
MASTER THESIS

Tereza Smolárová
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Introduction

A non-life insurance policy is a contract between a policyholder and an insurer,
e.g. an insurance company. In such contract, the insurer undertakes to compen-
sate the policyholder for certain unpredictable losses during a time period, usually
one year, in exchange for a fee called premium. A claim is an event reported by
the policyholder, for which they demand economic compensation.

A non-life insurance policy may cover property damages, motor-car accidents,
personal injuries resulting from an accident etc. In effect, any insurance that is
not life insurance is classified as non-life insurance.

Tweedie models are a class of exponential dispersion models with power mean-
variance relationships. This thesis focuses on compound Poisson distribution
which is a particular Tweedie model. This distribution is a mixed distribution
with mass at zero and continuous on the positive real numbers. The approach
based on this distribution provides a highly efficient method of analysing insur-
ance claims data, especially claim totals. The reason for concern in Tweedie com-
pound Poisson model is its applications to the generalized linear models (GLMs)
and the generalized estimation equations (GEE).

The purpose of this thesis is to construct pricing and claims reserving models
in which the response variables follow Tweedie compound Poisson model.

The advantage of all Tweedie regression models is that they allow a simulta-
neous modelling of both the occurrence and the amount of claim. In addition,
Tweedie GEE models also allow multi-subject modelling of claim, whilst taking
into account the dependent nature of claims data. The difficulty in using GEE
models is that there is no software available that fits the GEE with Tweedie
compound Poisson model, therefore it is necessary to write a code so this type
of modelling could be implemented. All computations in this thesis will be per-
formed in the R statistical software.

This thesis is structured as follows. In the first chapter, exponential dispersion
models as well as Tweedie models are introduced. These distributions represent
a key component of GLMs theory. The second chapter presents all the important
components of generalized linear models framework. The generalized estimating
equations are discussed as a possible extension of GLMs to handle correlated
data. The third chapter defines compound Poisson distribution. By choosing a
suitable parametrization, it will be shown that the distribution corresponds to a
Tweedie model with specific values of power index parameter. The aim of the
fourth and the fifth chapters is to show how Tweedie compound Poisson model
can be used in the context of non-life insurance pricing and claims reserving.
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1. Exponential Dispersion
Models

Exponential dispersion models (EDMs) represent a family of distributions that
has found place in various fields. They have an important role in statistical data
analysis as the response distributions for generalized linear models. Jørgensen
(1997) undertook a detailed study of their properties and applications.

Many well-known distributions, such as normal, Poisson, gamma or inverse
Gaussian are members of the exponential dispersion model family.

1.1 Definition and properties

Let a random variable Y follow an exponential dispersion model. The probability
density function or the probability mass function of Y can be written in the
following form

fY (y; θ, φ/w) = a(y;φ/w) exp

{
w

φ

(
yθ − κ(θ)

)}
, y ∈ S ⊆ R, (1.1)

where a(·; ·) and κ(·) are real functions, θ ∈ R is a canonical parameter, φ > 0
is a dispersion parameter and w > 0 is a known prior weight. The function
κ(·) is assumed to be twice continuously differentiable with an invertible first
derivative. The function a(·; ·) only acts as a normalizing function and it cannot
always be written in closed form.

The moment generating function MY (t) of Y exists, is finite over the whole
range and equals to

MY (t) = E exp{tY } = exp

{
w

φ

(
κ(θ +

tφ

w
)− κ(θ)

)}
. (1.2)

Note that since κ(θ) is twice continuously differentiable then MY (t) is twice dif-
ferentiable at t = 0. Thus, we use the property of moment generating function
to obtain the following relations for mean and variance

EY = µ = κ′(θ),

varY =
φ

w
κ′′(θ),

where prime denotes differentiation with respect to θ.
An EDM is uniquely characterized by its variance function V (·) defined as

V (µ) = κ′′(θ) = κ′′
(
(κ′)−1(µ)

)
,

which describes the mean-variance relationship of the distribution when the dis-
persion parameter is held constant. Then the variance of Y can be written as

varY =
φ

w
V (µ).
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The specification of the parameters and the functions from (1.1) as well as the
variance functions of the forenamed distributions are listed in McCullagh and
Nelder (1989, Section 2.2.2).

Any EDM can be parametrized also in terms of its mean instead of its cano-
nical parameter. We use the notation Y ∼ ED(µ, φ/w) to indicate that a random
variable Y follows an EDM with parameters µ and φ.

Following EDM’s property is relevant in practice as we see later on. Assume
that Y1, . . . , Yn are independent and

Yi ∼ ED(µ, φ/wi) for i = 1, . . . , n.

Then we have

Y =
1

w+

n∑
i=1

wiYi ∼ ED(µ, φ/w+), (1.3)

where w+ = w1 + . . .+ wn. The formula (1.3) shows that w-weighted average Y
follows the same EDM but with the weight w+. Thus, we say that EDMs are
reproductive.

1.2 Tweedie Models

Of our special interest within exponential dispersion models is a class of distri-
butions with the variance functions of the form

V (µ) = µp, (1.4)

for some p. Following Jørgensen (1997), these EDMs are called Tweedie models
after Maurice C. K. Tweedie, a British statistician and medical physicist, who
presented the first thorough study of them in 1984. Dunn and Smyth (2005)
gave a survey of published applications showing that Tweedie models have been
used in various fields including actuarial studies, survival analysis, ecology and
meteorology. Notation Y ∼ EDp(µ, φ/w) indicates that the random variable Y
is distributed as a Tweedie model with the mean µ, dispersion φ and the power
index parameter p ∈ R.

Jørgensen (1997, Section 4.1.1) demonstrated that Tweedie models are the
only EDMs which are closed with respect to scale transformations, i.e. scale
invariant. Thus, if Y ∼ EDp(µ, φ/w) then cY ∼ EDp(cµ, c

2−pφ/w) for any
positive constant c. This fundamental property makes them obvious candidates
for modelling data when the unit of measurement is arbitrary. For example, the
result of an actuarial analysis should not depend on the currency used.

The class of Tweedie models includes discrete, continuous as well as mixed
distributions. The value of the power index parameter p determines the distri-
bution. The normal (p = 0), Poisson (p = 1 and φ = 1), gamma (p = 2) and
inverse Gaussian (p = 3) distributions are the special cases. Although the other
distributions might be less well-known, Jørgensen (1997, Proposition 4.2) showed
that Tweedie models exist for all values of p outside the interval (0, 1).

Tweedie models with 1 < p < 2 are Poisson mixtures of gamma distribu-
tions. These so called compound Poisson distributions are mixed distributions
supported on non-negative real numbers with positive probability of taking value

7



zero. The presence of the discrete mass at zero makes these distributions sui-
table for many applications where observations are often zero but sometimes are
positive. In non-life insurance, they can be applied in pricing and also in claims
reserving. They have also been known as compound gamma and Poisson-gamma
distributions.

For p > 2, the distributions are continuous with support on positive real num-
bers and have similar shape to the gamma distribution but more rightly skewed.
Together with gamma distribution, they are often suggested as distributions for
the claim severity. Negative values of p give continuous distributions on the whole
real axis, but no application in insurance has been proposed yet.

The canonical parameter θ and the mean µ can be found for a Tweedie model
by equating κ′′(θ) = V (µ) = µp. Hence

µp =
∂2κ

∂θ2
=

∂

∂θ

(∂κ
∂θ

)
=
∂µ

∂θ
.

Taking the reciprocals of both sides, integrating with respect to µ and setting the
arbitrary constant of integration to zero gives expressions for canonical parameter
θ, for specific values of the power index parameter p. Thus

θ =


µ1−p

1− p
for p 6= 1,

log µ for p = 1,
(1.5)

with inverse

µ =

{(
(1− p)θ

) 1
1−p for p 6= 1,

eθ for p = 1.
(1.6)

Let κp(θ) denote the function κ(θ) for a Tweedie model. We use the above
expression for µ to find function κp(θ). Integrating both sides of the equation
κ′p(θ) = µ with respect to θ and setting the arbitrary constant of integration to
zero gives

κp(θ) =


1

2− p
(
(1− p)θ

) 2−p
1−p for p 6= 1, 2,

eθ for p = 1,

− log(−θ) for p = 2.

(1.7)

By using (1.5) and (1.6), we can express κp(θ) as a function of mean µ

κp(θ) =


µ2−p

2− p
for p 6= 2,

log µ for p = 2.
(1.8)

The moment generating function of a Tweedie model is obtained by inserting
the expression for function κp(θ) (1.7) into (1.2). Hence

MY (t) = exp

{
w

φ

(
κp(θ +

tφ

w
)− κp(θ)

)}
= exp

{
w

φ
κp(θ)

((
1 +

tφ

wθ

) 2−p
1−p − 1

)}
.
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We can express MY (t) as a function of mean µ by using the identities (1.8) and
(1.5)

MY (t) = exp

{
w

φ

µ2−p

(2− p)

((
1− tφ

w

(p− 1)

µ1−p

) 2−p
1−p − 1

)}
for p 6= 1, 2. (1.9)

The above expressions show that the moment generating function of a Tweedie
model has a simple analytic form. On the other hand, according to Dunn and
Smyth (2005), apart from the four special cases, none of the Tweedie models
has density functions which can be written in closed form. Hence, the Tweedie
densities can be expressed in general form as

fY (y;µ, φ/w, p) = a(y;φ/w, p) exp

{
w

φ

(
y
µ1−p

1− p
− µ2−p

2− p

)}
for p 6= 1, 2,

where the function a(y;φ/w, p) needs to be evaluated numerically. Dunn and
Smyth (2001) proposed numerical methods for their computation.

Plots of some Tweedie densities for various values of p are given in Figure
1.1. In all cases, the mean and the variance are fixed at unity. Note that the
distribution approaches the Poisson as p→ 1 and the gamma as p→ 2.
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Figure 1.1: Tweedie densities for various values of p and other parameters being
set to one. The solid circles represent discrete probability of Y = 0.

9



2. Generalized Linear Models
and their extension

Generalized linear models (GLMs) and their extensions are becoming the premier
statistical analysis methods for insurance data. Haberman and Renshaw (1996)
demonstrated the applications of these models to a wide range of actuarial prob-
lems, such as mortality, lapses, premium setting and claims reserving in non-life
insurance. This thesis focuses on the last two mentioned.

2.1 Classical Linear Model

The classical linear models are considered as the special case of GLMs. The pri-
mary interest of the classical linear regression analysis is to model the marginal
expectation of a response variable given the explanatory variables.

Let Y = (Y1, . . . , Yn)> denote an (n × 1) random vector called a response
vector. Then the expected value of vector Y is denoted by a vector µ =
(µ1, . . . , µn)>.

2.1.1 Definition of Classical Linear Model

Based on McCullagh and Nelder (1989, Section 2.2), to simplify the transition to
generalized linear models, a classical linear model is defined as follows:

1. The random variables Y1, . . . , Yn are independent and the distribution of Yi
depends on the explanatory variables xi through a (k×1) vector of unknown
regression parameters β = (β1, . . . , βk)

>.

2. The response variable Yi is normally distributed with mean µi and disper-
sion parameter φ, i.e.

Yi ∼ N (µi, φ/wi),

where wi is a known prior weight.

3. A linear combination of explanatory variables is considered

ηi = x>i β =
k∑
j=1

xijβj,

where ηi is called a linear predictor and x>i is a row vector of an (n × k)
known matrix X called a regression or a design matrix. We assume that
the design matrix X has full column rank and k < n.

4. The expected value µi is related to the linear predictor through the identity

µi = ηi.

10



2.2 Generalized Linear Models

Generalized linear models represent a rich class of statistical models, which gene-
ralizes the classical linear models in two different directions. Firstly, the response
variable Y may have a distribution other than normal distribution, i.e it can
follow any distribution that belongs to the class of exponential dispersion models.
Secondly, some monotone transformation of the mean is a linear function of the
explanatory variables.

2.2.1 Definition of Generalized Linear Model

We would like to describe the dependence of µi = EYi on the explanatory variables
xi = (xi1, . . . , xik)

> by a regression model that is more general than the linear
model.

A generalized linear model is defined as follows:

1. The random variables Y1, . . . , Yn are independent and the distribution of Yi
depends on the explanatory variables xi through regression parameters β.

2. The response variable Yi follows an EDM with mean µi and dispersion
parameter φ, i.e.

Yi ∼ ED(µi, φ/wi),

where wi is a known prior weight.

3. A linear combination of explanatory variables is considered

ηi = x>i β =
k∑
j=1

xijβj,

where ηi is called a linear predictor.

4. There exists a known strictly monotone and twice continuously differen-
tiable link function g(·) such that

g(µi) = ηi.

Each of the EDMs has a natural link function, a so-called canonical link
function. This link function relates the canonical parameter θi directly to the
linear predictor ηi,

ηi = g(µi) = θi.

Nevertheless, the link function can be chosen independently of the response’s
distribution and the choice depends on the character of data. There are several
commonly used link functions, e.g. identity, logarithmic or reciprocal function.
In non-life insurance pricing and claims reserving the logarithmic link function is
by far the most common one, since a multiplicative model is often reasonable.
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Summing up the previous conclusions, the parameters are related to each
other as follows:

• ηi = x>i β;

• µi = κ′(θi), θi = (κ′)−1(µi);

• ηi = g(µi), µi = g−1(ηi);

• ηi = g
(
κ′(θi)

)
, θi = (κ′)−1

(
g−1(ηi)

)
.

2.2.2 Parameter estimation

Let the definition of GLM hold. A vector of independent observations y =
(y1, . . . , yn)> is a realization of response vector Y = (Y1, . . . , Yn)>. Maximum
likelihood method is used to estimate the vector of regression parameters β.

The log-likelihood function for parameters (β, φ) has the following form

`(β, φ;y) =
n∑
i=1

log fYi(yi; θi, φ/wi) =
n∑
i=1

log a(yi;φ/wi) +
1

φ

n∑
i=1

wi
(
yiθi − κ(θi)

)
,

(2.1)
where θi is connected to β through

θi = (κ′)−1
(
g−1(x>i β)

)
.

The partial derivative of log-likelihood function (2.1) with respect to βj is then

∂`

∂βj

chain
rule

=
∂`

∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

=
1

φ

n∑
i=1

wi
yi − µi

V (µi)g′(µi)
xij.

By setting all these k partial derivatives equal to zero and multiplying by φ,
which does not have any effect of maximization, we get the maximum likelihood
equations

n∑
i=1

w(µi)g
′(µi)(yi − µi)xij = 0, j = 1, . . . , k, (2.2)

where µi = g−1(x>i β) and w(·) is a weight function of form

w(µi) =
wi

V (µi)
(
g′(µi)

)2 > 0.

We may rewrite (2.2) into a matrix form. Let W = diag{w(µ1), . . . , w(µn)}
and G = diag{g′(µ1), . . . , g

′(µn)} be an (n×n) diagonal matrices. Then a maxi-

mum likelihood estimator β̂ solves the equation

X>WG(y − µ) = 0. (2.3)

By adding the term (X>WX)β to both sides of equation (2.3) and rearranging
it under the regularity assumption of matrix (X>WX) we obtain

β̂ = (X>ŴX)−1(X>Ŵ ẑ), (2.4)
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where the vector ẑ = (ẑ1, . . . , ẑn)> with components ẑi = g(µ̂i) + g′(µ̂i)(yi − µ̂i)
is called an adjusted response.

We can not calculate β̂ directly from (2.4) because the matrix Ŵ and the

vector ẑ depend on µ̂ and hence on β̂. We use iterative weighted least squares
(IWLS) algorithm to obtain the maximum likelihood estimates:

1. Take initial values µ̂i
(0) = yi and set l to zero.

2. Compute matrix of weights Ŵ (l) = diag{w(µ̂1
(l)), . . . , w(µ̂n

(l))} and com-

ponents of adjusted response vector ẑi
(l) = g(µ̂i

(l)) + g′(µ̂i
(l))(yi − µ̂i(l)).

3. Compute β̂(l+1) by following iterative formula

β̂(l+1) = (X>Ŵ (l)X)−1(X>Ŵ (l)ẑ(l)).

4. Calculate µ̂i
(l+1) = g−1(x>i β̂

(l+1)) and increase l by one.

5. Repeat steps 2–4 until the convergence criterion ‖β̂(l+1) − β̂(l)‖ < ε is ful-
filled. Note that ε is a pre-specified tolerance parameter.

The dispersion parameter φ is also often unknown. One of the most commonly
used estimators for φ in generalized linear models is the Pearson estimator defined
as

φ̂ =
1

n− k

n∑
i=1

wi
(yi − µ̂i)2

V (µ̂i)
,

where k is the number of regression parameters and V (µ̂i) is estimated variance
function for the considered distribution.

2.3 Generalized Estimating Equations

While the GLM extends the classical linear model by having a more general
family of distributions and relation between the mean and the linear predictor, the
independence assumption is retained. Generalized estimating equations (GEE)
were first proposed by Liang and Zeger (1986) as a method for estimating the
regression parameters in case the independence assumption is violated.

Suppose there are K subjects with ni measurements available for the ith sub-
ject. Let Yi = (Yi,1, . . . , Yi,ni

)> denote a response vector and yi = (yi,1, . . . , yi,ni
)>

represents a vector of response realizations for subject i. Further, Xi is an (ni×k)
design matrix for subject i and an expected value of Yi is denoted by a vector
µi = (µi,1, . . . , µi,ni

)>.

2.3.1 Definition of GEE Model

We would like to describe the dependence of µi,j = EYi,j on the explanatory
variables xi,j by a regression model which is able to deal with correlated data
within the subjects.

A GEE model is defined as follows:

1. The random vectors Yi, . . . ,YK are independent, however, the components
of Yi are allowed to be correlated.
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2. A linear combination of explanatory variables is considered

ηi,j = x>i,jβ,

where ηi,j is called a linear predictor.

3. The expected value µi,j satisfies the identity

g(µi,j) = ηi,j,

where g(·) is a known strictly monotone and twice continuously differen-
tiable link function. Linear predictor ηi,j together with the link function
g(·) fully specify the mean structure.

4. The variance of response Yi,j can be expressed as a function of the mean

varYi,j =
φ

wi,j
V (µi,j),

where V (·) is a known variance function and wi,j > 0 is a known prior
weight. The dispersion parameter φ > 0 may or may not be known.

5. The correlation between components of Yi is represented by an (ni × ni)
working correlation matrix Ri ≡ Ri(ϑ), where ϑ is an (s × 1) vector of
unknown parameters, which is the same for all the subjects.

An important aspect of GEE framework is that we have to specify a form
of the working correlation matrix Ri. The name ”working” comes from the fact
that we still obtain a consistent and asymptotically normal estimate of β even if
the correlation structure of Ri is misspecified though a closer choice to the true
correlation structure leads to a more efficient estimate.

Some of the most commonly used structures of working correlation matrix
Ri(ϑ) = {rj,l}ni,ni

j,l=1 are presented below. Their detailed descriptions and other
possibilities can be found in Hardin and Hilbe (2003, Section 3.2.1).

• The simplest choice is an uncorrelated (or independent) structure

rj,l =

{
1 if j = l,

0 if j 6= l.

• The simple extension of previous structure is an exchangeable (or equal)
correlation structure

rj,l =

{
1 if j = l,

ϑ if j 6= l.

• Another common choice is a first-order autoregressive AR(1) correlation
structure

rj,l =

{
1 if j = l,

ϑ|j−l| if j 6= l.
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• The most general of the correlation structures presented is an unstructured
correlation structure

rj,l =

{
1 if j = l,

ϑjl if j 6= l.

Consequently, a working covariance matrix for ith subject is defined as

Vi = φA
1/2
i Ri(ϑ)A

1/2
i ,

where Ai = diag{V (µi,1)/wi,1, . . . , V (µi,ni
)/wi,ni

} is an (ni×ni) diagonal matrix.
This working covariance matrix will be equal to true covariance matrix covYi if
Ri(ϑ) is indeed the true correlation matrix for the response vector Yi.

Note that within GEE framework, it is not necessary to specify the whole
distribution of the response variable. Only the mean structure, the mean-variance
relationship and the form of the correlation structure need to be defined.

2.3.2 Parameter estimation

Let the definition of GEE model hold. For now, we assume that estimates (φ̂, ϑ̂)

of parameters (φ,ϑ) are given. The estimator β̂ is defined as the solution of the
generalized estimating equations

K∑
i=1

D>i V
−1
i (yi − µi) = 0,

where Di = ∂µi/∂β ≡ {∂µi,j/∂βl}ni,k
j,l=1 is an (ni×k) matrix of partial derivatives.

To compute the estimates of unknown parameters, we iterate between a modi-
fied Fisher scoring method for β and moment estimation of (φ,ϑ):

1. Start with independent structure, i.e. Ri = Ini
. Then matrix Vi = φAi

is diagonal and initial β(0) is estimated as if the observations were indepen-
dent using GLM estimation techniques presented in Section 2.2.2.

2. Calculate Pearson residuals

r
(P )
i,j =

√
wi,j

(yi,j − µ̂i,j)√
V (µ̂i,j)

.

3. Compute moment estimates of φ and ϑ. The moment estimator of φ is de-
fined as

φ̂ =
1

n− k

K∑
i=1

ni∑
j=1

wi,j
(yi,j − µ̂i,j)2

V (µ̂i,j)
=

1

n− k

K∑
i=1

ni∑
j=1

(
r
(P )
i,j

)2
,

where n =
∑K

i=1 ni is the total number of observations across all subjects
and k is the number of regression parameters.
However, the moment estimator of ϑ varies depending on the chosen corre-
lation structure. Specific estimators are given in Hardin and Hilbe (2003,
Section 3.2.1).
The working correlation matrix Ri can now be determined using the ϑ
value calculated and the assumed correlation structure.
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4. Calculate estimate of the working covariance matrix Vi

V̂i = φ̂Â
1/2
i Ri(ϑ̂)Â

1/2
i .

5. Compute β̂(l+1) by following iterative formula

β̂(l+1) = β̂(l) +

[ K∑
i=1

D̂i

>
V̂i
−1
D̂i

]−1[ K∑
i=1

D̂i

>
V̂i
−1

(yi − µ̂i)
]
.

6. Repeat steps 2–5 until convergence criterion is fulfilled.
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3. Tweedie compound Poisson
model

The compound Poisson distributions have been applied in various fields in which
continuous data with exact zeros regularly arise. The presence of the discrete
mass at zero makes them suitable for modelling aggregate distributions. For
example, in actuarial applications the total claim amount usually has a continuous
distribution on positive values, except of being zero when the claim does not
occur. Our interest in these distributions is motivated by their applications to
GLMs and GEE.

The main goal of this chapter is to demonstrate that the compound Poisson
distribution can be re-parametrized to be a Tweedie model with p ∈ (1, 2).

3.1 Compound Poisson model

Let N,Z1, Z2, . . . denote a sequence of random variables such that the following
assumptions hold:

1. N follows a Poisson distribution with a parameter λw > 0, where w > 0 is a
known volume measure called the exposure. This distribution is denoted by
Po(λw).

2. Z1, Z2, . . . are independent and follow a gamma distribution with a shape
parameter α > 0 and a rate parameter τ > 0 denoted by Γ(α, τ).

3. N and (Z1, Z2, . . .) are independent.

We define a random variable

Z = 1{N>0} ×
N∑
i=1

Zi,

where 1{} denotes an indicator function. Under these assumptions Z has a com-
pound Poisson distribution denoted by CPG(λw, α, τ).

We are more interested in the ratio between Z and the exposure w, i.e. a ran-
dom variable Y defined as

Y =
Z

w
,

than in the random variable Z itself.
According to Jørgensen (1997, Chapter 4), the moment generating function

MY (t) of Y equals to

MY (t) = MZ(t/w) = exp

{
λw

((
1− t

τw

)−α
− 1

)}
for τw > t. (3.1)

Hence Y ∼ CPG(λw, α, τw).
The distribution of Y can be re-parametrized in such a way that it takes form

of a Tweedie model. To show that compound Poisson distribution corresponds
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to a Tweedie model with 1 < p < 2, we simply compare the moment generating
functions of both distributions.

Let Y ∼ EDp(µ, φ/w). Then the moment generating function of Y equals
to (1.9) and it has the same form as the moment generating function (3.1). By
matching term by term, we see that the Tweedie model is hence the compound
Poisson distribution with the following parameter mapping

λ =
µ2−p

φ(2− p)
, α =

2− p
p− 1

, τ =
µ1−p

φ(p− 1)
. (3.2)

The requirement of gamma shape parameter α to be positive means that the
representation of Y as a Poisson mixture of gamma random variables holds only
for p ∈ (1, 2), i.e α > 0 implies p ∈ (1, 2). Also, note that λ > 0 and τ > 0 imply
µ > 0 and φ > 0. The relations between parameters (3.2) provide a convenient
mechanism of transferring from one parametrization to another and are exploited
for evaluating the Tweedie density function.

A Tweedie model with p ∈ (1, 2) is known as Tweedie compound Poisson
model.

3.2 The joint distribution of Y and N

Following Jørgensen (1997)[Section 4.2.4], the joint density function of Y and N
is given by the formula

fY,N(y, n) = fY |N(y | n)× fN(n) for y > 0 and n > 0,

in which the conditional distribution of Y given N = n is Γ(nα, τw) for n > 0
and N ∼ Po(λw). This gives the following joint density function

fY,N(y, n;λ, α, τ) =
(τw)nα

Γ(nα)
ynα−1 exp{−τwy} × (λw)n

n!
exp{−λw}

=
1

n!Γ(nα)y

(
λταyαwα+1

)n
exp

{
w
(
− τy − λ

)}
. (3.3)

Now we re-parametrize the joint density (3.3) using the relations in (3.2).
Hence, we obtain

fY,N(y, n;µ, φ/w, p) =
1

n!Γ(nα)y

( (w/φ)α+1yα

(p− 1)α(2− p)

)n
exp

{w
φ

(
y
µ1−p

1− p
− µ2−p

2− p

)}
(3.4)

for p ∈ (1, 2). Note that the term µ2−p(µ1−p)α is equal to 1. For the sake of
simplicity, the parameter α remains expressed in other.

The joint distribution of Y and N also has a positive probability in zero

P[Y = 0, N = 0] = P[N = 0] = exp

{
− w

φ

µ2−p

2− p

}
.
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We may also derive the marginal density of Y . For y > 0 the distribution is
continuous and density of Y can be obtained from the joint density (3.4) by sum-
ming over positive values of N . Thus

fY (y;µ, φ/w, p) =
∞∑
n=1

fY,N(y, n;µ, φ/w, p)

=
∞∑
n=1

1

n!Γ(nα)y

( (w/φ)α+1yα

(p− 1)α(2− p)

)n
exp

{w
φ

(
y
µ1−p

1− p
− µ2−p

2− p

)}
.

Furthermore, the marginal distribution of Y has a positive probability in zero,

P[Y = 0] = P[N = 0] = exp

{
− w

φ

µ2−p

2− p

}
.

Combining the previous results together gives the following form of probability
density function of the Tweedie compound Poisson model

fY (y;µ, φ/w, p) = a(y;φ/w, p) exp

{
w

φ

(
y
µ1−p

1− p
− µ2−p

2− p

)}
(3.5)

= a(y;φ/w, p) exp

{
w

φ

(
yθ − κp(θ)

)}
(3.6)

for y ≥ 0 and p ∈ (1, 2) where

a(y;φ/w, p) =


∞∑
n=1

1

n!Γ(nα)y

(
(w/φ)α+1yα

(p− 1)α(2− p)

)n
for y > 0,

1 for y = 0.

Note that the forms of marginal density (3.6) and (3.5) confirm that the com-
pound Poisson distribution is an exponential dispersion model and, even more
precisely, it is a Tweedie model with p ∈ (1, 2).

3.3 GLM and Tweedie compound Poisson

model

Being EDM, Tweedie compound Poisson model fits the generalized linear model
framework discussed in Section 2.2. Therefore, we can assume that the response
variable Y follows a Tweedie compound Poisson model with mean µ, dispersion
parameter φ and its variance function is of the form (1.4) for any p ∈ (1, 2). The
exposure w is used as a weight in the GLMs.

Within R software, the libraries statmod and tweedie are needed to create
regression models for pricing and claims reserving in Sections 4.6 and 5.6. To fit
a GLM with a Tweedie compound Poisson model (Tweedie GLM) the generalized
linear model family function tweedie() is used.

19



3.3.1 Parameter Estimation

In order to fit Tweedie GLM, only the aggregated variable Y is used without using
any knowledge of the frequency. Thus, some information provided by the data
is lost. As stated in Quijano Xacur and Garrido (2015), this issue can be solved
by maximizing the joint log-likelihood of (Y,N) instead of the log-likelihood of
Y . The joint log-likelihood approach includes the frequency so that information
given by N is not lost.

We consider m independent pairs of observations of the form (y1, n1), . . . ,
(ym, nm), such that the ith pair (yi, ni) is a realization of random vector (Yi, Ni)
with joint density (3.4). The joint log-likelihood function for the parameters
(β, φ, p) has the following form

`(β, φ, p;y,n) =
m∑
i=1

log fYi,Ni
(yi, ni;µi, φ/wi, p)

=
m∑
i=1

[
ni log

(
(wi/φ)α+1yαi

(p− 1)α(2− p)

)
− log

(
ni!Γ(niα)yi

)
+
wi
φ

(
yi
µ1−p
i

1− p
− µ2−p

i

2− p

)]
, (3.7)

where µi = g−1(x>i β).

Case: p known

In case the true power index parameter p ∈ (1, 2) is known, the estimates of
unknown parameters may be found just from the marginal densities of Yi (3.6).
Vector of regression parameters β and dispersion parameter φ are estimated by
the GLMs estimation techniques presented in Section 2.2.2.

Also when the logarithmic link function is used, the general maximum likeli-
hood equations (2.2) simplify to

m∑
i=1

wi

µpi µ
−2
i

µ−1i (yi − µi)xij =
m∑
i=1

wi
yi − µi
µp−1i

xij = 0 for j = 1, . . . , k,

where µi is connected to β through

µi = exp

{ k∑
j=1

xijβj

}
for i = 1, . . . ,m.

Case: p unknown

Now we examine the case when the power index parameter p is unknown. Based
on Dunn and Smyth (2005), we use the profile likelihood approach to estimate the
power index and dispersion parameters. Note that we can profile out the mean
parameters as they are obtained for a given value of power index parameter.

At first, we need to specify a grid of possible values P from the interval (1, 2)
that p can take. Further, we exploit the fact that the estimation of β depends
only on p, i.e. the dispersion parameter φ has no influence on its estimation.
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Given a fixed p ∈ P , maximum likelihood estimate β̃p is calculated as in the

previous part. Then conditional on this p and the corresponding β̃p, the maximum

likelihood estimator φ̃p solves the equation

∂`(β̃p, φ, p)

∂φ
= −(α + 1)

φ

m∑
i=1

ni −
1

φ2

m∑
i=1

wi

(
yi
µ̃i

1−p

1− p
− µ̃i

2−p

2− p

)
= 0. (3.8)

Hence the maximum likelihood estimator of φ is given by

φ̃p =

−
m∑
i=1

wi

(
yi
µ̃i

1−p

1− p
− µ̃i

2−p

2− p

)
(α + 1)

m∑
i=1

ni

. (3.9)

In such way, we have determined the corresponding (β̃p, φ̃p) for each fixed
p ∈ P . Then the maximum likelihood estimate of p is obtained by maximizing
the profile log-likelihood with respect to the grid of pre-specified values

p̂ = arg max
p∈P

{`(β̃p, φ̃p, p)},

where

`(β̃p, φ̃p, p) =
m∑
i=1

[
ni log(wi/φ̃p)

(α+1) + ni log

(
yαi

(p− 1)α(2− p)

)
− log

(
ni!Γ(niα)yi

)
− ni(α + 1)

]
=

m∑
i=1

[
(α + 1)ni

(
log(wi/φ̃p)− 1

)
− log

(
ni!Γ(niα)yi

)
+ ni log

(
yαi

(p− 1)α(2− p)

)]
is the profile log-likelihood evaluated at β̃p, φ̃p and p, using the Tweedie compound
Poisson density evaluation methods provided by Dunn and Smyth (2001). The
corresponding estimates β̂ and φ̂ are obtained according to the previous part by
using p̂. Note that often in practice, p is assumed to be known.

In R, the maximum likelihood estimate of power index parameter p is found
by the tweedie.profile function.

3.4 GEE and Tweedie compound Poisson

model

One of the components which has to be specified within the GEE framework
is the variance function. Assuming the Tweedie compound Poisson model, the
variance function has the following form

V (µi,j) = µpi,j for all i, j and p ∈ (1, 2).
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3.4.1 Parameter Estimation

Following the iterative algorithm in Section 2.3.2, the GLMs estimation technique
is used to estimate the initial β. Therefore, the power index parameter p and
initial regression parameters β are estimated according to the previous section.

Also, some terms in the iterative algorithm can be specified more precisely for
all i = 1, . . . , K:

• Pearson residuals and matrix Ai, as the form of variance function is known

V (µi) = µpi for any p ∈ (1, 2).

• Matrix

Di =
∂µi
∂β

chain
rule

=
∂µi
∂ηi

∂ηi
∂β

=
1

g′(µi)
×Xi

has the following form when the logarithm link function is used

Di = µi ×Xi.

Note that this is not a matrix multiplication.

In R, the GEE estimates cannot be obtained by gee function from gee library
because the function gee does not allow using the Tweedie compound Poisson
model. Therefore, it was necessary to write a code so this type of modelling
could be implemented. The GEE parameter estimation for Tweedie generalized
estimating equation model (Tweedie GEE) is based on the code from Swan (2006).
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4. Pricing using Tweedie
compound Poisson model

The main goal of this chapter is to show how Tweedie compound Poisson model
can be used in non-life insurance pricing. The chapter is structured as follows.

The first section introduces some important definitions concerning pricing in
non-life insurance. A brief overview of well-known methods used for setting the
premium is given in the consecutive section. Section 4.3 recalls the definition
of Tweedie compound Poisson model. The definition is supplemented by the in-
terpretation of random variables within context of modelling a pure premium.
Following the distributional assumption, Sections 4.4 and 4.5 present the appli-
cations of GLMs and GEE for pure premium estimation. The general frameworks
from Chapter 2 are modified to fit the collected insurance policies data. A suit-
able form of linear predictor and a type of link function are suggested. Moreover,
within the GEE framework, the appropriate choice of correlation structure is dis-
cussed. The last section illustrates an application and a performance of proposed
Tweedie GLM and GEE models on a real dataset. The results of the individual
models are summarized and consequently used for their comparison.

4.1 Pricing terminology

One of the most important problems in every insurance company is to set the
premiums for the policyholders. Following Ohlsson and Johansson (2010, Chapter
1), we introduce some key insurance terms that are used within non-life insurance
pricing context.

A tariff is a formula by which the premium for any policyholder can be com-
puted. The underlying work the actuaries perform to obtain the tariff is known
as a tariff analysis. It is mainly based on the insurance company’s historical data
on policies and claims.

The premium charged to the policyholders can be broken down into a so-called
pure premium and other components such as claims handling costs, administra-
tion costs, salaries, profit margin etc. On top of this, the insurance company
may adjust the price for individual customers for various reasons, e.g. extra high
margins for young motorcycle drivers who represent a larger risk to the insur-
ance company. In this thesis, we will only consider the part of premium which is
directly connected to the losses.

The duration of a policy is the amount of time a policy is in force and it is
usually measured in years. The pure premium is the total claim amount divided
by the duration, i.e. the average cost per time unit. The pure premium can be
expressed as a product of claim frequency (the average number of claims per time
unit) and claim severity (the average cost per claim).

The pure premium varies between policies and can be estimated based on
several variables called rating factors. The rating factors are usually related to
the properties of policyholders or insured objects, e.g. gender, age, type of car
etc. Each combination of values of these variables defines a homogeneous risk
group called a tariff class. Insurance is justified by the law of large numbers
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and for this reason it is desirable to have tariff classes of a sufficient volume.
Therefore, the continuous rating factors are often categorized into intervals and
all values within an interval are treated as identical. We follow such practice in
this thesis. Generally, the insurance portfolio is divided into tariff classes and all
policyholders within the same tariff class are charged the same premium.

4.2 Overview of pricing methods

Determining the right level of premium is not an easy task. In order to be solvent,
an insurance company needs to charge enough money in premiums to be able to
face its liabilities. On the contrary, when the policyholders think that they are
being overcharged they probably leave. Also a ”wrong” rating system may attract
bad risks. A number of different methods for setting appropriate premiums has
been invented.

Bailey-Simon method and consecutive more robust Bailey-Jung method also
known as the method of total marginal sums are considered to be simple tarif-
fcation methods because they are not directly based on a stochastic model. In
the 1990’s, generalized linear models were introduced by British actuaries as a
tool for tariff analysis and since then they have become the standard approach
in many insurance companies. Traditional GLM tariff analysis is based on two
separate GLM models for claim frequency and claim severity. Then the estimates
of pure premiums are found by simply multiplying the results.

Direct modelling of pure premium is problematic since a typical pure pre-
mium distribution will consist of a large spike at zero (where policies have not
had claims) and then a wide range of amounts (where policies have had claims).
Jørgensen and Souza (1994) used a Tweedie GLM to model the pure premium
directly. Due to its ability to simultaneously model the zeros and the continu-
ous positive outcomes a Tweedie GLM has been a widely used method in tariff
analysis.

4.3 Tweedie compound Poisson model

Following Jørgensen and Souza (1994), to model pure premium using the Tweedie
compound Poisson model the following assumptions for all insurance policies
i = 1, . . . , n should hold:

1. The number of reported claims Ni on policy i is Poisson distributed with a
parameter λiwi > 0.

2. The individual claim amounts Z
(l)
i are independent gamma distributed with

a shape parameter α > 0 and a policy-specific parameter τi > 0.

3. Random variables Ni and Z
(l)
i are independent for all l.

Then the total claim amount Zi and the pure premium Yi for the ith policy over
a given time period are respectively defined as

Zi = 1{Ni>0} ×
Ni∑
l=1

Z
(l)
i and Yi =

Zi
wi
,

24



where wi denotes the duration of ith policy.
According to Section 3.1, Yi follows a Tweedie compound Poisson model with

parameters µi and φ, i.e.

Yi ∼ EDp(µi, φ/wi) for 1 < p < 2.

The mean and the variance of Yi are then given by

EYi = µi,

varYi =
φ

wi
µpi .

4.4 GLM framework in pricing

We assume that all Yi are independent and Yi ∼ EDp(µi, φ/wi) for p ∈ (1, 2).
Furthermore, we consider M rating factors, each one divided into categories,
where ml denotes the number of categories for rating factor l and il denotes the
category of rating factor l.

For the policy i with rating factors pertaining to the categories i1, . . . , iM ,
based on Ohlsson and Johansson (2010, Chapter 1), we assume a multiplicative
structure for µi

µi ≡ µi1,...,iM = γ0

M∏
l=1

γl,il ,

where the parameter γ0 is called a base value and the other parameters {γl,il , il =
1, . . . ,ml} are known as the price relativities for rating factor l. We specify a base
tariff class {i1 = b1, . . . , iM = bM} and set {γl,bl = 1, l = 1, . . . ,M}, so that the
estimation problem is well-defined. The base value γ0 can now be interpreted as
the mean in the base tariff class and the price relativities measure the relative
difference in relation to the base class.

It is now straightforward to choose the logarithmic link function. Then we
have

log µi = log µi1,...,iM = ηi = log γ0 +
M∑
l=1

log γl,il . (4.1)

The linear predictor ηi can be expressed in vector notation

ηi = xiβ

where a design vector

xi ≡ xi(i1,...,iM ) = (1, δi(1,1), . . . , δi(1,m1), . . . , δi(M,1), . . . , δi(M,mM ))

is for all l and il defined by

δi(l,il) =

{
1 if log γl,il is included in log µi,

0 ortherwise.

The vector of corresponding unknown regression parameters has the following
form

β = (log γ0, log γ1,1, . . . , log γ1,m1 , . . . , log γM,1, . . . , log γM,mM
)>,
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where log γl,bl = 0 for l = 1, . . . ,M . Then the number of unknown parameters
equals to

k =
M∑
l=1

ml −M + 1.

The parameter β is estimated by the maximum likelihood method, see Section
3.3.1.

4.5 GEE framework in pricing

Within GLMs framework, we assume that the average costs per time unit for
different policies are independent variables, i.e. we assume that Yi are independent
for all i ∈ {1, . . . , n}. If this assumption is not fulfilled, then the GLMs may
provide incorrect estimates of pure premiums.

The portfolio of insurance policies can be divided into tariff classes. A tariff
class consists of policies which have the same values of all rating factors. There-
fore, it is natural to suspect that the observations within the same tariff class
might be dependent. Hence, we can handle the insurance portfolio as a special
type of clustered data in which the tariff classes represent the subjects.

The GEE approach enables modelling these dependencies via a working cor-
relation matrix. Some of the most commonly used correlation structures were
presented in Section 2.3.1. The exchangeable correlation structure might be the
most suitable choice since the observations are simply clustered based on the
rating factors and time ordering within the tariff class lacks sense. However if
the number of clusters is small, then the independent structure could be a good
choice as well. The advantage of GEE approach is that the estimates of pure
premiums are still valid even if the correlation structure is not chosen correctly.

Furthermore, in the proposed Tweedie GEE model for the pure premium, the
additive rating mean structure (4.1) is assumed.

4.6 Practical application

In the following part of this chapter, we illustrate a practical application of
presented pricing theory concerning Tweedie GLM and GEE models on a real
dataset. The main aim of the following analyses is to determine how the pure
premium varies with the number of rating factors.

Note that there is no software available that fits a Tweedie GEE model.
The parameter estimation for this model is based on the code from Swan (2006).
A selected R code is attached in Appendix A.

4.6.1 Dataset

We consider authentic insurance data from the former Swedish insurance company
WASA which concern partial casco insurance for motorcycles during years 1994-
1998 studied by Ohlsson and Johansson (2010, Section 2.4). Partial casco covers
theft and some other causes of loss, like fire. The analysed dataset consists of
64 548 insurance policies and for each policy the information about the following
variables (in Swedish acronyms) is available:
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agarald - The owners age.

kon - The owners gender.

zon - Geographic zone numbered from 1 to 7 in a standard classification of all
Swedish parishes.

mcklass - MC class, a classification by the so called EV ratio, defined as (Engine
power in kW · 100) / (Vehicle weight in kg + 75), rounded to the nearest
lower integer. The 75 kg represent the average driver weight. The EV ratios
are divided into seven categories.

fordald - Vehicle age.

duration - The number of policy years.

antskad - The number of claims.

skadkost - The claim cost in SEK.

Note that we assume that the owners are also the drivers.
It is reasonable to have a closer look at selected dataset before we create any

model for the pure premium. Swedish Transport Agency learner’s permit can be
issued at the age of 16. Therefore, we omit all drivers younger than 16 from the
original dataset. We also assume that drivers at the age 90 and more are not
capable of driving so we eliminate them as well. Furthermore, we exclude zero
durations from the analysis. The adjusted dataset consists of 62 435 insurance
policies over the years 1994-1998 in which 61 769 (98.9 %) policies had no claim.
Thus, the Tweedie approach of modelling zeros and positive observations together
appears to be perfectly adequate here.

For each policy, the data contain the exact age of the owners and the vehicles.
Following the approach mentioned in Section 4.1, we divide the values of these
variables into classes. We choose to have just five age classes and three vehicle
age classes. Our decision was based on age requirements for different types of mo-
torcycles and various studies provided by Swedish Transport Agency. Obviously,
a large number of alternative groupings is possible. We consider all categorical
variables as rating factors and their detailed description is given in Table 4.1.
Variable duration is used as weight.

The drivers can be divided into 1 072 tariff classes on the basis of rating
factors. Note that 2 × 3 × 5 × 7 × 7 = 1 470 is a total number of tariff classes
but we do not have the observations for every tariff class. For each rating factor,
it is customary to choose the class with the highest duration as the base class.
Thus, the base tariff class is (M, 3, 3, 4, 3) and it corresponds to middle age male
drivers living in small towns and countrysides who own older motorcycles with
middle MC class.

4.6.2 Application of GLM to pricing

An appropriate value of the power index parameter p needs to be found first in
order to fit a Tweedie GLM. We use the profile log-likelihood function to estimate
p, see Section 3.3.1. The maximum likelihood estimate is p̂ = 1.5673. Figure 4.1
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Rating factor Class Class description

Owners gender M Male
K Female

Vehicle age 1 0− 3 years
2 4− 10 years
3 11+ years

Owners age 1 16− 21 years
2 22− 35 years
3 36− 50 years
4 51− 65 years
5 66+ years

Geographic zone 1 Central and semi-central parts of Sweden’s three largest cities
2 Suburbs and middle-sized towns
3 Lesser towns, except those in 5 or 7
4 Small towns and countrysides, except 5− 7
5 Northern towns
6 Northern countrysides
7 Gotland (Sweden’s largest island)

MC class 1 EV ratio − 5
2 EV ratio 6− 8
3 EV ratio 9− 12
4 EV ratio 13− 15
5 EV ratio 16− 19
6 EV ratio 20− 24
7 EV ratio 25+

Table 4.1: Rating factors in motorcycle insurance.
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Figure 4.1: Profile log-likelihood plot for p.
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shows the profile log-likelihood plot where the points represent the profile log-
likelihood computed at each value in the pre-specified grid P .

Now we can fit the model in terms of equation (4.1) using all five rating
factors. The estimate of dispersion parameter φ is equal to 2 454. The estimated
regression coefficients along with the estimated price relativities are listed in Table
5.3.

We want to investigate whether all rating factors are important and hence
should be included in the tariff. We test the significance of each of rating factors
in turn against the full model. For such sub-model testing, we use a likelihood
ratio test with a significance level of 5 %. This test belongs among the basic
tests within the GLM framework and its detailed description is presented e.g. in
Ohlsson and Johansson (2010, Section 3.1). Based on the individual p-values, all
five rating factors are significant and therefore we keep the initial full Tweedie
GLM model. Note that we do not consider any interactions between the rating
factors in the analyses since the interactions produce a model which is too complex
for interpretation and practical use in setting insurance tariffs.

Model diagnostics

The numerous diagnostic plots can be drawn to check whether the model ade-
quately fits the data. A general tool used in diagnostic analysis are residuals.
The most commonly used residuals for GLMs are the Pearson residuals.

Before we look at the various diagnostic plots, it is wise to recall two important
facts about the analysed dataset. Firstly, there are 986 out of 1072 tariff classes
with more than one observation available and secondly 98.9 % of policies had no
claim during 1994-1998. These circumstances will have a major impact on the
following plots visualisation.

One of the most important components of a GLM is that the correct distribu-
tion is chosen for the response variable. The Pearson residuals were used to asses
how well the distribution fits the data. They have an approximate normal distri-
bution N (0, φ), provided that the correct distribution is used. To check whether
the Tweedie compound Poisson model is suitable for the analysed data, a Q-Q
plot and a histogram of Pearson residuals are produced. Both graphs are shown
in Figure 4.2. The larger values which do deviate from normality line indicate
that the model does not fit extreme values very well. These graphs suggest that
the Tweedie GLM model with the estimated power index parameter p̂ = 1.5673
and the estimated dispersion parameter φ̂ = 2 454 is not appropriate.

Residual plots are shown in Figure 4.3. The first graph illustrates the Pearson
residuals. The residuals should be symmetrically located around zero and any
pattern observed indicates problems with the fitted model. However, we see that
the magnitude of the positive residuals is much larger than the magnitude of
the negative ones. This is caused by the fact that the model does not predict
extreme values very accurately. The Pearson residuals versus the linear predictor
are displayed in the second graph. If a model accurately represents the data, all
points should be uniformly spread. As the plot does not show the uniformity,
Tweedie GLM model provides a poor fit for this data.

Another diagnostic plot that demonstrates the overall fit of the model is given
in Figure 4.4. It illustrates the observed values with respect to the fitted values.
It is important to realize that we have one fitted value for the observations that
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Figure 4.2: Q-Q plot and histogram of Pearson residuals.

Figure 4.3: Pearson residuals plots for Tweedie GLM model.

belong to the same tariff class. We see that for the large observed values the
corresponding fitted ones are very small. This is caused by the large number of
zeros in the data.

4.6.3 Application of GEE to pricing

The results obtained from the application of Tweedie GEE model with exchenge-
able correlation structure to the same dataset are summarized in this part. The
reasons for choosing this structure are explained in Section 4.5.

A corresponding Tweedie GLM is fitted in the initial stage of the Tweedie
GEE estimation process. Therefore, the estimate of the power index parameter
p is the same for both models. The maximum likelihood estimate is p̂ = 1.5673

A Tweedie GEE model with exchangeable correlation structure is fitted in the
terms of equation (4.1). The estimate of parameter ϑ for this structure equals to
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Figure 4.4: Observed vs. fitted values of Tweedie GLM model.

0.2927. The value of ϑ̂ indicates that there exists a significant positive correlation
between the average costs per annum over the years 1994-1998 within the same
tariff class. The estimate of dispersion parameter φ is φ̂ = 18 249. The estimated
regression parameters together with the estimated price relativities are given in
Table 4.2.

Model diagnostics

The residual plots and graph showing the fitted values plotted against the ob-
served are very similar to the Figures 4.3 and 4.4. Therefore, the same justifica-
tions also apply for the Tweedie GEE model.

4.6.4 Comparison of results

We fitted two different models for the pure premium to the same dataset, namely
the Tweedie GLM model and the Tweedie GEE model with exchangeable cor-
relation structure. Both models were examined in detail to determine if any of
these models are adequate for pure premium.

Based on the diagnostic checks performed, Tweedie GLM model does not
provide a good representation of data and the distributional assumptions are not
satisfied. Tweedie GEE model does not perform satisfactory either. Both models
provide a poor fit to the analysed data. Overall, the models can be considered as
the inadequate models for the expected pure premium. But again, we have to keep
in mind the structure of underlying dataset. Almost all of the observations are
zeros. Therefore, we can not really decide whether these models are completely
useless.

Even thought, the models did not perform well, we still interpret and compare
the estimates gained from the fitted models. We only interpret the estimated
price relativities for Tweedie GLM. The interpretation for Tweedie GEE is the
same. The pure premium is estimated to be 127 SEK per year in the base tariff
class, i.e. (M, 3, 3, 4, 3) which corresponds to middle age male drivers living in
small towns and countrysides who own older motorcycles with middle MC class.
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To get a prediction of pure premium for other classes, the base value should be
multiplied by the price relativities given in the Table 4.2 for each rating factor
category. For example, the pure premium for a young woman living in the largest
Swedish city having a new motorcycle with MC class 7 is estimated to be:

µ̂ = 127.4342× 0.4484× 14.8513× 1.2156× 1.6206× 0.2895 = 484

SEK per year. By comparing the estimates of the price relativities between two
considered models, some significant differences can be observed. These differences
are probably cause by the detected dependence within the tariff classes.

Tweedie GLM Tweedie GEE
Variable Estimate Relativity Estimate Relativity

Base tariff class 4.8476 127.4342 7.1724 1302.9680
Female −0.8021 0.4484 −0.6384 0.5281
Vehicle age (1) 2.6981 14.8513 2.6088 13.5827
Vehicle age (2) 1.3559 3.8802 1.0294 2.7994
Owners age (1) 0.1952 1.2156 −0.3493 0.7052
Owners age (2) 0.3627 1.4372 0.1763 1.1928
Owners age (4) −1.0582 0.3471 −1.4098 0.2442
Owners age (5) −2.7435 0.0643 −5.7652 0.0031
Geographic zone (1) 0.4828 1.6206 −0.3658 0.6936
Geographic zone (2) 0.2827 1.3267 −0.8995 0.4068
Geographic zone (3) −0.6084 0.5442 −1.0697 0.3431
Geographic zone (5) −2.3514 0.0952 −3.2088 0.0404
Geographic zone (6) −1.8002 0.1653 −3.5688 0.0282
Geographic zone (7) −5.5416 0.0039 −7.2148 0.0007
MC class (1) −1.3516 0.2588 −2.0772 0.1253
MC class (2) −0.1318 0.8765 −0.5797 0.5601
MC class (4) −1.0081 0.3649 −1.7279 0.1777
MC class (5) −0.1335 0.8750 −0.8376 0.4327
MC class (6) 0.4827 1.6205 −0.7560 0.4695
MC class (7) −1.2397 0.2895 −4.2099 0.0148

Table 4.2: Estimated regression parameters and price relativities for Tweedie
GLM and GEE models.
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5. Claims reserving using
Tweedie compound Poisson
model

The previous chapter described the application of Tweedie compound Poisson
model in non-life insurance pricing. The main goal of this chapter is to show how
Tweedie compound Poisson model can be used in claims reserving. The structure
of this chapter is identical to the previous one.

The classical claims reserving terminology and notation are introduced in the
first section. The following section gives a brief overview of popular reserving
methods. Section 5.3 recalls the definition of Tweedie compound Poisson model.
The definition is supplemented by the interpretation of random variables within
claims reserving context. Sections 5.4 and 5.5 present the application of GLMs
and GEE for estimation of claims reserves. The general frameworks from Chapter
2 are modified to fit the data structure of claims. A suitable form of linear
predictor and a type of link function are proposed. Moreover, within the GEE
framework, the appropriate choice of correlation structure is discussed. Last
section illustrates an application of proposed Tweedie GLM and GEE models on
a real dataset. It focuses especially on performance of these models and also on
their comparison.

5.1 Claims reserving terminology and notation

Claims reserving is another classical problem in non-life insurance. The main
issue is that a typical non-life insurance claim cannot be settled immediately
at its occurrence. This is often caused by reporting and settlement delays or
by re-opening of an already closed claim due to unexpected new developments.
The history of a typical non-life insurance claim can be illustrated as in Figure
5.1 taken from Wüthrich and Merz (2008, Section 1).

As a consequence, the insurance company needs to build claims reserves, so
that it is able to fulfil future payments arising from claims that have occurred
in the past and are only settled in the future. Setting an appropriate amount
of claims reserves is called claims reserving and is one of the most fundamental
actuarial tasks in every insurance company.

There are two main categories of claims reserves. The first one is a reserve on

Figure 5.1: Typical time line of a non-life insurance claim.
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Accident
year i

Development year j
1 2 . . . n− 1 n

1 Y1,1 Y1,2 . . . Y1,n−1 Y1,n
2 Y2,1 Y2,2 . . . Y2,n−1 Y2,n

. . .
...

...
... Yi,n+1−i

...
...

. . .

n− 1 Yn−1,1 Yn−1,2
n Yn,1 Yn,2 . . . Yn,n

Table 5.1: Run-off triangle for normalized incremental claims payments Yi,j.

claims that have incurred but have not been reported, called IBNR reserve, and
the second is a reserve on claims that have been reported but have not yet been
settled, called RBNS reserve.

The historical data used in claims reserving are typically structured in a so-
called claims development triangle or a run-off triangle, see Table 5.1. In this
triangle, the row i denotes the accident year and the column j indicates the
delay, also assumed to be measured in years. Each diagonal corresponds to one
calendar year. The current year is n and it represents the most recent accident
as well as development year.

Let a random variable Zi,j denote all payments done in the accounting year
i+j for claims occurred in the year i. We refer to Zi,j as the incremental payments
for claims with origin in the accident year i during development period j. The
normalized incremental claims payments are then given by

Yi,j =
Zi,j
wi

,

where wi denotes a known exposure for the accident year i. Note that there
exist several different possibilities from which we can choose the appropriate wi,
e.g. total number of policies in the ith accident year.

At time n, the following payment information is available

DU
n = {Yi,j; i+ j ≤ n+ 1 and i, j = 1, . . . , n},

which corresponds to an upper triangle in Table 5.1 and the outstanding pay-
ments, i.e. a lower triangle

DL
n = {Yi,j; i+ j > n+ 1 and i, j = 1, . . . , n}

needs to be predicted in order to estimate the outstanding claims reserves

Ri =
n∑

j=n+2−i

Yi,j =
1

wi

n∑
j=n+2−i

Zi,j for i = 2, . . . , n. (5.1)

The total claims reserve at time n is then given by

R =
n∑
i=2

Ri. (5.2)
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5.2 Overview of claims reserving methods

There is a wide range of different methods and models used for setting appropriate
claims reserves, but only practical experience will tell which one should be applied
in any particular situation.

The chain-ladder and Bornhuetter-Ferguson methods belong to the determi-
nistic claims reserving methods. Their simplicity and accurate results still make
them the most commonly used techniques in practice.

In the last 30 years, there has been an increasing interest in stochastic models
underlying forenamed methods. The practicality of these models lies in them be-
ing able to provide more information which may be useful in the claims reserving
process and in the overall management of insurance company.

The basics of stochastic models were introduced by Mack in 1993. Mack
distributional-free chain-ladder model is probably the most famous stochastic
claims reserving model. It is straightforward from a stochastic point of view and
it is easy to apply. Renshaw in 1995 was the first who implemented the standard
generalized linear model techniques in claims reserving context. Since then these
models have played an important role therein. Among popular claims reserving
GLMs belong the overdispersed Poisson, gamma and Tweedie compound Poisson
models. An overview on stochastic reserving models used in non-life insurance
can be found in e.g. England and Verrall (2002) or Wüthrich and Merz (2008).

Almost all of the proposed approaches require the independence of incremental
claims amounts in different years. However, this assumption does not often hold
in practice and we need methods which enable to model the possible dependencies
among the incremental claims payments. Thus, the claims reserving GEE models
were presented.

5.3 Tweedie compound Poisson model

Following Wüthrich (2003, Section 2), to estimate claims reserves using the
Tweedie compound Poisson model the following assumptions for all i, j ∈ {1, . . . , n}
should hold:

1. The number of claims payments Ni,j is Poisson distributed with a parameter
λi,jwi > 0.

2. The individual claims payments Z
(l)
i,j are independent gamma distributed

with a common shape parameter α > 0 and a cell-specific parameter τi,j > 0.

3. Random variables Ni,j and Z
(l)
i,j are independent for all l.

Then the incremental claims payments Zi,j and the normalized incremental claims
payments Yi,j in cell (i, j) are defined respectively by

Zi,j = 1{Ni,j>0} ×
Ni,j∑
l=1

Z
(l)
i,j and Yi,j =

Zi,j
wi

. (5.3)

According to Section 3.1, normalized incremental claims payments Yi,j follows
a Tweedie compound Poisson model with parameters µi,j and φ, i.e

Yi,j ∼ EDp(µi,j, φ/wi) for 1 < p < 2.
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The mean and the variance of Yi,j are then given by

EYi,j = µi,j,

varYi,j =
φ

wi
µpi,j.

5.4 GLM framework in claims reserving

We assume that all Yi,j are independent and Yi,j ∼ EDp(µi,j, φ/wi) for p ∈ (1, 2).
As stated in Wüthrich (2003, Section 4), an additional structure for the means
of Yi,j needs to be specified. We assume a multiplicative structure

µi,j = γiνj, (5.4)

for all i, j with the constrain γ1 = 1, so that the estimation problem is well-
defined. Parameter γi can be interpreted as the expected ultimate claim in acci-
dent year i and νj is the proportion paid in development year j.

The multiplicative structure (5.4) reduces the number of unknown parameters
from n·n to 2n−1 and defines exactly how the information from the upper triangle
is transferred to the lower triangle.

It is now straightforward to choose the logarithmic link function. Then we
have

log µi,j = ηi,j = log γi + log νj. (5.5)

The linear predictor ηi,j can be expressed in vector notation

ηi,j = xi,jβ,

where a design vector

xi,j = (0, δ2,i, . . . , δn,i, δ1,j, . . . , δn,j)

is defined by Kronecker’s deltas δi,j. The vector of corresponding unknown re-
gression parameters has the following form

β = (0, log γ2, . . . , log γn, log ν1, . . . , log νn)>.

The parameter β is estimated by the maximum likelihood method, see Section
3.3.1. Having the estimates of regression parameters, the predicted normalized
incremental payments for the lower triangle are obtained as follows

Ŷi,j = µ̂i,j = exp(η̂i,j) = γ̂iν̂j.

Accident year i and overall reserve estimates can then be found by summing these
values according to (5.1) and (5.2) respectively.

5.5 GEE framework in claims reserving

Within GLMs framework, we assume that normalized claims payments in different
accident and development years are independent variables, i.e. we assume that
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Yi,j are independent for all i, j ∈ {1, . . . , n}. If this assumption is not fulfilled,
then the GLMs may provide incorrect estimates of the claims reserves.

The claims development triangle consists of observations which are ordered
in time. Therefore, according to Hudecová and Pešta (2013), it is natural to sus-
pect that the observations are correlated. The most common approach is to
assume that observations within the same accident year are dependent and ob-
servations of different accident years are independent. Hence we can handle the
claims development triangle as a special type of panel data in which accident
years represent the subjects.

The GEE approach enables modelling these dependencies via a working cor-
relation matrix. In Section 2.3.1 some of the most commonly used correlation
structures were presented. The AR(1) correlation structure might be the most
suitable choice since the claims payments within an accident year are ordered in
time and it is natural that correlation between two observations weakens with
their time distance. However, when the observations are strongly dependent re-
gardless on their time distances, the exchangeable correlation structure could also
be a good choice. The advantage of GEE approach is that the estimates of claims
reserves are still valid even if the correlation structure is not chosen correctly.

Furthermore, in all the proposed Tweedie GEE models for claims reserving,
the additive accident-development year mean structure (5.5) is assumed.

5.6 Practical application

In the following part of this chapter, we illustrate a practical application of pre-
sented claims reserving theory concerning Tweedie GLM and GEE models on
a real dataset. The main aim of following analyses is to predict future claims
payments and calculate claims reserves.

As it was mentioned several times, the difficulty in using Tweedie GEE model
is that there is no function available to compute the parameters directly. Thus,
the estimation for this model is based on code from Swan (2006). A selected R
code is attached in Appendix B.

5.6.1 Dataset

We consider data from workers’ compensation line of business of Lumber insu-
rance company published by Meyers and Shi (2011). The selected dataset contains
observations of incremental paid losses in thousands of dollars from accident years
1988-1997 with ten years development lag. The upper triangle, as well as the lower
triangle, is included in the data and both triangles are given in Table 5.2. We use
the upper triangle to construct the loss reserving models and the lower triangle
to calculate the real reserves. These values will be compared with their estimates
as a part of model diagnostics.

The visualization of upper triangle is given in Figure 5.2. The graphs show
that the data are regular with a significant increase of volume over last accident
years. The most of payments are done in the second development year and since
then a strong decreasing trend in payments is visible.

Following the notation from Section 5.1, n is equal to ten and the incremental
claims payments in Table 5.2 are a realization of random variable Yi,j. Note that
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the exposure is not available in the data, i.e. wi = 1 for all i and hence Yi,j = Zi,j
for all i and j.

5.6.2 Application of GLM to claims reserving

To fit a Tweedie GLM, an appropriate value of the power index parameter p
needs to be found first. We use the profile log-likelihood function to estimate p,
see Section 3.3.1. Note that information about the number of loss payments is
not provided in the analysed dataset. Therefore, a simplification in which all n’s
are set to one has to be used. The maximum likelihood estimate is p̂ = 1.3286.
Figure 5.3 shows the profile log-likelihood plot where the points represent the
profile log-likelihood computed at each value in the pre-specified grid P .

Now we can fit the model in terms of equation (5.5). The estimate of the dis-
persion parameter φ is equal to 3.8128 and the estimates of regression parameters
are listed in Table 5.3. Note that the values of estimated regression parameters
fully coincide with our description of the data illustrated in Figure 5.2. The
estimated parameters of accident years reflect the changes in volume over the

years. As we expected, the parameter l̂og ν2 has the highest value because most
payments are done in the second development year.

Model diagnostics

After a model has been fit, it is always wise to check how well the model fits the
data. The various diagnostic plots can help us to check the appropriateness of the
assumed distribution of the response variable, detect any isolated and systematic
discrepancies and assess the predictive ability of the selected model.

One of the most important components of the GLM is that the correct dis-
tribution is chosen for the response variable. The Q-Q plot and the histogram
of the Pearson residuals are produced to check whether the Tweedie compound
Poisson model is adequate for the data. Both graphs are shown in Figure 5.4.
The Q-Q plot suggests that the Tweedie GLM is appropriate as all residuals lie
close to the line indicating normality. The shape of the histogram also confirms
its suitability. Thus, the Tweedie model with the estimated power index parame-
ter p̂ = 1.3286 and the estimated dispersion parameter φ̂ = 3.8128 fits the claims
payments appropriately.

The Pearson residuals are displayed in the first graph in Figure 5.5. The resid-
uals are uniformly scattered around zero and no outliers are present. The second
graph shows the Pearson residuals plotted against the linear predictor. There is
no pattern observed which indicates the right form of the variance function.

The observed values versus fitted values are illustrated in Figure 5.6. The plot
shows that nearly all points lie very close to the diagonal line which implies that
Tweedie GLM fits the data well.

Figure 5.7 shows the comparison of real claims payments with the fitted and
predicted ones of Tweedie GLM model separately for each accident year. True
claims payments are illustrated by a black line. A red dashed line distinguishes
the fitted values from the predicted values of Tweedie GLM model which are
denoted by a green line. Based on these graphs, we see that the fitted values do
not significantly differ from the true values besides the early development years
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Accident
year i

Development year j
1 2 3 4 5 6 7 8 9 10

1988 3 270 4 335 2 936 1 675 931 666 273 303 185 96
1989 1 936 3 626 1 963 985 635 242 118 41 85 34
1990 1 187 1 791 1 020 519 412 141 117 43 31 27
1991 1 257 1 771 965 544 159 138 101 −34 18 39
1992 2 592 3 387 2 056 841 694 289 180 180 141 135
1993 3 853 6 343 2 824 1 885 951 505 455 703 67 187
1994 4 727 6 421 3 106 1 903 879 728 543 499 418 300
1995 5 586 6 712 2 974 1 868 1 578 915 519 417 478 234
1996 8 110 8 190 4 130 2 466 1 506 808 434 368 328 55
1997 7 226 7 884 4 569 2 856 1 796 1 024 875 749 466 321

Table 5.2: Development triangle of incremental claims payments (in USD thou-
sands).
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Figure 5.2: Development of incremental claims payments for each accident year.
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Figure 5.3: The profile log-likelihood plot for p.

s 1 2 3 4 5 6 7 8 9 10

l̂og γs 0 −0.4776 −1.0480 −1.1127 −0.3904 0.1169 0.2063 0.2752 0.6203 0.6477

l̂og νs 8.2377 8.5256 7.9072 7.3535 6.8260 6.1816 5.5906 5.2225 5.1049 4.5643

Table 5.3: Parameter estimates for Tweedie GLM model.

in 1988 and the first development year in 1996. The predicted values are also
quite accurate, except for the years 1996 and 1997 where large gaps are visible in
the second development year. This causes the predicted reserves in these years
to be higher than the true ones.

5.6.3 Application of GEE to claims reserving

The Pearson residuals of Tweedie GLM model indicate a dependence between
incremental claims payments within the same accident year. The Pearson corre-
lation coefficient of the first and the second development year is equal to −0.4274
implying that the application of GEE might be appropriate here.

The results obtained from the application of two Tweedie GEE models to
the same dataset are summarized in this part. The AR(1) and exchangeable
correlation structures are considered respectively. The reasons for choosing these
structures are explained in Section 5.5.

The estimate of the power index parameter p is the same as for Tweedie GLM
model. Thus the maximum likelihood estimate is p̂ = 1.3286.

1. AR(1) correlation structure

First, we fit Tweedie GEE model with AR(1) correlation structure in the terms of
equation (5.5).The estimate of parameter ϑ for AR(1) correlation structure equals
to −0.0024. The value of ϑ̂ is very close to zero and it suggests that incremental
claims payments of the same accident year might be independent.

The estimated regression parameters are given in Table 5.4 and the estimate
of dispersion parameter φ is φ̂ = 3.8129. The detected possible independence be-
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Figure 5.4: Q-Q plot and histogram of Pearson residuals.
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Figure 5.5: Pearson residuals plots for Tweedie GLM model.
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Figure 5.6: Observed vs. fitted values of Tweedie GLM model.
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Figure 5.7: Fitted and predicted claims payments vs. real claims payments.
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s 1 2 3 4 5 6 7 8 9 10

l̂og γs 0 −0.4776 −1.0481 −1.1129 −0.3905 0.1168 0.2063 0.2753 0.6202 0.6474

l̂og νs 8.2377 8.5257 7.9074 7.3538 6.8261 6.1816 5.5907 5.2224 5.1049 4.5635

Table 5.4: Parameter estimates for Tweedie GEE AR(1) model.
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Figure 5.8: Pearson residuals plots for Tweedie GEE AR(1) model.

tween incremental payments causes the parameter estimates to be almost identical
to the Tweedie GLM model estimates.

Model diagnostics

Residual diagnostics from this model are shown in Figure 5.8. The first graph
illustrates the Pearson residuals. There is no pattern observed as the residuals
are symmetrically located around zero. The Pearson residuals versus the linear
predictor are displayed in the second graph. The plot suggests that the form
of variance function is appropriate since no pattern is visible and the points are
uniformly spread. The observed values with respect to the fitted ones are shown in
Figure 5.9. The plot confirms a good fit of Tweedie GEE AR(1) model as almost
all points are placed along the diagonal line. Moreover, in all the presented plots,
there are no outliers. Note that the graphs are nearly indistinguishable from the
Figures 5.5 and 5.6.

2. Exchangeable correlation structure

Next, Tweedie GEE model with exchangeable correlation structure is fitted in the
terms of equation (5.5). For this structure, the estimate of parameter ϑ equals to
−0.0121. The value of ϑ̂ indicates that there might be some very small negative
correlation between the incremental payments within the same accident year. The
estimate of dispersion parameter φ is φ̂ = 3.8194 and the estimated parameters
are listed in Table 5.5. Comparing them with Tweedie GLM estimates 5.3, some
differences can be observed. These differences are more visible from the estimated
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Figure 5.9: Observed vs. fitted values of Tweedie GEE AR(1) model.

s 1 2 3 4 5 6 7 8 9 10

l̂og γs 0 −0.4778 −1.0484 −1.1131 −0.3906 0.1169 0.2064 0.2752 0.6204 0.6478

l̂og νs 8.2371 8.5250 7.9064 7.3526 6.8249 6.1801 5.5887 5.2203 5.1028 4.5619

Table 5.5: Parameter estimates for Tweedie GEE exchangeable model.

claims reserves given in the following section. The character of estimated values
is similar to the parameters estimated in Tweedie GLM model.

Model diagnostics

The same diagnostic plots are produced for Tweedie GEE exchangeable model.
The Pearson residuals and the Pearson residuals plotted against the linear pre-
dictor are shown in Figure 5.10. The model has analogical residual diagnostics as
the previous model. Figure 5.11 illustrates the fitted values with respect to their
observed values. The plot indicates a good fit of model as almost all points lie
close to the diagonal. It is noticeable that all graphs are again nearly identical to
the ones from Tweedie GLM and Tweedie AR(1) models.

5.6.4 Comparison of results

We fitted three different claims reserving models to the same dataset, namely
Tweedie GLM model and Tweedie GEE models with AR(1) and exchangeable
correlation structures.

Moreover, using the information provided in the lower triangle, we calculated
the true values for claims reserves separately for each accident year, as well as
in total for all years together. Note that the negative value in the year 1991
was replaced by zero. In 1997, these amounts should have been held by Lumber
insurance company in order to meet future payments arising from claims within
workers’ compensation line of business. We use them as a benchmark for pre-
diction. The estimated claims reserves for all of the considered models together
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Figure 5.10: Pearson residuals plots for Tweedie GEE exchangeable model.
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Figure 5.11: Observed vs. fitted values of Tweedie GEE exchangeable model.
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Accident year i
Model 1989 1990 1991 1992 1993 1994 1995 1996 1997 Total

True 34 58 57 636 1 917 3 367 6 009 10 095 20 540 42 679
GLM 60 91 147 483 1 346 2 605 4 847 11 897 21 863 43 340
GEE AR(1) 59 91 147 483 1 346 2 605 4 848 11 897 21 860 43 337
GEE Exchangeable 59 91 146 482 1 344 2 601 4 841 11 885 21 847 43 297

Table 5.6: True and predicted claims reserves from Tweedie compound Poisson
models (in USD thousands).

with their true values are listed in Table 5.6.
Looking at the Table 5.6, we notice that all the models underestimate or over-

estimate the claims reserves for a single accident years but in total the estimated
reserves are higher than the true ones. The Tweedie GEE exchangeable model
provides the closest prediction of total claims reserves. Overall, there are very
small differences between the predicted reserves. We see that Tweedie GEE model
with AR(1) correlation structure provides almost identical reserves estimates as
the Tweedie GLM model. This is probably the result of the negligible correlation
detected in Tweedie GEE AR(1) model. The predicted reserves obtained from
the Tweedie GEE model with exchangeable correlation structure and Tweedie
GLM model are very similar.

We have compared the models in terms of their precision of predictions in
numbers. Now we can look at their various diagnostic plots. Based on the results
from the separate model diagnostics, we can conclude that all of the proposed
models performed well and therefore all of them could be considered adequate for
estimating claims reserves.

Even though the Tweedie GEE models were more accurate in prediction of
claims reserves, we have chosen the Tweedie GLM as our final model. According
to the diagnostics checks performed, this model provides a good representation of
the data and the distributional assumptions are satisfied. Moreover, the Tweedie
GLM is simpler to implement in practice.

Note that the final choice among these models could be further based on some
other model diagnostics, e.g. the information criteria or the mean square error of
prediction, see Hudecová and Pešta (2013).
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Conclusion

Of our main interest was Compound Poisson distribution. We demonstrated that
this distribution corresponds to the Tweedie model with p ∈ (1, 2). Being EDM,
Tweedie compound Poisson model fits the GLM and GEE frameworks and its
parameters can be estimated by standard GLM and GEE methods, except for
the estimation of power index parameter, where the profile likelihood approach
is used.

The aim of the presented thesis was to illustrate the applications of Tweedie
compound Poisson models in the non-life insurance pricing and claims reserving.
The Tweedie compound Poisson model has been found suitable for modelling pure
premiums as well as normalized incremental claims. The general frameworks were
modified and two different real insurance datasets were used to illustrate such
applications. The obtained results were discussed, summarized and compared.

The difficulty in using Tweedie GEE models is that there is no software avail-
able that fits Tweedie GEE, therefore it was necessary to write a code so this type
of modelling could be implemented. In this thesis, we developed the required R
code necessary to compute the parameters of Tweedie GEE models with AR(1)
and exchangeable correlation structures. The selected R code for non-life insur-
ance pricing and claims reserving is included in the corresponding appendices.

47



Bibliography

Dunn, P. and G. Smyth (2001). Tweedie Family Densities: Methods of Evalua-
tion. Proceedings of the 16th International Workshop on Statistical Modelling,
Odense, Denmark .

Dunn, P. and G. Smyth (2005). Series evaluation of Tweedie exponential disper-
sion model densities. Statistics and Computing 15, 267–280.

England, P. and R. Verrall (2002). Stochastic claims reserving in general insur-
ance. British Actuarial Journal 8 (3), 443–544.

Haberman, S. and A. Renshaw (1996). Generalized linear models and actuarial
science. Journal of the Royal Statistical Society 45 (4), 407–436.

Hardin, J. and J. Hilbe (2003). Generalized Estimating Equations. Boca Raton:
Chapman & Hall/CRC.
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A. Source code: Pricing

Appendix A provides a selected R code used for performing the analyses in Section
4.6.

A.1 Exchangeable correlation structure

N=length(MCdataU$kon)

K=length(pocty$V1)

n<-pocty$V1

# Estimation of parameter p.

power <- tweedie.profile(skadkost ~ kon+fordald_f+agarald_f+

zon+mcklass, p.vec=seq(1.2, 1.65, length=10), do.plot=TRUE,

data = MCdataU, weights = duration,do.ci=F,method="interpolation",

control=list( maxit=800))

(p=power$p.max)

# Tweedie compound Poisson GEE initial model.

summary(glm_model0<- glm(skadkost ~ kon+fordald_f

+agarald_f+zon+mcklass, family = tweedie(var.power=p,

link.power=0), data=MCdataU,weights = duration,x=TRUE))

beta=glm_model0$coefficients

X_model=glm_model0$x

k=glm_model0$rank

phi = power$phi.max

fits=glm_model0$fitted.values

# Attaching fitted values and residuals to dataset.

MCdataU<-cbind(fits,MCdataU)

p.residuals=sqrt(MCdataU$duration)*

(MCdataU$skadkost-MCdataU$fits)/sqrt(MCdataU$fits^p)

MCdataU<-cbind(p.residuals,MCdataU)

head(MCdataU)

dev=sum(tweedie.dev(MCdataU$skadkost,MCdataU$fits,p))

devold=100*dev

epsilon =1e-5

## Dividing into groups.

groups<- list()

groups<-dlply(MCdataU, .(kon,fordald2,agarald2,zon,mcklass))

### Repeat steps 2-5 until the convergence criterion

is not fulfilled.
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while (abs(dev - devold)/(0.1 + abs(dev)) > epsilon) {

### Step 2 - Calculate Pearson residuals for the model.

MCdataU$p.residuals=sqrt(MCdataU$duration)*

(MCdataU$skadkost-MCdataU$fits)/sqrt(MCdataU$fits^p)

groups<-dlply(MCdataU, .(kon,fordald_f,agarald_f,zon,mcklass))

### Step 3 - Calculate estimates of phi and vartheta

phi<-sum(MCdataU$p.residuals^2)/(N-k)

vartheta=NULL

pom_sum=NULL

pom_sum1=NULL

pom_sum2=NULL

for (j in 1:K){

if (n[j]>1){

## First part of the sum.

for (u in 1:n[j]){

for (v in 1:n[j]){

pom_sum[v]=groups[[j]][u,1]*groups[[j]][v,1]

}

pom_sum1[u]=sum(pom_sum)

pom_sum=NULL

}

##Second part of the sum.

for(u in 1:n[j]){

pom_sum2[u]=groups[[j]][u,1]^2

}

vartheta[j]= (sum(pom_sum1)-sum(pom_sum2))/(n[j]*(n[j]-1))

pom_sum1=NULL

pom_sum2=NULL

} else { vartheta[j]=0}

}

vartheta=sum(vartheta)/phi

## Calculate R for Exch. correlation structure

R<- list()

for (i in 1:K){

R[[i]]=matrix(vartheta,nrow=n[i],ncol=n[i])

for (j in 1:n[i]){

R[[i]][j,j]=1

}

}

### Step 4: Calculate A.
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A<- list()

for(i in 1:K){

if (n[i]>1){

A[[i]]=diag(groups[[i]][,2]/groups[[i]][,8])^(p/2)

} else

{A[[i]]=matrix((groups[[i]][,2]/groups[[i]][,8])^(p/2),

nrow=1,ncol=1)}

}

### Step 5: Update beta.

## Calculate D.

D<- list()

D[[1]]=matrix(nrow=n[1],ncol=k)

for(j in (1:k)){

D[[1]][,j]=groups[[1]][,2]*X_model[,j][1:n[1]]

}

for (i in 2:K){

D[[i]] = matrix(nrow=n[i],ncol=k)

fitted=NULL

fitted<-matrix(groups[[i]][,2],nrow=n[i],ncol=1)

for(j in (1:k)){

D[[i]][,j]=fitted*X_model[,j][(sum(n[1:(i-1)])+1):

(sum(n[1:i]))]

}

}

## Calculate V.

V<- list()

for (i in 1:K){

V[[i]] = phi*(A[[i]] %*% R[[i]] %*% A[[i]])

}

## Calculate inverse of V.

invV<- list()

for (i in 1:K){

invV[[i]]=solve(V[[i]])

}

## Calculate C.

C<- list()

for (i in 1:K){

C[[i]]=t(D[[i]]) %*% invV[[i]] %*% D[[i]]

}

## Calculate B.

B<- list()
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for (i in 1:K){

pom=NULL

pom<-matrix(groups[[i]][,10]-groups[[i]][,2],nrow=n[i],ncol=1)

B[[i]]=t(D[[i]]) %*% invV[[i]] %*% pom

}

## Get final matrices B and C.

C_final<-Reduce(’+’, C)

B_final<-Reduce(’+’, B)

### Fit the new values..

beta=beta + (solve(C_final) %*% B_final)

MCdataU$fits=exp(X_model %*% beta)

groups<-dlply(MCdataU, .(kon,fordald_f,agarald_f,zon,mcklass))

devold<-dev

dev=sum(tweedie.dev(MCdataU$skadkost,MCdataU$fits,p))

} # End of the while cycle.
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B. Source code: Claims reserving

Appendix B provides a selected R code used for performing the analyses in Section
5.6.

B.1 AR(1) correlation structure

# Estimation of parameter p.

power=tweedie.profile(inc_pdloss ~ devy + ay -1 ,data=data_inc,

p.vec=seq(1.1,1.9,length=15),

do.plot=T,do.smooth=T,do.ci=F,method="interpolation")

(p=power$p.max)

# Tweedie compound Poisson GEE initial model.

glm_model0 = glm(inc_pdloss ~ devy + ay -1 ,

family = tweedie(var.power=p, link.power=0), data=data_inc,x=TRUE)

summary(glm_model0)

n=length(data_inc$ay)

beta=glm_model0$coefficients

k=glm_model0$rank

phi = power$phi.max

fits=glm_model0$fitted.values

# Set the variables to be used in the convergence criteria.

dev=sum(tweedie.dev(data_inc$inc_pdloss,fits,p))

devold=100*dev

epsilon =1e-8

### Repeat steps 2-5 until the convergence criterion

is not fulfilled.

while (abs(dev - devold)/(abs(dev)+0.1) > epsilon) {

### Step 2 - Calculate Pearson residuals for the model.

p.residuals=(data_inc$inc_pdloss-fits)/sqrt(fits^p)

### Step 3 - Calculate estimates of phi and vartheta

phi<-sum(p.residuals^2)/(n-k)

## AR(1) correlation structure.

vartheta=NULL

pom_sum=NULL

for (j in 1:(n-1)){

pom_sum[j]=p.residuals[j]*p.residuals[j+1]

}

53



vartheta=(sum(pom_sum))/(phi*(n-1)*(n-k))

print(paste0("vartheta=",vartheta))

## Calculate R.

index<-seq(0,n-1,by=1)

longindex<-c(seq(n-1,1,by=-1),index)

i=0

R=matrix(nrow=n,ncol=n)

while(i<n){

R[i+1,]=vartheta^longindex[(n-i):(2*n-i-1)]

i=i+1

}

### Step 4: Calculate A.

A=diag(fits)^(p/2)

### Step 5: Update beta.

## Model matrix X.

X_model=glm_model0$x

## Calculate D.

D = matrix(nrow=n,ncol=k)

for(i in (1:k)){

D[,i]=fits*X_model[,i]

}

V = phi*(A %*% R %*% A)

svdV=svd(V)

C= t(D) %*% svdV$v%*%diag(1/svdV$d)%*%t(svdV$u) %*% D

B= t(D) %*% svdV$v%*%diag(1/svdV$d)%*%t(svdV$u) %*%

(data_inc$inc_pdloss-fits)

## Fit the new values.

svdC=svd(C)

beta=beta+ (svdC$v%*%diag(1/svdC$d)%*%t(svdC$u) %*% B)

fits<-exp(t(beta) %*% t(X_model))

fits<-as.vector(fits)

devold<-dev

dev<-sum(tweedie.dev(data_inc$inc_pdloss,fits,p))

} # End of the while cycle.

B.2 Exchangeable correlation structure

## Step 3 - Calculate estimates of phi and vartheta.
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phi<-sum(p.residuals^2)/(n-k)

vartheta=NULL

pom_sum=NULL

pom_sum1=NULL

pom_sum2=NULL

for(u in 1:n){

for(v in 1:n){

pom_sum[v]=p.residuals[u]*p.residuals[v]

}

pom_sum1[u]=sum(pom_sum)

pom_sum=NULL

}

for(j in 1:n){

pom_sum2[j]=(p.residuals[j])^2

}

vartheta= ((sum(pom_sum1)-sum(pom_sum2))/(phi*n*(n-1)))

R = matrix(vartheta,nrow=n,ncol=n)

for (j in 1:n){

R[j,j]=1

}
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