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Introduction

Homogenization is a theory that provides the mathematical basis for describing
effective physical properties of heterogeneous materials. It studies partial differ-
ential equations with rapidly oscillating coefficients. In many engineering appli-
cations the coefficients are affected by a relatively large amount of uncertainty
that arises from inaccurate measurements, inaccurate computations or insuffi-
cient knowledge. Such uncertainties in the input parameters can be expressed
in terms of random variables, which means that the material coefficients depend
on both random and spatial variables. Stochastic homogenization is a branch of
mathematics that studies homogenization of random media, i.e. materials whose
physical properties are modeled with random functions.

The derived theory of stochastic homogenization relies on results from many
mathematical disciplines, i.e. mathematical analysis, partial differential equa-
tions, probability and ergodic theory. This thesis provides a short summary of
the results from deterministic (not dependent on random functions) and stochas-
tic homogenization that are most important for solving engineering applications
in the last chapter. The task is to accurately enough approximate the heteroge-
neous material by a homogeneous one, i.e. approximate the material coefficients
defined on non-random and random media by constant coefficients.

The first chapter studies the theory of deterministic homogenization and derives
an easy way to solve our problem for periodic media. The second chapter deals
with the theory of stochastic homogenization and also comes to an elegant result
at the cost of assuming the ergodicity of a specific dynamical system. The main
source of the results is [Jikov et al., 1994] and [Cioranescu and Donato, 1999].
The third and the fourth chapter are devoted to adressing the question of numer-
ical computations of the problems of deterministic or stochastic homogenization.
In particular, the third chapter introduces the Fourier-Galerkin method, analyzes
its rate of convergence and discusses why it is a suitable numerical method for the
problems of deterministic homogenization, where the arguments are taken from
[Vondřejc et al., 2014]. The fourth chapter shows a way of how to compute the ef-
fective coefficients when the material coefficients depend on spatial variables and
a finite number of random variables. It introduces the collocation method based
on either full-tensor or sparse grid, derives the rates of convergence and presents
the Monte-Carlo method as a frame of reference, since that is probably the most
widely used method nowadays. The main sources to this chapter were [Babuška
et al., 2007] and [Nobile et al., 2008]. The last chapter provides two examples of
the stochastic homogenization problem, which reflect some engineering applica-
tions. For the computation I employed the collocation method which involves the
solution of a deterministic homogenization problem by Fourier-Galerkin method.
We compare three methods (Monte Carlo, full tensor grid collocation and sparse
grid collocation).

My main contribution consists in introducing the combination of the collocation
and the Fourier-Galerkin method as a suitable numerical method for solving the
problems of stochastic homogenization. I adjusted the results reported in [Nobile
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et al., 2008] to the homogenization setting and provided a consistent coverage of
the stochastic homogenization topic from the theory to the numerical approaches.
I developed a sparse grid generator in Python and implemented the collocation
method that employed a Python Fourier-Galerkin solver [Vondřejc, 2016–2017]
for computing the results in Chapter 5.
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1. Homogenization of second
order elliptic operators

This chapter will be devoted to the mathematical theory of the so called de-
terministic homogenization. We will assume the heterogeneous material can be
described by means of a periodic medium. The first section forms a background
which is later used to prove some nice results. The mathematical notion of ho-
mogenization is provided in the section 1.2 and in the last section we will prove
that solving the problem of homogenization leads to an easy problem defined on
a bounded domain.

Most of the formulated results are taken from the books [Jikov et al., 1994] and
[Cioranescu and Donato, 1999].

1.1 Preliminaries

In this part we will state some basic facts which are later necessary to derive a
proper mathematical description of homogenization. We will give some details on
the weak* convergence and introduce some new spaces of periodic functions and
periodic boundary value problems. We already assume some basic knowledge in
the theory of the weak topology, Lebesgue spaces, Sobolev spaces and boundary
value problems.

1.1.1 Weak* convergence

We know that the property of a strong convergence of a sequence is often too
strict. One can instead be requiring the weak convergence, a weaker property
than the strong convergence. However, there is a big class of sequences which
are not weakly convergent. In that case the notion of weak* convergence, as a
generalization of the weak convergence is introduced. following the developments
in [Jikov et al., 1994].

Since L1(Q) cannot be characterized as the dual of some Banach space, the clas-
sic notion of the weak* convergence is not interesting in this space. However, in
our computations we will be looking for some generalizations of the weak limits
which preserve some of the features of the classic weak* limits. Therefore we are
introducing a new definition of the weak* convergence for functions in L1(Q), Q
being a bounded domain in Rm.

Definition 1.1. Let Q be a bounded domain in Rm, wε, w0 ∈ L1(Q) for all ε.

We write wε
∗−⇀ w0 and say wε is weakly* convergent to w0, if the sequence wε is

bounded in L1(Q) and it holds:

lim
ε→0

∫
Q

wε ϕ dx =

∫
Q

w0 ϕ dx ∀ϕ ∈ C∞0 (Q).
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Corollary. The weak* limit is uniquely defined.

Proof. Let the sequence wε ∈ L1(Q) have two weak* limits w0, w1 ∈ L1(Q).
Then ∫

Q

w0 ϕ dx =

∫
Q

w1 ϕ, ∀ϕ ∈ C∞0 (Q).

From the theory of distributions we have w0 = w1 a.e. in Q.
�

Corollary. Any weakly convergent sequence in L1(Q) is also weakly* convergent.

Proof. Let wε be a weakly convergent sequence in L1(Q). Thanks to the
isometric isomorphism of the dual space of L1(Q) and L∞(Q) we have

lim
ε→0

∫
Q

wε ϕ dx =

∫
Q

w0 ϕ dx, ∀ϕ ∈ L∞(Q).

Since C∞0 (Q) ⊂ L∞(Q) we obtained what we needed to finish the proof.
�

One often comes across the question if and where the sequence of scalar products
pε · vε converges with pε, vε ⇀ 0 in L2(Q). Clearly, when one of the sequences

strongly converges in L2(Q) we have pε · vε ⇀ 0 in L1(Q) and therefore pε · vε ∗−⇀ 0.
It is, however, not always possible to provide the strong convergence. In that case
the following lemma might be helpful.

Lemma 1.1. Let pε, vε be vector fields in L2(Q) such that

pε ⇀ p0, vε ⇀ v0 in L2(Q).

In addition, let pε, vε satisfy the conditions:

curl vε = 0, div pε → f 0 in H−1(Q).

Then pε · vε ∗−⇀ p0 · v0.

Proof. We can rewrite pε · vε as:

pε · vε = (pε − p0) · (vε − v0) + p0 · vε + pε · v0 − p0 · v0.

The sum of the last three terms has a weak-* limit p0 · v0. Therefore, without
loss of generality we can assume: p0 = v0 = 0.

A weak-* convergence is a local property, which means we can assume Q to be
simply connected. In that case every irrotational vector field is a potential vector
field, i.e. there exists a potential function uε ∈ H1(Q) s.t. vε = ∇uε,

∫
Q
uε = 0.

Since vε = ∇uε ⇀ 0, thanks to the Poincaré inequality and the Rellich-Kondrachov
embedding theorem we have: uε ⇀ 0 in H1(Q) and uε → 0 in L2(Q).
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And now for every ϕ ∈ C∞0 (Q) :∫
Q

pε · vε ϕ dx =

∫
Q

pε · ∇(uε ϕ) dx−
∫
Q

uε pε · ∇ϕ dx

= −
∫
Q

div pε ϕuε dx−
∫
Q

uε pε · ∇ϕ dx → 0.

The first term −(div pε, ϕ uε) converges to 0, since div pε → 0 strongly in H−1(Q)
and ϕuε is uniformly bounded in H1

0 (Q). The last integral converges to 0 as well,
since uε → 0 in L2(Q) and pε · ∇ϕ is uniformly bounded in L2(Q).

�

1.1.2 Spaces of periodic functions

The classical theory of homogenization is developed for media with periodic mi-
crostructure modeled by partial differential equations with periodic coefficients.
Therefore periodic functions and some specific spaces of periodic functions play
a crucial role.

Consider measurable functions defined in Rm, l1, . . . , l2 are given positive num-
bers, � parallelepiped in Rm:

� = [0, l1]× · · · × [0, lm], (1.1)

Definition 1.2. Let � be defined as in (1.1) and f be a measurable function
defined a.e. in Rm. The function f is called � - periodic if

f(x+ k li ei) = f(x) a.e. in Rm, ∀k ∈ Z, ∀i ∈ {1, . . . ,m},

where {e1, . . . , em} is the canonical basis of Rm.

Definition 1.3. Let f be a � - periodic function in Rm. We define the mean
value of f as:

〈f〉 =
1

|�|

∫
�
f(x) dx,

where |�| = l1l2 · · · lm is the volume of the parallelepiped �.

We shall introduce the Lebesgue space of periodic functions with the norm 〈|f |α〉1/α
for 1 ≤ α <∞:

Lα(�) = {f is �-periodic, 〈|f |α〉1/α <∞}.

Without loss of generality we can assume l1 = l2 = · · · = lm = 1 or 2π as the
particular values of the periods li are often unimportant.
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Theorem 1.1 (Mean value property). Let 1 ≤ α <∞, f ∈ Lα(�). Set

fε(x) = f
(x
ε

)
a.e. on Rm.

Then, as ε→ 0,
fε ⇀ 〈f〉 in Lα(Q),

where Q is an arbitrary bounded domain in Rm.

Proof. Without loss of generality we can assume Q = s�, i.e. Q is a dilatation
of the cube � with ratio s ≥ 1. A detailed justification of this assumption can
be found in [Cioranescu and Donato, 1999, p. 34, 35].

At first let us estimate:

For ε ≤ 1 :

∫
Q

|fε(x)| dx = εm
∫
sε−1�

|f(x)|α dx ≤ εm(bsε−1c+ 1)m〈|f |α〉 ≤

≤ c 〈|f |α〉, c = c(Q),

where bsε−1cc stands for the greatest integer not larger than sε−1. Since f ∈
Lα(�), we know there is a trigonometrical polynomial z(x) such that

〈z〉 = 〈f〉, 〈|z − f |α〉 ≤ δ,

for δ arbitrarily small.
Then for ε ≤ 1 we have:∥∥f(ε−1x)− 〈f〉

∥∥
Lα(Q)

≤
∥∥f(ε−1x)− z(ε−1x)

∥∥
Lα(Q)

+
∥∥z(ε−1x)− 〈f〉

∥∥
Lα(Q)

≤

≤ (cδ)1/α +
∥∥z(ε−1x)− 〈z〉

∥∥
Lα(Q)

.

The classical Riemann-Lebesgue theorem implies that the second term converges
to 0.

�

Definition 1.4. Let C∞(�) be the subset of C∞(Rm) consisting of all � - periodic
functions. We denote by H1(�) the closure of C∞(�) with respect to the norm
‖·‖H1(Q) , Q = �.

Remark. Let u ∈ H1(�). Then u has the same trace on the opposite faces of �.

It should be pointed out that H1(�) does not coincide with H1(Q), Q = �. In
fact we can state:

Corollary. H1(�) = {u ∈ H1
loc(Rm), u is periodic }.

Proof. The proof can be found in [Cioranescu and Donato, 1999, p. 57].
�

To later ensure the uniqueness of the sought solution we can introduce a quotient
space W (�) = H1(�)/R:
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Remark. A quotient space W (�) = H1(�)/R is defined as the space of equiva-
lence classes with respect to the relation

u ' v ⇐⇒ u− v is a constant, ∀u, v ∈ H1(�). (1.2)

Every equivalence class can be represented by a function ū such that 〈ū〉 = 0. Or
in other words, every u ∈ H1(�) can be decomposed as

u = c+ ū, c = 〈u〉, 〈ū〉 = 0. (1.3)

Definition 1.5. We define the space of solenoidal periodic vector fields as

L2
sol(�) = {p ∈ L2(�), div p = 0 in Rm},

where the property div p = 0 in Rm means∫
Rm

pi
∂φ

∂xi
dx = 0 , ∀φ ∈ C∞0 (Rm). (1.4)

Clearly, L2
sol(�) is a closed subspace of L2(�). The identity (1.4) can be equiva-

lently rewritten as ∫
�
p · ∇φ dx = 0 , ∀φ ∈ C∞(�). (1.5)

A brief proof of this statement can be found in [Jikov et al., 1994, p. 6].

Definition 1.6. We define the space of periodic potential vector fields as

L2
pot(�) = Rm ⊕ ν2

pot(�),

where ν2
pot(�) is the space of periodic potential vector fields with zero mean value

ν2
pot(�) = {∇u, u ∈ H1(�)}.

Thanks to the Poincaré inequality, ν2
pot(�) is a closed subspace of L2(�). As a

consequence of (1.5) we obtain the following orthogonal representation

L2(�) = L2
sol(�)⊕ ν2

pot(�). (1.6)

Remark. Any vector v ∈ L2
pot(�) can be represented in the form

v = 〈v〉+∇u, u ∈ H1(�).

Similarly, any solenoidal vector field p ∈ L2
sol(�) has the form

pj = 〈pj〉+
∂αij
∂xi

,

where α is a skew-symmetrical matrix s.t. αij ∈ H1(�), 〈αij〉 = 0. By ν2
sol(�)

we will denote the space of vector fields v ∈ L2
sol(�) with zero mean value, i.e.

〈v〉 = 0. We can then write

L2(�) = Rm ⊕ ν2
pot(�)⊕ ν2

sol(�).
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Lemma 1.2 (Independence property). Let f, g be vector fields satisfying f ∈
L2
pot(�), g ∈ L2

sol(�). Then

〈f · g〉 = 〈f〉 · 〈g〉.

Proof. We know that f can be expressed as

f = 〈f〉+∇u, u ∈ H1(�).

Then we have

1

|�|

∫
�
f · g dx =

1

|�|

∫
�

(〈f〉+∇u) · g dx

= 〈f〉 · 1

|�|

∫
�
g dx +

1

|�|

∫
�
∇u · g dx

= 〈f〉 · 〈g〉 +
1

|�|

∫
∂�
u g · η dS − 1

|�|

∫
�
u div (g) dx

= 〈f〉 · 〈g〉,

where η is the normal vector to the faces (edges) of �.
�

1.1.3 Periodic problem

When deriving the solution of the homogenization problem one has to deal with
a special kind of boundary value problem, the periodic problem. The existence
and uniqueness of its solution are a consequence of the Lax-Milgram theorem,
which can be found in [Evans, 2010, p. 297].

Let A(x) = {aij(x)}mi,j=1 be a matrix (not necessarily symmetric) with � - periodic
bounded measurable elements, satisfying the ellipticity condition, i.e.

aij � - periodic

aij ∈ L∞(Rm)

cA ‖ξ‖2
Rm ≤ (A(x)ξ, ξ)Rm , ∀ξ, x ∈ Rm, with cA > 0.

(1.7)

The matrix A(x) is associated with the following differential operator

∂

∂xi

(
aij

∂

∂xj

)
= div (A∇)

and the following bilinear form

a(u, ϕ) =

∫
Q

∇ϕ · A∇u dx.

10



Let f0 ∈ L2(�), f ∈ L2(�) be an arbitrary function and vector field. Solving a
periodic problem means solving the problem

−div (A∇u) = −f0 + div f in �

u � - periodic
(1.8)

in the sense of the following definition.

Definition 1.7 (Weak solution). Let A(x) be as in (1.7) and f0 ∈ L2(�), f ∈
L2(�) be an arbitrary function and vector field. We say that u ∈ H1(�) is a weak
solution of the periodic problem (1.8) if the following identity holds

〈∇ϕ · A∇u〉 = 〈f0 ϕ〉+ 〈∇ϕ · f〉, ∀ϕ ∈ H1(�). (1.9)

When assuming 〈f0〉 = 0, seeking the solution in the whole H1(�) would clearly
lead to a non-uniqueness. The appropriate space is

V = {u ∈ H1(�), 〈u〉 = 0}

and in that case the problem is well-posed according to the Hadamard conditions,
as stated in the following theorem.

Theorem 1.2. Let A(x) be a � -periodic, cA -elliptic matrix with bounded ele-
ments. Let f0 ∈ L2(�) be a function, 〈f0〉 = 0, f ∈ L2(�), a vector field.
Then there exists a unique weak solution ū ∈ V to the periodic problem (1.8).
Moreover,

‖∇ū‖L2(�) ≤ c−1
A ‖f‖L2(�) . (1.10)

Remark. Compare the space V to the space W (�) mentioned in Remark (1.2).
Thanks to the Poincaré-Wirtinger inequality we can introduce a norm in the
space W (�) as

‖ū‖W (�) = ‖∇u‖L2(�) . ∀u ∈ ū, ū ∈ W (�).

Therefore the estimate (1.10) is applied to the norm of the equivalence classes in
H1(�).

Proof. When V being the space of test functions, our problem meets all the
assumptions of the Lax-Milgram theorem. Therefore we know there is a unique
weak solution ū ∈ V satisfying the equality (1.9) for all ϕ ∈ V . Since 〈f0〉 = 0, it
holds for all ϕ ∈ H1(�).

�

1.2 Setting of the homogenization problem

Let A(x), x ∈ Rm, be a � - periodic matrix that satisfies:
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(Aξ, ξ)Rm ≥ cA ‖ξ‖2
Rm

‖Aξ‖Rm ≤ β ‖ξ‖Rm
for any ξ ∈ Rm and a.e. in Q. (1.11)

Now set
aεij = aij

(x
ε

)
a.e. on Rd, ∀i, j = 1, . . . ,m

and
Aε(x) =

(
aεij(x)

)m
i,j=1

, a.e. on Rm. (1.12)

The homogenization theory allows to describe the asymptotic behaviour as ε→ 0
of partial differential equations of many types. For our purpose we will be dealing
with the following Dirichlet problem (1.13)

−div (Aε∇uε) = f in Q

u ∈ H1
0 (Q),

(1.13)

where f ∈ H−1(Q) is given.

Definition 1.8. A constant positive definite matrix A0 is said to be the homoge-
nized matrix for A(x), if for any bounded domain Q ⊂ Rm and any f ∈ H−1(Q)
the solutions uε of the Dirichlet problem (1.13) possess the following property of
convergence as ε→ 0:

uε ⇀ u0 in H1
0 (Q),

Aε∇uε ⇀ A0∇u0 in L2(Q),
(1.14)

where u0 is the solution of the Dirichlet problem

−div(A0∇u0) = f in Q

u0 ∈ H1
0 (Q).

(1.15)

The operator A = div (A0∇) is called a homogenized operator and the equation
(1.15) is called a homogenized equation.

The vector fields

pε = Aε∇uε,
p0 = A0∇u0

are called flows.

The homogenized matrix is often referred to as the effective matrix and reflects
the physical concept of an effective homogeneous medium.

Remark. The solutions of the sequence of Dirichlet problems satisfy

‖uε‖1 = ‖∇uε‖L2(Q) ≤ c−1
A ‖f‖H−1(Q) . (1.16)

The flows satisfy a similar estimate

‖pε‖L2(Q) ≤ β ‖∇uε‖L2(Q) ≤
β

cA
‖f‖H−1(Q) . (1.17)
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These estimates will be of great use later, when we discuss the computation of
the homogenized matrix.

1.3 The main convergence result

In this section we will state the classical result of the homogenization theory, i.e.
that the homogenized matrix can be obtained through solutions of some auxiliary
periodic problems in the reference cell �.

1.3.1 Auxiliary periodic problem

Let A(x) be as in (1.7) and let λ ∈ Rm be an arbitrary constant. Now consider
an auxiliary periodic problem

div (Av) = 0 in �

v ∈ L2
pot(�)

〈v〉 = λ ∈ Rm.

(1.18)

Lemma 1.3. The problem (1.18) has a unique weak solution.

Proof. We know that the vector field v ∈ L2
pot(�) can be expressed as

v = λ+∇u, u ∈ H1(�). (1.19)

When connecting this with our equation we obtain

div (A∇u) = −div (Aλ)

which has the form of (1.8) with f0 = 0, f = −Aλ. For the periodic problem we
already proved the existence and uniqueness of a weak solution.

�

From (1.19) we can see that v as a solution of an auxialiary periodic problem
depends linearly on λ. Since Av is a linear transformation with respect to v
and 〈·〉 is a linear operation we know that 〈Av〉 is a linear form with respect to
λ ∈ Rm and therefore can be represented in the from

〈Av〉 = Aλ, A being a constant matrix. (1.20)

Now consider a dual auxiliary periodic problem

div (A>w) = 0 in �

w ∈ L2
pot(�)

〈w〉 = ξ ∈ Rm,

(1.21)

where A is the same as before and ξ ∈ Rm is an arbitrary constant.

Analogously to the previous case we can prove the existence of a unique solution,
a linear dependency of 〈A>w〉 on ξ and define a constant matrix C as

〈A>w〉 = C>ξ.
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Corollary. A = C

Proof. For an arbitrary λ, ξ ∈ Rm it holds:

ξ · Aλ = ξ · 〈Av〉 = 〈w · Av〉,

where the second equality comes from the Independence property (Lemma 1.2).
We can continue analogously for the dual operator.

ξ · Cλ = λ · C>ξ = λ · 〈A>w〉 = 〈v · A>w〉 = 〈w · Av〉,

where the third equality comes again from the Independence property. Since
these equations hold for all λ, ξ ∈ Rm, we have what we needed to prove.

�

The equality A = C also implies that A> = A
>

. In particular, if the original
matrix A(x) was symmetric, A is also symmetric.

Corollary. A is elliptic.

Proof. As before, from the fact that Av ∈ L2
sol(�), v ∈ L2

pot(�) and the
independence property we obtain

λ · Aλ = 〈v · Av〉 ≥ cA〈|v|2〉 ≥ cA |〈v〉|2 = cA |λ|2 , ∀λ ∈ Rm.

�

1.3.2 Fundamental homogenization theorem

The fundamental homogenization theorem explains the relation between the ho-
mogenized matrix A0 and the auxiliary periodic problem, in particular the con-
stant matrix A.

Theorem 1.3. Let A be a � - periodic matrix satisfying the conditions (1.11).
Consider the auxiliary periodic problem (1.18) and define a constant matrix A by
(1.20). Then A is a homogenized matrix in the sense of Definition 1.8, i.e. we
can set A0 to be A.

Proof. Let uε be the solution of the Dirichlet problem (1.13). From the estimates
(1.16) and (1.17) we can see that the sequence uε is bounded in H1

0 (Q) and the
sequence of flows is bounded in L2(Q). This implies that there is a subsequence
uε1 weakly convergent to u0 and a subsequence pε2 weakly convergent to p0.

Now consider the dual auxiliary periodic problem (1.21). We know that it has a
unique weak solution w. For wε(x) = w(ε−1x) by the property of the mean value
we have

wε ⇀ 〈w〉 = ξ,

A>
ε
wε ⇀ 〈A>w〉 = C>ξ.

14



For each ε we can derive that

wε · pε = wε · Aε∇uε = A>
ε
wε · ∇uε, x ∈ Q. (1.22)

From the definition of the dual auxiliary problem (1.21) we get

curl wε = 0,

div (A>
ε
wε) = 0,

on the other hand, for ∇uε and pε we have

curl ∇uε = 0

div pε = −f.

Both pairs in the equation (1.22) therefore satisfy the assumption is Lemma 1.1
which means we can pass to the weak* limit. Counting in the uniqueness of the
weak* limit we can affirm

ξ · p0 = C>ξ · ∇u0 = ξ · A∇u0,

which implies
p0 = A∇u0. (1.23)

Moreover, div pε = −f , and consequently div p0 = −f . The function u0 is there-
fore a solution of the Dirichlet problem (1.13) with A = A. Up until now u0

was dependent on the choice of the subsequence uε1 . By virtue of the uniqueness
of the solution of this problem we can affirm that the whole sequence uε weakly
converges to u0. From (1.23) we get that the sequence pε weakly converges to p0.
The matrix A therefore satisfies the definition of a homogenized matrix and we
have shown that

A = A0.

�
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2. Stochastic homogenization

As opposed to Chapter 1, this chapter is dealing with a problem where the ele-
ments of the matrix defining the operator are random fields, i.e.

A = A(x, ω),

where ω ∈ Ω, (Ω,F , µ) being a probability space.

The following problem can serve as a motivation for the development of stochastic
homogenization (ε� 1) :
For almost every ω ∈ Ω

−div
(
A(ε−1x, ω)∇uε(x, ω)

)
= f(x) in Q,

uε(x, ω) = 0 on ∂Q.

The rigorous definition of the problem of stochastic homogenization is provided
in the section 2.2.

As the main sources we shall mention [Jikov et al., 1994], [Anantharaman et al.,
2011] and [Bourgeat and Piatnitski, 2004].

2.1 Preliminaries

As mentioned before, in order to obtain some valuable homogenization results
we need to state some assumptions on the random field A(x, ω). This section
collects all necessary background concepts required in our coverage of stochastic
homogenization.

2.1.1 Probabilistic setting

In what follows, (Ω,F , µ) will be the considered probability space.

Definition 2.1. We define the spaces Lα(Ω), α ≥ 1 by

Lα(Ω) = {f : Ω→ X, f measurable ,

∫
Ω

‖f‖αX dµ <∞}

L∞(Ω) = {f : Ω→ X, f measurable , f essentially bounded },

where X denotes either R or Rm, depending on the context.

One of the needed assumptions will be that of the stationarity of a random field.

Definition 2.2. Let G : Rm × Ω → R be a random field. We say that G
is stationary if for any finite collection of points xi ∈ Rm, i = 1, . . . , k and
any h ∈ Rm the joint distribution of the random k−dimensional vector (G(x1 +
h, ω), . . . , G(xk + h), ω)T is the same as that of (G(x1, ω), . . . , G(xk), ω)T .
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2.1.2 Ergodic theory

Some of the concepts from ergodic theory are crucial to the discussion that fol-
lows in the rest of the thesis.

Definition 2.3. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be measure spaces. A transfor-
mation T : Ω1 → Ω2 is called measure preserving if it is measurable, i.e.

∀E ∈ F2 T−1(E) ∈ F1,

and satisfies
µ1(T−1(E)) = µ2(E), ∀E ∈ F2.

Definition 2.4 (Dynamical system). We define an m-dimensional measure-
preserving dynamical system T on Ω as a family of measurable mappings T (x) :
Ω→ Ω, parametrized by x ∈ Rm, which satisfies the following conditions:

1. The group property:

T (0) = I

T (x+ y) = T (x)T (y), ∀x, y ∈ Rm,
(2.1)

where I stands for the identity.

2. T preserves the measure µ on Ω:

∀x ∈ Rm, ∀E ∈ F : µ(T−1(E)) = µ(E).

3. T (x) is a measurable mapping from Rm×Ω to Ω, where Rm×Ω is equipped
with the product σ-algebra B × F and B is the Borel σ-algebra in Rm.

Remark. It can be shown that if the random field G from the Definition 2.2 can
be written in the form

G(x, ω) = g(T (x)ω),

where g : Ω→ Ω is a measurable function and T is a measure-preserving dynam-
ical system, then G is stationary.

Now we will explain the notion of an invariant function, invariant set and an
ergodic dynamical system.

Definition 2.5 (Invariant function, invariant set). Let T (x), x ∈ Rm be a
measure-preserving dynamical system. A measurable function f defined on Ω
is called T -invariant if

∀x ∈ Rm : f
(
T (x)ω

)
= f(ω), for a.e. ω ∈ Ω. (2.2)

A measurable set E ∈ F is called T -invariant if its characteristic function 1E is
T -invariant.
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Definition 2.6 (Ergodic dynamical system). Let T (x), x ∈ Rm be a measure-
preserving dynamical system. T is called ergodic if for every T -invariant set
E ∈ F we have µ(E) = 0 or 1.

We shall mention an equivalent characterization of an ergodic dynamical system
which is often referred to as the definition of an ergodic dynamical system.

Corollary. Let T (x), x ∈ Rm be a measure-preserving dynamical system. Then
the following is equivalent:

1. T is ergodic.

2. Every invariant function is constant almost everywhere in Ω.

Proof. The proof can be found in [Dajani and Dirksin, 2008, p. 23,24].
�

Birkhoff Ergodic Theorem

The following section is dedicated to show the relation of a function defined on
Ω to its corresponding function defined on Rm. The Birkhoff ergodic theorem at
the end then shows that under some assumptions we have a strong connection of
a stochastic homogenization problem to a deterministic problem.

Definition 2.7 (realization of f). Let T (x), x ∈ Rm be a measure-preserving
dynamical system. Corresponding to a measurable function f defined on Ω we
define the function fT defined on Rm × Ω by

fT (x, ω) = f(T (x)ω), x ∈ Rm, ω ∈ Ω. (2.3)

For a fixed ω ∈ Ω the function fT (·, ω) defined on Rm is called a realization of f .

Lemma 2.1. If f ∈ Lα(Ω) then almost all its realizations belong to Lαloc(Rm).

Proof. The Lebesgue-measurability of the function fT (·, ω) is a direct conse-
quence of the third condition in the definition of a measure-preserving dynamical
system (Definition 2.4).
We still need to prove that

for a.e. ω ∈ Ω we have:

∫
|x|≤t

∣∣f(T (x)ω
)∣∣α dx <∞, ∀t ∈ R.

With a help of the Fubini theorem we obtain:∫
Ω

(∫
|x|≤t

∣∣f(T (x)ω
)∣∣α dx

)
dµ =

∫
|x|≤t

(∫
Ω

∣∣f(T (x)ω
)∣∣α dµ

)
dx

= γmt
m ‖f‖αLα(Ω) <∞.

From the Chebyshev theorem we know that the finiteness of a Lebesgue integral
of |f | implies finiteness of f almost everywhere, which finishes the proof.
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�

Corollary. Convergence in Lα(Ω) implies convergence for a subsequence in Lαloc(Rm)
for almost all corresponding realizations.

Proof. The proof is analogous to the previous one. Again, we can derive:∫
Ω

(∫
|x|≤t

∣∣fk(T (x)ω)− f
(
T (x)ω

)∣∣α dx
)

dµ

=

∫
|x|≤t

(∫
Ω

∣∣fk(T (x)ω)− f
(
T (x)ω

)∣∣α dµ
)

dx = γmt
m ‖fk − f‖αLα(Ω) → 0.

The L1 convergence implies an almost everywhere pointwise convergence for a
subsequence. Which in our case means that there exists a subsequence fnk for
which we have:∫

|x|≤t

∣∣fnk(T (x)ω)− f
(
T (x)ω

)∣∣α dx→ 0, ∀t ∈ R. (2.4)

Or in other words, ‖fnk − f‖Lαloc(Rm) → 0.

�

Definition 2.8. Let f ∈ L1(Rm). We call Mf the mean value of f if for every
Lebesgue measurable bounded set K ⊂ Rm it holds

lim
ε→∞

∫
K

f(ε−1x) dx = |K|Mf , (2.5)

where |K| denotes the Lebesgue measure of K.

There are many ways of how to equivalently express the definition of the mean
value of f(x) ∈ L1(Rm). Some of them require some additional assumptions.
Here we provide two more for a better geometric understanding:

Remark. Let f(x) ∈  L1(Rm). We call Mf ∈ R the mean value of f if it holds

lim
t→∞

1

tm |K|

∫
Kt

f(x) dx = Mf , |K| 6= 0, (2.6)

for any Lebesgue measurable bounded set K ⊂ Rm, where Kt = {x ∈ Rm, t−1x ∈
K}, t > 0.

Remark. Let the family of functions f(ε−1 x) be bounded in Lαloc(Rm) for some
α ≥ 1. Then the mean value Mf ∈ R can be defined as

f(ε−1x) ⇀Mf in Lαloc(Rm). (2.7)

Theorem 2.1 (Birkhoff Ergodic Theorem). Let T (x), x ∈ Rm be a measure-
preserving dynamical system on Ω, let f ∈ Lα(Ω), α ≥ 1. Then for almost all
ω ∈ Ω the realization fT (x, ω), as defined in (2.3) possesses a mean value in the
sense of (2.7). Moreover, the mean value Mf (ω) is T -invariant, i.e.

Mf (T (x)ω) = Mf (ω) ∀x ∈ Rm, µ− a.e.
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Also,

E(f)
def≡
∫

Ω

f(ω) dµ =

∫
Ω

Mf (ω) dµ. (2.8)

In particular, if the system T (x) is ergodic then the mean value Mf is constant
a.e. and is given by

Mf = E(f).

Proof. Proof can be found in [Dunford and Schwartz, 1988].
�

Let’s formulate the result for an ergodic measure-preserving dynamical system in
one Corollary.

Corollary. Let T (x), x ∈ Rm be a measure-preserving and ergodic dynamical
system on Ω. Let f ∈ Lα(Ω), α ≥ 1. Define f εT (x, ω) = fT (ε−1x, ω) for ε > 0.
Then, for almost every ω ∈ Ω

f εT (·, ω) ⇀ E(f) in Lαloc(Rm), as ε→ 0.

2.1.3 Spaces of random vector fields

The aim of this section is to bring out an important decomposition of the space
of vector fields from L2(Ω) - the Weyl decomposition. This result will be later
used for the stochastic homogenization of random elliptic operators.

Firstly, let’s recall some of the basic notions of spaces for vector fields f =
{f1, . . . , fm}, fi ∈ L2

loc(Rm).

Definition 2.9. A vector field f ∈ L2
loc(Rm) is called vortex-free in Rm if∫

Rm

(
fi
∂ϕ

∂xj
− fj

∂ϕ

∂xi

)
dx = 0, ∀ϕ ∈ C∞0 (Rm). (2.9)

A vector field f ∈ L2
loc(Rm) is called soleniodal in Rm if∫

Rm
fi
∂ϕ

∂xi
dx = 0, ∀ϕ ∈ C∞0 (Rm). (2.10)

Remark. Since we are dealing with the whole domain Rm, the property of (2.9)
is equivalent to the potentiality of the vector field, i.e.

f = ∇u, u ∈ H1
loc(Rm). (2.11)

Now, let us consider vector fields defined on Ω, i.e. random vector fields.
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Definition 2.10. Let T (x), x ∈ Rm be a measure-preserving dynamical system
on Ω. A vector field f ∈ L2(Ω) is called potential (resp. solenoidal) if almost all
its realizations fT (·, ω) are potential (resp. solenoidal) in Rm. The space of po-
tential and solenoidal vector fields is denoted by L2

pot(Ω) and L2
sol(Ω), respectively.

Corollary. L2
pot(Ω) and L2

sol(Ω) are closed subsets of L2(Ω).

Proof. This property is a direct consequence of the second corollary in the Sec-
tion Birkhoff Ergodic Theorem.

�

Definition 2.11. We define the space of potential and solenoidal vector fields
with zero mean value:

ν2
pot(Ω) = {f ∈ L2

pot(Ω), E(f) = 0}
ν2
sol(Ω) = {f ∈ L2

sol(Ω), E(f) = 0}.

Therefore we can decompose L2
pot(Ω) and L2

sol(Ω) as:

L2
pot(Ω) = ν2

pot(Ω)⊕ Rm

L2
sol(Ω) = ν2

sol(Ω)⊕ Rm.

The following lemma implies that ν2
pot(Ω) and ν2

sol(Ω) are mutually orthogonal
subspaces of L2(Ω), assuming T (x), x ∈ Rm is ergodic.

Lemma 2.2. Let T (x), x ∈ Rm be a measure-preserving, ergodic dynamical
system. Let f ∈ L2

pot(Ω), g ∈ L2
sol(Ω). Then

E(f · g) = E(f) · E(g).

Proof. Let’s consider a realizations of f and g, f(x) = fT (x, ω), g(x) = gT (x, ω)
for a fixed ω ∈ Ω. Thanks to the Birkhoff ergodic theorem and the ergodicity
assumption we know that

f(ε−1x) ⇀ E(f)

g(ε−1x) ⇀ E(q)

and also
f(ε−1x) · g(ε−1x) ⇀ E(f · g) in L1

loc(Rm).

On the other hand, from the definition of L2
pot(Ω), L2

sol(Ω) we know that f(x) ∈
L2
pot(Rm), g(x) ∈ L2

sol(Rm) and from the Lemma 1.1 we get:

f(ε−1x) · g(ε−1x)
∗−⇀ E(f) · E(g).

Both of these limits are uniquely determined and that finishes the proof.
�
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Theorem 2.2 (Weyl Decomposition). If the measure-preserving dynamical sys-
tem T (x), x ∈ Rm is ergodic then following orthogonal decomposition of L2(Ω)
holds:

L2(Ω) = ν2
pot(Ω)⊕ ν2

sol(Ω)⊕ Rm = ν2
pot(Ω)⊕ L2

sol(Ω). (2.12)

Proof. A detailed proof is provided in [Jikov et al., 1994, p. 231, 232, 233].
�

2.2 Homogenization

This section is dedicated to the mathematical description of stochastic homog-
enization. We will define a homogenized matrix in a stochastic setting, state
needed assumptions and suggest a way how to compute it.

Firstly, let us introduce the problem we are dealing with.

As before, let (Ω,F , µ) be a probability space, let the physical domain be given
by a bounded open set Q ∈ Rm, f ∈ H−1(Q) be a deterministic source term. The
material properties of a medium with random microstructure are specified by a
matrix valued function

A(·, ω) : Rm → Rm×m.

For simplicity, we again assume the boundary conditions to be homogeneous
Dirichlet. The problem is then given by:

For almost every ω ∈ Ω

−div
(
A(ε−1x, ω)∇uε(x, ω)

)
= f(x) in Q,

uε(x, ω) = 0 on ∂Q.
(2.13)

The goal is to find a constant matrix A0 such that for every ω ∈ Ω the solution
u0 of the problem (2.14) given bellow provides a reasonable approximation of the
limit uε as ε→ 0, uε being the solution of the problem (2.13).

−div
(
A0∇u0

)
= f in Q,

u0 = 0 on ∂Q.
(2.14)

Definition 2.12 (admits homogenization). Let A : Rm → Rm×m be a uniformly
bounded and positive definite matrix valued function. We say that A admits ho-
mogenization if there exists a constant matrix A0 satisfying the Definition 1.8.

Remark. In the case of a periodic media the existence of a homogenized matrix
is proved in Chapter 1.

In what follows we will assume:
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1. A can be expressed in terms of a measure-preserving dynamical system:

A(x, ω) = A(T (x)ω), ∀x ∈ Rm, ω ∈ Ω, (2.15)

where T (x), x ∈ Rm is an m−dimensional measure-preserving ergodic dy-
namical system.

2. A : Ω→ Rm×m is a measurable function.

3. A is uniformly bounded and positive definite: 0 < cA ≤ CA

cA |ξ|2 ≤ ξ · A(ω)ξ ≤ CA |ξ|2 , ∀ξ ∈ Rm, for a.e. ω ∈ Ω.

2.2.1 Auxiliary equation problem

In this section we introduce an auxiliary problem defined on Ω and show its
equivalency to a series of problems defined on Rm.

For a fixed ξ ∈ Rm consider the following problem:

Find vξ ∈ ν2
pot(Ω) s.t.∫

Ω

ϕ(ω) · A(ω) (ξ + vξ(ω)) dµ = 0, ∀ϕ ∈ ν2
pot(Ω).

(2.16)

Thanks to the estimate
∫

Ω
v(ω) ·A(ω) v(ω)) dµ = E(v ·Av) ≥ cA ‖v‖2

L2(Ω) we can
use the Lax-Milgram theorem which proves the existence of a unique solution.

The problem (2.16) can be rewritten as:

Find vξ ∈ ν2
pot(Ω) s.t.

A (ξ + vξ) ∈  L2
sol(Ω).

(2.17)

Now, let’s translate this problem to Rm by considering realization for a fixed
ω ∈ Ω. Let uξ(x) be the potential function for the realization of the solution
v̄ξ(x) = vξ(T (x)ω) and Ā(x) = A(T (x)ω). Then

div
(
Ā(x) (ξ +∇uξ)

)
= 0. (2.18)

Hence, for a realization the equation (2.16) is reduced to an elliptic equation in
Rm, which is of the same form as the auxiliary equation in the periodic case (1.18)
from Chapter 1.

From the other side, assume that a vector field v ∈ ν2
pot(Ω) satisfies the equation

(2.18) for almost all its realizations. Then almost all realizations ofA(ω) (ξ+v(ω))
are solenoidal vector fields, which means (2.17) holds.

Similarly as before, we can see that E(Ā(ξ+ vξ)) is a linear form with respect to
ξ. Therefore we can define a constant matrix A by

Aξ = E(Ā(ξ + vξ)). (2.19)
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Now, for a fixed ς ∈ Rm consider the dual auxiliary problem:

Find wς ∈ L2
pot(Ω) s.t.

A>wς ∈ L2
sol(Ω),

E(wς) = ς.

(2.20)

We proceed with a similar train of thoughts. The solution wς depends linearly
on ς ∈ Rm, which means E(A>wς) is also linear with respect to ς and therefore
we can define a constant matrix C s.t.

E(A>wς) = C
>
ς.

Corollary. C = A.

Proof. From the definition of the problems (2.16), (2.20) and the Weyl decom-
position (2.12) we observe the following orthogonality properties

A(vξ + ξ)⊥wς − ς
A>wς ⊥ vξ.

From which we can derive

ς · Aξ = ς · E(A(vξ + ξ)) = E(ς · A(vξ + ξ))

= E(wς · A(vξ + ξ)) = E(A>wς · ξ) = E(A>wς) · ξ = C
>
ς · ξ = ς · Cξ,

for arbitrarily chosen ς, ξ ∈ Rm.
�

Corollary. The matrix A is positive definite.

Proof. Let us derive

ξ · Aξ = E(ξ · A(vξ + ξ)) = E((vξ + ξ)A(vξ + ξ))

≥ cAE(|vξ + ξ|2) ≥ cA |E(vξ + ξ)|2 = cA |ξ|2 ,

where we used the fact that A is elliptic with the constant of ellipticity cA and
the orthogonality A(vξ + ξ)⊥ vξ.

�

2.2.2 The main theorem

This section states the main theorem of stochastic homogenization, explaining
the meaning of the ergodicity assumption.
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Theorem 2.3. Let A : Ω → Rm×m meet both the second and the third assump-
tion from section 4.1.1. Moreover, assume that T (x), x ∈ Rm is a measure-
preserving ergodic dynamical system. Then, for almost all ω ∈ Ω the realization
A(x, ω) = A(T (x)ω) admits homogenization. The homogenized matrix A0 is then
independent of ω and is equal to the matrix A defined in (2.19).

Proof. The proof will be held in a similar fashion as the proof of the Theorem
1.3. Let uε be the solution of the Dirichlet problem

div (Aε(x)∇uε(x)) = f,

uε ∈ H1
0 (Q),

with Q ⊂ Rm bounded, f ∈ H−1(Q), both arbitrarily chosen and A(x) is a
realization of A(T (x)ω1) for a specific ω1 ∈ Ω.

We know that the sequence uε is bounded in H1
0 (Q) and the sequence of flows

Aε∇uε is bounded in L2(Q), which implies there are a weakly convergent subse-
quences uε1 and pε1 with weak limits u0, p0, respectively.

Consider the auxiliary problem (2.20) and set

wς(x) = wς(T (x)ω1), wες (x) = wς(ε
−1x),

qς(x) = A>(x)wς(x), qες (x) = qς(ε
−1x).

The Birkhoff ergodic theorem implies that

wες ⇀ ς,

qες ⇀ A
>
ς.

Both of these problems are related through the identity

wες · pε = wες · Aε∇uε = ∇uε · Aε>wες = ∇uε · qες . (2.21)

We would like to use the Lemma 1.1 again, for which we need to verify its as-
sumptions. From the definitions of both of these problems we attain

curl wες = 0, div pε = 0,

curl ∇uε = 0, div qες = 0,

which means we can pass to the weak* limit and by virtue of the uniqueness of
the weak* limit we can affirm

ς · p0 = ∇u0 · A>ς = ς · A∇u0.

Since ς was chosen arbitrarily, it follows that p0 = A∇u0. Moreover, div pε = f
and consequently div p0 = f . Therefore, u0 is a solution of the homogenized
Dirichlet problem

div A∇u0 = f, u0 ∈ H1
0 (Q). (2.22)

In the beginning, u0 and p0 were dependent on the choice of the subsequence
of uε and pε. However, thanks to the uniqueness of the solution of the problem
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(2.22) we can state uε ⇀ u0 and pε ⇀ p0. Since the matrix A satisfies all of the
requirements for the homogenized matrix A0, we can proclaim

A = A0.

In addition, A is independent of the choice of ω1 ∈ Ω.
�

2.3 Approximations of effective coefficients

This section follows results stated in [Bourgeat and Piatnitski, 2004].

Thanks to the Theorem 2.3 we know that in order to find the homogenized ma-
trix we need to solve (2.17). This problem is stated in the whole space Rm and
therefore it does not allow for any direct approximation procedures.

However, according to the Birkhoff theorem 2.1, A0 can be approximated by
spatial averages:

A0 = lim
ρ→∞

1

ρm

∫
Sρ

A(T (x)ω)
(
ξ + vξ(T (x)ω)

)
dx,

where Sρ = [−ρ
2
, ρ

2
]m.

This motivates the use of some approximation models which are only dealing
with a deterministic problem on a bounded domain. In the next section we will
introduce one of them - the periodic model and prove its convergence.

2.3.1 Periodic model

The process is such that the material coefficients A(x, ω) = A(T (x)ω) are firstly
restricted onto the domain Sρ and then Sρ-periodically extended to the whole
domain Rm. The new periodic media is denoted by Aρper(x, ω)

Aρper(x, ω) = A(T (x mod Sρ)ω).

Now consider ω ∈ Ω fixed. The family of operators

Aρ,ε =
(
Aρper,ij(

x

ε
, ω)
)m
i,j=1

has periodic coefficients which means we returned to the problem studied in
Chapter 1 where we proved the existence of a homogenized matrix and suggested
an easy way of how to obtain it:

Ãρλ =
1

ρm

∫
Sρ

A(x, ω) (λ+∇uρλ) dx, (2.23)
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where uρλ is the solution of:

Find uρλ ∈ H
1(Sρ) s.t.

− div
(
Aρper(x, ω)(∇uρλ + λ)

)
= 0

〈uρλ〉 = 0.

(2.24)

We have to realize that Aρper(x, ω) is no longer ergodic which means the obtained

homogenized matrix Ãρ is dependent on ω ∈ Ω.

2.3.2 Convergence result

Theorem 2.4. Let Ãρ be the effective matrix of the periodic approximation model
obtained in (2.23). Then the following convergence holds

∀i, j = 1, . . . ,m lim
ρ→∞

Ãρij = A0
ij a.s.

Proof. We start with the case S1 = [0, 1]m. Consider an auxiliary problem

−div (Aρper(ρx, ω)∇uρ) = f(x), x ∈ S1,

uρ ∈ H1
0 (S1).

(2.25)

Since Aρper(ρx, ω) = A(ρx, ω) for x ∈ S1, the problem (2.25) is a particular prob-
lem from the family of problems (1.13) for Q = S1 and ε = 1/ρ. This means that
the homogenized matrix obtained from the problem (2.25) as ρ → ∞ coincides
with A0.

By setting

uρλ,0(x) =
1

ρ
uρλ(ρx)

we rescale the problem (2.24) into the unit cube S1, i.e. uρλ,0 is a [0, 1]m-periodic

function. By uρI we will denote the vector-function
(
uρ0,e1 , . . . , u

ρ
0,em

)
.

We know that the solution is bounded in H1(S1) norm, i.e.

‖uρI‖H1(S1) ≤ C.

As a consequence, there is a subsequence of uρI weakly convergent to u∞I as ρ→∞.
From the Theorem 5.2. in [Jikov et al., 1994] we know that u∞I satisfies

u∞I S1-periodic

− div
(
A0(∇u∞I + I)

)
= 0 in S1,

〈u∞I 〉 = 0.

By uniqueness of the solution of this problem we can affirm u∞I = 0. This
weak limit does not depend on the choice of the weakly convergent subsequence,
which implies that the whole sequence uρI is weakly convergent a.s., as ρ → ∞.
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Moreover, by the same Theorem in [Jikov et al., 1994], the flows also weakly
converge a.s.

A(ρx, ω)
(
∇uρI

)
⇀ A0

(
∇u∞I + I

)
= A0 in L2(S1)m×m. (2.26)

By integrating both sides over S1, i.e. applying a functional on each entry of the
matrices (2.26) and using the formula (2.23) we can write

Ãρ =

∫
S1

A(ρx, ω)
(
∇uρI + I

)
dx

ρ→∞−−−→
∫
S1

A0 dx = A0 a.s. (2.27)

�
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3. Fourier-Galerkin method

This chapter is devoted to the numerical solution of the problem introduced in
Chapter 1 and follows the results stated in [Vondřejc et al., 2014]. As we could
have seen in Chapter 2, under some assumptions even the problem of stochastic
homogenization is translated into the problem of deterministic homogenization
with Sρ-periodic material coefficients. In the following we will assume

� = Sρ =
[
− ρ

2
,
ρ

2

]m
.

3.1 Preliminaries

In this chapter we will specify the dimension of the space where the image of our
functions lies. In Chapter 1 we used Lp(�) for both real-valued periodic functions
or periodic vector fields because it was easy to distinguish them from the context.
To keep the notation compact when introducing some concepts defined regardless
of the dimension, we will denote R, Rm or Rm×m by X and C, Cm or Cm×m by
X̂.

Let’s agree on the new notation

Lp(�,X) = {f ∈ Lploc(R
m,X) : f is �-periodic}.

and analogically for ν2
pot(�,X), ν2

sol(�,X).

When p = 2, L2(�,X) forms a Hilbert space with the scalar product(
u, v

)
L2(�,X)

=
1

|�|

∫
�

(
u(x), v(x)

)
X dx.

We are introducing the space of weakly s-differentiable periodic functions which
will be later needed for estimating the error of our numerical solution

W s,p(�,Rm) = {f ∈ W s,p
loc (Rm,Rm) : f is �-periodic}, s ≥ 1, p ≥ 1

Hs(�,Rm) = W s,p(�,Rm) for p = 2.

3.1.1 Fourier transform

We will recall some well-known facts from the theory of Fourier transform.

Let’s consider functions

ϕk(x) = exp
(
2πi

k · x
ρ

)
, x ∈ �, k ∈ Zm.

The set of functions {ϕk(x)}k∈Zm forms an orthonormal basis of the space L2(�,C).
To deal with only real-valued functions we have to ensure the condition

ck = c−k, ∀k ∈ Zm.
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The space L2(�,R) can be equivalently expressed as

L2(�,R) =
{ ∑
k∈Zm

ck ϕk, ck ∈ R,
∑
k∈Zm

‖ck‖2 <∞, ck = c−k

}
.

The Fourier transform of f ∈ L2(�,X) is given by

f̂(k) = f̂(−k) =
1

|�|

∫
�
f(x)ϕ−k(x) dx ∈ X̂ k ∈ Zm.

Every function f ∈ L2(�,X) can be expressed in the form

f(x) =
∑
k∈Zm

f̂(k)ϕk(x), x ∈ �

and for f, g ∈ L2(�,X) their scalar product becomes(
f, g

)
L2(�,X)

=
∑
k∈Zm

(
f̂(k), ĝ(k)

)
X̂. (3.1)

The Fourier transform enables an easy differentiation

∂f

∂xj
=
∑
k∈Zm

f̂(k) kj ϕk(x)
2iπ

ρ
. (3.2)

3.1.2 Auxiliary operator

As explained in Chapter 1, the space L2(�,Rm) admits an orthogonal decompo-
sition in the form

L2(�,Rm) = Rm ⊕ ν2
pot(�,Rm)⊕ ν2

sol(�,Rm).

Since the solution of our problem (3.3) and the test functions are sought in the
space ν2

pot(�,Rm), we will need a more convenient way of how to characterize this
space.
Definition 3.1. We define an operator G : L2(�,Rm)→ ν2

pot(�,Rm) as

G[f ](x) =

∫
�

Γ(x− y)f(y) dy =
∑
k∈Zm

Γ̂(k)f̂(k)ϕk(x),

where Γ is expressed by means of its Fourier transform

Γ̂(k) =

{
0⊗ 0, for k = 0,
k⊗k
k·k , for k ∈ Zm \ {0}.

In the following lemma we prove the correctness of the Definition 3.1.

Lemma 3.1. The operator G defined in the Definition 3.1 satisfies following
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1. G is an operator L2(�,Rm)→ L2(�,Rm).

2. G is a projection.

3. G is a projection to ν2
pot(�,Rm).

4. G is a projection onto ν2
pot(�,Rm).

5. G is self-adjoint.

Proof.

1. Let’s show that G maps a real-valued input to a real-valued output. This
property is equivalent to the following for all k ∈ Zm:

Ĝ[f ](k) = Γ̂(k)f̂(k)
∗
= Γ̂(−k)f̂(−k) = Ĝ[f ](−k),

where ∗ holds thanks to the fact that f is real-valued.

2. We can easily see that

G[G[f ]] =
∑
k∈Zm

Γ̂(k)Ĝ[f ](k)ϕk

=
∑
k∈Zm

Γ̂(k)Γ̂(k)f̂(k)ϕk

=
∑
k∈Zm

Γ̂(k)f̂(k)ϕk = G[f ],

for all f ∈ L2(�,Rm).

3. Since the domain � is simply connected, the property of G[f ] being potential
is equivalent to the property of G[f ] being irrotational, i.e. ∇ × G[f ] = 0.
Thanks to (3.2) we have

∇× G[f ] =
2iπ

ρ

∑
k∈Zm

k × kk>

k>k
f̂(k)ϕk.

The operation kk>

k>k
f̂(k) projects f̂(k) onto the space spanned by k. There-

fore, k × kk>

k>k
f̂(k) = 0 and so ∇× G[f ] = 0.

4. We will show G[f ] = f for all f ∈ ν2
pot(�,Rm). By definition we know that

there is a function u ∈ H1(�,R) s.t. f = ∇u. Then we have

G[f ] = G[∇u] =
2iπ

ρ

∑
k∈Zm

kk>

k>k
kû(k)ϕk =

2iπ

ρ

∑
k∈Zm

kû(k)ϕk = f.

5. We need to prove that
(
G[f ], g

)
L2(�,Rm)

=
(
f, G[g]

)
L2(�,Rm)

for all
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f, g ∈ L2(�,Rm). By means of 3.1 we derive:(
G[f ], g

)
L2(�,Rm)

=
∑
k∈Zm

(
Ĝ[f ](k), ĝ(k)

)
Cm

=
∑
k∈Zm

(
Γ̂(k)f̂(k), ĝ(k)

)
Cm

∗
=
∑
k∈Zm

(
f̂(k), Γ̂(k)ĝ(k)

)
Cm

=
∑
k∈Zm

(
f̂(k), Ĝ[g](k)

)
Cm =

(
f, G[g]

)
L2(�,Rm)

,

where ∗ holds thanks to the fact that Γ̂(k) is a symmetric matrix.

This completes the proof.
�

Remark. A projection is orthogonal if and only if it is self-adjoint. Therefore
altogether we can state that G is an orthogonal projection from L2(�,Rm) onto
the space ν2

pot(�,Rm).

3.2 Problem setting

Let us recall the problem we are dealing with.

Let A be a �-periodic matrix A(x) = {aij(x)}mi,j=1 satisfying

• A ∈ L∞(�,Rm×m)

• cA ‖λ‖2
Rm ≤

(
A(x)λ, λ

)
Rm ≤ CA ‖λ‖2

Rm , a.e. in �, ∀λ ∈ Rm, where
0 < cA ≤ CA < ∞.

We are trying to find a vector field v ∈ L2
pot(�,Rm) s.t.

div (Av) = 0 in �

〈v〉 = λ ∈ Rm.
(3.3)

According to Lemma 1.3 there is a unique weak solution to the problem (3.3),
i.e. there is a unique u ∈ H1(�,R) s.t.

v = λ+∇u(
A∇u, ∇w

)
L2(�,Rm)

= −
(
Aλ, ∇w

)
L2(�,Rm)

, ∀w ∈ H1(�,R).
(3.4)

Then the sought effective matrix can be obtained by

A0λ = 〈Av〉.
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As we can see, there is no need to explicitly compute u ∈ H1(�,R) since later
we are only working with v ∈ L2

pot(�,Rm).

To that purpose, let us define a bilinear form a : L2(�,Rm) × L2(�,Rm) → R
and a linear form l : L2(�,Rm)→ R associated to the problem (3.3) as

a(v, w) =
(
Av, w

)
L2(�,Rm)

l(w) = −
(
Aλ, w

)
L2(�,Rm)

.

Then an equivalent weak formulation of the problem (3.3) states

Find v ∈ ν2
pot(�,Rm) s.t.

a(v, w) = l(w), ∀w ∈ ν2
pot(�,Rm).

(3.5)

Thanks to the assumptions (3.2) on matrix A, the bilinear form a and the linear
form l meet the standard conditions of coercivity and boundedness, and so prove
the existence of a unique solution v.

Lemma 3.1 justifies that the equation in (3.5) can be equivalently expressed as

a
(
v, G[w]

)
= l
(
G[w]

)
, ∀w ∈ L2(�,Rm).

3.3 Discretization

The goal of this section is to introduce an appropriate finite-dimensional space
for computing the approximate solution of (3.5).

Definition 3.2. We define the space of m-dimensional real-valued trigonometric
polynomials of order N as

TN(�,Rm) =
{ ∑
k∈ZmN

ck ϕk, ck ∈ Cm, ck = c−k
}
⊂ L2(�,Rm),

where N = [N1, . . . ,Nm] is a discretization parameter and

ZmN =
{
k ∈ Zm : −Ni

2
≤ ki <

Ni

2
, i = 1, . . . ,m

}
.

The condition ck = c−k ensures that functions from TN are real-valued. For this
purpose we will always assume Ni odd for all i = 1, . . . ,m. We shall notice that
TN(�,Rm) ⊂ C∞(�,Rm). By |N | we will denote the value N1 · · · · ·Nm and let
h denote

h = max
i
hi, hi =

ρ

Ni

, i = 1, . . . ,m.
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Definition 3.3. We define the truncation operator PN : L2(�,Rm)→ TN(�,Rm)
as

PN [f ](x) =
∑
k∈ZmN

f̂(k)ϕk(x), x ∈ �.

Lemma 3.2. The operator PN : L2(�,Rm) → TN(�,Rm) is an orthogonal
projection in the scalar product of L2(�,Rm).

Proof. Clearly, PN [PN [f ]] = PN [f ] for all f ∈ L2(�,Rm).

Next we compute(
f − PN [f ], g

)
L2(�,Rm)

=
( ∑
k∈Zm\ZmN

f̂(k)ϕk,
∑
k∈ZmN

ĝ(k)ϕk
)
L2(�,Rm)

= 0,

for all g ∈ TN(�,Rm) as {ϕk}k∈Zm form an orthonormal basis of the space
L2(�,R).

�

Lemma 3.3. For f ∈ L2(�,Rm)

lim
N→∞

‖f − PN [f ]‖L2(�,Rm) → 0.

If in addition f ∈ Hs(�,Rm) with s > r ≥ 0 we get

‖f − PN [f ]‖Hr(�,Rm) ≤ C1h
s−r ‖f‖Hs(�,Rm) .

Proof. Proof can be found in [Vondřejc et al., 2014].
�

An essential advantage of trigonometrical polynomials is that they allow us to
construct structure-preserving conforming finite-dimensional approximations of
spaces ν2

pot(�,Rm), ν2
sol(�,Rm) in a transparent way. We simply set

ν2
pot,N(�,Rm) = ν2

pot(�,Rm) ∩ TN(�,Rm) = PN [ν2
pot(�,Rm)]

ν2
sol,N(�,Rm) = ν2

sol(�,Rm) ∩ TN(�,Rm) = PN [ν2
sol(�,Rm)].

Then ν2
pot,N(�,Rm), and ν2

sol,N(�,Rm) collect all of the zero-mean, potential and
divergence-free trigonometric polynomials with the degree N , respectively.

Moreover, an analogous variant of the Weyl decomposition holds:

TN(�,Rm) = Rm ⊕ ν2
pot,N(�,Rm)⊕ ν2

sol,N(�,Rm).

Remark. The space ν2
pot,N(�,Rm) can be also very easily expressed by means of

our auxiliary operator G as

ν2
pot,N(�,Rm) = G[TN(�,Rm)].
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3.4 Galerkin approximation

As we specified the finite-dimensional spaces we will work with in the last section,
we are proceeding to discretize the problem by a Galerkin method in a standard
way.

Definition 3.4. A vector field vN is a weak solution of the Galerkin approxima-
tion of the original problem (3.5) if it satisfies:

vN ∈ ν2
pot,N(�,Rm)

a(vN , w) = l(w), ∀w ∈ ν2
pot,N(�,Rm).

(3.6)

Lemma 3.4. Let A satisfy the assumptions stated in (3.2). Let v be the solution
of the original problem (3.5). Then there is a unique weak solution vN as defined
in Definition 3.4 satisfying

lim
N→∞

‖v − vN‖L2(�,Rm) = 0.

If, in addition, v ∈ Hs(�,Rm) for s > 0, we get

‖v − vN‖L2(�,Rm) ≤ C hs ‖v‖Hs(�Rm) .

Proof. The existence and uniqueness of the solution come from the Lax-Milgram
theorem as the estimates (3.2) still hold. From Céa lemma we obtain

‖v − vN‖L2(�,Rm) ≤
CA
cA

inf
wN∈ν2pot,N (�,Rm)

‖v − vN‖L2(�,Rm)

≤ CA
cA
‖v − PN [v]‖L2(�,Rm) .

The rest of the statement is now a direct consequence of the estimates from
Lemma 3.3.

�

After all the preparation we have provided, there is a new task arising: choosing
an appropriate basis of the space TN(�,Rm) in order to obtain a matrix with con-
venient properties. The straightforward suggestion would be to take the functions
{ϕk}k∈ZmN . This set of basis functions, however, brings along a set of unfortunate
consequences:

• no obvious way of an exact integration

• the resulting matrix does not have a sparse representation.

When not ensuring an exact integration, the estimations from Lemma 3.4 are not
valid anymore.
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3.4.1 Fundamental trigonometric polynomials

To each k ∈ ZmN we shall assign a point xkN

xkN = [k1h1, . . . , kmhm], hi =
ρ

Ni

. (3.7)

In what follows we will use some concepts from the theory of the discrete Fourier
transform (DFT). For f ∈ TN(�,Rm) the inverse and the forward DFT are given
by

• the inverse DFT
f(xkN) =

∑
l∈ZmN

f̂(l)ωlkN ,

where ωklN = ϕl(x
k
N), l, k ∈ ZmN ,

• the forward DFT

f̂(k) =
1

|N |
∑
l∈ZmN

f(xlN)ω−klN .

Definition 3.5. We define the set of fundamental trigonometric polynomials
{ϕN,l(x)}l∈ZmN as

ϕN,l(x) =
1

|N |
∑
k∈ZmN

ω−klN ϕk(x).

Corollary. The fundamental trigonometric polynomials satisfy

ϕN,l(x
k
N) = δlk,

(
ϕN,k, ϕN,l

)
L2(�,R)

=
1

|N |
δkl.

From the following computations we can see that every trigonometric polynomial
can be expressed as a linear combination of fundamental trigonometric polyno-
mials.

Let f ∈ TN(�,Rm). Then

f(x) =
∑
l∈ZmN

f̂(l)ϕl(x) =

DFT
=

∑
l∈ZmN

( 1

|N |
∑
k∈ZmN

f(xkN)ω−lkN

)
ϕl(x) =

=
∑
k∈ZmN

( 1

|N |
∑
l∈ZmN

ω−lkN ϕl(x)
)
f(xkN) =

=
∑
k∈ZmN

ϕN,k(x)f(xkN).
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Thanks to the properties from the previous corollary there is an easy way of com-
puting the L2(�,Rm) scalar product of two functions from TN(�,Rm).

Corollary. Let f, g ∈ TN(�,Rm). Then the L2(�,Rm) scalar product satisfies(
f, g

)
L2(�,Rm)

=
1

|N |
∑
k∈ZmN

(
f(xkN), g(xkN)

)
Rm .

Definition 3.6. We define the trigonometric interpolation operator
QN : C(�,Rm)→ TN(�,Rm) as

QN [f ](x) =
∑
k∈ZmN

f(xkN)ϕN,k(x).

This operator is a projection, but not an orthogonal one. It does have some nice
approximation properties.

Lemma 3.5. Let f ∈ Hs(�,Rm), s > m
2

. Then

‖f −QN [f ]‖Hr(�,Rm) ≤ cr,sh
s−r ‖f‖Hs(�,Rm) .

Proof. The proof can be found in [Vondřejc et al., 2014].
�

Thanks to all of these properties the fundamental trigonometric polynomials
become an appropriate basis of the TN(�,Rm) for the Galerkin method. The
coefficients corresponding to this basis are function values at the grid points
xkN , k ∈ ZmN . Therefore these coefficients will become the sought solution of the
correspondent algebraic system.

3.4.2 Galerkin approximation with numerical integration

After choosing the finite-dimensional approximation space and its basis functions
we shall evaluate the equation introduced in the Definition 3.4. Numerically
evaluating an L2(�,Rm)-scalar product means numerically integrating a product
of two functions.

As mentioned before, for f, g ∈ TN(�,Rm) we can exactly evaluate their L2(�,Rm)-
scalar product as (

f, g
)
L2(�,Rm)

=
1

|N |
∑
k∈ZmN

(
f(xkN), g(xkN)

)
Rm .

As for f, g ∈ C(�,Rm), we will approximate the integral using the trapezoidal
rule:

∫
�

(
f(x), g(x)

)
Rm dx ≈ |�|

|N |
∑
k∈ZmN

(
f(xkN), g(xkN)

)
Rm .
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Therefore their approximated L2(�,Rm)-scalar product then becomes(
f, g

)
L2(�,Rm)

≈ 1

|N |
∑
k∈ZmN

(
f(xkN), g(xkN)

)
Rm =

(
QN [f ], QN [g]

)
L2(�,Rm)

. (3.8)

This results in parameter-dependent forms aN : TN(�,Rm) × TN(�,Rm) → R
and lN : TN(�,Rm)→ R given by

aN(vN , wN) =
(
QN [AvN ], wN

)
L2(�,Rm)

lN(wN) = −
(
QN [Aλ], wN

)
L2(�,Rm)

.
(3.9)

Definition 3.7. A vector field vN is a weak solution of the Galerkin approxima-
tion of the original problem (3.5) with numerical integration if it satisfies:

vN ∈ ν2
pot,N(�,Rm)

aN(vN , wN) = l(wN), ∀wN ∈ ν2
pot,N(�,Rm).

Note that due to the involvement of the operator QN , the matrix needs to sat-
isfy

A ∈ C(�,Rm×m). (3.10)

Lemma 3.6. Under the assumption (3.10), there is a unique weak solution of the
Galerkin approximation of the original problem (3.5) with numerical integration.
If, in addition, A ∈ W s,∞(�,Rm×m) with s > m

2
, we obtain the following estimate

‖v − vN‖L2(�,Rm) ≤ cρh
s ‖A‖W s,∞(�,Rm×m) ‖v‖Hs(�,Rm) . (3.11)

Proof. Firstly, let us verify that the forms (3.9) meet the assumptions from the
Lax-Milgram lemma.
For arbitrary uN , wN ∈ TN(�,Rm) we obtain

aN(wN , wN) =
(
QN [AwN ], wN

)
L2(�,Rm)

=
1

|N |
∑
k∈ZmN

(
A(xkN)wN(xkN), wN(xkN)

)
Rm

≥ cA
|N |

∑
k∈ZmN

(
wN(xkN), wN(xkN)

)
Rm = cA ‖wN‖2

L2(�,Rm)

aN(uN , wN) =
(
QN [AuN ], wN

)
L2(�,Rm)

=
1

|N |
∑
k∈ZmN

(
A(xkN)uN(xkN), wN(xkN)

)
Rm

≤ CA
|N |

∑
k∈ZmN

(
uN(xkN), wN(xkN)

)
Rm = CA ‖uN‖L2(�,Rm) ‖wN‖L2(�,Rm)
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The existence and the uniqueness of the weak solution as defined in the Definition
3.7 are consequences of the Lax-Milgram lemma.

By virtue of the second Strang lemma we can estimate the convergence rate:

‖v − vN‖L2(�,Rm) ≤
1

cA
sup

uN∈ν2pot,N (�,Rm)

|l(uN)− lN(uN)|
‖uN‖L2(�,Rm)

+ inf
wN∈ν2pot,N (�,Rm)

[
(1 +

CA
cA

) ‖v − wN‖L2(�,Rm)

+
1

cA
sup

uN∈ν2pot,N (�,Rm)

|a(wN , uN)− aN(wN , uN)|
‖uN‖L2(�,Rm)

]
.

(3.12)

The differences between the forms hold

|l(uN)− lN(uN)| ≤ ‖Aλ−QN [Aλ]‖L2(�,Rm) ‖uN‖L2(�,Rm)

|a(wN , uN)− aN(wN , uN)| ≤ ‖AwN −QN [AwN ]‖L2(�,Rm) ‖uN‖L2(�,Rm) .

Now set wN = PN [v]. Thanks to the relations from Lemma 3.3 and Lemma 3.5
we obtain

‖v − PN [v]‖L2(�,Rm) ≤ Chs ‖v‖H2(�,Rm) ,

‖APN [v]−QN [APN [v]]‖L2(�,Rm) ≤ C0h
s ‖APN [v]‖Hs(�,Rm)

≤ C0h
s ‖A‖W s,∞(�,Rm×m) ‖v‖Hs(�,Rm) ,

‖Aλ−QN [Aλ]‖L2(�,Rm) ≤ C1h
s ‖Aλ‖Hs(�,Rm)

≤ C1h
s ‖A‖W s,∞(�,Rm×m) ‖λ‖Rm

Filling these estimates into the (3.12) completes the proof. Let us note that the re-
quired regularity of the solution v ∈ Hs(�,Rm) is justified byA ∈ W s,∞(�,Rm×m).

�

3.5 Algebraic system

The present section is dedicated to the analysis of the fully discrete version of the
Fourier-Galerkin method with numerical integration.

Let k1, . . . , k|N | be an arbitrarily ordered set ZmN .

Definition 3.8. We define an operator sN : C(�,Rm)→ R|N |m as

sN [uN ] =

 uN(xk1N )
...

uN(x
k|N|
N )

 ∈ R|N |m.
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aN(vN , wN) =
∑
k∈ZmN

(
A(xkN)vN(xkN), wN(xkN)

)
Rm = w̄>N ĀN v̄N

lN(wN) = −
∑
k∈ZmN

(
A(xkN)λ, wN(xkN)

)
Rm = −w̄>N ĀN λ̄N ,

where

v̄N = sN [vN ] =

 vN(xk1N )
...

vN(x
k|N|
N )

 ∈ R|N |m

w̄N = sN [wN ] =

 wN(xk1N )
...

wN(x
k|N|
N )

 ∈ R|N |m

ĀN =


A(xk1N ) 0 · · · 0

0 A(xk2N ) · · · 0
...

...
. . .

...

0 0 · · · A(x
k|N|
N )

 ∈ R|N |m×|N |m

λ̄N = sN [λ] =

λ...
λ

 ∈ R|N |m

Definition 3.9. We define a discrete analogue of the space ν2
pot(�,Rm) as:

V2
pot,N = {sN [wN ]; wN ∈ ν2

pot(�,Rm)}.

The discrete version of the Fourier-Galerkin method with numerical integration
is then formulated as

Find v̄N ∈ V2
pot,N(

ĀN v̄N , w̄N
)
R|N|m = −

(
ĀN λ̄N , w̄N

)
R|N|m , ∀w̄N ∈ V2

pot,N .
(3.13)

In the following we will try to conveniently characterize the space V2
pot,N . We will

proceed similarly to the subsection 3.1.2.

Recall the definition of Γ̂:

Γ̂(k) =

{
0⊗ 0, for k = 0,
k⊗k
k·k , for k ∈ Zm \ {0}.

40



The following matrix
¯̂
ΓN ∈ R|N |m×|N |m can be used to project the whole space

R|N|m to V2
pot,N

¯̂
ΓN =


Γ̂(k1) 0 · · · 0

0 Γ̂(k2) · · · 0
...

...
. . .

...

0 0 · · · Γ̂(k|N |)

 ∈ R|N |m×|N |m.

The projection operator is then obtained by transferring
¯̂
ΓN to the real space by

means of matrices FN , F
−1
N implementing the forward and inverse discrete Fourier

transform (recall the section 3.4.1)

FN =
1

|N |


ω−k1k1N Im ω−k2k1N Im ω−k3k1N Im . . . ω

−k|N|k1
N Im

ω−k1k2N Im ω−k2k2N Im ω−k3k2N Im . . . ω
−k|N|k2
N Im

...
...

...
. . .

...

ω
−k1k|N|
N Im ω

−k2k|N|
N Im ω

−k3k|N|
N Im . . . ω

−k|N|k|N|
N Im

 ∈ C|N |m×|N |m

F−1
N =


ωk1k1N Im ωk2k1N Im ωk3k1N Im . . . ω

k|N|k1
N Im

ωk1k2N Im ωk2k2N Im ωk3k2N Im . . . ω
k|N|k2
N Im

...
...

...
. . .

...

ω
k1k|N|
N Im ω

k2k|N|
N Im ω

k3k|N|
N Im . . . ω

k|N|k|N|
N Im

 ∈ C|N |m×|N |m.

Definition 3.10. We define the operator GN : R|N |m → V2
pot,N as

GN = F−1
N

¯̂
ΓNFN . (3.14)

Lemma 3.7. Following statements hold:

1. GN is an operator R|N |m → R|N |m.

2. GN is a projection.

3. GN is a projection to V2
pot,N .

4. GN is a projection onto V2
pot,N .

5. GN is self-adjoint, i.e. GN is a Hermitian matrix.

Proof. The proof is a direct analogue to the proof of Lemma 3.1.
�

The discrete problem defined in (3.13) then becomes

Find v̄N ∈ V2
pot,N(

ĀN v̄N , GN w̄N
)
R|N|m = −

(
ĀN λ̄N , GN w̄N

)
R|N|m , ∀w̄N ∈ R|N |m (3.15)
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Using the projection properties of GN , we proceed

(3.15) ⇐⇒
(
GN ĀN v̄N , w̄N

)
R|N|m = −

(
GN ĀN λ̄N , w̄N

)
R|N|m , ∀w̄N ∈ R|N |m

⇐⇒ GN ĀN v̄N = −GN ĀN λ̄N . (3.16)

The first suggestion for the solution of (3.16) could be v̄N = −λ̄N . We have to,
however, keep in mind the condition v̄N ∈ V2

pot,N , which is for−λ̄N not fulfilled.

The following Corollary states an important fact of the Fourier-Galerkin method,
i.e. the spectrum of the final algebraic matrix does not depend on the discretiza-
tion parameter.

Corollary. It holds

cA ‖x‖2
R|N|m ≤

(
GN ĀNx, x

)
R|N|m ≤ CA ‖x‖2

R|N|m , ∀x ∈ V2
pot,N .

Proof. Thanks to Lemma 3.7 we have(
GN ĀNx, x

)
R|N|m =

(
ĀNx, GNx

)
R|N|m =

(
ĀNx, x

)
R|N|m .

The rest is a direct consequence of the assumptions in 3.2.
�

Remark. Let us notice the special structure of GN ĀN . As we can see, GN ĀN =

F−1
N

¯̂
ΓNFN ĀN , where

¯̂
ΓN , ĀN are block-diagonal, i.e. their matrix-vector multipli-

cation is O(|N |). F−1
N , FN have a special structure in such a way that their matrix-

vector multiplication is O(|N | log |N |). Altogether the operation of matrix-vector
multiplication for GN ĀN is O(|N | log |N |).

3.5.1 Solution of the linear system

Lemma 3.8. For A(x) symmetric for all x ∈ � the system (3.16) can be solved
by the conjugate gradient algorithm for an arbitrary initial solution v̄0

N ∈ V2
pot,N .

Proof. We define the i-th Krylov subspace as

Ki = span
{
r0
N , GN ĀNr

0
N , . . . , (GN ĀN)i−1r0

N

}
, (3.17)

where the vector r0
N is the residual correspondent to the initial solution v̄0

N , i.e.

r0
N = GN ĀN(v̄0

N + λ̄N).

We will look for the solution in the form v̄N,i = v̄0
N + xi with xi ∈ Ki. Since the

initial solution v̄0
N ∈ V2

pot,N and also Ki ⊂ V2
pot,N , we know that all of the iterates

satisfy v̄N,i ∈ V2
pot,N which was one of the required condition for the solution.

In each iteration we are solving a problem of an orthogonal projection on the
subspace Ki(

GN ĀNxi, wN
)
R|N|m = −

(
GN ĀN(v̄0

N + λ̄N), wN
)
R|N|m ∀wN ∈ Ki. (3.18)

42



Since GN is a self-adjoint, V2
pot,N -invariant operator (recall Lemma 3.7), (3.18) is

equivalent to(
ĀNxi, wN

)
R|N|m = −

(
ĀN(v̄0

N + λ̄N), wN
)
R|N|m ∀wN ∈ Ki. (3.19)

Within the subspace Ki ĀN is a positive-definite, symmetric matrix, therefore
(3.19) represent convergent iterations of the conjugate gradient algorithm.

�

The Fourier-Galerkin method is a suitable numerical method for solving the prob-
lem of homogenization if the required assumptions are fulfilled. To obtain the
derived rate of convergence we need the matrix A to be A ∈ W s,∞(�,Rm×m),
which might be limiting. However, in many applications the coefficient matrix
can be accurately approximated by A ∈ W s,∞(�,Rm×m).

The method itself brings along many advantages:

• The operation of matrix-vector multiplication for the final algebraic matrix
GN ĀN is O(|N | log |N |).

• The condition number of the final algebraic matrix GN ĀN does not depend
on the discretization.

• The method benefits from the fact that we are only interested in the quan-
tity v = ∇u and not u.

• The method is suitable for regular domains which works in our case since
our domain is [−ρ

2
; ρ

2
]m.
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4. Stochastic collocation
method

As in Chapter 2, we are concerned with a problem, for a. e. ω ∈ Ω

−div
(
A(x, ω)∇u(x, ω)

)
= f(x) in Q

u(x, ω) = 0 on ∂Q,

where the matrix A(x, ω) describes the material properties of our heterogeneous
material.

We are assuming that A(x, ω) can be expressed as A(x, ω) = A(T (x)ω) where
T (x) is an m-dimensional ergodic, dynamical system.

The problem of homogenization can be approximated by the periodic model
(2.3.1), thanks to which we obtain a periodic medium described by

Aρper(x, ω) = A(T (xmodSρ)ω). (4.1)

For ω fixed we come to a deterministic problem that can be solved by the ap-
proach from Chapter 1. We obtain Ãρ, which is still dependent on the variable
ω, because by the periodization (4.1) we lost the ergodicity. The dependence on
ω will be denoted by Ãρω.

In Chapter 2 we were able to show that

lim
ρ→∞

Ãρω = A0 a.s. in Ω, (4.2)

which directly leads to the algorithm, pick any ω ∈ Ω, compute Ãρω for increasing
ρ and watch where it converges. This procedure, however, faces several prob-
lems:

• it might be hard or even impossible to find the dynamical system T (x) and
the domain Ω,

• which ω to choose, since we have just the almost sure convergence.

Convergence almost surely by definition means

µ
(
ω ∈ Ω| lim

ρ→∞
Ãρω = A0

)
= 1.

The use of the numerical methods discussed in the rest of this chapter is justified
by the following lemma.

Lemma 4.1. Let X, Y,Xn : Ω→ R, n ∈ N be random variables that satisfy

lim
n→∞

Xn = X, a.s.

|Xn| < Y

E(Y ) <∞.
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Then Xn converge to X in mean i.e. limn→∞E(|Xn −X|) = 0 which implies
limn→∞E(Xn) = E(X).

A0 is a constant matrix, therefore its expectation value E(A0) = A0. After

applying Lemma 4.1 we can see that for each ρ we are trying to obtain E(Ãρ)

E(Ãρ) =

∫
Ω

Ãρω dµ. (4.3)

In what follows we will denote Sρ by �.

4.1 Problem Setting

As explained in Chapter 2, the problem of finding Ãρω for almost all ω ∈ Ω is
transformed to the following problem:

For a fixed λ ∈ Rm find a random function v : Ω × � → Rm s.t. µ-almost
everywhere in Ω the following equation holds:

−div
(
A(·, ω)

(
v(·, ω) + λ

))
= 0 in �

v(·, ω) ∈ ν2
pot(�).

(4.4)

The main sources for this chapter were [Babuška et al., 2007], [Nobile et al.,
2008].

4.1.1 Assumptions

We need to state the following assumptions:

1. A(x, ω) is uniformly bounded from below, i.e. there exists amin > 0 s.t.

µ(ω ∈ Ω : ξ · A(x, ω)ξ > amin ∀x ∈ �, ∀ξ ∈ Rm) = 1. (4.5)

2. ai,j(x, ω) is square integrable w.r.t µ for all i, j = 1, . . . ,m, i.e.,∫
�
E
(
a2
ij

)
dx <∞. (4.6)

3. Finite number of random variables:

A(x, ω) = A(x, Y1(ω), . . . , YM(ω)) on Ω×�, (4.7)

where M ∈ N+ and {Yn}Mn=1 are real-valued random variables with zero
mean value and unit variance.
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To characterize an appropriate space for v dependent on both spatial and random
variables we introduce the following Hilbert spaces.

Definition 4.1. We define the space Vµ as

Vµ = L2
µ(Ω)⊗ ν2

pot(�), with the norm

‖v‖2
Vµ

=
1

�

∫
�

∫
Ω

|v|2 dµ dx =
1

�

∫
�
E(|v|2) dx

(4.8)

and the space Vµ,A as

Vµ,A = {v ∈ Vµ :
1

�

∫
�
E(v · Av) dx <∞}, with the norm

‖v‖2
µ,A =

1

�

∫
�
E(v · Av) dx.

(4.9)

Note that in this section, for the sake of brevity, we are no longer using the no-
tation ν2

pot(�,Rm), only ν2
pot(�), like in Chapter 1.

Remark. Under the assumptions (4.1.1), the space Vµ,A is continuously embedded
in Vµ and

‖v‖µ ≤
1

√
amin

‖v‖µ,A . (4.10)

The weak formulation of the problem (4.4) states:

Find v ∈Vµ,A s.t.〈
E(w · Av)

〉
= −

〈
E(w · Aλ)

〉
∀w ∈ Vµ,A

(4.11)

and the following lemma summarizes the well-posedness of problem (4.11)

Lemma 4.2. Under the assumptions (4.5) and (4.6), the problem (4.11) has a
unique weak solution v ∈ Vµ,A which satisfies the estimate

‖v‖Vµ ≤
1

amin
‖Aλ‖Vµ . (4.12)

Proof. The lemma is a direct consequence of the Lax-Milgram theorem. We
need to therefore verify the necessary assumptions.
For the right-hand side we estimate∣∣〈E(w · Aλ)

〉∣∣ =
1

�

∫
�
E(w · Aλ) dx ≤ ‖Aλ‖Vµ ‖w‖Vµ

≤ 1
√
amin

‖Aλ‖Vµ ‖w‖Vµ,A , ∀w ∈ Vµ,A.

The left-hand side bilinear form satisfies for all w, u ∈ Vµ,A〈
E(w · Au)

〉
=

1

�

∫
�
E(w · Au) dx ≤ ‖w‖Vµ,A ‖u‖Vµ,A〈

E(w · Aw)
〉

=
1

�

∫
�
E(w · Aw) dx = ‖w‖2

Vµ,A
.
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The unique existence is proved by the Lax-Milgram theorem and the estimate
(4.12) follows from all of the computations above.

�

Following derivations are based above all on the third assumption (4.7).

Let Γn ≡ Yn(Ω) denote the image of Yn and Γ =
∏M

n=1 Γn. By δ we will denote
the joint probability density function of variables [Y1, Y2, . . . , YM ], where δ : Γ→
R+, δ ∈ L∞(Γ).

Now let’s transfer our problem from the sample space to Γ. The stochastic vari-
ational problem (4.11) can be equivalently expressed in a ”deterministic” sce-
nario:

Find v ∈ Vδ,A s.t.∫
Γ

(Av,w)L2(�)δ dy =

∫
Γ

(Aλ,w)L2(�)δ dy, ∀w ∈ Vδ,A,
(4.13)

where the space Vδ,A is an analogue of Vµ,A with (Ω,F , µ) replaced by (Γ,BM , δ dy),
i.e.

Vδ,A = {v ∈ L2
δ dy(Γ)⊗ ν2

pot(�) :
1

�

∫
�

∫
Γ

v · Av δ dy dx <∞}.

The solution of (4.13) clearly has the form v(x, ω) = v(x, Y1(ω), . . . , YM(ω)) and
is also the solution of (4.11). The stochastic boundary value problem (4.4) now
becomes a deterministic boundary value problem for an elliptic PDE with an
M-dimensional parameter. We will consider the solution v as a function v : Γ→
ν2
pot(�) and by v(y) we will denote the dependence of v on y ∈ Γ. Similarly for
A(y).

Then (4.4) is equivalent to

1

�

∫
�
w ·A(y)v(y) dx =

1

�

∫
�
w ·A(y)λ dx ∀w ∈ ν2

pot(�), δ−a.e. in Γ. (4.14)

Let’s suppose that A can be smoothly extended on the δ dy-zero measure sets, so
that (4.14) can be considered a.e. in Γ w.r.t the Lebesgue measure.

4.2 Monte Carlo Method

As was explained at the beginning of this chapter, particularly in 4.3, the quantity
we are eventually interested in is the expected value of Ãρ

E(Ãρ) =

∫
Ω

Ãρω dµ =

∫
Γ

Ãρ(y)δ(y) dy,

which leads us to the problem of numerical computation of a multi-dimensional
integral. When the dimension of the domain Ω is large, the Monte Carlo method
offers us a big advantage that the error of the mean does not depend on the
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dimension whilst some other methods show even an exponential dependency on
the dimension.

The algorithm is very easy: we sample points with respect to the probability
distribution determined by δ, obtain y1, . . . , yL and approximate the expected
value by

E(Ãρ) ≈ QL(Ãρ) ≡ 1

L

L∑
i=1

Ãρ(yi). (4.15)

By the virtue of the Law of large numbers we know that

lim
L→∞

QL(Ãρ) = E(Ãρ).

The rate of convergence of such an approximation will be discussed in the section
4.4.1 below.

4.3 Collocation Method

As opposed to the Monte Carlo method, where the specific points in the domain
Γ are chosen randomly according to their probability distribution, the collocation
methods suggest a deterministic way to pick the collocation points.

We are seeking a numerical approximation of the exact solution of (4.13) in a
finite-dimensional subspace specified for each method individually. To describe
such a subspace properly, we introduce some standard approximation subspaces,
namely

• ν2
pot,N(�) ⊂ ν2

pot(�) is a finite-dimensional space with the dimension |N |,
which contains the numerical solution of the Galerkin approximation of the
deterministic (only spatial-dependent) problem (4.14) for a fixed parameter
y ∈ Γ, N being a discretization parameter,

• Pp(Γ) ⊂ L2
δ(Γ) is the span of tensor product polynomials with the degree

at most p = (p1, . . . , pM)

Ppn(Γn) = span(ymn ,m = 0, . . . , pn), n = 1, . . . ,M

Pp(Γ) =
M⊗
n=1

Ppn(Γn).

Hence the dimension of Pp is Mp = ΠM
n=1(pn + 1).

The algorithm is such that:

1. We firstly choose the collocation points {yk}k∈K ⊂ Γ.
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2. We treat them as the M -dimensional parameters and then project (4.14)
onto the subspace ν2

pot,N(�), for each of the collocation points yk, k ∈ K,
i.e.

1

�

∫
�
wN · A(yk)vN(yk) dx =

1

�

∫
�
wN · A(yk)λ dx

∀wN ∈ ν2
pot,N(�) ∀k ∈ K.

(4.16)

By πN we will denote the projection of v ∈ ν2
pot(�) onto its finite-dimensional

approximation vN ∈ ν2
pot,N(�),i.e. πNv = vN .

3. The final step is interpolating in y the collocated solutions and thus building
the discrete solution vp,N

vp,N(x, y) =
∑
k∈K

vN(x, yk) l
p
k(y),

where the functions lpk can be taken as, for instance, the Lagrange polyno-
mials.

Now, let’s discuss several ways of how to approach the problem of choosing the
collocation points and the interpolation.

4.3.1 Full Tensor Collocation Method

Firstly we briefly recall interpolation based on Lagrange polynomials in a 1-
dimensional case (M = 1). Let i ∈ N+ denote a level of approximation, mi the
number of collocation points and {yi1, . . . , yimi} ⊂ Γ1 the set of collocation points
or abscissas for the interpolation. In this case Γ1 = Γ.

Consider v ∈ C(Γ1; ν2
pot(�)). We introduce a sequence of one-dimensional interpo-

lation operators U i : C(Γ1; ν2
pot(�)) → Vmi(Γ

1; ν2
pot(�)) with standard Lagrange

interpolation

U i(v)(y) =

mi∑
k=1

v(yik) · lik(y), ∀v ∈ C0(Γ1; ν2
pot(�)), (4.17)

where lik ∈ Pmi−1(Γ1) are Lagrange polynomials of degree pi = mi − 1, i.e.

lik(y) =

mi∏
j=1

j 6=k

(y − yij)
(yik − yij)

and

Vm(Γ1; ν2
pot(�)) =

{
v ∈ C0(Γ1; ν2

pot(�)) :

v(x, y) =
m∑
k=1

ṽk(x) lk(y), {ṽk}mk=1 ∈ ν2
pot(�)

}
.
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The integral of v over Γ1 is then computed by the quadrature rule

Eδ(v) ≡
∫

Γ1

v(y)δ(y) dy =

mi∑
k=1

v(yik)

∫
Γ1

lik(y)δ(y) dy. (4.18)

The extension to the multi-dimensional (M > 1) case is quite straightforward.
Consider a multi-index i = (i1, . . . , iM) ∈ NM

+ and its correspondent vector of
number of abscissas in each dimension (mi1 , . . . ,miM ). The full tensor product
interpolation operator is defined as

Iiv(y) ≡
(
U i1 ⊗ · · · ⊗ U iM

)
(v)(y)

=

mi1∑
k1=1

· · ·
miM∑
kM=1

u
(
yi1k1 , . . . , y

iM
kM

)
·
(
li1k1 ⊗· · · ⊗ l

iM
kM

)
, ∀v ∈ C0(Γ; ν2

pot(�)).

(4.19)

The set of the abscissas [yi1k1 , . . . , y
iM
kM

], 1 ≤ kn ≤ min is referred to as the grid, or
in this case, the full-tensor grid.

Clearly, the final fully discrete solution up,N(x, y) belongs to the space Pp(Γ) ⊗
ν2
pot,N(�), where p = (mi1 − 1, . . . ,miM − 1).

The expected value of v can be approximated by

Eδ(v) ≈
mi1∑
k1=1

· · ·
miM∑
kM=1

v
(
yi1k1 , . . . , y

iM
kM

) ∫
Γ

(
li1k1 ⊗· · · ⊗ l

iM
kM

)
(y)δ(y) dy. (4.20)

The formula (4.17) and the quadrature rule (4.18) is exact for all polynomials of
degree less than mi. We know that we can improve this by using the Gaussian
quadrature rule. This scenario will be investigated in the following section.

Gaussian formulas

Before we continue, let us introduce you an auxiliary probability density δ̂ : Γ→
R+ such that∥∥∥∥δδ̂

∥∥∥∥
L∞(Γ)

<∞ and δ̂(y) = ΠM
n=1δ̂n(yn) ∀y ∈ Γ. (4.21)

With the introduction of the auxiliary density function we obtain the indepen-
dency of the random variables Yn, n = 1, . . . ,M w.r.t the probability density
δ̂. This feature has direct consequences on the choice of the collocation points,
since now we can determine them on the basis of the marginal density functions
δ̂n, n = 1, . . . ,M .

We start again with the 1-dimensional case, i.e. having the level i ∈ N+ and its
correspondent number of abscissas mi.
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Figure 4.1: Full tensor grid M = 2,mi1 = mi2 = 17

Consider the orthogonal polynomial qmi with respect to the weight δ of the degree
mi. Such polynomial satisfies∫

Γ1

qmi(y)v(y)δ(y) dy = 0, ∀v ∈ Pmi−1(Γ1).

The set of the collocation points is the set of mi roots of the polynomial qmi
denoted by {yi1, . . . , yimi}. The formula (4.17) and the quadrature rule (4.18) is
exact for all polynomials of degree 2mi − 1.

The multi-dimensional case is where the auxiliary density (4.21) plays its big
role. We start again with the multiindex i = (i1, . . . , iM) and its vector of num-
ber of abscissas (mi1 , . . . ,miM ). For each dimension n = 1, . . . ,M consider the

orthogonal polynomial qmin with respect to the weight δ̂n of the degree min . Such
polynomial satisfies∫

Γn

qmin (y)v(y)δ̂n(y) dy = 0, ∀v ∈ Pmin−1(Γn).

The set of collocation points in the domain Γ is then the full tensor product of
{yinjn}, 1 ≤ jn ≤ min , i.e. the set of points

[yi1j1 , . . . , y
iM
jM

] ∈ Γ, 1 ≤ jn ≤ min . (4.22)

An example of a full tensor grid for M = 2 random variables, each uniformly
distributed in [−1; 1] with 17 points in each dimension.

Remark. There is a 3-recurrence relation for any arbitrary weight function δ̂n.
However, standard choices of the probability density functions lead to some well-
known orthogonal polynomials whose roots are tabulated (see Table 4.1) and thus
do not need to be computed.
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Distribution Pdf Polynomials Weights Support

Uniform 1/2 Legendre 1 [−1; 1]

Gaussian (1/
√

(2π))exp(−x2/2) Hermite exp(−x2/2) [−∞;∞]

Exponential exp(−x) Laguerre exp(−x) [0;∞]

Beta (1−x)α(1+x)β

B(α,β) Jacobi (1− x)α(1 + x)β [−1; 1]

Table 4.1: Standard distributions with correspondent orthogonal polynomials

The interpolation is done in the same way as in (4.19), however, a major im-
provement is done when computing the expected value (4.20) due to the auxiliary
density function.

Since the random variables are independent w.r.t. δ̂(y) =
∏M

n=1 δ̂n(yn), we can
derive:

Eδ(v) ≈
mi1∑
k1=1

· · ·
miM∑
kM=1

v
(
yi1k1 , . . . , y

iM
kM

) ∫
Γ

(
li1k1 ⊗· · · ⊗ l

iM
kM

)
(y)δ(y) dy

=

mi1∑
k1=1

· · ·
miM∑
kM=1

[(δ
δ̂
v
)
(yi1k1 , . . . , y

iM
kM

)
( M∏
n=1

∫
Γn
linkn(yn)δ̂(yn) dyn

)]
,

(4.23)

for any v ∈ C0(Γ; ν2
pot(�)), assuming δ/δ̂ is a smooth function. Otherwise the

expected value should be computed with a quadrature rule suitable for possi-
ble discontinuities of δ/δ̂. Each of the quantities

∫
Γn
linkn(yn)δ̂(yn) dyn is easily

computable and for well-known weight functions δ̂n are even tabulated.

The number of collocation points is mi1 ·mi2 · · · · ·miM . Therefore this approach
can be computationally expensive if the number M of random variables needed
to describe the input data is large. This phenomenon is often referred to as the
curse of dimensionality - exponential growth in the required work with respect
to the number of random variables. The next section is trying to address this
problem with a way of sparsifying the grid.

4.3.2 Sparse Grid Collocation Method

The construction of a sparse grid is done by the Smolyak algorithm. The idea
behind it is to build linear combinations of product formulas (4.19) so that only
products with relatively small number of knots are used.

For i ∈ N+ let’s define the operator ∆i

∆i = U i − U i−1,

where U0 = 0.

With |i| = i1 + · · ·+ iM for i = (i1, . . . , iM) ∈ NM
+ we define the Smolyak isotropic

formula A(q,M) by

A(q,M) =
∑
|i|≤q

(
∆i1 ⊗· · · ⊗∆iM

)
(4.24)
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for q ≥M, q ∈ N indicating the level of accuracy.

Formula (4.24) can be equivalently written as

A(q,M) =
∑

q−M+1≤|i|≤q

(−1)q−|i|
(
M − 1

q − |i|

)
· (U i1 ⊗· · · ⊗ U iM ). (4.25)

Therefore the grid only consists of points

H(q,M) =
⋃

q−M+1≤|i|≤q

(
ϑi1 ×· · · × ϑiM

)
, (4.26)

where ϑi = {yi1, . . . , yimi} is the set of collocation points for U i.

The appropriate choice of abscissas is an open question for specific applications.
We will introduce two of the probably mostly used ones.

Clenshaw-Curtis formulas

There are two questions we need to specify. The number of points mi for each
i ∈ N+ and the choice of the abscissas yij. Clenshaw-Curtis formulas suggest us
to use the extrema of the Chebyshev polynomials

yij = cos
(π(j − 1)

mi − 1

)
, j = 1, . . . ,mi,

yij = 0, mi = 1.

(4.27)

To answer the first question we set

mi =

{
1 if i = 1

2i−1 + 1 if i > 1.

This choice ensures us that the grid points are nested, i.e. H(q,M) ⊂ H(q +
1,M). We obtain the degree mi − 1 of exactness, which is the same as for
any other choice of mi abscissas. The Chebyshev polynomials have, however,
great interpolation properties and the Clenshaw-Curtis quadrature formulas have
accuracy comparable to the Gaussian quadrature formulas.

Gaussian formulas

We know that the Gaussian formulas have the maximum level of exactness 2mi−1.
We will set mi to be the same as in (4.27) although in general it will not supply
us with nested formulas

yij = cos
(π(j − 1)

mi − 1

)
, j = 1, . . . ,mi,

yij = 0, mi = 1.

(4.28)
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Figure 4.2: Clenshaw-Curtis H(5, 2)
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Figure 4.3: Gaussian H(5, 2)

As for the choice of abscissas we will proceed analogically to the full-tensor case,
i.e. for each dimension n = 1, . . . ,M taking min roots of the min degree orthog-
onal that is δ̂n-orthogonal to all polynomial of a lower degree.

A Clenshaw-Curtis sparse grid of level accuracy q = 5 and dimension M = 2 can
be seen in the Figure (4.2). The Figure (4.3) depicts the Gaussian sparse grid for
uniformly distributed random variables ξ1, ξ2 over the interval [−1; 1], i.e. δ̂1 =
δ̂2 = 1/2, q,M are the same. As you can see, the Gaussian sparse grid contains
a lot more points than The Clenshaw-Curtis one, even though mi is defined the
same for both of them. The reason is that the Clenshaw-Curtis formulas produce
nested grids. The Gaussian formula compensates this disadvantage by being more
accurate.

4.4 Convergence analysis

This section is dedicated to an analysis of the convergence rates for all of the
proposed methods. Additional assumptions for some of them have to be stated, all
of which will be meaningful for the applications computed in the last chapter.

4.4.1 Monte Carlo method

We are trying to estimate the rate of convergence for the error E(Ãρ)−QL(Ãρ)
in the norm ‖·‖L2(Γ,ν2pot(�)) which in this case becomes∥∥∥E(Ãρ)−QL(Ãρ)

∥∥∥2

L2(Γ,ν2pot(�))
= E

[(
E(Ãρ)−QL(Ãρ), E(Ãρ)−QL(Ãρ)

)
Rm×m

]
≡ E

[(
E(Ãρ)−QL(Ãρ)

)2
]
.

This quantity is also known as the mean squared error of the mean (expected
value), for which it holds

E
[(
E(Ãρ)−QL(Ãρ)

)2
]

=
var(Ãρ)

L
, (4.29)
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where var(Ãρ) is the variance of the random vector Ãρ ∈ Rm×m.

Therefore we can state that the Monte Carlo method converges in the natural
norm with rate L−1/2, where L is the number of ’collocation points’.

4.4.2 Collocation method

The collocation method is easily applicable for problems with an unbounded
right-hand side and unbounded random variables as well. In what follows we are
describing the required maximal growth of f and decay of δ at infinity.

We introduce an auxiliary weight σ(y) =
∏M

n=1 σn(yn) ≤ 1, where

σ(yn) =

{
1 if Γn is bounded

e−αn|yn| for some αn > 0 if Γn is unbounded

and the functional space

C0
σ(Γ;V ) ≡

{
v : Γ→ V, v continuous in y, max

y∈Γ
‖σ(y)v(y)‖V <∞

}
,

where V is a Banach space of functions defined in �.

Assumptions

1. aij ∈ C0
σ(Γ;L2(�)), aij ∈ C0

loc(Γ;L∞(�)),

2. The joint probability density δ satisfies

δ(y) ≤ Cδe
−

∑M
n=1(ϑnyn)2 , y ∈ Γ (4.30)

where Cδ > 0 and ϑn is strictly positive if Γn is unbounded and zero other-
wise.

To explain the meaning of the preceding assumptions we shall say that αn con-
trols the growth of the right-hand side A(x, ω)λ whenever Γ is unbounded, while
ϑn describes the rate of the decay of δ at infinity. Most trivially said, we want
the growth of the right-hand side to be at most exponential and the joint density
δ to decay as a Gaussian weight.

Lemma 4.3. Under the assumptions stated above, the solution to the problem
(4.14) satisfies v ∈ C0

σ(Γ; ν2
pot(�)).

Proof follows directly from the definition of the problem (4.14). Another assump-
tion concerns the regularity of the solution to (4.4). For that we are introducing
new notation:

Γ∗n =
M∏
j=1

j 6=n

Γj, y∗n arbitrary element of Γ∗n.
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3. We need the solution of the problem (4.4) to satisfy: For each n = 1, . . . ,M ,
there exists τn > 0 such that the function v(x, yn, y

∗
n) as a function of yn,

v : Γn → C0(Γ∗n; ν2
pot(�)) admits an analytic extension v(x, z, y∗n), z ∈ C,

in the region of the complex plane

Σ(Γn; τn) ≡ {z ∈ C, dist(z,Γn) ≤ τn}.

Moreover, ∀z ∈
∑

(Γn; τn),

‖v(z)‖C0(Γ∗n;ν2pot(�)) ≤ β, (4.31)

where β is a constant independent of n.

This assumption has to be verified for each application individually, with the
distance τn having direct impact on the rate of convergence.

As explained before, the whole process consists of approximating the solution
v ∈ C0(Γ; ν2

pot(�)) by finitely many function values, each of which is computed by
the Fourier-Galerkin method described in Chapter 3. The fully discrete solution
vp,N can be expressed as

vp,N = A(q,M)πNv,

in case of sparse grid approximation or

vp,N = IiπNv,

in case of full tensor grids.

We are going to estimate the error v − vp,N in the natural norm ‖·‖L2
δ(Γ;ν2pot(�))

as defined in (4.8), also referred to as ‖·‖Vδ . Controlling the error in this norm
comes in handy also when wanting to control the error in the mean value of the
solution:

‖E(v − vp,N)‖ν2pot(�) ≤ E(‖v − vp,N‖ν2pot(�)) ≤ ‖v − vp,N‖Vδ . (4.32)

We can derive

‖v − vp,N‖Vδ ≤ ‖v − πNv‖Vδ + ‖πN(v −A(q,M)v)‖Vδ . (4.33)

The first term can be estimated by the expression derived in Chapter 3 (3.11).

By virtue of the Céa lemma we know that

‖w − πNw‖ν2pot(�) ≤ Cπ min
z∈ν2pot,N (�)

‖w − z‖ν2pot(�) , ∀w ∈ ν2
pot(�), (4.34)

where the constant Cπ is independent of the discretization parameter N .

Therefore the for the second term of (4.33) we can write

‖πN(v −A(q,M)v)‖Vδ ≤ Cπ ‖v −A(q,M)v‖Vδ .

These preceding derivation are valid for Ii instead of A(q,M) as well.

In the next sections we focus only on the estimation of ‖v −A(q,M)v‖Vδ or
‖v − Iiv‖Vδ .
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4.4.3 Full-tensor grid with Gaussian abscissas

Let p = (p1, . . . , pM) = (mi1 − 1, . . . ,miM − 1) denote the polynomial degree, i.e.
min denote the number of Gaussian abscissas in each dimension. Then we can
formulate the following theorem stating a sub-exponential rate of convergence
with respect to the polynomial degree.

Theorem 4.1. Under the assumptions (4.4.2), there exist positive constants
rn, n = 1, . . . ,M and C, independent of N and p, such that

‖v − Iiv‖Vδ ≤ C
M∑
n=1

βn(pn) exp(−rn pθnn ), (4.35)

where

• if Γn is bounded:

θn = βn = 1,

rn = log
[ 2τn
|Γn|

(
1 +

√
1 +
|Γn|2

4τ 2
n

)]
,

• Γn is unbounded:

θn = 1/2, βn = O(
√
pn),

rn = τnϑn.

Proof. A detailed proof of this theorem can be found in [Babuška et al., 2007,
p. 20].

�

What we are more interested in are the estimates with respect to the number of
collocation points. For the sake of simplicity let’s assume min = m̃, ∀i. Then
the number of points in the full tensor grid is η = m̃M .

We can simplify the estimation (4.35) to be isotropic in each dimension and
obtain

err ≡ ‖v − Iiv‖Vδ ≤ C exp(−rp),
which expressed with respect to the number of collocation points becomes

err ≤ C exp(−rη1/M).

Observe that for M large

η1/M ≈ 1 + log(η)/M,

which causes the effective rate to be algebraic, rather than exponential

err ≤ Cη−r/M .

For M large we can come up with worse convergence rates than in the Monte
Carlo method. This phenomenon is referred to as the curse of dimensionality.
Now we will look at what sparse grids have to offer.
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4.4.4 Clenshaw-Curtis sparse grid

For the sake of simplicity we focus our study on bounded variables only. A similar
result can be obtained for unbounded variables as well.

Firstly consider an approximation error in a 1-dimensional case.

Lemma 4.4. Given a function v ∈ C0(Γ1; ν2
pot(�)) which admits an analytic

extension in the region of the complex plane Σ(Γ1; τ) = {z ∈ C. dist(z,Γ1) ≤ τ}
for some τ > 0, i.e. satisfies the property from the assumption 3. for M = 1,
there holds

Emi ≡ min
w∈Vmi

‖v − w‖C0(Γ1;ν2pot(�)) ≤
2

%− 1
e−milog(%) max

z∈Σ(Γ1;τ)
‖v(z)‖ν2pot(�) , (4.36)

where 1 < % = 2τ
|Γ1| +

√
1 + 4τ2

|Γ1|2 .

Proof. A detailed proof of this lemma is available in [Babuška et al., 2007, p.
17].

�

In the multidimensional case the size of the analyticity region will depend on n
and will be denoted by τn. In what follows we set

% ≡ min
n
%n.

Instead of estimating the error in the norm of L2
δ(Γ; ν2

pot(�)), we will use the norm
of L∞(Γ; ν2

pot(�)) justified by

‖v‖L2
δ(Γ;ν2pot(�)) ≤ ‖v‖L∞(Γ;ν2pot(�)) , ∀v ∈ L∞(Γ; ν2

pot(�)).

For the operator U i it holds∥∥v − U i(v)
∥∥
L∞(Γ;ν2pot(�))

≤ Emi−1(v) · (1 + Λmi), (4.37)

where in the case of Clenshaw-Curtis formulas Λmi can be bounded by

Λmi ≤
2

π
log(mi − 1) + 1, for mi ≥ 2.

By virtue of the Lemma 4.4 we have

Emi(v) ≤ C%−mi ,

C is independent of τ .

After gathering the preceding estimates we have∥∥v − U i(v)
∥∥
L∞(Γ;ν2pot(�))

≤ C log(mi)%
−mi ≤ Ci%−2i .
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For the operator ∆ in 1 dimension we finally obtain∥∥(∆i)(v)
∥∥
L∞(Γ;ν2pot(�))

=
∥∥(U i − U i−1)(v)

∥∥
L∞(Γ;ν2pot(�))

≤
∥∥(I − U i)(v)

∥∥
L∞(Γ;ν2pot(�))

+
∥∥(I − U i−1)(v)

∥∥
L∞(Γ;ν2pot(�))

≤ Ei%−2i−1

,

(4.38)

where C,E depend on v but not on i.

Applying (4.38) for each dimension in the special linear combinations (4.25) we
come to the final estimate.

Theorem 4.2. For functions v ∈ C0(Γ; ν2
pot(�)) satisfying the Assumption 3. in

(4.4.2) the Smolyak formula (4.25) based on Clenshaw-Curtis abscissas satisfies:

‖(I −A(q,M)(v)‖L2
δ(Γ;ν2pot(�)) ≤ C(rmin,M)η−µ1 ,

µ1 =
rmin

1 + log(2M)
.

(4.39)

Proof. A detailed proof is provided in [Nobile et al., 2008].
�

4.4.5 Gaussian sparse grid

For the Gaussian sparse grid interpolation we proceed in a similar manner.

Firstly we need to embed the auxiliary density δ̂ into our work by

‖v‖L2
δ(Γ;ν2pot(�)) ≤

∥∥∥∥δδ̂
∥∥∥∥
L∞(Γ)

· ‖v‖L2
δ̂
(Γ;ν2pot(�)) ∀v ∈ C0(Γ; ν2

pot(�)).

Now we will derive some estimates for the 1-dimensional case, i.e. M = 1.

Lemma 4.5. For every function v ∈ C0(Γ1; ν2
pot(�)) it holds∥∥v − U i(v)

∥∥
L2
δ̂
(Γ1;ν2pot(�))

≤ Cδ̂ inf
w∈Vmi

‖u− w‖L∞
δ̂

(Γ1;ν2pot(�)) .

Proof. The proof can be found in [Nobile et al., 2008].
�

Analogically to the previous procedure, by applying the Lemma 4.4 we obtain∥∥v − U i(v)
∥∥
L2
δ̂
(Γ1;ν2pot(�))

≤ C̃%−2i .

59



For the estimation of the operator ∆i we can derive∥∥∆i(v)
∥∥
L2
δ̂
(Γ1;ν2pot(�))

=
∥∥(U i − U i−1)(v)

∥∥
L2
δ̂
(Γ1;ν2pot(�))

≤
∥∥(I1 − U i(v))

∥∥
L2
δ̂
(Γ1;ν2pot(�))

+
∥∥(I1 − U i−1)(v)

∥∥
L2
δ̂
(Γ1;ν2pot(�))

≤ Ẽ%−2i−1

,

where, as before, C̃, Ẽ depend on v but not i.

By employing the estimates above we obtain the final estimate.

Theorem 4.3. For functions v ∈ C0(Γ; ν2
pot(�)) satisfying the Assumption 3.

from (4.4.2) the Smolyak formula (4.25) based on Gaussian abscissas satisfies

‖(I −A(q,M)(v)‖L2
δ(Γ;ν2pot(�)) ≤

√
(
∥∥∥δ/δ̂∥∥∥

L∞(Γ)
)C(rmin,M)η−µ2 ,

µ2 =
rmine log(2)

ς + log(M)
,

(4.40)

where ς ≈ 2.1 and the constant C(rmin,M) tends to zero as rmin →∞.

Proof. A detailed proof is provided in [Nobile et al., 2008].
�

As we can see, sparse grid does not entirely solve the curse of dimensionality but
helps to bring down its influence. The Figure 4.4 depicts the dependence of the
number of collocation points on the number of random variables, where each grid
has the maximum number of 5 points employed in each direction. In the last
chapter Applications we will see that after crossing a certain number of random
variables, Monte Carlo techniques might be the best choice.

4.5 Estimates For The Approximated Effective

Matrix

In the previous section we managed to estimate the rate of convergence for the
error v − vp,N . However, what we are interested in is the error in the effective
matrix Ãρy or its mean value E(Ãρy).

4.5.1 Deterministic case

In this part we are assuming the problem does not depend on any random vari-
ables, therefore Ãρy = Ãρ. The error of Ãρ will be estimated in the norm ‖·‖L2(�).

Note that the norm in ν2
pot(�) is the same as in L2(�).

As we know, the exact solution Ãρ is computed by

Ãρλ = 〈Aρper(v + λ)〉 =
1

�

∫
�
Aρper(x)

(
v(x) + λ

)
dx, (4.41)
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Figure 4.4: Dependence of the number of collocation points on the number of
random variables, each grid has the maximum number of 5 points employed in
each direction.

v ∈ ν2
pot(�) being a solution of the problem (3.5).

When solving this problem numerically, we come up with an approximate solution
vN ∈ ν2

pot,N(�) by the Fourier-Galerkin method. According to [Vondřejc et al.,
2015, Lemma 39], we can manage to compute the integral in (4.41) exactly by
means of the Fourier transformation. We obtain Ãρ,N by

Ãρ,Nλ = 〈Aρper(vN + λ)〉 =
1

�

∫
�
Aρper(x)

(
vN(x) + λ

)
dx, (4.42)

vN ∈ ν2
pot,N(�) being the Fourier-Galerkin approximation of v.

Let’s denote Ãρ,N by πN Ã
ρ.

Then we can estimate∥∥∥Ãρλ− πN Ãρλ∥∥∥
L2(�)

≤ 1

�

∫
�

∥∥Aρper(v + λ)− Aρper(vN + λ)
∥∥
L2(�)

dx

≤
∥∥Aρper∥∥L∞(�)

‖v − vN‖L2(�)

≤ Chs
∥∥Aρper∥∥W s,∞(�)

‖v‖Hs(�) ,

(4.43)

h defined as h = maxi=1,...,m
ρ
Ni

.

4.5.2 Stochastic case

Now consider Ãρy and v(x, y) dependent on random variables y ∈ Γ.

61



Thanks to the Lemma 4.3 and Assumption 4.4.2 we know that Ãρy defined by

Ãρyλ =
1

�

∫
�
Aρper,y(x)

(
v(x) + λ

)
dx,

v ∈ ν2
pot(�) being a solution of the problem (3.5), belongs to the space C0(Γ,Rm×m).

This justifies the use of interpolation operators U i. All of the estimates for the
interpolation error in the random variables are valid for functions from the space
C0(Γ, V ), provided that the analyticity condition from Assumption 3. (4.4.2) is
satisfied. Therefore we must require Ãρy to satisfy this condition as well. By Ãρp,N
we denote the approximated Ãρ in both random and spatial variables (similarly
to v), i.e. either Ãρp,N = A(q,M)πN Ã

ρ or Ãρp,N = IiπN Ãρ . From now on we
follow the theory derived above and obtain∥∥∥Ãρ − Ãρp,N∥∥∥

L2
δ(Γ,Rm×m)

≤
∥∥∥Ãρ − πN Ãρ∥∥∥

L2
δ(Γ,Rm×m)︸ ︷︷ ︸

(I)

+
∥∥∥πN Ãρ − Ãρp,N∥∥∥

L2
δ(Γ;Rm×m)︸ ︷︷ ︸

(II)

,

(4.44)

where for (I) we can use (4.43)

(I) ≤ Chs
(∫

Γ

∥∥Aρper,y∥∥W s,∞(�)
‖v(y)‖Hs(�) δ(y) dy

)1/2

and the estimate of (II) is just the same as in (4.35), (4.39) or (4.40).

As explained in (4.3), what we are most interested in is the quantity E(Ãρ). The
collocation method suggests an easy way of how to obtain its approximation

E(Ãρ) ≈ E(Ãρp,N) =
∑
k∈K

Ãρp,N,ykωk,

where {yk}k∈K is the grid of all collocation points and ωk are correspondent tensor
products of weights from the quadrature formulas, i.e. integrals of Lagrange
polynomials.

To express the estimate of the error of E(Ãρ)− E(Ãρp,N) we derive∥∥∥E(Ãρ)− E(Ãρp,N)
∥∥∥
Rm×m

≤ E
( ∥∥∥Ãρ − Ãρp,N∥∥∥Rm×m ) ≤ ∥∥∥Ãρ − Ãρp,N∥∥∥L2

δ(Γ;Rm×m)
,

through which we come directly to the estimates (4.44).
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5. Applications

This chapter shows some practical applications of the methods introduced in
previous chapters. We are focusing on analyzing the impact of the collocation
methods rather than the Fourier-Galerkin method, since there already were some
publications in that direction.

For computing the deterministic part I used a Python solver [Vondřejc, 2016–
2017]. The Monte-Carlo or collocation method was programmed by me and
my sparse grid generator for arbitrary level q and dimension M is provided in
Appendix, developed in Python as well.

5.1 Checkerboard problem

First problem we are dealing with concerns a 2-dimensional periodic medium with
the matrix of material coefficients expressed as

A(x, ω) =
∑
k∈Z2

1Q+k(x) ak(ω)

(
1 0
0 1

)
, (5.1)

where Q = (0; 1)2 and {ak}k∈Z2 is an independent identically distributed sequence
of random variables, each of which is uniformly distributed over the interval [1; 10],
i.e.

ak(ω) ∼ U
(
[1; 10]

)
.

Figure (5.1) depicts a segment of our domain for a specific realization.

Lemma 5.1. The matrix of material coefficients defined in (5.1) can be expressed
in terms of a 2-dimensional ergodic dynamical system as

A(x, ω) = A(T (x)ω), x ∈ R2, ω ∈ Ω.

Figure 5.1: Realization of the checkerboard problem
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Proof. The proof can be found in [Heida, 2017, p. 12].
�

Remark. The domain Ω is not specified because in many problems it is not trivial
to find it. A detailed description of building the space Ω and the dynamical
system T (x), x ∈ R2 is available in [Alexanderian et al., 2012, p. 8, 9, 10,
11, 12]. In computations we can omit the domain of random events and work
with random variables only, if the number of random variables is finite (as was
suggested in Chapter 4).

Since for any choice of x and ω the material coefficients are bounded by 1 from
bellow and 10 from above, we are able to write A ∈ L∞(Ω).

We shall comment on the fact that A(·, ω) does not belong to C0(�) which is
a necessary condition for the operator QN from Chapter 3 to be defined. In
this case A(·, ω) is piecewise smooth (even constant) so we need to ensure the
picked discretization points xkN from (3.7) are inside of each square. In all of the
simulations we proceeded there were 9 points inside of each square. We cannot
directly expect the convergence results derived for smooth material coefficients,
but in [Vondřejc, 2013, p. 115] there are some nice approximation properties
proved by means of a mollifier. Since the focus of our research is the impact
of the techniques in the stochastic domain, we will not discuss this issue any
further.

5.1.1 Convergence by enlargement of domain

The strategy of obtaining the homogenized matrix A0 is explained at the begin-
ning of Chapter 4. Shortly said, we need to compute the quantity E(Ãρ) for
ρ → ∞. In our case the domain Sρ will be characterized by N , meaning Sρ is a
segment of N × N squares surrounding [0, 0]. We have to realize that enlarging
the domain brings an exponential growth in the number of random variables,
causing a major difficulty.

We know that for A(x) symmetric the homogenized matrix is symmetric as well.
For each N the matrix E(Ãρ) becomes

E(Ãρ) =

(
a ε
ε b

)
(5.2)

with b ≈ a.

The Figure 5.2 and the Table 5.1 depict the convergence of a with respect to the
size of the domain N , where for each case we used a Monte Carlo method with
approximately 60 000 simulations.

The condition of Ãρy ∈ C0(Γ;R2×2) is fulfilled and thus the use of the collocation
methods is justified. Now, let us discuss in more detail the performance of a
sparse grid compared to the Monte Carlo method. For these results I used the
Clenshaw-Curtis formulas.
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N a

3 4.8929
4 4.8916
5 4.8311
6 4.8476
7 4.8158
11 4.8026
15 4.8029
20 4.8071
30 4.8047

Table 5.1: Convergence of a w.r.t the size of the domain

Figure 5.2: Convergence of a w.r.t the size of the domain
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q of number of error of error of
sparse grid colloc. points sparse grid MC

2 19 0.0771 0.5568
3 181 0.0062 0.0247
4 1177 0.0020 0.0164

Table 5.2: Comparison of Clenshaw-Curtis sparse grid and Monte Carlo approach
for the case of 9 random variables

q of number of error of error of
sparse grid colloc. points sparse grid MC

2 99 0.1020 0.1045
3 4901 0.0192 0.0114
4 161897 0.0026 0.0015

Table 5.3: Comparison of Clenshaw-Curtis sparse grid and Monte Carlo approach
for the case of 49 random variables

5.1.2 N = 3

Since there is no well-known analytic solution for this problem that we could com-
pare our results to, I computed a mean value by 100 000 Monte Carlo simulations
and declared it as a reference solution.

The reference solution:

A3,ref =

(
4.89578569165 0.000195380006229

0.000195380006229 4.89511273871

)

From the central limit theorem we know that the correct Ãρ is normally dis-
tributed having A3,ref as mean, which partly justifies comparing new results to
A3,ref .

As can be seen in Table (5.2), sparse grid outperforms the Monte Carlo ap-
proach.

5.1.3 N = 7

Now let’s have a look at the case of having 49 random variables. We followed a
similar procedure as before, ran 1 350 000 Monte Carlo simulations and provided
a reference solution A7,ref

A7,ref =

(
4.815820754415 −2.3003151235000000 · 10−6

−2.3003151235000000 · 10−6 4.81605258891

)
.

The performance of sparse grid versus Monte Carlo can be seen in Table 5.3
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q of number of error of error of
sparse grid colloc. points sparse grid MC

3 64969 0.0024 0.00464

Table 5.4: Comparison of Clenshaw-Curtis sparse grid and Monte Carlo approach
for the case of 36 random variables

When looking at the results we see similar performance for both approaches. An
important element to observe is the rapid increase in the number of collocation
points when stepping up the level q. This brings a huge disadvantage for sparse
grids when the number of random variables is moderately high. Therefore in the
case N = 7 we can affirm that Monte Carlo would be a smarter choice.

5.1.4 N = 6

For completeness I examined the case N = 6, where the reference solution com-
puted by 400 000 simulations of Monte Carlo is given by

A6,ref =

(
4.84767532e+ 00 −2.8551600 · 10−4

−2.8551600 · 10−4 4.84753644e+ 00

)
.

Based on the results in Table 5.3 and 5.5 we can see that for this particular
application it would be smarter to use sparse grid for the case N ≤ 6. For higher
number of random variables the sparse grid collocation method faces the curse
of dimensionality and from the methods we consider there is not a better choice
other than the Monte Carlo. This result meets our expectations.

5.2 Autocorrelation function problem

The second problem we present is a highly frequent problem inspired by engi-
neering applications. It concerns a material coefficient matrix of the form

A(x, ω) =

(
a(x, ω) 0

0 a(x, ω)

)
, (5.3)

where the random field g(x, ω) = log
(
a(x, ω) − amin

)
is characterized by its

autocorrelation function cov[g] : Q×Q→ R.

From the theory of stochastic processes we know that under 2 assumptions

• cov[g] is a continuous function

• g ∈ L2(Q,Ω),

there is a well-defined Karhunen-Loève expansion (KL expansion) as proved in
[Alexanderian, 2015, p. 7,8].
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By choosing the first M terms in the expansion correspondent to the M highest
eigenvalues we approximate the infinite KL expansion by a finite number of terms,
i.e. we end up having M uncorrelated random variables with zero mean value
and unit variance.

In our application we look at the case Q = [−0.5; 0.5]2 and

amin = 1

cov[g](x, y) = exp(
−(x2 + y2)

0.1
), x, y ∈ Q

which makes a(x, ω) to be of the form

a(x, ω) = 1 + 10 exp(
M∑
n=1

bn(x)Yn(ω)), (5.4)

where Yn are independent random variables normally distributed with zero mean
value and unit variance.

In our application we assume both the material coefficient matrix A(x, ω) and
the autocorrelation function cov[g] to be [−0.5; 0.5]2-periodic. We have to realize
that for A(x, ω) defined by (5.3) and (5.4) it is not possible to express it in terms
of an ergodic dynamical system, which ensures the existence of a homogenized
matrix in a stochastic setting as was described in Theorem 2.3.

However, if E(Ãρ) was to converge to a constant matrix, it would have to be
E(Ã0.5), since anytime ρ = k0.5, k ∈ N we get E(Ãρ) = E(Ã0.5) thanks to the
periodicity of A and cov[g].

We also will not be able to satisfy the condition A ∈ L∞(Ω), since the value of
a can be arbitrarily large. However, the needed rate of growth of a in y ∈ Γ and
decay of δ (4.4.2) are preserved. The assumptions on the smoothness of A in
both the spatial and random variables are satisfied.

5.2.1 M = 8

In this section we focus on the problem of approximating the KL expansion by
8 terms. Figure 5.3 depicts a comparison of the autocorrelation function before
and after approximation by 8 terms.

The Fourier-Galerkin method provides fast convergence properties for A smooth
and it suffices to use 25 (5×5) discretization points. We will compare 3 methods,
Monte Carlo method, full tensor grid method and Gaussian sparse grid method.
Since the considered random variables are normally distributed, for creating of
the full tensor and the sparse grid we used the Hermite polynomials.

The sought matrix E(Ã0.5) will be of the same form as the matrix in (5.2). We
will focus on the convergence of the quantity a.

Results can be seen in Table 5.5 and Figures 5.4, 5.5. Note that the values in the
Table 5.5 are just to see the differences clearly. The real value is obtained by

a = 11.01 + r · 10−3, (5.5)
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Figure 5.3: Autocorrelation function before and after approximation by 8 terms
of KL expansion

q of number of full tensor grid sparse grid Monte Carlo
sparse grid colloc. points r r r

2 145 5.4412 6.8149
256 5.0605 4.7965

3 849 5.4449 4.6931
4 3937 5.4449 6.31785

6561 5.4465 3.2162
65536 5.4449 4.9850
100000 5.1766

Table 5.5: Comparison of 3 different methods for solving the autocor. problem
with 8 random variables where the sought quantity a = 11.01 + r · 10−3
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Figure 5.4: Comparison of convergence of all 3 methods for the autocor. problem
with 8 random variables

Figure 5.5: Comparison of convergence of all 3 methods for the autocor. problem
with 8 random variables with logarithmic scale in the x-axis
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Figure 5.6: The realizations of a(x, ω) for collocation points specified at the top

where r is the value from the Table 5.5, i.e. the range is [11.0132162; 11.0168149].

As we can observe, the sparse grid method was able with even the lowest number
of collocation points quite accurately approximate the searched quantity. The
tensor grid reached the same value with 65536 collocation points, i.e. having 4
points in each dimension. As for the Monte Carlo approach, the method converges
very slowly and even after 100 000 simulations we would not be able to conclude
a result.

We also include pictures illustrating the realizations of a(x, ω) for particular
choices of the collocation points y(ω) ∈ Γ specified in the top of each picture.
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Conclusion

We formulated the theory that stands behind some of the results of homogeniza-
tion. The two most limiting assumptions are the periodicity in the deterministic
case and the ergodicity in the stochastic case, which as could have been seen
in the last chapter, are not always satisfied. We analyzed the Fourier-Galerkin
method and the collocation method based on full tensor grids and sparse grids.
The applications were focused on the comparison of all of the collocation meth-
ods to the Monte Carlo method, as a representative of the nowadays most widely
used approach.

The collocation method offers several advantages:

• It decouples the problem into a number of deterministic problems, each of
which can be computed by the Fourier-Galerkin method, and thus offers a
trivial way of parallelization.

• It is able to easily deal with unbounded random variables assuming a rate
of decay (Gaussian or exponential ones).

• It treats efficiently the case with nonindependent random variables by in-
troducing an auxiliary density.

When computing the applications from Chapter 5, we highly benefited from the
first advantage. Since the collocation method decouples the problem into a num-
ber of deterministic problems, we could use a solver for the deterministic part as
a black box and apply it separately to each of these problems. In this thesis, I
used a Python Fourier-Galerkin solver [Vondřejc, 2016–2017].

From the computed results we can see that the collocation method, in particular
the sparse grid method, is an efficient tool when dealing with a problem that
does not depend on a too large number of random variables, since the method
suffers from the curse of dimensionality. If the problem involved too many random
variables, we could have seen that the Monte Carlo outperformed the collocation
method. If trying to identify the critical number of random variables, we would
have to refer the reader to [Nobile et al., 2008].
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Appendix

We present a collection of functions developed in Python for creating sparse grids
H(q,M) (recall 4.26) and corresponding weights for an arbitrary level q and ar-
bitrary dimension M . The level, dimension and the used orthogonal polynomials
are specified as input parameters.

We are giving more details on the main function generator(level, dim, rule).

def generator(level, dim, rule):

INPUT:
level (int): The accuracy level q in the Smolyak formula (4.24).
dim (int): Dimension M in the Smolyak formula (4.24).
rule (string): Quadrature rule, 3 options: ”Clenshaw-Curtis”, ”Legendre”,
”Hermite”.

OUTPUT:
colloc points(array): 2-D array of coordinates of collocation points, shape
|K| ×M , |K| denoting the number of collocation points.
weights(array): 1-D array of weights, length |K|.

The generator recognizes only three types of quadrature rules but adding a new
one is an easy extension of the code provided below. The computation of the
collocation points and the weights follows the formula (4.25).

import itertools

import numpy as np

import math

import scipy.special

def generator(level, dim, rule):

"""Computes the collocation points and weights and returns

an array of arrays with coordinates of collocation points in rows

and array of corresponding weights.

Args:

level (int): The accuracy level q in the Smolyak formula.

dim (int): Dimension M in the Smolyak formula.

rule (string): Quadrature rule.

Returns:

colloc_points(array): 2-D array of coordinates

of collocation points, i.e. array

of dim-dimensional arrays.

weights(array): 1-D array of weights.

"""

multiindices = compute_multiindices(level, dim)
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colloc_points = []

weights = []

tmp_colloc_points = []

tmp_weights = []

if (rule == ’Legendre’):

for multiindex in multiindices:

# multiindex stores combination of orders

tmp_coords = []

tmp_weighties = []

for index in multiindex:

[points, weighties] = np.polynomial.legendre.leggauss(

m(index))

tmp_coords.append(points)

tmp_weighties.append(weighties)

tmp_tensorcoords = itertools.product(*tmp_coords)

tmp_tensorweights = itertools.product(*tmp_weighties)

for c in tmp_tensorcoords:

tmp_colloc_points.append(c)

summ = sum(multiindex)

tmp = scipy.special.binom(dim - 1, summ - level - 1)

tmp *= (-1)**(level - summ + dim)

for b in tmp_tensorweights:

tmp_weights.append([np.prod(b) * tmp])

elif (rule == ’Hermite’):

for multiindex in multiindices:

tmp_coords = []

tmp_weighties = []

for index in multiindex:

[points, weighties] = np.polynomial.hermite_e.hermegauss(

m(index))

tmp_coords.append(points)

tmp_weighties.append(weighties)

tmp_tensorcoords = itertools.product(*tmp_coords)

tmp_tensorweights = itertools.product(*tmp_weighties)

for c in tmp_tensorcoords:

tmp_colloc_points.append(c)

summ = sum(multiindex)

tmp = scipy.special.binom(dim - 1, summ - level - 1)

tmp *= (-1)**(level - summ + dim)

for b in tmp_tensorweights:

tmp_weights.append([np.prod(b) * tmp])

elif (rule == ’Clenshaw-Curtis’):

for multiindex in multiindices:

# multiindex stores combination of orders
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tmp_list_ind = []

# tmp_list_ind stores lists of indices of points

for index in multiindex:

tmp_list_ind.append(range(1, m(index) + 1))

tmp_tensor_ind = itertools.product(*tmp_list_ind)

# tmp_tensor_ind - the tensor product of indices from tmp_list_ind

summ = sum(multiindex)

tmp = scipy.special.binom(dim - 1, summ - level - 1)

tmp *= (-1)**(level - summ + dim)

for comb in tmp_tensor_ind:

coords = []

weight = [1.]

i = 1

for j in comb:

coords.append(round(coord_CC(j,multiindex[i - 1]),11))

weight[0] = weight[0] * weight_CC(j, multiindex[i - 1])

i += 1

weight[0] *= tmp

tmp_colloc_points.append(coords)

tmp_weights.append(weight)

else:

raise Exception("Quadrature rule not recognised!!")

##

## removing nodes that occur more than once

##

a = np.array(tmp_colloc_points)

b = np.array(tmp_weights)

c = np.hstack((a, b))

b = c[np.lexsort(np.fliplr(c).T)]

colloc_points = [b[0][:dim]]

weights = [b[0][dim]]

for i in range(1, len(b)):

if (is_equal_vector(b[i][:dim], colloc_points[-1])):

weights[-1] += b[i][dim]

else:

colloc_points.append(b[i][:dim])

weights.append(b[i][dim])

colloc_points = np.array(colloc_points)

weights = np.array(weights)

return colloc_points, weights

The rest of the functions are minor codes called from within the function gener-
ator(level, dim, rule). We will not provide more details, however, Docstrings are
available in the codes below.
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def compute_multiindices(level, dim):

"""Computes all multiindices i = (i_1,...i_dim), s.t.

i_j >= 1; level - dim + 1 <= sum_{j=1}^{dim}(i_j - 1) <= level.

Args:

level(int): Determines the values of the multiindex.

dim(int): Determines the size of the multiindex.

Returns:

alpha(array): List of all multiindices satisfying formula above.

"""

comb_number1 = int(scipy.special.binom(level + dim, dim))

alpha = [[0] * dim for i in range(comb_number1 + 1)]

if (level > 0):

for i in range (1, dim + 1):

alpha[i][i - 1] = 1

if (level > 1):

r = dim

mat = [[0] * level for i in range(dim)]

for i in range(0, dim):

mat[i][0] = 1

for k in range(1, level):

L = r

for i in range (0, dim):

summ = 0

for m in range (i, dim):

summ += mat[m][k - 1]

mat[i][k] = summ

for j in range(0, dim):

for m in range(L - mat[j][k] + 1, L + 1):

r = r + 1

for i in range(0, dim):

alpha[r][i] = alpha[m][i]

alpha[r][j] = alpha[r][j] + 1

comb_number2 = int(scipy.special.binom(level, dim) - 1)

for i in range(comb_number2 + 1, comb_number1):

for j in range(dim):

alpha[i][j] += 1

return alpha[comb_number2 + 1: comb_number1][:]

def weight_CC(ind, i):

"""Computes weight of ind-th point of i-th level of accuracyby

Clenshaw-Curtis rule.

Args:

ind(int): Index of the point.

i(int): Level of accuracy.

Returns:
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float: Weight.

"""

if (i == 1):

return 2.

else:

nm = m(i)

if ((ind == 1) or (ind == nm)):

return (1 / (nm * (nm - 2.)))

else:

summ = 0

for k in range (1, (nm - 3) / 2 + 1):

summ += (1. / (4. * k * k - 1.)) \

* math.cos((2. * math.pi * k \

* (ind - 1.)) / (nm - 1.))

return (2. / (nm - 1.)) * (1. - ((math.cos(math.pi * (

ind - 1.))) / (nm * (nm - 2.))) - 2. * summ)

def coord_CC(ind, i):

"""Computes coordinate for Clenshaw-Curtis rule.

Args:

ind(int): Index of the point.

i(int): Level of accuracy.

Returns:

float: Coordinate.

"""

if (i == 1):

return 0.

else:

return -math.cos((math.pi * (ind - 1)) / (m(i) - 1))

def m(i):

"Computes the number of points for level i in 1-D."

if (i <= 0):

return 0

if (i == 1):

return 1

else:

return 2**(i - 1) + 1

def is_equal_vector(a, b):

for i in range(len(a)):

if (not is_equal(a[i], b[i])):

return False

return True

def is_equal(a, b):

eps = 1e-12

if ((a > (b - eps)) and (a < (b + eps))):

return True

else:

return False
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