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a astrofyziky, Př́ırodovědecká fakulta, Masarykova Univerzita
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Introduction

“Whereof one cannot speak, thereof one must
remain silent.*”

—Ludwig Wittgenstein, Tractatus
Logico-Philosophicus

0.1 The why of quantum gravity

In their contemporary form, the two principal physical theories that we have at
our disposal, well as they work in their respective application domains, do not
fit very coherently together. Quantum theory and quantum field theory, on the
one hand, provide a formulation of the dynamics of a system in terms of wave-
functions, probabilities, Hermitian operators and Hilbert spaces. The crucial
ingredient in this description is an exogenously supplied time and a spacetime
structure which is set and does not evolve itself during system’s evolution. Gen-
eral relativity, on the other hand, is a prescription for how the spacetime structure
evolves (this time in a non-set fairly arbitrary time parameter) in function of its
matter content. Finding a common ground between these two frameworks would
amount either to finding a prescription for the quantum evolution without any
reference to the external temporal structure or being able to formulate the quan-
tum dynamics of space and time along with its matter content with respect to
some of the arbitrary time parameters. Unfortunately, none of the tools needed
to tackle any of these possibilities came with the theories themselves.

But besides the displeasing fact that both of these theories are, as they stand,
written in different mathematical formalisms that cannot be reasonably mapped
one onto another, each of them suffers from internal problems of its own, even if
we forget for a while about the viewpoint of the other theory. These hint at their
fundamental incompleteness. In the case of the quantum field theory, the issue
is that one often gets UV divergences - infinite results in places where one would
expect finite quantities. These can be avoided by renormalization procedures
which, however, do not follow some coherent mathematical prescription and are
much closer in spirit to ad hoc mix-and-match methods. The fact that predictions
made in this way still match the experimental results to an astonishingly high
degree makes these shortcomings to a staunchly empiricist eye perhaps of less
acute nature.

General relativity, on the other side, while being in much better position
mathematically, predicts its own breakdown for large enough densities of matter
and energy inside of black holes and in the early Universe. That this is a generic
feature of the theory which cannot be avoided was rigorously proved in the well-
known theorems by Hawking and Penrose. One is then lead to believe that in
these regimes its classical description gets replaced by an as-yet-unknown theory.
But besides that, there is another reason for the insufficiency of general relativity

* In its original nonstilted form: “Wovon man nicht sprechen kann, davon muss man
schweigen.”
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in its current form. In Einstein’s equations the right-hand side couples stress-
energy tensor which characterizes matter and energy content to geometrical left-
hand side. But we know that the matter fields are at a fundamental level described
by quantum theory. One, therefore, needs either to come up with a way how
to consistently couple classical and quantum entities, or one needs to reexpress
the geometry on the left-hand side in fully quantum mechanical terms, i.e. to
construct a framework for a quantum theory of the metric tensor.

Considerations of this kind, along with a natural tendency for unification,
have given birth to quantum gravity as a new area of physics. Actually, it is
not uninteresting to note in this connection that the first person to explicitly
accentuate the need for it was Einstein himself when he gave an argument about
the instability of the electron orbits1. Needless to say, this was, of course, meant
with respect to the old quantum theory which missed its stochastic element. For
time being, we use the term quantum gravity in a purposefully ambiguous sense
as any theory that addresses any of the issues mentioned above. Its more concrete
definition will be given in a while.

0.2 Contact with experiment

Let us now consider how a purportive theory of quantum gravity could be probed
experimentally. A simple dimensional argument goes that as a theory encom-
passing special relativity, gravitation, and quantum dynamics, its natural units
should be given in terms of combinations of fundamental constants connected
with each of these different facets, i.e. respectively the speed of light c, gravita-
tional constant G and (reduced) Planck constant ~. For Planck units defined in

this way we get in numerical terms lp =
√

~G
c3

≈ 10−35m and tp =
√

~G
c5

≈ 10−44s.

These determine the spatiotemporal resolution at which one expects quantum
gravitational effects to become significant with the corresponding energy level

being Ep =
√

~c5
G

≈ 1019J ≈ 1028eV . One of the experimental options how to

test directly the predictions of quantum gravity would, therefore, be constructing
a hadron collider capable of observing collisions with beam energies comparable
to Ep.

The fact that the direct option mentioned in the last paragraph lies 15 orders
of magnitude beyond our current technological reach would make one adopt at
best a cynic attitude, perhaps somewhat inspired in manner by the quote given
at the beginning of this introduction. It came therefore as a bit of surprise2 when
it became clear that the direct observation route might not be the only feasible
one. The first step in recognizing this was the discovery or relict microwave
background radiation in 1960’s, the only available imprint from the era when
Universe was hot and dense enough for the quantum gravitational effects to play
an important role. Even though concrete proposals for how to extract measurable

1As cited in 1916: “Nevertheless, due to the inter-atomic movement of electrons, atoms
would have to radiate not only electro-magnetic but also gravitational energy, if only in tiny
amounts. As this is hardly true in Nature, it appears that quantum theory would have to modify
not only Maxwellian electrodynamics, but also the new theory of gravitation.”[31]

2We fully admit that we may be overindulging in the poetic license here, as there might be
some, to which it was no surprise at all. Still, we posit in general the result is not self-evident.
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predictions were missing at the time, a potential experimental channel was firmly
established. The second important step in this direction was when the works [3]
and others in 1990’s showed that another way to test for quantum gravity effects
would be in measuring high-energy radiation bursts. The idea is this: these
sources of radiation emit at various energies, durations, and intensities and when
the circumstances are right, the difference in the arrival times of high and low
energy photons is directly related to the dispersion factor that the prospective
quantum gravity theories predict [43]. The result of both of these developments
was a gradual incarnation of a fully fledged subfield of physics - quantum gravity
phenomenology, despite the supposed technological setbacks.

Without going into too much detail - some recent reviews of the field can be
found in [27], [4] - let us cite two newer additions into the possible observation
scenarios, each exploring a different aspect of the underlying quantum gravity
theory. The first one of them is a black hole phenomenology, which gained extra
relevance with the recent observation of gravitational waves. Even though the
highest curvature region, the singularity, is hidden and shielded under the event
horizon, there are various scenarios for how the quantum gravity effects could
pile up and leak over to the outer region [24], [46], [8]. Or there might be specif-
ic signatures of evaporating black holes formed during high-energy collisions in
particle accelerators [18], [5]. The second tantalizing possibility is an observation
of quantum gravity effects in condensed matter systems due to a gauge/gravity
duality. This concept asserts a fundamental equivalence between gravitational
systems in the bulk of a spacetime with quantum field theory systems on its
boundary, so once a precise dictionary of terms between both of these systems is
known, one can indirectly probe one by means of the another. Actually, due to
the extensive amount of experimental knowledge of condensed matter systems, it
is not completely unimaginable that we already detected an effect with quantum
gravitational origin [16], [17], [15].

0.3 Quantum gravity

In light of the conceptual arguments of the first subsection and a marked exper-
imental appeal of the second subsection, let us consider what forms the sought
quantum gravity could take. When considering a theory combining the conceptu-
al insights of quantum mechanics, special relativity, and gravity, one can proceed
at three distinct levels.

First, one may consider an implementation of quantum theory on a kinemati-
cal and dynamical level, while merging special relativity and gravity into general
relativity and restricting its role to a (kinematical) background. This general rel-
ativistic quantum mechanics approach would be one concrete instance of hybrid
dynamics - a consistent coupling of classical and quantum systems mentioned in
the very first subsection. It is important to note that this approach is the only
one where corroborated experimental results exist, however, studies show that
the absence of backreaction of matter content (particles) on geometry forestalls
any insight into the deeper questions one is expected to address. The role of
this approach, therefore, lies in parametrizing the low energy limit of other more
involved theories.

The second option of combining relativistic, quantum and gravity, is to imple-
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ment a quantum field theory on a kinematical and dynamical level while allowing
for perturbative backreaction on the general relativistic background. This ap-
proach is another example of hybrid dynamics. Interestingly enough, the backre-
action of the field is not necessary for getting non-trivial results, so it can actually
be without a loss of generality considered again an a priori static background.
Along with many technical issues that arise when one tries to quantize a field on
a general non-symmetric spacetime and lacks standard Poincare invariance as a
heuristic principle, most notably a lack of a proper renormalization procedure,
quantum field theory on curved backgrounds, as this approach came to be known,
has yielded important insights into the quantum nature of the gravitational field.
In this respect, it stands in contrast to the previous case. One of these insights is
a prediction of black hole thermal radiation which causes the black hole to grad-
ually lose mass. This surprising occurrence is an example of a process of purely
quantum origin that violates the classical laws of black hole thermodynamics and
in the following, we will give its simple heuristic derivation.

Since it turns out that the desired result is quite generic [36] and does not de-
pend on particular choices of the spacetime solution or quantum field, we are free
to make the choices so as to make the underlying argument the most transparent.
Let us thus consider a 1 + 1-dimensional Schwarzschild solution

ds2 =
(
1− rg

r

)
dt2 − dr2

1− rg
r

, (1)

and a massless scalar field with Lagrangian density

L =
1

2
ηµνϕ,µϕ,ν −

1

2
m2ϕ2, (2)

S =

∫
d4xL(ϕ, ∂µϕ). (3)

Now the ‘converting procedure’ that transforms Minkowski QFT into curved
background QFT is minimal coupling. It consists in replacing ηµν → gµν , ϕ,µ →
ϕ;µ and d4x → d4x

√
−g, in other words, instead of the flat spacetime metric

we use the relevant metric tensor, instead of the partial derivatives we use the
covariant derivatives and instead of a trivial Lorentz-invariant volume element
we utilize the generally covariant one. The equation of motion then has a simple
form

DµDµϕ = 0. (4)

Intuitively speaking it is now clear that the space of solutions to this equation
somehow contains all possible one-particle states that can be used in the con-
struction of the full Fock space. It turns out that this is indeed the case as will
become clear in the following. Let us now show explicitly how the non-trivial
result of black hole radiation arises and what is the point of difference with the
flat space quantization.

Transforming (1) into lightcone tortoise and Kruskal-Szekeres coordinates

r∗(r) = r − rg + rg log

(
r

rg
− 1

)
, (5)
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ũ = t− r∗, ṽ = t+ r∗, (6)

resp.

u = 2rg exp

(
− ũ

2rg

)
, v = 2rg exp

(
ṽ

2rg

)
, (7)

we get

ds2 =

(
1− rg

r(ũ, ṽ)

)
dũdṽ, (8)

ds2 =
rg

r(u, v)
exp

(
1− r(u, v)

rg

)
dudv. (9)

Now, by inspecting equation (4), it is clear that the solutions will have a form
of a superposition of planar waves. The respective angular frequency will be
in general given with respect to the proper time dτ =

√
gµνdxµdxν , so for the

metrics (8), (9) we can write

ϕ̂ =

∫ ∞

0

dω√
2π

1√
2ω

[e−iωuâ−ω + eiωuâ+ω ] + (left-moving) (10)

=

∫ ∞

0

dΩ√
2π

1√
2Ω

[e−iΩũb̂−Ω + eiΩũb̂+Ω] + (left-moving). (11)

where the left-moving part is given by the same expression except for u → v,
resp. ũ→ ṽ and creation and annihilation operators â±ω ,b̂

±
Ω create and annihilate

modes as one would expect from standard QFT and give rise to different vacua
according to3

â−ω |0K⟩ = 0, b̂−Ω|0B⟩ = 0. (12)

Now for the general relation between â±ω and b̂±Ω (called Bogolyubov transforma-
tion)

b−Ω =

∫ ∞

0

dω[αΩωâ
−
ω − βΩωâ

+
ω ], (13)

it can be shown using (5)-(7), (10), (11), (13) that

|αΩω|2 = e2πΩ·2rg |βΩω|2. (14)

If one considers the expectation value of b-particle number operator in |0K⟩, one
eventually gets

⟨N̂Ω⟩ ≡ ⟨0K |b̂+Ω b̂
−
Ω|0K⟩ =

∫
dω|βωΩ|2 = [exp(2πΩ · 2rg)− 1]−1δ(0), (15)

3In accordance with the literature we call |0K⟩ Kruskal vacuum and |0B⟩ Boulware vacuum.
Physical considerations show that the first one of them corresponds to an observer far from
the black hole in asymptotical regions whereas the second one is vacuum of an observer falling
through the event horizon.
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where the factor δ(0) corresponds to an infinite volume of space. The density
of the b-particles in |0K⟩, using the definition of the Hawking temperature TH =
1/4πrg, therefore is

nΩ = [exp(THΩ)− 1]−1. (16)

This is the desired formula for the Hawking black hole radiation for a two-
dimensional Schwarzschild solution.

Since the procedure sketched above seems quite generic, one might be lead to
believe that the results are not a unique prediction of curved background QFT
and might be reproduced under different settings. Let us now show why the
standard QFT is insufficient in this respect.

First, for two Lorentz-related reference frames and Minkowski background,
(5)-(7) are replaced by

x′ = Λx, (17)

u = t− x, v = t+ x (18a)

u′ = t′ − x′, v′ = t′ + x′ (18b)

and the connection components are identically zero, so the analog of equation (4)
contains only partial derivatives

∂µ∂µϕ = 0. (19)

Now the crucial difference consists in the fact that after expanding the general
solution into positive and negative frequency modes labeled by creation and an-
nihilation operators along the lines of (10), (11), the Bogolyubov transformation
between them yields βxx′ = 0. In other words, there is only one canonical choice of
positive frequency modes and Lorentz transformations only act by changing basis
in it, not by intermixing positive and negative frequency modes as in the case of
general diffeomorphisms (5)-(7). The space of all solutions of (19) is therefore in
a sense ‘flat’ whereas that of (4) is not. This is why a state filled with particles
can never be a vacuum state for a different choice of physical observers. It de-
serves mentioning that similar effect as the one described above occurs also for
accelerated observers in Minkowski spacetime (Unruh effect) and therefore it can
be seen as a consequence of losing Lorenz symmetry as an aspect of one particular
GR solution and replacing it with more general diffeomorphism symmetry.

Another important aspect of this second line of reasoning are the semiclassical
Einstein’s equations

Rµν −
1

2
gµνR + Λgµν = 8π⟨Φ|T̂µν |Φ⟩ (20)

which are expected to hold in the mean-field approximation regime. The fact that
they are, however, not likely to be true at the more fundamental level seems to
be in an indirect way suggested by the following arguments. First, assuming that
there is a suitable Hilbert space to support the quantum states |Φ⟩ (which is not
trivial), these equations are solved in an iterative manner. Beginning with some
non-vacuum state |Φ0⟩ and a flat metric, the resulting metric tensor gµν is fed
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into both T̂µν and the state |Φ1⟩ which however is built upon different vacuum, as
follows from the discussion of Hawking radiation above. In general, this procedure
does not converge. Second, the renormalization procedure intended to fix these
divergences entails an addition of extra terms quadratic in curvature which change
the original setup of the theory as well as its solutions. One of the consequences of
this is a possible instability of Minkowski space. Third, the inherent non-linearity
of these equations seems to be both at odds with the principles of quantum theory
(which is inextricably built around the notion of linearity), as well as with the
available empirical evidence.

Finally, the third option4 of addressing the issue of quantum gravity is to im-
plement both quantum field theory and general relativity on both a kinematical
and dynamical level, much like in the previous case but this time going beyond the
mere perturbative backreaction and considering fully coupled spacetime-matter
system evolution. This diffeomorphism-invariant quantum field theory of space-
time and matter amounts to finding a quantum field theory for a GR action

SEH =
1

16

∫
M
d4x

√
−g(R− 2Λ)− 1

8

∫
∂M

d3x
√
hK + Smatter, (21)

where h is a determinant of a 3-metric and K is a trace of the extrinsic curvature
on the boundary ∂M . This is the case on which we focus the attention from
now on. In the following, we drop the cursive script and use the term quantum
gravity to refer only to this third option. Given the shortcomings of the previous
options, it does not take a huge leap of faith to state that this approach is in a
very good position to address the conceptual issues that were briefly described in
the beginning and that initiated and spurred research in these directions in the
first place.

0.4 Approaches and options

Despite considerable efforts, a fully satisfactory quantum theory of the action (21)
is not yet available, even though that does not mean that no distinct programs
and methods associated to them appeared where some degree of progress would
be achieved. We will eventually settle on one particularly promising research
direction and justify the selection in the next section, and so in this section, we
try to paint a more broad picture by giving a short overview of a cornucopia
of approaches that one may employ when addressing the issue of quantization
of action (21). We are necessarily parsimonious with details and neglect the
historical progression of events5.

The fact that the action (21) does not have a fully consistent quantum theory
can be interpreted in (at least) two different ways. On the one hand, one may
conclude that no such theory exists and therefore in order to address the problems
of singularities and the natural cut-off for QFT one needs to add further terms to
(21) which reproduce the Einstein-Hilbert action only in the low energy limit. Or,
on the other hand, one might conclude that the set of techniques for constructing

4The reason why there are not more options is that general relativity can be seen as a kine-
matical prescription for valid theories whereas quantum mechanics can be seen as a dynamical
prescription. Thus, dynamical GR, kinematical QM combinations do not make sense.

5An exhaustive historical account can be found in [44]
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QFTs is insufficient and that the peculiar properties that set general relativity
apart from other interactions (general covariance and ‘background’ as a dynamical
entity) necessitate the development of new special methods. Related to this
first question is the notion of primary and secondary quantum gravity theories.
Primary quantum gravity theories begin with the action (21) and apply heuristic
quantization rules to it in order to arrive at a relevant quantum theory. A similar
methodology was successfully applied to a quantization of electromagnetism and
its merit is a tight control over the assumptions and the logical structure of
the theory. Secondary quantum gravity theories, on the other hand, assume
that the problem of quantizing gravity is intertwined with the unification of all
interactions and therefore posit that the correct framework for finding it is to
postulate validity of unified field theory which will reduce to quantum gravity
only in suitable limiting cases. A similar approach was successful in finding
a renormalizable theory of weak interactions and it is the viewpoint taken by
e.g. string theory. A common consequence of this standpoint would be that
general relativity is not quantized as it is but contains extra structures that are
necessitated by the unification framework. A significant drawback of this set-up
connected to its speculative premise is more involved ‘accounting’ of the results
of the theory, i.e. in case a noncoherent result is obtained, it is hard to tell apart
effects that are a consequence of general non-viability of the framework from the
effect that follows from details of the unification scheme. This leads to a looser
logical structure.

An important point of departure which is made explicitly in the primary
quantum gravity theories (but in some form is present also in the secondary ones)
is a choice of what structures related to the spacetime are to be left classical and
which ones to quantize. In general terms the hierarchy is the following:

sets of events → topological structure → differential structure

→ causal structure → metric structure

This in principle offers one way of classifying prospective theories. Most of them,
however, make the same choice of subjecting to the quantization only the last
two options, leaving set, topological and differential structure intact.

Despite the wide variety of approaches to quantization,6 only a handful of
them have seen a wider application in physics7. This situation is also reflected in
approaches to quantum gravity. The three main directions that are being actively

6This is because from the mathematical point of view, when quantization as a mapping
between functions on a phase space and Hermitian operators on the corresponding Hilbert space
is defined with respect to a reasonable set of axioms, the construction in general, i.e. the axioms
themselves, can be shown to be inconsistent. Somewhat vaguely put, these are a) linearity, b)
unit being mapped to unit, c) composition law, d) canonical representation for position and
momentum operators guaranteed by the Stone-von Neuman theorem and e) correspondence
between commutator and Poisson brackets. Working around this situation invites a multitude
of approaches. A review is available in [1].

7So far a theory is either quantizable by some the ‘mainstream’ methods, or it is not quantiz-
able at all. It is important to note that the relationship between classical and quantum theories
is not one-to-one and onto, while not every classical theory needs to have a quantum coun-
terpart, more than one quantum theories may lead in the classical limit to the same classical
theory.
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pursued are perturbative quantization, canonical quantization, and path integral
(covariant) quantization. In the following we briefly describe each one of them.

The starting point of the perturbative quantization is a split of the space-
time metric into a flat background and a small perturbation representing a weak
gravitational field

gµν = ηµν + hµν . (22)

This allows us to write Einstein’s gravitational law in the form of a wave equation

�γµν = 0 (23)

for γµν = hµν − 1
2
ηµνh. One can now proceed along generic lines (not completely

unlike those of the calculation of the Hawking radiation) - the particle excitations
can be then shown to be necessarily of spin 2, computing one-loop contributions to
transition amplitudes, however, leads to a UV divergence. Renormalization of this
divergence requires adding a term quadratic in curvature to the original action.
This new term, however, causes another divergence which can be renormalized
either by adding another term with a quartic power in the curvature (leading to
another divergence of higher order ad infinitum) or postulating ghost fields with
asymptotical states (for Λ = 0). In this sense, one can hear said that general
relativity is a perturbatively non-renormalizable theory.

There are two ways of coping with this difficulty, the first one of them is aban-
doning the ‘pointiness’ and localization of the particles from the very beginning,
the second one is generalizing the concept of renormalizability of a quantum the-
ory. The first option is the conceptual foundation of a string theory whereas the
second one leads to a scenario called asymptotic safety.

It can be said that string theory is a roundabout answer to the question posed
in the beginning of this section. The fact that action (21) does not have a quantum
theory is interpreted as meaning that gravity can be only quantized when unified
all the other interactions. A similar scenario is realized in the case of the theory
of weak interactions - the Fermi four point theory of weak interactions - which is
non-renormalizable and can be viewed only as a mean field approximation of the
fundamental theory - a U(1)×SU(2)-based electroweak model. Therefore in the
terminology introduced above, quantum gravity is here necessarily a secondary
theory. This assumption of extra structure implies higher energy corrections to
(21). We do not intend to give here a comprehensive overview of the subject
which unfortunately is too rich to fit the present confines. We do sketch however
in what concrete sense does the string theory satisfy the definition of quantum
gravity.

The starting point of the string theory is a quantization of an open or closed
string propagating in a D-dimensional Minkowski spacetime. Later considerations
show that the closed string case corresponds to the case with bosonic degrees of
freedom so we start by considering it first. In analogy with the relativistic particle
where the action is proportional to the proper time along the worldline, the action
of a string is proportional to the area of the worldsheet

SNG = − 1

2πα′

∫
M
d2σ
√

| det gαβ| (24)

10



where gαβ is the metric on the worldsheet induced by the embedding X(σ, τ),
d2σ = dσdτ and the term 1

2πα′ represents the string tension. This Nambu-Goto
action is not very suitable for quantization because of the non-linear square root.
One can, however, use it to derive classically equivalent Polyakov action

SP = − 1

4πα′

∫
M
d2σ

√
hhαβ(σ, τ)∂αX

µ∂βXµ (25)

where hαβ now denotes an intrinsic metric on the worldsheet, i.e. one with respect
to which one varies the action. This variation gives a Euler-Lagrange equation a
wave equation (

∂2

∂τ 2
− ∂2

∂σ2

)
Xµ(σ, τ) = 0 (26)

whose solution, after taking carefully into account boundary conditions and re-
quired commutation relations between postulated creation and annihilation op-
erators, necessarily contains a spin-2 particle in 4 dimensions. But it was shown
[31] that Lorentz invariance of a spin-2 massless particle is a sufficient condition
for the equivalence principle and thus GR. Thus, as a consequence of our initial
assumption (24) resp. (25), string theory automatically (to the lowest order) con-
tains a quantum gravity in four dimensions. Besides this argument, consistency
of the string quantization on an arbitrary background requires that the Einstein’s
equations be satisfied for this background. In this sense one says that string the-
ory provides a consistent theory of quantum gravity. It should be mentioned,
however, that this does not come without problems of its own - most notably an
avoidance of Weyl anomaly requires the spacetime dimensionality to be D = 26
for a bosonic string and D = 11 for a fermionic string which contradicts experi-
mental observations as well as everyday experience, the theory also seems to rest
on a validity of some form of supersymmetric scenario which has proved so far
difficult to establish empirically. One can thus conclude that despite an undeni-
able elegance of the framework the difficulty of connecting conceptual premises of
the theory with falsifiable predictions presents an ongoing serious challenge that
the theory has to overcome in order to deliver on its initial goals.

The second approach of dealing the issue of perturbative non-renormalizability
of GR is the asymptotic safety scenario. Here one abandons the use of the per-
turbative expansion and generalizes the notion of renormalizable theory using
renormalization group methods instead. Still, it is far more close in spirit to the
previous approach than any of the following which is why it is included here in
the perturbative approaches. The view taken by the asymptotic safety scenario
is this: to a particular set of particles and symmetries one considers a manifold of
all possible coupling parameters gi. On this manifold, changing the energy leads
to a renormalization group flow according to the equation

∂tΓµ =
1

2
Tr
[( δ2Γµ

δϕδϕ
+Rµ

)−1

∂tRµ

]
(27)

where Γµ is an effective action dependent on the energy scale µ, Rµ is an infrared
regulator and t = log µ. The absence of divergences in physical quantities is guar-
anteed by the existence of a non-Gaussian fixed point8 of this flow whereas all

8A Gaussian fixed point corresponds to the free theory with gi = 0 ∀i.
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the trajectories that lead to it form a critical surface. Since in general, for a non-
renormalizable theory the manifold of parameters will be infinite-dimensional, the
finite dimensional critical surface reestablishes the predictive power of the theory.
Unfortunately, equation (27) can only be solved by truncating the degrees of free-
dom of the original theory and considering a finite dimensional problem instead.
Thus, a conclusive proof of the existence of fixed point of general relativity is still
missing. The truncated systems, however, do possess a non-Gaussian fixed point
which is an appealing piece of indirect evidence and a necessary condition for the
general viability of this approach.

In contrast with the perturbative quantization, the canonical approach does
not take as a starting point the split of the spacetime into a static background
and a small perturbation. Rather, the main idea is that different reformulations
of the underlying theory lead to differently tractable functional relations between
variables which one seeks to represent as operator equations or to differently
tractable constraints, if these are present. Once one has chosen the variables, one
implements the general canonical quantization procedure:

1. One identifies configuration variables and their conjugate momenta. For
these fundamental variables Vi, one demands

Vi = {Vj, Vk} → V̂i = − i

~
[V̂j, V̂k]. (28)

2. One decides which of the non-fundamental variables are to be quantized
according to (28) and which are not. Since the left-hand side features
commutative classical variables whereas the right-hand side does not, this
is the point where factor ordering ambiguities are encountered. In general,
it is impossible to implement (28) for all the composite variables without
contradicting the irreducibility of the representation.

3. One constructs an appropriate representation space F for the dynamical
variables V̂i, the elements of this space are called wave functionals in antic-
ipation of their physical interpretation. In general, besides the variables V̂i,
the system will also feature constraints Ĉi which select physical states in F .
At this point, neither does the space F have to have a Hilbert space struc-
ture, nor do the variables V̂i and the constraints have to be self-adjoint,
precisely because of a presence of the non-physical states in F . Actual-
ly, demanding the self-adjointness of Ĉi might even lead to mathematical
inconsistencies.

4. One implements the constraints

ĈiΨ = 0, (29)

this condition singles out candidates for the physical states Ψ′ ∈ F0. Addi-
tional requirements for the physical states might be imposed to obtain the
genuine Fphys ⊂ F0 ⊂ F9.

9Actually, this is not exactly the case of LQG where the diffeomorpism-invariant states are
not normalizable in F0 and they must be constructed as element in the dual space to F0.
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5. One constructs a complete set of observables. In the presence of constraints,
a concept of Dirac observable is needed for which the classical requirement
{O,Ci} ≈ 0 translates in quantum theory into

[Ô, Ĉi]Φphys = 0. (30)

6. Finally, one ascertains the structure of Fphys. For constrained systems with
finite-dimensional Lorentz gauge groups, a group averaging procedure yields
unique Fphys. Additionally, depending on the spectrum of the operators cor-

responding to fundamental variables V̂i, a rigged Hilbert space construction
with Gel’fand triples may be needed.

Following this recipe one gets a fully viable quantum theory for the classical
system one started with. Depending on the initial choice of variables, doing this,
albeit to a partial extent, gives rise to either geometrodynamics or loop approach
to quantum gravity. As both of these approaches form an important part of our
thesis in the latter chapters, we do not elaborate on them here much further and
postpone their more detailed discussion until then.

Finally, the third conceptual option of approaching quantum gravity might be
called covariant quantization or path-integral quantization. In contrast to both
perturbative and canonical quantizations, which one might identify as top-down
methods, the path integral approach employs rather a bottom-up methodology.
The core issue is that diffeomorphism invariance precludes the existence of a
measure on the space of all metrics which one would need in order to advance
with the straightforward application of the formula

⟨h0|h1⟩ =
∫
g[∂M]=h0,h1

D[gµν ]e
iSEH [g], (31)

h0, h1 being the induced metrics on the boundary ∂M . This can, however, be
bypassed if one performs the integral over diffeomorphism-invariant geometries
instead of metrics and imposes suitable continuity and smoothness restrictions
on the set of admissible geometries. These can be approximated by discrete
configurations which lead to an ansatz of a form

⟨∆h0 |∆h1⟩ =
∑
conf

∑
j0,j1,...

∏
p

Ap[j0]
∏
l

Al[j1] · · ·
∏
4s

A4s[j4] (32)

where the first sum is taken with respect to configurations that are consistent with
the boundary discretizations ∆h0 , ∆h1 , p, l, 4s denote point, line and 4-simplex
respectively, ji are possible degrees of freedom connected with i-dimensional con-
stituents and A’s are elementary contributions to the amplitude. This is how the
bottom-up methodology concretely realized.

Taking this line of thought as a starting point leads to two well-developed
approaches to quantum gravity - causal dynamical triangulations (CDT) and
spinfoams. CDT restricts the set of configurations to be summed over to those
formed by triangulations of fixed spatial slices by tetrahedra with a fixed spacelike
length ls and linking these triangulations with links with a fixed timelike length lt
[2]. This gluing together of two subsequent slices so as to ensure local preservation
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of the causal structure10 requires four different 4-simplices - a (4,1)-simplex and
a (3,2)-simplex11 and their time-reversed versions. The amplitudes Ai are the
ones reproducing discretized Regge action for a given discretization which can be
shown to depend only on the total number of vertices N0 and numbers of (4,1)-

and (3,2)-simplices N
(4,1)
4 , N

(3,2)
4 . Spinfoam approach, on the other hand, does

not restrict possible discretizations by enforcing a fixed foliation into spacelike
hypersurfaces, its geometrical starting point is rather a general discretization
of the bulk with variable line lengths (which can be taken as corresponding to
an internal variable j1) which are subject only to triangular inequalities12. The
amplitudes are then chosen with respect to group theoretic considerations such
as invariance with respect to local gauge transformations with different choices
corresponding to different spinfoam models. This second approach will be a topic
of interest in latter parts of this thesis which is why we do not expand on it
further.

These are then the three most developed approaches to quantum gravity. They
can be traced back to their historical roots and have largely retained their distinct
character despite various attempts at convergence and mutual cross-pollination.
Let us now consider anew the question at the beginning of this section. It was
stated in there that the fact that the action of general relativity does not have
a fully consistent quantum theory yet can be interpreted either in a way that
the set of methods currently used for quantization are inadequate for the case
of gravity (point of view that is more in line with the primary quantum gravity
theories) or that general relativity may require additional structure in order to
make it quantizable (point of view more in line with the secondary quantum
gravity theories). Do these two options fully exhaust all the possibilities? In
terms of some speculative orthogonality of ideas, assuming the question is well
posed, they do, which however does not mean that some linear combination of
them could not be realized in Nature. Such a linear combination could, for
example, require general relativity to be reformulated in terms of as yet unknown
mathematical structures that would possibly also imply its completion and that
would on their own suggest a novel suitable quantization method. Due to the
non-orthodox nature of this option, it is clear that research in this direction is
necessarily less developed than that of the other options. There have however
been concrete results and in the following we present some of the ideas that have
arisen in this sector. We also give an argument against it as far as adding new
structure to general relativity is concerned.

Some of the non-orthodox approaches to quantum gravity that are worth men-
tioning are non-commutative geometry, causal sets, and twistors. Some closely
related ideas concern quantization of Einstein-Cartan theory and either general
relativity or quantum mechanics as a non-fundamental but emergent paradigm.

Rather than being an independent approach to quantum gravity, noncommu-
tative geometry is a part of mathematics that has gradually found its way into
physical applications. Its basic idea is to extend, roughly speaking, the dual re-

10a conceptual assumption around which the theory is built
11Numbers in brackets refer to how many vertices of the simplex lie on a t hyperplane and

how many on the subsequent one.
12This holds true for the Ponzano-Regge model, the other models can be seen as its general-

izations.
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lation between topological spaces and commutative rings of functions on them to
a broader class of structures [52], [30]. This dual relation often allows, for exam-
ple, to reconstruct the geometrical structure of a given space from the algebraic
properties of the functions defined on it. Broadening the analogy so as to include
the case of noncommutative algebras and using them to define and explore gener-
alized geometrical structures constitutes the core of non-commutative geometry
per se. As such, the idea has found applications in quantum field theory, string
theory, and quantum spacetime, though it cannot be stated at this stage that the
results are as thorough as that of the more mainstream approaches.

Causal sets, on the other hand, build the theory around two notions considered
to be fundamental - discreteness and causality [29]. The kinematical setup of
the theory is that of a discretized spacetime manifold where each of the chunks
of spacetime is represented by an event. These events are connected among
themselves with links that embody the relations of causal past/future. The whole
set of events is then called a causal set and the causality relation endows it
with a partial order structure. The choice of events in the underlying manifold
must be subject to Poisson process in order to guarantee Lorentz invariance of
the constant density of the selected points which is in turn needed in order to
interpret the number of events as a spacetime volume. The dynamical content
of the theory is provided by a process called classical sequential growth which
from the mathematical point of view can be seen as a probability measure on
the set of all causal sets with a given number of events. Despite these facts, the
theory still faces serious challenges mainly at the kinematical stage where it is
in general difficult ascertain a consistent correspondence between causal sets on
the one hand and classical solutions to Einstein’s equations on the other hand,
as well as in finding a coherent quantum formulation of the dynamics [29]. From
the point of view of the diagram shown above, causal sets are a rare instance of
an approach that attempts to apply the quantization procedure already at the
level of point set structure.

Twistors are objects in a four-dimensional complex vector space, all of whose
mathematical properties can be deduced from the correspondence with Minkowski
spacetime through (

Z0

Z1

)
=

i√
2

(
t+ z x+ iy
x− iy t− z

)(
Z2

Z3

)
. (33)

Such a construction is only tenable in four dimensions and its initial motivation
was to provide a unifying mathematical framework for quantum gravity with the
complexity of the space naturally accounting for the complex quantum mechanics.
Besides that, the twistor formalism naturally arises in the equations of motion
of massless particles of arbitrary spin on a flat background. Even though one
cannot say that the framework is developed enough to provide a fully functioning
quantum theory of gravity - compared with other approaches the research in this
direction has received less attention - there has been a recent upsurge of interest
in twistors because of their connection with perturbative calculations in string
theory.

For the sake of completeness, let us now mention some of the more speculative
options besides the more conventional ones mentioned up until now. These op-
tions include Einstein-Cartan theory, thermodynamic gravity or non-fundamental
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quantum mechanics. Out of many possible completions of general relativity we
chose Einstein-Cartan theory because of well-known uniqueness theorems that
state that any extension of general relativity must reduce to it or to standard
GR for low enough energies. One starts here by relaxing the requirement for
the connection to be torsion-less and metric compatible. The resulting theory
then naturally allows for coupling between spin currents and spacetime torsion
and seems to provide a satisfactory resolution of a Big Bang singularity. Some
general aspects of its quantization have been recently clarified although from the
general point of view the viability of the theory remains in question. The idea
of gravity as a force of thermodynamical origin, in turn, finds its basis in consid-
erations of an entanglement entropy and heat fluxes across event horizons. The
result is that general relativity can be consistently interpreted as an equation of
state for some as yet unknown microscopic degrees of freedom [28]. The conse-
quence is that ”it may be no more appropriate to quantize the Einstein equation
than it would be to quantize the wave equation for sound in air”[28]. Related
to this point is the idea of entropic gravity which does away with the need of
quantization completely, since gravity is interpreted as a force of entropic origin
caused by a change in the amount of information associated with the positions of
bodies of matter. Here the most important consequence is that at cosmological
distances, the gravitational force decreases with an inverse linear law instead of
the squared inverse law of general relativity or Newtonian dynamics. Surprisingly
enough, this is capable of accounting for the rotational curves of galaxies without
the need to invoke dark matter13 Despite these partial successes, however, there is
an ongoing argument about whether the theory implies gravity-induced quantum
decoherence in a double-slit experiment which would be at odds with the observa-
tions and would decisively disprove it [32]. Finally the most speculative and the
least developed of the three options is the non-fundamental quantum mechanics
scenario. Even though it does not find support in available experimental evi-
dence, it very closely bears on the interpretational issues of quantum mechanics,
in particular when considered in the cosmological settings where no reasonable
notion of an external observer exists. There have been some ideas linking this
scenario with holographical principle and quantum information theory [34]. It is
clear that if the framework of quantum mechanics is not fundamental, it may not
be the best idea to try to construct a theory of quantum gravity but it might
make rather sense to unify or make gravity compatible with the ‘true’ underlying
framework.

Having gone through some of the approaches and more or less exotic ideas with
respect to what form the quantum gravity could take14, let us now try to come up
with some hopefully useful criterion that somehow distinguishes between them.
With a scarce empirical input and an absence of exact falsifiable predictions, one
of the most important criteria is that of mathematical consistency. Fortunately,
in simplified circumstances this question can be settled directly. One concrete ex-
ample of such simplified circumstances on which we focus here is general relativity

13Dark energy is explained endogenously in this framework [50].
14We purposefully omitted Hawking’s Euclidean quantum gravity proposal whose methods

have been gradually absorbed into other approaches mentioned above. We also skipped some
more speculative proposals, such as the DGP model or the superfluid vacuum theory, that so
far lack enough structure to make their quantum gravitational aspects transparent.
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in 2+1-dimensions. Without going into too much detail, let us summarize that in
this case, gravity can be quantized either by first getting rid of the gauge freedom
and postulating commutation relations in the reduced phase space15 or alterna-
tively by following literally the Dirac recipe for constrained systems outlined in
the following and solving the resulting Wheeler-de Witt equation16. Furthermore,
one may successfully employ path integral techniques to achieve again a consis-
tent result bypassing the requirement of no topology change imposed by the two
last options. The conclusion then is that no additional structure is needed to ob-
tain a quantum general relativity theory in 2+1 dimensions. This constitutes an
important piece of indirect evidence against secondary quantum gravity theories
and some of the non-orthodox approaches in general.

0.5 Loop quantum gravity

In the last section, we have given a discussion of various different approaches
to quantum gravity, sketching their respective points of departure and how they
relate between themselves. This allowed us to show and compare their respective
assets and drawbacks from a more general perspective. In this section we build
upon this and justify our selection of one particular approach - loop quantum
gravity, as a promising candidate for quantum theory of gravity. Under this des-
ignation we mean a union of loop approach discussed under canonical approaches
and explicitly covariant spinfoams.

The discussion in the last paragraph of the last section represents an argument
against addition of extra structure to general relativity solely in order to be
able to carry out its quantization. By this it is meant that this extra structure
may be realized in Nature but it is by no means necessary for the attainability
and consistency of quantum gravity. Formulated in this way, this gives a slight
counterevidence17 against the assertions and conceptual bases of string theory,
Einstein-Cartan theory, thermodynamic gravity and non-fundamental quantum
mechanics. This, however, cannot be extended to positive evidence for some
the remaining approaches. What one can nevertheless do is that one can argue,
following the discussion in [49], that what sets loop quantum gravity apart from
the other approaches is that the theory is explicitly constructed by closely paying
heed to a closely related concept: the concept of minimality. Under its premises,
one takes the two empirically validated properties of Nature and tries to explore
the consequences of consistently combining them into a single logical unit. If
this combination turns out to be untenable then one stops and sees exactly what
extra structures are needed in order to do so, rather than guessing them. This
methodological clarity can be taken to be the first major argument in favor of
LQG.

Second, an up-until-now failure of perturbation expansion-based approaches
to provide a working theory of quantum gravity does not imply that the same
cannot by achieved by different means. This pertains to string theory only to a
limited degree, because as we noted above, the theory cannot be seen as a mere
extrapolation of a perturbation quantization of non-interacting gravitons, but it

15with several distinct ways how to implement this [14]
16the same remark applying here
17It is clear that such an assertion cannot be taken too literally unless explicitly proven.
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does apply to it because the concept of graviton features prominently and necces-
sarily in it and because non-renormalizable perturbative gravity plus corrections
is naturally contained in it as a low-energy limit. The same assertion works also
in the other direction: virtually all known interacting theories cannot be quan-
tized exactly (non-perturbatively) but they can be separated into a free field part
plus a small correction coupled through interaction constant which is responsible
for the nontrivial processes, i.e. a first step of perturbative quantization.

Related to this, one can say that even if the perturbative quantization of a
given system does make sense, it may happen that it provides wrong physical
insights. An example of such a situation is a standard harmonic oscillator with a
Hamiltonian H = p2 + ω2q2. Treating the potential energy part ω2q2 as a small
perturbation in a parameter ω to a free field part p2, one does not get the discrete
energy states as one would expect, what one gets instead, no matter how large
ω is, are the continuous eigenstates of the free theory. Because of the peculiar
properties of the gravitational field mentioned in the very beginning, one is lead
to believe that similar scenario is very likely to be relevant also for quantum
gravity.

The third argument in favor of LQG, connected with the terminological re-
mark above, is that it turns out that as a framework LQG admits two independent
formulations that yield (very probably) the same physical results. This equiva-
lence between canonical and path-integral formulation has been proven rigorously
in 3 dimensions where an exact form of a projector to a physical Hilbert subspace
can be given, this projector induces a physical scalar product on Hphys and it can
be given a rigorous interpretation as a sum of transition amplitudes associated to
discrete structures connecting an initial and final triangulation (spinfoams)[39].
Numerical evidence seems to support the claim that this equivalence is also valid
in higher dimensions. This result, therefore, reveals internal robustness of loop
quantum gravity with respect to what starting point is chosen in its investigation.

Finally, the fourth reason for the well-posedness of LQG as a quantum theory
of gravity is its relatively high level of maturity which puts it in a good position
with respect to the phenomenological considerations of the previous section. In
this respect it differs from most of the other approaches that we enumerated.
Generally speaking, the research into applications of LQG has sprung up in two
principal directions: the first one of them is concerned with giving a microscopic
statistical derivation of black hole entropy (implied by the Hawking radiation
derived above), while the second one is the application of symmetry reduced
models to problems in cosmology (loop quantum cosmology). In the first case,
the breakthrough insight of LQG is that the black hole entropy can be evaluated
by considering a number of spin network states with a link piercing the event
horizon. This link naturally carries a quantum of area that contributes to event
horizon’s area which in turn is associated with the black hole’s entropy according
to the Hawking-Bekenstein formula

SBH =
A

4l2p
. (34)

To replicate this, two methods can be used. One the one hand, microcanoni-
cal considerations, that take into account only geometrical excitations with no
degeneracy induced by non-geometric degrees of freedom, lead to a result
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S =
γ0
γ

A

4l2p
(35)

where γ0 is a numerical factor of order 1 and γ is a Barbero-Immirzi constant.
Since the value of the later parameter is arbitrary, one can interpret this as a
condition for its value γ = γ0. Improved canonical methods on the other hand
give

S =
A

4l2p
+

√
πA

6γl2p
, (36)

i.e. Barbero-Immirzi constant enters only as a quantum correction to the semi-
classical formula. Here one makes use of a qualitative behavior of matter-induced
degeneracies suggested by QFT with a cut-off near the black hole horizon [9]. In
the case of loop quantum cosmology, the motivation is to probe the framework of
loop quantum gravity under simplified circumstances. These circumstances are
provided by a symmetry reduction of the full Einstein action, in other words, in
the full phase space of general relativity one chooses a subset consistent with some
given Killing vectors. This subset is then parameterized in terms of convenient
variables and one proceeds with the quantization according to the general recipe.
Depending on the degrees of freedom remaining after the symmetry reduction,
one distinguishes minisuperspace models (no field-theory degrees of freedom) and
midisuperspace models (some field-theory degrees of freedom, but less than in the
full theory). One of the most important robust results of this approach is the
avoidance of the initial cosmological singularity. On the other hand, a rigorous
perturbation theory on top of mini- and midisuperspace models is in a position to
provide falsifiable predictions regarding the evolution of the early Universe. That
being said, it is important to note that the exact relation between LQC models
and cosmological sector of full LQG has not yet been established.

The rest of this thesis is written guided and elucidated by these arguments. It
is clear that at a bare minimum they constitute a solid and quite waterproof start-
ing point for studying the deep, mysterious and tantalizing questions of quantum
gravity.

0.6 Literature

The previous sections tried to approach the issue of quantum gravity and LQG
in particular from a fairly systematic general standpoint. In this section, in
accordance with the pedagogical side of this text, which will be clarified in the
next section, we offer a review of literature devoted to LQG. The aim is to present
the books and articles that deal with LQG and comment on them in a self-
contained way. This should constitute, so we hope at least, a useful knowledge
for whoever is setting out to study LQG.

We divide our discussion of literature into two parts. In the first one, we
consider books and monographs and in the second one review articles. First, let us
take into account books devoted solely to LQG [49], [44], [47] and [22]. Beginning
with the first one, [49] is both by extent and by depth the magnum opus of the
field. This comes as no surprise given author’s prominent role in the development
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of the theory. Its strongest point is the discussion of mathematical underpinnings
of canonical LQG where the exposition is impeccable. Other strong points include
detailed discussion of the problem of time and prequantization reformulation of
general relativity. The parts on applications and spinfoam formalism, however,
do not offer an up-to-date treatment as there has been significant development
in those areas since the book’s publication and these lay somewhat further apart
from the book’s main emphasis. [44] is another book by one LQG’s eminent
figures. While covering similar material, compared to the previous publication,
it focuses more on the philosophical aspects and conceptual framework. On the
other hand, because of this, the exposition of the kinematical and dynamical
aspects of LQG is perhaps more crisp and compact than in the previous case.
[47] is a book explicitly focused on spinfoam formalism and the only one to
be so. As such, some of the cornerstones of canonical LQG such as Ashtekar-
Barbero variables are missing entirely in the exposition (not to the detriment of
the matter). It presents the minimum amount of knowledge needed to get a grasp
of the spinfoam formalism in a self-contained way, along with a clear exposition
of the Euclidean 3D gravity and recent applications of spinfoam formalism in
cosmology and black hole physics. On the drawback side, vast material covered
and small amount of pages come at the price of detailed explanations which,
however, would not be very in keeping with the explicit introductory character of
the book. The last book [22] supposes substantially lower knowledge of general
relativity and quantum field theory and is meant to be an introductory text for
undergraduate students. Despite this, the second half of the book raises many
pertinent technical points about some important conceptual issues, such as the
role of quantization ambiguities or various attempts to access phenomenology.

Another group of books is the one from which one can draw the information
about LQG even though the subject matter is broader than that [31], [6], [21],
[14], [26]. The advantage in doing so is that one gets a broader perspective on
the issue at hand. Thoroughly recommended are especially the books [31], [14],
[26]. From the books mentioned, [31] is the most general one applying a holistic
and systematic approach to quantum gravity. Besides detailed exposition of path
integral and canonical methods, there is also a succinct introduction to supergrav-
ity. [14], on the other hand, focuses solely on the quantization programs as they
relate to the gravity in 2+1 dimensions. This simplified setting makes many con-
ceptual issues of quantum gravity more transparent, such as the problem of time
or topology change. The approach taken is descriptive and impartial. From the
books mentioned, [26] is the one written most from a particle physics perspective
and as such it covers much larger amount of material than exclusively quantum
gravity. It generally deals with systems with gauge symmetry and mathematical
framework for its description. In this sense it is very instructive to see how gauge
symmetry is implemented in general relativity compared to other field theories
since this has repercussions for the quantum theory. Both books [6] and [21] car-
ry a distinct mathematical tone with the first one of them being somewhat more
elementary in its exposition. They both focus on the mathematical underpin-
nings of the loop quantum gravity ([21] is somewhat more centered on providing
a comprehensive overview of how the concept of loop features in current physical
theories.), but they are written from a markedly less practitioner’s point of view
compared with [26].
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Let us now focus our attention on the second part of literature - LQG reviews
and other articles written with the aim to introduce the reader into LQG. It is
clear that it is not possible to be entirely exhaustive in giving a review of this
literature so let us rather try to pinpoint some salient features of it which could
be found useful when reading it.

Publications [12], [13], [7], [48] are all introductory-level texts dealing with
the canonical LQG. All of them contain all the important relevant points to be
made and can thus be read interchangeably. It is worth mentioning, though, that
[12] supposes markedly lower level of initial knowledge and the exposition seems
to lose clarity at some points while [13], on the other hand, offers the most up-
to-date review and the discussion contains a lot of valuable insights, especially
in connection to loop quantum cosmology. [45] is a compact and comprehensive
review of covariant LQG and it offers very interesting ‘definitory’ approach in
the exposition while rigorous derivations are exposed only at the end. There is
a detailed discussion of all the important points of the theory and a practical
demonstration of the introduced concepts in a concrete computation in spinfoam
cosmology.

Another wide group of literature is theses and dissertations of researchers in
the field. Usually, they contain a review and a research part with the review
part being a convenient source of information. [25], [19] are both Masters the-
ses devoted to canonical LQG whereas [41], [42], [35] are all dissertations on
covariant LQG. [35] puts more emphasis on providing intuitive understanding
with the scope going from foundational issues to the geometrical aspects whereas
[42] delves deeper into the mathematical details and discusses also the matter
couplings and coherent states. Both [42] and [35] are very well-structured intro-
ductions into path-integral LQG discussing all relevant aspects in comprehensible
terms with [35] being written in probably somewhat less demanding style and [42]
centering more on enumerative exposition of various 4D spinfoam models. [41],
on the other hand, besides providing a cogent explanation of the basics of LQG,
deals predominantly with the asymptotical analysis. It is important to point out
that every one of the cited works offers slightly different perspective and is rich
in interesting insights so that it is well worth of reader’s attention even though
the main points and arguments logically repeat themselves.

Let us conclude this review of literature by mentioning some of the works
that do not fit exactly either category brought up so far. These would be the
works [37], [38], [33], [40]. [37] and [38] are especially interesting because they are
reviews written by researchers working in string theory and so they present LQG
from the point of view of this theory. Unfortunately, both are already a bit dated
but well worth reading. [33] and [40] in turn present spinfoam formalism from
the viewpoint of group field theory - a suitable generalization and a mathematical
backbone of the spinfoam approach. Let us mention that [40] contains especially
interesting discussion of a continuity limit of GFT and LQG models rather than
the semiclassical one, a topic often not explicitly mentioned in other works. Even
though it is unfortunately not possible to comment on every article one could
possibly turn to in search of an understanding of LQG, we hope we have at least
pointed reader to some of the more convenient places to start.
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0.7 Structure of the thesis

Having turned to issues of clear bibliographical streak, this last part finally clar-
ifies the contents and organization of this thesis. It is composed of two parts -
a review part and a research part. The review part one takes up the first and
the second chapter where the introductions to the canonical and covariant LQG
are provided. The organization of the first chapter follows more or less the tra-
ditional approach to the canonical LQG. The subsections 1.2, 1.3 sum up the
necessary prequantization reformulation of GR so as to be amenable to the cho-
sen quantization method. The subsection points out some salient features of GR
turn up time and again during the procedure. The quantization itself is exam-
ined in the subsections 1.4, 1.5 and 1.8. The reason for leaving the treatment
of the dynamical aspects for the last part is, besides a less corroborated nature
of the results, the substantial increase in difficulty compared to that involved in
the treatment of the kinematical aspects. The sections 1.6, 1.7 explore some of
the consequences and results of the quantization with respect to some physically
relevant questions. We also ponder the question of uniqueness of the canonical
LQG derivation in there.

The second, shorter, chapter introduces the covariant approach to the quan-
tization of GR and follows more or less an idiosyncratic path. This is allowed
by the less standardized approach to the subject. The subsection 1.1 presents
the core idea of the path integral in the context of a simple mechanical system -
a point particle moving in a potential field in one spatial dimension. The main
aspects of the construction remain valid in the quantum gravity setting as well.
The second subsection introduces the microscopic ansatz that is used to catego-
rize all varieties of the spinfoam models - i.e. the concrete implementations of
the path integral quantization idea. The latter part of this subsection is devoted
to the Ponzano-Regge model, given its historical importance as well as practical
importance within the scope of this thesis. In part 2.3, we finally discuss various
of describing realistic general relativity through a spinfoam model, the key vehicle
being here so-called simplicity constraints which transform a non-physical theory
to GR.

It should be pointed out that, generally speaking, we tried to keep the expo-
sition style somewhat dense in order to avoid any hand-waving arguments.

In the research part, in the third chapter, we summmarize the results of our
calculations. For these, we chose the Ponzano-Regge model as it is the simplest
option with possibly non-trivial results. The structure of the chapter follows a
standard pattern - first we clarify the questions and methodology, then we present
the results and these results we then discuss in the final subsection. We also show
explicitly the Mathematica code used in our calculations in the appendix.
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1. Canonical loop quantum
gravity

Our final goal in this chapter is to see the structure of the resulting theory when
one applies the canonical quantization algorithm mentioned above to the action
(21) and employing the loop rather than the geometrodynamics approach. Each
of the following subchapters is devoted to one logically self-contained unit of this
procedure.

1.1 Gauge invariance and general covariance

We begin our exposition with a detour into two important aspects of action (21),
which we repeat here for convenience

SEH =
1

16

∫
M
d4x

√
−g(R− 2Λ)− 1

8

∫
∂M

d3x
√
hK + Smatter, (1.1)

namely a gauge symmetry and a general covariance.
Let us begin with the first one mentioned. Generally speaking, gauge symme-

try is an aspect of a theory with a redundancy in the description. This redundancy
is manifested in using more degrees of freedom than what is strictly necessary
with the extra degrees of freedom being pure gauge. This can be interpreted as a
freedom to choose a reference frame in each moment during the dynamical evo-
lution, the general solution of the equations of motion than invariably contains
arbitrary functions of time.

In practice, gauge theories are encountered for two reasons. Often one is
given a Lagrangian with given symmetries and does not know beforehand which
degrees of freedom are physical and which are a pure gauge. Or, because of
mathematical considerations, it might be more expedient to describe the system
with more redundancy and symmetry rather than the other way around. Since
gauge symmetries and the mathematical description thereof is a vast research area
in both mathematics and physics that in some way touches upon many recent
results in both of these areas, we are necessarily incomplete in our subsequent
treatment and restrict our attention only to the aspects most relevant for the
gravity.

One aspect of gauge theories that is important with respect to our subsequent
discussion is that of a constraint as a means of cutting back on the redundancy
introduced by gauge principle. Considering a theory with a Lagrangian L(q, q̇), a
tell-tale sign that it contains constraints is that its Hessian matrix is not invertible

det
∂2L

∂q̇n∂q̇n′ = 0. (1.2)

This results in the phase (q, p)-space not having the same dimensionality as the
(q, q̇)-space of the Lagrangian formulation with the equations of a form

ϕm(q, p) = 0, m = 1, . . . ,M (1.3)
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defining a surface in it. This surface is called the constraint surface and the rel-
evant equations are called primary constraints. Constraints of higher order (sec-
ondary, tertiary...) are the requirements of time preservation of the constraints
of lower order. So, for example, in case there are only M primary constraints
that give rise to J secondary ones, the dimensionality of the constraint surface is
dimP = 2N−M−J , considering N physical as well as gauge degrees of freedom.
Another criterion that differentiates between constraints is that of being first- or
second-class1. For the first-class constraints, the Poisson bracket of it with all
the remaining constraints vanishes on the constraint surface2

[ϕ, ϕi] ≈ 0, (1.4)

otherwise one has a second-class constraint. Unlike the previous case, the dis-
tinction between first- and second-class constraints is going to have important
implications for the quantization program which we will describe later on. One
important point to note is that primary first-class constraints always generate
gauge transformations. These transformations in infinitesimal form read

δxi = δua(x, p)[xi, ϕa(x, p)] (1.5a)

δpi = δua(x, p)[pi, ϕa(x, p)], (1.5b)

where ua(x, p) is the Lagrange multiplier corresponding to the constraint ϕa(x, p).
A point of certain subtlety here is that one usually hears that all the first class
constraints generate these transformations. This is actually the contents of Dirac
conjecture. It is not actually true but it holds in all physically relevant situations.
The way around this is that postulates the validity of the Dirac conjecture with
the point of view being taken that not necessarily does the original Lagrangian
formulation reflect the gauge symmetry structure of the system3.

Some important properties of the first-class constraints are the following:

1. Gauge transformations preserve the constraint surface. This follows directly
from the definition.

2. Poisson bracket of two first-class constraints is again a first-class constraint,
yielding a structure of algebra of constraint functions. To see this, let us
consider two first-class constraints ϕI , ϕII . We can then write

[ϕI , ϕj] = f j
′

j ϕj′ , [ϕII , ϕj] = g j
′

j ϕj′ . (1.6)

For the Poisson bracket of ϕI , ϕII we then get using Jacobi’s identity

[[ϕI , ϕII ] , ϕj] = [ϕI , [ϕII , ϕj]]− [ϕII , [ϕI , ϕj]]

=
[
ϕI , g

j′

j ϕj′
]
−
[
ϕII , f

j′

j ϕj′
]

=
[
ϕI , g

j′

j

]
ϕj′ + g j

′

j f
j′′

j′ ϕj′′ −
[
ϕII , f

j′

j

]
ϕj′ + f j

′

j g
j′′

j′ ϕj′′

≈ 0.
1This dichotomy in terminology reflects several distinct research groups working on the issue

in the formative years.
2For these cases we reserve the notation ≈.
3For an example of this, see [26], p.19
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3. All second-class constraints can be interpreted as a gauge fixing condition
in systems with higher symmetry. This can be seen as follows. The gauge
fixing is done by imposing gauge fixing conditions of a general form

Cb(q, p) ≈ 0. (1.7)

In order for this to be well-posed one needs to ensure that

• from any point on the constraint surface, there exists a gauge transfor-
mation that maps it to the surface spanned by (1.7) (i.e. the surface
spanned by (1.7) intersects all the gauge orbits4 on the constraint sur-
face) and

• no more gauge freedom is left after fixing the gauge, i.e. no non-trivial
gauge transformation preserves (1.7).

This second condition can be reformulated as requiring that

δua[Cb, ϕa] ≈ 0 (1.8)

should imply δua = 0. This is nothing else than stating that a phase space
function Cb, when viewed as a constraint, is second-class.

Given our introduction of the notion of a constraint as a means of cutting back
on redundant degrees of freedom, it follows that any gauge theory is automatically
also a constrained theory. Let us consider the question whether this also remains
valid the other way around, if any constrained theory is necessarily also a gauge
theory. Given the up-until-now discussion, the answer is easy to find and is in the
negative. Since it is the first-class constraints that generate gauge transformations
according to our convention, all that is needed to provide a counterexample to the
assertion is to consider a system with only second-class constraints. Then after
their imposition, there is a one-to-one correspondence between physical states of
the system and points on the constraint surface. An elementary example of such
a system would be

L =
1

2
m(v21 + v22)−

1

2
q3(q

2
1 + q22 − r2), (1.9)

which describes a particle moving on a circle with a radius r under radial force q3
in the q1− q2-plane. It is straightforward to check that all the relevant properties
hold.

In ending this brief summary of some of the important points related to the
gauge symmetry, let us give a brief remark on the different treatment of first-
and second-class constraints in quantization. The generic canonical quantization
algorithm, as succinctly introduced in elementary terms in the previous chapter,
was formulated quite generally and did not differentiate between these two types
of constraints. One should bear in mind that it is meant to apply only to first-
class constraints, whereas second-class constraints are dealt with according to
the following procedure. At the classical level, the structure of Poisson bracket
is changed according to

4curves obtained through successive iteration of (1.5a),(1.5b)
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[A,B]∗ = [A,B]− [A,χa]Λ
ab[χb, B], (1.10)

where Λab is the matrix inverse of the matrix of Poisson brackets between the
second-class constraints χa, χb. This structure is called the Dirac bracket and
one uses it in standard correspondence rules

[Â, B̂] = i~ ̂[A,B]∗ (1.11)

to go about building quantum theory structure. Second-class constraints then
effectively reduce to on-shell identities on the constraint surface whenever Λab is
finite everywhere on it.

1.1.1 General covariance

Let us now turn our attention to the second notion brought up at the beginning
- general covariance. In the default view of the Hamiltonian dynamics, time
is implicitly assumed to be an externally given observable quantity that in an
objective manner continuously parametrizes individual solutions of equations of
motion. Such an identification then gives direct physical significance to the value
of a canonical variable for a given value of t. It turns out however that such a step
is not necessary and we can treat time t, on a formal level, as one of the degrees
of freedom. The dynamical content of the theory is then alternatively expressed
by means of correlations of physical variables among themselves. A system with
such a feature is called generally covariant.

There are two consequences for the structure of the theory. First, there is an
invariance with respect to time reparametrizations t→ τ(t) for τ(t) monotonous
and second, Hamiltonian vanishes on the constraint surface, i.e. Hamiltonian-
induced time-flow on the physical configuration ceases. These two points can be
understood as contents of a term one often hears in relation to quantum general
relativity - a problem of time. Put another way, the problem of time in generally
covariant theories is that there is no well-defined useful notion of time. Generally
speaking, generally covariant systems can come in two forms - one might perhaps
be called obtained and the other one constructed5.

We illustrate the meaning of all these points on a concrete example of a system
with canonical variables qn, pn, a Hamiltonian H0 and a first-class and second-
class constraints γa and χb respectively. The dynamics of this system can be
obtained through variation of the action

S[qn(t), pn(t), u
a(t), ub(t)] =

∫ t2

t1

(
pn
dqn

dt
−H0 − uaγa − ubχb

)
dt, (1.12)

where extremization with respect to ua, ub enforces the constraints as required.
Now introducing q0 ≡ t with its canonically conjugate momentum p0, the action
that yields identical dynamics reads

5This is incidentally somewhat reminiscent of the old nature vs. nurture distinction and
debate.
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S[q0(τ), qn(τ), p0(τ), pn(τ), u
0(τ), ua(τ), ub(τ)] =

=

∫ τ2

τ1

(
p0q̇

0 + pnq̇
n − u0(p0 +H0)− u0uaγa − u0ubχb

)
dτ. (1.13)

But this action is of a form

S =

∫ τ2

τ1

(
pµq̇

µ − ua
′
γa′ − ub

′
χb′
)
dτ, (1.14)

with substitutions u0ua = ua
′
, u0ub = ub

′
, γ0 = p0 +H0, where it is apparent

that the Hamiltonian is but a linear combination of first-class and second-class
constraints that vanish on-shell, one of them encoding the full dynamical descrip-
tion of the system. This is a generic procedure of “general-covariantization” of a
general dynamical system. It is, therefore, an example of a constructed general
covariant theory. In case the physical Hamiltonian H0 is identically zero, the ex-
tended Hamiltonian already is a linear combination of constraints and one would
denote it as general covariant theory “obtained”.

Regarding the point about reparametrization invariance, let us proceed in a
roundabout way. Instead of proving the statement directly, let us infer what con-
ditions does the validity of the invariance impose on the transformation properties
of particular variables, concluding that they are indeed valid for physically inter-
esting cases. The action (1.14) changes under an infinitesimal reparametrization
τ → τ̄ = τ − ε(τ) according to

δS =

∫ τ2

τ1

(δpµq̇
µ + pµδq̇

µ − δua
′
γa′ − δub

′
χb′ − ub

′
δχb′)dτ. (1.15)

Putting this equal to zero requires

δqµ = q̇µε (1.16a)

δpµ = ṗµε (1.16b)

δua
′
= (ua

′
ε)., δub

′
= (ub

′
ε). (1.16c)

δγa′ = γ̇a′ε, δχb′ = χ̇b′ε (1.16d)

because taking into consideration, for example, the first two terms in (1.15), one
has

δpµq̇
µ+pµδq̇

µ = ṗµεq̇
µ+pµ(q̇

µε). = ṗµεq̇
µ−ṗµq̇µε = 0, ε(τ1) = ε(τ2) = 0, (1.17)

with the rest of the terms following a similar logic. Equations (1.16a), (1.16b),
(1.16d) are valid for coordinates and momenta qµ, pµ that one can measure in
their standard units whereas one can always redefine Lagrange multipliers ua

′
,

ub
′
so as to match equation (1.16c). In closing, it also deserves mentioning that

general covariance is sometimes equivalently called reparametrization invariance.
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1.2 ADM decomposition

Having reviewed some important properties of general relativity - gauge invari-
ance and general covariance, the natural question is what consequences do these
have for the quantization. Quite generally, as far as canonical techniques are
concerned, there are two ways that constraints can be dealt with on a quantum
level. The first one of them is to impose constraints on a classical level and then
to carry on with the quantization on the reduced phase space. This amounts to
quantizing only the gauge invariant functions that are defined on the space of
equivalence classes of gauge orbits. In other words, one must find a complete
set of gauge invariant functions and define the quantum space as the irreducible
representation space of the commutation relations of this complete set. This
procedure does encounter some difficulties on a technical level which is why it
is not, in spite of its intuitive appeal, the usual method of choice. These diffi-
culties include the fact that after imposing the gauge fixing conditions, one may
spoil a manifest invariance under an important symmetry or destroy locality in
the case of field theories. If this is not the case, one may still find the resulting
commutation relations too cumbersome to represent irreducibly on a quantum
level.

The second approach is to first postulate commutation relations on the ex-
tended set of both physical and gauge degrees of freedom and to select the physical
states as the ones annihilated by a suitably chosen condition. If we define the
physical states as those that are invariant with respect to gauge transformations
of a form

Û = eiε
αĜα (1.18)

then it is not difficult to see that the relevant condition on the physical states
reads

Ĝα|ψ⟩ = 0. (1.19)

Imposing the commutation relations on the whole set of variables that one
starts with bypasses the technical issue of finding a suitable representation for
the possibly highly non-trivially related reduced phase space functions since one
can always opt for a reasonably simple one (possibly a standard representation)
in the extended space. It needs to be pointed out however that a special care
needs to be taken in order to avoid gauge anomalies and wrongly defined scalar
product [49]. Fortunately, in the following, we will not encounter any of these
difficulties.

Loop quantum gravity in its canonical version is based, on the fundamental
level, on this second approach, The Dirac approach to quantization of gauge
theories, and the overarching heuristics that guides its development is to make
rigorous sense of the operator equations (1.19). One part of this is to provide a
sufficient mathematical framework to support these equations. In this and the
next section we do this on a prequantization level, i.e. we reformulate general
relativity in terms of variables that are appropriate for both the Hamiltonian
analysis and the subsequent steps, while in the following section we proceed
to the quantization proper and in particular explain in detail how the Dirac
algorithm for generic canonical theory is implemented in the case of GR. While a
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Figure 1.1: ADM decomposition

mere reformulation does not of course in general change the substance, from the
practical point of view on a quantum level it might mean a difference between
tractable and intractable mathematical formulations. This is the sense in terms of
which we gauge “appropriateness”. Let us now develop the ADM decomposition
of general relativity, historically a first important step towards the canonical LQG.

Our aim is to derive the ADM variables and to perform a basic Hamiltonian
analysis in them. Beginning with a spacetime M and the action (1.1), the first
assumption that needs to be made is that the spacetime has a topology R × Σ.
This is justified by introducing a foliation of M by a family of hypersurfaces
Σt parametrized by a time variable t. Picking up a preferred time variable is
a necessary step in finding a Hamiltonian formulation of the theory but it is
important to point out that this does not destroy the reparametrization invariance
of general relativity, which is conserved by the fact that the foliation is arbitrary.6

As a first step, the selection of the preferred time is done by choosing a vector
field tµ on M or equivalently a scalar function t which is constant on Σt with the
relation between the two being tµ∇µt = 0. tµ is next decomposed into components
normal and tangential to Σt via

tµ = Nµ +Nnµ, (1.20)

with the normal nµ normalized as nµnµ = −1 and N , Nµ being called the lapse
function and shift vector respectively (see Fig.1). This decomposition allows one
to introduce a three-dimensional metric on Σt through

hµν = gµν + nµnν . (1.21)

One would have a minus sign in front of the normal term in the case the signature
of the spacetime were Riemannian. It is easy to check that the quantity hµν acts as
a projector to the three-dimensional space of the spatial slice Σt, it can therefore
safely be used to raise and lower indices of any three-dimensional objects.

6In fact, choosing a given foliation can be viewed as a partial gauge fixing in the full diffeo-
morphism group on account of the requirement on the hypersurface to have a spacelike metric.
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Choosing coordinates such that tµ = (1, 0, 0, 0) and plugging this to (1.20),
(1.21) one gets

gµν =

(
NaN

a −N2 Nb

Nc hab

)
(1.22)

and

gµν =

(
− 1
N2

Nb

N2

Nc

N2 hab − NaNb

N2

)
. (1.23)

This allows one to establish that there is an equivalent information contained in
the four-dimensional metric gµν and in the objects N , Na, hab that live on the
three-dimensional slice Σt. This, in turn, suggests that we can view the four-
dimensional spacetime M as a dynamical evolution of fields defined on a fixed
three-dimensional slice. Thus we are lead to choose the variable hab as the new
“position” variable for the Hamiltonian reformulation.

In order to get to the canonically conjugate momentum for hab, let us consider
a quantity

Kµν = hσµ δσnν . (1.24)

It can be shown that this tensor is a purely spatial quantity that describes how
the vectors change during parallel transport as a result of embedding or external
curvature - this corresponds to the occurrence of a normal in the definition.
Alternatively, one can express it using Lie derivative as

Kab =
1

2
Lnµhab (1.25)

or, using covariant derivative compatible with the three-metric hab

Kab =
1

2N
(Na|b −Nb|a − ∂thab). (1.26)

Now, we are ready to express the action (1.1), using the relation between
the four-dimensional Riemann tensor of M and the three-dimensional Riemann
tensor of Σt, the Gauss-Codazzi equation

(3)R ρ
µνλ = hµ

′

µ h
ν′

ν h
λ′

λ h
ρ
ρ′

(4)R ρ′

µ′ν′λ′ −KµλK
ρ
nu+KνλK

ρ
µ , (1.27)

in terms of variables hab, Kab. We get, omitting the boundary term for sake of
convenience,

L =
1

2κ

√
hN [(3)R− 2Λ +KabK

ab −K2]. (1.28)

The momentum conjugate to hab is

pab =
δL

δḣab
=

1

2κ

√
h(Kab −Khab) (1.29)

and we easily see that variation of this action with respect to Na, N imposes the
constraints
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V b[h, p] = −2Da(
1√
h
pab) = 0, (1.30)

S[h, p] = −
√
h((3)R− 2Λ− 1

h
pcdpcd +

1

2h
p2) = 0, (1.31)

called the the diffeomorphism (or vector) constraint and the Hamiltonian (or
scalar) constraint respectively, where

Dap
ab = ∂ap

ab + εbjkA
j
a p

ak. (1.32)

Applying Legendre transform the action we obtain the Hamiltonian

H =
1

2κ

√
h(N(− (3)R +

1

h
pcdpcd −

1

2h
p2)− 2NbDa(

1√
h
pab)). (1.33)

Finally, we can summarize the whole dynamical content of general relativity as
the equations (1.30), (1.31) plus the dynamical equations, obtained by variation
of (1.28) with respect to qab, p

ab,

ḣab =
δH

δpab
, (1.34)

ṗab = − δH

δhab
. (1.35)

This is the ADM reformulation of general relativity. The Poisson brackets be-
tween the canonical variables are trivially

{hab(x), pcd(y)} = δc(aδ
d
b). (1.36)

We do not investigate any deeper the Hamiltonian structure of the theory because
we are going to do so in the next section after introducing another set of variables.

1.3 Tetrads, connections and Ashtekar variables

In this section, we give a complete characterization of the phase space of general
relativity. This analysis will serve as a point of departure for the latter quanti-
zation. We proceed in doing so in the following steps - first, we introduce triad
variables on the spatial slice Σt which introduce an extra SO(3) symmetry into
the theory. Next, taking into account Palatini method we consider the form of
connection compatible with the triad reformulation. This along with the exteri-
or curvature of the ADM decomposition allows us to write down the sought-for
Ashtekar-Barbero variables. We reformulate the constraints in terms of them,
making the case for their use, and show the structure of the constraint algebra.

Since the space-time split made in the preceding section was made so as to
make Σt spacelike for all t, we can introduce a triad field eia on it via

hab = eiae
j
bδij. (1.37)

This quantity is represented by a 3× 3 invertible matrix and we can interpret it
as a triplet of 1-forms with the index i labeling the 1-form as a whole and the
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index a giving its coordinate components. As such, it is clear that one introduced
a new SO(3) symmetry into the theory because (1.37) is invariant with respect
to the rotation in the Euclidean (or SO(3)) index i, ēai = S j

i e
a
j , on account of

S j
i S

l
kδjl = δik for ∀S ∈ SO(3). This SO(3) invariance can be viewed as a left-

over from the original Lorenzian symmetry after the partial gauge fixing was
imposed by the foliation Σ. The coordinate index a, on the other hand, is acted
on by coordinate transformations. The 1-form character of eia can be made more
explicit by contracting it with a basis of one-forms f i = eiadx

a. The equation
(1.37) suggests that these quantities can be viewed as a square root of metric hab.
Another way of interpreting them is as an isomorphism between the cotangent
bundle at Σt and a Euclidean space. Inverting eia we can, of course, get triad
fields eai that define an orthonormal basis at each spacetime point.

Let us now consider a densitized version of the fields eia

Ei
a = det eeia. (1.38)

The equation (1.37) together with (1.38) readily gives an alternative expression
Ei
a =

√
dethabe

i
a. Thus defined densitized form of the dual triad field will eventu-

ally play the role of a momentum. To derive the canonically conjugate quantity,
let us consider

Ki
a =

1√
detE

KabE
b
jδ
ij (1.39)

where Kab is the external curvature as defined in (1.25), (1.26). A direct substi-
tution of (1.38), (1.39) into (1.33) then yields the canonical Poisson brackets

{Ea
j (x), K

i
b(y)} = κδab δ

i
jδ(x− y), (1.40a)

{Ea
j (x), E

b
i (y)} = {Kj

a(x), K
i
b(y)} = 0. (1.40b)

One also finds that this also creates another term in (1.33) called the Gauss
constraint of a form

Gi = εijkE
ajKk

a = 0. (1.41)

Let us review what has just been achieved. By introducing a new variable,
the densitised (dual) triad field eai (resp. eia), on top of the ADM formulation
of general relativity, we found a new canonically conjugate pair of variables
(Ea

j (x), K
i
b(y)). We want to proceed to the quantization which requires appropri-

ately expressed constraints. In the case of a generally covariant theory their form
is of utmost importance since, as was shown in the previous section, they hold the
whole dynamical content of the theory. In the case of these variables, one finds
that the constraints (1.30), (1.31) do not reduce to a convenient form and one
is, therefore, motivated to inspect yet another reformulation of general relativity.
This reformulation is provided by the Palatini method in the tetrad-connection
formalism. We develop it in the following.

Beginning with the concept of a tetrad one finds that it is a straightforward
generalization of the notion of triad introduced above. Forgetting for a while
about the foliation Σ, the definitory relation for a dual tetrad reads gµν = eIµe

J
νηIJ .

Both indices now run through the values {0, 1, 2, 3} and there is now a Lorentz
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symmetry connected with the I-index instead of SO(3), with the respective trans-
formations being ēI = ΛIJe

I acting on eI = eIµdx
µ and the orthogonality condi-

tion ensuring invariance of the definition with respect to these transformations
ΛIKΛ

J
Lη

KL = ηIJ .
The Palatini formalism takes off the requirement of a torsion-free metric com-

patible connection. The connection thus becomes one of the dynamical degrees
of freedom and in presence of tetrads, one usually denotes it as a spin connec-
tion ω IJ

µ . One may contract it with dxµ to get an object with purely Lorentzian
indices ωIJ = ω IJ

µ dxµ. The covariant derivative is then defined according to
∇µv

I = ∂µv
I + ω I

µ Jv
J . In the case of tetrads, the requirement of metricity is

expressed by

∇µe
I
ν = 0 (1.42)

which is equivalent to an antisymmetry in the Lorentzian indices of ωIJ . Torsion
freeness, one the other hand, is present whenever

deI + ωIJ ∧ eJ = 0. (1.43)

This second equation is the first Cartan equation of structure. The solution
to these two equations is unique, it is usually denoted ωIJ [e] to emphasize the
dependence on a tetrad, and can be shown to read

ω I
µ J [e] = eIρΓ

ρ
µν [g]e

ν
J + eIρ∂µe

ρ
J (1.44)

where Γρµν [g] are the Christoffel symbols. In order now to use these objects to
express the Einstein-Hilbert action as a function of both tetrad and connection
let us give a second Cartan equation of structure which relates the curvature
expressed in the tetrad basis to the connection

RI
J ≡ 1

2
R I
µν Jdx

µ ∧ dxν = dωIJ + ωIK ∧ ωKJ (1.45)

where R I
µν J = e Iρ e

ν
JR

ρ
µν σ. As an important sidenote, one can show that under

the Lorentz transformations ēI = ΛIJe
J this connection transforms as ω̄ I

µ J =
ΛIKω

K
µ LΛ

L
J + ΛIK∂µΛ

K
J .

We are now ready to give the action in the Palatini tetrad-connection formu-
lation

S[e, ω] =
1

2

∫
dtdx3NeeµI e

ν
JR

IJ
µν [ω] (1.46)

where the only difference with the “standard” (second-order) tetrad-connection
is in the functional dependence (S = S[e] for second-order action, S = S[e, ω]
for the first-order action. The condition of zero torsion now follows from the
variation of (1.46) with respect to ω.

Let us now finally combine the 3+1 formalism with the developments of the
previous paragraphs. In doing so we derive the Ashtekar variables that are the
basis of the subsequent quantization. First, the action of (1.46) is extended so as
to include a topological term

S[e, ω] =
1

2

∫
dtdx3NeeµI e

ν
J(R

IJ
µν [ω]− 1

2β
εIJ KLR

KL
µν [ω]). (1.47)
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This new term does not influence the equations of motion in any way but its
importance will be shown later during the quantization. β is called the Barbero-
Immirzi parameter. Next, we decompose the connection ω IJ

µ to account for the
imposed foliation. We denote

Γ ij
a = ω ij

a K i
a = ω i0

a (1.48a)

Bij = ω ij
0 C i = ωi00 . (1.48b)

Applying the Hodge dual operator to Γ jk
a one obtains an object with two indices

Γ i
a = −1

2
εijkΓ

jk
a . The Ashtekar variables are then the Ashtekar connection

Aia = Γia(E) + γKi
a (1.49)

and Eb
j as defined in (1.38). It is important to note that Γia(E) corresponds

to the spatial part of the Levi-Civita connection obtained as a solution to the
equations of motion of action (1.47) as well as the tetrad-compatible connection
corresponding to the triads eia on the spatial slice Σt. Also, on-shell, the quantity
K i
a coincides with the external curvature from (1.39). The Poisson brackets of

the canonical pair read

{Ea
j (x), A

i
b(y)} = κγδab δ

i
jδ(x, y). (1.50)

This implies that the transformation

Ea
i , K

i
a →

1

γ
Ea
i , A

i
a (1.51)

is a canonical one. Now we finally substitute Ashtekar variables into (1.47). This
yields a Lagrangian density

L = Ea
i ∂tA

i
a − ΛiGi −N bVb −NS (1.52)

with the constraints being

Vb = Ea
i F

i
ab − (1 + γ2)Ki

bGi = 0 (1.53)

S =
Ea
i E

b
j√

detE
(εij kF

k
ab − 2(1 + γ2)Ki

[aK
j
b]) (1.54)

Gi = DaE
a
i = 0 (1.55)

where

Davi = ∂avi − εijkA
j
av

k, (1.56)

F i
ab = ∂aA

i
b − ∂bA

i
a + εijkA

j
aA

k
b . (1.57)

The same form of the constraints would have been obtained if we plugged
E, A into (1.30), (1.31), (1.41). The last step of the Hamiltonian analysis now
consists in working out the Poisson structure of the constraint algebra. Doing
so necessitates smearing the constraints with test functions of a corresponding
structure. We compute thus
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G(α) =

∫
Σ

d3xαiGi, (1.58)

V (f) =

∫
Σ

d3xfaVa, (1.59)

S(N) =

∫
Σ

d3xNS (1.60)

where the functions αi, fa, N are a Lorentz vector, a tangent (coordinate) vector
and a scalar. Computing the Poisson brackets between all the constraints yields7

{G(α), G(β)} = G([α, β]), (1.61a)

{G(α), V (f)} = G(Lfα), (1.61b)

{G(α), S(N)} = 0, (1.61c)

{V (f), V (g)} = V ([f, g]) (1.61d)

{S(N), V (f)} = −S(LfN) (1.61e)

{S(N), S(M)} = V (hab(N∂bM −M∂bN)) +G(.). (1.61f)

The appearance of the inverse metric hab in the last equation prevents the
coefficients from being constant in the phase space. Technically speaking, the
constraint functions then do not form a Lie algebra, one of the structure coeffi-
cients being rather a structure function. This will have its consequences for the
quantization in the following section. The equations (1.50), (1.52)-(1.55) together
with the constraint algebra (1.61a)-(1.61f) form the complete characterization of
the canonical structure of general relativity that will form the basis for quantiza-
tion in the next section.

1.4 Regularization, quantization, kinematical Hilbert

space

Knowing the results of the last section, one would like to proceed to the canonical
quantization. At an intuitive level, the quantum states of the quantized general
relativity should be wave functionals of the classical configuration variable, in our
case the Ashtekar connection, yielding thus an object with a generic form Ψ[A].
The operators corresponding to the canonically conjugate pair (A,E) should then
act on these functionals as a multiplication with A(x) or as a functional derivative
with respect to A(x) (modulo numerical factor). This form of the canonical oper-
ators should then be substituted into the constraint equations to give restrictions
on Ψ(A), i.e. to limit the set of permissible functional dependencies. More-
over, these restrictions, when viewed as operators, should reproduce the algebra
structure (1.61).

The implementation of this intuitive idea and giving it precise contents is the
program of refined algebraic quantum theory which constitutes rigorous mathe-
matical underpinnings of the canonical quantization approach. It turns out that

7G(.) denotes a term proportional to the Gauss constraint.

35



its realization requires considering a holonomy-flux algebra rather than working
directly with the original A− E algebra. The reason for this is mainly a mathe-
matical convenience. First, the constraints (1.53)-(1.55) are much better defined
when the regularized versions of the operators are used in them. This procedure
of regularization consists in taking into account versions of the Ashtekar-Barbero
connection and densitised triads integrated along or over suitable chosen geomet-
rical objects. Second, implementation of the Gauss constraint requires taking
carefully into account the transformation properties of the constituent object
with respect to the local SO(3) rotations. These are greatly simplified and easier
to implement for the holonomy-flux algebra. Let us now consider the case of
connection first.

The first point to notice is that the dualized connection acts as a one-form in its
coordinate index. This index can naturally be contracted with a coordinate vector
to give an antisymmetric Lorentz (internal) matrix. Let us derive the character
of this matrix. The basic kinematical setup of general relativity, on the classical
level, suggested by the previous section implies that the configuration of spacetime
at one instant is determined either by specifying the triad field in each spacetime
point or by specifying the three-dimensional connection. Upon specifying the
coordinates, any two triads at two arbitrary spacetime points are related by an
SO(3) rotation. The physical interpretation of the connection with three (two)
indices, when one of them is contracted with a direction, is an (antisymmetric)
matrix specifying infinitesimal rotation of the tetrad in that direction. It can
be thus viewed as an element of an so(3) algebra. Later considerations in LQG
actually make use of the su(2) algebra with which so(3) is isomorphic. One can
therefore write

Aa = Aiaτi ∈ su(2) (1.62)

where τi are the su(2) generators.
The concept of holonomy gives a precise meaning to how the triads at different

spacetime points are connected, as mentioned before. Let us consider a path
γ : [0, 1] → Σ, the holonomy is then defined as

H[A, γ] = P exp

∫ 1

0

dsAi(s)τi = P exp

∫
γ

A (1.63)

where

P exp

∫ s

0

ds̃Ai(s̃)τi ≡ h(s) (1.64)

is a solution to the differential equation

d

ds
h(s) + ẋµ(s)Aµ(γ(s))h(s) = 0 (1.65)

and the path-ordered exponential is defined by the series

P exp

∫ s

0

ds̃A(γ(s̃)) ≡
∞∑
n=0

∫ s

0

ds1

∫ s1

0

ds2 . . .

∫ sn−1

0

A(γ(sn)) . . . A(γ(s1)).

(1.66)
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Considering a path γ with end points x0 and x1, the holonomy transforms under
local SU(2) transformation as

H̄[A, γ] = g(x1)H[A, γ]g−1(x0) (1.67)

The transition from one degree of freedom per spacetime point to holonomies
inside of the argument of the functional Ψ is an effective step towards tractability
inside of the functional dependence. That such a step in fact does not discard
some information is the contents of the Giles theorem which is valid for a subset
of all paths - loops. These are the paths for which x0 = x1 and xi ̸= xj, i ̸= j. Its
more precise statement is that the traces of holonomy for all possible loops on a
manifold hold all gauge-invariant information in a connection [22]. For the case of
paths that are not necessarily loops, one can give the following intuitive argument.
In the same way that a connection unambiguously determines arbitrary holonomy,
the holonomies along short paths give arbitrarily precise information about the
value of the connection in an arbitrary point. Thus, at a kinematical level, the
set of all functions of a finite set of holonomies {H1[ω, γ1], . . . , Hn[ω, γn]} is dense
in the set of all functions of the connection ω(x). This key insight will guide the
construction of the kinematical Hilbert space for LQG.

The function of a finite number of holonomies along particular paths is called
a cylindrical function8. It is indexed by a collection of oriented paths γl(l =
1, . . . , L) also denoted a graph and a smooth complex valued function f(g1, . . . , gL)
of L group elements. We can thus write

ψΓ,f [A] = f(H[A, γ1], ..., H[A, γL]). (1.68)

Proceeding in a mathematically rigorous way requires that we make some
restrictions on the set of connections A that we consider. We make the choice
of requiring that the connections A be defined everywhere on Σ, except perhaps
for a countable number of points, and smooth thereon, writing A ∈ A. Let us
consider a vector space of all linear combinations of functions (1.68), denoting is
Cyl(A). One can then define a scalar product on this space according to

⟨ψΓ,f , ψΓ,g⟩ =
∫
dg1 . . . dgLf(g1, ..., gL)g(g1, . . . , gL) (1.69)

for two functionals that are supported on the same graph Γ and through extension
of the functionals and the same formula in case they are not defined on the same
graph. This extension is defined on the union of the two graphs that the functional
are defined on by

f̃(g1, . . . , gl, gl+1, . . . , gl+l′) ≡ f(g1, . . . , gl) (1.70)

where the indices l + 1, . . . , l + l′ correspond to the paths disjoint with the ones
the functional was originally defined on. The functional labeled by g is extended
analogously. The measure dgi is the Haar measure over SU(2)9. This fact that

8The origin of this denomination is the most transparent in one-dimensional case where, if
the function depends on the value of “connection” in a finite number of particular points, the
connection may oscillate on the rest of the domain without affecting the cylindrical function,
filling up in this way imagined rectangles (2D cylinders).

9This, in particular, ensures that the measure is invariant with respect to both right and
left translations in SU(2).
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the set of all graphs is partially ordered by the relation of inclusion is taken
account of in that the cylindrical function is, mathematically speaking, defined
on the projective limit of all possible graphs.

The Hilbert kinematical space Hkin is defined as a completion of Cyl(A) with
respect to the scalar product (1.69), symbolically Hkin = ¯Cyl(A). Taking into
account also distributional states, one has to consider the Gelfand triple Cyl(A) ⊂

¯Cyl(A) ⊂ Cyl(A)′ where the last term is the space of all linear functionals on
the set of all cylindrical functions Cyl(A). One useful way of looking at the
kinematical Hilbert space is as an L2 space

Hkin = L2(Ā, dµAL) (1.71)

where A is a suitable distributional extension of A and dµAL is the Ashtekar-
Lewandowski measure which is constructed in such a way that two diffeomorphically-
related states have a unitary scalar product, otherwise it is zero.

This concludes our construction of the kinematical Hilbert space for the canon-
ical LQG. It is important to point out that this construction can be put on solid
mathematical footing which we largely skimmed over for sake of clarity. The
construction of the basis in the Hilbert space and discussion of physical interpre-
tation will be made in the next section together with the implementation of the
Gauss and diffeomorphism constraint. The regularization of the other half of the
canonical variables will be given in section 1.6. In this respect let us just note
that Hkin as defined now cannot support the canonical operator Âia that would
act as

Âiaψ[A] = Aia(x)ψ[A], (1.72)

but it can support the holonomy operator corresponding to (1.63). This oper-
ator maps the cylindrical functions to cylindrical functions dependent on one
additional holonomy. As for the operator Êa

i , one has for its action on a state
ψ[A]

Êa
i ψ[A] = −i~κγ δ

δAia(x)
ψ[A], (1.73)

which is a distribution yielding a well-defined operator on Hkin only upon inte-
gration over a 2-dimensional surface.

1.5 Implementation of constraints

In the last section, the points 1 and 3 of the canonical quantization procedure
were addressed. The configuration variables and their momenta were chosen to
be the connection A and densitised triad E and the basic representation space
for the canonical pair of operators was constructed. The second point will be
dealt with closer in section 1.6, this is made possible by the fact that even though
the procedure fixes the steps needed to be taken, it does not necessarily fix their
order. In this section, we approach the point 4 of the canonical quantization
recipe, i.e. the implementation of the gauge and diffeomorphism constraints. We
leave the Hamiltonian constraint for the last part.
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Given the interpretation of the kinematical Hilbert space Hkin as the space
of square-integrable functions of distributionally-extended connections10, one can
use Peter-Weyl theorem to construct an orthonormal basis in it. The theorem
states that given a compact group G, the orthonormal basis in the Hilbert space
L2(G, dg) is formed by the matrix elements of its unitary irreducible represen-

tations D
(j)
mn(U). In case of SU(2), j attains non-negative half-integer values

j ∈ N/2. We can then write∫
dU

¯
Dj′

m′n′(U)D
j
mn(U) =

1

dj
δjj

′
δmm′δnn′ . (1.74)

where dj = 2j + 1 is the dimension of the representation. These states are
eigenstates of the area operator defined later in (1.113) so that we can write11

ÂDj
mn =

√
j(j + 1)Dj

mn. (1.75)

Orthonormal bases for an arbitrary graph with l links are then obtained by ten-
soring l L2(G, dg) spaces among themselves and exterior multiplying matrices

D
(j)
mn(U). Adopting a Dirac-like convention D

(j)
mn(U) ≡ ⟨U |j,m, n⟩, this would

read

|Γ, j1,m1, n1, . . . , jl,ml, nl⟩ = |j1,m1, n1⟩ . . . |jl,ml, nl⟩. (1.76)

The problem with this construction is that in absence of suitably-imposed
constraints the basis is not countable and the Hilbert space is therefore unsepa-
rable. The reason is that there is a priori no reason to identify states indexed by
different graphs - an infinitesimal change in one the paths of a graph leads to an
orthogonal state by definition. But the individual group elements can of course,
on the other hand, be isomorphic. This case, as we will see later will be taken
care of by implementing the diffeomorphism constraint.

1.5.1 Gauss constraint

Let us now first consider the Gauss constraint (1.55) given the kinematical setup
of the previous paragraphs. We proceed in two steps. First, we show that the
transformation properties of canonical variables imply that any function of them
transforms under local SO(3) rotation through Poisson bracket. This purely
classical result is then used to derive the consequences of the imposition of Gauss
constraint on a general connection functional Ψ[A].

Local SO(3) transformations act on the canonical variables as

Ēa
j = SabE

b
j, (1.77)

Ā ij
a = SikS

j
lA

kl
a + Sik∂aS

jk. (1.78)

In an infinitesimal form, the transformation matrices S become

Sij = δij + λij + . . . (1.79)

10i.e. functions giving a number for every field configuration
11In 3-dimensional GR, it has an interpretation of a length.
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Plugging this into (1.77), (1.78) one gets for the infinitesimal change in A and E

δA i
a = −Daλ

i ≡ ∂aλ
i + A i

a jλ
j = ∂aλ

i + εijkA
j
a λ

k, (1.80)

δE i
a = λijE

aj = εijkλ
jEak (1.81)

where we can alternate between λi = −1
2
εijkλ

jk, λij = −εijkλk on account of the
antisymmetry in the ij index pair.

Now taking into account the Gauss constraint (1.55) in its smeared-out version
(1.58), one finds that

δA i
a(x) = {A i

a(x), G[λ]}, (1.82)

δE i
a (x) = {E i

a (x), G[λ]}, (1.83)

This, in particular, implies that any functional of these variables F [A,E] trans-
forms in the same way

δF = {F,G[λ]}. (1.84)

Working out explicitly the derivatives in this expression and integrating per partes
gives

{F,G[λ]} =

∫
Σ

d3xλi(x)Da
δF

δA i
a(x)

= −
∫
Σ

d3x(Daλ
i(x))

δF

δA i
a(x)

. (1.85)

Note that the expression contains functional derivatives with respect to A already
on a classical level, and without invoking the canonical representation.

Let us now prove, considering a general element of the Hilbert space Ψ[A]
expandable into the basis (1.76), that invariance with respect to transformations
(1.80) is a necessary and sufficient condition for satisfying the quantum Gauss
constraint

Ĝi = 1

β
(∂aÊ

ai + Â i
a kÊ

ak) = i~
(
∂a

δ

δAai
+ εi jkA

j
a

δ

δAai

)
. (1.86)

Making use of (1.85) for Ψ[A] ≡ |Γ, j1,m1, n1, . . . , jl,ml, nl⟩

δΨ[A] =

∫
d3xδA i

a(x)
δ

δA i
a(x)

= −
∫
Σ

d3x(Daλ
i)

δ

δA i
a(x)

Ψ[A] (1.87)

and integrating by parts yields

δΨ[A] =

∫
d3xλi

(
∂a

δ

δA i
a

+ ε k
ij A

j
a

δ

δA k
a

)
= i~

∫
d3xλiĜiΨ[A] (1.88)

which proves the point. In order to select states annihilated by the Gauss con-
straint, one has to look for the states satisfying Ψ[Ā] = Ψ[A]. One way to look
at this equation is that it selects a certain subset of all possible states of a form
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|Ψ⟩ ≡ ΨΓ,f [A] =
∑
j1...jL
m1...mL
n1...nL

Cj1...ȷlm1...mLn1...nL
Dj1
m1n1

. . . DjL
mLnL

. (1.89)

Taking into account how an SO(3) transformation acts on the holonomies, given
its action on the connection (1.78),

U [Ag, γ] = g(xf )U [A, γ]g(xi)
−1, (1.90)

it is possible to show that the action on ψΓ,f [A] reads

U(g)ψΓ,f [A] ≡ ψΓ,f [A
−1
g ] = f(g(xγ1f )g1g(x

γ1
i )−1, ..., g(xγLf )gLg(x

γL
i )−1). (1.91)

In the equation (1.89) this manifests itself as

U |Ψ⟩ =
∑
j1...jL
m1...mL
n1...nL

Cm1...mLn1...nL
j1...ȷL

Dj1
m1n1

(g(x1f )g1g(x1i)
−1) . . . DjL

mLnL
(g(xLf )gLg(xLi)

−1)

=
∑
j1...jL
m1...mL
n1...nL

Cm1...mLn1...nL
j1...ȷL

Um′
1

m1
Dj1
m′

1n
′
1
Un′

1
n1
. . . U

m′
L

mLD
jL
m′

Ln
′
L
U
n′
L

nL .

(1.92)

One can, therefore, give the condition on the invariance of the state as a whole
as

Cm1...mLn1...nL
j1...ȷL

Um′
1

m1
Un′

1
n1
. . . U

m′
L

mLU
n′
L

nL = Cm
′
1...m

′
Ln

′
1...n

′
L

j1...ȷL
(1.93)

with 2L transformation matrices acting directly on the coefficients C. This equa-
tion is a definition of an intertwiner. More precisely, (1.89) contained a product
of functions D per link of the graph, but the requirement of gauge invariance
singles out only certain combinations of the coefficients C which can be inter-
preted as components of a tensor object, i.e. the intertwiner. This tensor object
is connected with a particular node where the links associated to the holonomies
that the intertwiner contracts with meet. Taking this into account we can write
for the gauge-invariant state

ΨΓ,jl,in [A] =
∑
αlbetal

v
β1...βn1
i1 α1...αn1

...v
βnN−1+1...βL
iN αnN−1+1...αL

ψΓ,jl,αl,βl [A] (1.94)

where in indexes the nodes and ψΓ,jl,αl,βl [A] ≡ Djl
αlβl

. It is customary to call (1.94)
a spin network state. It is also customary to label given link with the quantum
number j to which a given eigenstate Dj

mn belongs.
The requirement of invariance imposes some important conditions on the ad-

jacent representations j. It is in particular impossible, if we consider only three-
valent nodes12, to have invariant combinations of the Wigner matrices if

12the case of interest in 3-dimensional GR
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Figure 1.2: A simple spin network state

• the sum of the three adjacent spins ji is not an integer and if

• the sum of any two spins is not larger or equal to the third spin (i.e. if
triangular inequalities are not satisfied).

As a practical demonstration of these considerations, let us illustrate them on
a simple example. Let us consider a spin network with two nodes and three links
as depicted in the fig. 2.

The links carry eigenfunctions corresponding to j1 = 1, j2 = 1/2, j3 = 1/2.
The only gauge invariant state is then given by

ΨS[A] =
1

3
σi,ABD

1i
jD

1
2
A

C D
1
2
B

D σj,CD (1.95)

where the indices i, j belong to the representation j = 1 (≡ adjoint represen-
tation) and take on values i, j = {1, 2, 3} and the indices A,B,C,D belong to
the representation j = 1

2
(≡ fundamental representation) and take on values

A, . . . , D = {0, 1}. The intertwiner in this case are suitably normed Pauli matri-
ces vi,AB = 1√

3
σi,AB.

1.5.2 Diffeomorphism constraint

Having constructed the gauge invariant part H0 of the kinematical Hilbert space
Hkin, the orthonormal basis still suffers from the issue mentioned in the begin-
ning of this section, i.e. of being uncountable. In order to remedy this, one is
lead to try to construct a diffeomorphism invariant part of Hkin. Mathematical
considerations show that this is actually not feasible and that the correspond-
ing space must be constructed as a subset of S ′. Moreover, there are difficulties
that arise as a consequence of the set of all diffeomorphisms having no measure.
But apart from that, this step changes the character of the theory in a profound
way. The basic intuitive idea up until now in deriving the theory was that of
an embedded graphs on a spatial slice Σt evolving the parameter t. Imposing
the diffeomorphism constraint effectively erases all information that such a graph
might have contained and replaces it with the concept of a knot, a gauge- and a
diffeomorphism-invariant state that constitutes a basic atom of space. The phys-
ical contents of general relativity are preserved in a roundabout form only in the
operator algebra of the physical observables whose commutation relation preserve
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the original structure present in the general relativistic Lagrangian. This is a sub-
tle point that deserves being kept in mind. In a way, it is a manifestation of an
idea of “kicking the ladder down once one’s climbed it”. That such a procedure
may, in fact, be necessary is suggested by a need to effectively describe topology
change in the context of quantum gravity.

Let us now first make precise what we mean by a diffeomorphism - under this
designation we understand an invertible function ϕ : Σ → Σ which is smooth
everywhere on Σ. In the following, we will work with a extended diffeomorphism
which satisfies this definition except for a finite number of points. Let us consider
how such an extended diffeomorphism13 acts on a state Ψ ∈ S ′. For Φ ∈ S ′, Ψ ∈ S
and ϕ a diffeomorphism, we have

(UϕΦ)(Ψ) ≡ Φ(Uϕ−1Ψ) (1.96)

where UϕΨΓ,f = ΨϕΓ,f acts by shifting the graph Γ around on the slice Σt. A
diffeomorphism-invariant state Φ in S ′ then satisfies

Φ(UϕΨ) = Φ(Ψ). (1.97)

Formally, such a state is obtained through a projection PDiff∗ : S → S ′ given
by

(PDiff∗)(ψ
′) =

∑
ψ′′=Uϕψ

⟨ψ′′, ψ⟩ (1.98)

where ⟨., .⟩ is the “kinematical” scalar product (1.69) and the sum is over all
states Ψ′′ in S ′ for which there exists a diffeomorphism ψ ∈ Diff ∗ such that
Ψ′′ = UψΨ. One postulates this sum to be finite and well defined - considering
pure spin network states for simplicity, the action of any diffeomorphism that
changes the underlying graph is that it projects it to a state orthogonal to the
original one. Considering all the diffeomorphisms ψ ∈ Diff ∗ that do not change
the graph, their contribution is infinitesimally small and equally distributed14. In
this way, one obviates the need for a measure on space of all diffeomorphisms.

Let us show however that the definition (1.98) is not ad hoc and that if the
measure were available, one would recover it in the same form. Granting an
existence of a measure on Diff ∗, the diffeomorphism invariant state would be
obtained by an integration on a gauge orbit

PDiffΨ =

∫
Diff∗

[dϕ]UϕΨ. (1.99)

Its action on a state Ψ′ ∈ S would then be

(PDiffΨ)(Ψ′) =

∫
Diff∗

[dϕ]⟨Ψ′UϕΨ⟩ (1.100)

13In the following we drop the word extended and mean an extended diffeomorphism whenever
a diffeomorphism is used.

14There are also diffeomorphisms that do no change the underlying graph Γ, but reverse
orientation of some of its links. The contribution of these is weighted by an appropriate sign
factor.
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Now, considering the scalar product (1.69) and pure states for simplicity, only
such ϕ’s that take Γ to Γ′ do have a non-zero contribution to the integral. In
other words

(PDiffΨ)(Ψ′) =
∑

Ψ′′=UϕΨ

∫
DΨ′′

[dϕ]⟨Ψ′Ψ′′⟩ (1.101)

where DΨ′′ is a subgroup of Diff ∗ the leaves Ψ′′ invariant. We can factor the
scalar product out of the integral

(PDiffΨ)(Ψ′) =
∑

Ψ′′=UϕΨ

⟨Ψ′Ψ′′⟩
∫
DΨ′′

[dϕ] (1.102)

and making the assumption that the volume of DΨ′′ is constant for all Ψ′′, one
gets, modulo a possible multiplicative factor, the equation (1.98).

One great advantage of this definition is that it readily provides us with a
scalar product on the space of diffeomorphism-invariant functionals Hdiff

⟨PdiffΨS, PdiffΨS′⟩Hdiff
≡ (PdiffΨS)(ΨS′) = ⟨Ψ|Pdiff |Ψ′⟩. (1.103)

A general element of Hdiff is called a knot to emphasize that it is determined by
its invariant topological properties and not by the particular way it was embedded
into Σt.

There are some points to be observed in this argument- first, one does not
need to take into account the term proportional the Gauss constraint in (1.53)
because the Gauss constraint has already been imposed by constructing the spin
network states. Second, it turns out that one cannot make a rigorous sense of the
equation

Ea
i F

i
ab|Ψ⟩ = 0 (1.104)

because the operator F i
ab is ill-defined. This corresponds to the absence of an in-

finitesimal generator of diffeomorphism transformations. However, one can make
the following heuristic argument: by formally substituting the operator expres-
sions (1.72), (1.73) into (1.104) one gets a term proportional to δ/δA. By virtue
of the definition (1.98), the diffeomorphism-invariant state is maximally “spread-
out” on the gauge orbit in Hdiff and therefore any derivative of it with respect
to A, were it to be defined rigorously, is bound to be zero.

We have succeeded in building up the space Hdiff annihilated by both the
Gauss and the diffeomorphism constraint (within the respective Gelfand triple).
The last and most non-trivial step consists in implementing the Hamiltonian
constraint (1.54). But since doing so constitutes a highly non-trivial technical
task and it is not necessary in order to derive the most immediate physical conse-
quences of the framework, we postpone it to a later section and focus on properties
of spin network states and knots instead.
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1.6 Electric flux, area and volume operators

In the previous sections, we have built the basic kinematical15 structure of the
canonical loop quantum gravity. One important step in doing so was the reg-
ularization of the connection operator A and introduction of a holonomy. But
it is clear that in the sense of the Poisson algebra, holonomy on its own is not
complete and one needs to regularize the canonically conjugate triad operators
as well. This turns out to be a first preliminary step in giving preceding con-
struction a physical interpretation. Building on the regularized triad operators,
we proceed to introduce operators of more direct geometrical relevance - the area
and volume operators.

Let us consider a two-dimensional surface S embedded in a spatial slice Σt,
let σ = (σ1, σ2) be the coordinates on S. Then a regularization of the triad Ea

i

over S is classically given by

Ei(S) ≡ −i~κγ
∫
S

dσ1dσ2na(σ)E
a
i (σ) (1.105)

where the normal na(σ) is

na(σ) = εabc
∂xb(σ)

∂σ1

∂xc(σ)

∂σ2
. (1.106)

We quantize this expression by substituting Ea
i → Êa

i in (1.118). One can then
show that the action of this operator on a holonomy is

Êi(S)H[A, γ] = −i~κγ
∫
S

∫
γ

dσ1dσ2dsεabc
∂xa

∂σ1

∂xb

∂σ2

∂xc

∂σ3
δ3(x(σ), x(s))H(A, γ1)τiH(A, γ2).

(1.107)
The result of this integral depends on the configuration details of the surface S
and the path γ, in case there is only no intersection between them, the integral
vanishes. For one intersection, assuming H in the fundamental j = 1

2
representa-

tion, one has

Êi(S)H[A, γ] = ±i~κγH(A, γ1)τiH(A, γ2) (1.108)

and for multiple intersections

Êi(S)H[A, γ] =
∑
p

±i~κγH(A, γp1)τiH(A, γp2) (1.109)

where the sign is given by the relative orientation of the path with respect to the
surface. For arbitrary representations, one has an analogous expression

Êi(S)H
j[A, γ] =

∑
p

±i~κγHj(A, γp1)τ
(j)
i Hj(A, γp2). (1.110)

Defined in this way, this operator has an straightforward interpretation of a flux
of densitised triad vector field E through the surface S. Expressed in terms of
holonomies and fluxes, the canonical commutation relations become

15kinematical in the sense of up until the implementation of the Hamiltonian constraint
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{Ei(S), H[γ,A]} = γκτ iH[γ,A]. (1.111)

It is clear that the flux operator cannot represent a physically measurable
quantity on account of its SU(2) gauge index. This, however, suggests also a
possible remedy - summing over this index with the same quantity should yield
an invariant entity. While it is not actually true, because the integral over the
surface S complicates the transformation properties, it is a step in the right
direction. Let us, therefore, consider an entity Ê2(S) =

∑3
i=1 Ê

i(S)Êi(S). Its
action on the spin network state ΨΓ,f is given by

Ê2(S)ΨΓ,f = (~κγ)2j(j + 1)ΨΓ,f , (1.112)

but only if the spin j link punctures the surface S exactly once. Taking this into
account we define

A(S) =

∫
S

d2σ
√
naEa

i nbE
b
i = lim

N→∞

∑
n

√
E2(Sn). (1.113)

Then in the limit N → ∞ every infinitesimal surface Sn is punctured exactly
once and the action on the spin network state is

Â(S)ΨΓ,f = ~κγ
∑
p

√
jp(jp + 1)ΨΓ,f . (1.114)

This result is valid for the simplified case of no node being on the surface. The
general result reads

Â(S)ΨΓ,f = ~κγ
∑
u,d,t

√
1

2
ju(ju + 1) +

1

2
jd(jd + 1) +

1

2
jt(jt + 1)ΨΓ,f (1.115)

where u and d differentiates between two possible orientations of the surface
and the path and t labels links tangent to the surface S. In this way one obtains
a quantum operator corresponding to the area giving a set of discrete values for
this observable. It is important to note that the area defined in this way is, of
course, gauge invariant but not diffeomorphism invariant.

Let us now construct an operator representing a volume of a three-dimensional
subset of spacetime. One proceeds in broad lines in a manner analogous to the
previous case. The classical expression for volume is

V (R) =

∫
R
d3x

√
1

3!
|εabcεijkEaiEbjEck|. (1.116)

Substituting operators for the classical quantities E and partitioning the region
R into infinitesimal cubes where the triad E is roughly constant one has that

V (R) = lim
N→∞

∑
n

√
εabcEi(Sa)Ej(Sb)Ek(Sc)εijk. (1.117)

Letting the resulting infinitesimal operator act on an intertwiner, one can prove
that
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V̂Riv = ~κγ
∑
(e,f,g)

√
1

8

εijk

48
Ee
iE

f
j E

g
kiv (1.118)

where the fact that one expects non-zero contributions only from nodes of the
graph is justified by the appearance of three distinct derivative operators under
the square root16. One noteworthy aspect of this calculation with respect to our
subsequent discussion is that the expression (1.118) vanishes unless there are four
or more links connected to the node.

There are three important points to be made about the constructed operators
in general. First, we got discrete eigenvalues of the area and volume operators
as a generic result of the quantization procedure. This can be considered a first
empirical prediction of canonical loop quantum gravity. In effect, the fundamental
reason for it is the finiteness of the SO(3) group. Second, the computation of the
eigenvalues of the area and volume operators clarifies the role that the Barbero-
Immirzi parameter γ plays in the theory. Even though the term that is coupled
through it to the general relativity action (1.46) does not influence the dynamics,
the equations of motion, it does have kinematical consequences in the geometrical
setup of the theory. Third, it needs to be pointed out that canonical loop quantum
gravity is not spared the generic problem ordering ambiguities. These turn up in
the process of regularization of the expression (1.117). Even though a reasonable
choice has been made, it can be shown that there exists an alternative ordering
which leads to equidistant spectrum of the area operator, instead of the main
sequence proportional to j(j+1). It deserves to be said that further investigation
of the properties of operators needs to be carried out in order to put the general
geometrical consideration of canonical LQG on even more solid footing.

1.7 Uniqueness results, physical interpretation

The following section is motivated by the question of to what extent is the con-
struction of canonical LQG given so far unique. Besides putting many arguments
of the introductory chapter on a solid ground, establishing concrete results for
this question has also important consequences for the physical interpretation of
the geometrical operators just introduced.

In full generality the question still cannot be confronted in a fully exhaustive
manner. Doing so would require a lot more concrete knowledge of functional
space underlying the formulation of diffeomorphism invariant theories, some of
them hinging crucially on the delicacies of set theory. What can be tackled howev-
er is a closely related question of how unique the construction of canonical LQG
is conditional on the form of holonomy-flux algebra we have given in (1.111).
There the answer turns out to be available and giving it involves a particular
mathematical construction called the algebraic quantization. In terms of the tax-
onomy of approaches in section 0.3, this approach stands firmly in the canonical
camp as it provides a rigorous mathematical framework to implement the Dirac
algorithm. Let us sketch its basic tools and structure.

16This expectation is of course vindicated by explicit calculation, unless there is a node
present in a general region of spacetime R, the operator V returns zero.
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In broad terms, one can say that the algebraic quantization is a recipe for
how to construct a consistent quantum theory given a classical algebra of phase
space functions. Going one step further, refined algebraic quantization is a recipe
pertaining particularly to constrained systems, a case of highest relevance for
general relativity. But we focus concretely on the first option which directly bears
on the question motivating this section. A starting point of the construction is
an algebra P of classical elementary observables on a phase space M. These are
functions f(m),m ∈ M that i) separate points in M, for any m ̸= m′ there
exists f(m) ∈ P such that f(m) ̸= f(m′), ii) are closed under Poisson bracket,
f(m), f ′(m) ∈ P =⇒ {f(m), f ′(m)} ∈ P and that are iii) closed under complex
conjugation, f(m) ∈ P =⇒ f̄(m) ∈ P . This algebra is a subalgebra of C∞(M).

Given the algebra of classical elementary observables, one constructs the quan-
tum of elementary observables by i) considering finite products (f1 . . . fn) of clas-
sical observables fk ∈ P , ii) giving the set of these products a structure of a free
*-algebra F (P) of P by defining the operations of multiplication and involution
as

(f1 . . . fn) · (f ′
1 . . . f

′
m) ≡ (f1 . . . fnf

′
1 . . . f

′
m)

(f1 . . . fn)
∗ ≡ (f̄1 . . . f̄n)

and allowing general sums of elements of variable length
∑N

k=1(f
(k)
1 . . . f

(k)
nk ) where

f
(i)
ni ∈ P and iii) defining a quotient *-algebra U ≡ F (P/I) with respect to a
2-sided ideal I formed by the elements of a form

(f + f ′)− (f)− (f ′), (zf)− z(f), [(f), (f ′)]− i~({f, f ′})

where z ∈ C and [(f), (f ′)] ≡ (f) · (f ′) − (f ′) · (f). It is the representation of U
on a suitable Hilbert space H that defines the quantum theory.

A representation of an algebra U is, precisely speaking, a morphism π : U →
L(H) from U into the algebra of linear operators on H with a common dense
domain. A way how to construct a representation for a given algebra U is supplied
by a GNS construction which we now explain. But before doing so, several other
notions need to be introduced.

• Cyclic representation A representation is is cyclic if there exists a normed
vector Ω ∈ H in the common domain of all a ∈ U such that π(U)Ω is dense
in H. Ω is then called a cyclic vector.

• Equivalent representations Two representations are said to be equiva-
lent if there exists a Hilbert space isomorphism U : H1 → H2 such that
π2(a) = Uπ1(a)U

−1 for all a ∈ U , i.e.,for H1 = H2, one can view them as
related by a mere change of coordinates.

• State Importantly, a state on a *-algebra is a linear functional ω : U → C
which is positive, ω(a∗a) ≥ 0 and for unital algebras also satisfying ω(1) =
1.

• Automorphism An automorphism of a *-algebra is an isomorphism of U
that is compatible with the algebraic structure. Considering a group G, it is
represented on a group of automorphisms through α : G→ Aut(U); g → αg.
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Importantly, a state ω on U is invariant with respect to αg, respectively G,
if ω ◦ αg = ω, where in the latter case the equality holds for all g ∈ G.

With these definitions in mind, the GNS construction can be summarized as
follows. For a state ω on U , the null space Nω with respect to ω is defined as
Nω ≡ {a ∈ U|ω(a∗ · a) = 0}. This is a left ideal in U . Subsequently, a quotient
projection is defined as [.] : U → U/Nω; a → [a] ≡ {a + b|b ∈ Nω}. Now the
GNS representation consists of a triplet (Hω, πω,Ωω) where Hω ≡ ⟨U/Nω⟩, i.e. a
completion of U/Nω with respect to the inner product

⟨[a]|[b]⟩Hω ≡ ω(a∗ · b),
πω is a representation map defined by

πω(a)[b] ≡ [a · b],∀a ∈ U , b ∈ Hω

and Ωω is a cyclic vector satisfying

ω(a) = ⟨Ωω|πω(a)Ωω⟩Hω . (1.120)

In the case there are gauge symmetries, they are represented on Hω via

U(g)πω(a)Ωω = πω(αg(a))Ωω,

i.e. the group of gauge automorphisms acts as a group of unitary operators on
the Hilbert space and one chooses, of course, ω satisfying ω ◦ αg = ω.

The GNS construction applied to the holonomy-flux algebra (1.111) results
in the following celebrated theorem by Lewandowski, Okolow, Sahlmann and
Thiemann:

LOST theorem

1. There exists a unique SU(2) gauge and diffeomorphism invariant state on
the holonomy-flux algebra (1.111).

2. The GNS representation associated to this state is given by the Hilbert
space L2(Ā, dµAL) and the holonomy and flux operators act on it.

This result generalizes the Stone-von Neumann theory of ordinary quantum me-
chanics which states that there exists only one continuous, irreducible, unitary
representation of the Weyl algebra17, up to unitary equivalence. The invariant
state stipulated in the first part of the theorem is analogous to a vacuum state
of perturbative quantum field theory where this state is selected so that it is an-
nihilated by all symmetry generators of the system. Another rephrasing of this
uniqueness theorem can be made [41], which reinforces robustness of the unique-
ness statement. One point to note is that in the present discussion we contented
ourselves with the discussion of classical part of the algebraic quantization pro-
gram, the latter part, the refined algebraic quantization is concerned with giving
a precise meaning to Dirac constraint equations (29), resp. (1.19). The main
technical obstacle there is that, strictly speaking, there is no |Ψ⟩ ∈ Hkin satisfy-
ing them and one has to look for the solutions of this equation in the algebraic

17Algebra generated by ei
∑n

j=1 sj ·xj and ei
∑n

j=1 rj ·pj where sj , rj are real numbers and 2n is
the dimensionality of the phase space.
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dual space of a dense subset of Hkin, as, after all, we did it with the diffeomor-
phism constraint. This subspace is then nothing else than the space of functional
on the cylindrical functions Cyl(A) introduced in section 1.4.

The consequences of this for the geometrical interpretation of the construction
are intuitively easy to develop. Modulo some minor quantization ambiguities
discussed in the previous section, the expressions (1.113) and (1.117) constitute
the unique way of representing quantities with the dimensions of area and volume
respectively, given the form of the algebra (1.111). Each link of a spin network
ΨΓ,f carries quanta of area with the eigenvalues determined by (1.114), whereas
each node a spin network corresponds to a certain amount of quanta of volume
determined via (1.118). Two volumes of space are contiguous if they are connected
with some link l. The spin of this link determines the quantum of area that
it carries, whereas the volume associated with the nodes is determined by an
intertwiner number v. This volume can be nonzero only if the there are more
than 3 links connected with the node. Importantly, the graph Γ, which can be
seen as a kind of a continuous index, can be also interpreted as a dual graph of
a cellular decomposition of a physical space.

But it is important to point out that the intuitive direct geometrical inter-
pretation is only tenable up until the implementation of the diffeomorphism con-
straint as already mentioned in subsection 1.5.2. If one understands the diffeo-
morphisms that one averages over in the sum (1.98) as active ones, i.e. the ones
that move the graph around on the surface Σt, then the original geometrical
information is clearly lost and one only hopes to retain it in a suitable limit18.
In case one interprets the diffeomorphisms as passive ones, i.e. mere relabeling
of the points on the surface, then the point is more subtle but one at the end
will still need some kind of a limiting procedure to extract physically relevant
information. So even though the title of this section alludes to the physical inter-
pretation of the framework developed until now, it turns out that as it is it still
needs to be taken with a grain of salt in certain aspects and in its current form,
it necessitates further mathematical procedures to fully establish the equivalence
with the geometrically well-interpretable general relativity. But one important
aspect is apparent even at this stage - it is the relationalistic description inherent
in the spin network language. This means that the quanta of volume and area
are not localized in some outer manifold in which they are embedded, they them-
selves constitute the space and the only important information is contained in
the quantum numbers and contiguity relations between themselves. This desir-
able result can be seen as a fruit of paying full heed to the philosophical contents
of general relativity of which the relationalistic description is an indispensable
component.19.

1.8 Dynamics, the road to spinfoams

In this last part of the construction of canonical LQG, we approach the quan-
tization of the scalar constraint S. This turns out to be a difficult task for two
reasons - first, the constraint is highly non-linear and not even polynomial in the

18In this case, large-spin or continuity.
19More on this in [44].
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fundamental fields A, E. This leads to various quantization ambiguities. Second,
the action of the constraint does not have a clear physical interpretation without
which it is difficult to assess whether one particular quantization is the physically
relevant one.

Let us describe the most popular approach to the quantization of S. The
main trick is to express the constraint in terms of Poisson brackets between
variables that are well represented on Hkin and then replace them by canonical
commutators. Writing for the smeared scalar constraint

S(N) =
γ2

2

∫
Σ

d3xN
Ea
i E

b
j√

| detE|
(εijkF

k
ab−2(1+γ2)Ki

[aK
j
b]) ≡ SE(N)−2(1+γ2)T (N)

(1.121)
and making use of the classical identities

eia(x) =
γ2

2
ηabcε

ijk
Eb
jE

c
k√

detE
(x) =

2

γ
{Aia(x), VR}, (1.122)

where

εijk ≡ hIih
J
j h

K
k n

LεLIJK ,

ηabc ≡ hαah
β
b h

γ
c t
µεµαβγ

and VR is a volume functional for the neighborhood R containing x and

Ki
a(x) =

1

γ
{Aia(x), K}, (1.124)

K =
1

γ2
{SE(1), VΣ}, (1.125)

we obtain for the scalar constraint an equivalent classical expressions

SE(N) = −2

γ

∫
Σ

d3xN(x)ηabcδijF
j
ab{A

i
c, V }

T (N) = − 2

γ3

∫
Σ

d3xN(x)ηabcTr({Aa(x), K}{Ab(x), K}{Ac(x), VRx})

In the next step, one introduces a triangulation T (ε), parametrized by a pa-
rameter ε such that for ε→ 0 the triangulation fills up the whole Σ. This serves
as a regulator in a way similar to that of the cut-off parameter in the perturbative
quantum field theory. Using this, the regularized version of the constraint (1.21)
can be written as

ŜεE,γ =
16

i~γ
∑

ν∈V (γ)

N(ν)

E(ν)

∑
ν(∆)=ν

εijk

Tr(Â(αij(∆))−1Â(sk(∆))−1[Â(sk(∆)), V̂Uε
ν
]), (1.127)
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Figure 1.3: Action of the Hamiltonian constraint on a vertex

T̂ εγ (N) = − 4
√
2

3i~3γ3
∑

ν∈V (γ)

N(ν)

E(ν)

∑
ν(∆)=ν

εijk

Tr(Â(si(∆))−1[Â(si(∆)), K̂ε]Â(sj(∆))−1[Â(sj(∆)), K̂ε]

Â(sk(∆))−1[Â(sk(∆)), V̂Uε
ν
]), (1.128)

where γ is a graph embedded in T (ε), ν denotes a vertex, N(ν) is the value
of the smearing function N in ν, E(ν) ≡

(
n(ν)
3

)
where n(ν) is the valence of

ν, {si(∆)}i=1,2,3 denotes the three outgoing segments with a common beginning
point in ν(∆) and αij(∆) is the loop si(∆) ◦ aij(∆) ◦ sj(∆)−1 where aij(∆) is
the segment connecting the end points of si(∆) and sj(∆). The action of this
operator on the spin network state is then by definition

Ŝε(N)ψγ =
∑

ν∈V (γ)

N(ν)Ŝενψγ (1.129)

where Ŝεν is the part of Ŝε(N) regularized on ν. Further analysis shows that
the action of the operator Ŝεν is that it creates new links around ν, with the
precise form of the action depending on the spins of the relevant segments si.
Importantly, the limit ε→ 0 is well-defined and does not lead to any divergences.

One can further check that the operator constructed above satisfies the nec-
essary consistency conditions. One of these is a reproduction of the form of the
classical constraint algebra. Leaving aside the terms not containing the scalar
constraint one can show that the (dualized) Hamiltonian constraint S ′(N) and
a finite diffeomorphism transformation Ûϕ reproduce, on the diffeomorphism-
invariant states, the Poisson algebra relations between S(M) and V (N)

(−([Ŝ(N), Ûϕ])
′Ψdiff )[ϕγ] = (Ŝ ′(N − ϕ∗N)Ψdiff )[ϕγ] (1.130)

and that the commutator between two Hamiltonian constraints is

[Ŝ(N), Ŝ(M)]ϕγ =
1

2

∑
ν,ν′∈V (γ),ν ̸=ν′

[M(ν)N(ν ′)−N(ν)M(ν ′)][(Ûϕν′,ν−Ûϕν,ν′ )Ŝ
ε
ν′Ŝ

ε
ν ]ϕγ

(1.131)
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where ϕν,ν′ is an extended diffeomorphism such that ŜενŜ
ε
ν′ = Ûϕν,ν′ Ŝ

ε
ν′Ŝ

ε
ν . The

fact that the commutator (1.131) vanishes on a diffeomorphism-invariant state

([Ŝ(N), Ŝ(M)])′Ψdiff = 0

whereas it is non-zero on a general kinematical state is important as it ensures,
in a certain sense, anomaly20 freedom. However, it is still an open issue whether
(1.131) reproduces the classical Poisson brackets outside of the Hdiff .

21

Besides the procedure explained above, there are two more approaches to
implementing the scalar constraint. First, one can define an explicitly graph-
preserving regularization. The advantages of doing so are easier access to the
symmetry-reduced sector of the theory22. Second, one may instead try to impose
all the constraints C(x) at once, instead of proceeding in steps. This corresponds
to a single Master constraint

M =

∫
Σ

d3xCα(x)K
αβ(x)Cβ(x) (1.132)

with Kαβ being some invertible positive-definite matrix of phase space functions.
The main advantages of this approach are the fact that the constraint algebra
trivializes, hence there are no structure functions appearing in it, and that one
can give a rigorous proof of existence of the physical Hilbert space.

In summary, it can be said that obtaining a rigorously defined Hamiltonian
constraint is an immense non-trivial consistency check for the canonical LQG cul-
minating the program laid out in the present chapter. Its construction, however,
is not without issues. Besides the points mentioned in the beginning, i.e. that
a high non-linearity in the canonical variables and a lack of a clear geometrical
interpretation of their action hinders the insight into the semiclassical regime of
the theory, these issues can be traced back to the classical level in the form of the
constraint algebra. First, the (dualized) Hamiltonian constraint operator does
not leave the Hilbert space Hdiff invariant. This can be seen in that the Poisson
bracket relation (1.61e) is non-zero and, in particular, it implies that one cannot
use the diffeomorphism-invariant inner product in the construction of an inner
product in the physical Hilbert space Hphys. Second, the collection of Hamiltoni-
an constraints does not form a Lie subalgebra in the Poisson constraint algebra,
unlike the Gauss and the diffeomorphism constraints taken together. This, in
particular, implies that one cannot employ the group averaging strategy used in
the construction of Hdiff . This, in turn, invites a multitude of approaches that
are a priori in absence of the access to the semiclassical regime of the theory all
equally viable. If we were to summarize it, these are the important consequences
of (1.61) not being a Lie algebra that were explicitly mentioned earlier.

Given this situation, one is motivated to search for alternative approaches of
expressing the dynamics which would shed light on the issues given above. Such
an alternative approach is provided by the spinfoam formalism reviewed in the
next chapter.

20Anomaly is a situation in quantization when the quantum theory has less symmetry than
the original classical system.

21Establishing this would ensure the correct classical limit of the theory [25].
22More in [13]
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2. Covariant loop quantum
gravity

In analogy to the case of classical mechanics which allows two fundamental for-
mulations, a lagrangian one and a hamiltonian one, the quantum mechanics can
also be built up in two complementary versions - a hamiltonian-based one and a
lagrangian-based one. These are often called, in somewhat loose parlance, canon-
ical and covariant approaches, techniques, or methods. The first one of these
was used in the context of loop quantum gravity in the previous chapter, it is
more general and far more rigorous when making the transition to the quantum
theory. The second one is more intuitive, more simple and notably, keeps all
the symmetries of the system manifest. Even though each of these two formula-
tions possesses different virtues and uses somewhat different techniques, at the
fundamental level they should be of course fully equivalent.

The lagrangian-based approach, when applied to the loop quantum gravity,
bears a lot of different names. The one used in the introduction is the spinfoam
approach. This probably comes closest to how the theory is perceived and re-
garded at present (spinfoam is considered a central dynamical object there) but
there are also some other designations bearing evidence of the field’s wide ide-
ological and methodological grounds. Thus, besides a spinfoam approach and
covariant LQG one can also encounter names such as path integral, state sum,
sum-over-surfaces or sum-over-paths approach, all meaning, to a high degree of
accuracy, the same thing1. But it is important to bear in mind in this respect
that this equivalence is only valid within the field of loop quantum gravity. For
some authors, the term path-integral quantization of GR, for example, necessar-
ily involves perturbative effects and therefore diverges to a large extent from the
contents and tenets of LQG.

It must be said at the very outset that, in line with the general quality of
the lagrangian formulation, the spinfoam approach to LQG is mathematically
somewhat less rigorous than canonical LQG and it lacks some of the mathematical
underpinnings that provide a such a strong evidence in favor of the canonical
LQG. However, from a purely operationalistic viewpoint the framework is not
affected by this so neither is the ability to make falsifiable predictions, which
rests on the notion of an operationalistic consistency rather than mathematical
rigor, lessened in any way.

Expanding upon the preliminary discussion in the introductory chapter, one
can say that the major aim of the covariant quantization is to provide an explicit
tool for computing transition amplitudes between different states of geometry on
the boundary of a region that is considered (implicit in equations (31), (32)).
These amplitudes consist of individual contributions - paths, or equivalently spin-
foams. These spinfoams can be interpreted as worldsheet histories swept out
by spin network states. They also form a notion of what a general spacetime
solution to the Einstein’s equations looks like at the microscopic level, geomet-

1An exception to a this and a possible source of confusion is the way the word covariant is
used, for some authors it means, very roughly speaking, a set of Hamiltonian inspired methods
without the preliminary 3 + 1 split. See e.g. [35].
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rically and conceptually. Each of these spinfoams is weighted by a factor which
is a function of the quantum numbers of nodes and links. Its form is dictated
by group-theoretic considerations - simply speaking it has to be invariant with
respect to right and left group multiplication. The node quantum number man-
ifests itself as a quantum of volume concentrated at the node while the links
quantum number corresponds to the area carried by a given link. In summing
over everything, i.e. over all possible histories in between, spinfoams, we make
therefore two kinds of expansions - first a vertex expansion, where we sum over all
possible geometrical configurations of vertices and links that are compatible with
the discretized boundary geometry. The limitations for these configurations will
mostly come from the particular model considered and will be made on physical
grounds. Second, there is a large spin expansion where the sum is made for a giv-
en configuration of vertices and links over all possible values of relevant quantum
numbers. Let us now build the intuition of how this works and why it is equiv-
alent to the Hamiltonian picture by inspecting the simplest case imaginable - a
path integral for a quantum mechanical system with a finite number of degrees of
freedom. This intuition and all its pertinent points carry over to all of the more
advanced applications.

2.1 Path integral in quantum mechanics

In this section, we build up the basic intuition behind the sum over histories
(Feynman path integral). Let’s consider a Hamiltonian for a particle in d dimen-
sions

Ĥ =
P̂

2

2m
+ V (x̂). (2.1)

Then the evolution operator is defined as

U(T ) = exp(− i

~
HT ). (2.2)

Given the Schrodinger equation

i~
∂

∂t
ψ = Hψ, (2.3)

it is not difficult to see that the evolution operator represents an amplitude of
probability for a system to transition from a position eigenstate |x′⟩ to a different
position eigenstate |x′′⟩ during a period of time T . Let us now write for the
operator U

U(T ) =

(
exp(− i

~
H
T

n
)

)n
. (2.4)

This can be done on account of the composition property of the evolution oper-
ator. Substituting for H one gets

U(T ) =

(
exp(

i

~
p̂2

2m

T

n
) exp(− i

~
V (x̂

T

n
))

)n
+O(

1

n
). (2.5)
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Contracting this expression with the initial and the final state in the x-representation,
one obtains

⟨x′′|U(t)|x′⟩ = ⟨x′′|
(
exp(

i

~
p̂2

2m

T

n
) exp(− i

~
V (x̂

T

n
))

)n
|x′⟩+O(

1

n
)

=

∫
ddx1 . . . d

dxn−1⟨x′′|e−
i
~

p2

2m
T
n e−

i
~V (x̂)T

n |xn−1⟩ . . . ⟨x1|e−
i
~

p2

2m
T
n e−

i
~V (x̂)T

n |x′⟩

+O(
1

n
)

(2.6)

where we have made use of the fact that∫
ddx|x⟩⟨x| = 1, ⟨x|y⟩ = δ(d)(x− y). (2.7)

Inserting ∫
ddp|p⟩⟨p| = 1, ⟨x|p⟩ = 1

(2π~)d/2
exp(

i

~
p · x), (2.8)

one can write

⟨xj|e−
i
~

p2

2m
T
n e−

i
~V (x̂)T

n |xj−1⟩ =
∫
ddpj exp(−

i

~
(
p2
j

2m
+ V (xj−1))

T

n
)⟨xj|pj⟩⟨pj|xj−1⟩

=

∫
ddpj
(2π~)d

exp(
i

~
pj · (xj − xj−1)−

i

~
(
p2
j

2m
+ V (xj−1))

T

n
).

(2.9)

Taking the limit of this expression one has finally

⟨x′′|U(t)|x′⟩ = lim
n→∞

∫
ddpn
(2π~)d

(
n−1∏
j=1

ddpjd
dxj

(2π~)d

)
exp(

i

~

n∑
j=1

(pj·(xj−xj−1)−
i

~
(
p2
j

2m
+V (xj−1))

T

n
))

(2.10)

which with substitutions
∏n

j=1

ddpj

(2π~)d ≡ Dp(t),
∏n−1

j=1 d
dxj ≡ Dx(t) can be rewrit-

ten as

⟨x′′|U(t)|x′⟩ =
∫ X(T )=x′′

X(0)=x′
Dx(t)Dp(t) exp

(
i

~

∫ T

0

dt(pẋ−H)

)
. (2.11)

This has exactly the structure of (31), with the term Dx(t)Dp(t) representing

an infinitesimal contribution of a formD[gµν ] and the term exp
(
i
~

∫ T
0
dt(pẋ−H)

)
being a classically equivalent reformulation of the weighting factor eiSEH [g].

Let us show explicitly that this analogy has a mathematically rigorous base.
Let us consider a phase space with the canonical coordinates (x,p). Then for a
path piecewise constant in p
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p(t) = pj for
j − 1

n
T < t <

j

n
T (2.12)

and piecewise linear in x

x(t) = xj−1 +
n

T
(xj − xj−1)(t−

j − 1

n
T ) for

j − 1

n
T < t <

j

n
T (2.13)

with n being the number of individual “chunks”, j = 1, . . . , n − 1 and x0 = x′,
xn = x′′, the action functional reads

S(x′,x′′, T ) =
n∑
j=1

(pj · (xj − xj−1)−
i

~
(
p2
j

2m
+ V (xj−1))

T

n
+O((

T

n
)2)), (2.14)

which, up to a prefactor i
~ and terms of the order O((T

n
)2) is identical with the

term inside of the exponential in (2.10).
Using the Gaussian integral identity∫ ∞

−∞

dx

2π
exp

(
−1

2
ax2 + bx

)
=

(
1

2πa

)1/2

exp

(
b2

2a

)
, (2.15)

we can partially solve the integral (2.10) to obtain

∫
ddp

(2π~)d
exp(

i

~
− p2

2m

T

n
+ p ·∆x)) =

( nm

2πi~T

)d/2
exp

(
i

~
m∆x2 n

2T

)
, (2.16)

⟨x′′|U(t)|x′⟩ =

lim
n→∞

( nm

2πi~T

)nd/2 ∫ n−1∏
j=1

ddxj exp

(
i

~

n∑
j=1

(
m(xj − xj−1)

2 n

2T
− V (xj−1)

T

n

))
.

(2.17)

Absorbing the prefactor in this expression into the measure one then gets an
alternative expression for (2.11)

⟨x′′|U(t)|x′⟩ =
∫ X(T )=x′′

X(0)=x′
Dx(t) exp

(
i

~

∫ T

0

dt(m
˙x(t)2

2
− V (x(t)))

)
. (2.18)

Both expressions (2.11), (2.18) form the basis of the numerical computation of
the integral. One important point to make is that one makes these integrations on
a quantum mechanical level, position, therefore, does not determine momentum,
as in the classical mechanics, because doing so would mean breaking Heisenberg’s
uncertainty relations. Hence there is nothing incorrect about integrating with
respect to both x and p here.
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spin network spinfoam

(d− 1)-dimensional space d-dimensional space
graph Γ 2-complex C

spin representations jl on links l spin representations jf on faces f
intertwiners in on nodes n intertwiners ie on edges e

Table 2.1: The relationship between a spin network state and a spinfoam

4-dim. triangulation spinfoam 2-complex
4-simplex spinfoam vertex σ

tetrahedron T spinfoam edge e
triangle t face f

Table 2.2: Duality relations in 4-dimensional space

2.2 Regge calculus

The last section has shown a derivation of a path integral formalism in quantum
mechanics for a very simple and general type of Hamiltonian. Subsequently,
a very gentle sketch of how path integrals can be solved and enumerated was
outlined.

In this part, the attention is focused on the discretized path integral, we
categorize the resulting spinfoam models and then focus on the simplest one. Its
discussion is done both from the point of view of the general ansatz as well as of
the original idea leading to its discovery - Reggae calculus.

An intuitively appealing way of looking at spinfoams is as histories of evolving
spin networks. This means that assuming a spin network state on a graph Γ with
a gauge group G its nodes n sweep out spinfoam edges e during time evolution and
its links l sweep out spinfoam faces f . The intertwiners naturally associated to the
spin network nodes become attached to the edges while the spin representations jl
become attached to the spinfoam faces. The relationship between a spin network
state and a corresponding spinfoam is schematically summarized in Table 2.1. Of
course, reciprocally, taking a slice on a 2-complex C produces a graph Γ′, which
is possibly homeomorphic to the original Γ.

One important point to note in this construction is that the 2-complex is dual
to a 2-skeleton created through a triangulation of the underlying space. This
duality relation works through assigning a d− n-dimensional (2-complex) object
to an n-dimensional (2-skeleton) object - in case of 4-dimensional triangulation
one thus assigns a spinfoam vertex σ to every 4-simplex S, a spinfoam edge e
to each tetrahedron T and a spinfoam face f to each triangle t and in case of
3-dimensional triangulation one has a vertex σ for each tetrahedron T , an edge
e for every triangle t and a face f for every segment s of the 2-skeleton. These
relations are summarized in tables 2.2, 2.3.

Whichever point of view is taken, the spinfoam model is defined by a local
ansatz where only the objects with the three respective dimensionalities have
non-zero amplitudes. Taking the spinfoam point of view, this is

A∆ =
∑

∆′:∂ Delta′=∆

∑
jf ,ie

∏
f

Af [jf ]
∏
e

Ae[ie]
∏
σ

Aσ[jf , ie]. (2.19)
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3-dim. triangulation spinfoam 2-complex
tetrahedron T spinfoam vertex σ

triangle t spinfoam edge e
segment s face f

Table 2.3: Duality relations in 3-dimensional space

model theory 2-complexes representation vertex

Ponzano-Regge Euc. 3D GR 3-valent σ SO(2) {6j}
Turaev-Viro Euc. 3D GR with Λ 3-valent σ SU(2)q {6j}q

Ooguri Euc. 4D BF 4-valent σ SO(4) {15j}
Crane-Yetter Euc. 4D BF with Λ 4-valent σ SO(4)q {15j}q
Barrett-Crane Euc. 4D GR 4-valent σ SO(4), simple {15j} or {10j}BC

EPRL Lor. 4D GR (with Λ) 4/valent σ SU(2) or SU(2)q {10j} or {10j}q

Table 2.4: Spinfoam models

In the formula (32) this corresponds to a sum where the configurations ∆′

summed over are chosen according to ∂∆′ = ∆ and Ap[j0] = Aσ[jf , ie], Al[j1] =
Ae[ie] and At[j2] = Af [jf ]. Notice that in passing from (32) to (2.19) we implicitly
got rid of the assumption that the discretization under consideration is formed by
disjunct initial and final states of geometries and a bulk in between, but allowed
also for the possibility of a compact boundary state where the “bulk” is only
its refinement. This is a necessary step in the generally covariant path integral
formulation where one has to allow also for more general boundary conditions.
The symbols jf , ie stand for quantum numbers indexing group representations
and intertwiners respectively.

The spinfoam model is then defined by three choices:

1. a choice of allowed 2-complexes

2. a choice of representations j and intertwiners i

3. a choice of a vertex amplitude Aσ[jf , ie], an edge amplitude Ae[ie] and a
face amplitude Af .

In the third point, it is customary to absorb the edge amplitude Ae[ie] into
the vertex amplitude Aσ[jf , ie] while the face amplitude is usually the dimension
of the representation j.

Keeping in mind these simplifications, let us now look at what the resulting
options are. They are summarized in the Table 2.4.

The first column of this matrix specifies the name of the model and the second
one its physical meaning, the classical theory that forms its basis. The next three
columns give the information needed to specify a model - the set of 2-complexes
that define it, the group and its representations that the model is based on, and
in the last column the vertex amplitude Av.

There are several important points to note in the table. First, the theory
column and the representation column are of course not independent. Spinfoam
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models based on Euclidean general relativity are necessarily based on the rep-
resentation of groups of ordinary rotations matrices SO(n) whereas Lorentzian
models usually feature the group SL(2,C) (or possibly SO(1, 2)).

Second, because of the duality relation between a spinfoam and a triangula-
tion of the space, the set of admissible 2-complexes of the theory is effectively
characterized by the number of edges incoming or outgoing from a given vertex
and this number is constant for a given space dimensionality.

Third, there is a very effective way of quantizing general relativity with the
cosmological term Λ through the use of quantum group deformations to the un-
derlying symmetry group. The theory is parametrized by a parameter q = eiπ/r,
while the non-deformed version is retained for q = 1. This choice of deformation
group has its consequences for both face and vertex amplitude, thus one needs to
use dq(jf ) and {6j}q instead of d(jf ) and {6j}2

The fourth remark is that it is only the Barrett-Crane model that makes a
nontrivial choice of representations of a symmetry group. Here one sums only over
simple unitary irreducible representations of SO(4), the motivation for this is to
implement the simplicity constraint which will be clarified later. This constraint
transforms a topological BF theory into general relativity. Simple representation
means that its highest weight3 has a structure Λ = (N, 0, . . . , 0)4. The condition
for simpleness can be alternatively expressed as

X[ijXij] · VN = 0 (2.20)

where Xij is a basis in the Lie algebra and VN is the representation space. BF
theory, on the other hand, is a suitable generalization of the topological Ponzano-
Regge model to four dimensions that will be dealt with in more detail in the
following section. The object {10j}BC is built up only from intertwiners of a
form

i
(aa′)(bb′)(cc′)(dd′)
BC =

∑
j

(2j + 1)vabfvfcdva
′b′f ′vf

′c′d′ (2.21)

where vabf is a generic trivalent intertwiner.
Finally, it is worth noting that in terms of the exposition made so far, it is

only the EPRL model (named after Engle, Pereira, Rovelli and Livine) which
is dimensionally consistent with the 3+1-split since upon performing it one gets
a space with N − 1 dimensions. The rest of the models make use of the ba-
sic variables corresponding to the dimension of the unfoliated spacetime. This
fact can be explained in heuristic terms insofar as the group representations of
SU(2) are concerned. First, only the case of SU(2) satisfies the basic kinemati-
cal requirement of the same number of position and momentum variables in the
canonical commutation relations (1.50). This explains, for example, why the
Ponzano-Regge model is not based on SO(2) plane rotations instead of the full

2Quantum group-based quantization is discussed more in detail e.g. in [47], d stands for the
dimension of the representation jf .

3For a Lie group, a weight is a generalization of a notion of eigenvalue defined with respect
to the action of a maximal subalgebra with has vanishing Lie brackets of its Lie algebra on the
whole Lie algebra. The corresponding generalization of eigenspace is called weight space and
is, of course, a subset of the whole representation space.

4More in detail in [44], appendix A3.
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group SU(2). Second, it happens to be the case that for the groups SO(4) as
well as SL(2.C) the Lie algebras are isomorphic to the direct sum of two SU(2)
Lie algebras so(4) ∼ su(2) ⊕ su(2). Hence any formulation of a model based on
SO(4) or SL(2,C) can be given an alternative reformulation in terms of SU(2)
which, for reasons related to a historical happenstance rather than a rigorous
argument, is more convenient and common. This explains why the EPRL model
makes use of the 3 + 1 split. Note that the structure of the operator algebra and
the constraint algebra in the canonical formalism differs in the cases, with and
without the split, but that is not a major concern in the construction since it
does not enter the theory as an initial assumption, but rather its structure is to
be replicated from the bottom up during the development of the formalism.

Out of all the models introduced, in the following, we concentrate on the first
one, the Ponzano-Regge model, and the most developed one, the EPRL model.
In doing so one exhausts the range of ideas that are crucial in the construction
of the models while restraining oneself to the physically most relevant results.

2.2.1 Ponzano-Regge model

In this section, we proceed to the exposition of the Ponzano-Regge model. This
turns out to be the simplest setting to understand in what sense is the physics
of continuous general relativity encoded in a combinatorial discrete language and
so we introduce it as the first model. The statement that both of these theories
are fundamentally equivalent rests on the form that the action of Ponzano-Regge
model takes - one writes

SRegge =
∑
v

Sv, (2.22)

with the sum going over the tetrahedrons v of the triangulation (or alternatively
vertices of the spinfoam) and with

Sv =
∑
f

lfθf (lf ). (2.23)

Here f denotes segments (or spinfoam faces), lf is its length and θf is the
dihedral angle associated to the segment f (i.e. the angle between the outward
normals of the triangles incident to the segment). This action converges in the
limit of large quantum to the Einstein-Hilbert action (1.1). This statement is
what is meant by Regge calculus on the classical level.

The tetrahedra filling up the spacetime are then assumed to be flat in a
discretized metric g∆ which approximates the “true” metric g. The curvature is
consequently nonzero only along the segments of the triangulation. The resulting
geometrical picture is, therefore, that of a base manifold being approximated by
a set of tetrahedra which, extruding into the “fourth dimension”, capture the
effects of curvature. This corresponds in (2.23) to the sum of adjacent θf ’s being
different from 2π. The important point is that one can achieve in this manner an
arbitrarily exact approximation by adjusting accordingly the length parameter
of the discretization. Generalizing this construction to an arbitrary dimension D
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one can easily deduce that the curvature is, in general, concentrated on D − 2
-dimensional objects5.

The discrete construction just introduced opens up some interesting substance
overlap with another part of quantum field theory where discrete structures also
play an important role - namely with lattice Yang-Mills theories. It is instructive
to bring some of these points up and to touch upon briefly some of the similarities
and differences of both theoretical frameworks.

First, both of these theories possess an infinite amount of degrees of freedom
(one field variable per spacetime point, there is an uncountable infinity of them)
which one tries to alter by choosing some subset of them (again uncountable,
but of measure zero in the whole spacetime). Now in the case of a Yang-Mills
theory, one integrates the field variables along these subsets to obtain a holonomy-
type variable (much like in the canonical LQG) and constructing a Hilbert space
corresponding to the excitation of respective Hamiltonian taking into account
relevant symmetries. In the case of Ponzano-Regge model one follows a different
route. In the model’s simple setting the discrete scaffold that one constructed in
order to simplify the theory plays, in a way, the role of the dynamical variable.
Even though one might interpret the segment lengths lf as integrals of densitised
triads (diads) along the segments of the triangulation, one usually does not need
to go that far and defines a discretized path integral fully in terms of these
lengths. One might conclude, allegorically speaking, that whereas in the case
of Yang-Mills theory, during this alteration, one reduced the “theater stage” so
that less “actors” fit on it, in the case of Ponzano-Regge model, one reduces the
very actors because they form the stage themselves. As a side note, it deserves
mentioning that Wilson loops, the variables that one gets in this way in the
Yang-Mills case, served as an important impetus in the development analogous
techniques in LQG.

The second point of contact between these two theories that yields different
insights in the case of both is a presence of an ultraviolet/infrared cut-off. What
is meant by this is an appropriate device in the theory that does away with too
high or too low degrees of freedom in the theory which would manifest themselves
in a form of unphysical singular results. In lattice Yang-Mills theory, the number
of elementary cells N serves as an infrared cut-off: arbitrarily long wavelength
excitations can be defined only when measured with discrete chunks with a fixed
extensive dimension. This fixed number, on the other hand, provides an ultravi-
olet cut-off - the minimal wavelength that an excitation can have is given by it.
In Ponzano-Regge model, on the other hand, the discretization serves as a cut-off
that is neither infrared nor ultraviolet. This is because a fixed triangulation ∆
can represent arbitrarily small or large geometry - according to the metric that is
assigned to it, which is a fully independent choice6. The cut-off of Ponzano-Regge
model therefore rather limits the ratio between the smallest allowed wavelength
and the total size of the spacetime region under consideration.

Let us now consider how one proceeds in translating Ponzano-Regge model
to a quantum level. The main idea is to try to make sense of a path integral
expression

5Corresponding in e.g. two dimensions to points and surrounding “hilltops”.
6Note that this is in stark contrast to the canonical LQG where the geometry is encoded in

discrete quantum numbers which do have a minimum value.
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Z =

∫
dl1 . . . dlNe

iSRegge . (2.24)

The lengths of segments are a priori continuous quantities. A breakthrough
insight is achieved if we makes use of an asymptotic formula of a form

{6j} ∼ 1√
12πV

cos
(
Sv(jn) +

π

4

)
(2.25)

where the 6j-symbol is associated to a tetrahedron and jn are the SU(2) repre-
sentations along its six edges. The relation ∼ denotes an approximate equality
in the large j limit. Since, as previously noted, j is a discrete quantity labeling
individual representations of SU(2), one should take j to take values in Z/2 and
restrict it to a discrete set of possible values. Assuming this then, one can show
that the state sum for the path integral (2.24) can be expressed as

ZPR =
∑
j1...jN

∏
f

dim(jf )
∏
v

{6j}v. (2.26)

But this is nothing else than a special case of the general formula (2.19). This
is a Regge calculus derivation of a Ponzano-Regge model. One could of course also
proceed directly by imposing respective choices in (2.19) (which would correspond
to a state sum derivation).

Let us now show how this formula can be brought to a computational use. Let
us define a holonomy of an SU(2) spin connection of 3-dimensional euclidean GR
along an edge e of the 2-complex as he = P exp(

∫
e
ωiτi) and let laf denote the line

integral of the triad ei along a segment f of the discretization which intersects a
face f of the 2-complex. Then the discretized Einstein-Hilbert action in terms of
these variables reads

S[lf , he] =
∑
f

lifTr[hfτi] =
∑
f

Tr[hf lf ] (2.27)

where

hf = hef1
. . . hefn , (2.28)

f denoting the face intersected by the segment. Varying the action (2.27) with
respect to lif and he one gets the equations of motion

hf = 1, (2.29)

resp.

lif1 + lif2 + lif3 = 0, (2.30)

the first one of which states that the holonomy of a connection around a face
is trivial, i.e. the manifold is flat, and the second one of which is nothing else
than a discretized form of a Cartan structure equation for the three sides of each
triangle. The reason for the three summands in (2.30) is, of course, the fact that
the discretization is composed only of triangles.

Given that the holonomy he is an element of SU(2), one can write for a
partition sum corresponding to (2.27)
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Z =

∫
dlifdhe exp iS[lf , he] (2.31)

where dhe is the Haar measure on SU(2). Substituting (2.27) into the last equa-
tion and using the Plancherel expansion

δ(h) =
∑
j

dim(j)TrM (j)(h), (2.32)

where M (j) is the full representation matrix of the spin j representation, one can
compute

Z =

∫
dhe

∏
f

δ(hef1
. . . hefn) =

∑
j1...jN

∏
f

dim(jf )

∫
dhe

∏
f

TrM (jf )(hef1
. . . hefn).

(2.33)
Each of the integrals after the last equal sign, before taking trace, is of a form∫

SU(2)

dgM (j1)(g)aa′M
(j2)(g)bb′M

(j3)(g)cc′ = vabcva′b′c′ (2.34)

because there are exactly three segments forming each triangle and so in the
product Π, f takes on exactly three distinct values. M (jf ) denotes the full repre-
sentation matrix labeled by jf which is being summed over: f ∈ {1, . . . , N}. The
symbol vabc stands for a normalized intertwiner among the three representations
which upon contraction yields the {6j}-symbol. This vindicates the step taken in
(2.27)7 and proves that (2.33) is indeed equivalent to the state sum (2.26). This
last expression forms the basis of numerical computations in the Ponzano-Regge
model.

As a closing remark, let us point out that the model just introduced has
many unphysical properties which manifest itself in flatness condition (2.29) and
subsequent absence of any true dynamical degrees of freedom. The type of theory
represented is denoted a topological quantum field theory to refer to the possibility
that the theory may still possess nontrivial topological degrees of freedom. Despite
these shortcomings, the value of this model consists in showing the consistency
of spinfoam quantum gravity model under simplified circumstances.

2.3 BF theory

Let us now consider the case of four spacetime dimensions and a Lorentzian
signature. The heuristical path to the relevant model, the EPRL model, is to
first extend the topological setting of the Ponzano-Regge model to four space-
time dimensions obtaining thus a BF theory, and, second, to impose simplicity
constraints which reinstate physical degrees of freedom so as to obtain standard
general relativity. It turns out that this step allows various realizations all of
which in some sense reproduce the general relativity, the EPRL model, howev-
er, only corresponds to their weak imposition whereas strong imposition of the

7i.e. defining the holonomies and the connections and considering the Einstein-Hilbert action
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simplicity constraint gives rise to models of Barret-Crane type. Let us illustrate
these statements in the following in more detail.

A starting point for a definition of a BF theory is an action of a form

S[B,ω] =

∫
BIJ ∧ F IJ [ω] (2.35)

which can be seen as a direct generalization of action (2.27). Here BIJ stands for
an arbitrary two-form in the Lorentz indices. Taking into account the connection
curvature

F IJ = dωIJ + ωIK ∧ ωKJ , (2.36)

the Lie-algebra-valued 2-form BIJ associated to the faces of the dual 2-complex
corresponds to a Lie algebra element lf whereas F

IJ corresponds to the holonomy
hf (the generalization thus consists in relaxation of the definition of lf as an
integral of triad e along a segment f). This action leads to equations of motion
that posit that the connection ω is flat, F [ω] = 0, and that the parallel transport
of B along an arbitrary segment is trivial, dωB = 0. This flatness of the solutions,
of course, corresponds to the absence of any propagating physical degrees of
freedom, as it was the case in the Ponzano-Regge model.

Let us now proceed to the quantum level. Progressing straight to the final
result and considering a gauge group SU(2), the path integral partition function
can be derived by a sequence of steps analogous to that of the previous section
and it has a form

Z =
∑
jf ,ie

∏
f

dim(jf )
∏
v

{15}v =
∫
dhe

∏
f

δ(hef1
. . . hefn) (2.37)

The Wigner 15j-symbol which is taking place of the Wigner 6j-symbol in the
formula (2.26) is accounted for by the occurrence of integrals of products of four
representation matrices in the partition sum instead of just three, as in (2.34). It
has 10 indices associated to the faces and 5 indices associated with the choice of
the intertwiner which represents a non-zero volume concentrated on a node8. This
is in accordance with the physical requirement that the spin network states should
carry quanta of 3-dimensional volume. The case of the SO(4) group is very similar
to this one just given because of the decomposition SO(4) ≃ SU(2) × SU(2) -
the group SO(4) is isomorphic to a product of two SU(2) groups as mentioned
earlier. As a consequence, in the expressions for partition function one just gets
contributions from the two copies of SU(2) representation labeled by a j±

Z =
∑
j±f ,i

±
e

∏
f

dim(j+f ) dim(j−f )
∏
v

{15j+}v{15j−}v. (2.38)

The case of SL(2,C) is covered in the following.
As a closing remark before moving on to the implementation of the simplicity

constraints, let us point out that the path integral formulation of a spin foam
models (the second term in (2.37)) is dual to the state sum formulation (the first

8It is the fact that there are four matrices instead of three that ensures the volume being
non-zero for the group SU(2).
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term therein) in the sense that in the first case one integrates over the eigenstates
of he whereas in the second case one sums over the eigenstates lf and these two
operators are canonically conjugated. Both formulations carry the same extent of
information about the spinfoam model, even though the path integral formulation
is more suitable for numerical calculations.

Let us now proceed to the implementing simplicity constraints. Classically
these constraints fix the form of B to be

BIJ = εIJKLe
K ∧ eL (2.39)

The quantum theory formalism allows a significant freedom in their imposition, so
let us consider two important cases which lead to well-defined spinfoam models.

One possible way of approaching the imposition of equation (2.39) in the con-
text of a spinfoam model is to discretize the B-field and to impose its discretized
version in every 4-simplex v. Making use of an expression equivalent to (2.39),

BIJ ∧BKL = V εIJKL, (2.40)

these discretized equations read

⋆ Bf ·Bf = 0, (2.41a)

⋆ Bf ·Bf ′ = 0, (2.41b)

⋆ Bf ·Bf ′ = ±2V (v), (2.41c)

where the case (2.40b) applies if f , f ′ share an edge and (2.40c) applies if f , f ′

are the opposite faces of v and ⋆ denotes Hodge dual. It can be shown then that
the equation (2.41a) restricts the representations summed over in the definition
of the partition function. Since these are labeled by two spins j±, it can be shown
that they require vanishing of a group’s Casimir operator of a form

⋆ B̂IJ
f B̂

KL
f = B̂IJ

+ B̂+IJ − B̂IJ
− B̂−IJ = [j+(j+ + 1)− j−(j− + 1)]1 = 0. (2.42)

This leads to the restriction of the representations j± summed over in equation
(2.38) - only the ones that satisfy j+ = j− - the simple representations we intro-
duced in (2.20), do get a non-zero contribution. Similarly, the equation (2.41b)
restricts the intertwiners being summed over in (2.38) (they are hidden inside of
the 15j symbols) to those of a form

i
(aa′)(bb′)(cc′)(dd′)
BC =

∑
i

(2i+ 1)vabgvgcdva
′b′g′vg

′c′d′ (2.43)

corresponding to simple representations as well.
The model obtained by this procedure, the Barret-Crane model, represents

an earnest attempt at approximating euclidean GR. However, its deeper analysis
uncovers some crucial difficulties. The first one of them is that one does not
get an expected form of a graviton propagator in the low energy limit - some
components of it are suppressed too much. The second one is that there does not
seem to be a consistent way how to connect the framework with the SU(2) spin
networks which hinders its desirable physical interpretation.
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One is, therefore, motivated to look for alternative approaches to the imposi-
tion of the simplicity constraints. The way to proceed, which leads to the EPRL
model, is to enforce them only in the limit of large quantum numbers. Let us
explain in the rest of this chapter how this comes about.

As a first step, let us recall some facts about SL(2,C), the group underly-
ing the “true” Lorentzian formulation of GR. Any function on this group can be
expanded into its irreducible unitary representations. These representations are
labeled by a positive real number p and a non-negative half-integer k and the
relevant representation space V (p,k) can be decomposed into irreducible represen-
tation space of the subgroup SU(2) according to9

V (p,k) =
∞⊕
j=k

Hj. (2.44)

The basis in this space can be therefore denoted as |p, k; j,m⟩ with j = k, k+
1, . . . and m = −j,−j + 1, . . . , j. SL(2,C) has two Casimir operators, in terms

of a boost K⃗ ∈ SL(2,C) and a rotation L⃗ ∈ SL(2,C), they are C1 = |K⃗|2 − |L⃗|2
and C2 = K⃗ · L⃗. What is important is their action on V (p,k) written in terms of
the quantum numbers p, k - it reads

|K⃗|2 − |L⃗|2 = p2 − k2 + 1, (2.45a)

|K⃗| · |L⃗| = pk. (2.45b)

The key insight here is that the very same group generators K⃗, L⃗ can be seen
as components of the B field discretized on every face f which allows us to
reformulate advantageously the simplicity constraints. Considering a definition
of B adjusted to extended action (1.47) B = ⋆e ∧ e + 1

γ
e ∧ e, one can identify,

upon choosing a normal n to a spatial slice Σ Ki, Li as

Ki = Bi0, Li =
1

2
εijkB

jk. (2.46)

Then the definition of B given above is shown to imply simplicity constraints
in a form

K⃗ = γL⃗ (2.47)

because one has

nIB
IJ = nI(⋆e∧e+

1

γ
e∧e)IJ = nI(ε

IJ
KLe

K∧eL+ 1

γ
eI∧eJ) = nI(⋆e∧e)IJ (2.48)

and

nI(⋆B)IJ = nI(⋆(
1

γ
eI ∧ eJ))IJ =

1

γ
nIB

IJ . (2.49)

The key requirement now is to demand the validity of (2.47) in the limit
p, k → ∞. The equations (2.45) then give

|K⃗|2 − |L⃗|2 = (γ2 − 1)|L⃗|2, (2.50a)

9Note that the spaces corresponding to different p’s are isomorphic.
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Figure 2.1: Group variables Ue notation

K⃗ · L⃗ = γ|L⃗|2 (2.50b)

which in terms of the quantum numbers translates to

p2 − k2 + 1 = (γ2 − 1)j(j + 1) (2.51a)

pk = γj(j + 1). (2.51b)

The large numbers limit of this is p2−k2 = (γ2−1)j2, pk = γj2 which is solved
by p = γk, k = j. The element of V (p,k) satisfying the simplicity constraint can
thus be written as |γj, j; j,m⟩. We thus see how in the case of realistic general
relativity a “weak” imposition of the simplicity constraint effectively transforms
the system from a 4-dimensional spinfoam language to the language of SU(2)
spinfoams explained earlier. The map |j,m⟩ → |γj, j; j,m⟩ is in the literature
usually denoted as the Yγ map.

By virtue of this isomorphism of structures, one would expect that the transi-
tion amplitudes will to a large extent copy the structure of those for the Ponzano-
Regge model. It turns out that this is indeed the case - the expressions (2.33),
(2.34) are equivalent to a transition amplitude W (hl) of a form

W (hl) =

∫
SU(2)

dhvf
∏
f

δ(hf )
∏
v

Av(hvf ), (2.52)

Av(hvf ) =
∑
jf

∫
SU(2)

dg′ve
∏
f

dff (Tr)jf [ge′vgvehvf ] (2.53)

where the group variable is split according to Ue = gvegev′ with gev = g−1
ve and

hvf = gevgve′ as depicted in figure 2.1.
A detailed computation then shows that the form of the transition amplitude

for the EPRL model is formally the same as the second equation (2.53) being
replaced by an expression

Av(hvf ) =
∑
jf

∫
sl(2,C)

dg′ve
∏
f

(2jf + 1)Trjf [Y
+
γ ge′vgveYγhvf ]. (2.54)
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Alternatively, this can be expressed as

A(jab, ia) =
∑
na

∫
dpa(k

2
a+p

2
a)

(∏
a

f iakapa(jab)

)
{15j}SL(2,C)((2jab, 2jabγ); (ka, pa))

(2.55)
where indices a, b denote the edges of the 2-complex, jab is therefore naturally
associated to a face as expected, f ikp being defined as f ikp ≡ iabcdv

(k,p)
abcd , i

abcd and

v
(k,p)
abcd are SU(2) and SL(2,C) intertwiners respectively and {15j}SL(2,C) is, of
course, an SL(2,C) 15j-symbol.

Both (2.52), (2.54) and (2.52), (2.55) are the culmination of the review part of
this thesis. They form the base for the understanding of the problem of quantum
gravity. Before listing the arguments to support this point, let us review some
general characteristics of the amplitude (2.54), resp. (2.55).

First, the amplitude satisfies the superposition principle as an integral element
of quantum mechanics. This means that (2.52) is a sum over independent histories
in between the boundary state. One can thus schematically write

⟨W |ψboun⟩ =
∑
σ

W (σ) (2.56)

with σ labeling individual paths. This fact is in perfect agreement with the
elementary computation at the beginning of this chapter.

Second, the transition amplitude is local. This is an important and often
used requirement in quantum field theory - the inside of the transition amplitude
should depend only on the values of fields and mathematical structures that
represent it in individual spacetime points and no product of fields evaluated at
different spacetime points should be allowed. Schematically, one can express it
as

W (σ) ∼
∏
v

Wv. (2.57)

Third, although somewhat less direct to ascertain, the amplitude is Lorentz
invariant, as one would expect from the construction.

It should be mentioned that the exposition up until now neglected one im-
portant moment in the construction of spinfoam models. As specified in this
chapter, the spinfoam model is defined by a choice of set of allowed 2-complexes,
by a choice of representations and intertwiners corresponding to a given group
and by a choice vertex, edge and face amplitudes. It has been commented that the
set of allowed 2-complexes is dictated by the fact that it is dual to the discretiza-
tion of the spacetime. Nowhere, however, has the sum over all these 2-complexes
been taken into account - according to the path integral formalism, each allowed
field configuration should contribute to the transition amplitude and the exposi-
tion so far only assumed a fixed arbitrary 2-complex. This sum over 2-complexes
is carried out through the so-called group field formalism. In it, remarkably, a
spinfoam amplitude of the spinfoam formalism corresponds to a Feynman dia-
gram of an auxiliary quantum field theory so summing over the contributions
of different Feynman graphs corresponds to summing over different geometrical
configurations. As a simple example, let us mention a model defined by an action
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S[ϕ] =
1

2

∫ 4∏
i=1

dgiϕ
2(g1, g2, g3, g4)

+
λ

5!

∫ 10∏
i=1

dgiϕ(g1, g2, g3, g4)ϕ(g4, g5, g6, g7)ϕ(g7, g3, g8, g9)

× ϕ(g9, g6, g2, g10)ϕ(g10, g8, g5, g1)

(2.58)

which generates the sum correspond to the four-dimensional BF theory [35], i.e.
the Ooguri model (see Table 2.1). Notice that the potential term in (2.58) repro-
duces the structure of a 4-simplex.

Let us now list some of the arguments that point in favor of its viability. The
following treatment is necessarily comprehensive rather than detailed so for each
point we give references to original literature where the reader can learn about
the topic in detail.

First, one can show that the model encapsulated by the equations (2.52),
(2.54) is related, in the large quantum numbers limit, to general relativity. This
result is far more difficult to establish here then it is for the Ponzano-Regge
model as the construction involves building up reasonable semiclassical states for
the model. The end result is that the WKB-type approximation of the transition
amplitudes for the physical configurations is composed of two terms

A(jab) ∼ ceiSRegge(jab) + c′e−iSRegge(jab) (2.59)

where the constants c, c′ are not equal because of the nontrivial geometrical ef-
fects10 and the Regge action is in this case enumerated on a four -dimensional
discretization. For the unphysical configurations, on the other hand, the ampli-
tude is suppressed. Surprisingly, thus, one sees that an amplitude analogous to
the Ponzano-Regge model is recovered in the classical limit in the EPRL model
as well.

Second, as with the other models, EPRL model allows an inclusion of a
non-zero and positive cosmological constant through a quantum deformation of
SL(2,C). Without going into the full details of the construction, let us state that
the transition amplitudes of the deformed are finite and that their classical limit
is related again to Regge action with a non-zero cosmological constant.

The first two points thus emphasized the mathematical consistency inherent
in the EPRL model. The next two points clarify its position with respect to
the empirical considerations listed in the introduction. The first area of these
considerations is the black hole entropy derivation. The covariant path integral
approach does provide in this respect a corroboration of the Bekenstein-Hawking
black hole entropy formula, confirming in this way the results of the canonical-
theory-based computations given in the introduction. The key idea in the covari-
ant derivation is that the black hole entropy is identified with an entanglement
entropy11 across the horizon. On the other hand, the spinfoam formalism based

10More in [47].
11For a quantum system composed of two parts with a Hilbert space HAB = HA ⊗ HB ,

starting with a general state of the full system ρ, the entanglement entropy is defined as a von
Neumann entropy of the reduced density matrix SA ≡ −TrρA log ρA where ρA = TrBρ.
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on the EPRL model has been successfully applied to cosmological setting as well
[10], [11], [51]. Choosing an initial state of geometry and a final one, provided
that one can find spin network configurations that approximate these state to a
required degree of precision, one can with the help of covariant formalism proceed
to the computation of individual contributions to the transition amplitude. This
is what is meant in this context by a vertex expansion. A subsequent step which
turns out to be necessary in order to extract dynamics in the semiclassical regime
is the large spin expansion which consists, as the name suggests, in passing in
limit to a large-scale geometry. One of the non-trivial results of this approach is
a prediction of a maximal acceleration during a gravitational collapse [47].

Let us close this chapter by pointing out some of the issues that are pending
further development. This serves in a way also as a “bridge” to the research last
chapter.

Let us again proceed sequentially. The first area of great interest that has
not been conclusively settled so far is the relation between both canonical and
covariant frameworks. This is related to the methodological remark made in
the introduction - the covariant approach is from the beginning conceived as a
bottom-up approach that is aimed to provide an alternative formulation to the
dynamics of the theory and thus perhaps to circumvent some of the difficulties
that plague the canonical theory. If this has indeed been achieved is, of course, not
clear in advance and requires a meticulous mathematical, rather than physical,
analysis. So far the issue has been conclusively settled - positively - only in
the case of three-dimensional Ponzano-Regge model in [39]. However, no similar
proof of equivalence exists so far for the realistic EPRL model. There are strong
indications in its favor consisting in the fact that the EPRL model framework
reduces through the Yγ map to the Ponzano-Regge spin networks as well as the
fact that one can directly cross-validate the discreteness of the area operator in
purely EPRL setting [41].

Second, given that one’s goal in the spinfoam program is to reproduce the
dynamics of general relativity, one needs to have sufficient instruments at one’s
disposal to substantiate that this has indeed been achieved. Given the peculiar
properties of quantum general relativity theory stemming from the fact that the
field that is subject to quantization represent in a well-defined sense space and
time, these instruments in this concrete case fall into two-fold distinction - namely
a classical (i.e. large quantum numbers) and a continuum limit12. However, it is
only the classical that has been investigated extensively so far. As a matter of
fact, one has little to no insight into the behavior in the continuum regime.

Third, similar to the case of canonical LQG there are some quantization am-
biguities that have important consequences for the structure of the theory and
whose implications have not been studied so far. One of these includes the defi-
nition of the Yγ map where the option p = γ(j + 1) is equally viable in addition
to p = γj considered.

12Unlike standard QM or QFT where there is only a classical limit.
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3. Dynamics of simple
configurations in Ponzano-Regge
model

In this chapter we get to the computational part of this thesis. It is composed of
two parts, in the first one, we clarify the research questions and methodology, in
the second one, we proceed to the exposition of the results.

3.1 Questions and methodology

The last part of the previous chapter provides a natural point of departure for
considerations made in this computational part of this thesis. One of the points
that one could observe in it was a relative lack of understanding in the sector of
the theory which is characterized by many small spins, i.e. the continuum limit,
as opposed to the classical limit of large quantum numbers (actually both in the
canonical and covariant version of the theory). In order to be able to gain some
insight into this issue, one has to have as a prerequisite a sufficiently good under-
standing of the theory’s dynamics. One way of gaining this is by investigating the
transition amplitude - because we will be working in the covariant formulation of
the theory - on some simple elementary configurations. This is a description in
the simplest terms of what we have set out to investigate.

To facilitate the insight into this question, we focused on the simplest model
available - the model of Ponzano and Regge introduced in section 2.2. We chose
four different configurations, depicted in Figure 3.1. Our previous review of the
basic structure of covariant LQG facilitates to a great extent the task at hand.
We know that the objects depicted can be interpreted in two distinct ways -
as a discretization of the spacetime or as its dual 2-complex. We choose the
former interpretaton and thus one has a spin number j per each segment of the
configuration. Our starting point for the dynamics is an amplitude similar to
(2.26) given in [47]

W∆(jl) = N∆

∑
js

∏
s

(−1)2js dim(js)
∏
T

(−1)JT {6j} (3.1)

where the subscript ∆ suggests a dependence on the discretization ∆, N∆ is a
normalization factor, js is the spin associated to a given segment, a link l is a
segment on the boundary and JT is the sum of spins belonging to the segments
forming a given tetrahedron T .

The first question one has to find a satisfactory answer to is how to define
the normalization factor N∆. In our understanding, the logically cleanest way
to do so is in the standard thermodynamical way, i.e. as N∆ = 1/Z∆ where
Z∆ is a partition sum for a given fixed configuration. This partition sum is
composed of contributions enumerated as

∏
s(−1)2js dim(js)

∏
T (−1)JT {6j} on

this configuration corresponding to all possible boundary conditions, whereas the
rest of the formula (3.1), the unnormed amplitude, is of course composed only of
the contributions consistent with the boundary conditions jl.
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Figure 3.1: The four configurations considered: a) tetrahedron, b) double tetra-
hedron, c) octahedron, d) bubble

Given this preliminary setup, one can define the dynamics of the theory only
for systems with a finite number of degrees of freedom, i.e. one must choose
the ”universe” of configurations that one takes into account and proceed in two
steps - first, to define an amplitude of a given state jl on a given discretization ∆
relative to other states j′l on the same ∆ according to (3.1), and, second, to define
an amplitude of one state with respect to another one on a different configuration
as

w12 =
W∆1

W∆2

=
W unnormed

1 (jl1)Z2

W unnormed
2 (jl2)Z1

(3.2)

where the Z1, Z2 are the partition sums of the two configurations. The set of all
amplitudes for all allowed states can then be normed so as to yield a consistent
dynamics.

The set of objects we chose is depicted in Fig. 3.1 - namely we consider
a tetrahedron, a double tetrahedron, an octahedron and a tetrahedron with a
point in its interior, also called a bubble1. According to the literature [47], the
first three ones should yield a consistent dynamics whereas the bubble should
diverge. Similar dynamical questions in the context of a so-called melon graph
have already been investigated in the context of EPRL model [?].

Let us note that the first two configuration have only boudary segments jl
whereas the latter two do posses inner “bulk” segments js. All four of them

1This is because in the dual 2-complex, this point manifests itself as an extra tetrahedron
inside of a larger one.
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can be obtained from an elementary building block - a tetrahedron, through
deforming and identification: the double tetrahedron is, of course, composed of
two tetrahedra identified along a common face, the octahedron is composed of
four tetrahedra identified along a common segment and the “bubble” is composed
of four suitably identified tetrahedra sharing a common vertex.

One can even give these four configurations a tentative physical interpretation.
A tetrahedron represents a zeroth order amplitude for a point-to-triangle process,
of which a “bubble” is a first order approximation, whereas a double tetrahedron
can be seen as a third-order contribution to a point-to-point process. Octahedron,
on the other hand, represents either a fourth order contribution to a point-to-
point process or a zeroth order contribution to a tringle-to-triangle process. This
nonuniqueness in interpretation is given by the covariant character of the theory2

3.2 Results

As a first step, we proceeded to the computation of the partition functions. The
results are in the Tables 3.1, 3.2, 3.3, 3.4. Contrary to the expectations, using
a code in Mathematica enclosed in the appendix, we encountered (probable)
divergences in all four cases. Furthermore, the computations proved so time-
and computer power-consuming, that we were able to get only a modest restricted
number of data points, depending on the triangulation. This is an unexpected
result that requires a careful interpretation as precludes any further steps in the
construction of the dynamics.

Given this unexpected outcome, in the next step we therefore focused on a
“phenomenological” description of these divergences. We tried to ascertain their
character - whether it is polynomial or exponential and what is the relevant
parameter value. For this, we calibrated two linear models,

|Z| = β0 + β1j + · · ·+ βnj
n (3.3)

and

log |Z| = β′
0 + β′

1j. (3.4)

The calibration of the former one takes place in two steps - first, one considers
a high degree linear model (3.3) (i.e. high n) and runs a regression whereupon
one chooses statistically significant coefficients, the highest of which determines
the “degree of divergence”. In the first step, of course, one cannot choose n higher
than the #datapoints−1 as it yields by definition an ideal fit3 and the results would
therefore be invalid. For the tetrahedron, double tetrahedron, octahedron and
the bubble we have therefore chosen respectively n = 15, n = 5, @n and n = 5.
In case of the octahedron, we limited ourselves to a descriptive analysis since the
number of data points is too low. The calibration of the later model, on the other
hand, is straightforward, except for the fact that one must consistently disregard
the first data point which is zero.

2The options mentioned do not exhaust all the possibilities, only in some sense the more
“apparent”, basic ones.

3Any two points uniquely determine a line - a first degree polynomial with two parameters
ax+ b, three points uniquely determine a second degree polynomial with three parameters etc.
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j max Re Z Im Z |Z|
1 0 0 0
1.5 121.5 2.68 · 10−13 121.5
2 -1145.7 -728.59 1357.74
2.5 7343.93 7417.28 10437.88
3 -31751.1 47429.5 57076.18
3.5 77531 199895 214403.98
4 -136543 611912 626961.15
4.5 191608 1.46 · 106 1.46 · 106
5 -442724 3.25 · 106 3.28 · 106
5.5 808467 6.73 · 106 6.8 · 106
6 −1.45 · 106 1.33 · 107 1.34 · 107
6.5 2.22 · 106 2.44 · 107 2.45 · 107
7 −3.84 · 106 4.34 · 107 4.36 · 107
7.5 6.14 · 106 7.44 · 107 7.47 · 107
8 −8.36 · 106 1.25 · 108 1.25 · 108
8.5 1.18 · 107 1.99 · 108 1.99 · 108
9 −1.57 · 107 3.13 · 108 3.13 · 108
9.5 2.38 · 107 4.79 · 108 4.80 · 108
10 −2.93 · 107 7.22 · 108 7.23 · 108

Table 3.1: The tetrahedron partition sum

j max Re Z Im Z |Z|
1 0 0 0
1.5 546.75 2.01 · 10−12 546.75
2 8395.71 7978.05 11581.76
2.5 84296.4 129973 154915.67
3 420568 1.38 · 106 1.44 · 106
3.5 1.59 · 106 7.46 · 106 7.63 · 106
4 −4.14 · 106 3.73 · 107 3.76 · 107
4.5 −6.83 · 106 9.57 · 107 9.59 · 107

Table 3.2: The double tetrahedron partition sum

j max Re Z Im Z |Z|
1 0 0 0
1.5 1230.19 −7.53 · 10−12 1230.19
2 9199.98 −2.10 · 10−10 9199.98
2.5 804230 1.06 · 10−10 804230
3 1.77 · 107 −2.55 · 10−7 1.77 · 107

Table 3.3: The octahedron partition sum
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j max Re Z Im Z |Z|
1 0 0 0
1.5 45.56 −2.46 · 10−13 45.56
2 -674.82 -1007.72 1212.80
2.5 3391.85 11658.90 12142.26
3 8054.16 -120166 120435.61
3.5 50011.80 834920 836416.52
4 713364 −5.34 · 106 5.39 · 106

Table 3.4: The bubble partition sum

Estimate Std. Error t value Pr(> |t|)
β0 -9.185e+08 7.416e+08 -1.239 0.270
β1 3.599e+09 2.837e+09 1.269 0.260
β2 -6.097e+09 4.683e+09 -1.302 0.250
β3 5.930e+09 4.435e+09 1.337 0.239
β4 -3.705e+09 2.698e+09 -1.373 0.228
β5 1.574e+09 1.117e+09 1.409 0.218
β6 -4.676e+08 3.238e+08 -1.444 0.208
β7 9.827e+07 6.650e+07 1.478 0.200
β8 -1.452e+07 9.620e+06 -1.509 0.192
β9 1.465e+06 9.528e+05 1.538 0.185
β10 -9.410e+04 6.017e+04 -1.564 0.179
β11 3.119e+03 1.965e+03 1.587 0.173
β12 NA NA NA NA
β13 -2.777e+00 1.708e+00 -1.626 0.165
β14 NA NA NA NA
β15 2.492e-03 1.506e-03 1.655 0.159

Multiple R-squared:1, Adjusted R-squared:1

Table 3.5: Polynomial model calibration - tetrahedron

The question of which fit is better is solved by comparing the goodnesses
of fit of both models and by visual inspection of the graphs. Whichever one it
is, it determines the character of the divergence. The results of the regressions
are shown in tables 3.5 - 3.8 and the graphs of both the polynomial fit and the
exponential fit are given in fig. 3.2 - 3.9.

We can take the following comment on the procedure: regarding the tetrahe-
dron configuration, we can see in the tables 3.5, 3.6 both the coefficients β13, β15
are statistically significant, however the value of β15 is of the order 10

−3, whereas
β13 is of the order one. From this we conclude that the partition sum diverges
rather as j134. Second, regarding the octahedron and “bubble”, the estimation of
the polynomial model yielded all coefficients significant already in the first step
so there was no need to do a second estimation.

Let us now proceed to the interpretation of the results. The graphs in figures
3.2 - 3.8, with the exception of 3.6, consistently show that the growth of the
partition function has a polynomial, rather than exponential, character. This is

4Even though the second regression yields a statistically insignificant β13.
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Estimate Std. Error t value Pr(> |t|)
β0 1.997e+08 3.465e+08 0.576 0.585
β1 -7.285e+08 1.248e+09 -0.584 0.581
β2 1.131e+09 1.916e+09 0.590 0.577
β3 -9.932e+08 1.668e+09 -0.595 0.573
β4 5.517e+08 9.222e+08 0.598 0.572
β5 -2.051e+08 3.425e+08 -0.599 0.571
β6 5.249e+07 8.796e+07 0.597 0.572
β7 -9.332e+06 1.576e+07 -0.592 0.575
β8 1.143e+06 1.954e+06 0.585 0.580
β9 -9.339e+04 1.621e+05 -0.576 0.586
β10 4.707e+03 8.331e+03 0.565 0.593
β11 -1.173e+02 2.123e+02 -0.552 0.601
β12 NA NA NA NA
β13 4.592e-02 8.762e-02 0.524 0.619

Multiple R-squared:1, Adjusted R-squared:1

Table 3.6: Polynomial model calibration - tetrahedron

Estimate Std. Error t value Pr(> |t|)
β′
0 5.5441 0.7423 7.469 1.34e-06
β′
1 1.6409 0.1177 13.944 2.27e-10

Multiple R-squared:0.924, Adjusted R-squared:0.9192

Table 3.7: Exponential model calibration - tetrahedron

Estimate Std. Error t value Pr(> |t|)
β0 6.397E+07 6.282E+07 1.018 0.416
β1 -1.546E+08 1.473E+08 -1.049 0.404
β2 1.348E+08 1.276E+08 1.057 0.401
β3 -5.244E+07 5.160E+07 -1.016 0.416
β4 8.774E+06 9.844E+06 0.891 0.467
β5 -4.455E+05 7.148E+05 -0.623 0.597
Multiple R-squared:0.9995, Adjusted R-squared:0.9981

Table 3.8: Polynomial model calibration - double tetrahedron

Estimate Std. Error t value Pr(> |t|)
β′
0 1.2894 0.9773 1.319 0.244
β′
1 4.0208 0.3091 13.010 4.78e-05

Multiple R-squared:0.9713, Adjusted R-squared:0.9656

Table 3.9: Exponential model calibration - double tetrahedron
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Figure 3.2: Polynomial fit corresponding to the table 3.6

Estimate Std. Error t value Pr(> |t|)
β0 -1.069e+07 4.569e+06 -2.339 0.257
β1 2.956e+07 1.143e+07 2.586 0.235
β2 -3.104e+07 1.068e+07 -2.908 0.211
β3 1.558e+07 4.697e+06 3.317 0.186
β4 -3.760e+06 9.813e+05 -3.832 0.163
β5 3.517e+05 78411 4.486 0.140
Multiple R-squared:0.9998, Adjusted R-squared:0.999

Table 3.10: Polynomial model calibration - “bubble”

Estimate Std. Error t value Pr(> |t|)
β′
0 -2.4262 0.6782 -3.578 0.0232
β′
1 4.5889 0.2355 19.485 4.09e-05

Multiple R-squared:0.9896, Adjusted R-squared:0.987

Table 3.11: Exponential model calibration - “bubble”
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Figure 3.3: Exponential fit corresponding to the table 3.7
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Figure 3.4: Polynomial fit corresponding to the table 3.8
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Figure 3.5: Exponential fit corresponding to the table 3.9
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Figure 3.6: Octahedron partition sum values
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Figure 3.7: Polynomial fit corresponding to the table 3.10
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Figure 3.8: Exponential fit corresponding to the table 3.11
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Estimate Std. Error t value Pr(> |t|)
β0 -1.5404 0.3538 -4.354 0.0489
β1 13.6317 2.6084 5.226 0.0347
β2 -39.1829 6.0529 -6.473 0.0230
β3 36.6737 4.4249 8.288 0.0142
Multiple R-squared:0.9993, Adjusted R-squared:0.9982

Table 3.12: Normalized amplitude inverse-powers fitting - “bubble”

also reflected in the goodness of fit measures being higher for the model (3.3),
even after adjustment for the number of regressands (adjusted R-squared). In
the case of the tetrahedron, one thus gets a divergence of the order at least 13
and in the cases of the double tetrahedron and the bubble of the order at least 5.
The qualitative behavior of the octahedron partition sum is consistent with any
of these two options.

As the next step in the analysis of the divergences we considered an arbitrary
fixed boudary state jl. We put jl = 1 for ∀l, for all the configurations. It is clear
that this cannot change the convergence properties of the transition amplitude of
the first two considered configurations, as there are no inner segments in them,
but for the octahedron and “bubble” configuration, it could diverge in such a way
so as to cancel the divergence in the partition function.

It turns out that, at least for the case of the boundary state considered,
this is not true. The sum corresponding to the unnormed amplitude for the
octahedron containts a single contribution when js = 1, so the normed amplitude
(3.1) converges to zero. In the case of the bubble, on the other hand, one gets
an infinite amount of contributions, the sum of which apparently diverges, as
depicted in figure 3.9. It is apparent that the character of this sum is n-th root or
logarithmic, even without further statistical analysis, one can therefore conclude
that it will not save the amplitude (3.1) from converging to zero. To confirm this,
we ran a regression of a form

W = β0 + β1j
−1 + β2j

−2 + β3j
−3, (3.5)

whose results are depicted in the Table 3.12.
It is clear that the fact that all of the coefficients are statistically significant

means, at the very least, that asymptiotically the normed amplitude is indeed zero
- a result one was trying to avoid. One can therefore conclude that the divergent
behavior of the partition sum precludes a proper definition of the dynamics for
all the configurations considered, in the sense of both (3.1) and (3.2).

3.3 Discussion

The fact that our results are at odds with the literature [?] can be interpreted
in several ways. One possibility is that the formula used (3.1) is not equivalent
to the simpler (2.26). Even though it is possible that both are related to the
Einstein-Hilbert action in the large-spin limit in a required way, they may on the
microscopic level define different dynamical systems. Another, more mundane,
possibility is that there is a programming error in our code. Due to the absence
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of reproducible results in our area of interest, we were not able to calibrate our
code to see if it gives the right results. However, to the naked eye we dare to say
that there is not an error of an egregious nature. The third possibility is that
Mathematica computes the 6j-symbols in an inefficient and error-prone way so
that small rounding errors get compounded over many computation cycles and
give a wrong mathematical result in the end.

There are further options to ponder. Maybe the sums do actually converge,
but we have not seen it because enumerating too little data points. Such a scenario
is hard to believe but it cannot be dismissed out of hand. Another possibility
is that the results are right and one needs to get rid of them by some sort of
regularization. Such a scheme could be provided by the GFT theory duality. It is
also possible that the way of defining the normalization factor as we did through
a partition sum may not be correct in these circumstances. Logical clearness
might not imply mathematical correctness in this instance, one possible example
of a different definition of it could be through a partial fixing some of the spins
on the boundary, perhaps within some sort of a causal past-future distinction,
and computing the partition sum with respect to these fixed conditions.

It should be mentioned that there have been some studies of the asymptotic
properties of the 6j-formula [23], [20], these, however, do not concern exactly our
case of interest - [23] offers a proof of the asymptotic formula (2.25), whereas
[20] does study the properties of the 6j-symbol but only within the context of an
isosceles tetrahedron. There, however, no signs of divergent behavior seem to be
found.
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Conclusion

In this thesis, we have offered a review of the issue of quantum gravity in general
and of loop quantum gravity in particular. A wish for novel insight into the con-
tinuity limit of the LQG theory, in the simplified setting of the Ponzano-Regge
model, led us to consider a simple dynamical system composed of four configura-
tions. There, it did not prove consistent to define a dynamics through weighing
particular histories with an inverse of the sum of all amplitudes consistent with a
given configuration. As a possible explanation of this we discussed various causes,
all of which serve as a pointer for a subsequent research.

87



Bibliography

[1] Ali, Twareque. Englis, Miroslav. Quantization methods: A Guide for
Physicists and Analysts. 2004, retrieved from arXiv:math-ph/0405065v1

[2] Ambjorn, Jan. Jurkiewicz, Jerzy. Loll, Renate. Causal Dynamical Tri-
angulations and the Quest for Quantum Gravity 2010, retrieved from arX-
iv:1004.0352v1

[3] Amelino-Camelia, Giovanni. Ellis, John. Mavromatos, N.E.
Nanopoulos, D.V. Sarkar, Subir. Potential Sensitivity of Gamma-Ray
Burster Observations to Wave Dispersion in Vacuo. Nature 393:763-765,1998

[4] Amelino-Camelia, Giovanni. Quantum-Spacetime Phenomenology. Living
Rev. Relativ. (2013) 16:5

[5] Arkani-Hamed, Nima. Dimopoulos, Savas. Dvali, Gia. The hierarchy
problem and new dimensions at a millimeter. 1998, retrieved from arXiv:hep-
ph/9803315

[6] Baez, John. Muniain, Javier P. Gauge Fields, Knots and Gravity. 1. edi-
tion. Singapore: World Scientific Publishing, 1994. ISBN 978-981-02-2034-1

[7] Barbero, J. Fernando. Quantum Geometry and Quantum Gravity. 2008,
retrieved from arXiv:0804.3726v1

[8] Barrau, Aurelien. Rovelli, Carlo. Vidotto Francesca. Fast radio bursts
and white hole signals. 2014, retrieved from arXiv:1409.4031

[9] Barrau, Aurelien. Cao, Xiangyu. Noui, Karim. Perez, Alejandro. Black
hole spectroscopy from Loop Quantum Gravity models. 2015, retrieved from
arXiv:1504.05352v1

[10] Bianchi, Eugenio, Rovelli, Carlo. Vidotto, Francesca. Towards Spin-
foam Cosmology. 2010, retrieved from arXiv:1003.3483v1

[11] Bianchi, Eugenio, Krajewski, Thomas. Rovelli, Carlo. Vidotto,
Francesca. Cosmological constant in spinfoam cosmology. 2011, retrieved
from arXiv:1101.4049v1

[12] Bilson-Thompson, Sundance. Vaid, Deepak. LQG for the Bewildered.
2015, retrieved from arXiv:1402.3586v3

[13] Bodendorfer, Norbert. An elementary introduction to loop quantum grav-
ity. 2016, retrieved from arXiv:1607.05129v1

[14] Carlip, Steven. Quantum Gravity in 2+1 Dimensions. 1. paperback edition.
Cambridge: Cambridge University Press, 2003. ISBN 0 521 54588 9

[15] Caron-Huot, Simon. Saremi, Omid. Hydrodynamic long-time tails from
Anti de Sitter space. 2009, retrieved from arXiv:0909.4525

88



[16] Denef, Frederik. Hartnoll, Sean. Sachdev, Subir. Quantum oscillations
and black hole ringing. 2009, retrieved from arXiv:0908.1788

[17] Denef, Frederik. Hartnoll, Sean. Sachdev, Subir. Black hole determi-
nants and quasinormal modes. 2009, retrieved from arXiv:0908.2657

[18] Dimopoulos, Savas. Landsberg, Greg. Black holes at the Large Hadron
Collider. 2001, retrieved from arXiv:hep-ph/0106295

[19] Dona, Pietro. Speziale, Simone. Introductory lectures to loop quantum
gravity 2010, retrieved from arXiv:1007.0402v2

[20] Dupuis, Maite. Livine, Etera. The 6j-symbol: Recursion, Correlations and
Asymptotics 2009, retrieved from arXiv:0910.2425v1

[21] Gambini, Rodolfo. Pullin, Jorge. Loops, Knots, Gauge Theories and
Quantum Gravity. 1. paperback edition. Cambridge: Cambridge Universi-
ty Press, 2000. ISBN 0 521 65475 0

[22] Gambini, Rodolfo. Pullin, Jorge. A First Course in Loop Quantum Grav-
ity. 1. edition. New York: Oxford University Press, 2011. ISBN 978-0-19-
959075-9

[23] Gurau, Razvan. The Ponzano-Regge asymptotic of the 6j symbol: an ele-
mentary proof. 2008, retrieved from arXiv:0808.3533v1

[24] Haggard, Hal.Rovelli Carlo. Quantum-gravity effects outside the horizon
spark black to white tunneling. 2014, retrieved from arXiv:1407.0989

[25] Han,Muxin. Quantum Dynamics of Loop Quantum Gravity. Masters’ thesis,
2007, retrieved from arXiv:0706.2623v1

[26] Henneaux, Marc. Teitelboim Claudio. Quantization of Gauge Systems.
1. edition. Princeton: Princeton University Press, 1992. ISBN 978-069-10-
8775-7

[27] Hossenfelder, Sabine. Experimental Search for Quantum Gravity. 2010,
retrieved from arXiv:1010.3420v1

[28] Jacobson, Ted. Thermodynamics of Spacetime: The Einstein Equation of
State. 1995, retrieved from arXiv:gr-qc/9504004v2

[29] Kaninsky, Jakub. Dynamika kauzalnich mnozin. Bachelors’ thesis, 2015,
Charles University

[30] Khalkhali, Masoud. Very Basic Noncommutative Geometry. 2004, re-
trieved from arXiv:math/04080416v1

[31] Kiefer, Claus. Quantum Gravity. 2. edition. New York: Oxford University
Press, 2007. ISBN 978-0-19-921252-1

[32] Kobachidze, Archil. Gravity is not an entropic force. 2010, retrieved from
arXiv:1009.5414v2

89



[33] Krajewski, Thomas. Group field theories 2012, retrieved from arX-
iv:1210.6257v1

[34] Lee, Jae-Weon. Quantum mechanics emerges from information theory ap-
plied to causal horizons. 2011, retrieved from arXiv:1005.2739v3

[35] Livine, Etera. The Spinfoam Framework for Quantum Gravity. Habilitation
thesis, 2010, retrieved from arXiv:1101.5061v1

[36] Mukhanov, Viatcheslav F. Winitzki Sergei. Introduction to Quantum Ef-
fects in Gravity. 1. edition. Cambridge: Cambridge University Press, 2007.
ISBN 978-0-521-86834-1

[37] Nicolai, Hermann. Peeters, Kasper. Zamaklar, Marija. Loop quantum
gravity: an outside view 2005, retrieved from arXiv:hep-th/0501114v4

[38] Nicolai, Hermann. Peeters, Kasper. Loop and Spin Foam Quantum
Gravity: A Brief Guide for Beginners 2006, retrieved from arXiv:hep-
th/0601129v2

[39] Noui, Karim. Perez, Alejandro. Three dimensional loop quantum gravity:
Physical scalar product and spin foam models. 2005, retrieved from arXiv:gr-
qc/040211v3

[40] Oriti, Daniele. Group Field Theory and Loop Quantum Gravity 2014, re-
trieved from arXiv:1408.7112v1

[41] Perini, Claudio. Semiclassical analysis of Loop Quan-
tum Gravity. PhD thesis, 2009, retrieved from
www.matfis.uniroma3.it/dottorato/TESI/perini/perini.pdf

[42] Perez, Alejandro. The Spin Foam Approach to Quantum Gravity. PhD the-
sis, 2012, retrieved from arXiv:1205.2019v1

[43] Piran, Tsvi. Gamma-Ray Bursts as Probes for Quantum Gravity. 2004,
retrieved from arXiv:astro-ph/0407462v1

[44] Rovelli, Carlo. Quantum Gravity. 1. paperback edition. Cambridge: Cam-
bridge University Press, 2008. ISBN 978-0-521-71596-6

[45] Rovelli, Carlo. Zakopane lectures on loop gravity. 2011, retrieved from arX-
iv:1102.3660v5

[46] Rovelli, Carlo. Vidotto Francesca. Planck stars. 2014, retrieved from
arXiv:1401.6562

[47] Rovelli, Carlo. Vidotto, Francesca. Covariant Loop Quantum Gravity.
1. edition. Cambridge: Cambridge University Press, 2015. ISBN 978-1-107-
06962-6

[48] Sahlmann, Hanno. Loop Quantum Gravity - a short review. 2011, retrieved
from arXiv:1001.4188v3

90



[49] Thiemann, Thomas. Modern Canonical Quantum General Relativity. 1. pa-
perback edition. Cambridge: Cambridge University Press, 2008. ISBN 978-
0-521-74187-3

[50] Verlinde, Erik. On the Origin of Gravity and the Laws of Newton. 2010,
retrieved from arXiv:1001.0785

[51] Vidotto, Francesca. Many-nodes/many-links spinfoam: the homogeneous
and isotropic case. 2011, retrieved from arXiv:1107.2633v3

[52] Wohlgenannt, Michael. Introduction to Noncom-
mutative QFT. lecture notes, 2010, retireved from
http://hep.itp.tuwien.ac.at/ miw/documents/qft2.pdf

91



Attachments

92



93



94



95



96



97



98



99



100


