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Supervisor: RNDr. Robert Švarc, Ph.D., Institute of Theoretical Physics

Abstract: In the review part of the thesis we summarize various modified theories of gravity,
especially those that are characterized by additional curvature invariants in the Lagrangian
density. Further, we review non-twisting geometries, especially their Kundt subclass. Finally,
from the principle of least action we derive field equations for the case with the Lagrangian
density corresponding to an arbitrary function of the curvature invariants. In the original part of
the thesis we explicitly express particular components of the field equations for non-gyratonic
Kundt geometry in generic quadratic gravity in arbitrary dimension. Then we discuss how
this, in general fourth order, field equations restrict the Kundt metric in selected geometrically
privileged situations. We also analyse the special case of Gauss–Bonnet theory.

Keywords: General relativity, f(R, R2
cd, R

2
cdef ) theories, quadratic gravity, Gauss–Bonnet the-

ory, non-twisting and shear-free geometries, Kundt spacetimes.
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Introduction

In 1687 sir Isaac Newton published his Philosophiæ Naturalis Principia Mathematica where
he formulated, among other concepts that revolutionized the way humanity sees nature, the
law of universal gravitation. This law states that material bodies instantly act on each other
by attractive force proportional to their masses and inversely proportional to the square of
their distance. Although others, e.g., Robert Hooke, had proposed the inverse square law for
gravitation before, Newton was the first who supported this concept with precise astronomical
calculations, proving that Kepler’s orbits shaped as conic sections result from the attractive
force described by this law.

For more than three following centuries Newton’s theory became the most widely accepted
theory of gravitation, and it repeatedly demonstrated its astonishing predictive power. In fact,
existence of planet Neptune was predicted by Urbain Le Verrier using Newton’s theory in his
attempt to explain specific deviations of planet Uranus from its Keplerian orbit. When it was
discovered that Mercury also deviates from its expected trajectory by the precession of 43 arc
seconds per century, existence of yet another body of matter was proposed to explain this
tiny discrepancy. However, no such object was ever found, and it required Albert Einstein to
overcome Newton’s theory, inherently including the concepts of absolute space and time, to
finally explain the precession of Mercury using his new geometric theory of gravity, i.e., general
relativity, see [1].

General relativity, which after several years of Einstein’s intensive work resulted in 1915
from the need to formulate a theory of gravitation compatible with the framework of special
relativity, uses the concept of geodesic motion in curved four-dimensional spacetime instead of
gravitational force to explain motions of free particles. Geometric properties of spacetime are
encoded in its metric tensor, which is coupled with the matter content of the universe through
Einstein’s field equations [2]. Like many things in the branch of theoretical physics, Einstein’s
field equations can be derived using the principle of least action with suitable Lagrangian, or
here more precisely, Lagrangian density. Remarkably simple Lagrangian density for general
relativity was discovered already in 1915 by David Hilbert, see classic textbooks [3, 4].

Throughout the last century, Einstein’s theory of gravitation became extraordinary success-
ful and still remains a subject of lively research. It deeply extended our understanding of the
universe and made various fascinating predictions many of which were already confirmed by very
precise experiments, see [5] for the review, from the bending of light rays by presence of matter
already measured by Arthur Eddington during the solar eclipse in 1919 to existence of the
gravitational waves, which were only recently directly observed on the LIGO experiment [6,7].

Nonetheless, it seems that not all properties of our universe can be easily explained in the
framework of general relativity. There is now strong experimental evidence that universe has
gone through the phase of rapid expansion shortly after the big bang, and now once again its
expansion is accelerating, measured rotation curves of galaxies significantly deviate from those
predicted by the theory, and so on. These phenomena are usually explained by an introduction
of new matter forms with exotic properties as sources of the gravitational field in Einstein’s
general relativity. But even though it should now constitute 96% of the universe content this
seemingly invisible matter has never been directly observed, and its physical nature remains
probably the most fascinating mystery of astrophysics.

This situation reminds us the similar one with the precession of the Mercury perihelion in the
beginning of the last century. Maybe instead of introducing new forms of the matter to explain
deviations from the theory, we should modify this theory itself. Indeed many modified theories
of gravitation attempted to particularly solve some of these problems with various levels success.
Some specific examples of them will be discussed on the following pages. However, efforts to
modify general relativity driven by diverse motivations are not restricted to the recent years.
Shortly after Einstein’s formulation of general relativity, physicists began trying to modify it
for example by introducing new terms in Lagrangian, in order to unify gravitation with other
forces, to find theory of gravitation susceptible to methods of quantum field theory, or just to
satisfy their natural intellectual curiosity, see e.g., [8] for the comprehensive review.

From the mathematical point of view Einstein’s field equations represent system of ten non-
linear second order partial differential equations. Not surprisingly, field equations of modified
theories are usually even more complicated and they can contain fourth or even higher order
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derivative terms. To solve such equations exactly is in the most of realistic scenarios impos-
sible which is even true in the case of Einstein’s theory. Instead, only approximate situations
and solutions are often studied either analytically or numerically. Yet, exact solutions, often
representing only very idealized spacetimes, play invaluable role in our attempt to understand
given theory of gravitation, see [9, 10] for the review of exact solutions in the Einstein theory.
Among other things, they allow us to fully explore the non-linearity of equations in the pres-
ence of strong fields, to check validity of numerical methods, and they also provide necessary
backgrounds for more relevant perturbative approximations.

It is possible to find interesting exact solutions by imposing geometric restrictions on the
metric tensor of exact spacetime and introducing such metric ansatz into the field equations.
For example the requirement of spherical symmetry thus provides famous Schwarzschild so-
lution, observational cosmological requirements of homogeneity and isotropy give arise to the
Friedmann–Lemâıtre–Robertson–Walker cosmological models, and restrictions employed on the
optical properties of null geodesic congruence can lead to the Robinson–Trautman or Kundt
spacetimes with exact gravitational waves.

In this thesis, we briefly review some of the modified theories of gravity, see chapter 1, and
provide variational derivation of the field equations of broad class of such theories with arbitrary
function of linear and quadratic curvature invariants in the Lagrangian density in chapter 2.

After a brief introduction of non-twisting and shear-free geometries in chapter 3, we explore
the special case of expansion-free non-gyratonic Kundt geometries in the context of quadratic
gravity, i.e., interesting subclass of modified theories of gravitation with quadratic curvature
terms in the action. The most general form of field equations in this case can be found in
chapter 4. Moreover, we discuss specific geometric settings as pp-waves (section 4.2.1), VSI
spacetimes (section 4.2.2), or the Kundt waves on direct product backgrounds (section 4.2.3).
Subsequently, we analyze a specific subclass of quadratic gravity, namely the Gauss–Bonnet
theory, in chapter 5 again together with the explicit examples mentioned above.

Finally, in appendices A and B we summarize explicit expressions for geometric objects
constructed from the non-gyratonic Kundt metric ansatz.
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1. Modified theories of gravity

The main aim of this chapter is to give a brief review of various extensions and modifications
of classic Einstein’s general relativity, namely its higher-dimensional extension, the Lovelock
gravity, or the theories with quadratic corrections in the action. After this summary, the field
equations for quadratic gravity are derived in chapter 2.

1.1 General relativity and the least action principle

Einstein’s general relativity describes spacetime as a four -dimensional pseudo-Riemannian
(more precisely Lorentzian) manifold equiped with symmetric metric tensor field gab. An-
other geometric property of the spacetime manifold used by general relativity is the connection
associated with covariant differentiation. Although various connections are possible in the dif-
ferential geometry, general relativity is defined in terms of the Levi-Civita connection given via
metric tensor gab. This connection can thus be expressed by the Christoffel symbols,

Γc
ab =

1

2
gcd (gda,b + gdb,a − gab,d) . (1.1)

Its torsion is obviously vanishing which means

Γc
[ab] = 0 . (1.2)

The crucial concept standing in the heart of general relativity is curvature. It naturally encodes
inhomogeneity of the gravitational field, see e.g. classical textbooks [3,4]. In terms of differential
geometry it is described by the Riemann curvature tensor Ra

bcd given by

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ceΓ
e
bd − Γa

deΓ
e
bc . (1.3)

Contracting the Riemann curvature tensor we obtain the rank two Ricci curvature tensor Rab,
and contracting the Ricci tensor we finally get the scalar curvature R, respectively,

Rab = Rc
acb , R = Ra

a . (1.4)

Moreover, the scalar curvature R is the essential part of the so-called Einstein–Hilbert action.

As pointed out already by David Hilbert the field equations of Einstein’s theory can be
derived from the principle of least action. This can be expressed simply as

δS = 0 , (1.5)

where the action S is defined as Lagrangian density L integrated over the whole four-dimensional
spacetime manifold, namely

S =

∫

Ld4x . (1.6)

In the case of general relativity the Einstein-Hilbert action can be written as

S =

∫
[

1

2κ′
(R− 2Λ) + LM

]√−g d4x , (1.7)

where LM is Lagrangian density of matter fields representing sources, symbol g stands for
determinant of the metric gab, and parameter κ′ is composed of the theory constants1,

κ′ =
8πG

c4
. (1.8)

1For the convenience we distinguish constants κ
′ and κ = 2κ′
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Varying the Einstein–Hilbert action with respect to the metric gab and using the principle
of least action (δS = 0) we obtain Einstein’s field equation2

Rab −
1

2
Rgab + Λgab =

8πG

c4
Tab , (1.9)

where Tab is the stress–energy tensor representing sources of the field. It is defined as

Tab ≡ − 2√−g

δ(
√−gLM )

δgab
. (1.10)

The formalism of Einstein’s theory is thoroughly discussed for example in canonical books [3,4].
Systematic review of exact solutions to Einstein’s field equations can be found in [9], and
physical interpretation of the most important exact spacetimes is given in [10].

Uniqueness of Einstein’s gravity governed by the field equation (1.9) can be formulated
as Lovelock’s theorem [11, 12]. Condition of the action extremality, which leads to the field
equations, can be generally expressed in the form of Euler–Lagrange equations, namley

Eab[L] ≡ d

dxc

[

∂L
∂gab,c

− d

dxd

(

∂L
∂gab,cd

)]

− ∂L
∂gab

= 0 . (1.11)

Lovelock’s theorem (Theorem 5 in [11]): If D = 4 the only second order Euler–Lagrange equa-
tions arising from a scalar density L = L(gab, gab,c, gab,cd) are

Eab = α
√−g

[

Rab − 1

2
gabR

]

+ λ
√−ggab = 0 , (1.12)

i.e., Einstein’s equation with cosmological term, where both α and λ are constants.

The cosmological term can be absorbed into the additional source part of the field equations.
This theorem means that if we want to create any theory of gravity in D = 4 Lorentzian
spacetime arising from the principle of least action with Lagrangian constructed from the metric
and its derivatives only, then the only field equations with no higher that the second order
derivatives are Einstein’s field equations. However, this does not mean that the Einstein–
Hilbert action is the unique one leading to the expression (1.12). In fact any Lagrangian

L = α
√−gR− 2λ

√−g + βǫabcdRef
abRefcd + γ

√−g
(

R2 − 4RcdR
cd +RcdefR

cdef
)

(1.13)

leads to (1.12), and therefore to Einstein’s equations as well.

We can already see several ways in which this scheme can be modified, and alternative
theories of gravitation thus obtained. Let us mention the following possibilities (and their
various combinations):

• Consider higher number of spacetime dimensions, i.e., D > 4. This very simple modifica-
tion leaves the field equations unchanged, but varies the number of tensor components.
Surprisingly, it allows interesting solutions which are absent in classic Einstein’s gravity.

• Describe gravitational field by additional scalar, vector, or rank-2 tensor fields. There is
plethora of such theories including various scalar-tensor, Einstein-aether, tensor-vector-
scalar, or bivector theories.

• Allow connection with torsion. Non-vanishing torsion is used by various f(T ) theories or,
e.g., Einstein–Cartan–Sciama–Kibble theory.

• Introduce arbitrary function of the scalar curvature, higher order curvature invariants,
or, e.g., of the Weyl tensor, in the Lagrangian density. This is the case of f(R) theories,
quadratic gravity, or conformal gravity.

For summary of various aspects of such modified theories see for example [8, 13–15].

2Other approaches than variation with respect to the metric are possible. In the so-called Palatini formalism

variation is performed with respect to both metric and connection, which is now considered to be independent

of the metric. For the Einstein–Hilbert action both of these approaches yield the same result, but for modified

actions the results may differ. In what follows, we will only be considering variation with respect to the metric.
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1.2 Higher-dimensional general relativity

The simplest modification of Einstein’s general relativity is its extension into higher spacetime
dimensions D > 4. Instead of classic four-dimensional Einstein–Hilbert action (1.7) we can
simply consider the action

S =

∫
[

1

2κ′
(R− 2Λ) + LM

]√−g dDx , (1.14)

where integration is performed over the D-dimensional spacetime manifold. Subsequently,
variation of this action with respect to the metric gab provides field equations

Rab −
1

2
Rgab + Λgab =

8πG

c4
Tab , (1.15)

which are identical to their four-dimensional counterparts as discussed in the previous section,
see the Einstein equations (1.9).

Many interesting exact solutions to higher-dimensional Einstein’s field equations had been
discovered during last decades, and standard four-dimensional mathematical methods had been
adapted to D > 4, e.g., the algebraic classification had been developed [16–18].

Let us mention at least the most important spacetimes here. The direct generalization of
Schwarzschild solution into higher dimension is called Schwarzschild–Tangherlini metric, see
the original work [19]. Usual Kerr–Schild ansatz leads to Myers–Perry black hole [20] which is
described by ⌊D−1

2 ⌋ spin parameters. Since black hole uniqueness theorems depend on use of
the Gauss–Bonnet theorem, their extension to higher-dimension is non-trivial. This also means
that black holes with several different topologies are possible here. In five dimensions so-called
black ring solution was found in [21], which has an event horizon with S1×S2 topology. Classic
examples of exact non-expanding Kundt gravitational waves [22,23] were generalised in [24,25]
and analysed in [26, 27]. Surprisingly, their expanding Robinson–Trautman counterpart well-
known in D = 4, see [28, 29], does not exist in D > 4, where this class with standard matter
contains only type D spacetimes, see [30–34].

Despite all the efforts of string theorists in the previous decades, at least theoretical jus-
tification for higher dimensions remains greatly speculative. Obviously, we only perceive one
temporal and three spatial dimensions, and there is no direct observational or experimental
evidence for any additional (space) dimensions. Inaccessibility of the higher dimensions to our
perception could be explained by their compactification on very small scales. This approach
was pioneered by Theodor Kaluza and Oskar Klein, see [35–37], already in the second decade of
twentieth century. The Kaluza–Klein theory represents five-dimensional theory with additional
four-vector and scalar fields, which aims to unify gravitation with electromagnetism. Ideas used
by Kaluza and Klein later led to the string theories with ten, eleven, or even twenty-six space-
time dimensions. Many theorists believe that framework of the string theory is sill plausible
candidate for a mystic ‘theory of everything’.

Let us remark that besides compactification mentioned above there is another possibility
how to explain the apparent absence of observed higher dimensions. This is so-called brane-
world scenario, see [38, 39], according to which our accessible universe is restricted to the
four-dimensional subspace (brane) of a higher-dimensional spacetime.

1.3 Lovelock theory

Here, we would like to discuss a broad class of modified theories of gravitation in arbitrary
dimension D with the Lagrangian density which is general function of the Riemann curvature
tensor and its covariant derivatives, i.e.,

L = L(gab, Rabcd,∇a1
Rabcd, ... ,∇a1...ap

Rabcd) . (1.16)

The principle of the least action (1.5) for such general Lagrangian leads to field equations of
the following form, see [40],

−T ab =
∂L
∂gab

+ Ea
cdeR

bcde +∇(c∇d)E
acdb +

1

2
gabL , (1.17)
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where tensorial quantity Ea
cde is defined as

Ebcde =
∂L

∂Rbcde

−∇a1

∂L
∂(∇a1

Rbcde)
+ · · ·+ (−1)p∇(a1

· · · ∇ap)
∂L

∂(∇(a1
· · · ∇ap)Rbcde)

. (1.18)

Such field equations can be vastly complicated for the most particular choices of the Lagrangian
density, and they usually won’t even be the second order differential equations as is the case in
Einstein’s theory. Therefore, it is natural to ask a question how should we choose the specific
Lagrangian density for the field equations to be of the second order. Theories satisfying this
requirement are called Lovelock theories, or Lovelock gravity, see the original papers [11, 12],
and their Lagrangian density can be written in a unified way as

L =
√−g

t
∑

n=0

αn L(n), with L(n) =
1

2n
δc1d1...cndn

a1b1...anbn

n
∏

r=1

Rarbr
crdr

, (1.19)

where αn are specific constants of the particular theory, and the generalized Kronecker delta
δ······ is defined as the antisymmetric product

δc1d1...cndn

a1b1···anbn
=

1

n!
δc1[a1

δd1

b1
· · · δcnan

δdn

bn]
. (1.20)

The integer t, which denotes maximal possible number of terms in Lagrangian (1.19), depends
on dimension D of the spacetime. Without any loss of generality, we can say that for even
dimensions it holds that D = 2t+ 2 and for odd dimensions D = 2t+ 1.

Examining L(n) for few lowest values of n we see that for D = 3 and D = 4, the Lovelock
gravity must have identical form to Einstein’s gravity, as it considers only n = 0 and n = 1.

• Zeroth order, so-called cosmological term, is trivially

L(0) = 1 , (1.21)

which means that there is the usual cosmological term in the field equations.

• First order represents the well-known Einstein–Hilbert term

L(1) = R . (1.22)

• Second order, usually called Gauss–Bonnet term, can be written as

L(2) = R2 − 4RabR
ab +RabcdR

abcd . (1.23)

This is the only non-trivial combination of quadratic curvature terms which does not
cause higher than second derivatives in the field equations. It only contributes in D > 4.

• Third order. This is the last term we explicitly show here,

L(3) =R3 − 12RRabR
ab + 16RabR

a
cR

bc + 24RabRcdR
acbd + 3RRabcdR

abcd

− 24RabR
a
cdeR

bcde + 4RabcdR
abefRcd

ef − 8RacbdR
a
e
b
fR

cedf . (1.24)

It is not surprising that Lagrangian terms are getting more and more complicated as the number
of possible contractions of the Riemann tensors grows.

In general, it can be shown that the n-th Lagrangian expression L(n) gives rise to E
(n)
ab term

in the field equations, namely

Ea(n)
b = − 1

2n+1
δae1...enf1...fnbg1...gnh1...hn

Rg1h1

e1f1 · · ·Rgnhn

enfn . (1.25)

The most general form of the Lovelock field equations can thus be written as

t
∑

n=0

αnE
(n)
ab = Tab . (1.26)

Various exact solutions have been found in the Lovelock theories including black holes, black
strings, or black branes [41–43]. The theory with additional Gauss–Bonnet term only will be
discussed separately in the following section.
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1.4 Gauss–Bonnet gravity

As mentioned in the previous section, the Gauss–Bonnet gravity is a special case of Lovelock’s
theory with Lagrangian containing the quadratic Gauss–Bonnet term (1.23),

L(2) = R2 − 4RabR
ab +RabcdR

abcd ,

but no other higher order corrections [44]. This means that such a theory is also special case of
so called quadratic gravity, which will be discussed later in section 1.5. The appropriate action
for the Gauss–Bonnet gravity in vacuum can be written as

S =

∫

[ 1

κ
(R− 2Λ0) + γ

(

R2
cdef − 4R2

cd +R2
)

]√−g dDx , (1.27)

where we have replaced the Lovelock constants αn with more usual κ = 16πG
c4

, cosmological-like
term Λ0, and newly introduced Gauss–Bonnet constant γ. As we have already mentioned, this
extension of general relativity is only meaningful for dimension D > 4, in four dimensions the
Gauss–Bonnet term becomes trivial. This action leads to the field equations

1

κ

(

Rab −
1

2
Rgab + Λ0gab

)

+ 2γ

[

RRab − 2RacbdR
cd +RacdeRb

cde − 2RacRb
c − 1

4
gab

(

R2
cdef − 4R2

cd +R2
)

]

= 0 . (1.28)

We immediately see that the equations (1.28) are of the second order as they should be for
any member of the Lovelock family of theories. The Gauss-Bonnet gravity has been studied
extensively since its quadratic term appears in the low energy effective action of the heterotic
string theory and also in certain compactifications of M-theory, see e.g., [45].

Moreover, another interesting property of this theory is that after quantization it does
not lead to any ghost modes [46] on many background spacetimes including flat Minkowski.
Therefore, various exact solutions of the Gauss–Bonnet field equations have been discovered
and analysed including so-called Boulware–Deser solution [47], which describe certain type of
black hole or naked singularity, depending on the specific value of its parameter.

1.5 Quadratic gravity

Omitting the requirement for the field equations to be of the second order we can simply
allow any combination of the quadratic curvature terms, namely R2, R2

cd, and R2
cdef , in the

Lagrangian density. Preserving the Gauss–Bonnet combination for convenience we can write
the action for general quadratic gravity as

S =

∫

[ 1

κ
(R− 2Λ0) + αR2 + βR2

cd + γ
(

R2
cdef − 4R2

cd +R2
)

]√−g dDx , (1.29)

where α, β, γ, κ are constants of the theory. Such action leads to the field equations [48]

1

κ

(

Rab −
1

2
Rgab + Λ0gab

)

+ 2αR

(

Rab −
1

4
Rgab

)

+ (2α+ β)
(

gab�−∇a∇b

)

R

+ 2γ

[

RRab − 2RacbdR
cd +RacdeRb

cde − 2RacRb
c − 1

4
gab

(

R2
cdef − 4R2

cd +R2
)

]

+ β�

(

Rab −
1

2
Rgab

)

+ 2β

(

Racbd −
1

4
gabRcd

)

Rcd = 0 , (1.30)

which are generally of the fourth order as they contain the second covariant derivatives of the
Ricci tensor and scalar, respectively.

Higher order theories are usually plagued by the presence of so-called ghosts [46,49]. These
are additional degrees of freedom representing particles propagating with negative energy. It is
then possible for normal particle and ghost to suddenly appear without violation of the energy
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conservation law. Such hypothetical phenomenon is called vacuum decay, and it is usually
considered to be a pathology of the particular theory.

Much less exact solutions are known in the general quadratic gravity than in, for example,
Gauss–Bonnet theory. Yet some wavelike and spherically symmetrical solutions have been
found, and various propositions about possible solutions with respect to their algebraical types
have been made [50, 51]. In four dimensions it holds that all Einstein spacetimes (i.e., Rab ∼
gab) obey the vacuum equations of the quadratic gravity. However, additional non-Einstein
solutions are known as well, see e.g., [52]. Most recently, the static spherically symmetric non-
Schwarzschild black hole solution has been found in D = 4 quadratic gravity [53]. This implies
that the Birkhoff theorem does not hold here any more.

Apart from the Gauss–Bonnet gravity, other special cases of quadratic gravity have been
studied. One of them is the Einstein–Weyl gravity [54] described by the action

S =

∫

[ 1

κ
(R− 2Λ0) + γ CabcdC

abcd
]√−g dDx , (1.31)

where quantity Cabcd here represents the Weyl tensor defined as

Cabcd =Rabcd +
1

D − 2
(Radgbc −Racgbd +Rbcgad −Rbdgac)

+
1

(D − 1)(D − 2)
R (gacgbd − gadgbc) . (1.32)

We can easily see that the contraction of the Weyl tensor with itself get exactly those quadratic
curvature terms that appear in the action for quadratic gravity (1.29). Discarding the Einstein–
Hilbert and cosmological terms completely and keeping only the contracted Weyl term, we get
a special subcase of the conformal gravity [55] with the action

S =

∫

γ CabcdC
abcd

√−g dDx . (1.33)

More precisely, the theory is called conformal if the conformal transformation of the metric,
namely gab → Ω2(x)gab, preserves the action which is obviously true in the case of (1.33). The
conformal gravity has many interesting properties. Among them let us emphasize the fact that
ghost modes are decoupled from the physical matter.

1.6 f(R)-theories

Another class of theories that lately have drawn interest of many physicists wishing to explain
recent cosmological discoveries is so-called f(R) gravity, or f(R)-theories. As its name indicates,
the action can now contain an arbitrary function f(R) of the Ricci scalar curvature instead of
the simple linear expression in R, which is the case of the Einstein–Hilbert action, and general
relativity, respectively, see [56,57]. The action for f(R)-theories can be simply written as

S =

∫

[

f (R) + LM

]√−g dDx . (1.34)

Of course, the Einstein theory can be easily recovered by the appropriate choice of function f .
Here it would be f(R) = 1

κ
(R− 2Λ). In general, the action (1.34) leads to the field equations

fR Rab −
1

2
f gab + (gab �−∇a∇b) fR =

1

2
Tab , (1.35)

where fR is derivative of the function f(R) with respect to the scalar curvature R. We can see
that due to the presence of the d’Alembert operator these are generally fourth order equations.
It can be shown that the covariant divergence of the left hand side is vanishing and therefore also
T ab

;b = 0. Conservation laws thus hold in the same form as they do in the Einstein gravity [58].
We can also calculate trace of the field equations to get

fR R− 1

2
Df + (D − 1)�fR =

1

2
T , (1.36)
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where T is simply the trace of stress-energy tensor. In the case of the Einstein gravity we would
have simple algebraic relation between R and T . However, equation (1.36) is a differential
equation since it contain �fR, and it can be interpreted as a field equation describing the
dynamics of propagating scalar degree of freedom ϕ = fR called scalaron [59]. The f(R)-
gravity can also be shown to be equivalent to the special case of the Brans–Dicke theory [60],
which is a theory with additional scalar field explicitly appearing in the action [61].

The f(R)-theories have been studied extensively over the last two decades both with the
general function f(R) and with particular choices like

Rn , ln(λR) , eλR , or even R− a(R− Λ1)
−m + b(R− Λ2)

n .

Many researchers consider f(R)-gravity merely an interesting toy model, but some try to
find the exact expression for the function f(R) that would satisfy all of the known constraints
so that such a theory could faithfully describe real nature. Viable theory should conform to
galaxy clustering spectra and CMB anisotropy spectra. It should also allow the existence of
matter dominated era and stable stars, but it should not contain ghost or tachyons. Moreover,
it should agree with the results of Einstein’s gravity on small scales. These requirements impose
strong constraints on the function f(R) which are summarized in the following list [14, 15].

• f,R > 0 for R ≥ R0, where R0 is today’s value of the Ricci scalar. This must hold in order
to avoid the presence of ghost states.

• f,RR > 0 for R ≥ R0. This is necessary to avoid the existence of scalar degree of freedom
with negative mass, i.e., tachyons.

• f(R) → R − 2Λ0 for R ≥ R0. This needs to be true for the presence of the matter
dominated era and for agreement with the local gravity constraints.

• 0 <
Rf,RR

f,R
< 1 when

Rf,R
f

= 2. This condition is important for stability and late time

de Sitter limit of the universe.

One of the functions specially designed to pass all such requirements was proposed by Starobin-
sky, see [62], and can be written as

f(R) = R+ λR0

[

(

1 +
R2

R2
0

)−n

− 1

]

, (1.37)

where n, λ > 0, and R0 is of the order of H2
0 , which is a square of today’s Hubble constant.

Various exact solutions have been found in f(R)-theories. It can be shown that any vacuum
solution to Einstein’s gravity is also a solution of f(R)-gravity except for some pathological
choices of the function f . This includes the usual black hole solutions, e.g., Schwarzschild
spacetime. However, since the Birkhoff theorem does not hold here, other spherically symmetric
solutions exist in the f(R)-gravity. Propagating scalar degree of freedom implies the existence
of an additional types of longitudinally polarized wave-like solutions. Since the scalaron is
massive, these waves would travel with the speed lower than that of light.
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2. Generalized field equations

In this chapter we explicitly derive equations of the gravitational field using the principle of
least action (1.5),

δS = 0 .

For the theories summarized in the previous sections the action S can be written in a unified
way as

S =

∫

[

f (R, Ψ, Ω) + LM

]√−g dDx , (2.1)

where g denotes the determinant of D-dimensional Lorentzian metric gab, i.e., g ≡ det gab, and
symbol x represents all spacetime coordinates. The key ingredient f is arbitrary differentiable
function which depends on:

R scalar curvature ,

Ψ ≡ RcdR
cd ≡ R2

cd square of the Ricci tensor ,

Ω ≡ RcdefR
cdef ≡ R2

cdef square of the Riemann tensor .

Finally, the Lagrange density LM corresponds to the matter fields which represent sources in
the resulting equations of the gravitational field.

2.1 Useful identities

Since our aim is to express the final form of variation δS of the action (2.1) in terms of the
contravariant metric variations δgab, it is natural to begin with several useful relations.

• Covariant and contravariant metric variations. The relation between variations of covari-
ant and contravariant metric can be easily derived from the expression of Kronecker’s delta as
a metric contraction,

gacg
cb = δba . (2.2)

Making a variation of this expression,

δgacg
cb + gacδg

cb = 0 , (2.3)

and performing a contraction (with some renaming of indices) we finally obtain

δgab = −gacgbdδg
cd . (2.4)

• Metric determinant variation. We also need to rewrite the determinant variation δg in
terms of the metric variation δgab. To do so, let us recall the formulae which relate a determinant
and an inverse matrix with the minors Mab, i.e., determinants of the matrices obtained from
the original one by omission of the a-th row and the b-th column. For the line element gab it
thus holds

g =
∑

b

gabMab(−1)a+b , gab =
1

g
Mab(−1)a+b , (2.5)

where the only summation is performed over index b in the first equation, and in fact, the index
a is fixed here. Taking the derivative of the first equation with respect to the specific covariant
metric component gab we get

∂g

∂gab
= Mab(−1)a+b . (2.6)
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Combining this result with the second equation in (2.5) we obtain

∂g

∂gab
= g gab . (2.7)

Multiplication of the last formula by variation δgab leads to

δg ≡ ∂g

∂gab
δgab = g gabδgab , (2.8)

and using (2.4) we finally arrive to the expression for the metric determinant variation in terms
of the contravariant metric variation,

δg = −g gabδg
ab . (2.9)

Moreover, it can be easily seen that

δ
√−g = −1

2

√−g gab δg
ab . (2.10)

• Variation of the Riemann tensor and connection. We employ the convention where the
Riemann curvature tensor is defined as

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

ceΓ
e
bd − Γa

deΓ
e
bc . (2.11)

Its variation thus becomes

δRa
bcd = ∂c δΓ

a
bd − ∂d δΓ

a
bc + δΓa

ceΓ
e
bd + Γa

ceδΓ
e
bd − δΓa

deΓ
e
bc − Γa

deδΓ
e
bc . (2.12)

In fact, the connection variation δΓa
bc is a difference of two connections. Since their non-tensorial

parts cancel out the result δΓa
bc is tensor, and it holds that

δΓa
bc =

1

2
gad (∇b δgdc +∇c δgdb −∇d δgbc) . (2.13)

This can be simply seen employing the identity δ(∇d gbc) = 0, namely

0 = ∇d δgbc − gec δΓ
e
bd − gbe δΓ

e
cd . (2.14)

The cyclic permutation of its indices followed by appropriate summation prove the relation (2.13).
Moreover, we can calculate the covariant derivative of this tensorial expression as

∇d δΓ
a
bc = ∂d δΓ

a
bc + Γa

edδΓ
e
bc − Γe

cdδΓ
a
be − Γe

bdδΓ
a
ec . (2.15)

Examining formulae (2.12) and (2.15) we see that variation of the Riemann tensor can be
expressed as

δRa
bcd = ∇c δΓ

a
bd −∇d δΓ

a
bc . (2.16)

Finally, by a simple contraction of indices in this formula we obtain

δRbd ≡ δRa
bad = ∇aδΓ

a
bd −∇dδΓ

a
ab , (2.17)

which is so-called Palatini identity.

• Bianchi identity and its contractions. We start with the second Bianchi identity,

Rab[cd;e] = 0 , i.e. Rabcd;e +Rabde;c +Rabec;d = 0 , (2.18)

and contract it using gac to get

Rbd;e + gacRabde;c −Rbe;d = 0 . (2.19)

Contracting this equation furthermore using gbd we obtain

R;e − 2Rae;cg
ac = 0 , i.e. Rea

;a − 1

2
R;e = 0 . (2.20)

• Commutators of covariant derivatives. For the rank 1 tensor we have

Af ;cd −Af ;dc = Re
fcdAe , (2.21)

and for the rank 2 tensor it holds

Tfg;cd − Tfg;dc = −RfecdT
e
g −RgecdTf

e . (2.22)
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2.2 Variation of the action

Now we can proceed to derivation of the field equations. To begin with, let us apply the Leibniz
rule for variations to the action (2.1), namely

δS =

∫
[

(

fR δR+ fΨ δΨ+ fΩ δΩ
)√−g + f δ

√−g +
δ(
√−gLM )

δgab
δgab

]

dDx , (2.23)

where fR, fΨ, and fΩ are partial derivatives of the function f with respect to R, Ψ, and Ω.

• Source term. Considering the definition of energy–momentum tensor,

Tab ≡ − 2√−g

δ(
√−gLM )

δgab
, (2.24)

we see that the last term in (2.23) can be rewritten as

δ(
√−gLM )

δgab
δgab = −1

2
Tab

√−g δgab . (2.25)

• The Ricci scalar variation δR. We express the scalar curvature as a contraction of the Ricci
tensor and use the Palatini identity (2.17) together with formulae (2.13) and (2.4) to obtain

δR = δ
(

Rabg
ab
)

= Rabδg
ab + gabδRab

= Rabδg
ab + gab (∇e δΓ

e
ab −∇b δΓ

e
ea)

= Rabδg
ab +

1

2
gec

[

∇e

(

∇a δgcb +∇b δgca −∇c δgab
)

−∇b

(

∇e δgca +∇a δgce −∇c δgea
)

]

= Rab δg
ab + gab � δgab −∇a∇b δg

ab . (2.26)

• Variation of the Ricci tensor square δΨ. Similarly as in the previous case with using symme-
tries of the curvature tensor we obtain

δΨ ≡ δ
(

RcdR
cd
)

= 2RacRb
c δgab + 2 δRcdR

cd

= 2RacRb
c δgab − 2∇d∇c

(

δda δg
ab
)

Rc
b +�

(

δgab
)

Rab +∇c∇d

(

gabδg
ab
)

Rcd . (2.27)

• Variation of the Riemann tensor square δΩ. Finally, employing the uncontraced formula
(2.16), instead of the Palatini identity, we get

δΩ ≡ δ
(

RcdefR
cdef

)

= 2RcdeaR
cde

b δg
ab + 2δRc

defRc
def

= 2RcdeaR
cde

b δg
ab − 4∇d∇c

(

δgab
)

Rc
ab

d . (2.28)

We substitute all these expanded results, i.e., formulae (2.10), (2.26), (2.27), and (2.28), into
variation of the action (2.23) to get

δS =

∫
{

fR
(

gab � δgab −∇a∇b δg
ab
)

+ fΨ
[

−2∇c∇d

(

δda δg
ab
)

Rc
b +�

(

δgab
)

Rab +∇c∇d

(

gab δg
ab
)

Rcd
]

− 4fΩ ∇c∇d

(

δgab
)

Rc
ab

d

+

[

fR Rab + 2fΨ RacRb
c + 2fΩ RcdeaR

cde
b −

1

2
f gab −

1

2
Tab

]

δgab
}√−g dDx . (2.29)

As a final step, we rewrite the whole integrand as a specific expression proportional to the
metric variation δgab. Terms containing derivatives of the metric variation have to be put into
this form using the Leibniz rule and Gauss’s theorem together with few useful identities.
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For example, let us demonstrate this procedure on the second term in (2.29). We begin
with application of the Leibniz rule for covariant derivatives to split the integral into two parts.
Then we use the Leibniz rule one more time to expand the second term,

∫

fR∇a∇b

(

δgab
)√−g dDx

=

∫

∇a

[

fR∇b

(

δgab
)√−g

]

dDx−
∫

∇a

(

fR
√−g

)

∇b

(

δgab
)

dDx

=

∫

∇a

[

fR∇b

(

δgab
)]√−g dDx−

∫

∇b

[

∇a

(

fR δgab
)]√−g dDx

+

∫

∇b∇a (fR) δg
ab
√−g dDx , (2.30)

where we have also used the identity ∇a

√−g = 0 to pull the tensor density
√−g outside the

derivatives. Consequently, we use the well-known formula

√−g∇aV
a = ∂a

(√−g V a
)

, (2.31)

to rewrite the first pair of resulting integrals in (2.30) as integrals of partial divergence. Then
we apply Gauss’s theorem

∫

Ω

∂aV
a dDx =

∫

∂Ω

V a dSa , (2.32)

where dSa ≡ √−γ na d
D−1x with na being normal to ∂Ω and γ representing determinant of

(D − 1)-dimensional induced metric, to get surface integrals which we consider to be vanishing.
Utilizing symmetry of the metric variation in the third term in (2.30) we thus obtain

∫

fR∇a∇b

(

δgab
)√−g dDx =

∫

∇a∇b (fR) δg
ab
√−g dDx . (2.33)

Applying the analogous approach to all remaining terms containing derivatives of δgab in
(2.29) we may express variation of the action (2.1) as

δS =

∫

[

gab �fR −∇a∇bfR − 2∇c∇d

(

fΨ δdaR
c
b

)

+� (fΨ Rab)

+ gab∇c∇d

(

fΨ Rcd
)

− 4∇c∇d

(

fΩ Rc
ab

d
)

+ fR Rab + 2fΨ RacRb
c

+ 2fΩ RcdeaR
cde

b −
1

2
f gab −

1

2
Tab

]

δgab
√−g dDx . (2.34)

2.3 Field equations

Finally, to satisfy the principle of least action (1.5), i.e., δS = 0, the parentheses must be equal
to zero, and we thus obtain the gravitational field equations corresponding to the action (2.1)
in the form

fR Rab −
1

2
f gab + (gab �−∇a∇b) fR + 2

(

fΨ RacRb
c + fΩ RcdeaR

cde
b

)

+� (fΨ Rab) + gab∇c∇d

(

fΨ Rcd
)

− 2∇c∇d

(

fΨ δdaR
c
b + 2fΩ Rc

ab
d
)

=
1

2
Tab . (2.35)

Here it is possible to write explicitly the symmetrization in a, b indices of last two terms (as
some authors do, e.g., [63,64]), since the whole expression in (2.34) is contracted with the metric
tensor variation which is obviously symmetric.

Next, we can expand the second derivatives in last four terms on the left hand side and
rewrite the specific second derivatives of the curvature tensors using simpler expressions, mostly
curvature tensor contractions. This approach will prove to be useful especially in the case of
quadratic gravity, where fΨ and fΩ are mere constants and their derivatives thus disappear.
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We thus apply the Leibniz rule to obtain

fR Rab −
1

2
f gab + (gab �−∇a∇b) fR + 2

(

fΨ RacRb
c + fΩ RcdeaR

cde
b

)

+Rab �fΨ + 2gcd ∇cfΨ ∇dRab + fΨ �Rab

+ gab
(

Rcd ∇c∇dfΨ + 2∇cfΨ ∇dR
cd + fΨ∇c∇dR

cd
)

− 2
[

δdaR
c
b ∇c∇dfΨ + 2∇(cfΨ ∇d)(δ

d
aR

c
b) + fΨ ∇c∇d (δ

d
aR

c
b)
]

− 4
(

Rc
ab

d ∇c∇dfΩ + 2∇(cfΩ ∇d)R
c
ab

d + fΩ ∇c∇dR
c
ab

d
)

=
1

2
Tab . (2.36)

Now we rewrite terms with the second derivatives of curvature tensors. First we look at
∇c∇dR

cd term, which can be easily simplified using doubly contracted Bianchi identity (2.20),

∇c∇dR
cd ≡ gdfgceRfe;cd =

1

2
gdfR;fd ≡ 1

2
�R . (2.37)

We can simply express term ∇c∇d(δ
d
aR

c
b) as

∇c∇d(δ
d
aR

c
b) = gceRbe;ac , (2.38)

and also rewrite term ∇c∇dR
c
ab

d using contracted Bianchi identity (2.19)

∇c∇dR
c
ab

d = −gce ∇cRdbea
;d = gce ∇c (Rbe;a −Rba;e) = gceRbe;ac −�Rab . (2.39)

Subsequently, we are left with term gceRbe;ac in two previous equations. We may rewrite this
contraction of Ricci tensor derivatives as the second derivative of the Ricci scalar and terms
without higher derivatives of metric. To do so, we use the commutator of derivatives of rank 2
tensor, see expression (2.22), and then we utilize doubly contracted Bianchi identities (2.20),
namely

gceRbe;ac = gce
(

Rbe;ca −RbfacR
f
e −RefacR

f
b

)

=
1

2
R;ab −RbeafR

ef +RafRb
f . (2.40)

Finally, putting all these expressions back into the original equations (2.36), we get the expanded
form of the field equations,

fR Rab −
1

2
f gab + (gab �−∇a∇b) fR +�fΨ + 2gcd∇cfΨ∇dRab + (fΨ + 4fΩ)�Rab

− 4fΩRacRb
c + (2fΨ + 4fΩ)RacbdR

cd + 2fΩRcdeaR
cde

b

+ gab

(

Rcd ∇c∇dfΨ + 2∇cfΨ ∇dR
cd +

1

2
fΨ �R

)

− (fΨ + 2fΩ)∇a∇bR− 2
(

∇c∇dfΨ δdaR
c
b + 2∇(cfΨ δda∇d)R

c
b

+ 2Rc
ab

d ∇c∇dfΩ + 4∇(cfΩ ∇d)R
c
ab

d
)

=
1

2
Tab . (2.41)

2.3.1 Generic quadratic gravity

To derive field equations of the quadratic gravity, see section 1.5, we have to substitute specific
function f(R,Ψ,Ω) into the general form of field equations (2.41) derived above, namely

f =
1

κ

(

R− 2Λ0

)

+ αR2 + βΨ+ γ
(

Ω− 4Ψ +R2
)

, (2.42)

which is equivalent to using the action

S =

∫

[ 1

κ
(R− 2Λ0) + αR2 + βR2

cd + γ
(

R2
cdef − 4R2

cd +R2
)

]√−g dDx . (2.43)

Here, we also restrict our attention to the vacuum spacetimes, i.e., we set Tab = 0. First we
calculate derivatives of the function f with respect to quantities R, Ψ and Ω to obtain

fR =
1

κ
+ 2αR+ 2γR ,

fΨ = β − 4γ , (2.44)

fΩ = γ .
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Substituting these formulas into the expanded form of the field equations (2.41), terms con-
taining covariant derivatives of fΨ and fΩ disappear, and after few simple rearrangements we
finally arrive to the quadratic gravity field equations, namely

1

κ

(

Rab −
1

2
Rgab + Λ0gab

)

+ 2αR

(

Rab −
1

4
Rgab

)

+ (2α+ β)
(

gab�−∇a∇b

)

R

+ 2γ

[

RRab − 2RacbdR
cd +RacdeRb

cde − 2RacRb
c − 1

4
gab

(

R2
cdef − 4R2

cd +R2
)

]

+ β�

(

Rab −
1

2
Rgab

)

+ 2β

(

Racbd −
1

4
gabRcd

)

Rcd = 0 , (2.45)

which are identical to those presented for example in [48].

2.3.2 Generic f(R)-gravity

To demonstrate usefulness of the general result (2.41) and complexity of generic quadratic
theories discussed in the previous section, we simply derive the field equations of the so-called
f(R) gravity, see section 1.6 or [14, 15]. We thus assume that the specific function f(R,Ψ,Ω)
in (2.41) depends only on the scalar curvature R, namely

f = f(R) , i.e. fΨ = 0 , fΩ = 0 . (2.46)

The action becomes

S =

∫

[

f (R) + LM

]√−g dDx , (2.47)

and corresponding field equations of the f(R) gravity takes the form

fR Rab −
1

2
f gab + (gab �−∇a∇b) fR =

1

2
Tab . (2.48)
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3. Non-twisting geometries

In this chapter we explicitly derive completely general metric form of the spacetime that admits
non-twisting null geodesic congruence. After heuristic geometric construction of the line element
we introduce the optical scalars to prove its non-twisting character. Then we discuss special
cases of non-twisting, shear-free, expanding geometries (i.e. Robinson–Trautman class [28,29]),
and non-twisting, shear-free, non-expanding geometries (i.e. Kundt class [22, 23]). Since the
Kundt spacetimes will be investigated in the following chapters as the ansatz for field equations,
we briefly mention their geometric properties and introduce some of their subclasses, namely
non-gyratonic pp-waves, VSI spacetimes, and direct product geometries.

3.1 Null foliation and adapted coordinates

We start with generic Lorentzian manifold M and metric tensor gab in any dimension D ≥ 4,
which is locally covered by a set of coordinates xa, where the index a ranges from 0 to D − 1.
We consider the manifold to be foliated by a family of null hypersurfaces implicitly given by
the condition u(xa) = const. In the opposite more intuitive way, we may consider any worldline
γ(u) = {xa(u)}, where u is the corresponding parameter, and then in every point of γ we
construct null hypersurface (‘turn the light on’), which will thus be identified by a specific
value of u.

Since the parameter u is unique for every hypersurface, we use it as a new coordinate on
the manifold M. Moreover, we introduce the normal and tangent to the null hypersurfaces
u(xa) = const. simply as k̃a = −u,a = −δua . Because its direction has to be null as well, it
satisfies

0 = gabk̃ak̃b = gabu,au,b = guu .

We have thus obtained restriction on the contravariant metric component guu.
Next, we construct a null vector field k̃b corresponding to k̃a via k̃b = gabk̃a. Since the

vector field k̃b is null, i.e., k̃bk̃b = 0, it holds that

0 = (k̃bk̃b);a = 2 k̃b;ak̃
b .

The covariant derivative k̃b;a is now symmetric in a and b, and we thus have

k̃a;bk̃
b = 0 .

Therefore the corresponding integral curves of vector field k̃b are affine geodesics. We denote the
affine parameter along these geodesics as r, and use it as another coordinate on the manifold M.
Geometrically this means that

k̃ = ∂r , (3.1)

and therefore k̃b = δbr. By raising an index of k̃b we also see that k̃b = −gub which immediately
implies further conditions for the metric components, namely

gur = −1 , and gup = 0 ,

where the index p goes through remaining D − 2 values, i.e., p = 2, . . . , D − 1.
The manifold M is now locally covered by a set of adapted coordinates (r, u, xp), where

r is the affine parameter along null rays generated by the vector field k̃, see figure 3.1. This
vector field is normal to the null hypersurfaces labelled by coordinate u. The coordinates xp

represents D − 2 spatial coordinates of the transverse Riemannian space with r and u fixed.
Employing the conditions derived above, the line element of such spacetime can be written as

ds2 = gpq(r, u, x) dx
pdxq + 2gup(r, u, x) dx

pdu− 2 dudr + guu(r, u, x) du
2 , (3.2)

where indices p and q range from 2 to D − 1, and the metric components of the transverse
space gpq are arbitrary functions of all coordinates. Moreover, the covariant and contravariant
metric components are related by the following expressions

gup = gpqg
rq , guu = −grr + gupg

rp , gpng
nq = δqp . (3.3)
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Figure 3.1: Geometric meaning of coordinates (r, u, xp) naturally adapted to the presence of
non-twisting null geodesic congruence. Spacetime is foliated by null hypersurfaces u = const.
with tangent (and normal) k̃ = ∂r and r being affine parameter along the congruence. A sub-
space defined by u = const. and r = const. represents (D − 2)-dimensional Riemannian manifold
covered by xp where p = 2, . . . , D − 1.

3.2 Optical scalars

Geometric properties of null geodesic congruences in general D-dimensional spacetimes had
been described in [16]. Here we briefly summarized relevant results in unified notation. Let us
introduce a frame (k, l, mi), where k and l are null vectors pointing in the future direction,
and mi represent D − 2 perpendicular spacelike vectors such that

k · l = −1 , mi ·mj = δij , k · k = l · l = 0 , k ·mi = l ·mi = 0 . (3.4)

The metric tensor can now be decomposed as

gab = −2k(alb) + δijm
i
am

j
b , (3.5)

and the covariant derivative of null vector k can be rewritten in the form

ka;b = K11 kakb +K10 kalb +K1i kam
i
b +Ki1 m

i
akb +Ki0 m

i
alb +Kij m

i
am

j
b . (3.6)

The components Kab can conversely be expressed as

K11 = ka;b l
alb , K10 = ka;b l

akb , K11 = −ka;b l
amb

i ,

Ki1 = −ka;b m
a
i l

b , Ki0 = −ka;b m
a
i k

b , Kij = ka;b m
a
im

b
j . (3.7)

These components are invariant under null rotation with direction k fixed and simply rescaled
under boosts in the k-l plane.

To analyze specific meaning of the coefficients (3.7) let us multiply (3.6) by the vector kb. We
obtain ka;bk

b = −K10 ka −Ki0 m
i
a, which implies that if the vector field k should be geodesic,

i.e., ka;bk
b ∼ ka, it must hold that Ki0 = 0. Moreover, it will be affine geodesic, i.e., ka;bk

b = 0,
if, and only if, K10 = 0. The matrix Kij describes geometric properties of the integral curves
congruence generated by the null vector field k. To further examine these geometric and
optical properties we shall decompose the Kij matrix into its trace, traceless symmetric part,
and antisymmetric part, namely

Kij = Θδij + σij +Aij , (3.8)

where

Θ =
TrKij

D − 2
, σij = K(ij) −

TrKij

D − 2
δij , Aij = K[ij] . (3.9)

These quantities are usually called expansion, shear matrix, and twist matrix, respectively.
They are preserved under null rotation with k direction fixed. For affine geodesic the classic
expansion, shear, and twist scalars can be constructed out of them. The optical scalars can be
expressed in terms of the vector k covariant derivatives only,

Θ =
1

D − 2
ka;a , σ2 = k(a;b)k

a;b − 1

D − 2
(ka;a)

2 , A2 = −k[a;b]k
a;b . (3.10)
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Figure 3.2: Schematic transverse deformation of the test particles congruence caused be the
effect of optical scalars.

Vanishing of these optical quantities is fully equivalent to vanishing of the respective original
quantities in (3.9).

Non-twisting geometries

Now we calculate optical scalars for the affine geodesic associated with the null vector field k̃,
see (3.1), introduced during our construction of the metric (3.2) in previous section. We simply
prove that k̃ is non-twisting. Since the null vector covariant derivative is now k̃a;b =

1
2gab,r, we

obtain

Θ =
1

2(D − 2)
gabgab,r =

1

2(D − 2)
gpqgpq,r =

1

2(D − 2)
(ln det gpq),r , (3.11)

σ2 =
1

4

(

gacgbd − 1

D − 2
gabgcd

)

gab,rgcd,r =
1

4
gmpgnqgmn,rgpq,r − (D − 2)Θ2 , (3.12)

A2 = 0 , (3.13)

where a, b, c, d = 0, ..., D − 1 and m, n, p, q = 2, ..., D − 1. Since A = 0, we see that the geom-
etry given by metric (3.2) indeed admits non-twisting null geodesic congruence generated by k̃.

Finally notice that the construction presented in the previous section is fully general and
covers all possible non-twisting geometries. The well-know Frobenius theorem generally tells,
when the manifold can be foliated by hypersurfaces locally orthogonal to some vector field k.
This condition can be equivalently written as

k[a;bkc] = 0 . (3.14)

We can see that this holds true for our tangent field k̃a = −u,a = −δua . In an opposite way,
it can also be shown, using (3.7), that this condition can be rewritten in terms of the twist
matrix Aij ,

k[a;bkc] =
1

3
Aijm

i
[am

j
bkc] , (3.15)

and multiplying this expression by arbitrary null vector lc gives

k[a;bkc]l
c = −1

3
Aijm

i
am

j
b , (3.16)

which implies that the condition of vanishing twist matrix Aij = 0 is equivalent to (3.14).

Non-twisting and shear-free geometries

In the following sections we mention more particular subclasses of the general non-twisting
metrics (3.2), namely

• the Robinson–Trautman class: shear-free and expanding geometries,

• the Kundt class: shear-free and non-expanding geometries.
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To employ the additional shear-free condition, without loss of generality, it is convenient to
decompose spatial metric tensor gpq in (3.2), see e.g., [30, 31],

gpq = p−2γpq , (3.17)

where γpq is some unimodular matrix, which means that det γpq = 1. Now we simply obtain an
expression for the determinant of complete spacetime metric (3.2),

det gab = −det gpq = p−2(D−2) . (3.18)

For the optical scalars (3.10) we thus have

Θ = −(ln p),r , σ2 =
1

4
γmpγnqγmn,rγpq,r . (3.19)

These expressions provide restrictions on the r-dependence of spatial part of metric in the
specific Robinson–Trautman and Kundt subcases of the non-twisting geometries, respectively.

Finally, let us notice an alternative expression of the shear-free condition which directly uses
the shear matrix σij , see [34]. We start with the Kij coefficient in (3.7), usually denoted as the

optical matrix ρij , for the metric (3.2) and vector field k̃ = ∂r, namely

Kij ≡ ka;b m
a
im

b
j = kp;q m

p
im

q
j =

1

2
gpq,r m

p
im

q
j , (3.20)

where we used mi · k = 0 implying mu
i = 0. It is obviously symmetric which again confirms

the non-twisting character of spacetime (3.2), i.e., Aij = 0. Imposing the additional shear-free
condition σij = 0 in (3.8) thus gives

Θδij =
1

2
gpq,rm

p
im

q
j , (3.21)

which using the orthonormality relation δij = gpqm
p
im

q
j for the transverse spatial vectors im-

mediately implies
gpq,r = 2Θgpq . (3.22)

This relation can be simply integrated to obtain

gpq = R2(r, u, x)hpq(u, x) , with
R,r

R
= Θ ⇔ R = exp

(∫

Θ(r, u, x) dr
)

. (3.23)

Two subclasses thus naturally arise

• the Robinson–Trautman class with Θ = Θ(r, u, x), see e.g., [9, 10, 28–34,65],

• the Kundt class with Θ = 0, see e.g., [9, 10, 22–27,34,65,66].

3.3 Geometry of the Kundt class

As mentioned above, the Kundt class is defined in a purely geometric way, i.e., without any
relation to specific field equations and particular theory of gravity, as Lorentzian manifolds
admitting non-twisting, shear-free, and non-expanding null geodesic congruence. The shear-
free (σ = 0) and non-expanding (Θ = 0) conditions, through the equations (3.19), imply
that both factor p and unimodular tensor γpq are independent of the r coordinate. In other
words, this means that the spatial metric gpq is r-independent. The line element of any Kundt
spacetime can thus be written as

ds2 = gpq(u, x)dx
pdxq + 2gup(r, u, x)dx

pdu− 2dudr + guu(r, u, x)du
2 . (3.24)

Moreover, by setting
gup = 0 ,

we restrict our investigation to the non-gyratonic Kundt spacetimes, see e.g. [67] for the physical
interpretation of the gyratonic terms gup.
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In this non-gyratonic case the general Kundt line element (3.24) simplifies into

ds2 = gpq(u, x) dx
p dxq − 2 du dr + guu(r, u, x) du

2 , (3.25)

and for the contravariant metric components we immediately get

gpq , gru = −1 , grr = −guu . (3.26)

The curvature tensors for the metric (3.25), their quadratic combinations, and covariant deriva-
tives are summarized in appendices A and B.

Finally, the natural null frame for the metric (3.25) is given by

k = ∂r , l =
1

2
guu∂r + ∂u , mi = mp

i ∂p , (3.27)

which satisfies the normalization conditions

k · l = −1 , mi ·mj = δij , (3.28)

which means gpqm
p
im

q
j = δij .

3.3.1 Algebraic structure

For the algebraic classification of Kundt spacetimes in an arbitrary dimension see [26, 34].
Following the general classification scheme of the review [18], let us introduce the Weyl tensor
components with respect to the null frame (3.27) sorted by their boost weights as

Ψ0ij = Cabcd ka mb
i k

c md
j ,

Ψ1ijk = Cabcd ka mb
i m

c
j m

d
k , Ψ1T i = Cabcd ka lb kc md

i

Ψ2ijkl = Cabcd ma
i m

b
j m

c
k m

d
l , Ψ2S = Cabcd ka lb lc kd ,

Ψ2ij = Cabcd ka lb mc
i m

d
j , Ψ2T ij = Cabcd ka mb

i l
c md

j ,

Ψ3ijk = Cabcd la mb
i m

c
j m

d
k , Ψ3T i = Cabcd la kb lc md

i ,

Ψ4ij = Cabcd la mb
i l

c md
j . (3.29)

Moreover, the irreducible components of these scalars, needed for invariant (sub)classification
of the Weyl tensor algebraic structure [18], can be written as

Ψ̃1ijk = Ψ1ijk − 2

D − 3
δi[jΨ1Tk] ,

Ψ̃2T (ij) = Ψ2T (ij) − 1

D − 2
δijΨ2S ,

Ψ̃2ijkl = Ψ2ijkl − 2

D − 4

(

δikΨ̃2T (jl) + δjlΨ̃2T (ik) − δilΨ̃2T (jk) − δjkΨ̃2T (il)

)

− 4 δi[kδl]j

(D − 2)(D − 3)
Ψ2S ,

Ψ̃3ijk = Ψ3ijk − 2

D − 3
δi[jΨ3Tk] . (3.30)

Projecting the coordinate components of the Weyl tensor, see [26, 34] or (A.21)–(A.30) in
appendix A, of a non-gyratonic Kundt geometry on the null frame (3.27) yields the following
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non-trivial Weyl scalars

Ψ2S =
D − 3

D − 1

[

1

2
guu,rr +

1

(D − 2)(D − 3)
SR

]

, (3.31)

Ψ̃2T (ij) = mp
im

q
j

1

D − 2

[

SRpq −
1

D − 2
gpq

SR

]

, (3.32)

Ψ̃2ijkl = mm
i mp

jm
n
km

q
l

SCmpnq , (3.33)

Ψ3T i = mp
i

D − 3

D − 2

[

−1

2
guu,rp +

1

D − 3
gmngm[n,u||p]

]

, (3.34)

Ψ̃3ijk = mp
im

m
j mq

k

[

gp[m,u||q] −
1

D − 3
gos

(

gpmgo[s,u||q] − gpqgo[s,u||m]

)

]

, (3.35)

Ψ4ij = mp
im

q
j

[

−1

2
guu||pq −

1

2
gpq,uu +

1

4
gosgop,ugsq,u +

1

4
gpq,uguu,r

− gpq
D − 2

gmn

(

−1

2
guu||mn − 1

2
gmn,uu +

1

4
gosgom,ugsn,u +

1

4
gmn,uguu,r

)]

, (3.36)

where SCmpnq,
SRpq,

SR are the Weyl tensor, the Ricci tensor, and the Ricci scalar with
respect to the transverse space metric gpq, respectively. The symbol || represents the trasverse
space covariant derivative.

We can thus conclude that the non-gyratonic Kundt spacetimes (3.25) are at least of the
Weyl type II(d). The specific conditions under which this geometry becomes more algebraically
special with respect to the null frame (3.27) are summarized in table 3.1.

type necessary and sufficient conditions

II(ad) guu = −
SR(u,x)

(D−2)(D−3) r
2 + b(u, x) r + c(u, x)

II(bd) SRpq = 1
D−2 gpq

SR

II(cd) SCmpnq = 0

III II(abcd)

III(a) SR,p = 0 and b,p = 2
D−3 g

mngm[n,u||p]

III(b) gp[m,u||q] =
1

D−3 g
os
(

gpmgo[s,u||q] − gpqgo[s,u||m]

)

N III(ab)

O gosgo[s,u||p]||q +
1

2(D−2)
SRgpq,u =

gpq
D−2 g

mn
(

gosgo[s,u||m]||n + 1
2(D−2)

SRgmn,u

)

c||pq + gpq,uu − 1
2g

osgop,ugsq,u − 1
2 b gpq,u

=
gpq
D−2 g

mn
(

c||mn + gmn,uu − 1
2g

osgom,ugsn,u − 1
2 b gmn,u

)

Table 3.1: The scheme for algebraic classification of the Weyl tensor in the case of arbitrary
dimensional non-gyratonic Kundt geometries (3.25). The null vector k = ∂r represents multiple
Weyl aligned direction (WAND). Moreover, the type D subclass can be directly identified with
respect to the the null vector l = 1

2guu ∂r + ∂u using (3.34)–(3.36).

3.3.2 Special cases of the Kundt geometry

Here, we briefly present several special, geometrically restricted, cases of the Kundt class.
Further discussion, geometric and physical interpretation together with algebraic classification
of the Weyl tensor can be found, e.g., in [9, 10,24–27].

pp-waves

Defining property of the pp-wave geometries, i.e., plane-fronted waves with parallel rays, is
existence of a covariantly constant null vector field k. This means that all the optical scalars
associated with this field, see (3.9), have to vanish by the definition, and pp-waves thus belong
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to the Kundt class of geometries. In terms of coordinates naturally adapted to the non-twisting
geometries (3.2) with k = ∂r the defining condition for pp-waves can be written as

ka;b =
1

2
gab,r = 0 ,

and all the metric functions have to be necessarily independent of the coordinate r. The line
element (3.25) for non-gyratonic pp-waves thus becomes

ds2 = gpq(u, x) dx
p dxq − 2 du dr + guu(u, x) du

2 , (3.37)

where the metric component guu is r-independent. The algebraic type is II(d) or more special.

VSI spacetimes

The VSI spacetimes are defined by the property that their scalar curvature invariants of all
orders vanish identically. They belong to the Kundt class and their Riemann tensor is of
algebraic type III or more special with respect to the vector field k. Their transverse space
must be flat, i.e., gpq = δpq, and the metric component guu is at most quadratic in r. In the
general case coefficient proportional to r2 in guu depends only on the off-diagonal gyratonic
terms. This implies that it has to be at most linear in r in the non-gyratonic case (3.25) which
thus becomes

ds2 = δpq dx
p dxq − 2 du dr + [ c(u, x) r + d(u, x) ] du2 . (3.38)

More details can be found in [68–70].

Direct product spacetimes

Here we consider a special case of the non-gyratonic Kundt metrics, namely

ds2 = gpq(x) dx
pdxq − 2 dudr + b r2du2 , (3.39)

where b is a constant, and the transverse metric gpq is u-independent, i.e., gpq,u = 0. Such
spacetime must be of algebraic type D or O, respectively, see table 3.1. In fact it corresponds
to direct product geometry which can be understood as a composition of (D − 2)-dimensional
Riemannian space with metric gpq(x) and 2-dimensional Lorentzian spacetime of constant cur-
vature. Indeed, using the transformation

u =
1

bU
, r =

−2U

1− 1
2bUV

, (3.40)

the metric (3.39) can be written in the canonical form

ds2 = gpq(x)dx
pdxq − 2 dUdV

(1− 1
2bUV )2

, (3.41)

where the sign of constant parameter b determines curvature of the 2-dimensional temporal
surface x = const., namely

• for b > 0: 2-dimensional de Sitter space dS2,

• for b = 0: 2-dimensional flat Minkowski space M2,

• for b < 0: 2-dimensional anti-de Sitter space AdS2.

In the generic case of algebraic type D, the transverse metric gpq does not have to be
of constant curvature. For the more special subtype D(a), Ricci scalar SR of the transverse
(D − 2)-dimensional space must be constant. Moreover, SR is then uniquely related to the
Gaussian curvature b. In such a case, the spacetime is higher-dimensional analogue of either
Bertotti–Robinson, (anti-)Nariai, or Plebański–Hacyan spacetime in four dimensions [10].
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Constant spatial curvature

The aditional purely geometric constraint which can be imposed on the Kundt ansazt is a
specific restriction on the transverse space. In particular, we may require that the scalar cur-
vature SR of the transverse (D − 2)-dimensional space with Riemannian metric gpq(u, x) is
constant. This is assumed with respect to the spatial coordinates xp, i.e., it may still depend
on the coordinate u. In such a case the Riemann tensor becomes

SRpqmn =
SR

(D − 3)(D − 2)
(gpmgqn − gpngqm) , (3.42)

and the Ricci tensor then takes the form

SRpq =
SR

D − 2
gpq . (3.43)

The spatial metric gpq = gpq(x, u) can be written in a conformally flat form as

gpq = P−2 δpq , with P = 1 +
SR

4(D − 3)(D − 2)

[

(

x2
)2

+ · · ·+
(

xD−1
)2
]

. (3.44)
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4. Non-gyratonic Kundt

spacetimes in quadratic gravity

In this chapter we formulate field equations for non-gyratonic Kundt geometries, i.e., those
with off-diagonal terms vanishing, in a generic quadratic gravity, see section 4.1. Our aim is to
observe qualitative differences between the fourth order equations of quadratic gravity and the
second order Einstein’s equations of general relativity. It is crucial to identify such physically
defined situations which can be directly compared in both theories. Subsequently, we thus
investigate several geometrically privileged settings of the Kundt metric within these generic
field equations. The simplest and also most illustrative case corresponds to the famous pp-wave
spacetime with flat transverse metric, see section 4.2.1.

As a special case of the quadratic gravity we will discuss the non-gyratonic Kundt geometries
in the Gauss–Bonnet theory. These results are summarized in the independent chapter 5.

4.1 General form of the field equations

Here we present completely general form of field equations (1.30) for the non-gyratonic Kundt
spacetimes (3.25) in generic quadratic gravity (1.29). To obtain this final result we started with
components of the curvature tensors, see appendix A. Then we calculated required quadratic
terms and corresponding derivatives in advance for each coordinate component, see appendix B.
Finally, we substituted these partial results into the field equations of quadratic gravity (1.30)
and simplified them. The obtained results are presented here and can serve as a starting point
for the further discussion of non-gyratonic Kundt geometries with arbitrary matter fields. In
chapters that follow, we investigate several particular geometrically privileged subcases of the
Kundt class within full quadratic gravity and the Gauss–Bonnet theory, respectively.

For the convenience we write the field equations (1.30) in the shortened form including
possible matter fields,

Jab =
1

2
Tab , (4.1)

where the geometric left hand side is defined as

Jab ≡ 1

κ

(

Rab −
1

2
Rgab + Λ0gab

)

+ 2αR

(

Rab −
1

4
Rgab

)

+ (2α+ β)
(

gab�−∇a∇b

)

R

+ 2γ

[

RRab − 2RacbdR
cd +RacdeRb

cde − 2RacRb
c − 1

4
gab

(

R2
cdef − 4R2

cd +R2
)

]

+ β�

(

Rab −
1

2
Rgab

)

+ 2β

(

Racbd −
1

4
gabRcd

)

Rcd . (4.2)

Let us also introduce symbol S
� for the spatial d’Alembert operator acting on any tensorial

quantity T, which can as well be called the Laplacian since the spatial metric is positive definite,

S
�T ≡ gpq T||pq , (4.3)

where || represents the covariant derivative with respect to the transverse space metric gpq.
In genral, the upper left index S denotes quantities associated with this (D − 2)-dimensional
Riemannien space.
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Now, we can finally present the most general left hand side Jab of the field equations (4.1):

• rr-component

Jrr = (2α+ β) guu,rrrr , (4.4)

• rp-component

Jrp = (2α+ β) guu,rrrp , (4.5)

• ru-component

Jru =
1

2κ

(

SR− 2Λ0

)

+
α

2

(

SR2 − guu,rr
2
)

+ (2α+ β)

(

guuguu,rrrr + guu,rrru +
1

2
guu,rguu,rrr +

1

2
gmngmn,uguu,rrr − S

� guu,rr − S
�

SR

)

+
γ

2

(

SR2
klmn − 4 SR2

mn + SR2
)

+
β

4

(

2 S
�

SR− guu,rr
2 + 2 SR2

mn

)

, (4.6)

• pq-component

Jpq =
1

κ

[

SRpq −
1

2
gpq

(

SR+ guu,rr − 2Λ0

)

]

+ 2α

[

SRpq

(

SR+ guu,rr
)

− 1

4
gpq

(

SR+ guu,rr
)2
]

+ (2α+ β)

[

gpq

(

S
�

SR+ S
� guu,rr − guuguu,rrrr − 2guu,rrru − guu,rguu,rrr −

1

2
gmngmn,uguu,rrr

)

−guu,rr||pq +
1

2
gpq,uguu,rrr − SR||pq

]

+ 2γ
[

SRpq

(

SR+ guu,rr
)

− 2 SRpmqn
SRmn + SRpklm

SRq
klm − 2 SRpm

SRq
m

−1

4
gpq

(

2guu,rr
SR+ SR2

klmn − 4 SR2
mn + SR2

)

]

+ β
[

S
�

SRpq + 2 SRpmqn
SRmn

− 1

2
gpq

(

S
�

SR+ S
� guu,rr +

SR2
mn − guuguu,rrrr − 2guu,rrru

−guu,rguu,rrr +
1

2
guu,rr

2 − 1

2
gmngmn,uguu,rrr

)]

, (4.7)

and pq-component trace

gpqJpq =
1

κ

[

SR− 1

2
(D − 2)

(

SR+ guu,rr − 2Λ0

)

]

+ 2α

[

SR
(

SR+ guu,rr
)

− 1

4
(D − 2)

(

SR+ guu,rr
)2
]

+ (2α+ β)

[

(D − 2)

(

S
�

SR+ S
� guu,rr − guuguu,rrrr − 2guu,rrru − guu,rguu,rrr −

1

2
gmngmn,uguu,rrr

)

− S
� guu,rr +

1

2
gmngmn,uguu,rrr − S

�
SR

]

+ 2γ

[

guu,rr
SR+ SR2

klmn − 4 SR2
mn + SR2 − 1

4
(D − 2)

(

2guu,rr
SR+ SR2

klmn − 4 SR2
mn + SR2

)

]

+ β
[

S
�

SR+ 2 SR2
mn

− 1

2
(D − 2)

(

S
�

SR+ S
� guu,rr +

SR2
mn − guuguu,rrrr − 2guu,rrru

−guu,rguu,rrr +
1

2
guu,rr

2 − 1

2
gmngmn,uguu,rrr

)]

, (4.8)
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• up-component

Jup =
1

κ

(

−1

2
guu,rp + gmngm[p,u||n]

)

+ 2α
(

SR+ guu,rr
)

(

−1

2
guu,rp + gmngm[p,u||n]

)

− (2α+ β)

[

guu,rrup +
1

2
guu,pguu,rrr +

SR,up −
1

2
gmngmp,u

(

SR,n + guu,rrn
)

]

+ 2γ

[(

−1

2
guu,rp + gmngm[p,u||n]

)

SR− 2gm[p,u||n]
SRmn

+gk[l,u||m]
SRp

klm +
(

guu,rm − 2gklgk[m,u||l]

)

SRp
m
]

+ β

[

1

2
guuguu,rrrp + guu,rrup +

1

2
guu,pguu,rrr −

1

2
guu,rrguu,rp + 2gm[p,u||n]

SRmn − 1

2
S
� guu,rp

+ gmn

(

1

2
gm[p,u||n]guu,rr −

1

2
guu,rm

SRnp +
S
� gm[p,u||n] +

1

4
guu,rrgpm,u||n

−1

2
SR k

p gkm,u||n − SR k
p||n gkm,u +

1

4
gmn,uguu,rrp

)]

, (4.9)

• uu-component

Juu =
1

κ

[

1

4
gmn (gmn,uguu,r − 2gmn,uu + gpqgpm,ugqn,u)−

1

2
S
� guu − 1

2
guu

(

SR− 2Λ0

)

]

+
α

2

(

SR+ guu,rr
) [

gmn (gmn,uguu,r − 2gmn,uu + gpqgpm,ugqn,u)− 2 S
� guu − guu

(

SR− guu,rr
)]

+ (2α+ β)
[

−guu
2guu,rrrr − 2guuguu,rrru + guu

S
�

(

SR+ guu,rr
)

− SR,uu − guu,rruu

− 1

2
guu,rrr (guuguu,r + gmngmn,uguu + guu,u)

+
1

2
guu,r

(

SR,u + guu,rru
)

− 1

2
gmnguu,m

(

SR,n + guu,rrn
)

]

+ 2γ

[(

SRmn − 1

2
SRgmn

)(

guu||mn + gmn,uu − 1

2
guu,rgmn,u − 1

2
gpqgmp,ugnq,u

)

+(gmogns − 2 gmngos) gpqgm[p,u||n]go[q,u||s] −
1

4
guu

(

SR2
klmn − 4 SR2

mn + SR2
)

]

+ β

[

guu

(

1

4
guu,rr

2 − 1

4
gmngmn,uguu,rrr +

1

2
S
� guu,rr −

1

2
S
�

SR− 1

2
SR2

mn

)

− 1

2
gmn

,u gmn,uguu,rr −
1

2
gmngmn,uuguu,rr −

1

2
gmngmn,uguu,rru +

(

S
� guu,r

)

,u

+ guu,r

(

1

4
gmngmn,uguu,rr −

1

2
S
� guu,r

)

− 1

2
gpqguu,rp

(

guu,rq − gmngmq,u||n

)

+ gmnguu,mguu,rrn +
1

4
guu,rg

mn S
� gmn,u +

1

2
gmngmn,u

S
� guu,r

− 1

2
gmn S

� gmn,uu − 1

2
S
�

S
� guu + SRmn

(

1

2
gmn,uguu,r − guu||mn − gmn,uu

)

+
1

2
gmngpq

(

gpm,u
S
� gqn,u + gosgpm,u||ogqn,u||s

)

+ gpq
(

gmngmp,u||q

(

1

2
guu,rn − gosgo[n,u||s]

)

+ 2gmngmp,u

(

1

2
guu,rn||q − gosgo[n,u||s]||q

)

−1

8
gpq,ug

mngmn,uguu,rr +

(

SRmn − 1

4
guu,rrg

mn

)

gmp,ugnq,u

)]

, (4.10)

Even in the geometrically restricted case of vacuum non-gyratonic Kundt class the general
field equation (4.1), namely Jab = 0, represent very complicated system of the fourth order non-
linear PDEs. At this moment we will not be interested in such a general discussion, see only its
sketch at the end of this section. We concentrate our attention on the geometrically privileged
cases within non-gyratonic Kundt class in the generic quadratic gravity, i.e., without any as-
sumption on constants α, β, γ, κ, and Λ0. See section 4.2.1 for the pp-wave case, section 4.2.2
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analysing subclass of VSI spacetimes, and section 4.2.3 interested in exact gravitational waves
on type D or O backgrounds. Moreover, the non-gyratonic Kundt spacetimes in the important
subclass of quadratic theories, namely the Gauss–Bonnet gravity, are discussed in chapter 5.

Qualitative discussion of generic vacuum case

As a final point of this part, let us mention at least qualitative steps in discussion of a generic
vacuum case Jab = 0. In particular, the first two equations, i.e., with Jab given by (4.4) and
(4.5), provide simple restrictions on the metric component guu. The remaining equations which
tie together metric components guu, gpq, and the spatial curvature SRmpnq are highly non-trivial
and will be in detail subject to further analyses.

• vacuum rr-equation can be written as

(2α+ β) guu,rrrr = 0 , (4.11)

which means that we have to discuss two separate cases according to value of (2α+ β). For
the particular choice constants (2α+ β) = 0 the rr-equation is trivially satisfied and provides
no restriction on the Kundt metric (3.25).

However, for (2α+β) 6= 0 we have found out that the r-dependence of the metric component
guu can be integrated. It has to be at most of the third order in r. We can thus write

guu = a(u, x)r3 + b(u, x)r2 + c(u, x)r + d(u, x) . (4.12)

Subsequently, in this generic case, i.e., (2α+β) 6= 0, we can substitute (4.12) into the remaining
field equations and try to find restrictions on functions a, b, c, and d, respectively.

• vacuum rp-equation becomes
(2α+ β) guu,rrrp = 0 , (4.13)

which in the case (2α+ β) = 0 puts no nrestriction on the metric.
On the other hand, in the generic case (2α+ β) 6= 0 we substitute (4.12) to obtain

(2α+ β) a,p = 0 , (4.14)

which implies a,p = 0, and the function a is thus independent of the spatial coordinates xp.

• vacuum ru-equation given by (4.6) relates specific components contained in metric function
guu, see (4.12), and u-derivative of the function a proportional to the highest order in r with
the transverse space geometry in the case (2α+ β) 6= 0, or it constraints just this transverse
geometry in the complementary case (2α+ β) = 0.

• vacuum pq-equation together with its trace, see (4.7) and (4.8), respectively, give primarily
restriction on the spatial dependence of b function in guu, see (4.12), in terms of transverse
geometry in the case (2α+ β) 6= 0. For (2α+ β) = 0 it represents very non-trivial condition for
guu metric term which makes it hopeless to continue in this qualitative discussion here.

• vacuum up-equation (4.9) can be interpreted as constraint on the spatial dependence of c
coefficient in (4.12) in the case (2α+ β) 6= 0.

• vacuum uu-equation Juu = 0 with (4.9) finally gives condition for the spatial dependence of
r-independent d term in (4.12) in the case (2α+ β) 6= 0.
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4.2 Geometrically privileged situations

Here we employ our general form of the field equations to derive specific constraints for several
geometrically privileged members of the Kundt family of spacetimes.

4.2.1 pp-waves

These geometries are defined by admitting a covariantly constant null vector field which leads
to restriction on the non-gyratonic Kundt metric (3.25) to be r-independent, see section 3.3.2,

ds2 = gpq(u, x) dx
p dxq − 2 du dr + guu(u, x) du

2 . (4.15)

Due to the r-independence of guu function rr-component and rp-component of the vacuum field
equations are satisfied identically. The remaining components can be expressed as

• ru-component

1

2κ

(

SR− 2Λ0

)

+
α

2
SR2 − (2α+ β) S� SR

+
γ

2

(

SR2
klmn − 4 SR2

mn + SR2
)

+
β

2

(

S
�

SR+ SR2
mn

)

= 0 , (4.16)

• pq-component

1

κ

[

SRpq −
1

2
gpq

(

SR− 2Λ0

)

]

+ 2α SR

(

SRpq −
1

4
gpq

SR

)

+ (2α+ β)
(

gpq
S
�

SR− SR||pq

)

+ 2γ
[

SR SRpq − 2 SRpmqn
SRmn + SRpklm

SRq
klm − 2 SRpm

SRq
m

−1

4
gpq

(

SR2
klmn − 4 SR2

mn + SR2
)

]

+ β

[

S
�

SRpq + 2 SRpmqn
SRmn − 1

2
gpq

(

S
�

SR+ SR2
mn

)

]

= 0 , (4.17)

• up-component

1

κ
gmngm[p,u||n] + 2α SRgmngm[p,u||n] − (2α+ β)

(

SR,up −
1

2
gmngmp,u

SR,n

)

+ 2γ
(

gmngm[p,u||n]
SR− 2gm[p,u||n]

SRmn + gk[l,u||m]
SRp

klm − 2gklgk[m,u||l]
SRp

m
)

+ β

[

2gm[p,u||n]
SRmn + gmn

(

S
� gm[p,u||n] −

1

2
SR k

p gkm,u||n − SR k
p||n gkm,u

)]

= 0 , (4.18)

• uu-component

1

κ

[

1

4
gmn (−2gmn,uu + gpqgpm,ugqn,u)−

1

2
S
� guu − 1

2
guu

(

SR− 2Λ0

)

]

+
α

2
SR

[

gmn (−2gmn,uu + gpqgpm,ugqn,u)− 2 S
� guu − guu

SR
]

+ (2α+ β)

(

guu
S
�

SR− SR,uu − 1

2
gmnguu,m

SR,n

)

+ 2γ

[(

SRmn − 1

2
SRgmn

)(

guu||mn + gmn,uu − 1

2
gpqgmp,ugnq,u

)

+(gmogns − 2 gmngos) gpqgm[p,u||n]go[q,u||s] −
1

4
guu

(

SR2
klmn − 4 SR2

mn + SR2
)

]

+ β

[

−1

2
guu

(

S
�

SR+ SR2
mn

)

− 1

2
gmn S

� gmn,uu − 1

2
S
�

S
� guu

− SRmn
(

guu||mn + gmn,uu

)

+
1

2
gmngpq

(

gpm,u
S
� gqn,u + gosgpm,u||ogqn,u||s

)

+gpq
(

SRmngmp,ugnq,u − gmngosgmp,u||qgo[n,u||s] − 2gmngosgmp,ugo[n,u||s]||q
)]

= 0 . (4.19)

Even in this simplified pp-wave setting it seems to be very difficult to make any progress in
solving these equations without some other assumption on the metric ansatz.
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pp-waves with the transverse space of constant curvature

In addition to general non-gyratonic pp-wave case, we can assume transverse space being of
constant curvature, see the last paragraph in subsection 3.3.2. Then the ru and pq-component
of the field equations relate parameters of the theory with the scalar curvature, namely

• ru-component

1

2κ

(

SR− 2Λ0

)

+
α

2
SR2 +

γ (D − 4)(D − 5)

2 (D − 2)(D − 3)
SR2 +

β

2 (D − 2)
SR2 = 0 , (4.20)

• pq-component

1

κ

[

− D − 4

2 (D − 2)
SR+ Λ0

]

gpq − α
D − 6

2 (D − 2)
SR2gpq

− γ
(D − 4)(D − 5)(D − 6)

2 (D − 2)2(D − 3)
SR2gpq − β

D − 6

2 (D − 2)2
SR2gpq = 0 . (4.21)

Moreover, we can trivially compute trace of this equation, divide it by factor (D−2), and finally
combine it with the ru-equation (4.20) to get quadratic equation for the transverse space scalar
curvature SR,

[

2α+ 2γ
(D − 4)(D − 5)

(D − 2)(D − 3)
+

2β

D − 2

]

SR2 +
1

κ
SR = 0 . (4.22)

This equation obviously has two distinct solutions:

(a) The trivial solution

SR = 0 , which implies gpq = δpq . (4.23)

Substituting this solution into (4.20) we immediately see that in this case the cosmological
constant must be vanishing as well,

Λ0 = 0 . (4.24)

(b) The non-trivial solution can be written as

SR = − 1

2κ

(D − 2)(D − 3)

(D − 2)(D − 3)α+ (D − 4)(D − 5)γ + (D − 3)β
. (4.25)

The crucial observation is that the scalar curvature SR takes the form expressed in terms
of the theory constants only, and therefore it is a constant itself. This implies that the
constant curvature transverse space metric has to be u-independent, i.e.,

gpq,u = 0 ,

see the relation (3.44) for the metric of constant curvature manifolds.

Finally, we can also substitute this solution back into the original equation (4.20) to get a
condition which relates constants of the theory,

Λ0 = − 1

8κ

(D − 2)(D − 3)

(D − 2)(D − 3)α+ (D − 4)(D − 5)γ + (D − 3)β
=

1

4
SR . (4.26)

• up-component: Since the transverse space metric gpq has to necessarily be u-independent in
both cases (a) and (b), the up-component of field equations is satisfied identically.

• uu-component: Employing u-independence of the transverse metric gpq,u = 0, this component
explicitly becomes

− 1

2κ

[

S
� guu + guu

(

SR− 2Λ0

)]

− α SR

[

S
� guu +

1

2
guu

SR

]

− γ
D − 4

D − 2

[

S
� guu +

1

2

D − 5

D − 3
guu

SR

]

SR

− β

2

[

S
�

S
� guu +

2

D − 2
SR2 S

� guu +
1

D − 2
SR2guu

]

= 0 . (4.27)

Now we can follow the discussion of two cases introduced above:
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(a) Flat transverse space: in this case, i.e., gpq = δpq and Λ0 = 0, the only non-trivial condition
given by the uu-component (4.27) is

1

κ
S
� guu + β S

�
S
� guu = 0 . (4.28)

which can be rewritten

S
� f = 0 , with f given by S

� guu +
1

κβ
guu = f . (4.29)

In fact, this transcription represents two conditions which have to be satisfied simultane-
ously. The first condition for f corresponds simply to the Laplace equation. The second
one is non-homogeneous Helmholtz-like equation, where the right hand side is constrained
to be a solution to the Laplace equation. To obtain an explicit solution of (4.29) we thus
have to solve the Helmholtz-like equation with right hand side, which is solution to the
Laplace equation itself. Detailed discussion of pp-waves with flat transverse metric can be
found for example in [52].

As an simple example let us consider here four-dimensional spacetime corresponding to the
function f given by

f =
(

x2 − y2 + 2xy
)

χ(u) , (4.30)

which is obvious solution to the two-dimensional flat Laplace equation. Solving Helmholtz-
like equation (4.29) with such f on the right hand side gives us metric function guu(u, x, y),

guu =

[

A(u) sin

(

1√
κβ

x

)

+B(u) cos

(

1√
κβ

x

)

+C(u) sin

(

1√
κβ

y

)

+D(u) cos

(

1√
κβ

y

)

+ κβ
(

x2 − y2 + 2xy
)

]

χ(u) , (4.31)

where A, B, C, D, and χ are arbitrary profile functions of the coordinate u.

Interestingly, in general this expression does not solve the Laplace equation S
� guu = 0

which means that (4.31) represents exact solution in quadratic gravity with β 6= 0, but
it is not allowed in Einstein’s theory. For physical interpretation it would be interesting
to explicitly evaluate Ψ4ij , and discuss its ‘measurable’ difference with respect to classic
solution in general relativity.

(b) Solution corresponding to the non-trivial transverse space is restricted by (4.27) with (4.25)
and (4.26) substituted, namely

β S
�

S
� guu +

[

(D − 3)β − 2(D − 4)γ

ωκ
+

(D − 2)(D − 3)2β

2ω2κ2

]

S
� guu = 0 , (4.32)

with
ω ≡ (D − 2)(D − 3)α+ (D − 4)(D − 5)γ + (D − 3)β . (4.33)

Surprisingly this constrain has the same form as condition (4.28) in the flat case and thus
specific procedure leading explicit solution would be similar.
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4.2.2 VSI spacetimes

Let us begin with slightly more general line element

ds2 = δpq dx
p dxq − 2 du dr + guu(r, u, x) du

2 , (4.34)

which under additional restriction represents non-gyratonic VSI geometry, see subsection 3.3.2.
In this case the general quadratic gravity vacuum field equations explicitly become:

• rr-component takes the form
(2α+ β) guu,rrrr = 0 . (4.35)

Here we focus on the generic case
2α+ β 6= 0 .

This assumption together with rr-equation (4.35) imply that the metric component guu has to
be polynomial in r, namely

guu = a(u, x)r3 + b(u, x)r2 + c(u, x)r + d(u, x) . (4.36)

Since the r-dependence of guu is fully determined now, we can substitute (4.36) into the following
field equations to find specific restrictions on factors a, b, c, and d, respectively.

• rp-component of the field equations becomes

(2α+ β) guu,rrrp = 0 , (4.37)

which together with (4.36) implies that the function a does not depend on spatial coordinates,
that is

a,p = 0 . (4.38)

• ru-component can be written as

−Λ0

κ
+ (2α+ β)

(

guuguu,rrrr + guu,rrru +
1

2
guu,rguu,rrr − S

� guu,rr −
1

4
guu,rr

2

)

= 0 . (4.39)

Now, we can substitute (4.36) into this general ru-equation and decompose the resulting con-
dition into the separate equations with respect to powers of coordinate r.

In the linear order we thus get

−6(2α+ β) S� a = 0 , (4.40)

which is trivially satisfied using (4.38).

In the zeroth order in r we obtain the equation

−Λ0

κ
+ (2α+ β)

(

3ac− b2 + 6a,u − 2 S
� b

)

= 0 , (4.41)

which can be understood as a specific restriction on possible u-dependence of the function a(u),
or as we shall see later, equation for the spatial dependence of factor b(u, x).

• pq-component can be analysed similarly as the case of ru-equation. It takes the explicit form

− 1

2κ
δpq (guu,rr − 2Λ0)

+ (2α+ β)

[

δpq

(

S
� guu,rr − 2guu,rrru − guu,rguu,rrr −

1

4
guu,rr

2

)

− guu,rr||pq

]

− β

2
δpq

(

S
� guu,rr − guuguu,rrrr − 2guu,rrru − guu,rguu,rrr

)

= 0 , (4.42)

where condition (4.35) is already partly employed. Substituting the above constraints we obtain:
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The second order in r gives

−18(3α+ β)a2 = 0 , (4.43)

which can be obviously satisfied by two independent choices, namely

(3α+ β) = 0 , or a = 0 . (4.44)

In the first order in r we get

−6(α+ β)a||pq − 3δpq

[

4(3α+ β)ab+
1

κ
a

]

= 0 . (4.45)

Finally, the zeroth order in r leads to

−2(2α+ β)b||pq + δpq

[

(4α+ β)(−3ac− 6a,u + S
� b)− (2α+ β)b2 − 1

κ
b+

Λ0

κ

]

= 0 . (4.46)

Now we compute trace of the equation (4.45) and use constraint a = a(u), see (4.38), to get

a

[

4(3α+ β)b+
1

κ

]

= 0 , (4.47)

where we have to discuss both cases (4.44). In particular, if we take a = 0, this condition is
satisfied identically. On the other hand, setting (3α + β) = 0 we find out that function a(u)
has to vanish again since κ−1 6= 0. Therefore, we can conclude that coefficient proportional to
r3 in guu, see (4.36), has to be zero in both cases of (4.44),

a(u) = 0 . (4.48)

Using this result we can proceed to the analysis of the zeroth order equation (4.46). Calcu-
lating its trace we obtain condition

[4α(D − 3) + β(D − 4)] S
� b− (D − 2)

[

(2α+ β)b2 +
1

κ
b− Λ0

κ

]

= 0 , (4.49)

which is partial differential equation for b(u, x) containing its square and d’Alembert derivative.
The d’Alembert operator can thus be expressed as

S
� b =

D − 2

4α(D − 3) + β(D − 4)

[

(2α+ β)b2 +
1

κ
b− Λ0

κ

]

. (4.50)

In fact, this is also the case of equation (4.41) with a = 0. Similarly, we can express S
� b,

S
� b = −1

2
b2 − Λ0

2κ(2α+ β)
. (4.51)

We compare both equations for d’Alembert operator above to eliminate it. Finally, the resulting
condition is mere quadratic algebraic expression for b with constant coefficients, which means
that its solutions have to be constants as well, and therefore we obtain S

� b = 0. Now we can
thus solve (4.50) and (4.51) separately,

(2α+ β)b2 +
1

κ
b− Λ0

κ
= 0 , (2α+ β)b2 +

Λ0

κ
= 0 . (4.52)

Subtracting the second equation from the first one we find out that

b = 2Λ0 . (4.53)

Substituting this condition for Λ0 6= 0 back into the equation (4.52) we get a constraint for
coupling constants of the specific quadratic theory, namely

2α+ β = − 1

4κΛ0
. (4.54)

There is also a trivial solution b = 0 and Λ0 = 0 leading to the VSI spacetimes, see next section.
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• up-component takes the form

− 1

2κ
guu,rp − α guu,rrguu,rp − (2α+ β)

[

guu,rrup +
1

2
guu,pguu,rrr

]

+ β

(

1

2
guuguu,rrrp + guu,rrup +

1

2
guu,pguu,rrr −

1

2
guu,rrguu,rp −

1

2
S
� guu,rp

)

= 0 , (4.55)

which can be simplified using explicit form of the guu metric function and related constraints,

(2α+ β) b c,p +
1

2κ
c,p +

1

2
β S

� c,p = 0 . (4.56)

Substituting (4.53) and (4.54) to eliminate parameter b we get

β S
� c,p = 0 . (4.57)

This means that either β = 0, corresponding to special setting the theory, or S
� c,p = 0, which

represents generic condition for the spacetime geometry.

• uu-component of the field equation explicitly becomes

1

κ

(

−1

2
S
� guu + Λ0 guu

)

+
α

2
guu,rr

(

−2 S
� guu + guuguu,rr

)

+ (2α+ β)
[

−guu
2guu,rrrr − 2guuguu,rrru + guu

S
� guu,rr − guu,rruu

−1

2
guu,rrr (guuguu,r + guu,u) +

1

2
guu,rguu,rru − 1

2
δmnguu,mguu,rrn

]

+ β

[

guu

(

1

4
guu,rr

2 +
1

2
S
� guu,rr

)

+
(

S
� guu,r

)

,u

−1

2
guu,r

S
� guu,r −

1

2
δpqguu,rpguu,rq + δmnguu,mguu,rrn − 1

2
S
�

S
� guu

]

= 0 . (4.58)

In the second order in r it provides

b

[

(2α+ β)b2 +
Λ0

κ

]

= 0 , (4.59)

which is already satisfied because of condition (4.52).

In the first order we obtain

c

[

(2α+ β)b2 +
Λ0

κ

]

− S
�

[

(α+ β) b c+
1

2κ
c+

1

2
β S

� c

]

= 0 . (4.60)

Employing constrains (4.52) and (4.56) we find out that this condition is also already satisfied.

Finally, in the zeroth order in r we get

1

κ

(

− S
� d+ 2Λ0d

)

+ 4α b (− S
� d+ b d )

+ β
[

2 b2d+ 2 S
� c,u − c S

� c− δpqc,pc,q − S
�

S
� d

]

= 0 , (4.61)

which can be rewritten using (4.52), (4.53) and (4.54) as

β S
�

[

− 1

κ(2α+ β)
d+ 2 c,u − 1

2
c2 − S

� d

]

= 0 . (4.62)
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Restriction to VSI spacetimes

Now we would like to focus our attention to the VSI subclass of general line element (4.34)
corresponding to guu which is at most linear in r,

guu(r, u, x) = c(u, x)r + d(u, x) . (4.63)

In fact, we consider trivial solution to constraint (4.52), namely

b = 0 , Λ0 = 0 . (4.64)

Then for the field equations we observe that rr, rp, ru, and pq-component, respectively, are
satisfied identically.

• up-component simplifies to to the form

1

κ
c,p + β S

� c,p = 0 . (4.65)

• uu-component has to be again discussed with respet to different power in r.

The second order of r is trivially satisfied.

In the linear order we have

S
�

(

1

κ
c+ β S

� c

)

= 0 . (4.66)

The zeroth order implies

S
�

[

− 1

κ
d+ β

(

2 c,u − 1

2
c2 − S

� d

)]

= 0 . (4.67)

4.2.3 Geometries related to direct product backgrounds

In this subsection we only formulate field equations of generic quadratic gravity for those vacuum
geometries which would represent exact type II (or N) spacetimes corresponding to gravitational
waves propagating on type D (or O) backgrounds, see [66]. Detailed discussion is subject for
further work. The first step here is to restrict u-dependence of the spatial metric gpq, namely

gmn,u = 0 . (4.68)

Employing general expressions (4.4)–(4.10) the field equations then become

• rr-component

(2α+ β) guu,rrrr = 0 , (4.69)

• rp-component

(2α+ β) guu,rrrp = 0 , (4.70)

• ru-component

1

2κ

(

SR− 2Λ0

)

+
α

2

(

SR2 − guu,rr
2
)

+ (2α+ β)

(

guuguu,rrrr + guu,rrru +
1

2
guu,rguu,rrr − S

� guu,rr − S
�

SR

)

+
γ

2

(

SR2
klmn − 4 SR2

mn + SR2
)

+
β

4

(

2 S
�

SR− guu,rr
2 + 2 SR2

mn

)

= 0 , (4.71)
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• pq-component

1

κ

[

SRpq −
1

2
gpq

(

SR+ guu,rr − 2Λ0

)

]

+ 2α

[

SRpq

(

SR+ guu,rr
)

− 1

4
gpq

(

SR+ guu,rr
)2
]

+ (2α+ β)
[

gpq
(

S
�

SR+ S
� guu,rr − guuguu,rrrr − 2guu,rrru − guu,rguu,rrr

)

− guu,rr||pq − SR||pq

]

+ 2γ
[

SRpq

(

SR+ guu,rr
)

− 2 SRpmqn
SRmn + SRpklm

SRq
klm − 2 SRpm

SRq
m

−1

4
gpq

(

2guu,rr
SR+ SR2

klmn − 4 SR2
mn + SR2

)

]

+ β

[

S
�

SRpq + 2 SRpmqn
SRmn − 1

2
gpq

(

S
�

SR+ S
� guu,rr +

SR2
mn − guuguu,rrrr − 2guu,rrru

−guu,rguu,rrr +
1

2
guu,rr

2

)]

= 0 , (4.72)

• up-component

− 1

2κ
guu,rp − α

(

SR+ guu,rr
)

guu,rp − (2α+ β)

[

guu,rrup +
1

2
guu,pguu,rrr +

SR,up

]

+ 2γ

[

−1

2
guu,rp

SR+ guu,rm
SRp

m

]

+ β

[

1

2
guuguu,rrrp + guu,rrup +

1

2
guu,pguu,rrr

−1

2
guu,rrguu,rp −

1

2
S
� guu,rp −

1

2
gmnguu,rm

SRnp

]

= 0 , (4.73)

• uu-component

1

κ

[

−1

2
S
� guu − 1

2
guu

(

SR− 2Λ0

)

]

+
α

2

(

SR+ guu,rr
) [

−2 S
� guu − guu

(

SR− guu,rr
)]

+ (2α+ β)
[

−guu
2guu,rrrr − 2guuguu,rrru + guu

S
�

(

SR+ guu,rr
)

− SR,uu − guu,rruu

−1

2
guu,rrr (guuguu,r + guu,u) +

1

2
guu,r

(

SR,u + guu,rru
)

− 1

2
gmnguu,m

(

SR,n + guu,rrn
)

]

+ 2γ

[(

SRmn − 1

2
SRgmn

)

guu||mn − 1

4
guu

(

SR2
klmn − 4 SR2

mn + SR2
)

]

+ β

[

guu

(

1

4
guu,rr

2 +
1

2
S
� guu,rr −

1

2
S
�

SR− 1

2
SR2

mn

)

+
(

S
� guu,r

)

,u
− 1

2
guu,r

S
� guu,r

−1

2
gpqguu,rpguu,rq + gmnguu,mguu,rrn − 1

2
S
�

S
� guu − SRmnguu||mn

]

= 0 . (4.74)

Even with substitution of guu metric function as a solution to the rr-component (4.69), i.e., guu
being cubic polynom in r, constrained by rp-component (4.69), i.e., term propotrional to r3 in
guu does not depend on spatial coordinates, these equations represent very complicated system.
We thus impose additional condition on the transverse space to be of constant curvature, see
subsection 3.3.2.

Constant curvature transverse space

For the constant curvature transverse space the rr and rp-component, see (4.69) and (4.70),
respectively, remain unchanged, and the following equations explicitly become:

• ru-component

1

2κ

(

SR− 2Λ0

)

+
α

2

(

SR2 − guu,rr
2
)

+ (2α+ β)

(

guuguu,rrrr + guu,rrru +
1

2
guu,rguu,rrr − S

� guu,rr

)

+
γ

2

(D − 4)(D − 5)

(D − 2)(D − 3)
SR2 +

β

4

(

−guu,rr
2 +

2

D − 2
SR2

)

= 0 , (4.75)
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• pq-component

1

κ

[

− D − 4

2(D − 2)
SR− 1

2
guu,rr + Λ0

]

gpq + 2α
(

SR+ guu,rr
)

[

SR

D − 2
− 1

4

(

SR+ guu,rr
)

]

gpq

+ (2α+ β)
[(

S
� guu,rr − guuguu,rrrr − 2guu,rrru − guu,rguu,rrr

)

gpq − guu,rr||pq
]

− γ

[

(D − 4)(D − 5)(D − 6)

2(D − 2)2(D − 3)
SR2 − D − 4

D − 2
SRguu,rr

]

gpq

+
β

2

[

− D − 6

(D − 2)2
SR2 − S

� guu,rr + guuguu,rrrr + 2guu,rrru

+guu,rguu,rrr −
1

2
guu,rr

2

]

gpq = 0 , (4.76)

• up-component

− 1

2κ
guu,rp − α

(

SR+ guu,rr
)

guu,rp − (2α+ β)

[

guu,rrup +
1

2
guu,pguu,rrr

]

− γ
D − 4

D − 2
SRguu,rp + β

[

1

2
guuguu,rrrp + guu,rrup +

1

2
guu,pguu,rrr

−1

2
guu,rrguu,rp −

1

2
S
� guu,rp −

SR

2(D − 2)
guu,rp

]

= 0 , (4.77)

• uu-component

1

κ

[

−1

2
S
� guu − 1

2
guu

(

SR− 2Λ0

)

]

+
α

2

(

SR+ guu,rr
) [

−2 S
� guu − guu

(

SR− guu,rr
)]

+ (2α+ β)
[

−guu
2guu,rrrr − 2guuguu,rrru + guu

S
� guu,rr − SR,uu − guu,rruu

−1

2
guu,rrr (guuguu,r + guu,u) +

1

2
guu,r

(

SR,u + guu,rru
)

− 1

2
gmnguu,mguu,rrn

]

+ 2γ

[

− D − 4

2(D − 2)
SR S

� guu − 1

4

(D − 4)(D − 5)

(D − 2)(D − 3)
SR2guu

]

+ β

[

guu

(

1

4
guu,rr

2 +
1

2
S
� guu,rr −

SR2

2(D − 2)

)

+ S
� guu,ru − 1

2
guu,r

S
� guu,r

−1

2
gpqguu,rpguu,rq + gmnguu,mguu,rrn − 1

2
S
�

S
� guu −

SR

D − 2
S
� guu

]

= 0 . (4.78)

These equation will be analysed in near future to obtain specific restriction on the non-gyratonic
Kundt geometries of this type.
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5. Kundt spacetimes in

Gauss–Bonnet theory

In this chapter we investigate field equations of the Gauss–Bonnet theory, see section 1.4, and
we try to find the specific restrictions they impose on the Kundt metric (3.25). We start
with the most general case, where we find that it is necessary to distinguish three particular
subcases. Then we analyse some special geometries, which naturally appear after imposing
some additional restrictions. Complementary discussion can be found in [71].

5.1 Generic non-gyratonic Kundt case

To obtain the Gauss–Bonnet field equations for the Kundt geometry we set

α = 0 , and β = 0 , (5.1)

in the most general results (4.4 through 4.10) of chapter 4.

• rr-component is satisfied identically, see (4.4) with (5.1).

• rp-component is satisfied identically, see (4.5) with (5.1).

• ru-component (4.5) becomes

1

2κ

(

SR− 2Λ0

)

+
γ

2

(

SR2
klmn − 4 SR2

mn + SR2
)

= 0 , (5.2)

which does not provide a direct restriction on the metric components. But it gives a relation
between the transverse space Riemann tensor contractions and the theory parameters. We use
this relation to simplify the following field equations.

• pq-component (4.7) in the Gauss–Bonnet case takes the form

1

κ

[

SRpq −
1

2
gpq

(

SR+ guu,rr − 2Λ0

)

]

+ 2γ
[

SRpq

(

SR+ guu,rr
)

− 2 SRpmqn
SRmn + SRpklm

SRq
klm − 2 SRpm

SRq
m

−1

4
gpq

(

2guu,rr
SR+ SR2

klmn − 4 SR2
mn + SR2

)

]

= 0 , (5.3)

with the trace

1

κ

[

SR− 1

2
(D − 2)

(

SR+ guu,rr − 2Λ0

)

]

+ 2γ
[

guu,rr
SR+ SR2

klmn − 4 SR2
mn + SR2

−1

4
(D − 2)

(

2guu,rr
SR+ SR2

klmn − 4 SR2
mn + SR2

)

]

= 0 . (5.4)

In general, this equation ties together guu,rr, spatial metric gpq, and the spatial curvature
corresponding to various contraction of the Riemann tensor. Using the equation (5.2) and
collecting terms proportional to guu,rr we get

[

−1

2
gpq + κγ

(

2 SRpq − SRgpq
)

]

guu,rr +
SRpq

+ 2κγ
(

SRpq
SR− 2 SRpmqn

SRmn + SRpklm
SRq

klm − 2 SRpm
SRq

m
)

= 0 . (5.5)

Moreover, doing the same for the trace (5.4) and using (5.2) once more leads to
[

1

2
(D − 2) + κγ SR(D − 4)

]

guu,rr +
SR− 4Λ0 = 0 . (5.6)
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Here we have to distinguish three qualitatively different situations with respect to the coef-
ficient near guu,rr term in (5.5),

Spq ≡ −1

2
gpq + κγ

(

2 SRpq − SRgpq
)

. (5.7)

(i) Spq 6= 0 and gpqSpq 6= 0 : in the case of non-vanishing square bracket in (5.5), and also
its trace, we can use the equation (5.6) to express guu,rr explicitly. Subsequently, simple
integration leads to a general form of the metric component guu, namely

guu(r, u, x) = b(u, x) r2 + c(u, x) r + d(u, x) , (5.8)

with

b =
4Λ0 − SR

D − 2 + 2κγ (D − 4) SR
. (5.9)

Here it is obvious that the special case D = 4 is equivalent to the case γ = 0, i.e., to the
Einstein theory. This corresponds to the fact that in four dimensions the Gauss–Bonnet
term in the action (2.43) does not contribute to the field equations.

Finally, substituting guu,rr from (5.6) back into the original equation (5.5) we get rather
complicated condition that ties spatial metric gpq with the corresponding curvature,

[

D − 2 + 4κγ(D − 4)
(

1 + κγ SR
)

SR+ 16κγΛ0

]

SRpq

− (1 + 2κγ SR)
(

4Λ0 − SR
)

gpq

− 2κγ
[

D − 2 + 2κγ(D − 4) SR
]

×
(

2 SRpmqn
SRmn − SRpklm

SRq
klm + 2 SRpm

SRq
m
)

= 0 . (5.10)

(ii) Spq 6= 0 and gpqSpq = 0 : in this case the square bracket Spq in (5.5) is non-vanishing but
its trace is assumed to be zero now. This condition, namely gpqSpq = 0, thus implies that

SR = − D − 2

2κγ(D − 4)
. (5.11)

Because the square bracket in the traced equation (5.6) is now vanishing as well, we also
get a coupling between the Ricci scalar and cosmological constant,

SR = 4Λ0 . (5.12)

We immediately see that the scalar curvature SR depends only on parameters of the theory
which are now tied together. Subsequently, we can conclude from the equation (5.5) that
the function guu can be at most quadratic in r, namely

guu(r, u, x) = b(u, x) r2 + c(u, x) r + d(u, x) . (5.13)

(iii) Spq = 0 : in this special case, where the content of the square bracket in front of guu,rr
term in (5.5) is zero, and thus also its trace vanishes, we get no restriction on guu,rr.
Subsequently, we have to discuss the equation (5.5) together with the explicit condition
Spq = 0, namely

SRpq + 2κγ
(

SRpq
SR− 2 SRpmqn

SRmn + SRpklm
SRq

klm − 2 SRpm
SRq

m
)

= 0 , (5.14)

− 1

2
gpq + κγ

(

2 SRpq − SRgpq
)

= 0 . (5.15)

We can calculate trace of the second equation, i.e., gpqSpq = 0, and solve it for SR to
obtain

SR = − D − 2

2κγ(D − 4)
. (5.16)
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Now we substitute this expression for the transverse space scalar curvature back to the
original equation (5.15) to get

SRpq = − 1

2κγ(D − 4)
gpq . (5.17)

The Ricci tensor is thus proportional to the metric, which is the defining condition for the
co-called Einstein space. We observe that in this step we have not obtained any restriction
on the metric component guu. Also notice that current (iii) case is not possible in Einstein
theory of gravity because γ = 0 would here imply that gpq = 0.

Moreover, for the Einstein space it holds that

SRpq
2 =

SR2

D − 2
. (5.18)

Substituting all these relations into the equation (5.14) we have

SRpklm
SRq

klm =
2

[2κγ (D − 4)]
2 gpq . (5.19)

Finally, if we calculate the trace of the equation above and combine it with other curvature
terms to substitute into the ru-equation (5.2), we find

Λ0 = − D − 2

8κγ (D − 4)
, (5.20)

which ties parameters of the theory with the number of spacetime dimensions. This also
implies that the cosmological constant Λ0 must have the opposite sign to the product κγ
since the Gauss–Bonnet gravity is relevant only for D > 4. Notice also that combining
(5.16) and (5.20), or equivalently (5.6) with gpqSpq = 0, gives

SR = 4Λ0 . (5.21)

• up-component (4.9), with the Gauss–Bonnet constraint (5.1) directly applied, gives

1

κ

(

−1

2
guu,rp + gmngm[p,u||n]

)

+ 2γ

[(

−1

2
guu,rp + gmngm[p,u||n]

)

SR− 2gm[p,u||n]
SRmn

+gk[l,u||m]
SRp

klm +
(

guu,rm − 2gklgk[m,u||l]

)

SRp
m
]

= 0 . (5.22)

We start with this general form (5.22) and collect terms in round brackets. Rearranging indices
and straightforward simplification gives

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gmn
(

guu,rm − 2gklgk[m,u||l]

)

+ 2κγ
(

−2 SRkl δmp + SRp
kml

)

gk[m,u||l] = 0 , (5.23)

where the term inside the square brackets is exactly Spn, i.e., the crucial expression (5.7) in the
previous analyses of pq-equation (5.5).

Now, we follow discussion of distinct subcases introduced in the previous pq-step:

(i) Spn 6= 0 and gpnSpn 6= 0 : in this most general case, where the first term is non-zero, we
substitute for guu,rm from (5.8) to get

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gmn
(

2 r b,m + c,m − 2gklgk[m,u||l]

)

+ 2κγ
(

−2 SRklδmp + SRp
kml

)

gk[m,u||l] = 0 . (5.24)
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We can break this equation into two conditions with respect to terms of the first and
zeroth order in r, respectively. For the first order in r we get

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gmnb,m = 0, (5.25)

which can be, using (5.9), explicitly rewritten as

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gmn D − 2 + 8κγΛ0(D − 4)

(D − 2 + 2κγ(D − 4) SR)2
SR,m = 0 . (5.26)

According to the assumption of the case (i), the denominator is non-vanishing, and the
equation (5.26) holds either if

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gmn SR,m = 0 , (5.27)

or if

Λ0 = − D − 2

8κγ (D − 4)
, with necessarily b = − 1

2κγ(D − 4)
, (5.28)

which represents a very special setting of the theory. It should be noted that the equation
(5.25) is equivalent to the equation (5.5), as it can be obtained as its covariant divergence
while using Bianchi identities and its contractions.

From the zeroth order in r of (5.24) we obtain the following condition

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gmn
(

c,m − 2gklgk[m,u||l]

)

+ 2κγ
(

−2 SRkl δmp + SRp
kml

)

gk[m,u||l] = 0 . (5.29)

(ii) Spn 6= 0 and gpnSpn = 0 : here we could substitute the explicit expression for the constant
Ricci scalar together with polynomial form of guu, see (5.12) and (5.13), respectively, into
the general equation (5.23). In this peculiar case the equation remains very similar to the
case (i), but without function b being determined.

(iii) Spn = 0 : this case corresponds to setting the square bracket in general equation (5.23)
equal to zero. We are thus left with the condition

2κγ
(

−2 SRklδmp + SRp
kml

)

gk[m,u||l] = 0 , (5.30)

which can be simplified using the explicit expression for the Ricci tensor (5.17) to the form

2

(

1

D − 4
gklδ

m
p + κγ SRp

kml

)

gk[m,u||l] = 0 , (5.31)

where the round bracket cannot be equal to zero as the most naive possibility, since the
resulting Ricci tensor would be inconsistent with the equation (5.17).

Surprisingly, in the case (iii) even the up-component of the field equations gives no re-
striction on the metric function guu, which thus still remains completely unconstrained.

• uu-component (4.10) arranged in the case of Gauss–Bonnet theory using (5.1) becomes

1

κ

[

1

4
gmn (gmn,uguu,r − 2gmn,uu + gpqgpm,ugqn,u)−

1

2
S
� guu − 1

2
guu

(

SR− 2Λ0

)

]

+ 2γ

[(

SRmn − 1

2
SRgmn

)(

guu||mn + gmn,uu − 1

2
guu,rgmn,u − 1

2
gpqgmp,ugnq,u

)

+(gmogns − 2 gmngos) gpqgm[p,u||n]go[q,u||s] −
1

4
guu

(

SR2
klmn − 4 SR2

mn + SR2
)

]

= 0 .

(5.32)
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Moreover, we can simplify this uu-equation (5.32) employing condition following from the ru-
component (5.2) and collecting terms that repeat. Finally, we get
[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

](

guu||mn + gmn,uu − 1

2
guu,rgmn,u − 1

2
gpqgpm,ugqn,u

)

+ 2κγ (gmogns − 2 gmngos) gpqgm[p,u||n]go[q,u||s] = 0 , (5.33)

where the first square bracket corresponds to Smn ≡ gmpgnqSpq introduced by (5.7). We can
thus naturally discuss three distinct possibilities with respect to particular properties of Spq as
in the case of pq and up component, respectively.

(i) Spq 6= 0 and gpqSpq 6= 0 : substituting guu from equation (5.8) we obtain
[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

]

×
[

r2 b||mn + r
(

c||mn − b gmn,u

)

+ d||mn − 1

2
c gmn,u + gmn,uu − 1

2
gpqgpm,ugqn,u

]

+ 2κγ (gmogns − 2 gmngos) gpqgm[p,u||n]go[q,u||s] = 0 . (5.34)

In the second order of r we thus have
[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

]

b||mn = 0 , (5.35)

which is equivalent to the particular up-equation (5.25), because if we take (5.25), rear-
range indices, perform a covariant derivative, and use the Leibniz rule we get

κγ
(

2 SRmn
||n − SR,ng

mn
)

b,m +

[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

]

b||mn = 0 , (5.36)

where the first term is identically equal to zero due to the contracted Bianchi identity
(2.20). This means that equations (5.5), (5.25), and (5.35) are all equivalent.

The condition given by the first order in r becomes
[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

]

(

c||mn − b gmn,u

)

= 0 . (5.37)

We can combine this equation with the covariant divergence of (5.29) to eliminate c and
substitute for b from (5.9) to get condition

4Λ0 − SR

D − 2 + 2κγ (D − 4) SR
Smngmn,u + 2κγ

(

−3 SRkl||m + SRkm||l
)

gk[m,u||l]

+2κγ
(

−2 SRklgmn + SRnklm
)

gk[m,u||l]||n − 2gklSmngk[m,u||l] = 0 , (5.38)

which ties together spatial metric and spatial curvature.

Finally in the zeroth order we are left with the equation
[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

](

d||mn − 1

2
c gmn,u + gmn,uu − 1

2
gpqgpm,ugqn,u

)

+ 2κγ (gmogns − 2 gmngos) gpqgm[p,u||n]go[q,u||s] = 0 . (5.39)

(ii) Spq 6= 0 and gpqSpq = 0 : the general equation (5.33) could be again rewritten in terms of
the explicit expression for the constant Ricci scalar and guu function, see (5.12) and (5.13)
which will lead to constraints similar to those in case (i) without explicit function b.

(iii) Spq = 0 : setting the first square bracket in (5.33) equal to zero we simply get

2κγ (gmogns − 2 gmngos) gpqgm[p,u||n]go[q,u||s] = 0 , (5.40)

which again is only the constraint for the spatial part of the metric. We can conclude that
in the case of specific transverse Einstein space (5.17) neither equation provides restriction
on the metric component guu(r, u, x), which thus remain arbitrary function.
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5.2 Geometrically privileged situations

In this section we present several important subclasses of the Kundt family. For their brief
description and list of references see the subsection 3.3.2.

5.2.1 Spacetimes with transverse space of constant curvature

Here we naturally employ general equations derived in the previous section in the generic case
of Kundt spacetime in the Gauss–Bonnet theory and impose an additional restriction on the
transverse space. Namely, we assume that the scalar curvature SR of the (D − 2)-dimensional
Riemannian space with metric gpq(u, x) is constant with respect to the spatial coordinates xp,
i.e., it may only depend on the coordinate u. In this case, for the Riemann tensor and its
contractions, it holds

SRpqmn =
SR

(D − 3)(D − 2)
(gpmgqn − gpngqm) , SR2

pqmn =
2 SR2

(D − 3)(D − 2)
,

SRpq =
SR

D − 2
gpq ,

SR2
pq =

SR2

D − 2
. (5.41)

The spatial metric gpq = gpq(u) necessarily has the form

gpq = P−2 δpq , where P = 1 +
SR

4(D − 3)(D − 2)

[

(

x2
)2

+ · · ·+
(

xD−1
)2
]

. (5.42)

Finally, since the quantity Spq defined by (5.7) during the general discussion is

Spq =

[

−1

2
− κγ

D − 4

D − 2
SR

]

gpq , (5.43)

we deal with the subcase (i) of section 5.1.

• ru-component: we simply substitute contractions of the Riemann tensor (5.41) into the
general equation (5.2) to obtain

κγ
(D − 5)(D − 4)

(D − 3)(D − 2)
SR2 + SR− 2Λ0 = 0 , (5.44)

which is a quadratic equation with constant coefficients for the scalar curvature SR. It
immediately implies that SR has to be constant with respect to coordinate u as well, and
through expression (5.42) the transverse metric gpq is also u-independent.

Moreover, from (5.44) we can explicitly express the Ricci scalar1,

SR =
(D − 2)(D − 3)

2κγ(D − 4)(D − 5)

[

−1±
√

1 + 8κγΛ0
(D − 4)(D − 5)

(D − 2)(D − 3)

]

, (5.45)

which ties together geometry of the transverse space SR with specific parameters of the
theory κ, γ, and Λ0.

• pq-component: although the present case of constant spatial curvature belongs to the class
of Einstein spaces, the cutrvature SR given by (5.45) is different from (5.16), and the key
term in (5.5), namely (5.43), remains non-vanishing. We thus get

guu = b r2 + c r + d =
4Λ0 − SR

D − 2 + 2κγ (D − 4) SR
r2 + c(u, x) r + d(u, x) , (5.46)

where b is now constant due to (5.45).

1In the exceptional case D = 5 we have S
R = 2Λ0, which corresponds to the constraint in Einstein’s theory.
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• up-component: since the spatial metric gpq does not depend on the u coordinate, equation
(5.23) simplifies considerably to the form

(

1 + 2κγ
D − 4

D − 2
SR

)

guu,rm = 0 . (5.47)

As in the previous case, the bracket cannot be zero because of inconsistency with the
solution of quadratic equation resulting from the ru-component. Through the equation
(5.46) this leaves us with the simple restriction

c,m = 0 , which gives c = c(u) . (5.48)

• uu-component: since the spatial metric is constant, the equation (5.33) simplifies consid-
erably,

(

1 + 2κγ
D − 4

D − 2
SR

)

S
� guu = 0 , (5.49)

and because of the non-vanishing bracket, b being constant, and c depending on coordinate
u only, we arrive to its final form, namely

S
� d = 0 . (5.50)

5.2.2 pp-waves

To discuss the pp-wave case we demand all the metric functions to be r-independent, see sub-
section 3.3.2, which considerably simplifies discussion of the Gauss–Bonnet field equations.

• ru-component remains the same as in the generic case, namely

1

2κ

(

SR− 2Λ0

)

+
γ

2

(

SR2
klmn − 4 SR2

mn + SR2
)

= 0 , (5.51)

and it can be used to eliminate the Gauss–Bonnet term from the following equations.
• pq-component together with guu,r = 0 gives a condition for the spatial curvature only,

SRpq + 2κγ
(

SRpq
SR− 2 SRpmqn

SRmn + SRpklm
SRq

klm − 2 SRpm
SRq

m
)

= 0 . (5.52)

Employing (5.51) its trace directly ties the spatial scalar curvature to the cosmological term

SR = 4Λ0 , (5.53)

which thus implies that the Ricci scalar of transverse space is constant.
• up-component of the vacuum field equations now becomes

2 gmn

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gklgk[m,u||l]

+ 2κγ
(

−2 SRkl δmp + SRp
kml

)

gk[m,u||l] = 0 . (5.54)

• uu-component then takes the form

[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

](

guu||mn + gmn,uu − 1

2
gpqgpm,ugqn,u

)

+ 2κγ (gmogns − 2 gmngos) gpqgm[p,u||n]go[q,u||s] = 0 . (5.55)

5.2.3 VSI spacetimes

In fact, we initially start with slightly more general metric ansatz then just VSI case, see
section 3.3.2. Here we only assume non-gyratonic Kundt line element with flat transverse
space, i.e., we put gpq = δpq, without other VSI restrictions. Since the transverse space has
vanishing curvature we may apply results of subsection 5.2.1.
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• ru-component now requires the cosmological constant to be vanishing

Λ0 = 0 . (5.56)

• pq-component then considerably simplifies into the form

gpqguu,rr = 0 , (5.57)

and its trace becomes

(D − 2) guu,rr = 0 . (5.58)

In any case it is reasonable to employ dimension D > 2 which means that the metric component
guu has to be at most linear in r and can thus be written as

guu(r, u, x) = c(u, x)r + d(u, x) , (5.59)

which brings us necessarily to the VSI family.
• up-component implies that the metric function c is independent of the spatial coordinates

c,p = 0 . (5.60)

• uu-component restricts the function d to be solution to the Laplace equation with respect to
the spatial coordinates as in the case of classic general relativity

S
� d = 0 . (5.61)

To summarize, it is not surprising that in the case of non-gyratonic VSI spacetimes there is
no difference between Einstein’s gravity and the Guass–Bonnet theory.

5.2.4 Geometries related to direct product backgrounds

Here, we consider specific subcase of non-gyratonic Kundt geometries which would follow dis-
cussion of paper [66] in Einstein’s theory. Our aim is to find exact solution representing type
II (or N) gravitational wave propagating on type D (or conformally flat type O) direct product
background. We start with general metric ansatz (3.25) together with an additional assumption

gpq,u = 0 .

For ru and pq components of the Gauss–Bonnet field equations we can exactly employ our
general results of section 5.1 since these components do not contain u-derivatives of the metric.
According to the pq component we have to distinguish three different subcases (i), (ii) and (iii)
following the previous section 5.1.

Let us start with subcase (i) defined as Spn 6= 0 and gpnSpn 6= 0, see (5.7):

• up-component: The first order in r gives again

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gmnb,m = 0, (5.62)

which can also be obtained as a consequence of the pq-equation, see the previous section 5.1.
The condition following from the zeroth order in r simplifies to

[

−1

2
gpn + κγ

(

2 SRpn − SRgpn
)

]

gmnc,m = 0 , (5.63)

and restricts thus possible spatial dependence of function c(u, x) in the metric component guu.

• uu-component: In the second order in r we obtain the equation

[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

]

b||mn = 0 , (5.64)
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which is again already satisfied by the condition (5.62).
The first order in r leads to the equation

[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

]

c||mn = 0 , (5.65)

which is satisfied by (5.63).
Finally, the zeroth order in r restricts spatial dependence of the metric coefficient d(u, x)

[

−1

2
gmn + κγ

(

2 SRmn − SRgmn
)

]

d||mn = 0 . (5.66)

This constraint represents generalisation of standard Laplace equation for function d(u, x) in
the case of Einstain’s theory. Obviously the additional term vanishes in four dimensions.

Detailed discussion of the peculiar subcase (ii) defined by Spn 6= 0 and gpnSpn = 0, see (5.7),
will be postponed for further work.

The degenerated subcase (iii), corresponding to Spn = 0 and thus gpnSpn = 0, represents an
interesting difference from the well-known Kundt spacetimes in Einstein’s theory. The geometry
is restricted just by ru and pq component of the field equations, respectively, which put specific
constraints on the transverse space and coupling constants. Since the up and uu equations
non-trivially depend on the u-derivatives of the transverse space metric, which are assumed to
be vanishing here, these equations are satisfied identically, see case (iii) in section 5.1. The
metric function guu(r, u, x) remains unconstrained.
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Conclusion

In this master thesis, first we have reviewed modifications of Einstein’s theory of gravity, which
are supposed to solve some of its observational and theoretical issues, see chapter 1 for more
details. We have paid special attention to modifications of Lagrangian density which correspond
to presence of additional curvature invariants, and functions of these. This includes Lovelock
theories, containing famous Gauss–Bonnet theory, which are characterized by field equations of
the second order, quadratic gravity, and general f(R)-gravity, respectively. We have considered
these modified theories in arbitrary dimension. We have also mentioned some of interesting
exact solutions to their respective field equations.

After this review, we have explicitly derived completely general field equations for theories
with arbitrary function of the form f(R2, R2

cd, R
2
cdef ) in the Lagrangian density, see chapter 2.

Most of the aforementioned modified theories are special cases of this general class. We also
present various equivalent forms of these field equations, which are not common in the literature.

Further, we have reviewed geometries admitting non-twisting null geodesic congruences,
especially the Kundt class of non-twisting, shear-free, and non-expanding geometries, see chap-
ter 3. We have introduced the non-gyratonic subclass and summarized its geometric properties
together with important members of this family.

Subsequently in the original part of the thesis, after intensive calculations, we have explicitly
expressed particular components of the field equations of the general quadratic gravity with
metric ansatz corresponding to the non-gyratonic Kundt geometry, see chapter 4. After that,
we have begun the discussion of specific restrictions, which these (in general fourth order)
field equations impose on the metric functions of the non-gyratonic Kundt line element. This
was done in geometrically privileged subcases, namely pp-waves, characterized by the existence
of covariantly constant vector field, VSI spacetimes with vanishing curvature invariants, and
spacetimes corresponding to the direct product of other lower dimensional geometries.

In detail we have discussed Kundt spacetimes in the Gauss–Bonnet theory, i.e., the special
case of quadratic gravity, which usually has to be treated separately, see chapter 5. We have
performed this discussion for a completely general non-gyratonic metric ansatz. As a special
case we have analysed Kundt geometries with transverse space of constant curvature, pp-waves,
VSI spacetimes, and spacetimes related to the direct product geometries.

The very important class of Kundt spacetimes in generic quadratic gravity with arbitrary
number of spacetime dimensions still provides many opportunities for further investigation and
discussion of various special cases, which we would like to do in the near future. We would also
like to discussed physical interpretation of obtained solutions and their difference from those
well-known in Einstein’s general relativity.
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A. Curvature tensors for the

Kundt geometry

In this appendix we summarize the conventions and collect the expressions for components of
the geometric objects1 for the non-gyratonic Kundt line element (3.25). These can be found
in [26,34] as a special case with metric terms gup vanishing.

We begin with the Christoffel symbols defined as Γc
ab =

1
2g

cd(2gd(a,b) − gab,d),

Γr
rr = 0 , Γr

ru = −1

2
guu,r , Γr

rp = 0 ,

Γr
uu =

1

2
guuguu,r −

1

2
guu,u , Γr

up = −1

2
guu,p , Γr

pq =
1

2
gpq,u , (A.1)

Γu
rr = 0 , Γu

ru = 0 , Γu
rp = 0 ,

Γu
uu =

1

2
guu,r , Γu

up = 0 , Γu
pq = 0 , (A.2)

Γm
rr = 0 , Γm

ru = 0 , Γm
rp = 0 ,

Γm
uu = −1

2
gmnguu,n , Γm

up =
1

2
gmngnp,u , Γm

pq = SΓm
pq . (A.3)

The components of Riemann tensor Rabcd = gae

(

Γe
bd,c − Γe

bc,d + Γf
bdΓ

e
fc − Γf

bcΓ
e
fd

)

become

Rrprq = 0 , (A.4)

Rrpru = 0 , (A.5)

Rrpmq = 0 , (A.6)

Rruru = −1

2
guu,rr , (A.7)

Rrpuq = 0 , (A.8)

Rrupq = 0 , (A.9)

Rmpnq = SRmpnq , (A.10)

Rruup =
1

2
guu,rp , (A.11)

Rupmq = gp[m,u||q] , (A.12)

Rupuq = −1

2
guu||pq −

1

2
gpq,uu +

1

4
guu,rgpq,u +

1

4
gmngmp,ugnq,u . (A.13)

For the Ricci tensor Rab = gcdRacbd we get

Rrr = 0 , (A.14)

Rrp = 0 , (A.15)

Rru = −1

2
guu,rr , (A.16)

Rpq = SRpq , (A.17)

Rup = −1

2
guu,rp + gmngm[p,u||n] , (A.18)

Ruu =
1

2
guuguu,rr +

1

4
gmngmn,uguu,r −

1

2
gmngmn,uu

− 1

2
gmnguu||mn +

1

4
gmngpqgpm,ugqn,u , (A.19)

1Let’s emphasize that all the results of appendices A and B are purely geometric, i.e., no field equations have

been employed, and can thus be applied even in the case of any other theory admitting Kundt spacetimes.
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and the Ricci scalar defined as R = gabRab is

R = SR+ guu,rr . (A.20)

Finally, the Weyl tensor defined as a traceless part of the Riemann tensor,

Cabcd = Rabcd −
1

D − 2
(gacRbd − gadRbc + gbdRac − gbcRad) +

R (gacgbd − gadgbc)

(D − 1)(D − 2)
,

can be expressed via its components as

Crprq = 0 , (A.21)

Crpru = 0 , (A.22)

Crpmq = 0 , (A.23)

Cruru = −D − 3

D − 1

[

1

2
guu,rr +

1

(D − 2)(D − 3)
SR

]

, (A.24)

Crpuq =
1

D − 2

[

SRpq −
1

D − 1
gpq

SR+
1

2

D − 3

D − 1
gpqguu,rr

]

, (A.25)

Crupq = 0 , (A.26)

Cmpnq = SCmpnq +
2

(D − 2)(D − 4)

[

gmn
SRpq + gpq

SRmn − gmq
SRpn − gpn

SRmq

]

+
1

(D − 1)(D − 2)
(gmngpq − gmqgpn)

[

guu,rr −
2(2D − 5)

(D − 3)(D − 4)
SR

]

, (A.27)

Cruup =
1

2

D − 3

D − 2
guu,rp +

1

D − 2
gmngm[p,u||n] , (A.28)

Cupmq = gp[m,u||q] +
1

D − 2

[

−guu,r[qgm]p + gns
(

gpmgn[q,u||s] − gpqgn[m,u||s]

)]

, (A.29)

Cupuq = −1

2
guu||pq −

1

2
gpq,uu +

1

4
guu,rgpq,u +

1

4
gosgop,ugsq,u

− 1

D − 2
gpqg

mn

[

−1

2
guu||mn − 1

2
gmn,uu +

1

4
guu,rgmn,u +

1

4
gosgom,ugsn,u

]

+
1

(D − 1)(D − 2)
guugpq

(

SR+ guu,rr
)

− 1

2(D − 2)
guugpqguu,rr −

1

D − 2
guu

SRpq +
1

D − 2
gpqg

rnguu,rn , (A.30)

which are projected onto the natural null frame in section 3.3.
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B. Quadratic quantities for the

Kundt geometry

Here, we collect the expressions representing various curvature contractions and their deriva-
tives. These relations serve as partial results, and we use them to explicitly express the field
equations (1.30), (4.4)–(4.10), respectively, of the quadratic gravity (1.29) in the case of non-
gyratonic Kundt spacetimes (3.25).

We begin with the scalar quantities, namely squares of the curvature components

R2 =
(

SR+ guu,rr
)2

, (B.1)

R2
cd = SR2

mn +
1

2
guu,rr

2 , (B.2)

R2
cdef = SR2

klmn + guu,rr
2 . (B.3)

and the d’Alembert of the Ricci scalar

�R = −guuguu,rrrr−2guu,rrru−guu,rguu,rrr+
S
�

SR+ S
� guu,rr−

1

2
gmngmn,uguu,rrr . (B.4)

Subsequently we list components of specific tensorial expressions in the field equations (1.30):
• rr-component

RrcRr
c = 0 , (B.5)

RrcrdR
cd = 0 , (B.6)

RrcdeRr
cde = 0 , (B.7)

∇r∇rR = guu,rrrr , (B.8)

�Rrr = 0 , (B.9)

• rp-component

RrcRp
c = 0 , (B.10)

RrcpdR
cd = 0 , (B.11)

RrcdeRp
cde = 0 , (B.12)

∇r∇pR = guu,rrrp , (B.13)

�Rrp = 0 , (B.14)

• ru-component

RrcRu
c = −1

4
guu,rr

2 , (B.15)

RrcudR
cd = −1

4
guu,rr

2 , (B.16)

RrcdeRu
cde = −1

2
guu,rr

2 , (B.17)

∇r∇uR = guu,rrru +
1

2
guu,rguu,rrr , (B.18)

�Rru =
1

2
guuguu,rrrr +

1

2
guu,rguu,rrr + guu,rrru − 1

2
S
� guu,rr +

1

4
gmngmn,uguu,rrr , (B.19)

• pq-component

RpcRq
c = SRpm

SRq
m , (B.20)

RpcqdR
cd = SRpmqn

SRmn , (B.21)

RpcdeRq
cde = SRpklm

SRq
klm , (B.22)

∇p∇qR = SR||pq + guu,rr||pq −
1

2
gpq,uguu,rrr , (B.23)

�Rpq = S
�

SRpq , (B.24)
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• up-component

RucRp
c =

1

2
guu,rr

(

−1

2
guu,rp + gmngm[p,u||n]

)

+ gmn SRmp

(

−1

2
guu,rn + gklgk[n,u||l]

)

, (B.25)

RucpdR
cd = −1

4
guu,rrguu,rp + gm[p,u||n]

SRmn , (B.26)

RucdeRp
cde = −1

2
guu,rrguu,rp + gk[l,u||m]

SRp
klm , (B.27)

∇u∇pR = SR,up + guu,rrup +
1

2
guu,pguu,rrr −

1

2
gmngmp,u

(

SR,n + guu,rrn
)

, (B.28)

�Rup =
1

2
guuguu,rrrp + guu,rrup +

1

2
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• uu-component
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[24] Podolský J and Žofka M 2009 General Kundt spacetimes in higher dimensions, Class.
Quantum Grav. 26 105008

[25] Coley A, Hervik S, Papadopoulos G and Pelavas N 2009 Kundt spacetimes, Class. Quantum
Grav. 26 105016
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[34] Podolský J and Švarc R 2015 Algebraic structure of Robinson–Trautman and Kundt space-
times in arbitrary dimension, Class. Quantum Grav. 32 015001

[35] Kaluza T 1921 On the problem of unity in physics, Sitzungsber. Preuss. Akad. Wiss. Berlin
(Math. Phys.) 1921 966–72

[36] Klein O 1926 The atomicity of electricity as a quantum theory law, Nature 118 516

[37] Klein O 1926 Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys. 37 895–
906

[38] Akama K 1982 An early proposal of ‘brane world’, Lecture Notes in Phys. 176 267–71

[39] Rubakov V A and Shaposhnikov M E 1983 Do we live inside a domain wall?, Phys. Lett. B
125 136–8

[40] Iyer V and Wald R M 1994 Some Properties of Noether Charge and a Proposal for Dy-
namical Black Hole Entropy, Phys. Rev. D 50 846–64

[41] Crisostomo J, Troncoso R and Zanelli J 2000 Black hole scan, Phys. Rev. D 62 084013

[42] Cai RG and Ohta N 2006 Black holes in pure Lovelock gravities, Phys. Rev. D 74 064001

[43] Kastor D and Mann R 2006 On black strings & branes in Lovelock gravity, J. High Energy
Phys. 2006 4

[44] Stelle K S 1978 Classical Gravity With Higher Derivatives, Gen. Relativ. Gravit. 9 353–71

[45] Gasperini M and Veneziano G 1993 Pre-big-bang in string cosmology, Astropart. Phys. 1
317–39

[46] Chiba T 2005 Generalized gravity and ghost, J. Cosmol. Astropart. Phys. 2005 8

[47] Boulware D G and Deser S 1985 String-Generated Gravity Models, Phys. Rev. Lett. 55 24
2656–60

60
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