0

{ sup
x∈Ω\E

|f(x)|}

is finite.
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Lemma 1.10. ([9, Lemma 3.2.3 and Exercise 6.1.18]) Let p ∈ [1, ∞]. Then
Lp(Ω) endowed with ∥f∥Lp(Ω) is a Banach function space.

Definition 1.11. ([9, Definition 7.1.6]) Let f be a measurable function on Ω ⊂ R.
Then the function f ∗ : [0, ∞) → [0, ∞) defined by

f ∗(t) := inf{λ : µ({x ∈ Ω : |f(x)| > λ}) ≤ t}, t ∈ [0, ∞),

is called a nonincreasing rearrangement of f .

Definition 1.12 (Lorentz space). ([9, Definition 8.1.1]) Assume that 0 < p ≤ ∞
and 0 < q ≤ ∞, Ω ⊂ R. The Lorentz space Lp,q(Ω) is the collection of all
measurable f such that ∥f∥Lp,q(Ω) ≤ ∞, where

∥f∥Lp,q(Ω) :=

⎧⎪⎨⎪⎩
(∫∞

0 [t
1
p f ∗(t)]q dt

t

) 1
q if 0 < q < ∞

sup0<t<∞ t
1
p f ∗(t) if q = ∞.

Remark 1.13. The functional ∥·∥L1,p(Ω) is not a norm, but it is a quasinorm,
and there is no norm equivalent to it. (We recall that a quasinorm constitutes
a weaker concept than that of a norm in the sense that the triangle inequality is
replaced with

∥u + v∥L1,p(Ω) ≤ c
(
∥u∥L1,p(Ω) + ∥v∥L1,p(Ω)

)
for each u, v ∈ L1,p(Ω) and some c ≥ 1.)

Definition 1.14 (Sobolev spaces). ([10, Section 3.1]) Let Ω ⊂ R. We define the
functional ∥·∥W m,p(Ω), where m is a nonnegative integer, 1 ≤ p ≤ ∞ and Dαu is
the weak derivative of order α of a function u, as follows:

∥u∥W m,p(Ω) =
⎛⎝ ∑

0≤α≤m

∥Dαu∥p
Lp(Ω)

⎞⎠ 1
p

if 1 ≤ p < ∞,

∥u∥W m,∞(Ω) = max
0≤α≤m

∥Dαu∥L∞(Ω)

for every function u for which the right side is defined. We define the set

W m,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ α ≤ m}

and the set W m,p
0 (Ω) as the closure of C∞

0 (Ω) in the space W m,p(Ω).

Lemma 1.15. [10, Section 3.1] The sets W m,p(Ω) and W m,p
0 (Ω) equipped with

the functional ∥·∥W m,p(Ω) are Banach spaces.

The spaces from Lemma 1.15 are called Sobolev spaces.

1.2 Mean continuity and mollifiers
In this section we will point out certain useful properties of the space Lp. The
facts listed in this section can be found e.g. in [9, parts 3.3. and 3.4].
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Convention 1.16. We will, when convenient, consider a function f defined al-
most everywhere on Ω ⊂ R to be extended outside of Ω by zero. We thus obtain
a function F defined for almost all x ∈ R by

F (x) :=

⎧⎨⎩f(x) if x ∈ Ω,
0 if x /∈ Ω.

Instead of F (x) we shall often simply write f(x) also for x /∈ Ω.

Definition 1.17 (Mean continuity). Let p ∈ [1, ∞), Ω ⊂ R and f ∈ Lp(Ω). The
function f is said to be p-mean continuous if for every ε ∈ R, ε > 0, there exists
δ ∈ R, δ > 0 such that

(∫
Ω

|f(x + h) − f(x)|p dx
) 1

p

< ε

provided h ∈ R, |h| < δ.

Theorem 1.18. Let p ∈ [1, ∞) and let Ω be a nonempty open subset of R having
finite measure. Then any function f ∈ Lp(Ω) is p-mean continuous.

Definition 1.19. We will denote by S the nonempty set of all functions ϕ0
satisfying

(i) ϕ0 ∈ C∞
0 (R),

(ii) ϕ0(x) ≥ 0 for all x ∈ R,
(iii)

∫
R ϕ0(x) dx = 1,

(iv) supp ϕ0 = {x ∈ R; |x| ≤ 1}.

Definition 1.20. Let ε ∈ R, ε > 0, Ω ⊂ R and let ϕ0 ∈ S. For u ∈ L1(Ω), set

(Rεu)(x) := 1
ε

∫
Ω

ϕ0

(
x − y

ε

)
u(y) dy.

The mapping Rε is called a mollifier.

Theorem 1.21. Let p ∈ [1, ∞) and let Ω be a nonempty bounded open subset
of R. Let u ∈ Lp(Ω). Then:

(i) Rεu ∈ C∞(R);
(ii) limε→0+ ∥Rεu − u∥Lp(Ω) = 0.

1.3 Inequalities
In this section we state some known inequalities which we will use in the thesis.
We include proofs only for those which are slightly modified.

Theorem 1.22 (Hölder inequality). [9, Theorem 3.1.6] Let p ∈ (1, ∞), Ω ⊂ R
and let p′ = p/(p − 1) be the conjugate Lebesgue index of p, let f ∈ Lp(Ω) and
g ∈ Lp′(Ω). Then fg ∈ L1(Ω) and

⏐⏐⏐⏐∫
Ω

f(x)g(x)dx

⏐⏐⏐⏐ ≤
∫

Ω
|f(x)g(x)| dx ≤

(∫
Ω

|f(x)|p dx
) 1

p
(∫

Ω
|g(x)|p

′
dx
) 1

p′
.
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Theorem 1.23 (Hardy inequality). ([11, Theorem 6.8.7]) Let a, b ∈ (−∞, ∞),
a < b, u ∈ Lp(a, b) and let p ∈ (1, ∞). Then

∫ b

a

( 1
t − a

∫ t

a
|u(s)| ds

)p

dt ≤
(

p

p − 1

)p ∫ b

a
|u(x)|p dx,

∫ b

a

(
1

b − t

∫ b

t
|u(s)| ds

)p

dt ≤
(

p

p − 1

)p ∫ b

a
|u(x)|p dx.

Theorem 1.24 (Jensen inequality). ([9, Theorem 4.2.11]) Let Φ be a convex
function on R. Let t1, ..., tn ∈ R and let α1, ..., αn be positive numbers. Then

Φ
(

α1t1 + ... + αntn

α1 + ... + αn

)
≤ α1Φ(t1) + ... + αnΦ(tn)

α1 + ... + αn

.

Theorem 1.25 (Jensen inequality for infinitely many terms). Let Φ be a convex
function on R. Let tn ∈ R, n ∈ N, and let αn be a positive number for each
n ∈ N. Then

Φ
(∑∞

n=1 αntn∑∞
n=1 αn

)
≤
∑∞

n=1 αnΦ(tn)∑∞
n=1 αn

.

Proof. By the Jensen inequality (Theorem 1.24) we have

Φ
(

α1t1 + ... + αntn

α1 + ... + αn

)
≤ α1Φ(t1) + ... + αnΦ(tn)

α1 + ... + αn

.

Now, Φ is a convex function and therefore also continuous. Letting n → ∞ we
have easily

Φ
(∑∞

n=1 αntn∑∞
n=1 αn

)
≤
∑∞

n=1 αnΦ(tn)∑∞
n=1 αn

.

Lemma 1.26. Let a, b ∈ R. Then for each p ∈ [1, ∞) we have

|a + b|p ≤ 2p−1(|a|p + |b|p).

Proof. Using the Jensen inequality (Theorem 1.24) for a convex function |·|p, we
get

|a + b|p

2p
≤ |a|p + |b|p

2 ,

and in turn
|a + b|p ≤ 2p−1(|a|p + |b|p).
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2. Basic definitions and
assertions

2.1 Definitions of used function spaces
Definition 2.1 (C∞

{a}). Let (a, b), a, b ∈ R, a < b, be an open interval. By the
expression C∞

{a}(a, b) we denote the set of all functions defined on [a,b] where each
of functions has derivatives of any order on [a, b] and its support is a subset of
[a + ε, b] for some ε > 0. C∞

{b}(a, b) is defined analogously.

Definition 2.2 (W 1,p
{a}). Let (a, b), a, b ∈ R, a < b, be an open interval. By the

expression W 1,p
{a}(a, b) we denote the set of all functions u defined on (a,b), such

that for each u there exists a sequence {un}∞
n=1, un ∈ C∞

{a}(a, b), satisfying

lim
n→∞

∥un − u∥W 1,p(a,b) = 0.

W 1,p
{b}(a, b) is defined analogously.

Definition 2.3 ((w)-W 1,p). Let p ∈ (1, ∞). Let us define the function space
(w)-W 1,p as follows: a function u ∈ M (0, 1) is an element of (w)-W 1,p if and only
if it satisfies

• u(t)
t

∈ L1,p(0, 1),

• u′(t) ∈ Lp(0, 1),

and the quasinorm is defined by ∥u∥(w)-W 1,p :=
u(t)

t


L1,p(0,1)

+ ∥u′∥Lp(0,1).

Definition 2.4 (Tp). Let p ∈ (1, ∞) and {In} be a sequence of intervals, In :=
( 1

2n , 1
2n−1 ). Let us define the function space Tp as follows: a function u ∈ M (0, 1)

is an element of Tp if ∥u∥Tp
< ∞, where

∥u∥Tp
:=
( ∞∑

n=1

(∫
In

|u(t)|
t

dt

)p

+
∫ 1

0
|u′(t)|p dt

) 1
p

is the norm of the space Tp.

Both the above definitions are corect, (w)-W 1,p and Tp satisfy the properties
of a vector space, and ∥u∥(w)-W 1,p satisfies the properties of a quasinorm. In the
next theorem, we shall prove that ∥u∥Tp

is a norm.

Theorem 2.5. If p ∈ (1, ∞), then the functional ∥·∥Tp
is a norm.

Proof. Obviously, ∥·∥Tp
is positively homogeneous and

∥u∥Tp
= 0 ⇔ (u = 0 almost everywhere).

Let us focus on the triangle inequality.

8



Let us define the functional ∥·∥Ap
at an appropriate function u by

∥u∥Ap
=
( ∞∑

n=1

(∫
In

|u(t)|
t

dt

)p) 1
p

. (2.1)

Then for functions u, v we have

∥u + v∥Ap
=
( ∞∑

n=1

(∫
In

|u(t) + v(t)|
t

dt

)p) 1
p

≤
( ∞∑

n=1

(∫
In

|u(t)|
t

dt +
∫

In

|v(t)|
t

dt

)p) 1
p

.

By the fact that ∥·∥ℓp is a norm we have

∥u + v∥Ap
≤
( ∞∑

n=1

(∫
In

|u(t)|
t

dt

)p) 1
p

+
( ∞∑

n=1

(∫
In

|v(t)|
t

dt

)p) 1
p

= ∥u∥Ap
+ ∥v∥Ap

.

Now, following the fact that ∥·∥Lp is a norm we compute

∥u + v∥Tp
=
(
∥u + v∥p

Ap
+ ∥u′ + v′∥p

Lp

) 1
p

≤
(
(∥u∥Ap

+ ∥v∥Ap
)p + (∥u′∥Lp + ∥v′∥Lp)p

) 1
p

=
(∥u∥Ap

+ ∥v∥Ap
, ∥u′∥Lp + ∥v′∥Lp , 0, ...

)
ℓp

≤
(
∥u∥p

Ap
+ ∥u′∥p

Lp

) 1
p +

(
∥v∥p

Ap
+ ∥v′∥p

Lp

) 1
p = ∥u∥Tp

+ ∥v∥Tp
,

which completes the proof.

Remark 2.6. By Remark 1.3, elements of (w)-W 1,p, T p and W 1,p
{0}(0, 1) have

continuous representants on (0, 1). Throughout the following text we will always
work with the continuous representants.

2.2 Basic properties of Tp

Lemma 2.7. Let us denote by Ap the space of functions u such that ∥u∥Ap
<

∞, where ∥·∥Ap
is the norm defined in (2.1). Then Ap is a generalized Banach

function space.

Proof. We shall prove that there exists a function ρ satisfying conditions (P1),
(P2) and (P3) of the Definition 1.4 such that

ρ(|u|) = ∥u∥Ap
=
( ∞∑

n=1

(∫
In

|u(t)|
t

dt

)p) 1
p

.

Take

ρ(u) =
( ∞∑

n=1

(∫
In

|u(t)|
t

dt

)p) 1
p

. (2.2)
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Then ρ satisfies (P1), as was proved above. The condition (P2) is an obvious
consequence of (P3). Let us show that (P3) holds.

Let {uN} be a sequence of Ap functions such that 0 ≤ uN ↗ u. Then also
0 ≤ uN (t)

t
↗ u(t)

t
. Since L1 is a Banach function space,
∫

In

|uN(t)|
t

dt ↗
∫

In

|u(t)|
t

dt for each n ∈ N.

Therefore and since ℓp is a Banach function space,
( ∞∑

n=1

(∫
In

|uN(t)|
t

dt

)p) 1
p

↗
( ∞∑

n=1

(∫
In

|u(t)|
t

dt

)p) 1
p

.

Consequently,
ρ(uN) = ∥uN∥Ap

↗ ∥u∥Ap
= ρ(u).

This proves that Ap is a generalized Banach function space and, by the Theo-
rem 1.7, it is complete.

Remark 2.8. The function ρ defined in (2.2) does not satisfy the condition (P4)
for E = (0, 1), the space Ap is not a Banach function space.

Theorem 2.9. The space Tp defined in 2.4 is a Banach space.

Proof. Let {un}∞
n=1 be a Cauchy sequence in the space Tp, i.e.

∀ε ∈ R, ε > 0, ∃n0 ∈ N ∀n, m ∈ N, n, m > n0 :

∥un − um∥Tp
=
( ∞∑

N=1

(∫
IN

|un(t) − um(t)|
t

dt

)p

+
∫ 1

0
|u′

n(t) − u′
m(t)|p dt

) 1
p

< ε.

Hence

∥un − um∥Ap
=
( ∞∑

N=1

(∫
IN

|un(t) − um(t)|
t

dt

)p) 1
p

< ε

and

∥u′
n − u′

m∥Lp =
(∫ 1

0
|u′

n(t) − u′
m(t)|p dt

) 1
p

< ε.

By Lemma 2.7, Ap is a Banach space. Since {un}∞
n=1 is a Cauchy sequence in

Ap, it converges in Ap. Denote u := limn→∞ un. The sequence {u′
n}∞

n=1 is a
Cauchy sequence in a Banach space Lp, and so it is convergent in Lp. Denote
v := limn→∞ u′

n.
The function u′

n is a weak derivative of un so for each n ∈ N and each test
function ϕ we have

∫
un(t)ϕ′(t) dt = −

∫
u′

n(t)ϕ(t) dt. Passing to a limit on both
sides we get

∫
u(t)ϕ′(t) dt = −

∫
v(t)ϕ(t) dt. Therefore v = u′ and the function

u is an element of Tp. The sequence {un}∞
n=1 is convergent in Tp, hence Tp is a

Banach space.
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3. An embedding of weak
Sobolev space into space Tp

3.1 A useful inequality
Lemma 3.1. Let a, b ∈ R, p ∈ (1, ∞). There exists a positive constant c such
that, for each u ∈ AC(a, b), there holds∫ b

a
|u(x)|p dx ≤ c ·

(
inf

x∈(a,b)
|u(x)|p +

∫ b

a
|u′(x)|p dx

)

and c = 2p−1(b − a) · max{(b − a)p−1, 1}.

Proof. Let x, y ∈ (a, b). Then, using the Newton-Leibniz formula and applying
the triangle inequality, we get

|u(x)| − |u(y)| ≤ |u(x) − u(y)| =
⏐⏐⏐⏐⏐
∫ max {x,y}

min {x,y}
u′(t)dt

⏐⏐⏐⏐⏐ ≤
∫ max {x,y}

min {x,y}
|u′(t)| dt.

Thus, using Lemma 1.26

|u(x)|p ≤ 2p−1
((∫ max {x,y}

min {x,y}
|u′(t)| dt

)p

+ |u(y)|p
)

and integrating the previous inequality over (a, b) we have∫ b

a
|u(x)|p dx ≤ 2p−1

(∫ b

a

(∫ max {x,y}

min {x,y}
|u′(t)| dt

)p

dx + (b − a) |u(y)|p
)

. (3.1)

Using the Hölder inequality we obtain∫ b

a

(∫ max {x,y}

min {x,y}
|u′(t)| dt

)p

dx

≤
∫ b

a

(∫ max {x,y}

min {x,y}
|u′(t)|p dt

)(∫ max {x,y}

min {x,y}
1p′

dt

) p
p′

dx

≤
∫ b

a

(∫ max {x,y}

min {x,y}
|u′(t)|p dt

)
|y − x|

p
p′ dx

≤
(∫ b

a
|u′(t)|p dt

)(∫ b

a
|y − x|

p
p′ dx

)
≤
(∫ b

a
|u′(t)|p dt

)
(b − a)

p
p′ +1

.

Together with (3.1), this gives∫ b

a
|u(x)|p dx ≤ 2p−1

(
(b − a)p

(∫ b

a
|u′(t)|p dt

)
+ (b − a) |u(y)|p

)
.

Since the last inequality holds for each y ∈ (a, b), then∫ b

a
|u(x)|p dx ≤ c ·

(
inf

y∈(a,b)
|u(y)|p +

∫ b

a
|u′(t)|p dt

)
,

where c = 2p−1(b − a) · max{(b − a)p−1, 1}.
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3.2 The embedding
Lemma 3.2. Let {In} be a sequence of intervals, In := ( 1

2n , 1
2n−1 ). Then there

exists a positive constant c such that for each u ∈ (w)-W 1,p and n ∈ N, n > 1, it
holds that(∫

In

|u(t)|
t

dt

)p

≤ c

(∫
In

tp−1
[(

u(·)
·

)∗

(t)
]p

dt + ∥u′∥p
Lp(In∪In−1)

)
.

Proof. Fix u ∈ (w)-W 1,p and n ∈ N. For brevity, let us denote g(t) := u(t)
t

. By
the assumption u ∈ (w)-W 1,p,∫ 1

0
tp−1 (g∗(t))p dt < ∞,

∫ 1

0
|u′(t)|p dt < ∞.

Let us denote
ap

n :=
∫

In

tp−1 (g∗(t))p dt, (3.2)

then ∑∞
n=1 ap

n < ∞.
We claim that there exists a constant c1 ∈ [1, 2p−1] such that

ap
n = c1 · |In|p−1

∫
In

(g∗(t))p dt.

Indeed, this follows from( 1
2n

)p−1 ∫
In

(g∗(t))p dt ≤ ap
n ≤

( 1
2n−1

)p−1 ∫
In

(g∗(t))p dt

and |In| = 1
2n .

As a consequence of the first mean value theorem for definite integral there
exists tn ∈ In that

ap
n = c1 · |In|p−1

∫
In

(g∗(t))p dt = c1 · |In|p g∗(tn)p

and
g∗(tn) = an

p
√

c1 |In|
. (3.3)

Now, let us show that there exists sn ∈ In−1 such that

g(sn) ≤ g∗(tn). (3.4)

Assume the contrary. It means that g(t) > g∗(tn) holds for all t ∈ In−1. Then for
some ε > 0

µ{t ∈ (0, 1) : |g(t)| > g∗(tn) + ε} ≥ |In−1| =
∞∑

m=n

|Im| > tn,

which contradicts the definition of g∗(tn) := inf{λ : µ{t ∈ (0, 1) : |g(t)| > λ} ≤
tn}. This proves (3.4). Using (3.4) we obtain an inequality

u(sn) ≤ sn · g∗(tn). (3.5)

12



Now let us regard t ∈ In ∪ In−1. Easily we have

1
4 <

t

sn

< 2. (3.6)

Using the Newton-Leibniz formula and applying (3.5) we get

|u(t)| ≤
⏐⏐⏐⏐⏐
∫ max{t,sn}

min{t,sn}
u′(x)dx

⏐⏐⏐⏐⏐+ |u(sn)| ≤
∫ max{t,sn}

min{t,sn}
|u′(x)| dx + sn · g∗(tn).

Thus

|u(t)|
sn

≤
∫ max{t,sn}

min{t,sn}

|u′(x)|
sn

dx + g∗(tn) ≤
∫

In∪In−1

|u′(x)|
sn

dx + g∗(tn),

and then by (3.6)

|u(t)|
t

≤ 8
(∫

In∪In−1

|u′(x)|
t

dx + g∗(tn)
)

.

Using (3.3) we have

|u(t)|
t

≤ 8
(∫

In∪In−1

|u′(x)|
t

dx + an

p
√

c1 |In|

)
≤ 8

(
1

|In|

∫
In∪In−1

|u′(x)| dx + an

|In|

)
.

Integrating over In we obtain
∫

In

|u(t)|
t

dt ≤ 8
(∫

In∪In−1
|u′(x)| dx + an

)

and then raising to the p and using Lemma 1.26(∫
In

|u(t)|
t

dt

)p

≤ 2p−1 · 23p

((∫
In∪In−1

|u′(x)| dx

)p

+ ap
n

)
.

Applying the Hölder inequality and (3.2) we have(∫
In

|u(t)|
t

dt

)p

≤ 24p−1
(

(3 · |In|)
1
p′
∫

In∪In−1
|u′(x)|p dx +

∫
In

tp−1(g∗(t))pdt

)

≤ 24p−1
(∫

In

tp−1
[(

u(·)
·

)∗

(t)
]p

dt +
∫

In∪In−1
|u′(x)|p dx

)
,

which proves the lemma.

Lemma 3.3. There exists a positive constant c such that for each function u ∈
(w)-W 1,p it holds that(∫ 1

1
2

|u(t)|
t

dt

)p

≤ c

(
inf

t∈(0,1)
|u(t)|p +

∫ 1

0
|u′(t)|p dt

)
. (3.7)
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Proof. Using the Hölder inequality we have(∫ 1

1
2

|u(t)|
t

dt

)p

≤
(∫ 1

1
2

|u(t)|p dt

)(∫ 1

1
2

1
tp′ dt

) p
p′

≤
(∫ 1

0
|u(t)|p dt

)(∫ 1

1
2

1
tp′ dt

) p
p′

.

Clearly
(∫ 1

1
2

1
tp′ dt

) p
p′ = ((p − 1)(2

1
p−1 − 1))p−1.

Under the assertion of Lemma 3.1,(∫ 1

1
2

|u(t)|
t

dt

)p

≤ (2p(1 − 2−p))p−1
(

inf
t∈(0,1)

|u(t)|p +
∫ 1

0
|u′(t)|p dt

)
,

which is our claim.

Corollary 3.4. The space (w)-W 1,p is continuously embedded into the space Tp.

Proof. By Lemma 3.2 we have
∞∑

n=2

(∫
In

|u(t)|
t

dt

)p

.
∞∑

n=2

∫
In

tp−1
[(

u(·)
·

)∗

(t)
]p

dt +
∞∑

n=2

∫
In∪In−1

|u′(x)|p dx. (3.8)

Adding inequality (3.7) to (3.8) and adding a non-negative number on the right
side gives

∞∑
n=1

(∫
In

|u(t)|
t

dt

)p

.
∞∑

n=1

∫
In

tp−1
[(

u(·)
·

)∗

(t)
]p

dt +
∞∑

n=2

∫
In∪In−1

|u′(x)|p dx

+
∫ 1

0
|u′(t)|p dt + inf

t∈(0,1)
|u(t)|p

.
∫ 1

0
tp−1

[(
u(·)

·

)∗

(t)
]p

dt + 3
∫ 1

0
|u′(t)|p dt + inf

t∈(0,1)
|u(t)|p . (3.9)

Let us denote a := inft∈(0,1) |u(t)| . Then we have a ≤ |u(t)| and a ≤ a
t

≤ |u(t)|
t

for
each t ∈ (0, 1). It means also that

a ≤
(

u(·)
·

)∗

(t)

for each t ∈ (0, 1). It implies that

ap

p
=
∫ 1

0
tp−1apdt ≤

∫ 1

0
tp−1

[(
u(·)

·

)∗

(t)
]p

dt

and, consequently,

inf
t∈(0,1)

|u(t)|p ≤ p
∫ 1

0
tp−1

[(
u(·)

·

)∗

(t)
]p

dt. (3.10)
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We denote by c a positive constant. The latter inequality together with (3.9)
gives

∞∑
n=1

(∫
In

|u(t)|
t

dt

)p

≤ c

(
(p + 1)

∫ 1

0
tp−1

[(
u(·)

·

)∗

(t)
]p

dt + 3
∫ 1

0
|u′(t)|p dt

)
.

Finally,

∥u∥Tp
=
( ∞∑

n=1

(∫
In

|u(t)|
t

dt

)p

+
∫ 1

0
|u′(t)|p dt

) 1
p

≤ c
1
p

(
(p + 1)

∫ 1

0
tp−1

[(
u(·)

·

)∗

(t)
]p

dt + (3 + 1
c
)
∫ 1

0
|u′(t)|p dt

) 1
p

≤
(

c max
{

p + 1, 3 + 1
c

}) 1
p

∥u∥(w)-W 1,p < ∞,

proving our claim.

Remark 3.5. The space (w)-W 1,p is continuously embedded into Lp(0, 1).

Proof. Let u be a function from the space (w)-W 1,p. Using Lemma 3.1 we have
∫ 1

0
|u(t)|p dt ≤ 2p−1

(
inf

t∈(0,1)
|u(t)|p +

∫ 1

0
|u′(t)|p dt

)

≤ 2p−1
(

inf
t∈(0,1)

⏐⏐⏐⏐⏐u(t)
t

⏐⏐⏐⏐⏐
p

+
∫ 1

0
|u′(t)|p dt

)

= 2p−1
(

p
∫ 1

0
tp−1

[(
u(·)

·

)∗

(1)
]p

dt +
∫ 1

0
|u′(t)|p dt

)

≤ 2p−1
(

p
∫ 1

0
tp−1

[(
u(·)

·

)∗

(t)
]p

dt +
∫ 1

0
|u′(t)|p dt

)
.

Therefore,

∥u∥Lp(0,1) ≤ 2p
1
p

⎛⎝u(t)
t


L1,p(0,1)

+ ∥u′∥Lp(0,1)

⎞⎠ ≤ 2p
1
p ∥u∥(w)-W 1,p ,

which proves our claim.
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4. An embedding of Tp into a
Sobolev space with zero
boundary value

4.1 Approximation functions vanishing at zero
Lemma 4.1. Let u ∈ Tp. Then there exists a sequence of functions {vN}∞

N=1,
vN ∈ W 1,p(0, 1), such that each of vN is continuous on [0, 1), linear on some right
neighborhood of 0, vN(0) = 0 and, moreover,

∥vN − u∥W 1,p(0,1)
N→∞−−−→ 0.

Proof. By the first mean-value theorem for definite integral, because u is contin-
uous, for each n ∈ N we choose some tn ∈ In such that∫

In

|u(t)|
t

dt = |In|
tn

· |u(tn)| .

Thus
1
2 |u(tn)| ≤

∫
In

|u(t)|
t

dt ≤ |u(tn)| .

Consequently, following the assumption, we obtain
∞∑

n=1

(1
2 |u(tn)|

)p

≤
∞∑

n=1

(∫
In

|u(t)|
t

dt

)p

< ∞,

and therefore the sum on the left is convergent. By the necessary condition for
convergence of series,

lim
n→∞

|u(tn)| = 0. (4.1)
Now, let us construct the sequence of functions {vN}∞

N=1 as follows: for N ∈ N,
let

vN(t) =

⎧⎨⎩
u(tN )

tN
t, t ∈ (0, tN ],

u(t), t ∈ (tN , 1).
It follows from the construction that

lim
t→0

vN(t) = 0.

We first prove that ∫ 1

0
|v′

N − u′(t)|p dt
N→∞−−−→ 0.

Let us compute∫ 1

0
|v′

N − u′(t)|p dt =
∞∑

n=N

∫ tn

tn+1

⏐⏐⏐⏐⏐u(tN)
tN

− u′(t)
⏐⏐⏐⏐⏐
p

dt

≤ 2p−1
∞∑

n=N

∫ tn

tn+1

(⏐⏐⏐⏐⏐u(tN)
tN

⏐⏐⏐⏐⏐
p

+ |u′(t)|p
)

dt (by Lemma 1.26)

= 2p−1

⎛⎝tN

⏐⏐⏐⏐⏐⏐
∑∞

n=N(tn − tn+1)u(tn)−u(tn+1)
tn−tn+1∑∞

n=N(tn − tn+1)

⏐⏐⏐⏐⏐⏐
p

+
∫ tN

0
|u′(t)|p dt

⎞⎠ ,
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where ∑∞
n=N(u(tn) − u(tn+1)) converges since

∞∑
n=N

|u(tn) − u(tn+1)| ≤
∞∑

n=N

∫ tn

tn+1
|u′(t)| dt =

∫ tN

0
|u′(t)| dt . ∥u′∥p

Lp(0,1) < ∞.

Using the Jensen inequality (Threorem 1.25) for the convex function t ↦→ |t|p, we
have ⏐⏐⏐⏐⏐⏐

∑∞
n=N(tn − tn+1)u(tn)−u(tn+1)

tn−tn+1∑∞
n=N(tn − tn+1)

⏐⏐⏐⏐⏐⏐
p

≤
∑∞

n=N(tn − tn+1)
⏐⏐⏐u(tn)−u(tn+1)

tn−tn+1

⏐⏐⏐p∑∞
n=N(tn − tn+1)

,

which yields∫ 1

0
|v′

N − u′(t)|p dt

≤ 2p−1

⎛⎝tN

∑∞
n=N(tn − tn+1)

⏐⏐⏐u(tn)−u(tn+1)
tn−tn+1

⏐⏐⏐p∑∞
n=N(tn − tn+1)

+
∫ tN

0
|u′(t)|p dt

⎞⎠
= 2p−1

( ∞∑
n=N

|u(tn) − u(tn+1)|p

(tn − tn+1)p−1 +
∫ tN

0
|u′(t)|p dt

)
.

Let us focus on
∞∑

n=N

|u(tn) − u(tn+1)|p

(tn − tn+1)p−1 =
∞∑

n=N

(
(tn − tn+1)1−p

⏐⏐⏐⏐⏐
∫ tn

tn+1
u′(t)dt

⏐⏐⏐⏐⏐
p)

≤
∞∑

n=N

(
(tn − tn+1)1−p

(∫ tn

tn+1
|u′(t)| dt

)p)
.

Applying the Hölder inequality, we have
∞∑

n=N

|u(tn) − u(tn+1)|p

(tn − tn+1)p−1 ≤
∞∑

n=N

(
(tn − tn+1)1−p(tn − tn+1)

p
p′
∫ tn

tn+1
|u′(t)|p dt

)

=
∞∑

n=N

∫ tn

tn+1
|u′(t)|p dt =

∫ tN

0
|u′(t)|p dt.

This gives us the estimate∫ 1

0
|v′

N(t) − u′(t)|p dt ≤ 2p
∫ tN

0
|u′(t)|p dt.

Since
∫ 1

0 |u′(t)|p dt < ∞, we have by the absolute continuity of the Lebesgue
integral that for each ε > 0 we can choose N0 ∈ N such that for each N ∈ N, N >
N0, we have

∫ tN
0 |u′(t)|p < ε, which proves

lim
N→∞

∥v′
N − u′∥Lp(0,1) = 0.

We now turn to limN→∞ ∥vN − u∥Lp(0,1). Since
⏐⏐⏐ t

tN

⏐⏐⏐p ≤ 1 for t ∈ [0, tN ], we have
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by Lemma 1.26
∫ 1

0
|vN(t) − u(t)|p dt =

∫ tN

0

⏐⏐⏐⏐⏐u(tN)
tN

t − u(t)
⏐⏐⏐⏐⏐
p

dt

≤ 2p−1
(∫ tN

0
|u(tN)|p

⏐⏐⏐⏐ t

tN

⏐⏐⏐⏐p dt +
∫ tN

0
|u(t)|p dt

)
≤ 2p−1

(∫ tN

0
|u(tN)|p dt +

∫ tN

0
|u(t)|p dt

)
= 2p−1

(
tN |u(tN)|p +

∫ tN

0
|u(t)|p dt

)
.

As a consequence of Remark 3.5, we arrive at
∫ tN

0 |u(t)|p dt < ∞. Hence we can
obtain

∫ tN
0 |u(t)|p dt

N→∞−−−→ 0 in the same manner as above and following (4.1) we
have tN |u(tN)|p dt

N→∞−−−→ 0. This proves

lim
N→∞

∥vN − u∥Lp(0,1) = 0,

which completes the proof.

Lemma 4.2. Let u ∈ Tp. Then there exists a sequence of functions {wN}∞
N=1,

wN ∈ W 1,p(0, 1), such that each of wN is continuous on (0, 1), piecewise lin-
ear on some reduced right neighborhood of 0, vanishing on small reduced right
neighborhood of 0 and, moreover,

∥wN − u∥W 1,p(0,1)
N→∞−−−→ 0.

Proof. Let the symbols tN , vN have the same meaning as in Lemma 4.1.
For each N ∈ N we construct functions wN,η, η ∈ (0, tN), as follows:

wN,η :=

⎧⎪⎪⎨⎪⎪⎩
0, t ∈ (0, η],

t−η
tN −η

u(tN), t ∈ (η, tN ],
u(t), t ∈ (tN , 1).

Then

∥wN,η − vN∥p
Lp(0,1) =

∫ η

0
|vN(t)|p dt +

∫ tN

η

⏐⏐⏐⏐⏐ t − η

tN − η
u(tN) − u(tN)

tN

t

⏐⏐⏐⏐⏐
p

dt

=
∫ η

0
|vN(t)|p dt + ηp |u(tN)|p

tp
N(tN − η)p

∫ tN

η
(tN − t)pdt

=
∫ η

0
|vN(t)|p dt + ηp |u(tN)|p

tp
N(tN − η)p

(tN − η)p+1

p + 1

=
∫ η

0
|vN(t)|p dt + ηp |u(tN)|p

(p + 1)tp
N

(tN − η),

and, following the construction of vN , the last expression tends to zero if η tends
to zero. Similary w′

N,η − v′
N

p

Lp(0,1)
η→0−−→ 0.
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Consequently, for each N ∈ N, one has:

∀ε ∈ R, ε > 0, ∃η ∈ R, η > 0 :
(∥wN,η − vN∥Lp(0,1) < ε) ∧ (∥w′

N,η − v′
N∥Lp(0,1) < ε).

Then for each N ∈ N we choose ηN > 0 such that

(∥wN,ηN
− vN∥Lp(0,1) <

1
N

) ∧ (∥w′
N,ηN

− v′
N∥Lp(0,1) <

1
N

).

We denote wN := wN,ηN
.

Choose ε0 ∈ R, ε0 > 0 arbitrarily. We find N0 ∈ N such that for each N ∈ N,
N > N0, we have 1

N
< ε0

4 and, as a consequence of Lemma 4.1,

∥vN − u∥Lp(0,1) <
ε0

4 , ∥v′
N − u′∥Lp(0,1) <

ε0

4 .

Then also for each N ∈ N, N > N0, it holds that

∥wN − vN∥Lp(0,1) <
ε0

4 , ∥w′
N − v′

N∥Lp(0,1) <
ε0

4 .

Therefore for each N ∈ N, N > N0 , we have

∥wN − u∥Lp(0,1) + ∥w′
N − u′∥Lp(0,1)

≤ ∥wN − vN∥Lp(0,1) + ∥vN − u∥Lp(0,1) + ∥w′
N − v′

N∥Lp(0,1) + ∥v′
N − u′∥Lp(0,1) < ε0.

By the definition of a limit, this is the desired conclusion.

Lemma 4.3. Let u ∈ Tp. Then there exists a sequence of functions {zN}∞
n=1 such

that each of zN is an element of C∞
{0}(0, 1) and

∥zN − u∥W 1,p(0,1)
N→∞−−−→ 0.

Proof. The proof will be divided into two steps.

1. Shift. Fix N ∈ N and consider ε0 ∈ R, ε0 > 0.
We have u ∈ Lp(0, 1) by Remark 3.5 and, by the assumption, u′ ∈ Lp(0, 1).
Therefore functions wN defined in Lemma 4.2 and w′

N are also elements of
Lp(0, 1). By Theorem 1.18, the functions wN and w′

N are p-mean contin-
uous. Hence we can find δ such that for each h ∈ R, |h| < δ, it holds (in
conformity with Convention 1.16)

(∫ 1

0
|wN(t + h) − wN(t)|p dt

) 1
p

< ε0

and (∫ 1

0
|w′

N(t + h) − w′
N(t)|p dt

) 1
p

< ε0.

Fix h ∈ R, 0 < h < δ, and define

gN(t) :=

⎧⎨⎩0, t ∈ (−h, h],
wN(t − h), t ∈ (h, 1 + h).
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2. Mollification. Let S be the set of functions defined in Definition 1.19
Let ϕ0 ∈ S and let η ∈ R, 0 < η < h. Then we define the functions

(RηgN)(t) := 1
η

∫ 1+h

−h
ϕ0

(
t − x

η

)
gN(x)dx

and
(Rηg′

N)(t) := 1
η

∫ 1+h

−h
ϕ0

(
t − x

η

)
g′

N(x)dx.

By Theorem 1.21,

(a) RηgN , Rηg′
N ∈ C∞(R),

(b) limη→0+ ∥RηgN − gN∥Lp(0,1) and limη→0+ ∥Rηg′
N − g′

N∥Lp(0,1) .

Moreover, following the construction of gN there exists η0 such that for
every η, 0 < η < η0, we have RηgN , Rηg′

N ∈ C∞
{0}(0, 1).

It follows from (b) above that there exists η, 0 < η < η0, such that

∥RηgN − gN∥p
Lp(0,1) < εp

0 (4.2)

and, simultaneously,

∥Rηg′
N − g′

N∥p

Lp(0,1) < εp
0. (4.3)

Further, using the Leibniz integral rule and then integration by parts we
compute

∥(RηgN)′ − g′
N∥p

Lp(0,1)

=
∫ 1

0

⏐⏐⏐⏐⏐
(

1
η

∫ 1+h

−h
ϕ0

(
t − x

η

)
gN(x)dx

)′

− g′
N(t)

⏐⏐⏐⏐⏐
p

dt

=
∫ 1

0

⏐⏐⏐⏐⏐ 1
η2

∫ 1+h

−h
ϕ′

0

(
t − x

η

)
gN(x)dx − g′

N(t)
⏐⏐⏐⏐⏐
p

dt

=
∫ 1

0

⏐⏐⏐⏐⏐ 1
η2

∫ t+η

t−η
ϕ′

0

(
t − x

η

)
gN(x)dx − g′

N(t)
⏐⏐⏐⏐⏐
p

dt

=
∫ 1

0

⏐⏐⏐⏐⏐⏐1η
[
−ϕ0

(
t − x

η

)
gN(x)

]t+η

t−η

+ 1
η

∫ t+η

t−η
ϕ0

(
t − x

η

)
g′

N(x)dx − g′
N(t)

⏐⏐⏐⏐⏐⏐
p

dt

=
∫ 1

0

⏐⏐⏐⏐⏐1η
∫ t+η

t−η
ϕ0

(
t − x

η

)
g′

N(x)dx − g′
N(t)

⏐⏐⏐⏐⏐
p

dt < εp
0,

where the last inequality follows from (4.3).
Thus, limη→0+ ∥(RηgN)′ − g′

N∥Lp(0,1) and also

∥wN − RηgN∥Lp(0,1) ≤ ∥wN − gN∥Lp(0,1) + ∥gN − RηgN∥Lp(0,1) < 2ε0.

Furthermore,

∥w′
N − (RηgN)′∥Lp(0,1) ≤ ∥w′

N − g′
N∥Lp(0,1) + ∥g′

N − (RηgN)′∥Lp(0,1) < 2ε0.
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In other words, for each N ∈ N it holds that

∀ε ∈ R, ε > 0, ∃η :(
∥wN − RηgN∥Lp(0,1) < ε

)
∧
(
∥w′

N − (RηgN)′∥Lp(0,1) < ε
)

and RηgN ∈ C∞
{0}.

Then for each N ∈ N we find ηN , ηN > 0, small enough to guarantee that
RηN

gN ∈ C∞
{0} and(

∥wN − RηN
gN∥Lp(0,1) <

1
N

)
∧
(

∥w′
N − (RηN

gN)′∥Lp(0,1) <
1
N

)
.

Let us denote zN := RηN
gN .

Then zN ∈ C∞
{0}(0, 1) and, using Lemma 4.2, for each ε > 0 there exists N0 ∈

N such that for each N ∈ N, N > N0, one has ∥zN − wN∥Lp(0,1) < 1
N

< ε,
∥z′

N − w′
N∥Lp(0,1) < 1

N
< ε, ∥wN − u∥Lp(0,1) < ε, ∥w′

N − u′∥Lp(0,1) < ε.
Hence

∥zN − u∥Lp(0,1) ≤ ∥zN − wN∥Lp(0,1) + ∥wN − u∥Lp(0,1) < 2ε

and

∥z′
N − u′∥Lp(0,1) ≤ ∥z′

N − w′
N∥Lp(0,1) + ∥w′

N − u′∥Lp(0,1) < 2ε,

which establishes our claim.

Lemma 4.4. The space Tp is continuously embedded into W 1,p
{0}(0, 1).

Proof. Following Lemma 4.3, for each function u ∈ T p there exists a sequence
{zN}∞

N=1 of C∞
{0}(0, 1) functions such that u is the limit of {zN}∞

N=1 in the space
Lp(0, 1) and u′ is limit of {z′

N}∞
N=1 in the space Lp(0, 1). Then, by the definition

of W 1,p
{0}(0, 1), the function u is an element of W 1,p

{0}(0, 1).
Now let us prove that there exists a constant c ≥ 1 such that for every u ∈ Tp

we have
∥u∥W 1,p

{0}(0,1) ≤ c ∥u∥Tp
.

Using Lemma 3.1 and Lemma 1.26 we compute

∥u∥p

W 1,p
{0}(0,1) =

(
∥u∥Lp(0,1) + ∥u′∥Lp(0,1)

)p

≤ 2p−1
(
∥u∥p

Lp(0,1) + ∥u′∥p
Lp(0,1)

)
≤ 2p−1

(
2p−1 inf

t∈(0,1)
|u(t)|p + (2p−1 + 1)

∫ 1

0
|u′(t)|p dt

)
.

Denote a := inft∈(0,1) |u(t)|. Then we have a ≤ |u(t)| and a ≤ a
t

≤ |u(t)|
t

for each
t ∈ (0, 1). Consequently,

1
2p − 1ap =

∞∑
n=1

(∫
In

a · dt
)p

≤
∞∑

n=1

(∫
In

|u(t)|
t

dt

)p

.
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Therefore

∥u∥p

W 1,p
{0}(0,1) ≤ 2p−1

(
2p−1(2p − 1)

∞∑
n=1

(∫
In

|u(t)|
t

dt

)p

+ (2p−1 + 1)
∫ 1

0
|u′(t)|p dt

)

≤ 2p−1(22p−1 + 1)
( ∞∑

n=1

(∫
In

|u(t)|
t

dt

)p

+
∫ 1

0
|u′(t)|p dt

)
≤ 23p ∥u∥p

Tp

Hence, ∥u∥W 1,p
{0}(0,1) ≤ 8 ∥u∥Tp

, which is our claim.

4.2 An embedding of a weak Sobolev space into
a Sobolev space with zero boundary trace

Theorem 4.5. The space (w)-W 1,p is continuously embedded into W 1,p
{0}(0, 1).

Proof. Let us focus on an existence of a positive constant c such that for every
u ∈ (w)-W 1,p one has

∥u∥W 1,p
{0}(0,1) ≤ c ∥u∥(w)-W 1,p .

It follows from assertions of Corollary 3.4 and Lemma 4.4 that

∥u∥W 1,p
{0}(0,1) ≤ c1 ∥u∥T p ≤ c1 · c2 ∥u∥(w)-W 1,p < ∞,

which completes the proof of theorem.
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5. An embedding of a Sobolev
space with zero boundary trace
into a weak Sobolev space
Theorem 5.1. The space W 1,p

{0}(0, 1) is continuously embedded into (w)-W 1,p.

Proof. The Hardy inequality (Theorem 1.23) applied to the function u′, where
u ∈ W 1,p

{0}(0, 1), gives

∫ 1

0

⏐⏐⏐⏐⏐u(t)
t

⏐⏐⏐⏐⏐
p

dt ≤
(

p

p − 1

)p ∫ 1

0
|u′(t)|p dt.

Then for u ∈ W 1,p
{0}(0, 1)

u(t)
t


p

L1,p(0,1)
=
∫ 1

0
tp−1

[(
u(·)

·

)∗

(t)
]p

dt ≤
∫ 1

0

[(
u(·)

·

)∗

(t)
]p

dt

=
∫ 1

0

⏐⏐⏐⏐⏐u(t)
t

⏐⏐⏐⏐⏐
p

dt ≤
(

p

p − 1

)p ∫ 1

0
|u′(t)|p dt

=
(

p

p − 1

)p

∥u′∥p
Lp(0,1) . (5.1)

Since u ∈ W 1,p
{0}(0, 1), we get ∥u∥W 1,p

0 (0,1) := ∥u∥Lp(0,1) + ∥u′∥Lp(0,1) < ∞. There-
fore ∥u∥(w)-W 1,p :=

u(t)
t


L1,p(0,1)

+ ∥u′∥Lp(0,1) < ∞. Thus, u ∈ (w)-W 1,p. As a
consequence of (5.1), one also obtains

∥u∥(w)-W 1,p =
u(t)

t


L1,p(0,1)

+ ∥u′∥Lp(0,1)

≤
((

p

p − 1

)
+ 1

)(
∥u∥Lp(0,1) + ∥u′∥Lp(0,1)

)
=
(

2p − 1
p − 1

)
∥u∥W 1,p

{0}(0,1) ,

which completes the proof.
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6. The principal result
In this chapter we shall establish the main goal of this theses. It will be formulated
in form of a fairly general theorem whose particular cases we have seen in previous
chapters. We denote by d(t) the distance function from t ∈ (a, b), a, b ∈ R, to
the boundary of (a, b), i.e. d(t) = min{|t − a| , |t − b|}.

Lemma 6.1. Let a, b ∈ R, p ∈ (1, ∞). Then the following conditions are equiv-
alent:

(i) u
d

∈ L1,p(a, b),
(ii) u(t)

t−a
∈ L1,p(a, b) and u(t)

b−t
∈ L1,p(a, b).

Proof. (i)⇒(ii). Clearly, 1
t−a

≤ 1
d(t) and 1

b−t
≤ 1

d(t) , which gives

|u(t)|
t − a

≤ |u(t)|
d(t) ,

|u(t)|
b − t

≤ |u(t)|
d(t) for each t ∈ (a, b).

Thus  u(t)
t − a


L1,p(a,b)

≤
u(t)

d(t)


L1,p(a,b)

,

 u(t)
b − t


L1,p(a,b)

≤
u(t)

d(t)


L1,p(a,b)

.

(ii)⇒(i). Let c = a+b
2 . Then

d(t) =

⎧⎨⎩t − a, t ∈ (a, c],
b − t, t ∈ [d, c).

Consequently

|u(t)|
d(t) = |u(t)|

t − a
χ(a,c](t) + |u(t)|

b − t
χ(c,b)(t)

and, following the fact that ∥.∥L1,p is a quasinorm with a constant C, we arrive
at u(t)

d(t)


L1,p(a,b)

≤ C

⎛⎝ u(t)
t − a

χ(a,c](t)


L1,p(a,b)
+
 u(t)

b − t
χ(c,b)(t)


L1,p(a,b)

⎞⎠
≤ C

⎛⎝ u(t)
t − a


L1,p(a,b)

+
 u(t)

b − t


L1,p(a,b)

⎞⎠ .

Lemma 6.2. Let a, b ∈ R, p ∈ (1, ∞). Then the following statements hold:

(i) u ∈ W 1,p
{a}(a, b) ⇔ u(t)

t−a
∈ L1,p(a, b) ∧ u′ ∈ Lp(a, b) and the norms are

equivalent,

(ii) u ∈ W 1,p
{b}(a, b) ⇔ u(t)

b−t
∈ L1,p(a, b) ∧ u′ ∈ Lp(a, b) and the norms are

equivalent.
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Proof. It suffices to prove (i). The statement (ii) can then be proved analogously.
To prove the “if” part, set v(t) = u(a + (b − a)t). Denote s = a + (b − a)t.

Then
u(s)
s − a

= u(a + (b − a)t)
a + (b − a)t − a

= v(t)
(b − a)t .

This gives  u(t)
t − a


L1,p(a,b)

= 1
b − a

v(t)
t


L1,p(0,1)

.

Clearly v′ ∈ Lp(0, 1) and

(b − a)
p−1

p ∥u′∥Lp(a,b) = ∥v′∥Lp(0,1) , (b − a)− 1
p ∥u∥Lp(a,b) = ∥v∥Lp(0,1) .

By Lemma 4.4 there exists a sequence vn ∈ C∞
{0}(0, 1) with

vn → v in W 1,p(0, 1)
and for some positive constant c1

∥v∥W 1,p
{0}(0,1) ≤ c1

⎛⎝v(t)
t


L1,p(0,1)

+ ∥v′∥Lp(0,1)

⎞⎠ .

Set un(t) = vn( t−a
b−a

). Then un ∈ C∞
{a}(a, b), and by an easy calculation one gets

un → u in W 1,p(a, b),

and so u ∈ W 1,p
{a}(a, b). Denote c2 := (b − a)

1
p max{1, 1

b−a
}. Then

∥u∥W 1,p
{a}(a,b) = ∥u∥Lp(a,b) + ∥u′∥Lp(a,b) ≤ c2 ∥v∥W 1,p

{0}(0,1)

≤ c2c1

⎛⎝v(t)
t


L1,p(0,1)

+ ∥v′∥Lp(0,1)

⎞⎠
= c2c1

⎛⎝(b − a)
 u(t)

t − a


L1,p(0,1)

+ (b − a)
p−1

p ∥u′∥Lp(a,b)

⎞⎠
≤ C1

⎛⎝ u(t)
t − a


L1,p(a,b)

+ ∥u′∥Lp(a,b)

⎞⎠
for an appropriate value of C1.

Conversely, in order to prove the “only if” part, note first that the proof of
the implication u ∈ W 1,p

{a}(a, b) ⇒ u(t)
t−a

∈ L1,p(a, b) ∧ u′ ∈ Lp(a, b) is similar to
that of Theorem 5.1. The Hardy inequality (Theorem 1.23) gives u(t)

t − a


p

L1,p(a,b)
=
∫ b−a

0
tp−1

[(
u(·)
· − a

)∗

(t)
]p

dt

≤ (b − a)p−1
∫ b−a

0

[(
u(·)
· − a

)∗

(t)
]p

dt = (b − a)p−1
∫ b

a

⏐⏐⏐⏐⏐ u(t)
t − a

⏐⏐⏐⏐⏐
p

dt

≤ (b − a)p−1
(

p

p − 1

)p ∫ b

a
|u′(t)|p dt

= (b − a)p−1
(

p

p − 1

)p

∥u′∥p
Lp(a,b) .
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Thus we have  u(t)
t − a


L1,p(0,1)

+ ∥u′∥Lp(a,b) ≤ C2 ∥u∥W 1,p
{a}(a,b)

for an appropriate constant C2.

Lemma 6.3. Let a, b ∈ R, p ∈ (1, ∞). Then W 1,p
0 (a, b) = W 1,p

{a}(a, b) ∩ W 1,p
{b}(a, b).

Proof. (Inclusion ⊆). Let u ∈ W 1,p
0 (a, b). Then u ∈ W 1,p

{a}(a, b) and u ∈ W 1,p
{b}(a, b),

hence u ∈ W 1,p
{a}(a, b) ∩ W 1,p

{b}(a, b).
(Inclusion ⊇). Take a function ϕ ∈ C∞(a, b), 0 ≤ ϕ(t) ≤ 1, ϕ(t) = 1 for

t ∈ (a, a + 1
3(b − a)) and ϕ(t) = 0 for t ∈ (a + 2

3(b − a), b). Now assume that u ∈
W 1,p

{a}(a, b)∩W 1,p
{b}(a, b). We find sequences {un} ⊂ C∞

{a}(a, b) and {vn} ⊂ C∞
{b}(a, b)

such that

∥u − un∥W 1,p(a,b)
n→∞−−−→ 0 and ∥u − vn∥W 1,p(a,b)

n→∞−−−→ 0.

Choose ε ∈ R, ε > 0. Find un0 , vn0 such that for each n ≥ n0, n ∈ N:

∥u − un∥W 1,p
{a}(a,b) < ε, ∥u − vn∥W 1,p

{b}(a,b) < ε

For each n ∈ N, set un(t) = un(t)ϕ(t), vn(t) = vn(t)(1 − ϕ(t)). Clearly, un, vn ∈
C∞

0 (a, b), and so wn := un + vn ∈ C∞
0 (a, b). We now calculate

∥u − wn∥W 1,p(a,b) = ∥(1 − ϕ + ϕ)u − unϕ − vn(1 − ϕ)∥W 1,p(a,b)

≤ ∥(u − un)ϕ∥W 1,p(a,b) + ∥(u − vn)(1 − ϕ)∥W 1,p(a,b)

≤ (1 + max
t∈(a,b)

|ϕ′(t)|)∥u − un∥W 1,p(a,b) + (1 + max
t∈(a,b)

|ϕ′(t)|)∥u − vn∥W 1,p(a,b)

≤ 2(1 + max
t∈(a,b)

|ϕ′(t)|)ε.

Thus ∥u − wn∥W 1,p(a,b)
n→∞−−−→ 0, whence u ∈ W 1,p

0 (a, b).

Theorem 6.4. Let a, b ∈ R, p ∈ (1, ∞). Let us denote by (w)-W 1,p(a, b), where
a, b ∈ R, the space of functions satisfying conditions

• u(t)
d(t) ∈ L1,p(a, b),

• u′(t) ∈ Lp(a, b)

with the quasinorm ∥u∥(w)-W 1,p(a,b) :=
u

d


L1,p(a,b)

+ ∥u′∥Lp(a,b) . Then

(w)-W 1,p(a, b) = W 1,p
0 (a, b)

and the quasinorms are equivalent for each p ∈ (1, ∞).

Proof. Let u ∈ (w)-W 1,p(a, b). By Lemma 6.1, this is equivalent to saying that
both conditions

• u(t)
t−a

∈ L1,p(a, b) ∧ u′ ∈ Lp(a, b),

• u(t)
b−t

∈ L1,p(a, b) ∧ u′ ∈ Lp(a, b)
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hold. Following Lemma 6.2, this is equivalent to

u ∈ W 1,p
{a}(a, b) ∧ u ∈ W 1,p

{b}(a, b)

which is satisfied, by the Lemma 6.3, if and only if u ∈ W 1,p
0 (a, b). Consequently,

(w)-W 1,p(a, b) = W 1,p
0 (a, b).

Also, by Lemma 6.1, Lemma 6.2 and Lemma 6.3 we have

∥u∥W 1,p
0 (a,b) ≤ ∥u∥W 1,p

{a}(a,b) + ∥u∥W 1,p
{b}(a,b)

≤ C1

⎛⎝ u(t)
t − a


L1,p(a,b)

+ ∥u′∥Lp(a,b)

⎞⎠+ C1

⎛⎝ u(t)
b − t


L1,p(a,b)

+ ∥u′∥Lp(a,b)

⎞⎠
≤ 2C1

⎛⎝u(t)
d(t)


L1,p(a,b)

+ ∥u′∥Lp(a,b)

⎞⎠ = 2C1 ∥u∥(w)-W 1,p(a,b)

and

∥u∥(w)-W 1,p(a,b) =
u(t)

d(t)


L1,p(a,b)

+ ∥u′∥Lp(a,b)

≤ C

 u(t)
t − a


L1,p(0,1)

+ C

 u(t)
b − t


L1,p(0,1)

+ ∥u′∥Lp(a,b)

≤ C · C2 ∥u∥W 1,p
{a}(a,b) + C · C2 ∥u∥W 1,p

{b}(a,b)

≤ 2C · C2 ∥u∥W 1,p
0 (a,b) ,

which completes the proof.

Remark 6.5 (a counterexample for p = ∞). Let u(t) = 1, t ∈ (0, 1). Then
u(t)
d(t) = 1

d(t) ∈ L1,∞(0, 1) and 1′ = 0 ∈ L∞(0, 1), however, for each vn ∈ C∞
0 (0, 1),

one has

∥u − vn∥W 1,∞
0 (0,1) = sup

t∈(0,1)
|u(t) − vn(t)| + sup

t∈(0,1)
|u′(t) − v′

n(t)| ≥ 1

and u /∈ W 1,∞
0 (0, 1).

Remark 6.6 (optimality). Let p ∈ [1, ∞), q ∈ [1, ∞] and a, b ∈ R. It is natural
to pose the question whether u ∈ W 1,p

0 (a, b) if and only if u(t)
d(t) ∈ L1,q(a, b) and

u′(t) ∈ Lp(a, b) within the following ranges of parameters:
(i) q ≤ p,
(ii) q > p,
(iii) q = ∞.
In case (i) the positive answer follows from Theorem 6.4 and the fact L1,1 ⊂

L1,q ⊂ L1,p. In case (iii) the answer is negative as we shall demonstrate by a
counterexample below. In case (ii) is question remains open.

Counterexample for the case (iii). Set (a, b) = (0, 1) and u(t) = 1 for each t ∈
(0, 1). Then u satisfies u

d
∈ L1,∞(0, 1) and u′ ∈ Lp(0, 1). Assume for a contra-

diction that u ∈ W 1,p
0 (0, 1). Thus there exists a sequence {un} of functions from
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C∞
0 (0, 1) such that |u − un|W 1,p

n→∞−−−→ 0. Choose ε, 0 < ε < 1
2 . Then there exists

n0 ∈ N such that ∫ 1

0
|u(t) − un(t)|p +

∫ 1

0
|u′(t) − u′

n(t)|p < ε2p (6.1)

holds for each n > n0. Let us denote M := {t ∈ (0, 1); |u(t) − un(t)| > ε} for
some n > n0. Hence

ε2p >
∫ 1

0
|u(t) − un(t)|p ≥

∫
M

|u(t) − un(t)|p > |M | εp,

and thus |M | < εp. There exists t0, 0 < t0 < εp, such that un(t0) > 1 − ε.
Therefore, using the Hölder inequality, we obtain∫ 1

0
|u′(t) − u′

n(t)|p =
∫ 1

0
|u′

n(t)|p ≥
(∫ 1

0
|u′

n(t)|
)p

≥
(∫ t0

0
|u′

n(t)|
)p

≥
⏐⏐⏐⏐∫ t0

0
u′

n(t)
⏐⏐⏐⏐p = |un(t0)|p ≥ (1 − ε)p > ε2p,

which contradicts the inequality (6.1).
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